Program Synthesis for Hierarchical Specifications

Thibaud Hottelier
Ras Bodik

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-139
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-139.html

July 29, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement
This work was supported in part by awards from the National Science

Foundation (CCF-0916351, CCF-1139138, and CCF-1337415), as well
as gifts from Google, Intel, Mozilla, Nokia, and Samsung.

Program Synthesis for Hierarchical Specifications

Thibaud Hottelier

UC Berkeley
tbh@cs.berkeley.edu

Abstract

Synthesis is the problem of obtaining programs from rela-
tional specifications. We present grammar-modular (GM)
synthesis, an algorithm for synthesis from tree-structured
relational specifications. GM synthesis makes synthesis ap-
plicable to previously intractable relational specifications by
decomposing them into smaller subproblems, which can be
tackled in isolation by off-the-shelf synthesis procedures.
The program fragments thus generated are subsequently com-
posed to form a program satisfying the overall specification.
We also generalize our technique to tree languages of rela-
tional specifications. Here, we synthesize a single program
capable satisfying any (tree-shaped) relation belonging to the
language; the synthesized program is syntax-directed by the
structure of the relation. We evaluate our work by applying
GM synthesis to document layout: given the semantics of a
layout language, we synthesize tailored constraint solvers ca-
pable of laying out languages of documents. Our experiments
show that GM synthesis is sufficiently complete to success-
fully generate solvers for non-trivial data visualizations, and
that our synthesized solvers are between 39- to 200-times
faster than general-purpose constraint solvers.

1. Introduction

By raising the level of abstraction, automatic synthesis of
programs from specifications has the potential to make pro-
gramming easier. Program specifications can often be stated
as a relation between inputs and outputs, for instance, with
pre and post conditions. Then we can synthesize a program by
turning the relation (specification) into a function (program)
according to an input/output (known/unknown) partition of
the relation’s variables. This type of program synthesis is
usually called functional synthesis. In this paper, we focus on
relations expressible in propositional SMT logics.

A key benefit of functional synthesis is enabling program-
mers to use declarative constraints (i.e., relations) without in-
curring the cost of solving constraints. Generally, constraints
are computed at runtime by a solver for a particular input
(i.e., initial conditions). By synthesizing functions from con-
straints, we obviate the need for constraint solving at runtime
and shift this cost to compilation time. Intuitively, the synthe-
sized functions execute only value propagations and bypass

Ras Bodik

UC Berkeley
bodik@cs.berkeley.edu

the backtracking search performed by constraint solvers. In
situations where the same constraint system must be solved
multiple times with varying inputs, the same synthesized func-
tions can be reused, making the performance gains brought
by synthesis even more attractive.

Our goal is to scale functional synthesis to large relations.
At heart, functional synthesis is a quantifier elimination prob-
lem: we eliminate variables from the relation until all outputs
can be expressed only in terms of inputs. Recent work such
as Comfusy [15] has brought program synthesis to main-
stream compilers. Comfusy is an extension of Scala allow-
ing relational constraints in functional programs. In essence,
Comfusy translates the execution of a quantifier-elimination
procedure on a particular relation into SMT formula whose
models capture the key steps of quantifier elimination. Ulti-
mately, given such steps, Comfusy can construct functions
computing the outputs. In fact, such functions can be viewed
as specialized solvers tailored for one particular constraint
system. In practice, the efficiency of the translation and scala-
bility of SMT solvers limit the size of relations which can be
functionalized, i.e., for which we can compute (executable)
functions. Empirically, we found that quantifier-elimination
based approaches do not scale to the large specifications of
our domain, document and visualization layout.

Synthesis of Layout Engines Layout specifications are nat-
urally expressed with constraints [12]. Constraint-based lan-
guages such as CCSS [4] and ALE [31] are both powerful and
versatile. Even CSS, the ubiquitous web template language,
relies on constraints, although in a more restricted and indi-
rect manner [12]. Constraints also enable the inference of lay-
out specifications directly from user demonstrations [11, 22].

Layout engines compute attributes such as the sizes and
positions of all visual elements from input attributes, which
are runtime constants (e.g., the window size). When layout is
specified with constraints, solving them quickly enough (less
than half a second) to enable smooth user interactions is a
major technical challenge. Today, the average webpage has
over a thousand elements, each with dozens of attributes [27].
Since layout engines are executed numerous times, for in-
stance, to handle resize-window events or to adapt to new
data values, the potential cumulative runtime savings from
synthesizing specialized “function” solvers are large. For

mailto:tbh@cs.berkeley.edu
mailto:bodik@cs.berkeley.edu

these reasons, we believe that automatic generation of layout
engines is a prime target for functional synthesis.

Layout can be computed either by solving constraints at
runtime (i.e., after input values are provided) with a general-
purpose solver, or by handcrafting a solver (engine) tailored
to a particular type of visualization (D3 [5]). Handcrafted
solvers are usually implemented as a bounded set of tree
traversals over a hierarchical document labeled with con-
straints. Today, general-purpose solvers are too slow for inter-
active settings (up to 200x slower than handcrafted solvers,
see Section 4). As such, all browsers and most visualiza-
tion libraries (e.g., D3 and Protovis [10]) rely on handcrafted
solvers. However, writing such solvers is time-consuming.
As a result, trying out design ideas is expensive.

Functional synthesis promises to combine the performance
of handcrafted engines with the ease of use of constraint
solvers. By applying functional synthesis to the relational
specification of layouts, we generate a solver specialized
for a particular set of constraints. In essence, we automate
the tedious optimizations currently performed manually by
visualization programmers. Ultimately, layout is a domain in
which functional synthesis could have a significant impact.

However, scaling synthesis to large relations is a chal-
lenge; so far, synthesis has mostly been limited to producing
program fragments. Our experiments show that Comfusy
scales to 100 variables at most. However, the relations de-
scribing layout can range over 10* program variables, more
than one order of magnitude larger than what state-of-the-
art synthesis tools can handle. We present grammar-modular
(GM) synthesis, a technique to scale functional synthesis to
large and hierarchical relations, such as data-visualization
specifications.

Modular Synthesis To scale synthesis to large relations,
we rely on the presence of a hierarchical structure to trade
completeness for scalability. Specifications can often be
written as conjunctions of smaller relations. We exploit this
structure to decompose the synthesis problem into smaller
subproblems whose solutions can eventually be combined
together to functionalize the overall relation. We call this
technique modular synthesis.

Layout specifications, for instance, naturally give rise
to a hierarchical decomposition. The data to be laid out is
commonly represented as a tree of nodes — the document.
Each document node is encoded as its own conjunct. We can
apply synthesis on each node individually and then combine
the results together to create an engine computing the layout
for the whole document.

The key technical challenge of modular synthesis is the
construction of a global function satisfying the overall re-
lation, from the local functions produced by applying func-
tional synthesis on each sub-relation. We cast the creation of a
global function as (function) compositions of local functions.
By doing so, we trade completeness for efficiency: modular
synthesis cannot perform deduction across decomposition

boundaries (only function composition), so a relation that can
be functionalized globally may not be functionalizable in a
modular way. The smaller relations may not be functional
and hence the necessary local functions cannot be produced.

Grammar-Modular Synthesis So far we have outlined how
modular synthesis can generate functions solving one partic-
ular relation. In the layout domain, each type of document
node instantiates the same local constraints. For performance,
we would like to avoid applying the GM synthesizer anew
for each relation (i.e. document). We would like to avoid
not only re-synthesis of local functions, but also the expen-
sive composition of the global function, and simply thread
local functions together based on the tree structure of the
document.

Imagine you have written a specification of a simple
visualization: a barchart. The synthesis techniques presented
so far would generate an engine specific to this particular
barchart. That is, the engine would only function on a single
document. Our constraints bind a fixed set of variables;
relations for barcharts with a different number of bars have a
different number of variables. If the dataset changes to require
more bars, a new engine must be synthesized.

To be practically useful, we must synthesize engines ca-
pable of adapting to such changes by handling multiple doc-
uments, each with a particular number of bars, for instance.
That is, the engine must be generic enough to solve multi-
ple relations, even an unbounded number of relations. Fig-
ures 1(b) and 1(c) show two documents from a language of
treemaps laid out by the same synthesized engine.

In essence, we generalize program synthesis to accept not
a fixed relation but a language of relational specifications. We
restrict ourselves to regular tree-languages of relations whose
variable sharing structure forms a tree. By doing so, we can
represent the synthesized program as a set of functions whose
composition is syntax-directed by the structure of the relation.
Fundamentally, we are converting a relational attribute gram-
mar' (AG) into a traditional, functional attribute grammar
that is statically schedulable. We call this technique grammar-
modular (GM) synthesis. Given a language of relations and
an input/output partition of its variables, we synthesize a func-
tional attribute grammar capable of computing the outputs of
any relation in the language. More technically, we general-
ize modular synthesis to grammars of relations by handling
alternative and recursive productions. To guarantee that our
functional attribute grammars are statically schedulable, we
reject grammars with cyclic dependencies between attributes,
thereby forbidding fixed-point computations.

Regular tree-languages include most layout languages, in-
cluding data visualizations. GM synthesis enables automatic
generation of layout engines from specifications of layout
languages. Such languages define both syntactically legal
documents and their layout semantics. Each such grammar

I A relational AG is an AG with constraints (i.e., relations) instead of update
functions [8, 14].

defines a language of documents and its layout semantics.
The layout engine, a functional attribute grammar, computes
all document attributes (e.g., sizes, position) given runtime-
inputs (e.g., window size), which are given as values of some
attributes. Eventually, the layout engine can be scheduled to
tree traversals with the same form as handcrafted engines. In
fact, from the same relational specification, we can synthesize
distinct layout engines, depending on which attributes are in-
puts and which attributes are computed, which is useful in
interactive situations. For instance, in a scroll-box, when the
user moves the slider, the document position can be computed
from the slider and vice versa. Each such user interaction trig-
gers a different flow of attribute updates, but maintains the
same constraints.

This paper makes the following contributions:

1. We present grammar-modular synthesis, a new technique
enabling program synthesis to scale to previously in-
tractable problems. We rely on the specification having a
hierarchical structure to decompose it into smaller parts.
Then we perform synthesis on each of them individually,
and combine the resulting functions into a program satis-
fying the overall specification.

2. We apply GM synthesis to generation of layout engines,
not only for single documents but for languages of docu-
ments. We demonstrate empirically that our synthesized
engines are sufficiently complete and outperform Z3, a
general-purpose constraint solver, by up to 200 times.

3. For constraints expressible as linear equations, we state a
necessary and sufficient condition on the decomposition
of the specification, guaranteeing the completeness of
GM synthesis. We also define a class of constraints for
which GM synthesis is complete independently of the
decomposition.

2. Background and Motivation

In this section, we briefly introduce document layout, our
application domain. We give an overview of our technique
in Section 3.2. Even though the challenges posed by layout
led us to develop GM synthesis, the techniques presented
in this paper are generic. We use GM synthesis to compile
high-level layout specifications to tailored layout engines but
the algorithm is applicable to any hierarchical specification
expressible as a relational attribute grammar; it could, per-
haps, be used to raise the level of abstraction in compiler
construction, which is often specified as a functional attribute
grammar. Layout itself is already a vast domain which spans
across graphical user interfaces, data-visualizations, and doc-
uments.

Documents and Blocks A document is a tree of nodes, each
labeled with blocks. Blocks play the role of building “bricks”.
For instance, an image node and a text node wrapped under
their parent paragraph node constitute a simple document.

Blocks define the layout semantics of document nodes: typi-
cally, how each node’s positions and sizes are computed. As
such, the block of a node is akin to its “type”. Formally, each
block gives a visual appearance and attributes (e.g., positions
and sizes) to document nodes. Some attributes can be marked
as input; these are runtime constants unknown at compile
time, e.g. the size of an image, or the size of the top-level win-
dow. Solving the layout of a document amounts to computing
the values of all attributes given input values, in accordance
with the blocks’ semantics.

(a) Document (b) Layout of (a)

(c) A larger treemap

Figure 1. A treemap visualization. A tree of block-labeled
nodes constituting a document (a) together with its layout (b).
Figure (c) shows the layout of a larger document constructed
from the same blocks and belonging to the same language
(Listing 2).

Figure 1 shows a document and its layout for a treemap,
a popular visualization often used to compare companies’
relative market valuations®>. The document is constructed
from nodes that use four kinds of blocks: Document leaves
(leaf) represent companies; their value (market valuation) is
an input. Leaves are the only nodes with a visual appearance.
The invisible inner nodes (h/vdiv) enforce the recursive
division of space; i.e. they position their children. Finally,
the document root (not shown in Figure 1(a)) is labeled with
a special root block. We show below some of the constraints
behind the hdiv block. We discuss our layout constraints at
the end of this section.

1 block hdiv(...) {

2 X = parent.x + left

3 left + width = right

4 scale * value = height * width

5 width = childO.width + childl.width
6 childl.left >= childO.width

7

8}

Listing 1. The constraints defining the Adiv block of the
treemap. Constraints refer to attributes of parent and child

2 See SmartMoney’s Map of the Market on www .marketwatch. com.

www.marketwatch.com

Blocks/Relations Tree grammar Document
1 &
v

Runtime inputs
[synthesizer () |

Local v
functions Recomposer]l AG

GM synthesizer

To rendering

Y Y
Compile time Run time

Figure 2. The architecture of our GM synthesizer. The first
step of GM synthesis — decomposition — is not shown. The
attribute grammar scheduler is out of the scope of this paper.
Its output is the layout engine itself.

nodes in the document tree. Equal symbols denote equalities,
not assignments.

Synthesis of Layout Engines A layout specification con-
sists of two parts: (i) a definition of the layout semantics of
each block; and (ii) a description of which nestings of nodes
are allowed in documents. Together, both parts constitute a
relational attribute grammar [14] which defines a language
of documents together with layout semantics.

We specify legal nestings of blocks with regular tree-
grammars’. Each terminal of the tree-grammar corresponds
to a block-labeled node. Consequently, every derivable tree is
a document. We show below our grammar of treemaps. Non-
terminals are capital letters. The document of Figure 1(a)
belongs to this grammar. Note that we enforce the alternation
of horizontal and vertical splits (h/vdiv).

S = root (H)
H ::= hdiv(Vv, V) V ::= vdiv(H, H)
| leaf () | leaf ()

Listing 2. The tree-grammar of our treemap language.

Given a set of blocks and a tree-grammar, our synthesizer
outputs a layout engine, in the form of a functional attribute
grammar [14], capable of computing the layout of all deriv-
able documents (Figure 2). We guarantee that the resulting
functional attribute grammars are always statically schedu-
lable. Such attribute grammars are compilable to efficient
tree traversals [19]. In contrast with the backtracking search
employed by general-purpose constraint solvers, our layout
engines perform only value propagations and function ap-
plications. The search happens at synthesis (compile) time.
Assuming deterministic specifications, our synthesized en-
gines always compute the same layout as general-purpose
constraints solvers. Our language of constraints and our GM
synthesizer are mature enough to be used in programmability
user studies.

In the next paragraph, we detail how we define the layout
semantics of blocks and explain why we believe relational

3Regular tree-languages can be viewed as the set of derivation trees of a
context-free word grammar [6].

attribute grammars are a suitable formalism for layout speci-
fications.

Blocks Semantics Each block defines a set of attributes;
these attributes decorate document nodes. The semantics of
blocks are defined by placing constraints on attributes.

Constraints are local — only attributes from the direct
parent or children (in the document hierarchy) can be referred
to. We represent such references indirectly, by introducing
equality constraints (Section 3.1).

Constraints are also non-directional — they leave the
flow of computation unspecified, up to the synthesizer. Non-
directionality raises the level of abstraction, enabling the
same specification to capture alternative flows of computa-
tion. In interactive visualizations, values may flow in either
direction, depending the user’s actions. User actions change
the value of an attribute, which is then considered an input.
For instance, in a scroll-box, dragging the slider changes the
slide’s position, from which the new viewport position is
computed. Alternatively, growing the viewport content up-
dates the slider position. In this scenario, the same constraints
are maintained (the slider position reflects the viewport posi-
tion) but the set of known (i.e., input) attributes differs. For
each such interaction, the layout is computed from differ-
ent input attributes, producing distinct flows of computation.
Non-directionality lets us synthesize one layout engine for
each interaction (i.e., each set of input attributes) from the
same specification. As such, interactive data visualizations
can be captured very concisely.

To outline our constraint language, we show a simplified
version of one block (hdiv) of our treemap language in
Listing 1. Lines 2&3 set up the relative coordinates left, right,
denoting the relative horizontal displacement from the parent
node, based on the absolute coordinate x. The third constraint
is key: it binds the visual area of each document node to the
value of the group of companies represented.

The techniques presented in this paper are independent of
the logical theories used to express constraints. Our examples
and implementation rely on polynomial equations and linear
inequalities over rationals, augmented with basic trigonomet-
ric functions as well as min/max operators. Empirically, we
found such constraints expressive enough to specify a wide
class of layouts and visualizations.

This paper is organized as follows: In Section 3, we
start by introducing GM synthesis for single relations, then
generalize our algorithms to grammars of relations, and
finally discuss the completeness of our approach. Finally,
we present our experimental results on synthesis of layout
engines (Section 4) and discuss related work (Section 5).

3. Grammar Modular Synthesis

In this section, we first formalize concepts introduced previ-
ously and then present GM synthesis applied to layout en-
gines. To simplify the presentation, we start by explaining our

technique on a language containing a single document (i.e.,
the grammar has a single derivation). In a second step, we
generalize our approach to languages of documents. Finally,
we discuss the completeness of GM synthesis.

3.1 Preliminaries

For the sake of readability, we introduce the following no-
tations: Let f : D™ — D" be a function computing
n variables given m variables, all in domain D. We de-
note by f[I, 0] the function f lifted to symbolic variables,
where [is the list of variables read (|[I| = m), and O is
the list of variables computed (|O| = n). For example, if
f(x1,22) = (1 + 22,221 — 22) then f [{aa b}’ {07 d}] rep-
resents ¢ := a + b and d := 2a — b. We purposely abstract
away the mapping of variables onto arguments. Similarly,
for relations of arity m + n, for instance R(z1, 2o, x3) =
1 + x9 = x3, we write (a, b, c) € Rto denote a + b = .
For convenience, we extend our notation to lists of variables
and write O = f(I) and (I U O) € R. In the context of
layout, variables range over QQ and are called attributes.

Functional Synthesis The functional synthesis problem is
to find a total function f given a relation R and a partition
of its variables into input/output lists I, O, respectively, such
that (1U f(I)) € R for valuations of I. Such a function exists
if R is functional in I. Thatis, (I UO) € RA (IU f(I)) €
R = O = f(I) holds. As such, f is semantically unique
(but may have multiple implementations). For convenience,
we say that f functionalizes R with respect to inputs .

We write 77,0(R) to denote the procedure finding such
a function; the procedure fails if the function does not
exist. GM synthesis relies on a functional synthesizer ()
to perform synthesis locally, on the subproblems created by
decomposing the specification. 7 can be implemented using
existing techniques (see Section 4).

Blocks and Documents We start with definitions of blocks

and documents.

Definition 1 (Block). A block is a pair (V, R), where V
is a finite set of attributes and R is a relation over V.
Some attributes of V can be marked as inputs, i.e. runtime
constants. The relation R is the conjunction of the constraints
defining the layout semantics of the block. We assume that R
is in CNF. That is, R is a conjunction of clauses clg A. . . \cly,.

Definition 2 (Document). A document is a tree of block-
labeled nodes. Each document node contains the attributes
and the relation of its block. As such, a block acts as the
“type” of a node and through the layout constraints in the
relation, the block establishes its layout semantics.

To represent semantic connections between document
nodes, we place additional equality constraints between
attributes from a parent and its children (in the tree hierarchy).
Formally, a connection ¢, denoted by (A, B)., is an equality

constraint between the sets of attributes A and B. For now,
both A and B are singleton sets.

Finally, given a document d, let I; be the set of attributes
of d marked as input. Let Og4 be all other (non-input) attributes
of d. Let rel(d) be the relation representing the underlying
constraint system of d. Formally, rel(d) is the conjunction of
the the relation of every document node as well as the equality
constraints stemming from connections between nodes.

Definition 3 (d-Solver). Given a document d, a d-solver is a
function f [14, Og4) which functionalizes rel(d).

Modular Synthesis To synthesize a d-solver for a partic-
ular document, the simplest approach would be to use 7
directly and compute 77, o, (rel(d)). This is impractical in
practice for all but the most trivial documents, since rel(d)
may be large and have more than a thousand of attributes.
Consequently, we need a way to divide d-solver synthesis
into simpler, independent subproblems. Our approach relies
on the following hypothesis: the d-solver can be expressed
as a composition of smaller, “local” functions, synthesized
from each subproblem individually.

Given a document d, we synthesize a d-solver in three
steps: (i) we decompose the specification (rel(d)) into con-
juncts; (ii) we perform synthesis locally, on each individual
conjunct, thus obtaining local functions; and (iii) we select
and compose just enough local functions to construct a global
function computing all attributes of d, thus creating a d-solver.
Before we detail each of the three steps, we highlight the al-
gorithmic challenges by constructing a d-solver for a small
document with the help of an oracle.

3.2 Example

Let us consider a document comprised of two nodes labeled
with block a = (V,, R,) and block b = (V},, R;), respec-
tively. The specification of each block is shown below:

Va/ g {x7 y7 Z’ 7:}
Ve = {z,y}

Our document has one input, denoted by attribute . For
the sake of the explanation, we abstract away connections.
Instead, our two nodes directly share connected attributes.
Here, both nodes share attributes x and y. As such, the
specification of the document — rel(d) — is simply R, A Rp.
To create a d-solver, we must synthesize a function computing
attributes Oy = {x, y, z} from input attribute I; = {i}.

R, ZEx=iNi+z=y
Ry=z=y

Decomposition (Step 1) The first step is to decompose
rel(d). We follow the document structure and create two
subproblems, one per node of the document.

Local Synthesis (Step 2) The second step consists of gen-
erating local functions for each node of the document. First,
we ask the oracle to partition each block relation into subsets
of clauses. Intuitively, each subset corresponds to one “pass”
of the global function through the corresponding block. Then

we ask the oracle to partition the attributes of each block into
input/output sets. Finally, we synthesize local functions for
each of set of clauses using our functional synthesis proce-
dure 7. Without the oracle, we would need to enumerate all
partitions of clauses, as well as all partitions of attributes.

For our example document, block a is made of two clauses:
x = ¢ and ¢ 4+ z = y. The oracle partitions R, into subsets
sop = {x =i} and sy = {i + z = y}. Then the oracle
partitions V,, into an input set I, = {i,y} and an output
set O, = {z,2}. Given these two partitions, we generate
local functions for each set of clauses sg and s; using 7. Of
course, such functions are not guaranteed to exist. In this case,
71,.0,(50) yields the function f; = x := 4, and 77, 0, (51)
produces fy = z:=y — 1

We apply the same process on block b. Since Ry, is made
of a single clause, the oracle trivially partitions R}, into IRy
itself. The oracle splits Vj, into I, = {z} and O}, = {y}, then
by applying 71, 0, (Rs), we obtain the function f3 = y := z.

Recomposition (Step 3) The third step consists of con-
structing a global function functionalizing rel(d) by selecting
a subset of local functions and composing them together. This
is the key step of GM synthesis.

Since the oracle produced exactly the necessary functions,
we now merely need to order them to satisfy their depen-
dencies. That is, for each local function, the attributes read
must be computed before the function is applied. We encode
function dependencies using a hypergraph whose vertices
are attributes and whose edges represent local functions (Fig-
ure 3). The source of each edge indicates the set of attributes
read and its destination the set of attributes computed. A topo-
logical sort of the hypergraph reveals the order in which to
compose local functions. Here, by applying f; first, then fs,
and finally f5, we obtain the desired global function.

| Block b

Ly |

emimd

Figure 3. The hypergraph of the dependencies of fi, fo,
and f3. Note that the local function f5 is represented by a
hyperedge with two sources: ¢ and y.

Implementing the Oracle Let’s take a step back and an-
alyze the role of the oracle. We relied on the oracle twice
during the local synthesis step: the first time to partition block
relations into subsets of clauses, and the second time to parti-
tion the attributes of each block into input/output sets. Each of
these local oracular decisions must be coordinated to achieve
global properties not apparent at the local (i.e., block) level:

e Function Selection When looking at a block in isolation,
we do not know how many local functions are needed to
compute all of its attributes. In our example, the attributes

of block a are computed with two local functions, in two
steps: the value of y is required to compute z, but block b
can compute y only if block a has already computed x. If
we performed local synthesis directly on block a’s relation
(R,), without decomposing it into subsets of clauses, we
would be restricting ourselves to solving block a with a
single local function, which is not possible in our example.

Flow of Computation While we know the overall (doc-
ument) inputs, at the block level, we need to determine
which attributes are known (inputs) and which attributes
will be computed (outputs). The flow of computation is
a property of the whole document and is unknown when
synthesizing local functions. In fact, the same node may
be traversed multiple times by the global function, each
time invoking one local function, like the node (labeled)
a in our example.

We used the oracle to simplify our synthesis algorithm
which conceptually relies on global reasoning to synthesize
local functions. To gain scalability, we restrict the generation
of local functions to block-local reasoning. In the absence of
a benevolent oracle, we synthesize local functions consider-
ing both all partitions of clauses into subsets and all partitions
of attributes into input/output sets. As a result of this exhaus-
tive enumeration, we obtain many more local functions than
needed for the construction of the global function. We “im-
plement” the oracle in the recomposition step, in which we
must now select which local functions to use. We perform the
selection symbolically, by reasoning on a hypergraph summa-
rizing all flows of computation. By selecting local functions,
we are indirectly making the same two decisions the oracle
made: for each block, we select a clause partition and an
input/output partition.

3.3 Modular Synthesis

We formalize the three steps of GM-synthesis (decomposition,
local synthesis, and recomposition) for a language of a single
document (Figure 4). Let d be this document.

Decomposition (Step 1) Conveniently, the structure of the
document provides us with an initial decomposition where
related constraints are already clustered together by the pro-
grammer: we decompose rel(d) at nodes/blocks boundaries.

Note that there is no best granularity of decomposition:
it is a trade-off between scalability and completeness of our
approach. Finer decompositions lead to smaller relations and
hence to more efficient local synthesis, but sometimes small
relations are not functionalizable; they need to be conjuncted
with other relations to be functional. We discuss completeness
of GM synthesis in Section 3.5.

Local Synthesis (Step 2) To start, let us define local func-
tions formally.

Definition 4 (Local Function). Given a block (V,R £
clo A ... Ncly), alocal function is a quadruple (f,I,0,S)
where

1. I and O are lists of input/output attributes such that
ICV,0OCV,andINO = g,

2. 5 Q {Clo, ..

3. f functionalizes S with respect to inputs 1: f = w1,0(95).

., clp } is a subset of clauses,

Note that executing the local function (f, I, O, S) assigns
the attributes computed by f with values satisfying all clauses
in S.

To generate as many local functions as possible, for each
block (V, R) in d, we enumerate both all partitions of clauses
of R and all input/output partitions of V, as detailed in
Algorithm 1.

Algorithm 1: Synthesize local functions for a block.

Input: A block b = (V,clg A ... Acly)
Output: A set of local functions over attributes 1V’
begin

R+ o

foreach subset S C {cly,...,cl,} do

foreach partition of V into sets I and O do
if (f,1,0,8) =m0 (S) exists then
Add (f,1,0,5)to R.

end
end

return R
end

Recomposition (Step 3) We reduce the problem of choos-
ing and composing local functions to finding a particular kind
of spanning tree on a hypergraph. The hypergraph encodes
a summary of all possible flows of computation between
attributes of the document.

Definition 5 (Hypergraph Summary). Given a document d,
an hypergraph summary Hy = (V, E) is such that V is the
set of attributes of d and E is a set of local functions. Each
local function (f,I,0,S) is represented with the hyperedge
(I,0), where I is the set of source attributes and O the set of
destination attributes.

Since connections are equality constraints between sets of
attributes, we can also represent them with local functions.
Recall that, for now, each connection (A, B) is such that
A and B are singleton. Let A = {a} and B = {b}. The
connection (A, B) is equivalent to (id, A, B, {a = b}) where
id is the identity function.

We construct the hypergraph H; as follows: For each node
n in d labeled with block b, we instantiate the set of local
functions of b on the attributes of n. Finally, we add two
hyperedges per connection, one for each possible flow of
values, either up or down in the document tree. Algorithm 2
details this process.

Before we define the d-solver in terms of paths in Hy, let
us note the following two facts about the hypergraph summary

Algorithm 2: Construct a hypergraph summary encod-
ing all possible compositions of local functions.

Input: A document d and a set of connections C'
Output: A hypergraph summary of d
begin
E+—o
foreach node n in d labeled with block b do
Add {(1,0) | (f,1,0,S5) € Algol(b)} to E.
end
foreach connection (A, B) in C do
Add {(A4,B),(B,A)} to E.
end
return (I; U Oy, E)
end

H,. First, each hyperpath encodes a function reading its
source attributes and computing its destination attributes.

Lemma 1. Each hyperpath p = fo, ..., fn in Hy encodes
a function f,(I,,0,] = foo ...o fn. Let I;,O; be the
input/output sets of f;, the ith function in p. Then O, =
Uo<icn Oi and I, = (Ug<;<p, Li) \ Op. From properties of
hyperpaths, it follows that:

1. The dependencies of each local function on the path
are satisfied. For each function f; with i > 0, we have
I; C U0§j§1—1 Oj U Ip-

2. Each attribute is computed at most once: For any pair
of functions f; and f; in p such that i # j, we have
O; N Oj = .

Lemma 2. Every function f, defined by a hyperpath p in Hg
satisfies the conjunction of clauses of its local functions. Let
p = fo... fn be a hyperpath representing function f,. Let
(fis Li, O;, S;) be the ith function in p. Then f, functionalizes
No<i<n Si- We say that f, satisfies all clauses traversed.

Lemma 2 follows directly from the fact that, by construc-
tion, each local function (f;, I;, O;, S;) functionalizes S;. Fi-
nally, let us define the subset of paths which can be executed.

Definition 6 (Executable Path). A hyperpath p in Hy is
executable iff it starts from the document inputs. That is,
the function f,[I,, O] encoded by p is such that I, C 1.

We are now ready to state under which conditions a
hyperpath encodes a d-solver. That is, a global function which
functionalizes rel(d) with respect to the document inputs /.

Definition 7. The hyperpath p is an executable covering
spanning tree iff all of the following three conditions hold: (i)
p is executable; (ii) p is a spanning tree; and (iii) p traverses
all clauses of rel(d). We call the third condition coverage.

Theorem 1. Each executable covering spanning p in Hy
encodes a global function which functionalizes rel(d) with
respect to document input 1.

Global

Function /fgzil“'fz\
chal f, f,
Functions * *
Subsets of S, S,
Clauses /w\ /\
Clauses ’ cly cl, cly cly clg ‘
1 Decomposition \A/ \M
S; S,
2 Local Synthesis + +
fs f,
3 Recomposition \4/
fe=fse 1y

Figure 4. The three steps of GM synthesis. This diagram
shows that two distinct decompositions can lead to syntacti-
cally different, yet semantically equivalent, d-solvers.

Since p is an executable spanning tree, it follows that both
I, C I; and O, = Og4. From the coverage condition and
using Lemma 2, we conclude that f,, functionalizes rel(d).

Theorem 2. If there exists an executable covering spanning
tree in Hy, then rel(d) is functional in 1.

Since every local function composing the covering span-
ning tree stems from a functional set of clauses (with respect
to local function inputs), one can show that the set of all
traversed clauses is functional with respect to /;. Note that
there may be multiple covering spanning trees. Each such
tree encodes a semantically equivalent global function, but
they may differ syntactically (Figure 4).

Together, Theorems 1 and 2 show that our approach is
correct: the d-solvers synthesized always fulfil the specifi-
cation. Note that finding a spanning tree in a hypergraph is
NP-complete [29]. In the next subsection, we explain how to
encode the search for a d-solver in SMT after generalizing
our approach to languages of documents.

3.4 Grammar-Modular Synthesis

In this section, we generalize the modular synthesis technique
presented so far to grammar-modular synthesis for languages
of documents. In essence, to support grammars producing
more than a single document, we need to handle alternative
and recursive productions. By alternatives, we refer to non-
terminals having more than one production. We start by
formally defining languages of documents and language
solvers.

Definition 8 (Language). A language of documents is regular
tree-grammar L whose terminals are block-labeled nodes.
Each tree in L forms a document. Each production of L can
place semantic connections between attributes of a parent
node and its children.

Definition 9 (L-Solver). Given a language L, a L-solver is
a statically schedulable functional attribute grammar which
defines a d-solver for every document d € L.

A language of documents together with blocks definitions
form a relational attribute grammar. As a result, we can view
the synthesis of a L£-solver as converting a relational attribute
grammar into a statically schedulable functional attribute
grammar. As such, to construct a £-solver, we compute: (i)
the mode of all attributes together with a corresponding sub-
set of local functions; and (ii) a total order over attributes.
The modes capture whether attributes are inherited or synthe-
sized. The total order prevents cyclic dependencies, which
guarantees that the resulting functional attribute grammar is
statically schedulable.

Synthetizing L-Solvers Given a language £, we synthesize
a L-solver as follows: First, we create a witness document
which exhibits all productions of the grammar of £. Then we
create a hypergraph summary of £ by applying Algorithm 2
on the witness document. Finally, from the hypergraph sum-
mary, we construct an SMT formula whose models encode
both attribute modes and a subset of local functions. Together,
they form a L-solver.

The witness document can be produced easily by unrolling
the grammar until every terminal (i.e., node) appears in the
document. By doing so, we ensure that rel(d,,) contains all
constraints of L.

Connections across alternative productions can be encoded
directly as hyperedges with multiple sources or destinations.
Conveniently, properties of hyperpaths guarantee that all
productions of the same non-terminal will share the same
mode (i.e., the same flow of computation). For example,
consider the following language where block ¢ may have
either block by or by as child. Attribute a.x is connected to
either b;.x or by .X.

S
B

a(B) with a.x = B.x
b1 () | b2O

We encode the two alternative productions of the non-
terminal B with a single connection ¢: ({a.x}, {b1.2,ba.2}).
When creating the hypergraph summary, Algorithm 2 encodes
c with two hyper-edges (one with two destinations and one
with two sources) representing values flowing either up or
down through both derivations (Figure 5).

To handle recursion, we relax the definition of covering
spanning trees (Definition 7) to carefully allow some cycles,
those which are created by recursion and do not represent
true cyclic dependencies of attributes.

SMT Encoding We encode the existence of a L-solver as
an SMT query.

Let d,, be the witness document of £, and let H;, =
(V, E) be its hypergraph summary. Recall that V' is the set
of all attributes of d,,. Let ' C FE be the set of local func-
tions which are not connections, augmented with one func-
tion modeling inputs: (—, &, I, ,). Each local function

w?

) o)

(a) The two derivable documents

(b) Their hypergraph summary

Figure 5. A language of two documents, each stemming
from one production of an alternative non-terminal (a), Al-
gorithm 2 encodes the connection ({a.z}, {b1.x, bo.z}) with
two hyperedges, thereby enforcing the same flow of compu-
tation for both documents (b).

(f,I1,0,S5) € F is encoded with one boolean flag e, which
is true if f is used in the L-solver; we say that f is selected.
We encode each attribute x € V' with two variables:

1. One boolean m,, representing the mode of x: m, can
either be inherited () or synthesized (1).

2. One integer [, used to impose a total order on all attributes.

We partition the connections of £ two subsets: (i) R, the
set of recursive connections, those which stem from recursive
nonterminals; and (ii) /V, the set of non-recursive connections.
Every connection (A, B). € N U R is encoded with one
boolean m,. representing the mode of the connection: either
inherited ({) or synthesized (7).

For each block (V, R) of L, we encode each clause ¢ of

R with one boolean named e,;.

Finally, we define brnode(x), a function converting the
grammar mode of attribute = (inherited or synthesized) to a
“block” mode (in or out) representing whether x is an input
or an output of its block. The block mode is equivalent to
modes of logic programs: attributes marked ¢n are computed
outside the block and propagated to it through connections;
attributes marked out are computed within the block by a
local function.

in if3(A,B)c € N.(xr € AANmy =1) V
bmode(z) := (x € BAmg =),
out otherwise.

We break our encoding in five parts: (i) connections; (ii) lo-
cal functions; (iii) the spanning property; (iv) schedulability;
and (v) soundness. We explain each of them individually.
Connections The first part encodes the relationship be-
tween the mode of a connection and the mode of the attributes
connected.

¢Conn((AaB)c) = (mc :\L — /\ My :\L> AN

z€B
<mc = = Am —T>
z€A

Functions The second part is divided into two conjuncts:
The first conjunct captures the relationship between local

functions and attribute modes. Notice that we do not constrain
the input of local functions to have an ¢n mode. Doing so
would prevent chaining of local functions within the same
block, preventing the £-solver from invoking multiple local
functions during the same traversal. The second conjunct
records all clauses of rel(d,,) traversed by the subset of local
functions selected.

d)Fun(fala 07 S) =

ef = /\ bmode(x) = out A /\ €el
z€0 cles

Spanning The third part guarantees that each attribute x is
computed by a local function, a non-recursive connection, or
inductively by recursion. Note that requiring every attribute
to be computed at least once is not sufficient to ensure the
soundness of the £-solver. Consider the following grammar
with two blocks @ = ({2}, 2 = 2) and b = ({z},2 = 1):

S
B

a(B) with a.x = B.x
bO)

Note the connection between the attributes a.x and b.x. The
only document derivable from this grammar has no solution.
However, if we allowed attributes to be computed twice, then
we would find a L£-solver which first assigns 1 to b.x and
then assigns 2 to b.x. This example illustrates how the same
attribute may be assigned two distinct values, each satisfying
one half of the specification. To reject such grammars, we
require every attribute to be computed exactly once. As a
result, our L-solvers are single-assignment attribute gram-
mars, a class of attribute grammars simpler to schedule. We
define the logical connective ® to be true iff exactly one of
its clauses is true.

{ey | (f,1,0,5) e FAz €O} U
{me=1[(A,B)c € NA z€B}U
{me=1[(A,B)ce NA € A}U
{me=11(A,B). € RA x € B}

qupan(aj) = @

Schedulability The fourth part guarantees the absence of
cyclic dependencies by enforcing a total order on attributes.
Note, that we only consider the non-recursive connections
(IN) to allow cycles of attributes caused by grammar recursion.
That is, every cyclic path in subgraph of selected local
functions must include one recursive connection.

PSched 1= /\ <mc =l = ly > meai((ly)) A
(A,B).€N +€B Y
/\ <mC = = Iy > mag(@)) A
(A,B).EN c€A ve
/\ (I DD Nep = /\ Iy > ma;c(@))
(f.1,0,5)€F €0 ve

Soundness The final part guarantees that the £-solver func-
tionalizes rel(d,,). We ensure that the local functions selected

traverse (cover) all the clauses of (all the blocks of) rel(d,,).

A

clerel(dy)

¢Sound = €cl

L-Solver Finally, by taking the conjunction of all five parts,
we obtain a formula whose models encode both the subset
of selected local functions (e variables) as well as modes
for all attributes (m,, variables) and for all connections (1.
variables).

¢ = /\ ¢C0nn((Aa B)c) A ¢Sched A d)Sound A
(A,B)c.eNUR
/\ ¢Fun(f7I7Oa‘S’) /\ /\ d)span(aj)

(f,1,0,8)eF zeV

The translation of models of ¢ to functional attribute gram-
mars is straightforward: The ey booleans indicate which local
functions to use. Note that ¢ also contains a static schedule of
the attribute grammar encoded in the [, variables. In general,
our formalism is too abstract to model important execution
characteristics like cache locality or parallelization opportu-
nities. We throw away the schedule found and delegate this
task to a dedicated attribute grammar scheduler [19].

3.5 Completeness

GM synthesis is correct (Theorems 1 and 2); the solvers
generated are sound: they always satisfy the specification.
However, GM synthesis is also incomplete and might fail to
find a solver, even when one exists. In Section 4, we show
that GM synthesis is sufficiently complete in practice.

Recall that GM synthesis relies on the following hypoth-
esis: the global function is expressible as compositions of
local functions. The granularity of the decomposition affects
whether our hypothesis holds. Coarser initial decompositions
(i.e., blocks) yield more local functions at the expense of
creating larger local synthesis problems, thus decreasing effi-
ciency. Note that the number of local functions synthesized
grows monotonically with the size of blocks only because
we consider all subsets of clauses when performing local
synthesis.

We call the loss of completeness due to decomposition
the cost of modularity, to distinguish it from the loss of
completeness incurred due to any incompleteness of 7. In
the next two paragraphs, we state a condition for hierarchical
linear systems of equations; this condition is necessary and
sufficient to guarantee zero cost of modularity. Finally, we
define a class of constraints for which modularity always
incurs no cost. For clarity, we state these two properties
considering a single document; they are generalizable by
induction on the document grammar.

Linear Equations Without loss of generality, we abstract
away connections: blocks share connected variables directly,
as in the example of Section 3.2. We also assume that the
local synthesis procedure 7 is complete.

Since we are limiting ourselves to linear equations, let the
system rel(d) be represented by the matrix of coefficients
M. The decomposition of rel(d) into blocks corresponds to
a partition of the rows of M.

Theorem 3 (Completeness Condition). GM synthesis is
complete for linear equations iff My can be triangularized
(i) using row combinations (i.e., adding a linear combination
of rows to another) only between rows belonging to the same
block and (ii) using row interchanges for any pair of rows.

We give an outline of the proof. The first step is to show
that the recomposition step of GM synthesis performs the
equivalent of back-substitutions on M, (assuming My is up-
per triangular). For linear equations, local synthesis reduces
to row combinations within each block. Indeed, row com-
binations together with row interchanges form a complete
quantifier elimination procedure for linear equations: Gaus-
sian elimination. As such, the power of the local synthesis (1)
is exactly row combinations. By requiring M; to be triangular
modulo row interchange after local synthesis, we ensure that
rel(d) is solvable with back-substitutions only.

Equality Constraints There exists a (very restricted) class
of constraints for which modularity has no cost, regardless of
the decomposition: equality constraints. If all atoms of rel(d)
are equalities between pairs of attributes, GM synthesis
reduces to computing the equivalence classes of rel(d). It
is possible to show that equivalences classes are indirectly
computed as part of the recomposition step, thus guaranteeing
the completeness of modular synthesis.

Of course, equality constraints are too restrictive for all
but the most trivial specifications. However, using the same
line of reasoning, this result can be extended to demonstrate
that the cost of modularity is not affected by the introduction
of new equality constraints. As such, simple factorizations of
the specification, such as breaking down large constraints into
smaller ones have no effect on completeness; a reassuring
property for specification authors.

4. Evaluation

In this section, we evaluate GM Synthesis along the following
three axes:

e Scalability and Completeness Since GM synthesis trades
completeness for scalability (to a degree controllable with
the granularity of decomposition, see Section 3.5), is GM
synthesis both scalable and complete enough to synthesize
L-solvers for realistic layout languages?

® Performance How does the solving speed of our L-
solvers compare with state-of-the-art, general-purpose
constraint solvers? How do £-solvers and general-purpose
constraint solvers scale as document size increases?

® Parameterizable Layout Engines Can our layout spec-
ifications be reused for multiple £-solvers, each synthe-
sized for a different set of input attributes, one per user
interaction (e.g., resize)? This benefit results from using
non-directional constraints which capture flows of values
in several directions.

Experimental Setup GM synthesis is parametrized by the
local synthesis procedure 7. In our experiments, we imple-
mented 7 with a combination of Sketch [26] for linear rela-
tions and Grobner Bases (from Mathematica) for polynomial
equations. There are many other procedures which could

be used to implement 7. We note Comfusy [15] and Mjoll-
nir [20].

We used the Superconductor attribute grammar sched-
uler [19] to compile L-solvers to (sequential) tree traversals.
The resulting traversals are implemented in JavaScript and
operate directly on the browser DOM. As a result, our custom
L-solvers can easily be deployed in any web browser. Fig-
ures 1(b) and 1(c) have been laid out by one of our L-solvers.

All our benchmarks were run on a 2.5GHz Intel Sandy
Bridge processor with 8Gb of RAM.

Scalability and Completeness To show that GM synthesis
is widely applicable, we demonstrate it on layout languages
drawn from the three major layout domains. Our case studies
cover: (i) document (webpage) layout; (ii) Graphical User
Interface (GUI); and (iii) data visualization. Each of the three
languages presented below is full-fledged and computes all
attributes needed for rendering.

1. Our first case study is a guillotine layout language where
a set of horizontal and vertical dividers partition the space.
A subset of CSS can be encoded in such languages [25].
The guillotine language totals 30 constraints. This is the
only language in which all constraints are linear.

2. Our second case study is a language of flexible grids [9].
Such languages are frequently used to layout widgets in
graphical user interfaces [12]. The sizes of each cell of
the grid are allocated based on a weighted sum, producing
non-linear constraints. The weight of each cell is a runtime
input. The grid language consists of 47 constraints.

3. Finally, a language of treemaps [13], a visualization of
hierarchical datasets popular in finance. The screen is tiled
recursively, based on the area occupied by each subtree
of the document (Figure 1). Each leaf has a runtime input
corresponding to its relative area. Constraints involving
area computations are non-linear. The treemap language
has 40 constraints.

Our GM synthesizer is sufficiently complete to success-
fully generate a £-solver for each of the three case studies.
The synthesis took less than five minutes, an acceptable com-
pilation time, with the local synthesis step and the recom-
position step using approximately equal halves. To illustrate
the complexity of the L-solvers obtained after scheduling,
Table 1 lists the number of tree traversals, the number of local
functions used, and size of the JavaScript code. For reference,
Firefox’s layout engine for CSS uses four passes [3]. Finally,
the number of lines of code reported includes only the layout
engine itself (i.e., the computation of document attributes);
code related to rendering has been explicitly excluded.

We also compare our work with direct functional synthesis
techniques, such as Comfusy and Sketch. Such techniques
are limited to synthesis of d-solvers, they do not generalize
to languages of documents. As such, we apply them on a
single small document of 127 nodes. Neither Comfusy nor
Sketch could synthesize a d-solver in less than one hour.
These results indicate that GM synthesis strikes the right
balance between completeness and scalability of synthesis
for our domain.

Language Tree Traversals Local Functions SLOC
Total Selected
Guillotine td 289 74 189
Grid td; bu;td 385 89 283
Treemap td;bu;td; bu;td 394 91 341

Table 1. The complexity of £-solvers for each of our three
case studies. The second column shows the number and type
of tree passes over the document: ¢td denotes a top-down
pass and bu a bottom-up one. The third columns reports the
number of local functions synthesized and the number of
local functions used. Finally, the fourth column shows the
number of lines of JavaScript code.

Performance We compare the performance of our synthe-
sized L-solvers with Z3 [21], a state-of-the-art constraint
solver. Note that our solvers are implemented in JavaScript,
a relatively slow language. Z3 solves the constraint system
defined by the document (rel(d)) at runtime. In essence, we
measure the ability of GM synthesis to shift the cost of solv-
ing constraints from runtime to compile time.

We measured the time to compute the layout of documents
from 255 to 16383 nodes, for each of the 3 layout languages
outlined above. We argue that such document sizes are typical:
the front page of www.nytimes.com contains over 3000
nodes and data-visualizations tend to be much larger. For
each case study, we chose the fastest SMT theory which
could express the layout specification. Interestingly, the non-
linear arithmetic solver was faster than bivectors for both the
grid and treemap languages. For guillotine, we used linear
real arithmetic. Table 2 summarizes our results.

Doc Size Guillotine Grid Treemap
GM Z3 GM Z3 GM Z3
255 3 705 5 707 8 680
1023 10 2310 19 1494 49 1935
4095 41 12800 81 8403 120 8935
16383 162 >3 min 213 — 261 —

Table 2. Time to compute the layout in milliseconds for typ-
ical document sizes. Missing entries (—) indicate “unknown”
answers (Z3 produced no model). Notice that our £-solvers
scale linearly with the document size.

Our L-solvers scale linearly with size of the document,
whereas Z3 exhibits exponential behavior on the largest
(16383 nodes) document for all three languages. This asymp-
totic speedup is explained by GM synthesis moving the
backtracking-search performed at runtime by Z3 to compile
time, leaving only function applications to runtime.

On the medium sized document (1023 nodes), L-solvers
are between 39 and 231 times faster than Z3. On the largest
document, Z3 was unable to compute a layout within 3
minutes (either timing out or reporting “unknown”) for all
three case studies. Our results show that across the three

www.nytimes.com

case studies, our L-solvers are fast enough (<0.5 second) for
interactive settings.

Parameterizable Layout Engines We illustrate the expres-
siveness of non-directional constraints by synthesizing mul-
tiple L£-solvers from the same specification. Each solver re-
sponds to a distinct event or user-interaction by updating the
layout. For instance, when the user resizes the main window,
one L-solver recomputes the layout using the new width and
height as input. We illustrate the power of non-directionality
on our language of treemaps.

Imagine a treemap representing the market capitalization
of companies. The leaves of the document are companies
while inner nodes encode the tiling of the screen (Figure 1(a)).
Let’s consider the following two events: (i) the values of all
companies are updated; and (ii) the user resizes the treemap.

Each event defines its own set of runtime inputs from
which all remaining attributes are computed. For the first
event, the set of runtime inputs is the “value” attribute of
each company (i.e., leaf nodes). Given new values, the layout
engine must update the sizes of each node, including the
overall size of the treemap (root node). In contrast, the second
event updates the overall size of the treemap. As such the
runtime inputs are the height/width of the root node. The
values of leaves remain unchanged, and the layout engine
must recompute the scaling parameter converting values
(dollars) into areas (squared pixels).

From the same specification, our synthesizer generates two
L-solvers, one per set of runtime inputs. For the first event,
we obtain (after scheduling) a five pass L-solver, whereas the
second event yields a three pass L£-solver.

The ability to capture multiple flows of computation
within the same specification indicates that relational attribute
grammars are a concise formalism for expressing interactive
layouts.

5. Related Work

GM synthesis builds upon previous work in program synthe-
sis. Our work is closely related to constraint planning, mode
inference in attribute grammars, and logic programming.

Program Synthesis Functional synthesis, a subset of pro-
gram synthesis [17, 18], is an instance of the AE-paradigm,
also known as the Skolem paradigm for synthesis [23]. GM
synthesis builds upon functional synthesis procedures, such
as Comfusy [15] or Sketch [26], by enabling modular decom-
positions of specifications to gain scalability.

Constraint Planning (CP) The task of finding a d-solver
can be cast as a multi-way (i.e. non-directional) constraint
planning problem for which solvers like SkyBlue [24] and
QuickPlan [28] have been proposed. In CP, each “planning
constraint” corresponds to a set of clauses in our framework.
Similar to our d-solver setting, given a set of planning con-
straints, each associated with local functions (methods), a
planner finds a sufficient subset of functions that computes
all attributes. In contrast with our approach, a programmer is
responsible for providing enough local functions as well as
partitioning relations, to satisfy special requirements of the
algorithm. QuickPlan works in quadratic-time by imposing a
clever restriction on planning constraints: each local function

must mention all variables of its planning constraint, either as
input or as output. The programmer satisfies this restriction by
intelligently factoring clauses into planning constraints when
writing local functions. In our setting, the same information
is left to the oracle (i.e., we search over the space of all factor-
izations). As illustrated in Section 3.2, our oracle partitions
the relation of each block into subsets of clauses, each cor-
responding to one planning constraint. Without this step, we
would be restricted to computing all attributes of each block
with a single local function, which would prevent creating
layout engines for documents requiring multiple tree passes.
In essence, we cannot use QuickPlan to compute d-solvers,
because we do not know upfront how many passes are needed.
In practice, we synthesize local functions for all subsets of
clauses. As a result, we obtain many more local functions
than in the traditional constraint planning setting. Naively en-
capsulating local functions into planning constraints meeting
QuickPlan’s simplifying assumption would create an expo-
nential explosion. With one planning constraint per subset of
clauses, QuickPlan’s complexity would become (2™)? where
n is the number of clauses. In general, constraint planning
for non-directional constraints is NP-complete [16].

We distinguish ourselves by supporting not only finite
relations but also tree-grammars of relations, enabling the
same L-solver to lay out multiple documents (datasets), while
still guaranteeing a static schedule.

Attribute Grammar Our modular synthesis algorithm has
close connections with relational attribute grammars and
logic programming. Deransart et al. [8] give theoretic con-
structions demonstrating how relational grammars, functional
grammars and directed clause programs are related to one an-
other. Mode analysis [7] techniques for logic programs, which
compute whether clause arguments of logical programs are
input or output, could be — in principle — transposed to at-
tribute grammars to compute whether attributes are inherited
or synthesized. The principal goal of mode inference is to
learn static properties enabling compiler optimizations. To
this end, such techniques rely on abstract domains to soundly
perform over-approximations of modes. Our work differs
in two ways. First, to obtain executable L£-solvers, we must
compute exact modes for all attributes. As such, we cannot
apply techniques trading precision for scalability or termi-
nation. Secondly, our approach is modular. For each block,
we synthesize a set of local functions, which can be viewed
as sets of possible modes for a block. Local functions are
computed independently for each block and can be reused
across layout languages. Mode analysis techniques based on
abstract interpretation operate on the whole program.

Constraint Logic Programming (CLP) In constraint logic
programming ([1, 2, 30]), constraint systems are flat and
unstructured while we exploit the tree structure to produce £-
solvers in a modular fashion. Furthermore, given a relational
specification of a document and a valuation of its inputs,
CLP tools search for one layout (i.e., solution) among the
potentially many, whereas we ensure that the specification
is functional with respect to document inputs. That is, the
layout is uniquely determined by inputs (i.e., deterministic).

6. Conclusion

We presented grammar-modular synthesis, a new algorithm
exploiting the structure of hierarchical specifications to scale
synthesis to large relations at the cost of completeness. We
applied GM synthesis to document layout and generated tai-
lored layout solvers for custom languages of documents. Our
three case studies show not only that GM synthesis scales to
large specifications which could not be tackled by state-of-
the-art tools, but also that the £-solvers generated outperform
general-purpose constraint solvers by one order of magni-
tude. In our experiments, the theoretical incompleteness of
GM synthesis did not materialize. For our domain, layout,
we believe that GM synthesis strikes the right balance be-
tween scalability of synthesis, completeness of synthesis, and
performance of the resulting £-solvers.

We are interested in applying GM synthesis to domains
beyond document layout. For instance, the techniques pre-
sented in this paper could potentially generate an attribute
grammar-based type-checker from relational type system
specifications. The underlying domain of attributes would
have to be extended to data types richer than Rationals.

References

[1] K. Apt. Principles of Constraint Programming. Cambridge
University Press, New York, NY, USA, 2003.

[2] K. R. Apt and M. Wallace. Constraint Logic Programming
using Eclipse. Cambridge University Press, New York, NY,
USA, 2007.

[3] E. Atkinson. personal communication, 2014.

[4] G.J. Badros, A. Borning, K. Marriott, and P. Stuckey. Con-
straint cascading style sheets for the web. UIST, pages 73-82,
1999.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven
documents. [EEE Trans. on Visualization and Computer
Graphics, pages 2301-2309, 2011.

[6] H. Comon, M. Dauchet, R. Gilleron, C. Loding, F. Jacque-
mard, D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications, 2007.

[7] S. K. Debray and D. S. Warren. Automatic mode inference
for logic programs. The Journal of Logic Programming, pages
207 — 229, 1988.

[8] P. Deransart and J. Matuszynski. Relating logic programs and
attribute grammars. The Journal of Logic Programming, pages
119 - 155, 1985.

[9] S. K. Feiner. A grid-based approach to automating display
layout. In Proceedings on Graphics Interface '88, pages 192—
197, 1988.
[10] J. Heer and M. Bostock. Declarative language design for
interactive visualization. InfoVis, pages 1149—-1156, 2010.

[11] T. Hottelier, R. Bodik, and K. Ryokai.
manipulation for layout. UIST’ 14, 2014.

Programming by

[12] N. Hurst, W. Li, and K. Marriott. Review of automatic
document formatting. DocEng, pages 99-108, 2009.

[13] B. Johnson and B. Shneiderman. Tree-maps: a space-filling
approach to the visualization of hierarchical information struc-
tures. In Visualization, 1991.

[14] D. E. Knuth. Semantics of context-free languages. Theory of
Computing Systems, pages 127-145, 1968.

[15] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete
functional synthesis. In PLDI 10, pages 316-329, 2010.

[16] J. Maloney. Using Constraints for User Interface Construction.
Department of Computer Science: Technical report. University
of Washington, Department of Computer Science, 1991.

[17] Z. Manna and R. Waldinger. A deductive approach to program
synthesis. ACM Trans. Program. Lang. Syst., pages 90-121,
1980.

[18] Z. Manna and R. J. Waldinger. Toward automatic program
synthesis. Commun. ACM, pages 151-165, 1971.

[19] L. A. Meyerovich, M. E. Torok, E. Atkinson, and R. Bodik.

Parallel schedule synthesis for attribute grammars. PPoPP 13,
pages 187-196, 2013.

[20] D. Monniaux. A Quantifier Elimination Algorithm for Linear
Real Arithmetic. In LPAR "08, pages 243-257, 2008.

[21] L. D. Moura and N. Bjgrner. Z3: An efficient smt solver.
TACAS’08/ETAPS’08, pages 337-340, 2008.

[22] B. A. Myers, B. V. Zanden, and R. B. Dannenberg. Creating
graphical interactive application objects by demonstration.
UIST, pages 95-104, 1989.

[23] A. Pnueli and R. Rosner. On the synthesis of a reactive module.
POPL 89, pages 179-190, 1989.

[24] M. Sannella. Skyblue: a multi-way local propagation constraint
solver for user interface construction. UIST, pages 137-146,
1994.

[25] N. Sinha and R. Karim. Compiling mockups to flexible uis.
ESEC/FSE, pages 312-322, 2013.

[26] A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat. Combinatorial sketching for finite programs. In
ASPLOS ’06, pages 404415, 2006.

[27] S. Souders. How fast are we going now?
//www . stevesouders.com/blog/2013/05/09/
how-fast-are-we-going-now/, 2013.

http:

[28] B. Vander Zanden. An incremental algorithm for satisfying
hierarchies of multiway dataflow constraints. ACM Trans.
Program. Lang. Syst., pages 30-72, 1996.

[29] D. M. Warme. Spanning Trees in Hypergraphs with Applica-
tions to Steiner Trees. PhD thesis, 1998.

[30] R. H. C. Yap. Constraint processing by rina dechter. Theory
Pract. Log. Program., pages 755-757, 2004.

[31] C. Zeidler, C. Lutteroth, W. Sturzlinger, and G. Weber. The
auckland layout editor: An improved gui layout specification
process. UIST, pages 343-352, 2013.

http://www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/
http://www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/
http://www.stevesouders.com/blog/2013/05/09/how-fast-are-we-going-now/

	1 Introduction
	2 Background and Motivation
	3 Grammar Modular Synthesis
	3.1 Preliminaries
	3.2 Example
	3.3 Modular Synthesis
	3.4 Grammar-Modular Synthesis
	3.5 Completeness

	4 Evaluation
	5 Related Work
	6 Conclusion

