
Analyzing Data-Dependent Timing and Timing

Repeatability with GameTime

Zachariah Wasson

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-132

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-132.html

May 30, 2014



Copyright © 2014, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Analyzing Data-Dependent Timing and Timing Repeatability
with GameTime

by Zachariah Lord Wasson II

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree of Master
of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Sanjit Seshia
Research Advisor

Date

* * * * * *

Edward Lee
Second Reader

Date



1

Abstract

Analyzing Data-Dependent Timing and Timing Repeatability with GameTime

by

Zachariah Lord Wasson II

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Sanjit Seshia, Chair

Execution time analysis is central to the design and verification of real-time embedded
systems. One approach to this problem is GameTime, a toolkit for timing analysis, which
predicts the timing of various program paths using platform measurements of a special sub-
set of paths. This thesis explores extensions to GameTime to handle two common sources
of data-dependent timing behavior: instructions with variable timing and load/store depen-
dencies. We present a technique for automatically learning a model of the data dependencies
and encoding this model into the code under analysis for processing by GameTime. Using
these extensions, we show that GameTime more accurately predicts the timing for a variety
of benchmarks.

Unfortunately, the complexity of modern architectures and platforms has made it very
difficult to obtain accurate and efficient timing estimates. To deal with this, there have
been recent proposals to re-architect platforms to make execution time of instructions more
repeatable. There is however no systematic formalization of what timing repeatability means.
In this thesis, we also propose formal models of timing repeatability. We give an algorithmic
approach to evaluate parameters of these formal models. Using GameTime along with
the data-dependent extensions discussed in this thesis, we objectively evaluate the timing
repeatability of a representative sample of platforms with respect to a program of interest.
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Chapter 1

Introduction

Execution time analysis is central to the design and verification of real-time embedded sys-
tems. System designers are often interested in finding the worst-case execution time (WCET)
of a program or a timing bound on a particular path of the program. This information can be
used to check the schedulability of the system or optimize a specific path. One of the biggest
challenges is the increasing complexity of the underlying hardware platform (e.g., out-of-
order execution, deep pipelines, branch prediction, caches, parallelism, power management
functions). For programs that have a large execution path space, the challenge of execution
time analysis is further compounded. As pointed out by several researchers (e.g., [9, 8]), the
interaction of a large space of program paths with the complexity of underlying platform
results in timing estimates that are either too pessimistic (due to conservative modeling) or
too optimistic (due to unmodeled features of the platform).

One approach to this problem is GameTime, a toolkit for timing analysis. In [21, 22],
Seshia and Rakhlin establish the theory behind GameTime. A major advantage of the
GameTime approach over other timing analysis methods is that it uses systematic testing
and game-theoretic prediction to estimate timing on any platform with no modification. One
of the key assumptions is that the timing of a program depends only on its execution context,
which is comprised of two elements: the starting platform state and the starting program
state. While this assumption holds for many real-world programs, there are programs that
exhibit data-dependent behavior. The current GameTime algorithm can only reason in
a data-dependent manner about variables that determine which path a program will take;
however there are many other forms of data-dependency that GameTime cannot handle.
In this thesis, we present the various ways that data-dependency may manifest itself in
a program along with extensions to GameTime to handle these cases. These extensions
provide the user a way to specify more detailed information about a given platform without
requiring a complete and complex model of the entire platform.

While timing analysis tools aid us in determining the WCET for a given program, they
do not solve the inherit issues that make timing analysis so difficult. One solution to this
problem is to rethink the design of embedded processors so as to make their timing more
repeatable and predictable (see, e.g., [5]). Although there has been considerable research
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in this area, the notion of repeatable timing has yet to be formalized. One rather strict
interpretation is to define a platform to have repeatable timing when the execution time of
an instruction is completely independent of the state of the platform and the arguments to
that instruction. In other words, the instruction takes the same execution time, no matter
when and how it is executed. However, this strict notion of “perfect repeatability” may be
rather hard to achieve. Indeed, we find empirically that even some of the most promising
architectures proposed for achieving repeatable timing do not achieve perfect repeatability.

We present an approach to quantify and evaluate timing repeatability from a “program-
mer’s perspective.” By this, we mean that we provide the author of a program a way to
evaluate the timing repeatability of a platform for that specific program. Informally, we say
that a platform is timing-repeatable for a program if the execution time of any fragment of
that program on that platform depends minimally on its execution context as defined above
(the starting platform state and the starting program state). Our approach operates by
timing the entire program on a polynomial number of systematically-generated test cases,
rather than having to perform tedious and tricky measurements of individual instruction
timing. Specifically, our approach to evaluate timing repeatability is based on the notion
of basis paths, a subset of program paths that spans the space of all program paths [21,
22]. The approach we use here is inspired by the GameTime approach, particularly in its
use of basis paths, and utilizes our data-dependent extensions to accurately measure timing
repeatability.

Traditional WCET analysis focuses on finding safe (conservative) upper bounds on the
true WCET (and similarly, lower bounds on BCET). Finding conservative bounds can be
an effective approach for ensuring safe real-time behavior. However, it does not estimate
timing repeatability. Estimating timing repeatability requires measuring the variation in
program timing with respect to changes in platform and program state. The difference
between a lower bound on BCET and an upper bound on WCET is a rather coarse measure
of such variation, and it is also sensitive to the approximations made by specific tools. In
contrast, we propose a tool-independent quantitative definition of timing repeatability, and
an approach for estimating it that is easy to port to any platform and program.

Chapter 2 describes the basic algorithm behind GameTime and provides a detailed look
at basis paths. In Chapter 3, we introduce the topic of data-dependency. In particular,
we outline a method for automatically generating cases for an arbitrary data-dependent
operation. We also discuss methods for extending GameTime to handle data-dependency.
This is based on joint work with Sanjit Seshia. We formalize timing repeatability and provide
algorithms for computing two metrics to measure the repeatability of a platform in Chapter 4.
This is based on joint work with Jonathan Kotker and Sanjit Seshia. Chapter 5 contains our
evaluation of the algorithms discussed in the previous two chapters with various benchmarks
on multiple real-world platforms. Finally, in Chapter 6, we summarize this work and discuss
future directions.

In summary, this thesis makes the following novel contributions.

• A formalization of the various types of data-dependency along with extensions for
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GameTime to handle these features (Chapter 3);

• A formalization of timing repeatability, both from the programmer’s perspective and
the architect’s perspective along with algorithmic techniques for evaluating timing
repeatability, particularly for a programmer’s perspective (Chapter 4); and

• An experimental evaluation of data-dependency and timing repeatability for various
programs on an assortment of processor platforms (ARM Cortex-M3, ARM Cortex-M4,
and PTARM) (Chapter 5).

1.1 Related Work

Timing analysis has become a topic of great interest for many researchers over the last few
decades, spurred forward due to the growing prevalence of cyber-physical systems in every
aspect of our lives. Li and Malik [10] and Wilhelm et al [17] provide comprehensive surveys
for the current tools and techniques in WCET analysis. Many current approaches to the
problem, such as [26], involve abstraction based techniques where the underlying hardware
is modeled manually. A major drawback to these techniques is that each target platform
must be carefully modeled in order to generate reliable upper bounds, whereas GameTime
requires no modification to run on any platform as discussed above. In [21], Seshia and
Rakhlin compare many of these techniques to the GameTime approach.

There have been various works related to building repeatable and predictable architec-
tures. Whitham and Audsley [25] have proposed MCGREP, a predictable and reconfigurable
CPU architecture that is entirely microprogrammed. Andalam et al. present an architecture
called ARPRET [1], which executes PRET-C, an extension to C which provides synchronous
concurrency and high-level timing constructs. The MERASA project [24] is developing
multi-core architectures alongside the tools and techniques for timing analysis to ensure pre-
dictability of the entire processor. The Heracles project [7] also focuses on timing-predictable
multi-core architectures, and the Verilog designs along with a cycle-accurate simulation en-
vironment are publicly available. PTARM [12], an ARM-based precision-timed architecture,
achieves repeatable timing without sacrificing performance through hardware techniques
that are both predictable and repeatable. In the T-CREST project, the hardware/software
architecture [19] and the code-generation [15] are considered together for time-predictable
embedded systems.

There has also been prior work on formalizing predictable timing. As noted by Liu et
al. [12] and Schoeberl [18], predictability, although related, is different from repeatability:
the former is concerned with whether a timing analysis tool can accurately predict program
timing, whereas the latter is concerned with whether the timing exhibited by a platform is
repeatable. Proposals for quantifying predictable timing include various relations between
the WCET, the best-case execution time (BCET), and bounds for WCET and BCET found
by a timing analysis tool: for example, the difference between the true WCET and the bound
found by a tool has been proposed as one metric. See [18] for other metrics. Such metrics
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provide insight into predictions about timing made by a specific timing analysis technique
for a given program and platform. Timing repeatability, in contrast, is a property of the
program and platform alone.
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Chapter 2

Background

In this chapter, we briefly cover the typical assumptions of timing analysis. We then provide
an overview of GameTime followed by a detailed description of basis paths, a key component
of the GameTime algorithm.

2.1 GameTime

We limit ourselves to sequential programs P where loops have statically-derivable or known
finite loop bounds and function calls have finite recursion depths. Thus P can be unrolled
to an equivalent program Q where every execution path in the (possibly cyclic) control-flow
graph (CFG) of P is mapped one-to-one to a path in the acyclic control-flow graph of Q. We
further assume that the program runs uninterrupted.

The basic flow of GameTime is shown in Figure 2.1. The input to GameTime is
a C source file. This program is first passed through a preprocessing stage where loops
are unrolled and functions are inlined. A control-flow graph is then constructed from the
modified source file. Since all loops are unrolled and the program is assumed to have finite
recursion, the CFG is a directed acyclic graph. In addition, dummy start and end nodes are
added if the CFG does not have a single entry and exit point.

Once the CFG has been extracted, GameTime generates a subset of paths, known as
basis paths, which will be discussed in Section 2.3. Each candidate basis path is checked for
feasibility by formulating a satisfiability modulo theories (SMT) formula that encodes the
semantics of the path; a satisfying assignment yields a test case that drives execution down
that path. If no satisfying inputs are found, the candidate path is discarded and the search
continues.

After a suitable set of basis paths has been generated, the program is compiled for a given
platform, and the execution time for each basis path is measured on the platform itself. The
learning algorithm uses these end-to-end execution time measurements to infer edge weights
on the CFG, which it can then use to estimate timing values for other paths, including the
WCET path.
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Figure 2.1: Overview of the GameTime approach

2.2 Illustrative Example

Our example is the modular exponentiation code given in Figure 2.2, drawn from [20].
Modular exponentiation is a necessary primitive for implementing public-key encryption
and decryption. In this operation, a base b is raised to an exponent e modulo a large prime
number p. In this particular benchmark, we use the square-and-multiply method to perform
the modular exponentiation, based on the observation that

be =

{
(b2)e/2 = (be/2)2, e is even,

(b2)(e−1)/2 · b = (b(e−1)/2)2 · b, e is odd.
(2.1)

The unrolled version of the code of Figure 2.2(a) for a 2-bit exponent is given in Figure 2.2(b).
In the CFG extracted from a program, nodes correspond to program counter locations,

and edges correspond to basic blocks or branches. Note that this is slightly different than
the standard representation, in which basic blocks are nodes, but both are equivalent.

Figure 2.3(a) denotes the control-flow graph for the code in Figure 2.2(b). Each source-
sink path in the CFG can be represented as a 0-1 vector with m elements, where m is the
number of edges. The interpretation is that the ith entry of a path vector is 1 if and only if
the ith edge is on the path (and 0 otherwise). For example, in the graph of Figure 2.3(a),
each edge is labeled with its index in the vector representation of the path. Edges 2 and 3
respectively correspond to the ‘else’ (0th bit of the exponent = 0) and ‘then’ branches of
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1 modexp(base , exponent) {
2 result = 1;
3 for(i=EXP_BITS; i>0; i--) {
4 // EXP_BITS = 2
5 if (( exponent & 1) == 1) {
6 result = (result * base) % p;
7 }
8 exponent >>= 1;
9 base = (base * base) % p;

10 }
11 return result;
12 }

(a) Original code P

1 modexp_unrolled(base , exponent) {
2 result = 1;
3 if (( exponent & 1) == 1) {
4 result = (result * base) % p;
5 }
6 exponent >>= 1;
7 base = (base * base) % p;
8 // unrolling below
9 if (( exponent & 1) == 1) {

10 result = (result * base) % p;
11 }
12 exponent >>= 1;
13 base = (base * base) % p;
14 return result;
15 }

(b) Unrolled code Q

Figure 2.2: Both programs compute the value of baseexponent modulo p.

the condition statements at lines 3 and 9 respectively in the code, while edge 5 corresponds
to the basic block comprising of lines 6 and 7. We denote by P the subset of {0, 1}m that
correspond to valid program paths. Note that this set can be exponentially large in m.

(a) CFG for 
modexp 

(unrolled)
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2
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9

1

2

5

6

9

1

3

4

5

6

9

1

2

5

7

8

9

(b) Basis paths 
x1 , x2 , x3

1

3

4

5

7

8

9

(c) Additional 
path x4

x1 = (1, 1, 0, 0, 1, 1, 0, 0, 1)
x2 = (1, 0, 1, 1, 1, 1, 0, 0, 1)
x3 = (1, 1, 0, 0, 1, 0, 1, 1, 1)

x4 = (1, 0, 1, 1, 1, 0, 1, 1, 1)

x4 = x2 + x3 - x1

(d) Vector 
representations

Edge labels indicate 
Edge IDs, and 

positions in vector 
representation

Figure 2.3: CFG and Basis Paths for Code in Figure 2.2(b)



CHAPTER 2. BACKGROUND 8

2.3 Basis Paths

A central notion used in GameTime and in our algorithm for evaluating timing repeatability
is that of a basis path. As noted above, each program path can be modeled as a 0-1 vector;
thus, we can think of computing a basis of this path-space in the sense that any path in the
graph can be written as a linear combination of the paths in the basis.

Figure 2.3(b) shows the basis paths for the graph of Figure 2.3(a). Here x1, x2, and x3 are
the paths corresponding to exponent taking values 00, 10, and 01 respectively. Figure 2.3(c)
shows the fourth path x4, expressible as the linear combination x2+x3−x1 (see Figure 2.3(d)).

The number of feasible basis paths b is bounded by m− n+ 2 (where n is the number of
CFG nodes). In general, the number of basis paths b is less than m. Note that our example
graph has a “2-diamond” structure, with 4 feasible paths, any 3 of which make up a basis.
In general, an “N -diamond” graph with 2N feasible paths has at most N + 1 basis paths.

Algorithm 1 Finding a set of Basis Paths

1: (b1, . . . , bm)← (e1, . . . , em).
2: for i = 1 to m do {{Compute a basis of P}}
3: bi ← arg maxx∈P |det(Bx,i)|
4: Use symbolic execution and SMT solving to determine if bi is feasible
5: if bi is infeasible then
6: Use the unsatisfiable core to rule out the subset of edges on the path that are

infeasible
7: else
8: Include basis path bi
9: end if

10: end for

Algorithm 1 shows the algorithm used to compute basis paths, as adapted from [21]. A
set of b paths {b1, . . . , bb} ⊆ P is called a basis if any path x ∈ P can be written as a linear
combination of basis paths: x =

∑b
i=1 αibi. The running time of Algorithm 1 is polynomial

if all program paths are known a priori to be feasible; however, in general, this is not known,
and the general problem is NP-hard. Nevertheless, given the major advances in SAT/SMT
solving over the last decade [13], the computation is very efficient in practice. Also, it is
important to note that Algorithm 1 does not enumerate all paths explicitly; similar to the
implicit path enumeration (IPET) method used by WCET tools, it symbolically represents
the space of all paths and generates a basis from this symbolic representation.

In Algorithm 1, B = [b1, . . . , bm]T and Bx,i = [b1, . . . , bi−1,x, bi+1, . . . , bm]T. B is ini-
tialized so that its ith row is ei, the standard basis vector with 1 in the ith position and 0s
elsewhere. The output of the algorithm is the final value of B. The ith iteration of the for-
loop in lines 2-10 attempts to replace the ith element of the standard basis with a path that
is linearly independent of the previous i − 1 paths identified so far and with all remaining
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standard basis vectors. Line 3 of the algorithm corresponds to maximizing a linear function
over the set of P , and can be solved using LONGEST-PATH.

As noted above, each basis path is tested for feasibility by formulating an SMT formula
that encodes the semantics of that path; thus, a satisfying assignment yields a test case that
drives execution down that path. Test cases generated in this manner are used in the learning
algorithm of GameTime as well as for evaluating timing repeatability in our experiments.
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Chapter 3

Data Dependency

In this chapter, we discuss two key types of data dependency that appear regularly–data
dependent instructions and load/store dependencies.

3.1 Problem Formulation

Data Dependent Instructions

Some architectures take a variable amount of time for certain instructions depending on the
arguments provided to the instruction. We refer to these instructions as data dependent,
since the timing depends on the input data. Examples of these data dependent instructions
include multiply and divide on ARM Cortex-M3 microprocessors [3].

Oftentimes the cycle counts are provided in the technical reference manuals of these
microarchitectures; however the actual cases are not always explicitly stated. We must infer
the various conditions that result in different cycle counts in this case. Thus we may treat
a data dependent instruction as the following function we would like to learn,

f(x1, x2, . . . , xn) = c

where xi is the ith input argument and c is the cycle count. Furthermore, we can assume
we have a method to measure cycle counts from the actual microarchitecture, since this is
a requirement for utilizing GameTime for a given platform. Therefore, we can generate as
many test cases as needed for f(x), and use that as a training set for learning the function.

Since GameTime currently operates at the C source code level, we can expand the defi-
nition of ‘instruction’ to include any operation with timing variability due to its inputs that
is not explicitly stated in the code itself, e.g., via if/then/else constructs. For instance, on
architectures without a hardware divide instruction, the mod operator becomes an assembly
routine. Upon inspection, we would see that this assembly routine features multiple branches
based on the inputs and intermediate results, leading to data-dependent timing. However,
since the data-dependency is only apparent at the assembly level, GameTime lacks the fa-
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1 uint8_t compare(uint8_t A[], uint8_t x, uint8_t y) {

2 uint8_t ret_val;

3 uint8_t ax = A[x];

4 uint8_t ay = A[y];

5 if (ax == ay) {

6 ret_val = 1;

7 } else {

8 ret_val = 0;

9 }

10 return ret_val;

11 }

Figure 3.1: Toy example illustrating load/store dependency

cilities to reason about these cases. We will use ‘instruction’ and ‘operation’ interchangeably
when discussing data-dependent instructions due to this equivalence.

Load/Store Dependencies

When an architecture incorporates a cache or similar mechanism, data dependency can be
introduced in variable indexed arrays, since the timing for reading an element from an array
depends on whether the element is in the cache or not. This type of data dependency is
illustrated in Figure 3.1. This function takes an array as input along with two indices and
compares the values at those indices for equality.

Figure 3.2(a) shows the control flow graph that GameTime generates from this C code.
However, if we consider an architecture with some form of caching, then there could be
drastically different timing depending on if certain elements are already in the cache or not.
When (x == y) in the code snippet above, A[x] is loaded into the cache when it is read; this
results in a cache hit when A[y] is read. On the other hand, a cache miss will likely occur for
all cases where (x != y). Thus we would like GameTime to generate a CFG that matches
Figure 3.2(b) in order to reason about these inherit conditionals.

This type of data dependency can become more complex than the illustration above. For
instance, we may have a cache with a larger line size than the elements in the array; thus
we can hold multiple elements in single cache line. Consider the toy example above on a
microarchitecture with a cache line size of 32-bits. Since the array A contains elements of
type uint8_t, four elements can fit in a single cache line. We can change our initial condition
from (x == y) to (x <= y && y < x+4) to handle these cases.

More formally, we consider a program P containing an array A with some index of interest
i. We would like to consider the cases i ∈ J and i 6∈ J , where J is some range [j, j + l)
associated with a recent access to A[j], and l is the cache line size. Furthermore, we would
like to consider all J ∈ J where J is the set of all ranges that have been accessed thus far
in P.
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uint8_t ax = A[x];

uint8_t ay = A[y];

(ax == ay) (ax != ay)

ret_val = 1; ret_val = 0;

return ret_val;

(a) Original control-flow graph of Figure 3.1

uint8_t ax = A[x];

(x == y) (x != y)

// cache hit

uint8_t ay = A[y];

// cache miss

uint8_t ay = A[y];

(ax == ay) (ax != ay)

ret_val = 1; ret_val = 0;

return ret_val;

(b) Modified control-flow graph with explicit no-
tion of the load/store dependency

Figure 3.2: Comparison of control-flow graphs with and without consideration for load/store
dependencies

It is important to note that other factors may affect the cache as well, e.g., data prefetch-
ing may cause certain variables to be loaded into the cache without us noticing. However,
for the purposes of data dependency, we are only concerned with cases where the input data
results in variable timing. By considering these cases, we provide an approximation of the
affects of these variable indexed arrays to GameTime in order to help it provide accurate
timing estimates.

3.2 Implementation

For both types of data dependency, we utilize a preprocessor based approach that adds
additional cases to the original C code so that GameTime may reason about the data
dependency. In this way, we require no changes to the core algorithm.
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Data Dependent Instructions

We handle data dependent instructions by replacing the given operation (i.e. a divide) with
an appropriate C case statement. Depending on the complexity of the cases, we may choose
to use an approximation.

As discussed in Section 3.1, we often do not have the explicit cases for a given opera-
tion. Thus we must learn this function and translate it to conditionals in C code. In some
instances, it is possible to infer the cases by analyzing reference manuals and inspecting
various test cases. However, this can be too difficult or time consuming, so we would like
a more automated approach. To this end, we utilize decision tree learning, as the output
closely matches if/then/else structure in C. Although the learned model will typically not
match the true cases precisely, it provides a usable approximation.

Decision Tree Learning

Decision tree learning (DTL) creates a model that predicts some target variable given some
set of input variables [14]. Each node in the resultant decision tree represents a condition or
test, e.g., is x > 255. The tree continues to branch on conditions until a leaf is encountered;
this leaf represents the actual decision or target variable. One of the major advantages of
DTL is that the resultant predictive model is easy to understand and interpret, which allows
us to programmatically transform the decision tree into C code. However, DTL can easily
overfit data, so we must carefully tweak certain parameters, such as the maximum depth of
the tree or the minimum number of samples per leaf. There are also certain concepts that
are difficult for decision trees to learn, as we will see in Chapter 5.

More formally, let xi ∈ Rn, i = 1, . . . , l be training samples associated with labels y ∈
{0, . . . , K − 1}l where K is the number of values xi may take. DTL works by recursively
partitioning this space such that samples in a given partition are grouped together. We
consider candidate splits θ = (j, tm) where j is a feature and tm is a threshold at node m.
Using this split, we partition Q, the (x, y) data at node m, into two subsets

Qleft(θ) = (x, y)|xj ≤ tm

Qright(θ) = Q \Qleft

The impurity at m is computed as

G(Q, θ) =
nleft
Nm

H(Qleft) +
nright
Nm

H(Qright)

where H(·) is the impurity function, nleft and nright are the number of samples in the left
and right partition, respectively, and Nm is the total number of samples at m. In order to
find the best split, we minimize the impurity

θ∗ = arg minθG(Q, θ)

We then recurse on the subsets Qleft(θ
∗) and Qright(θ

∗) until any either Nm = 1 or one of
the previously listed conditions is met, e.g., maximum depth.
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Automatic Generation of Cases

Compile Program 
for Platform 

Measure timing on 
Test Suite 

Decision Tree 

Input 
Program 

asm(“start:”) 
<operation> 
asm(“end:”) 

template.c 

Output 
Program 

if (x > 255) { 
  if (y < 64) { 
    <operation> 
  } else { 
    <operation> 
  } 
} else { 
  <operation> 
} 

cases.c 

x=38, y=25 

x=273, y=2 

… 

x=0, y=1019 

x=512, y=301 

Test Suite 

template test cases 

Decision Tree 
Learning 

Algorithm 

max leaves 
min samples/leaf 

depth 

Figure 3.3: Overview of the automatic generation of cases for data-dependent operations

Figure 3.3 illustrates the method used to automatically generate a C representation of a
given data dependent operation. The basic idea is to start with some operation we believe
to be data-dependent (such as divide), compute the execution time across a wide range of
inputs, and then use that as a training set to generate a function in C that represents the
cases where the timing differs.

A template C file is provided with an annotated operation of interest (i.e. divide). The
algorithm generates test cases by selecting arbitrary input arguments; alternatively, the
test cases may be selected using a guided approach to balance the data if some a priori
information about the instruction is available. The execution time is measured for these test
cases and provided to a decision tree classifier. For our purposes, we use scikit-learn [14],
an open-source machine learning library for Python, which utilizes an optimized version of
the Classification and Regression Trees (CART) algorithm for decision tree learning. The
depth, maximum number of leaves, minimum samples per leaf, and other parameters can be
tweaked here as necessary. Finally the output decision tree is provided to a function which
recurses on the nodes and generates the C code representation of the decision tree.
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Load/Store Dependencies

To deal with load/store dependencies, we introduce dummy variables throughout the code
to track the indexes into arrays. Based on knowledge of the cache, we can add cases based
on whether a future array access is a cache hit or cache miss. Figure 3.4 shows the results
of this source-to-source translation on the program from Figure 3.1.

1 uint8_t compare(uint8_t A[], uint8_t x, uint8_t y) {

2 uint8_t ret_val;

3 uint8_t ay;

4 uint8_t ax = A[x];

5

6 // save the index used to access A[]

7 uint8_t _x1 = x;

8 if (_x1 == y) {

9 // cache hit

10 ay = A[y];

11 } else {

12 // cache miss

13 ay = A[y];

14 }

15

16 if (ax == ay) {

17 ret_val = 1;

18 } else {

19 ret_val = 0;

20 }

21 return ret_val;

22 }

Figure 3.4: Annotated version of the toy example in Figure 3.1 that explicitly splits on recently
used variable indices

As the number of array accesses increase, we must continue to increase the number of
cases that we are required to check. If the number of cases becomes too large, we can start
restricting which checks we perform. This approximation relies on the fact that our caches
are finite in size and ultimately will replace some of the variables. If the cache replacement
policy is known, we can intelligently choose which conditions to exclude; alternatively, we
can arbitrarily exclude conditions as a rough approximation. Although removing checks
decreases the information provided to GameTime, we still expect the estimation accuracy
to improve over the original algorithm.
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Chapter 4

Timing Repeatability

In this chapter, we present a formalization of the notion of timing repeatability along with
two algorithms to measure the timing repeatability of a given platform for a given program.

4.1 Models of Timing Repeatability

First, consider a more informal definition. We say that a platform is timing repeatable for
a program if the execution time of any code fragment from that program on that platform
depends minimally on its execution context.

The execution context comprises two element:

1. The state of the platform before that code is executed, and

2. The state of the program (values of program counter and program variables) before
that code is executed, which determines the program path executed.

Note that the program can influence the state of the platform, e.g., by modifying the contents
of the cache.

Programmer’s Perspective

Consider a programmer Paul who seeks to implement and execute a specific program P on
a given hardware platform H. Paul cares only about the timing repeatability of H for the
program P . In other words, if the timings of code fragments of P are independent of their
execution context, then Paul would consider H to be perfectly timing repeatable.

We formalize the programmer’s model of timing repeatability using the control-flow graph
representation of the program, with all loops unrolled and functions inlined, so that the CFG
is a DAG (as discussed in Section 2.1). Consider the CFG G of program P that has m edges
and n nodes. Every edge of G is a basic block of P .

Most timing analysis tools use the basic block as the “atomic” unit of the program to
predict program timing. For instance, given bounds on the execution time of a basic block,
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timing analysis tools can infer bounds on the execution time of the entire program. Therefore,
in our formalization, we also use the basic block as the atomic unit of a program; however,
note that the theory below also extends to smaller units of a program.

Let σ denote the state of the platform just before P begins to execute. The program state
at any program location in P is determined by the path x in G leading up to that location.
Note that we encode all data-dependent timing into the path structure of the program as
discussed in Chapter 3.

Let τi denote the execution time of basic block i of program P . As noted above, τi is
determined by a combination of the platform state and the program state. Thus, τi is a
function of σ and the path x leading up to i. We formalize this dependence by writing τi as

τi(σ,x) = wi(σ) + πi(σ,x) (4.1)

where wi is the nominal execution time of basic block i that depends on the initial platform
state but not on the program path that i lies on, and πi is the path-dependent perturbation to
the nominal execution time of basic block i. All three quantities τi, wi, and πi are functions
whose co-domain is R (measurable in cycle counts, if each CPU cycle corresponds to a fixed
amount of real time). We can stack the quantities for all basic blocks i to obtain vectors of
functions τ , w, and π that take values in Rm. From Chapter 2, recall that a program path is
represented as a vector x ∈ {0, 1}m. The execution time of a program path x in a platform
state σ is thus the dot product

τ · x = (w + π) · x

Given the above notation, one can then define the WCET and BCET as follows:

WCET
.
= max

σ
max

x
τ · x (4.2)

BCET
.
= min

σ
min
x

τ · x (4.3)

Our formalization of timing repeatability introduces two new metrics, denoted πmax and
wdiff, and has the following four cases:

1. Strict Timing Repeatability: We say the platform is strictly timing repeatable for
program P , if, for every basic block i of P , wi(σ) = w∗i for all σ, and πi(σ,x) = 0.

In other words, the execution time of a basic block is constant, independent of the
starting platform state and the program path that it lies on. This is the ideal case.

2. Bounded Path-Dependent Timing: The platform is said to have bounded path-
dependent timing, if

• for every basic block i of P , wi(σ) = w∗i for all σ, and πi(σ,x) = πi(x), and

• for all paths x, the total deviation from the nominal time
∑

i πixi is bounded in
absolute value by a parameter πmax.



CHAPTER 4. TIMING REPEATABILITY 18

More formally, ∀x ∈ P ,

|
∑
i

πixi| = |π · x| ≤ πmax

When possible, we compute πmax as maxx∈P |π · x|.

In other words, the execution time of a basic block depends only on the program path
it lies on, and the amount of path-dependent variation in execution time is bounded.
The constant πmax is a measure of how timing repeatable a given platform is. The
smaller the value of πmax, the greater the timing repeatability.

This case is relevant when the programmer has control over the starting platform state,
and thus is only interested in the timing repeatability with respect to variation due to
control flow.

3. Bounded Platform-Dependent Timing: The platform is said to have bounded
platform-dependent timing, if

• for every basic block i of P , πi(σ,x) = 0, and

• for any program path x, let σmin(x) be the platform state corresponding to the
minimum execution time of x, and σmax(x) be that corresponding to the maximum
execution time of x. Let wdiff(x) be the difference between these execution times.
Formally

σmin(x)
.
= argminστ · x

σmax(x)
.
= argmaxστ · x

and
wdiff(x)

.
= max

σ
τ · x − min

σ
τ · x (4.4)

We require that this difference be bounded by a parameter w∗diff.

We compute w∗diff as the maximum such difference over all program paths, and employ
it as a measure of timing repeatability.

w∗diff = max
x∈P

wdiff(x) (4.5)

4. Bounded Path-Dependent and Platform-Dependent Timing: This is the gen-
eral case, when program timing is dependent on both the platform state and the
program path. In this case, both parameters πmax and w∗diff are used as measures of
timing repeatability.

It is important to note that w∗diff is not the same as the difference between the WCET
and BCET. The difference WCET−BCET combines together, in a single measure, the
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variability in program timing due to platform state and program state. In contrast,
πmax captures the variability due to program state alone (for a given platform state),
while w∗diff captures variability due to platform state alone.

From a programmer’s perspective, it may be possible to reduce variability due to pro-
gram state by modifying the program logic. On the other hand, variability due to
platform state is typically not controllable by the programmer; it is, however, informa-
tion that the platform architect can use in redesigning the platform so as to make it
more timing-repeatable for a program of interest. Thus, computing πmax and w∗diff can
provide insight into the cause for variability in a program’s timing on a given platform,
separating the part that is controllable by the programmer from that which is not (the
platform architect’s concern). As we will see in Chapter 5, these metrics can be useful
in evaluating the impact of a particular platform on a program’s timing.

The following theorem captures an important property of πmax and w∗diff, and its proof
follows directly from the definition of strict timing repeatability.

Theorem 1 If a platform is strictly timing repeatable, then πmax = 0 and w∗diff = 0.

In Section 4.2, we give an algorithmic technique to evaluate πmax and w∗diff for a given
combination of program P and hardware platform H.

Statistical Variants. In certain settings, it is meaningful to consider statistical variants
of the above parameters. For instance, for certain programs, reasonable assumptions can be
made over the distribution of starting program states (inputs to a program) that determines
which paths are executed. Examples of such programs include cryptographic kernels, such as
certain encryption algorithms, where the secret key determines the program path executed,
and this key can be assumed to be uniformly distributed especially when it is combined with
a pseudo-randomly generated “nonce”.

In such settings, we can define variants of πmax and w∗diff that are based on computing the
mean or variance over the space of all paths or platform states, rather than the maximum.
In our experimental evaluation in Section 5.2, we discuss an example where such statistical
measures are relevant.

Architect’s Perspective

Consider a computer architect Alice who seeks to implement a timing-repeatable hardware
platform H. Alice must ensure that any instruction in any program, no matter when it
executes, or what the input arguments, should take the same amount of time.

This notion of timing repeatability is much more stringent than the one from the pro-
grammer’s perspective, since it requires the platform to be timing repeatable for all possible
programs that would ever be executed on it.

Let the set of instructions defined by the platform be {I1, I2, . . . , Ik}. Denote the time
taken by instruction Ij by Tj. Then, we can write Tj as

Tj = T nom
j + T data

j + T plat
j (4.6)
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where T nom
j is the nominal instruction timing, T data

j is the variation due to input arguments,

and T plat
j is the variation due to platform state.

For example, in certain ARM processors, a multiply instruction takes a variable amount
of timing depending on the magnitude of the input arguments — with 8-bit arguments, it
takes a single cycle; with 16-bit, two cycles, and so on. In this case, T nom

j could be taken as

the time for 8-bit arguments, any variation in timing is due to T data
j , while T plat

j = 0.
In this paper, our focus is mainly on timing repeatability from the programmer’s per-

spective. Hence, we do not focus in more depth on evaluating timing repeatability from
the architect’s perspective. However, we note that there is a connection between these two.
Specifically, given bounds on T data

j and T plat
j for every instruction Ij, one can compute bounds

on the variation of timing of any basic block (and hence program path) due to both plat-
form state and program state. Such bounds are likely to be conservative unless fine-grained
platform and program state information can be inferred at every program point. Also, in
practice, such fine-grained timing information is often unavailable even from the processor
reference manuals.

Therefore, in the next section, we focus on evaluating timing repeatability without de-
tailed knowledge of the timing repeatability of the underlying instruction set architecture,
using algorithmic techniques that operate at the program level.

4.2 Implementation

The key step in evaluating the timing repeatability of a hardware platform (from a program-
mer’s perspective) is to compute the parameters πmax and w∗diff. Based on this computation,
we can also determine whether the platform is strictly timing repeatable.

Estimating πmax

Our approach for estimating πmax is based on the notion of basis paths introduced in Chap-
ter 2. We hold the initial platform state fixed for this estimation – thus the only variation
in execution time is due to the program path.

The basic idea is as follows. Given the CFG G of the program P , we first compute
a set of feasible basis paths of G as described in Chapter 2. Denote this set of b paths as
{b1, . . . , bb}, which is a subset of the set of all possible paths P . We then use a combination of
symbolic execution and SMT solving to compute test cases that drive execution down these
paths. Next, the program P is executed on these test cases to obtain end-to-end timing
measurements for each basis path. Denote these timing measurements by t1, t2, . . . , tb.

We then solve the following equation:

Bv = t (4.7)

where B is the b×m matrix where the ith row is the vector bi for the ith basis path, v is an
m× 1 vector of variables, and t is the b× 1 vector whose ith element is the measurement ti.
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Note that since in general b < m, the matrix B is not square and this is an undercon-
strained system. We therefore solve for v as

v = B+t

where B+ is the Moore-Penrose pseudo-inverse of B, obtained as B+ = BT(BBT)−1. It holds
that BB+ = Ib.

We then interpret v ∈ Rm as the vector of weights on the edges of the CFG G. Using
these edge weights as the nominal edge weights w, we evaluate the lengths of all program
paths in G. Denote the length of path x obtained this way as t(x).

We then measure the actual execution times of each path τ(x). πmax can then be com-
puted as

πmax = max
x∈P
|τ(x)− t(x)| (4.8)

If we find that πmax > 0, we can conclude that the platform is not strictly timing repeatable.
To see this, note that if it were strictly timing repeatable, the actual time for any path x,
τ(x), is the dot product x · w where w is the nominal path timing. This is expressible as
(
∑

i αibi)·w =
∑

i αi(bi ·w) =
∑

i αiti, which can be written as α·t where α is the 1×b vector
of coefficients α1, . . . , αb. Additionally, x · v = (α ·B) · v = α · (B · v) = α · (BB+t) = α · t.
In other words, if the platform were strictly timing repeatable, ∀x, the actual path timing
τ(x) = x · w equals the predicted timing t(x) = x · v, implying the LHS of Equation 4.8 to
be 0.

When comparing two platforms, one can compare not only the actual value of πmax, but
also the value of πmax normalized to the actual path timing, as follows:

πnorm
max = max

x∈P

|τ(x)− t(x)|
τ(x)

(4.9)

Practical Considerations. Note that the above computation of πmax requires an exhaus-
tive enumeration of program paths. Such enumeration is feasible for small programs, but
not for programs with a huge path space. In the latter case, here are some options:

(i) Test Suite: Every embedded task undergoes some amount of testing and thus, one
must have an associated test suite. This test suite corresponds to a subset Psub of the
set of all paths P . Thus, instead of computing πmax as a max over P , we can compute
the max over elements of Psub. Although the result is only a lower bound on the true
πmax, but assuming that the test suite was derived systematically for coverage criteria
or for validating other (non-timing) correctness properties, it seems reasonable to use
the resulting πmax estimate as a measure of timing repeatability.

Similarly, if information about the distribution of program inputs (starting program
states) is available, one can sample from this distribution to construct the subset of
paths Psub.
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(ii) Program Fragments: One can perform the analysis only on a fragment of the program,
e.g., on a single function in the program for which all paths can be easily enumerated.
Such analysis can be useful when the programmer has some prior insight into the
location of timing variability in the program, and seeks to perform a more detailed
analysis by computing πmax for that portion of the program.

(iii) Over-Approximation: Use symbolic approximation techniques, e.g., based on abstract
interpretation, to find an upper bound πmax. This approach requires having a good
abstract model of the platform, and is only useful if the derived upper bounds are fairly
tight and preserve the ordering of the true values of πmax. For the platforms consid-
ered in this paper, such models and tools were not available; however, this appears a
promising direction to scale up the analysis further, and we leave investigation of this
option to future work.

Note that Options (i) and (ii) can in many cases determine that a platform is not strictly
timing repeatable. In our experimental evaluation, we use small programs to evaluate differ-
ent platforms for which we can perform exhaustive path enumeration. For other programs,
we fall back to Option (i) where we use a test suite.

The value of πmax computed above, when non-zero, can be sensitive to the choice of basis.
Therefore, we repeat the above experiment for K different choices of bases, for heuristically
selected K. Each choice of basis is generated by using a new random order of rows of matrix
B on Line 1 of Algorithm 1. We then take the minimum over all values of πmax obtained (for
all K bases), and use that minimum as our final estimate πmax. This is sound since the choice
of basis that yields the smallest πmax yields a solution vector v that, when interpreted as the
vector w of nominal timing values, yields πmax as the bound on the maximum perturbation
of timing of any path.

Measuring w∗diff

To estimate w∗diff, we simply evaluate Equations 4.4 and 4.5 presented in the preceding
section. In other words, for each program path, we enumerate the possible different starting
platform states, finding the biggest spread between path timings.

Since the number of starting platform states can also be very large, we can run into
similar practical considerations as discussed in the preceding section. Our approach, in such
cases, is similar to Option (i) above: we sample a subset of all possible starting platform
states. We empirically find that this approach, although not exhaustive, can still provide
valuable comparisons. For control software tasks that run inside an infinite sense-compute-
actuate loop, one can sample various platform states at the start of different loop iterations
to gain a realistic picture of the various possible starting platform states.
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Chapter 5

Experimental Results

This chapter presents experiments across a range of benchmarks on a few different platforms.
We first discuss the details of these platforms and what relevance they have to data depen-
dency and timing repeatability. Next we discuss the structure and purpose of each benchmark
that we utilize. Finally we analyze the results of for data dependency experiments along with
an evaluation of our algorithms for finding πmax and w∗diff. In the experiments discussed in
this chapter, we utilize three primary platforms–ARM Cortex-M3, ARM Cortex-M4, and
PTARM.

The ARM Cortex-M3 and Cortex-M4 platforms are standard 32-bit embedded processors.
For the ARM Cortex-M3 platform, we use the STM32L1 Discovery board and for the ARM
Cortex-M4 platform, we use the STM32F4 Discovery board. Using GDB, we can load
programs to the board. In addition, we can obtain accurate cycle counts with GDB by
looking at the cycle count (DWT CYCCNT) register before and after the function of interest.
We use a pre-built GNU toolchain targeted at embedded ARM processors that is maintained
by ARM [6].

PTARM is a PRET machine developed by Liu et. al. [12] that is based on a subset of
the ARMv4 ISA; we utilize both the FPGA implementation and the simulator for timing
repeatability experiments. We load PTARM onto an Atlys Spartan 6 FPGA development kit.
Code is loaded via USB using the built-in bootloader. When a program finishes execution,
PTARM sends the total cycle count along with other metrics over the USB interface.

We also utilize the Simit-ARM simulator, a cycle-accurate simulator for the StrongARM-
1100 processor. It is based on the Operation State Machine formalism presented in [16]. For
compilation, we use the compilers that come with the distribution of the simulator.

Data dependency experiments are run using either the Cortex-M3 or Cortex-M4, while
πmax evaluation compares PTARM with the Cortex-M4. For the w∗diff measurements, we use
a simulator for PTARM along with the Simit-ARM simulator. Since it can be difficult to
control the modification of platform state on real hardware, we opted to use simulators for
these experiments.
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5.1 Platform Details

The various features of PTARM are discussed in [11]. PTARM utilizes a six-stage thread-
interleaved pipeline where each stage executes a different thread. The threads are scheduled
round-robin so each thread occupies only one pipeline stage at any given time. The pipeline
design avoids the need for data hazard detection, bypassing, and speculative execution. The
memory hierarchy consists of off-chip main memory with fast on-chip scratchpad memories;
these scratchpad memories are used to avoid the unpredictability of hardware caches. A
memory wheel is employed to handle accesses to the off-chip main memory. Each thread is
given a window for memory accesses; if a thread misses its window, it must wait until the
start of the next window. Although this may cause a thread to block, it does not affect any
other threads and the window behavior is predictable.

The ARM Cortex-M3 platform [3] features a three-stage pipeline and utilizes three bus
interfaces (ICode, DCode, and System). ICode and DCode are used for instruction fetches
and data accesses, respectively, from Code memory space. The System interface is used for
instruction fetches and data accesses to any other memory region. On this platform, divides
take 2-12 cycles and multiplies take 1 or 3-5 cycles depending on if it is a “long” multiply or
not. In Section 5.3, we look at both of these data-dependent instructions in detail.

The ARM Cortex-M4 platform [4] is very similar to the ARM Cortex-M3. The primary
difference between the two is the addition of DSP extensions along with an optional FPU.
In addition, all multiplies on the Cortex-M4 take a single cycle; however, divides still take
2-12 cycles. On the STM32F4 Discovery board, flash memory requires 5 wait states at the
target clock rate (168MHz), while SRAM requires 0 wait states. In order to mitigate the
inherit speed limitations of flash, ST incorporates the ART accelerator, a proprietary cache
that can store 64 128-bit slices (4-8 instructions per slice) [23]. By default, flash uses Code
memory space (instruction on ICode bus and data on DCode bus), while SRAM uses a
different memory region (instruction and data on System bus). We utilize this cache for our
analysis of load/store dependencies in Section 5.3.

5.2 Benchmarks

This section summarizes the various benchmarks used in the following experiments. Table 5.1
lists the benchmarks along with some relevant metrics.

The divide and multiply benchmarks correspond to programs that solely perform one
operation (divide or multiply). Each variant illustrates a different functional representation
of the operation of interest. divide exact utilizes the exact divide function derived via
inspection, while divide dtl full and divide dtl random correspond to functions derived
via the DTL approach (see Section 3.2 for details). Note that divide dtl full is also an
exact representation of the divide operation, as the dataset used here fully characterizes the
exact cases found via inspection, and the decision tree had no restrictions. In most cases,
this would result in overfitting the data, but since our dataset was precise and minimal,



CHAPTER 5. EXPERIMENTAL RESULTS 25

Benchmark LoC
CFG Characteristics

b
n m Total

divide exact 47 76 86 12 10
divide dtl full 1485 2230 2599 372 372
divide dtl random 63 94 107 15 15
multiply dtl 25 66 73 17 6
modexp (4 bits) 44 28 31 16 5
control 80 154 173 4096 9
compare 53 58 64 42 8
sbox 72 94 105 315 19
stabilisation 433 64 72 144 10
cctask 178 102 118 257 18
irobot 158 234 268 234 36
modexp (32 bits) 221 140 171 4294967296 33

Table 5.1: Characteristics of benchmarks where LOC is lines of code, n is the number of nodes,
m is the number of edges, Total is the total number of feasible paths in the CFG, and b is the
number of basis paths

this produced a function with simple x < c conditionals that captured all cases for divide.
Therefore, we are able to compare two different implementations of the exact same function;
divide exact has much fewer cases that are more complex, while divide dtl full has
many more cases that are all extremely simple.

The remaining programs listed generally have variants that include the data-dependent
extensions, but we only list the metrics for the base program. modexp performs the modular
exponentiation mentioned in Section 2.2. This benchmark is particularly nice as we can easily
tweak the number of exponent bit in order to increase the complexity of the problem.
In addition, modexp features two divides (via the mod operator) and two multiplies per
exponent bit. The compare benchmark is a modified version of the program listed in
Section 3.1, which serves as a simple benchmark for load/store dependencies; sbox is also
used to benchmark this type of data-dependency. The remaining benchmarks are different
types of state machines and control tasks that could be found in safety-critical real-time
applications.

5.3 Data Dependency Results

Data-Dependent Instructions

Using the methods discussed in Section 3.2, we evaluate two operations on the STM32L1
Discovery board–divide and multiply. We first look at the instructions in detail in order
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Figure 5.1: Exact representation of divide cases for ARM Cortex-M3

to derive suitable representations of them. Next, we use these representations in various
benchmarks in order to see the estimation accuracy improvements.

Instruction Learning with Decision Trees

In order to determine the cases for the two instructions, we begin with the ARM Cortex-M3
technical reference manual [3], which states divide takes 2-12 cycles while multiply takes
3-5 cycles. Although the exact cases are not provided, the document does provide some
insights into each instruction via a couple footnotes. For multiply, the instructions utilize
early termination based on the size of the input arguments, while divide instructions use
early termination based on the number of leading zeros and ones in the input arguments.

Given this information, we created a test suite for divide geared towards varying the
number of leading ones and zeros. Therefore we sampled a large dataset based on the bit-
width of the input arguments (note that the bit-width of a given number x is dlog2(x+ 1)e).
After some analysis, we recognized that the number of cycles depended on the difference
between the bit-width of the divisor and the dividend. For instance, a = 39, 257 requires 16
bits to represent and b = 267 requires 9 bits; thus, the bit-width difference is 16 − 9 = 7.
Similarly, a = 2, 147, 483, 648 requires 31 bits and b = 9, 393, 195 requires 24 bits, which also
has a bit-width difference of 7. Therefore, these two divisions take the same number of cycles.
Figure 5.1 illustrates the number of cycle counts for all possible bit-widths. Note that a = 0
is a special case that always takes 2 cycles to complete, regardless of the value of the divisor.
In addition, we see that the cycle count changes for every positive bit-width difference of 4
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and that the cycle count is always 3 whenever the bit-width difference is negative.
While we were able to figure out the exact cases for divide in this situation, we would

ideally like to avoid such a manual process. In light of this, we also analyzed divide using
the decision tree learning approach. Figure 5.2 shows four different variants using DTL with
varying parameters. For these experiments, we utilized a single dataset of 10, 000 labeled
(a, b) pairs. As the maximum depth increases and the minimum samples per leaf increases,
we see that the decision tree gets closer and closer to the exact representation of divide;
however, this also results in a larger number of nodes in the tree, which means the resultant
C code has more cases. Although the bit-width difference is not extremely amenable to the
simple x < c constraints used by DTL, we still get reasonable and usable approximations
that we can use with GameTime.

For multiply, we again focused on evenly sampling from the various powers of 2. We found
that the timing depended on whether each input was greater than or less than 216. However,
after some inspection, we found that the timing was one cycle lower when an argument was
an exact power of 2. In lieu of this, we chose to utilize the simpler representation that
captures the majority of cases. In addition, since the cycle counts are lower for that special
case, we never underestimate the timing of a given multiply. Figure 5.3(a) shows the decision
tree we use for multiplies and Figure 5.3(b) shows the resultant C code.

Evaluation of Learned Instructions

As discussed in Section 5.2, we evaluate the various representations of multiply and divide
using a simple program that only uses the operation once. For the normal case where
the operation is not replaced by anything, we have a single-path program according to
GameTime; however, when we introduce a functional representation of the operation with
various cases, the program becomes multi-path and GameTime can generate basis paths.

Although divide exact looks to be the best option for our division replacement since it
has the lowest number of basis paths and the best accuracy of representation (see Table 5.1, it
unfortunately does not scale well. This is primarily due to the complexity of the conditionals
used for the different cycle counts. In particular, divide exact calculates the bit-width of
each input argument using a bit twiddling hack from [2]. The input arguments are rounded
up to the nearest power of 2, which represents 2bitwidth; then the first argument is divided
by the second resulting in 2bitdifference. Using this information, we generate cases for each
bit-width difference accordingly. As benchmarks include more and more divide statements
that depend on the results of previous divide statements, it becomes increasingly difficult
to find satisfying assignments to drive the program down a particular path. Conversely,
the DTL approximation of division scales much better since they utilize only simple x < c
conditionals. However, divide dtl full contains too many conditionals per divide to be
useful even though they are all simple; the basis calculation for this benchmark took over
4000 seconds, while all others took less than 10 seconds.

We analyze the effects of including divide dtl random with the modexp benchmark (note
for this experiment we set exponent bits = 8). Using GameTime, we compute the basis
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(a) max depth = 5, min samples leaf = 50 (divide dtl random)

(b) max depth = 7, min samples leaf = 25

Figure 5.2: Various approximations of divide using DTL (log2 scale)
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(c) max depth = ∞, min samples leaf = 20

(d) max depth = ∞, min samples leaf = 1

Figure 5.2: Various approximations of divide using DTL (log2 scale)
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X[1] <= 65536.0000
gini = 0.603237483778

samples = 121

X[0] <= 65536.0000
gini = 0.42907741609

samples = 77

X[0] <= 65536.0000
gini = 0.561983471074

samples = 44

gini = 0.0000
samples = 49

value = [ 49.   0.   0.]

X[1] <= 0.5000
gini = 0.244897959184

samples = 28

gini = 0.0000
samples = 4

value = [ 4.  0.  0.]

gini = 0.0000
samples = 24

value = [  0.  24.   0.]

X[0] <= 0.5000
gini = 0.244897959184

samples = 28

gini = 0.0000
samples = 16

value = [  0.   0.  16.]

gini = 0.0000
samples = 4

value = [ 4.  0.  0.]

gini = 0.0000
samples = 24

value = [  0.  24.   0.]

(a) Decision tree for multiply

1 uint32_t multiply(uint32_t a, uint32_t b) {

2 uint32_t x;

3 if (a == 0 || b == 0) {

4 x = a * b;

5 } else if (a <= 65536 && b <= 65536) {

6 x = a * b;

7 } else if (a <= 65536 && b > 65536) {

8 x = a * b;

9 } else if (a > 65536 && b <= 65536) {

10 x = a * b;

11 } else {

12 x = a * b;

13 }

14 return x;

15 }

(b) C code for multiply

Figure 5.3: Multiply results using DTL approach
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Figure 5.4: Modexp prediction accuracy with and without divide dtl random; the red dots
represents the absolute error between the true measurements and normal predictions, while the
blue dots represents the absolute error between the true measurements and predictions using
divide dtl random

paths for both the normal and DTL variants of modexp and generate many random path
predictions. Figure 5.4 illustrates the prediction accuracy of each variant for over 150 paths.
We can see clearly that by introducing the data-dependent operation, we obtain much better
prediction accuracy. Note that we look at the prediction minus the true cycle count for
this plot. Thus, it is also interesting to note that the DTL variant tends to provide an
upper bound whenever it mispredicts, while the variant without data-dependency is an
overestimation as often as an underestimation.

Single path programs are also a very interesting application area for data-dependent
instructions. These programs typically consist of many math operations without any flow
control, such as a feedback control algorithm. Each step consists of computing the control
action given the inputs to the system. We analyze some example controllers that only
utilize addition, multiplication, and bit shifts; we use multiply dtl for the multiplication
operation. For the control benchmark listed in Table 5.1, we obtain 81 paths with a
maximum prediction error of 1 cycle, an average error of 0.086 cycles, and an absolute
percentage error of 0.813%. If we had instead looked only at the original single path program,
we would only have a single measurement to represent all of these paths; using a random
sample as our estimate, we receive an average error of 3.25 cycles and an absolute percentage
error of 8.990%, which is significantly larger than the data-dependent case.
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Load/Store Dependencies

For load/store dependencies, we add auxiliary variables to represent array indices that have
been previously accessed, as described in Section 3.2. We analyze a benchmark very similar
to the compare example listed in Chapter 3; in this case, we look at a three-way compare
that takes three indices and returns the largest indexed element of an array. Compared to
the original program predictions by GameTime where all predictions were fairly close to
each other, we found the resultant predictions with consideration for load/store dependencies
had a bimodal distribution of cycles. This is likely due to the fact that we only had a single
array in this program, and we were looking at hits and misses on this cache; thus the paths
with hits form one set of cycles and the paths with misses form the other set.

We also looked at single path programs for load/store dependencies. In particular, sbox
is a simple example that illustrates substitution boxes, a commonly used component in
cryptography. The basic idea is to take some number of input bits, n, and transform it into
some number of output bits, m. S-boxes are typically represented as lookup tables of size
2n with m-bit entries. Thus this substitution from input to output is just an array lookup;
furthermore, this substitution often occurs multiple times in succession. For this benchmark,
we consider the case with four consecutive array accesses. Using our techniques for load/store
dependencies, we obtain an average error of −1.45 cycles (an absolute percentage error of
3.146%). For the original single path sbox, we can only use a single value for all predictions.
By sweeping over a variety of possible measured values and computing the error with respect
to all possible paths, we obtain average errors around −8.87 and 11.13 cycles (absolute
percentage errors of 6.015% and 7.909% respectively). Although the gap between the average
error is not very extreme in this case, it should become wider as we increase the number
of array accesses, as we would have a wider range of cache hits versus cache misses. By
considering these different cases explicitly, we are able to track the variations in timing in
much greater detail.

Unfortunately we were unable to look at larger benchmarks for this technique, as the
process is currently manual for adding the auxiliary variables. In the future, we hope to
integrate this into the preprocessor so that the index tracking variables and conditionals can
be added automatically.

5.4 Timing Repeatability Results

Evaluating πmax

We compute πmax and πnorm
max by exhaustively enumerating the actual times τ(x) and the pre-

dicted times t(x) for all paths in the program and then solving Equation 4.8 and Equation 4.9
respectively. Table 5.2 lists the results of these experiments. For all of the benchmarks, the
time to compute the basis is well under a minute.

πnorm
max is used for comparisons between the two platforms because the raw timing values

provide little insight as the Cortex-M4 is significantly faster than PTARM. For cctask and
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Table 5.2: πnorm
max results for the PTARM and ARM Cortex-M4 platforms (the πnorm

max results are
scaled by 1000 for readability)

Benchmark PTARM Cortex-M4 Cache Cortex-M4 NoCache Cortex-M4 SRAM
modexp (4 bits) 14.00 32.25 17.24 38.96
stabilisation 190.86 449.44 780.24 516.19
cctask 191.74 649.21 746.67 846.15
irobot 13.20 0.00 0.00 10.98
modexp (32 bits) - 9.50 1.39 6.87

stabilisation, we see that PTARM is indeed more timing repeatable, as we would expect.
However, our original results for modexp suggested that πnorm

max = 86.75, which implies the
Cortex-M4 is more repeatable for that program. The reason is not immediately obvious,
but it becomes clear after analyzing the resultant assembly. For PTARM, the mod operator
in modexp is translated to an assembly function full of conditional branches. On the other
hand, the Cortex-M4 has hardware instructions for division, so it merely performs a division
followed by a multiply and subtract to compute the mod operator. Thus, it appears more
repeatable than PTARM since the hardware instructions have a much lower variance in cycle
count compared to the assembly function. After performing our data-dependent instruction
techniques on the mod operation for PTARM, we obtained πnorm

max = 14.00 as listed in the
table. Thus, we see that PTARM is, in fact, more repeatable than the Cortex-M4 for modexp.

It is quite interesting to compare the various memory configurations for the Cortex-
M4. For stabilisation, the cache configuration actually performs much better than the
configuration without the cache and the SRAM configuration. Although caches are typically
thought to cause non-repeatable timing, it is reasonable for it to perform better than the
other configurations for certain programs; if nearly all of the memory accesses and instruction
fetches are hits, then the flash memory acts as 0 wait state memory. Furthermore, the
configuration without cache suffers from wait state latency, which can cause non-repeatable
timing. SRAM performing worse than any flash configuration is also somewhat unintuitive;
however, the default SRAM configuration for this chip utilizes the System bus for both
instruction fetches and memory accesses, while the default flash configuration utilizes the
ICode and DCode buses. Thus flash memory is at a definite advantage since it cannot suffer
from bus contention. Based on the benchmark results, this bus contention causes SRAM to
be slightly less repeatable than the flash configurations most of the time.

For irobot, the two Cortex-M4 flash configurations actually show perfect repeatability.
This is somewhat surprising; however it is important to note that πmax for PTARM and
Cortex-M4 SRAM are also extremely small values (keep in mind we are scaling the πnorm

max

by 1000; thus values around 10 are likely single cycle inaccuracies on some paths). The
basic blocks for irobot are quite simple, primarily setting flags with very little arithmetic;
thus, we expect πmax to be small. For the flash configurations, there are two separate buses
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allowing instruction fetches and memory accesses to occur without contention. There is an
issue of bus contention for the Cortex-M4 SRAM, and the memory wheel for PTARM can
cause access latencies, which could explain the non-zero, but small, values for πmax on both
of these platforms.

The final experiment, the 32-bit modexp, illustrates the use of the statistical variants
discussed in Section 4.1. We only evaluated this benchmark for the various Cortex-M4
memory configurations. The number of cases is too large to exhaustively enumerate and
measure in a reasonable amount of time, so we opt for a random sampling of 250 paths to
evaluate πmax. Since modexp is used in many security algorithms, such as RSA, uniformly
sampling inputs can be a valid approach depending on the application. The results are
not as large as πmax from the 4-bit modexp benchmark, which is to be expected since we
are looking at averages over all paths rather than the max. However, this still provides us
some information about the platform’s repeatability that we can use to compare against
other platforms. In this benchmark, the configuration without the cache performs more
repeatably than the cache configuration. It is likely that the size of the program is now
much larger than the cache, resulting in many more misses during instruction fetches and
data accesses. SRAM performs in the middle of the two flash configurations again, likely
due to System bus contention.

Evaluating w∗diff

In this section, we evaluate timing repeatability with respect to varying initial platform
states for the simple modular exponentiation example presented in Section 2.2.

The experiments are divided into two categories. In the first category, the modular
exponentiation is performed after an array has been sorted, while in the second category, it
is performed after two matrices have been multiplied. This “initialization” code is run so as
to modify the platform state, such as the state of the cache and pipeline, before running the
actual computation that needs to be timed.

Figure 5.5 shows the cycle counts for the experiments in the first category when run on the
SimIt-ARM simulator. The first experiment merely runs the original modular exponentiation
code on the 32 possible 5-bit exponents, with 2 as the base, modulo the prime number
1048583, which is the next prime number after 220. The second experiment also runs the
modular exponentiation code, but the code is modified to include (unused) code to sort an
array.

The next six experiments then use programs that initialize different kinds of arrays and
may use the sorting code to sort these arrays before the modular exponentiation is performed.
Through this initialization and sorting, these experiments thus provide different starting
states. For example, experiment 3 initializes an array of 20 elements with the first 20
natural numbers in descending order, while experiment 4 initializes this array and then sorts
this array, all before the modular exponentiation. Experiment 5 initializes a 20-element
array with random numbers, while experiment 6 also sorts this array. In all of these cases,
initialization is done through a for-loop. Experiments 7 and 8 sort a 20-element array that
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Figure 5.5: SimIt-ARM cycle counts for modular exponentiation with respect to different initial
platform states, when performed after an array has been sorted

has been statically initialized with, respectively, the first 20 natural numbers (in descending
order) and random numbers. Note that the cycle counts reported are only for the modular
exponentiation, and do not include the cycle counts used for sorting the array.

The experiments in the second category (see Figure 5.6) are similar, but use matrix
multiplication instead of array sorting. The first experiment uses the original modular expo-
nentiation code, and the second experiment uses this code, but modified to include (unused)
code that performs matrix multiplication. The next six experiments use the unused matrix
multiplication code to multiply matrices with dimensions 3×3, 4×4, 5×5, 10×10, 50×50,
100×100, and 150×150. A matrix with dimensions n×n contains numbers from 1 through
n, arranged in increasing order, row-by-row, from left to right.

Together, the fifteen unique experiments provide fifteen varying initial states. In the case
of the SimIT-ARM simulator, these fifteen varying initial platform states result in a value
of 453 for w∗diff.

Figure 5.7 and Figure 5.8 show the cycle counts for the experiments in the first and second
category respectively, when run on a PTARM simulator. For this platform, the value of w∗diff

is 7, a much smaller figure. This result indicates that the PTARM platform appears to be
more timing-repeatable with respect to the initial platform state than the StrongARM-1100.
Because the PTARM pipeline design ensures that a thread only occupies a single pipeline
stage at any given time, varying the initial state cannot cause any timing variation due to the
pipeline. The primary cause of timing variation for PTARM is likely due to missed windows
on the memory wheel; however, the StrongARM-1100 also has memory latency issues along
with more susceptibility to the initial pipeline state.
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Figure 5.6: SimIt-ARM cycle counts for modular exponentiation with respect to different initial
platform states, when performed after two matrices have been multiplied
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Figure 5.7: PTARM cycle counts for modular exponentiation with respect to different initial
platform states, when performed after an array has been sorted
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Figure 5.8: PTARM cycle counts for modular exponentiation with respect to different initial
platform states, when performed after two matrices have been multiplied
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Chapter 6

Conclusion and Future Work

In this thesis, we have explored two main topics and provided evaluations of each of them
using real-world benchmarks and architectures.

For data-dependency, we presented models of instructions with variable timing and load-
/store dependencies. We discussed multiple techniques for learning the cases for a data-
dependent instruction, including a method that automatically generates test cases, measures
timing on the platform of interest, constructs a decision tree, and ultimately produces a C
code representation of the operation. We also presented a method of source-to-source trans-
lation in order to allow GameTime to reason about these situations. We then evaluated
these extensions with a set of benchmarks that illustrate the improvements to prediction
accuracy. The results suggest that our approximations of operations (using decision tree
learning) greatly decrease the errors between our predictions and the true cycle counts.

We also provided a formalization of timing repeatability from the perspective of the pro-
grammer and the architect. With our focus on the programmer’s perspective, we specified
four types of timing repeatability, and we developed algorithms for measuring the two met-
rics of interest–πmax and w∗diff. In our evaluation of these techniques, we compare PRET
machines to standard ARM microprocessors using the data-dependent extensions from this
thesis. While none of the platforms is perfectly timing-repeatable, the metrics help explain
relative timing behavior across platforms. Our approach thus presents an objective method
to compare two different platforms for timing repeatability. In general, we found that the
PRET machines are more timing repeatable than ARM, which matches our original intuition.

Looking towards the future, our focus would be on evaluating these techniques on a
broader range of benchmarks along with more industrial size benchmarks. Although our
results illustrate the benefits of these techniques, they primarily serve as a proof-of-concept.
In order to evaluate larger benchmarks for the data-dependent experiments, we need to
automate more of the process. While learning operations is almost completely automated,
replacing operations and adding auxiliary variables to the programs of interest is still very
much a manual process. In addition, more work is needed to improve the scalability of the
πmax and w∗diff algorithms, potentially by performing a more symbolic search.
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