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Abstract

Counting and Correlation Decay in Spin Systems

by

Piyush Srivastava

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alistair Sinclair, Chair

Spin systems originated in statistical physics as tools for modeling phase transitions in mag-

nets. However, they have since been used to model complex systems arising in several other

�elds of study (e.g., in Bayesian inference and in the theory of social networks), so that various

computational problems associated with them have received much attention in the literature. A

lot of progress in the study of these problems has relied upon ideas from statistical physics; one

example of this interplay has been the discovery of tight connections between the computational

complexity of these problems and the phenomenon of phase transitions that many spin systems

exhibit. Conversely, algorithmic ideas have also helped in the study of the phase transition

phenomenon.

This thesis presents two lines of work that �t into this theme. The �rst considers the ap-

proximation of the partition function, a pivotal quantity associated with spin systems. Here, we

obtain—in various settings—deterministic polynomial time algorithms for approximating the

partition function in the so called uniqueness regime, and thus strengthen the algorithmic side

of the tight correspondence between phase transitions and the computational complexity of the

partition function.

The second line of work is concerned with the complexity of exact computation of various

natural mean observables of spin systems, e.g., the magnetization in the Ising model. We relate

these questions to the location of the complex zeros of the partition function, which have been

studied in statistical physics because of their connections to the existence of phase transitions,

and have been the subject of various celebrated results (such as the Lee-Yang theorem and the

Heilmann-Lieb theorem). By proving a novel extension of the Lee-Yang theorem, we show that

the magnetization of the ferromagnetic Ising model is indeed as hard to compute as the partition

function (i.e., #P-hard). We also obtain similar results for the monomer-dimer model.
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Chapter 1

Introduction and preliminaries

Spin systems originated in statistical mechanics in the study of phase transitions in magnets [Isi25].

Since then, aside from their role in statistical mechanics, they have become important objects

of study in both probability theory and computer science, especially under the name of Markov
random �elds or graphical models. Research on various natural computational problems associated

with spin systems has therefore seen a rich interplay between fundamental notions arising in

these diverse �elds. The results in this thesis add to this line of work by giving two examples of

how tools developed in statistical mechanics for the study of phase transitions can be used to

study the computational complexity of counting problems.

In general, a spin system is a probability distribution over certain combinatorial structures

de�ned on a given graphG = (V,E). The distribution itself is de�ned in terms of local interactions,

in such a way that the marginal distribution on a subgraphH is independent of the distribution on

G−H given the state of the neighbors of H in G−H (this property motivates the name “Markov

random �eld”). Perhaps the simplest such model is the hard core model (more descriptively, the hard
core lattice gas with pair interaction [SS05]). Here the con�gurations are simply the independent

sets of the graph. The local interactions have two components, the �rst of which is of course

the constraint that the con�guration must never contain two adjacent vertices. The second is

given in terms of a positive real parameter λ called the vertex activity or fugacity, which models

the tendency of vertices to lie in an independent set. The spin system then assigns a weight
w(I) = λ|I| to each con�guration, which in turn de�nes the Gibbs measure

µ(I) ··=
1

Z
w(I),

where the normalization factor

Z = ZG(λ) ··=
∑

I: independent set of G

λ|I|

is called the partition function. The partition function turns out to be a quantity of much interest

for a variety of reasons. In computer science, the (exact) computation of the partition function is a

natural generalization of counting problems (e.g., setting λ = 1 turns the partition function of
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the hard core model into the number of independent sets). Indeed, the computation of partition

functions of various spin systems (also known as the problem of counting graph homomorphisms)

is one of the best understood classes of #P-hard problems (see, e.g., [CCL10]). Approximating

the partition function is of importance in its own right, in part due to its tight connections with

the problem of sampling from the Gibbs measure: for a wide class of problems (known as “self-

reducible” problems) the two problems are essentially equivalent [JVV86]. (The exact nature of

this equivalence depends upon technical conditions on the interactions and the kind of guarantees

required from the sampling and approximation algorithms, and is not important for the purposes

of the present discussion). The problem of approximating the partition function also turns out to

have very strong connections with the question of the existence of “long range” correlations in

the Gibbs measure: we will discuss these connections in greater detail below.

However, at an even more basic level, the partition function is a generating polynomial

for combinatorial structures, and hence encodes information about several natural observables
associated with these structures. For example, suppose we want to compute the average size 〈|I|〉
of an independent set sampled according to the Gibbs distribution. It is easy to verify that this can

be written in terms of the partition function and its derivative:

〈|I|〉 =
λ

Z(λ)

∂Z(λ)

∂λ
.

It is in fact a consequence of the de�nition of the Gibbs distribution that several natural physical

observables can be written in terms of the partition function and its derivatives, and this property of

the partition function is what makes it interesting in statistical physics. To explore this connection

further, we consider a more classical example, that of the Ising model [Isi25], a simple model for

magnetism that was the �rst spin system to be studied. Here, a magnetic material is modeled as

a graph whose vertices are magnetic domains, and whose edges represent interactions between

these domains. The con�gurations are assignments of “+” and “−” spins to the vertices; these

spins are thought of as the polarities of the domains. The local interactions are de�ned in terms of

a positive edge activity β and a positive vertex activity λ. We can represent the con�gurations as

function σ : V → {+,−}, and the weight w(σ) of a con�guration σ is given by

w(σ) = λp(σ)βd(σ), (1.1)

where p(σ) denotes the number of vertices assigned spin +, and d(σ) denotes the number of

edges e = {i, j} such that σ(i) 6= σ(j). The Gibbs measure and the partition function are de�ned

exactly as before:

Z = ZG(β, λ) ··=
∑

σ:V→{+,−}

w(σ); µ(σ) =
1

Z
w(σ).

Note that the distribution favors “disagreements” on edges when β > 1, in which case the model

is called anti-ferromagnetic; the opposite occurs in the ferromagnetic case β < 1. The parameter

λ models an “(external) magnetic �eld”: in the “positive �eld” setting (λ > 1), vertices prefer
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to be assigned the “+” spin, while in the “zero �eld” setting (λ = 1), the two spins are entirely

symmetric. The chief observable of interest in the Ising model is the magnetization p(σ), which is

the number of + spins in the con�guration. It is again easy to verify that the mean magnetization
M under the Gibbs distribution is given by

MG(β, λ) ··= 〈p〉 =
λ

Z(β, λ)

∂Z(β, λ)

∂λ
. (1.2)

Interestingly, although the approximate computation of the mean observables is an important

application of the approximate sampling algorithms described above, the determination of the

computational complexity of their exact computation has not been explored in much detail. In

contrast to the extensive results on the computational complexity of partition functions alluded to

above, no such results for mean observables were known.

In this thesis, we will consider the following two broad classes of problems:

1. Under what conditions can the partition function be e�ciently approximated?

2. Are mean observables such as those discussed above as hard to compute exactly as the

corresponding partition functions?

The two questions turn out to have connections with two very di�erent lines of work in the study

of phase transitions. We now describe these connections.

1.1 Correlation decay and approximation algorithms
The Gibbs measure of the hard core model shows an interesting phase transition on the d-ary

tree: there exists a criticial activity λc(d) ··= dd

(d−1)d+1 such that, when λ < λc(d), point-to-set

correlations in the Gibbs distribution decay exponentially with distance, while they do not decay

at all when λ > λc(d). More formally, suppose we consider the d-ary tree of depth `, and �x

all leaves to be occupied (respectively, unoccupied) by the independent set. Conditioned on this

�xing, the Gibbs measure induces a conditional probability p+(`) (respectively, p−(`)) of the root

being occupied. The phase transition manifests as follows: when λ < λc(d), we have

|p+(`)− p−(`)| = exp (−Θ(`)) ,

while when λ > λc(d),

|p+(`)− p−(`)| = Θ(1),

even in the limit ` →∞. This phase transition is referred to as the uniqueness phase transition,

for reasons described in Chapter 3. In a seminal paper, Weitz [Wei06] established a very strong

relationship between this phase transition and the complexity of approximating the partition

function of the hard core model: he showed that when λ < λc(d), there exists a fully polynomial

time approximation scheme (FPTAS) for the partition function of the hard core model on all

graphs of degree at most d + 1. This connection was further strengthened by Sly [Sly08] (see
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also [SS12, GGŠ
+

14]) who showed that an FPTAS for (d+ 1)-regular graphs for λ > λc(d) would

imply that NP=RP. Taken together, these results imply that the uniqueness phase transition on

the d-ary tree exactly determines the complexity of approximating the partition function of the

hard core model on graphs of degree at most d+ 1.

In the �rst part of this thesis (Chapters 2 to 4), we explore this connection between the

uniqueness phase transition on trees and the approximation of the partition function. After

some discussion of the background in Chapter 2, we give an analog of Weitz’s result for the anti-

ferromagnetic Ising model in Chapter 3, where we show that the uniqueness phase transition for the

anti-ferromagnetic Ising model on the d-ary tree also determines the complexity of approximating

the partition function of the model on graphs of degree at most d + 1. In Chapter 4, we then

extend Weitz’s methods beyond bounded degree graphs to graphs of bounded connective constant,
a strict superset of the class of bounded degree graphs. Our results in terms of the connective

constant also allow us to study decay of correlations on graphs in terms of correlation decay on

d-ary trees at a much �ner level than that allowed by considerations of only the maximum degree

of the graph.

1.2 Lee-Yang zeros and the complexity of mean observables
A more classical view in physics of a phase transition is as a discontinuity in the mean value of

an observable with respect to a model parameter. We will use the Ising model as our running

example to see what this view entails in terms of the properties of the partition function. We begin

by considering the free energy per unit volume [Sim93], which may be written as a normalized

logarithm of the partition function:

FG(β, λ) ··=
1

|V |
logZG(β, λ).

The use of the logarithm means that mean observables discussed above correspond directly to the

derivatives of the free energy, without any further normalization by the partition function. For

example, the (normalized) mean magnetization, which is simply the expected fraction of vertices

assigned the “+” spin, can be written simply as

1

|V |
MG(β, λ) = z

∂FG(β, z)

∂z

∣∣∣∣
z=λ

. (1.3)

Remark 1.1. The normalization by a factor of 1/|V | (corresponding to the size of the graph) is

necessary because as we shall soon see, we will need to consider limits of these observables on a

sequence of graphs of increasing size in order to relate them to the above view of phase transitions.

These limits, in turn, can be expected to exist only if we scale the observables by the size of the

graph.

Since observables correspond to derivatives of the free energy, while phase transitions corre-

spond to discontinuities of those observables, it follows that a phase transition in this formalism
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can be de�ned in terms of the analyticity of the free energy. In other words, if the free energy F (z)
is an analytic function for z ∈ D, then, by de�nition, the system cannot have a phase transition in

the region D of the parameter space. However, since the only physically interesting region of the

parameter space is β, λ > 0, and the free energy of any �nite graph is clearly an analytic function

when β, λ > 0, the above system cannot exhibit such a phase transition on a �nite graph. One

therefore needs to consider in�nite graphs to �nd examples of phase transitions.

In order to de�ne the free energy for such a graph, we take an increasing sequence of �nite

graphs Gn which approach the given graph “in the limit” as n→∞, and de�ne the free energy

FG(β, λ) of G as limn→∞ FGn(β, λ). Let us consider the example of the two-dimensional integer

lattice Z2
, where the natural choice is to take Gn to be squares of increasing side length centered

at the origin.
1

Phase transitions can indeed occur in this setting; in a celebrated paper [Ons44]

Onsager explicitly calculated the free energy (as a function of β) of the Ising model on Z2
in the

zero �eld case (λ = 1), and showed that there is a phase transition in the β parameter: the second

derivative of the free energy (with respect to β) has a singularity.

Following Onsager’s result, Yang and Lee [YL52] sought to identify regions where phase

transitions cannot occur. They proved the following general result, which relates the analyticity

of the free energy of an in�nite graph to the location of the complex zeros of partition functions

of �nite graphs. Their theorem essentially con�rms the intuition that non-analyticity of the free

energy, which is simply the logarithm of the partition function, can only result if the partition

function vanishes.

Theorem 1.1 (Yang and Lee [YL52]). Let the free energy FG(β, z) of an in�nite graph be de�ned
as the limit FG(β, z) = limn→∞ FGn(β, z), where Gn is a sequence of �nite graphs. Let S be
an open region in the complex plane in which the limit exists, and which is such that the partition
functions ZGn(β, z) do not vanish when z ∈ S. Then FG(β, z) is analytic in S. In particular, there
are no phase transitions on any open interval R of the positive real line contained inside S.

Theorem 1.1 provided an excellent physical motivation for the study of zeros of partition

functions. Its �rst application appeared in a subsequent paper of Lee and Yang [LY52] where they

proved the following striking result about the zeros of the partition function of the ferromagnetic

Ising model.

Theorem 1.2 (Lee and Yang [LY52]). LetG be any �nite graph, and let ZG(β, z) be the partition
function of the ferromagnetic Ising model on G with edge activity β ∈ (0, 1). Then, all zeros of
ZG(β, z) lie on the circle |z| = 1 in the complex plane.

Combining Theorem 1.2 with Theorem 1.1 immediately shows that the ferromagnetic Ising

model on Z2
exhibits no phase transitions except possibly at λ = 1 (since any open region of the

positive real line not containing the point λ = 1 is contained in an open region of the complex

plane not containing any partition function zeros).

1
Yang and Lee [YL52] showed that for integer lattices, the value FG(β, λ) calculated in this way does not depend

upon the sequence Gn (and their result also holds for more general classes of graphs).
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The Lee-Yang program for proving the absence of phase transitions has since been applied to

several other models, e.g., in papers by Asano [Asa70], Heilmann and Lieb [HL70, HL72], Suzuki

and Fisher [SF71] and Newman [New74]. Due to its connections with the stability theory of

polynomials, it has also been studied in its own right (see, e.g., papers by Ruelle [Rue10] and

Borcea and Brändén [BB09a]). In Part II of this thesis (Chapters 6 to 8), we give novel applications

of the Lee-Yang program by using results on the distinctness of zeros of the partition function to

prove #P-hardness results for mean observables in the ferromagnetic Ising and monomer-dimer

models. (The latter model is described in the next section.)

1.3 Other models
Both the models discussed above can be seen as a special case of general two-state spin sys-
tems [GJP03], which are parametrized by a (+,+) edge potential α1, a (−,−) edge potential α2,

and a vertex activity λ. Con�gurations σ : V → {+,−} are still assignments of “+” or “−” spins

to the systems, and the weights w(σ) are given by

w(σ) = λp(σ)α
e+(σ)
1 α

e−(σ)
2 ,

where e+(σ) (respectively, e−(σ)) denotes the number of edges with ‘+’ (respectively, ‘−’) spin on

both end-points, while p(σ) denotes the number of vertices with ‘+’ spin. The partition function

ZG(α1, α2, λ) and the mean magnetization MG(α1, α2, λ) are given by

ZG(α1, α2, λ) ··=
∑

σ:V→{+,−}

wS(σ);

MG(α1, α2, λ) := 〈p〉 =

∑
σ p(σ)wS(σ)

ZG(α1, α2, λ)
,

and the Gibbs measure is de�ned in terms of the weights exactly as above. The system is said to

be ferromagnetic when α1α2 > 1 and anti-ferromagnetic when α1α2 < 1. To see the relationship

with the nomenclature we used above for the Ising model, note that the Gibbs measure of the

Ising model with edge activity β can be obtained by setting α1 = α2 = 1/β in the above model.

The hard core model discussed above is also a special case, obtained by setting α1 = 0 and α2 = 1
(and is therefore anti-ferromagnetic).

Another well known model that we will consider, however, does not �t the above framework.

This is the monomer-dimer model [HL72], whose con�gurations are all matchings of a given graph

G = (V,E). For a speci�ed dimer activity γ > 0, the model assigns a weightw(M) = γ|M | to each

matching M of the graph. As before, the weights de�ne the Gibbs distribution µ(M) = 1
Z
w(M)

over matchings, where

Z = ZG(γ) ··=
∑

M : matching

w(M)

is the partition function. Again, the problem of computing the partition function is a natural

generalization of the problem of counting matchings, which corresponds to the special case γ = 1.
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Unlike the hard core and anti-ferromagnetic Ising models, the monomer-dimer model has the

interesting feature that it does not exhibit a uniqueness phase transition on the d-ary tree: the

correlations on the d-ary tree for this model always decay exponentially for �xed γ and d, though

the rate goes to 1 as either γ or d approach∞.

1.4 Notions of approximation
Since our main concern in much of this thesis will be designing approximation algorithms for

partition functions, we describe the notion of approximation that we will use. The algorithms

that we discuss will mostly be fully polynomial time approximation schemes (FPTAS). Formally,

given a positive quantity A(G) which is de�ned as a function on graphs, an algorithm A for

computing A(G) is an FPTAS if, given a graph G and an accuracy parameter ε > 0, it produces

in time poly (|G|, 1/ε) an estimate Â such that (1 − ε)A(G) ≤ Â ≤ (1 + ε)A(G). A related

notion is that of a fully polynomial time randomized approximation scheme (FPRAS). In this case,

the algorithm A is allowed to be randomized. Given an accuracy parameter ε > 0 and an error

parameter δ > 0, it is then required to produce with probability at least 1− δ an estimate Â with

the same guarantees as before in time poly (|G|, 1/ε, log(1/δ)).

1.5 Note on prior publication and collaboration
What is said here, may be found elsewhere. . .

– Mahābhārata (Canto 1: Ādi Parva)

The results in this thesis were derived in collaboration with other researchers and some have

already been published elsewhere. The discussion in Chapters 2 to 4 is based on joint work with

Alistair Sinclair and Mark Thurley [SST14], and with Alistair Sinclair, Daniel Štefankovič, and

Yitong Yin [SSY13,SSŠY14]. Chapters 6 to 8 are based on a paper with Alistair Sinclair [SS14]. The

alternative proof of Theorem 7.3 in Section 7.6 arose in joint work with Mario Szegedy. I express

my gratitude towards all my collaborators for allowing the inclusion of their co-authored work in

this thesis.
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Part I

Correlation decay and approximate
counting
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Chapter 2

Approximate counting via correlation
decay: the Weitz paradigm

In this chapter we describe Weitz’s framework [Wei06] for designing approximation algorithms

for the partition function of spin systems. The roots of the method go back to a beautiful result of

Godsil [God81] for the monomer-dimer model, which we will discuss �rst. The next chapter will

then give a simple example of Weitz’s method to the approximation of the partition function of the

anti-ferromagnetic Ising model on bounded degree graphs under an optimal range of parameters,

while the following chapter will be devoted to extending these techniques to graphs of bounded

connective constant, which form a strict superset of the class of bounded degree graphs.

2.1 From graphs to trees
Well known “self-reducibility” arguments (see, e.g., Section 2.3) imply that it is su�cient to obtain

an FPTAS for appropriate marginals of Gibbs distributions in order to obtain an FPTAS for the

partition function itself. Beautiful results of Godsil [God81] and Weitz [Wei06] show that the

computations of such marginals on general graphs can in turn be transferred to the computation

of a dynamic programming recurrence on the tree of self-avoiding walks of the graph. Before

describing these results and their possible algorithmic consequences, we set up some notation for

recurrences on trees.

For a vertex v in a tree T , we will denote by |v| the distance of v from the root of the tree.

Similarly, for a set S of vertices, δS ··= minv∈S |v|.

De�nition 2.1 (Cutset). Let T be any tree rooted at ρ. A cutset C is a set of vertices in T satisfying

the following two conditions:

1. Any path from ρ to a leaf v with |v| ≥ δC must pass through C .

2. The vertices in C form an antichain, i.e., for any vertices u and v in C , neither vertex is an

ancestor of the other in T .
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A trivial example of a cutset is the set L of all the leaves of T . Another example we will often

need is the set S` of all vertices at distance ` from ρ in T .

For a cutset C , we denote by T≤C the subtree of T obtained by removing the descendants of

vertices in C from T , and by T<C the subtree of T obtained by removing the vertices in C from

T≤C . Further, for a vertex u in T , we denote by Tu the subtree of T rooted at u, and by Tu,≤C and

Tu,<C the intersections of Tu with T≤C and T<C respectively.

De�nition 2.2 (Initial condition). An initial condition σ = (S, P ) is a set S of vertices in T
along with an assignment P : S → [0, b] of bounded positive values to vertices in S.

We are now ready to describe the tree recurrences. Given an initial condition σ = (S, P ) along

with a default value b0 for the leaves, a family of functions fd : [0, b]d → [0, b] for every positive

integer d ≥ 1, and a vertex u in T , we let Fu(σ) denote the value obtained at u by iterating the

tree recurrences f on the subtree Tu rooted at u under the initial condition σ. Formally, we de�ne

Fu(σ) = b0 when u 6∈ S is a leaf, and

Fu(σ) =


P (u) when u ∈ S,

fd (Fu1(σ), . . . , Fud(σ))
when u 6∈ S is of arity

d ≥ 1 and has children

u1, u2, . . . , ud.

(2.1)

2.1.1 The self-avoiding walk tree and associated recurrences
Given a vertex v in a graph G, one can de�ne a rooted tree TSAW (v,G) of self-avoiding walks

(called the self-avoiding walk tree, or SAW tree) starting at v, as follows: the root of the tree

represents the trivial self-avoiding walk that ends at v, and given any node u in the tree, its

children represent all possible self-avoiding walks than can be obtained by extending the self-

avoiding walk represented by u by exactly one step. The importance of the self-avoiding walk

tree for computation stems from the beautiful results of Godsil [God81] (for the monomer-dimer

model) and Weitz [Wei06] (for the hard core model and other two-spin systems) referred to above,

which allow the derivation of simple recurrences for the monomer probability pv(G) on general

graphs. We begin with the case of the monomer-dimer model.

2.1.1.1 Monomer-dimer model

Theorem 2.1 (Godsil [God81]). Let v be a vertex in a graph G, and consider the monomer-dimer
model with dimer activity γ > 0 on the graphs G and TSAW (v,G). We then have

pv(G) = pv(TSAW (v,G)).

The promised recurrence for pv(G) can now be derived using dynamic programming on the

tree TSAW (v,G). In particular, let T be any tree rooted at ρ, and let ρi, 1 ≤ i ≤ d be the children
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of ρ. Denoting by pi the monomer probability pρi(Tρi) at the root of the subtree Tρi , one can then

show that (see, e.g., [KK98])

pρ(T ) = fd,γ(p1, p2, . . . , pd) ··=
1

1 + γ
∑d

i=1 pi
. (2.2)

Remark 2.1. In what follows, we will often suppress the dependence of fd,γ on γ for convenience

of notation.

In terms of our notation for tree recurrences, we note that the actual computation of pρ(T )
corresponds to computing Fρ(1L), where the initial condition 1L assigns the value 1 to all vertices

in L, the cutset comprising all the leaves (and with the boundary value b0 set to 1), since the base

case of the recurrence comprises a single vertex which has monomer probability 1 by de�nition.

Note that the self-avoiding walk tree can be of exponential size, so that Godsil’s reduction does

not immediately yield an e�cient algorithm for computing pρ(G). In order to obtain an algorithm,

we would need to consider truncated versions of the recurrence, obtained by specifying initial

conditions on the cutset S` comprising all vertices at distance ` from ρ. Since fd,γ is monotonically

decreasing in each of its arguments, we have

Fρ(0`) ≤ pρ(T ) ≤ Fρ(1`) when ` is even, and

Fρ(0`) ≥ pρ(T ) ≥ Fρ(1`) when ` is odd.

(2.3)

Here, the initial condition 0` (respectively, 1`) assigns the value 0 (respectively, 1) to every vertex

in S`. Given these conditions, it is su�cient to show that the di�erence between Fρ(0`) and

Fρ(1`) decreases exponentially in ` in order to establish that truncated versions of the recurrence

converge to the true answer pρ(T ) exponentially fast in the “truncation length” `.

2.1.1.2 Hard core model

Weitz [Wei06] proved a reduction similar to that of Godsil for the hard core model. However,

in contrast to Godsil’s reduction for the monomer-dimer model Weitz’s reduction requires a

boundary condition to be applied to the self avoiding walk tree.

Theorem 2.2 (Weitz [Wei06]). Let v be a vertex in a graph G, and consider the hard core model
with vertex activity λ > 0 on the graphs G and TSAW (v,G). Then, there exists an e�ciently
computable boundary conditionW on TSAW (v,G) such that for any boundary condition σ on G,
we have

Rv(σ,G) = Rv(W ∪ σ, TSAW (v,G)), (2.4)

where (1) the boundary condition σ on the right hand side denotes the natural translation of the
boundary condition σ on G to TSAW (v,G), and (2)W ∪ σ is the boundary condition obtained by
�rst applying the boundary conditionW , and then σ (that is, σ overridesW on vertices on which σ
andW are both speci�ed and disagree).
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We will often refer to a self-avoiding walk tree with Weitz’s boundary condition as a “Weitz SAW

tree”.

Remark 2.2. Although we stated Weitz’s result for the special case of the hard core model, it

actually holds for any two-spin system. In fact, even the boundary conditionsW do not depend

upon the details of the interactions de�ning the spin system. In addition, Weitz’s construction

also allows for a signi�cant amount of freedom in the choice of the boundary conditionW . The

details of the construction itself are not important for our technical development at this stage, but

will turn out to be advantageous when we tackle the problem of establishing decay of correlations

for the hard core model on Z2
(see Section 4.5).

As in the case of the monomer-dimer model, the theorem allows the computation of Rv(σ,G)
using natural recurrences on the tree. Using the same notation as in the case of the monomer-dimer

model, we denote Rρi(σ, Tρi) as Ri. It is well known (see, e.g., [Wei06]) that

Rρ(σ, T ) = fd,λ(R1, R2, . . . , Rd) ··= λ
d∏
i=1

1

1 +Ri

. (2.5)

We now see that in terms of our notation for tree recurrences, the computation of Rρ(σ, T )
corresponds to computing Fρ(λL ∪ σ) (with the boundary value b0 for leaves set to λ), where the

initial condition λL∪σ assigns the value λ to all vertices in the set L of leaves, and then applies the

boundary condition σ (overriding previously assigned values). Note that the boundary condition

σ assigns Rv = ∞ for vertices v which are set to occupied by σ, and hence, strictly speaking,

violates the requirement that initial conditions should only assign bounded values. However, this

can be �xed easily by observing that an initial condition which assigns Rv =∞ is equivalent to

one which assigns Ru = 0 to the parent u of v. Thus, we may assume without loss of generality

that our initial conditions only assign values from the interval [0, λ].
Again, as in the case of the monomer-dimer model, we will need to work with truncated trees.

As before, we consider initial condition speci�ed on cutsets S` of vertices at distance ` from the

root ρ, and use the fact that fd,λ is monotonically decreasing in each of its arguments to see that

Fρ(0` ∪ σ) ≤ Rρ(σ, T ) ≤ Fρ(λ` ∪ σ) when ` is even, and

Fρ(0` ∪ σ) ≥ Rρ(σ, T ) ≥ Fρ(λ` ∪ σ) when ` is odd.

(2.6)

Here, the initial condition 0` ∪ σ (respectively, λ` ∪ σ) assigns the value 0 (respectively, λ) to

every vertex in S`, after which the boundary condition σ is applied, possibly overriding the earlier

assignments (from the previous discussion, we can assume that the e�ect of σ is limited o setting

some more vertices to 0). As before, it is then su�cient to show that the di�erence between

Fρ(0`∪σ) and Fρ(1`∪σ) decreases exponentially in ` in order to establish that truncated versions

of the recurrence converge to the true answer Rρ(σ, T ) exponentially fast in the “truncation

length” `.
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2.1.1.3 Anti-ferromagnetic Ising model

As discussed above, Weitz’s reduction in Theorem 2.2 works for any two spin system. We consider

here the case of the ant-ferromagnetic Ising model, which is developed in greater detail in the

next chapter. Let Rρ(σ, T ) denote the ratio between the probabilities that the root ρ of a tree

T is assigned spin “+” or “−” in a con�guration sampled according to the anti-ferromagnetic

Ising model with edge activity β and vertex activity λ. We then have the following analog of the

recurrence in eq. (2.5):

Rv = fd,β,λ(q1, q2, . . . , qd) ··= λ
d∏
i=1

Ri + β

βRi + 1
, (2.7)

where Ri denotes the corresponding ratios Rρi(σ, Ti) in the subtrees Ti rooted at the children ρi
of ρ. As in the case of the hard core model, the computation of Rρ(σ, T ) again corresponds to

computing Fρ(λL ∪ σ) (according to the recurrences de�ned in eq. (2.7)). Further, recall that for

the anti-ferromagnetic Ising model, we have β ≥ 1; so that fd,β,λ is monotonically decreasing in

each of its arguments, so that we again have

Fρ(0` ∪ σ) ≤ Rρ(σ, T ) ≤ Fρ(λ` ∪ σ) when ` is even, and

Fρ(0` ∪ σ) ≥ Rρ(σ, T ) ≥ Fρ(λ` ∪ σ) when ` is odd,

(2.8)

so that it will again be su�cient to show that the di�erence between Fρ(λ` ∪ σ) and Fρ(0` ∪ σ)
decreases exponentially in ` in order to obtain an algorithm for approximating Rρ(σ, T ).

2.2 Correlation decay on trees
In all three examples we considered above, we concluded that what needs to be established is an

exponential rate of decay (as a function of `) of the di�erence |Fρ(σ)− Fρ(τ)|, where σ and τ are

boundary conditions that di�er only at a distance ` from the root ρ. For various spin systems,

such a property has been studied extensively in the literature, and is referred to as strong spatial
mixing [MO94a, MO94b, Wei06]. For concreteness, we give a formal de�nition here for the hard

core model; the de�nitions for the anti-ferromagnetic Ising model and the monomer-dimer model

are exactly analogous. Our de�nition here closely follows the version used by Weitz [Wei06].

De�nition 2.3 (Strong Spatial Mixing). The hard core model with a �xed vertex activity λ > 0
is said to exhibit strong spatial mixing on a family F of graphs if for any graph G in F , any vertex

v in G, and any two boundary conditions σ and τ on G which di�er only at a distance of at least `
from v, we have

|Rv(σ,G)−Rv(τ,G)| = O(c`). (2.9)

for some �xed constant 0 ≤ c < 1, which is called the rate of strong spatial mixing.
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Thus, for all the above models our goal is to establish conditions under which strong spatial

mixing holds on the self-avoiding tree. Further, it is easy to see that for all these models, strong

spatial mixing is subgraph-monotone: i.e., if it holds for the in�nite d-ary tree, then it holds also

for the family of its subtrees, so that, in particular, it holds for the self-avoiding walk trees of

graphs of degree at most d+ 1.

For all three models, but specially for the hard core and the anti-ferromagnetic Ising models,

it turns out to be fruitful to study a weaker notion of decay of correlations called weak spatial
mixing on the in�nite d-ary tree. Unlike the case of strong spatial mixing, where an exponential

decay of the form given by eq. (2.9) is required to hold for pairs of boundary conditions only to

be the same at vertices that are at distance less than ` from the root, weak spatial mixing only

requires the condition in eq. (2.9) to hold for pairs of boundary conditions which only apply to

vertices in the cutset S` of vertices at distance ` from the root.

(a) Unstable �xed point: |f ′(x)| > 1 (b) Stable �xed point: |f ′(x)| < 1

Figure 2.1: Slope at �xed point and spatial mixing

The fact that all the recurrences we consider are monotone decreasing thus allows weak spatial

mixing on the in�nite d-ary tree to be expressed far more succinctly as∣∣f `d(0)− f `d(λ)
∣∣ = O(c`) for 0 ≤ c < 1, (2.10)

where fd(x) denotes fd(x, x, . . . , x), the natural univariate version of our multivariate recurrences

fd. Equation (2.10) naturally translates into a condition about the convergence of a �xed point

computation as follows. Since fd is a decreasing map from [0, λ] to itself, it has a unique �xed

point, and eq. (2.10) holds only if one can converge to the �xed point by simply iterating fd starting

at one of the two extremities of the interval. We are thus led to the following observation: a

necessary condition for weak spatial mixing (and hence strong spatial mixing) to hold on the d-ary

tree is that the unique �xed point x? of fd must be stable; i.e., we must have

|f ′d(x?)| < 1, (2.11)

and more generally, the best rate of strong spatial mixing we can expect on a d-ary tree is |f ′d(x?)|.
In the next two chapters, we give several examples where one can indeed exhibit strong optimal
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mixing with such an optimal rate. The �rst such result was by Weitz [Wei06], and concerned the

hard core model on bounded degree graphs. As discussed earlier, a consequence of such results is

an FPTAS for the partition function under the condition that weak spatial mixing holds on an

appropriate d-ary tree. As we shall see later, the latter results turn out to be optimal in several

important settings, in the sense that unless NP=RP, an FPTAS for the partition function cannot

exist when weak spatial mixing does not hold on the same tree [Sly10, SS12, GGŠ
+

14].

2.3 From marginals to the partition function
We conclude this chapter by recalling some standard arguments for translating approximation

algorithms for the marginal probabilities into approximation algorithms for the partition func-

tion (see, e.g, [Wei06,GK07]). We provide the calculations here for the case of the monomer-dimer

model, and refer to Weitz [Wei06] for similar calculations for the hard core model.

Let v1, v2, . . . , vn be any arbitrary ordering of the vertices of G. Since the monomer-dimer

partition function of the empty graph is 1, we then have

Z(G) =
n∏
i=1

Z (G− {v1, . . . , vi−1})
Z (G− {v1, . . . , vi})

=
n∏
i=1

1

pvi (G− {v1, . . . , vi−1})
. (2.12)

Suppose, we have an FPTAS for the probabilities pρ which runs in time t(n, 1/ε) and produces an

output p̂ such that pρ/(1 + ε) ≤ p̂ ≤ pρ. Now, given ε ≤ 1, we use the FPTAS in time t (n, 2n/ε)
to compute an approximation p̂i to the pvi (G− {v1, . . . , vi−1}). We then have for each i

1

pvi (G− {v1, . . . , vi−1})
≤ 1

p̂i
≤ 1 + ε/(2n)

pvi (G− {v1, . . . , vi−1})
.

By multiplying these estimates. we obtain an estimate Ẑ of the partition function which satis�es

Z(G) ≤ Ẑ ≤ Z(G)
(

1 +
ε

2n

)n
≤ Z(G)eε/2 ≤ Z(G)(1 + ε),

where we use the condition ε ≤ 1 in the last inequality. Thus, the total running time is

O (n · t (n, 2n/ε)), which is polynomial in n and 1/ε whenever t is. Thus, it is su�cient to

derive an FPTAS for the marginal probabilities in order to obtain an FPTAS for the partition

function.
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Chapter 3

Correlation decay on bounded degree
graphs

In this chapter, we apply the framework introduced in the previous chapter to study the anti-

ferromagnetic Ising model on bounded degree graphs: this is one of the simplest settings where

weak spatial mixing can be used to deduce strong spatial mixing, and hence an FPTAS. We start

with a concrete description of the threshold for weak spatial mixing of the anti-ferromagnetic

Ising model on the in�nite d-ary tree.

3.1 Weak spatial mixing for the anti-ferromagnetic Ising
model

We �rst recall the standard result that the anti-ferromagnetic Ising model exhibits a phase transition

with respect to weak spatial mixing on the d-ary tree. This phase transition is also referred to in

the mathematical physics literature as the uniqueness phase transition, for reasons that we now

describe. Recall that we de�ned the Gibbs measure for a �nite graph G = (V,E) in terms of

a collection of weights w(σ) over the 2|V | con�gurations. However, this construction is clearly

not valid for in�nite graphs such as the in�nite d-ary tree. For an in�nite graph G, we say that

a measure µ is a Gibbs measure if the marginal distribution under µ on any �nite subgraph H,

conditional on the con�guration on G\H, is given by the weights w(σ). (Here the spins in G\H
can be seen to act as a �xed boundary condition when determining the weights.) It is a well known

result in the statistical physics literature (see, for example, [Geo88]) that at least one such measure

µ can always be de�ned. However, for certain values of the parameters of the spin system there

may be multiple solutions for µ, in which case the Gibbs measure is said to be non-unique. On

the d-ary tree, weak spatial mixing is essentially the same as uniqueness: the only caveat being

that it is possible that uniqueness may hold even when the rate of decay in weak spatial mixing

is merely exponential but not polynomial. However, the latter phenomenon occurs only at the

boundary of the region of the parameters in which uniqueness holds, and we shall sidestep it by
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Figure 3.1: log λc(β, d) for d = 5 and d = 13. The curves intersect the 1/β-axis at β = 3
2

and

β = 7
6

respectively.

considering only the interior of the region. We then have the following results, which provide a

description of the uniqueness region.

Theorem3.1 (Existence of a critical activity [Geo88, p. 254]). Consider the anti-ferromagnetic
Ising model on an in�nite d-ary tree with edge activity β and vertex activity λ. If 1 ≤ β ≤ d+1

d−1

then the Gibbs measure is unique for all values of λ. If β > d+1
d−1

, then there exists a critical activity

λc(β, d) ≥ 1 such that the Gibbs measure is unique if and only if |log λ| ≥ log λc(β, d).

The next result characterizes the relationship between the behavior of tree recurrences fd and

the critical activity, and is basically a formalization of our informal discussion toward the end of

Chapter 2.

Theorem 3.2 ([Geo88]). For given values of β and λ, the in�nite d-ary tree has a unique Gibbs
measure if and only if the two-step recurrence function f ◦ f has a unique �xed point. In particular,
if the Gibbs measure is unique, and (β, λ) are not on the boundary of the uniqueness region, then
the unique �xed point x? of f satis�es

|f ′(x?)| < 1. (3.1)

Remark 3.1. In [Geo88], it is claimed (implicitly) on the basis of numerical simulations that

the condition (3.1) is also su�cient for uniqueness. To be precise, the expression for the critical

activity λc(β, d) given in [Geo88, p. 255] is exactly the same as that obtained by assuming that

(3.1) is also a su�cient condition for uniqueness. While we believe this fact to be folklore, we have

not been able to �nd a rigorous proof of it in the literature. With a slight abuse of terminology, we

will henceforth refer to the set of (β, λ) for which the �xed point x? satis�es |f ′(x?)| < 1 as the



CHAPTER 3. CORRELATION DECAY ON BOUNDED DEGREE GRAPHS 18

“uniqueness region”. We will justify this terminology later (see the Remark following the proof of

Theorem 3.8) by proving that condition (3.1) does indeed imply uniqueness.

As discussed earlier, the remaining obstacle in going from weak spatial mixing to strong spatial

mixing is the fact that strong spatial mixing requires an exponential decay of correlations to hold

under arbitrary boundary conditions. In particular, strong spatial mixing will follow if we can

show that there is a c < 1 such that for any two vectors x and y in the domain of fd, we have

|fd(x)− fd(y)| ≤ c · ‖x− y‖∞, (3.2)

which translates into the requirement that ‖∇fd(x)‖1 ≤ c everywhere in the domain. However,

weak spatial mixing guarantees this condition only at the point x? = (x?, x?, . . . , x?), where x? is

the unique �xed point of the (univariate) version of fd. The solution to this obstacle is to look at

recurrences for quantities other than just the occupation probabilities and occupation ratios. In

the next section, we formalize this idea in terms of the notion of a message, that was �rst used in

this context by Restrepo, Shin, Tetali, Vigoda and Yang [RST
+

13].

3.2 Messages for strong spatial mixing
De�nition 3.1 (Message). A message is a strictly increasing continuously di�erentiable function

φ : [0, b]→ R whose derivative is bounded away from 0 on its domain.

Note that, being strictly increasing, a message is invertible on its range. Moreover, the inverse

function φ−1
, which we will denote by ψ, is also a continuously di�erentiable function with

positive derivative.

Given a message φ and a set of recurrences {fd}d≥1 as described above, we de�ne the functions

fφd as

fφd (x1, x2, . . . , xd) ··= φ (fd (ψ(x1), ψ(x2), . . . , ψ(xd))) .

The above de�nition clearly extends to the univariate version of the recurrences as well. A simple

but important property of messages is that they do not change the derivative at the �xed point

of the recurrence, so that our discussion of weak spatial mixing in terms of the stability of the

�xed point remains valid even for arbitrary messages. We isolate this observation in the following

lemma.

Fact 3.3. For any message φ, the parameters (β, λ) are in the uniqueness region if and only if
|g′(p?)| < 1 at the unique �xed point p? of g = fφ.
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Proof. Notice that since φ is strictly increasing, and f has a unique �xed point x?, g = fφ also has

a unique �xed point p? = φ(x?). Now, we notice that g′(p?) = f ′(x?), because

g′(p?) = φ′(f(ψ(p?)))f ′(ψ(p?))ψ′(p?)

= φ′(f(x?))f ′(x?)
1

φ′(ψ(p?))

=
φ′(x?)

φ′(x?)
f ′(x?)

= f ′(x?),

where in the second line we used the facts that ψ(p?) = x? and ψ′(y) = 1
φ′(ψ(y))

, and in the third

line the fact that f(x?) = x?. Thus, (β, λ) are in the uniqueness region (as de�ned in the Remark

following Theorem 3.2) if and only if |g′(p?)| = |f ′(x?)| < 1.

Our strategy for showing strong spatial mixing is now to choose a message φ in such a way

that we can enforce

‖∇g(x)‖1 ≤ g′(p?), (3.3)

where g denotes the function fφd and p? is the unique �xed point of g. This will establish strong

spatial mixing via eq. (3.2). As a �rst step towards this goal, we will prove a univariate version of

eq. (3.3). Before proceeding further, we make a slight change in notation. We will assume in the

rest of this chapter that the recurrences fd are de�ned not for the occupation ratio Rv but for the

“inoccupation probability” qv , which is de�ned as the probability of a vertex being assigned to be

“−”. (Thus, Rv = 1−qv
qv

). This is tantamount to modifying the original fd using a transformation

x 7→ 1/(1 + x). This transformation can also be thought of a (very simple) example of a message,

and hence in light of Fact 3.3, all our discussions above pertaining to stability near the �xed point

remain equally valid for this new set of recurrences, which we now describe in detail. We �rst

de�ne the function

h(x) ,
1 + (β − 1)x

β − (β − 1)x
.

We can then write the recurrence as

fd(qv1 , qv2 , . . . , qvd) ,
1

1 + λ
∏d

i=1 h(qvi)
.

We will now prove that one can indeed choose a message which maximizes the slope at the �xed

point.

Theorem 3.4. Given d, β and λ, there exists a message φ and a constant c < 1, such that the tree
recurrence g = fφd for the quantity φ(pv) satis�es |g′(x)| ≤ c < 1 for all x in the domain of g,
whenever (β, λ) is in the uniqueness region for the d-ary tree.
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In light of Fact 3.3, the main technical challenge in the proof of the theorem is to come up with

a message φ such that the quantity |g′| is maximized at the unique �xed point of g = fφ. We now

proceed to construct this message. We �x constants

A = d(β2 − 1) + (1− β)2
and D =

√
A+ 4β −

√
A

2
√
A

,

and choose

φ(x) = log

(
x+D

1− x+D

)
.

Notice that D > 0, so φ is a continuously di�erentiable function with positive derivative on the

interval [0, 1]. Using this message we are able to prove the following lemma (recall that ψ denotes

φ−1
).

Lemma 3.5. Consider the anti-ferromagnetic Ising model on a d-ary tree with edge activity β and
vertex activity λ. Then, using the shorthand notations α and η for ψ(x) and f(ψ(x)) respectively,
we have

g′′(x) = (η − α)g′(x)ψ′(x)

× dβ(β2 − 1)(2β + Aαη + A(1− α)(1− η))

(β + α(1− α)(1− β)2)(β + Aη(1− η))(β + Aα(1− α))
. (3.4)

The proof of Lemma 3.5 is somewhat technical and is deferred to Section 3.3. Note that the

requirement that the derivative of the function g = fφd should have its maximum magnitude

at the unique �xed point of g does not immediately lead to a solution for φ, and thus some

educated guesswork is needed for �xing the functional form of φ. Our choice is guided by the

intuition that, by analogy with the zero �eld case, where it is well known that the simple message

φ(x) = log
(

x
1−x

)
is su�cient, a log ratio of probabilities shifted by an additive constant D to

account for the �eld should be appropriate. The choice of D is then determined by the above

requirement.

Given Lemma 3.5, we can now show that g indeed has its worst possible slope at its �xed

point.

Lemma 3.6. Let g = fφ, with the message φ de�ned above. Then |g′(x)| is maximized at the unique
positive �xed point of g.

Proof. We simply need to use the expression for g′′(x) de�ned in Lemma 3.5. It is easy to see

that, ignoring the factor (η − α), the rest of the right hand side of eq. (3.4) is negative: this is

because g is a decreasing function, while ψ, being the inverse of the increasing function φ(x), is

increasing. Also, we have β > 1 (in the anti-ferromagnetic case) and 0 ≤ α, η ≤ 1 (since they are

probabilities), so that the fractions appearing on the right hand side are positive.

Let x? be the unique �xed point of the strictly decreasing function g. From the above discussion,

it follows that the sign of g′′(x) is the opposite of the sign of η − α = f(ψ(x)) − ψ(x). Notice
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that η − α is strictly positive for x < x? and strictly negative for x > x?. This implies that g′(x)
is strictly decreasing for x < x? and strictly increasing for x > x?. Since g is strictly decreasing

this shows that the magnitude of g′ is maximized at x?.

Combining Lemma 3.6 with Fact 3.3, we immediately get Theorem 3.4. Lemma 3.6 further

implies that the constant c in the Theorem is |g′(x?)|, where x? is the unique �xed point of g; this

is what we sought in our earlier discussion. The remaining step in proving strong spatial mixing

is to show that the univariate case is indeed the worst case, which we do in the following lemma.

Lemma 3.7. Let η = ψ(g(x)). Let η̄ be the unique solution of ψ(g(η̄)) = η. Then ‖∇ (g(x)) ‖1 ≤
‖∇ (g(η̄, η̄, . . . , η̄)) ‖1 = |g′(η̄)|.

Proof. Set αi = ψ(xi) for i = 1, 2, . . . d. We then have

η =
1

1 + λ
∏d

i=1 h(αi)
=

1

1 + λh(ψ(η̄))d
. (3.5)

Recalling the de�nitions of the quantities A and D given just before Lemma 3.5, we can now write

‖∇ (G(x)) ‖1 as

‖∇ (G(x)) ‖1 =
dη(1− η)(β2 − 1)

β + Aη(1− η)

(
1 + (β2 − 1)

d∑
i=1

αi(1− αi)
β + (1− β)2αi(1− αi)

)
. (3.6)

For notational convenience, we de�ne the function J(x) , x(1−x)
β+(1−β)2x(1−x)

. Note that maximizing

the sum in (3.6) under the constraint (3.5) is the same as maximizing

∑d
i=1 J(αi) under the

constraint that

∏d
i=1 h(αi) = 1−η

λη
. Since h is positive and invertible, it is therefore su�cient to

show that the function K(x) , J(h−1(ex)) is concave in order to show that all αi’s are equal at a

maximum. We now show this by direct computation. After di�erentiating twice and simplifying,

we have

K ′′(x) = −e
−x(1 + e2x)β

(1− β2)2
< 0.

This shows that K is concave, and hence it follows that the sum in equation (3.6) is maximized

when all αi’s are equal. In conjunction with the condition that η = 1

1+
∏d

i=1 h(αi)
, this shows that

‖∇ (g(x)) ‖1 ≤ ‖∇ (g(η̄, η̄, . . . , η̄)) ‖1.

Since, by de�nition, we have g(x, x, ..., x) = g(x), we see that ‖∇ (g(η̄, η̄, . . . , η̄)) ‖1 = |g′(η̄)|.

Using Lemma 3.6 and the above lemma, we are now ready to prove our main theorems. The

�rst of these establishes the promised equivalence between weak and strong spatial mixing.

Theorem 3.8. For the anti-ferromagnetic Ising model with arbitrary �eld on the d-ary tree with
d ≥ 2, weak spatial mixing implies strong spatial mixing.



CHAPTER 3. CORRELATION DECAY ON BOUNDED DEGREE GRAPHS 22

Proof. Consider a setting of parameters β and λ such that the d-ary tree has weak spatial mixing.

Let x? be the unique �xed point of the function g. We will use only the property that the �xed point

satis�es the condition (3.1) of Theorem 3.2. By Theorem 3.4 we have ‖g′‖∞ = c < 1. By Lemma

3.7, this implies that for all x in the domain of the multivariate function g, we have ‖∇g(x)‖1 ≤ c.
Using the mean value theorem followed by Hölder’s inequality, we then have

|g(x)− g(y)| ≤ c‖x− y‖∞,

for all vectors x and y in the domain of G. As noted above, this is su�cient for strong spatial

mixing. We provide the details of the proof for completeness. Consider boundary conditions σ1

and σ2 on a set S which di�er only on a subset T which is at distance l from the root ρ of the

tree. Again, since both φ and φ−1
are continuously di�erentiable functions de�ned over compact

sets, they are Lipschitz continuous, say with parameters L1 and L2 respectively. We de�ne the

quantity qi as

qi , max
v:δ(ρ,v)=l−i

|φ(Fv(σ1))− φ(Fv(σ2))| .

Notice that q0 ≤ |φ(1)− φ(0)| ≤ L1. Also, since g is the tree recurrence for φ (pv), the above

condition on the gradient implies that qi+1 ≤ cqi for c < 1. Thus, we get strong spatial mixing

since

|Fρ(σ1)− Fρ(σ2)| ≤ L2ql ≤ L2c
lq0 ≤ L1L2c

l.

Remark 3.2. We can now justify our use of the term “uniqueness region” as described in the

Remark following Theorem 3.2. Notice that in the proof of Theorem 3.8 above, we used only

the fact that weak spatial mixing implies that (β, λ) is in the “uniqueness region” as de�ned in

the aforementioned Remark. Thus, we see that whenever (β, λ) is in the uniqueness region, we

have strong spatial mixing, and hence, in particular, uniqueness. As stated earlier, this provides a

rigorous proof of the claim in [Geo88] that the interior of the uniqueness region is equivalent to

the condition (3.1).

Finally we can prove the following algorithmic consequence.

Corollary 3.9. Let d ≥ 2. Consider an anti-ferromagnetic Ising model with parameters β and λ.
For β and λ in the interior of the uniqueness region of the d-ary tree, every graph of degree at most
d+ 1 exhibits strong spatial mixing. Moreover, for such β and λ, there is an FPTAS for the partition
function of the associated spin system on graphs of degree at most d+ 1.

Proof. As observed earlier, in order to obtain an FPTAS for the partition function of the associated

spin system, it is su�cient to give an FPTAS for approximating the occupation probability pρ of

a vertex ρ, under an arbitrary �xing of spin values for an arbitrary subset of vertices. Given a

vertex ρ in a graph G of maximum degree (d+ 1), we start by constructing Weitz’s self-avoiding

walk (SAW) tree rooted at ρ. For non-leaf vertices (apart from ρ) in this tree which do not have

d children, we can create dummy children (so as to make the arity of the vertex d) all of which
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independently have occupation probabilities of 1/2. It is easy to see that this does not change the

output of the tree recurrence at any vertex of the tree. As we saw in the proof of Theorem 3.8, we

have strong spatial mixing on this SAW tree whenever (β, λ) are in the uniqueness region of the

d-ary tree. The corollary now follows using Weitz’s reduction, since in order to obtain a (1± ε/n)
factor approximation to the qv, we can truncate the tree at a depth of O(log(n/ε), which takes

time polynomial in both n and 1/ε.

The range of validity of the FPTAS in Corollary 3.9 is optimal: it was proved by Sly and

Sun [SS12] that an FPTAS on (d + 1)-regular graphs for parameters (β, λ) that are not in the

uniqueness region of the d-ary tree will imply that NP = RP. As pointed out earlier, similar tight

connections between the complexity of approximating the partition function and the uniqueness

phase transition were �rst proved for the hard core model [Wei06,Sly10,SS12]. In the next chapter,

we go beyond the setting of bounded degree graphs, and extend the message approach discussed

in this chapter to the deal with graphs of bounded connective constant [MS96, Ham57]. The latter

class includes, for example, the class of graphs sampled from the Erdős–Rényi model G(n, d/n)
(for a constant d), which are of unbounded degree with high probability.

3.3 Proof of Lemma 3.5
We now provide the proof of Lemma 3.5. The proof involves a few somewhat lengthy derivative

computations, which we isolate in the following lemma. For ease of notation, we write fd as f .

Lemma 3.10. With the notation used in Lemma 3.5 above, we have

φ′′(x)

φ′(x)
=

A(2x− 1)

β + Ax(1− x)
; (3.7)

h′(x)

h(x)
=

β2 − 1

β + (1− β)2x(1− x)
; (3.8)

h′′(x)

h′(x)
=

2(β − 1)

β − (β − 1)x
; (3.9)

f ′(x) = −df(x)(1− f(x))
h′(x)

h(x)
; (3.10)

f ′′(x)

f ′(x)
=
f ′(x)(1− 2f(x))

f(x)(1− f(x))
+
h′′(x)

h′(x)
− h′(x)

h(x)
. (3.11)

Proof sketch. All of these identities are easily veri�ed by direct computation. In proving equation

(3.7), one needs to keep in mind the de�nition of the constant D.

Proof of Lemma 3.5. To ease notation, we will suppress the dependence of the quantities η and α
on x. Using the chain rule, we have

g′(x) =
φ′(η)

φ′(α)
f ′(α).
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Here, we used the fact that since ψ = φ−1
, ψ′(x) = 1

φ′(ψ(x))
. After taking the logarithm, and

noticing that the right hand side is more easily expressed as a function of α rather than of x, one

can write the second derivative of g as

1

ψ′(x)

g′′(x)

g′(x)
=
φ′′(η)

φ′(η)

dη

dα
− φ′′(α)

φ′(α)
+
f ′′(α)

f ′(α)
. (3.12)

We now consider each of the terms involved above. Recalling that η = f(α), and using

equations (3.10) and (3.11) to expand the �rst and last terms in equation (3.12) above, we get

1

ψ′(x)

g′′(x)

g′(x)
= T1 − T2, (3.13)

where T1 and T2 are de�ned as

T1 ,
h′′(α)

h′(α)
− h′(α)

h(α)
− φ′′(α)

φ′(α)
, and

T2 , d
h′(α)

h(α)

[
φ′′(η)

φ′(η)
η(1− η) + 1− 2η

]
.

Notice that all terms containing η are isolated in T2. We now consider each of the terms separately.

For T1, we have

h′′(α)

h′(α)
− h′(α)

h(α)
=

2(β − 1)

β − (β − 1)α
− β2 − 1

β + (1− β)2α(1− α)

=
(1− β)2(2α− 1)

β + (1− β)2α(1− α)
.

Here, we used equations (3.9) and (3.8) in the �rst line. Now using equation (3.7), we have

T1 =
(2α− 1) ((1− β)2 [β + Aα(1− α)]− A [β + (1− β)2α(1− α)])

(β + (1− β)2α(1− α)) (β + Aα(1− α))

=
β(2α− 1)((1− β)2 − A)

(β + (1− β)2α(1− α)) (β + Aα(1− α))

=
−dβ(2α− 1)

(β + Aα(1− α))

h′(α)

h(α)
.

Here, we use A = d(β2 − 1) + (1− β)2
, followed by equation (3.8) in the last line.

We now consider T2. Again using equation (3.7), we have

T2 = d
h′(α)

h(α)

[
A(2η − 1)η(1− η)

β + Aη(1− η)
− (2η − 1)

]
=
−dβ(2η − 1)

β + Aη(1− η)

h′(α)

h(α)
.



CHAPTER 3. CORRELATION DECAY ON BOUNDED DEGREE GRAPHS 25

Notice that modulo the
h′(α)
h(α)

factor, T1 and T2 have the same functional form as functions of α
and η respectively. In fact, the message φ is designed so as to make this possible. We can now

substitute these values into equation (3.13) to get

g′′(x) = dβg′(x)ψ′(x)
h′(α)

h(α)

[
2η − 1

β + Aη(1− η)
− 2α− 1

β + Aα(1− α)

]
= dβg′(x)ψ′(x)

h′(α)

h(α)

(η − α)(2β + A(αη + (1− α)(1− η)))

(β + Aα(1− α)) (β + Aη(1− η))

= (η − α)g′(x)ψ′(x)
dβ(β2 − 1)(2β + Aαη + A(1− α)(1− η))

(β + α(1− α)(1− β)2)(β + Aη(1− η))(β + Aα(1− α))
,

where in the last step we used equation (3.8).
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Chapter 4

Correlation decay and the connective
constant

The last chapter gave one example of the tight relationship between the uniqueness phase transition

on the in�nite d-ary tree to decay of correlations on graphs of degree at most d+1. We now extend

the techniques used there to show that these connections extend to the larger class of graphs of

connective constant at most d, which also includes some graphs of unbounded degree. The speci�c

models we will deal with in this chapter will be the hard core model and the monomer-dimer

model, but we will �rst set up a general framework which will apply to both these and other

models. We begin with a description of the connective constant.

4.1 The connective constant
The connective constant is a well studied notion of the average degree of a graph, which roughly

speaking, measures the growth of the number of self-avoiding walks in the graph as a function of

their length, and can in fact be quite accurately described as the average arity of the self-avoiding

walk tree of the graph. We now present the formal de�nitions.

De�nition 4.1 (Connective constant: in�nite graphs [MS96]). Let G = (V,E) be a locally

�nite in�nite graph. The connective constant ∆(G) of G is supv∈V lim sup`→∞N(v, `)1/`
.

Remark 4.1. The supremum over v in the de�nition is clearly not required for vertex-transitive

graphs such as Cartesian lattices. Further, in such graphs the lim sup can be replaced by a

limit [MS96].

The connective constant has been especially well studied for various in�nite regular lattices,

and rigorous upper and lower bounds on its value are known in several cases [MS96, Alm05]. It

is a, however, a open problem in most cases to determine its value exactly; an exception being

the hexagonal lattice H for which it was established to be

√
2 +
√

2 by Duminil-Copin and

Smirnov [DCS12]. Note that in general, the best upper bound one can put on the value of the
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connective constant of a lattice of maximum degree d+ 1 is d. However, for small degree regular

lattices such as Z2
andH, much better upper bounds can be derived.

For algorithmic applications, we will need a suitable version of the above de�nition for �nite

graphs. The following de�nition, which closely follows the de�nition for in�nite graphs given

above, �rst appeared in [SSY13].

De�nition 4.2 (Connective constant: �nite graphs [SSY13]). Let F be a family of �nite

graphs. The connective constant ofF is at most ∆ if there exist constants a and c such that for any

graph G = (V,E) in F and any vertex v in G, we have

∑`
i=1N(v, i) ≤ c∆`

for all ` ≥ a log |V |.

As before, it is easy to see that the connective constant of a graph of maximum degree d+ 1
is at most d. However, the connective constant can be much smaller than the maximum degree,

and in particular, can be bounded even for unbounded degree graphs. For example, though the

maximum degree of a graph drawn from the Erdős–Rényi model G (n, d/n) is Θ(log n/ log log n)
w.h.p, it is not hard to show that for any �xed ε > 0, the connective constant of such a graph is at

most d(1 + ε) w.h.p.

For both the hard core and monomer-dimer models, we will show that strong spatial mixing

with rate c on the in�nite d-ary tree implies the same rate of strong spatial mixing on graph

families of connective constant at most d. Our proofs will use the message framework discussed

in the last chapter, but we will need a more �ne-grained analysis of the step-wise decay than

that carried out through Lemmas 3.5 and 3.6 in the last chapter. We now proceed to describe this

general framework.

4.2 Decay of correlations on the SAW tree
In this section, we consider the general problem of proving decay of correlation results for the

abstract tree recurrences Fρ de�ned in eq. (2.1), and show how the analysis of the message

approach can be strengthened beyond that given in the last chapter. We will then instantiate our

framework with appropriately chosen messages for the monomer-dimer and the hard core models

in Sections 4.3 and 4.4.

We begin by �xing the boundary value b0 for the leaves in our recurrence framework, and

assume that the initial conditions specify values in the interval [0, b]. We assume that we have a

set of tree recurrences fd : [0, b]d → [0, b] for every positive integer d ≥ 1. The only constraints

we put on the recurrences in this section are the following (both of which are trivially satis�ed by

the recurrences for all the models we have considered).

Condition 4.1 (Consistency). We say that a set of recurrences {fd}d≥1, where fd is d-variate, are
consistent if they obey the following two conditions:

1. If x ∈ Rd is a permutation of y ∈ Rd, then fd(x) = fd(y).

2. If all but the �rst k co-ordinates of x ∈ Rd are 0, then fd(x) = fk(x1, x2, x3, . . . , xk).
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As before, given a message φ (and its inverse ψ), we de�ne fφd by

fφd (x1, x2, . . . , xd) ··= φ (fd (ψ(x1), ψ(x2), . . . , ψ(xd))) .

We then have the following simple consequence of the mean value theorem (a proof can be found

in Section 4.6).

Lemma 4.2 (Mean value theorem). Consider two vectors x and y in φ([0, B])d. Then there exists
a vector z ∈ [0,∞)d such that

∣∣∣fφd (x)− fφd (y)
∣∣∣ ≤ Φ (fd(z))

d∑
i=1

|yi − xi|
Φ(zi)

∣∣∣∣∂fd∂zi

∣∣∣∣ , (4.1)

where Φ := φ′ is the derivative of φ, and by a slight abuse of notation we denote by ∂fd
∂zi

the partial
derivative of fd(R1, R2, . . . , Rd) with respect to Ri evaluated atR = z.

So far our approach has been similar to that taken in the previous chapter (and indeed, in

several other papers [RST
+

13,SST14,LLY12,LLY13]) in that we use an appropriate message—along

with the estimate in Lemma 4.2—to argue that the “distance” between two input message vectors

x and y at the children of a vertex shrinks by a constant factor at each step of the recurrence.

However, in our analysis in the last chapter, we showed such a decay on some version of the `∞
norm of the “error” vector x− y: this was achieved by bounding the appropriate dual `1 norm

of the gradient of the recurrence (see, eq. (3.2) and Lemma 3.6). Our intuition is that in order

to achieve a bound in terms of a global quantity such as the connective constant, it should be

advantageous to use a more global measure of the error such as an `q norm for some q <∞.

In line with this plan, we will attempt to bound the right hand side of eq. (4.1) in terms of

‖x− y‖q for an appropriate value of q <∞ by maximizing the sum while keeping fd(z) �xed.

However, the convexity argument used in the proof of Lemma 3.6 in the last chapter, which

showed that the “worst” case of the error is obtained for the univariate version of the recurrence

fd, does not work when we look at more general norms of the error vector. (However, as shown in

Sinclair et al. [SSY13], a similar argument can be made to work also for the case q = 2, though this

restriction leads to sub-optimal results). In order to get past this limitation of only being allowed

certain �xed `q norms of the error vector, we will use a more �exible optimization than that used

in the last chapter and in [SSY13]. To do this, we will seek to establish the following property for

our messages (the exponent a will be the Hölder conjugate of the value of q that we eventually

use).

De�nition 4.3. Given a consistent family of recurrences {fd}d≥1, a message φ (with Φ ··= φ′) is

said to be symmetrizable with exponent a with respect to the family if it satis�es the following

two conditions:



CHAPTER 4. CORRELATION DECAY AND THE CONNECTIVE CONSTANT 29

1. Let D be the domain of the recurrence family. For every positive integer d and every real

B > 0 for which the program

max
d∑
i=1

(
1

Φ(xi)

∣∣∣∣∂fd∂xi

∣∣∣∣)a , where

fd(x) = B

xi ∈ D, 1 ≤ i ≤ d

is feasible, it also has a solution x in which all the non-zero entries of x are equal. (We

assume implicitly that 0 ∈ D.)

2. limxi→0+
1

Φ(xi)

∣∣∣∂fd∂xi

∣∣∣ = 0 for all d ≥ 1, and for any �xed values of the xj , j 6= i.

For symmetrizable messages, we will be able to bound the quantity |fφd (x)− fφd (y)| in terms

of ‖x− y‖q , where 1/a+ 1/q = 1, and our improved correlation decay bounds will be based on

the fact that symmetrizability can be shown to hold under a wider range of values of q than that

required by the concavity arguments we have hitherto discussed. Our bounds will be stated in

terms of the following notion of decay (as before, given a d-variate function fd and a scalar x, we

denote by fd(x) the quantity fd(x, x, . . . , x)).

.

De�nition 4.4 (Decay factor α). Let φ be a message with derivative Φ, and let a and q be positive

reals such that
1
a

+ 1
q

= 1. We de�ne the functions Ξφ,q(d, x) and ξφ,q(d) as follows:

Ξφ,q(d, x) ··=
1

d

(
Φ(fd(x)) |f ′d(x)|

Φ(x)

)q
;

ξφ,q(d) ··= sup
x≥0

Ξφ,q(d, x).

The decay factor α is then de�ned as

α ··= sup
d≥1

ξφ,q(d). (4.2)

Armed with the above de�nitions, we are now ready to prove Lemma 4.3, which provides the

requisite decay bound for one step of the tree recurrence. The main technical step in applying

this lemma is to �nd a, q as in the de�nition and a message φ symmetrizable with exponent a for

which the decay factor α is small; Lemma 4.4 below then shows how the decay factor comes into

play in proving exponential decay of correlations over the tree.

Lemma 4.3. Let φ be a message with derivative Φ, and let a and q be positive reals such that
1
a

+ 1
q

= 1. If φ is symmetrizable with exponent a, then for any two vectors x,y in φ([0, b])d, there
exists an integer k ≤ d such that∣∣∣fφd (x)− fφd (y)

∣∣∣q ≤ ξφ,q(k)‖x− y‖qq.
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Proof. We apply Lemma 4.2. Assuming z is as de�ned in that lemma, we have by Hölder’s

inequality

∣∣∣fφd (x)− fφd (y)
∣∣∣ ≤ Φ(fd(z))

d∑
i=1

|yi − xi|
Φ(zi)

∣∣∣∣∂fd∂zi

∣∣∣∣
≤ Φ(fd(z))

(
d∑
i=1

(
1

Φ(zi)

∣∣∣∣∂fd∂zi

∣∣∣∣)a
)1/a

‖x− y‖q.

Since φ is symmetrizable with exponent a, we can replace z in the above inequality with a vector z̃
all of whose non-zero entries are equal to some �xed real z̃. Let k ≤ d be the number of non-zero

entries in z̃. Using the consistency condition, we then get

∣∣∣fφd (x)− fφd (y)
∣∣∣ ≤ Φ(fk(z̃))

(
k∑
i=1

(
1

kΦ(z̃)
|f ′k(z̃)|

)a)1/a

‖x− y‖q

=
1

k1−1/a

Φ(fk(z̃)) |f ′k(z̃)|
Φ(z̃)

‖x− y‖q.

Raising both sides to the power q, and using
1
a

+ 1
q

= 1 and the de�nitions of the functions Ξ and

ξ, we get the claimed inequality.

Given a message φ satisfying the conditions of Lemma 4.3, we can easily prove the following

lemma on the propagation of errors in locally �nite in�nite trees. Recall that Fρ(σ) denotes the

value computed by the recurrence at the root ρ under an initial condition σ. The lemma quanti�es

the dependence of Fρ(σ) on initial conditions σ which are �xed everywhere except at some cutset

C , in terms of the distance of C from ρ.

Lemma 4.4. Let T be a �nite tree rooted at ρ. Let C be a cutset in T at distance at least 1 from the
root which does not contain any leaves, and let C ′ be the cutset consisting of the children of vertices
in C . Consider two arbitrary initial conditions σ and τ on T≤C′ which di�er only on C ′, and which
assign values from the interval [0, b]. Given a recurrence family {fd}d≥1 , let a and q be positive
reals such that 1

a
+ 1

q
= 1 and suppose φ is a message that is symmetrizable with exponent a. We

then have

|Fρ(σ)− Fρ(τ)|q ≤
(
M

L

)q∑
v∈C

α|v|,

where α is as de�ned in eq. (4.2), and L andM are de�ned as follows:

L ··= inf
x∈(0,b)

φ′(x); M ··= max
v∈C
|φ(Fv(σ))− φ(Fv(τ))| .

For a proof of this lemma, see Section 4.6. The next two sections are devoted to showing that

appropriately chosen messages �t the framework described above in such a way that the lemma

can be used to deduce optimal decay of correlation and algorithmic results.
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4.3 Application: The hard core model
Recall that the uniqueness phase transition of the hard core model on the in�nite d-ary tree is

easily described: there exists a critical activity λc(d) ··= dd

(d−1)d+1 such that uniqueness of the Gibbs

measure (and weak spatial mixing) holds when λ < λc(d), but not when λ > λc(d). As discussed

above, Weitz [Wei06] showed that λ < λc(d) also implies strong spatial mixing on the d-ary tree,

and gave a beautiful argument to exploit this to design an FPTAS for the partition function on

graphs of degree at most d+ 1 whenever λ < λc(d) holds. This range of applicability was later

proved to be optimal by Sly [Sly10] (see also [SS12, GGŠ
+

14]), who showed that an FPTAS for

(d+ 1)-regular graphs when λ > λc(d) would imply that NP = RP. We now apply the framework

in Section 4.2 to extend Weitz’s result to graphs of bounded connective constant.

Theorem 4.5. Let G be a family of �nite graphs of connective constant at most ∆, and let λ be such
that λ < λc(∆). Then there is an FPTAS for the partition function of the hard core model with vertex
activity λ for all graphs in G. Further, even if G contains locally �nite in�nite graphs, the model
exhibits strong spatial mixing on all graphs in G.

Note that Sly’s result alluded to above also implies that the range of applicability of the above

result is optimal, since (∆ + 1)-regular graphs have connective constant at most ∆. Before

proceeding with the proof, we �rst note some consequences of the theorem. We �rst consider the

hard core model on graphs sampled from G(n, d/n).

Corollary 4.6. Let λ < λc(d). Then, there is an algorithm for approximating the partition function
of graphs drawn from G(n, d/n) which, with high probability over the random choice of the graph,
runs in polynomial time.

Proof of Corollary 4.6. Since λ < λc(d), there exists an ε > 0 such that λ < λc(d(1 + ε)). Fix

β > 0. In order to prove the corollary, we only need to show that graphs drawn from G(n, d/n)
have connective constant at most d(1 + ε) with probability at least 1− n−β .

Recall that N(v, `) is the number of self-avoiding walks of length ` starting at v. Suppose

` ≥ a log n, where a is a constant depending upon the parameters ε, β and dwhich will be speci�ed

later. We �rst observe that

E

[∑̀
i=1

N(v, i)

]
≤
∑̀
i=1

(
d

n

)i
ni ≤ d`

d

d− 1
,

and hence by Markov’s inequality, we have

∑`
i=1N(v, i) ≤ d` d

d−1
(1 + ε)` with probability at least

1 − (1 + ε)−`. By choosing a such that a log(1 + ε) ≥ β + 2, we see that this probability is at

least 1− n−(β+2)
. By taking a union bound over all ` with a log n ≤ ` ≤ n and over all vertices v,

we see that the connective constant ∆ is at most d(1 + ε) with probability at least 1− n−β . We

therefore see that with probability at least 1− n−β , the conditions of Theorem 4.5 are satis�ed.

This completes the proof.
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Max. Previous SSM bound Connective Constant Our SSM bound

Lattice degree λ ∆ λ

T 6 0.762 [Wei06] 4.251 419 [Alm05] 0.961

H 3 4.0 [Wei06] 1.847 760 [DCS12] 4.976

Z2 4 2.48 [VVY13] 2.679 193 [PT] 2.082 (2.538
?
)

Z3 6 0.762 [Wei06] 4.7387 [PT] 0.822

Z4 8 0.490 [Wei06] 6.8040 [PT] 0.508

Z5 10 0.360 [Wei06] 8.8602 [PT] 0.367

Z6 12 0.285 [Wei06] 10.8886 [Wei] 0.288

?
See Section 4.5 for a description of how this improved bound is obtained.

Table 4.1: Strong spatial mixing bounds for various lattices. (ZD is the D-dimensional Cartesian

lattice; T and H denote the triangular and honeycomb lattices respectively.)

The second consequence is to the study of conditions under which strong spatial mixing holds

on regular lattices. In Table 4.1, we show the best known upper bound for the connective constant

and the strong spatial mixing (SSM) bounds we obtain using these values in Theorem 4.5. In the

table, a value α in the “λ” column means that SSM is shown to hold for the appropriate lattice

whenever λ ≤ α. As expected, improvements over results obtained using Weitz’s bound in terms

of the maximum degree are the most pronounced for lattices with smaller maximum degree.

The table shows that except in the case of the 2D integer lattice Z2
, our general result immedi-

ately gives improvements on the best known SSM bounds for all lattices using only previously

known estimates of the connective constant. Not unexpectedly, our bound for Z2
using the

connective constant as a black-box still improves upon Weitz’s bound but falls short of the bounds

obtained by Restrepo et al. [RST
+

13] and Vera et al. [VVY13] using numerically intensive methods

tailored to this special case. However, any improvement in the bound on the connective constant

would immediately yield an improvement in the SSM bound obtained using Theorem 4.5. In

Section 4.5, we will use a tighter analysis of the connective constant of a suitably constructed

self-avoiding walk tree of Z2
to show that SSM holds on this lattice whenever λ < 2.538, which

improves upon the specialized bound λ < 2.48, obtained in et al. [VVY13, RST
+

13].

We now proceed with the proofs. As before, the �rst step is to choose a message, and in this

case we choose a message that has been used before [LLY13]:

φ(x) ··= sinh−1
(√

x
)

, so that Φ(x) ··= φ′(x) =
1

2
√
x(1 + x)

. (4.3)

Notice that φ is a strictly increasing, continuously di�erentiable function on (0,∞), and also

satis�es the technical condition that the derivative Φ be bounded away from zero on any �nite

interval, as required in the de�nition of a message. The �rst important technical step is to verify

that this message �ts our framework:
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Lemma 4.7. For any a ≥ 2, the message φ as de�ned in eq. (4.3) is symmetrizable with exponent a
with respect to the tree recurrence {fd,λ}d≥1 of the hard core model.

The proof of the above lemma is quite technical and is deferred to Section 4.7.2. As discussed

above, the crucial advantage of the notion of symmetrizability is the �exibility it allows in the

choice of exponent a. The decay factor α in Lemma 4.4 which governs the rate of decay in the

tree recurrences depends upon the choice of the exponent, and as we now show, it is possible to

obtain an optimal decay rate by choosing an appropriate exponent satisfying Lemma 4.7.

Our choice of a and q will depend upon the vertex activity λ, and to clarify this dependence,

we �rst de�ne the quantity ∆c ··= ∆c(λ) as the unique solution of λc(t) = λ (the existence and

uniqueness of ∆c follows from the well known fact that λc is a strictly decreasing function and

maps the interval (1,∞) onto (0,∞)). Our choice of a and q will then enforce the following

conditions:

1. a ≥ 2, so that that φ is symmetrizable with exponent a and hence Lemma 4.4 is applicable;

and

2. for all d > 0, ξφ,q(d) ≤ 1
∆c

, so that we get su�cient stepwise decay when Lemma 4.4 is

applied.

The second condition is the key to making the proof work, and in order to enforce it we will need

to analyze the function ξφ,q(d) in some detail. We begin with the following simple lemma, which

shows how to perform one of the maximizations needed in the de�nition of the decay factor α. In

what follows, we drop the subscript φ for simplicity of notation.

Lemma 4.8. Consider the hard core model with any �xed vertex activity λ > 0. For any q ≥ 1 and
with φ as de�ned in eq. (4.3), we have ξq(d) = Ξq(d, x̃λ(d)), where x̃λ(d) is the unique solution to

dx̃λ(d) = 1 + fd,λ(x̃λ(d)). (4.4)

Proof. Plugging in Φ from eq. (4.3) in the de�nition of Ξ, we get

Ξq(d, x) = dq−1

(
x

1 + x

fd,λ(x)

1 + fd,λ(x)

)q
.

Taking the partial derivative with respect to the second argument, we get

Ξ(0,1)
q (d, x) =

qΞq(d, x)

2x(1 + x) (1 + fd,λ(x))
[1 + fd,λ(x)− dx] .

For �xed d, the quantity outside the square brackets is always positive, while the expression inside

the square brackets is strictly decreasing in x. Thus, any zero of the expression in the brackets

will be a unique maximum of Ξq . The fact that such a zero exists follows by noting that the partial

derivative is positive at x = 0 and negative as x→∞. Thus, Ξq(d, x) is maximized at x̃λ(d) as

de�ned above, and hence ξq(d) = Ξq(d, x̃λ(d)), as claimed.
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We now choose a and q as follows:

1

q
= 1− ∆c − 1

2
log

(
1 +

1

∆c − 1

)
;

1

a
= 1− 1

q
. (4.5)

Note that since log(1 + y) ≤ y for all y ≥ 0, we get that q ≤ 2 (and hence a ≥ 2) by using

y = 1
∆c−1

, and noting that ∆c > 1. Thus, the �rst condition above is already satis�ed. The values

above are chosen to make sure that the second condition is satis�ed as well, as we prove in the

next lemma. Now that the exponents a and q are �xed, we de�ne the function νλ(d) as follows in

order to emphasize dependence upon λ:

νλ(d) ··= ξq(d).

Lemma 4.9. Fix λ > 0 and let ∆c(λ) > 1 be the unique solution to λc(t) = λ. The function
νλ : R+ → R+ is maximized at d = ∆c ··= ∆c(λ). Further,

νλ(∆c(λ)) =
1

∆c(λ)
.

The proof of the above lemma is somewhat technical, and is deferred to Section 4.7.1. The

lemma shows that when λ < λc(∆), the decay factor α < 1
∆

. As we observed above, the main

ingredient in the proof is the speci�c choice of the exponent a in eq. (4.5), which in turn is allowed

only because of the �exibility in the choice of a allowed by Lemma 4.7.

Given the estimate on the decay factor in the above lemma, the proof of Theorem 4.5 requires

only some standard arguments. However, we describe the steps in detail for future reference.

Proof of Theorem 4.5. Let F be any family of �nite or in�nite graphs with connective constant

∆. We prove the result for any �xed λ such that λ < λc(∆). For such λ, we have ∆c(λ) > ∆
(since λc is a decreasing function). Using Lemma 4.9 we then see that there is an ε > 0 such that

νλ(d)∆ ≤ 1− ε for all d > 0.

We �rst prove that the hard core model with these parameters exhibits strong spatial mixing

on this family of graphs. Let G be any graph from F , v any vertex in G, and consider any

boundary conditions σ and τ on G which di�er only at a distance of at least ` from v. We consider

the Weitz self-avoiding walk tree TSAW (v,G) rooted at v. As before, we denote again by σ
(respectively, τ ) the translation of the boundary condition σ (respectively, τ) on G to TSAW (v,G).

From Weitz’s theorem, we then have that Rv(σ,G) = Rv(W ∪ σ, TSAW (v,G)) (respectively,

Rv(τ,G) = Rv(W ∪ τ, TSAW (v,G))).

Consider �rst the case where G is in�nite. Let C` denote the cutset in TSAW (v,G) consisting

of all vertices at distance ` from v. Since G has connective constant at most ∆, it follows that for `
large enough, we have |C`| ≤ ∆`(1−ε/2)−`. Further, in the notation of Lemma 4.4, νλ(d)∆ = 1−ε
implies that the decay factor α (de�ned in eq. (4.2)) is at most (1− ε)/∆. We now apply Lemma 4.4.

We �rst observe that given our message φ, we can bound the quantities L and M in the lemma as

L =
1

2
√
λ(1 + λ)

and M = sinh−1(
√
λ).
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The bounds on L and M follows from the fact that the values of the occupation ratio computed at

any internal node of the tree lie in the range [0, λ]. Setting c0 = (L/M)q, we can the apply the

lemma to get

|Rv(σ,G)−Rv(τ,G)|q = |Rv(W ∪ σ, TSAW (v,G))−Rv(W ∪ τ, TSAW (v,G))|q

≤ c0

∑
u∈C`

(
1− ε

∆

)`
≤ c0

(
1− ε

1− ε/2

)`
, using |C`| ≤ ∆`(1− ε/2)−`,

which establishes strong spatial mixing in G, since 1− ε < 1− ε/2.

We now consider the case when F is a family of �nite graphs, and G is a graph from F of

n vertices. Since the connective constant of the family is ∆, there exist constants a and c (not

depending upon G) such that for ` ≥ a log n,

∑`
i=1 N(v, `) ≤ c∆`

. We now proceed with the

same argument as in the in�nite case, but choosing ` ≥ a log n. The cutset C` is again chosen to

be the set of all vertices at distance ` from v in TSAW (v,G), so that |C`| ≤ c∆`
. As before, we

then have for ` > a log n,

|Rv(σ,G)−Rv(τ,G)|q = |Rv(W ∪ σ, TSAW (v,G))−Rv(W ∪ τ, TSAW (v,G))|q

≤ c0

∑
u∈C`

(
1− ε

∆

)`
≤ c · c0 (1− ε)` , using |C`| ≤ c∆`

, (4.6)

which establishes the requisite strong spatial mixing bound.

In order to prove the algorithmic part, we �rst recall that an FPTAS for the “non-occupation”

probabilities 1− pv under arbitrary boundary conditions is su�cient to derive an FPTAS for the

partition function. We further note that if the vertex v is not already �xed by a boundary condition,

then 1 − pv = 1
1+Rv

≥ 1
1+λ

, since Rv lies in the interval [0, λ] for any such vertex. Hence, an

additive approximation to Rv with error µ implies a multiplicative approximation to 1− pv within

a factor of 1± µ(1 + λ). Thus, an algorithm that produces in time polynomial in n and 1/µ an

additive approximation to Rv with error at most µ immediately gives an FPTAS for 1− pv, and

hence, by Weitz’s observation, also for the partition function. To derive such an algorithm, we

again use the tree TSAW (v,G) considered above. Suppose we require an additive approximation

with error at most µ to Rv(σ,G) = Rv(σ, TSAW (v,G)). We notice �rst that Rv = 0 if and only

if there is a neighbor of v that is �xed to be occupied in the boundary condition σ. In this case,

we simply return 0. Otherwise, we expand TSAW (v,G) up to depth ` for some ` ≥ a log n to be

speci�ed later. Notice that this subtree can be explored in time O
(∑`

i=1N(v, i)
)

which is O(∆`)

since the connective constant is at most ∆. We now consider two extreme boundary conditions σ+

and σ− on C`: in σ+ (respectively, σ−) all vertices in C` that are not already �xed by σ are �xed

to “occupied” (respectively, unoccupied). The form of the recurrence ensures that the true value
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Rv(σ) lies between the values Rv(σ+) and Rv(σ−). We compute the recurrence for both these

boundary conditions on the tree. The analysis leading to eq. (4.6) ensures that, since ` ≥ a log n,

we have

|Rv(σ+, G)−Rv(σ−, G)| ≤M1 exp(−M2`)

for some �xed positive constants M1 and M2. Now, assume without loss of generality that

Rv(σ+) ≥ Rv(σ−). By the preceding observations, we then have

Rv(σ) ≤ Rv(σ+) ≤ Rv(σ) +M1 exp(−M2`).

By choosing ` = a log n+O(1) +O(log(1/µ)), we get the required ±µ approximation. Further,

by the observation above, the algorithm runs in time O
(
∆`
)
, which is polynomial in n and 1/µ

as required.

4.4 Application: The monomer-dimer model
We now apply the framework of Section 4.2 to the monomer-dimer model. However, there are

two crucial di�erences from the hard core model. First, in the case of the hard core model, the

result in Theorem 4.5 is the best known even taking into account randomized algorithms based

on Markov chain Monte Carlo (MCMC). In fact, no MCMC based algorithms for approximating

the partition function of the hard core model have a range of applicability as wide as the results

of Weitz [Wei06] or Theorem 4.5. In sharp contrast, for the monomer-dimer model, Jerrum and

Sinclair [JS89] gave a randomized fully polynomial time approximation scheme (FPRAS) based on

MCMC for the partition function which, for a �xed value of the edge activity γ, is valid for all
graphs, without any restriction on the maximum degree. However, the best deterministic FPTAS

for the problem is due to Bayati, Gamarnik, Katz, Nair and Tetali [BGK
+

07], who gave an algorithm

which is polynomial time only on bounded degree graphs. Our goal in this section is to improve

this result to give an FPTAS for graphs with bounded connective constant.

The second di�erence is that unlike the hard core and the anti-ferromagnetic Ising models,

the monomer-dimer model does not show a phase transition with respect to weak spatial mixing

on the d-ary tree, i.e., weak spatial mixing holds for all values of γ at all arities d. However, the

rate of weak spatial mixing does approach one if any one of γ or d are taken to in�nity. In our

results, we will establish that weak spatial mixing on the d-ary tree with rate c implies the same

rate on all graphs of connective constant at most d. Using this, we will prove the following result.

Theorem 4.10. Let G be a family of graphs of connective constant at most ∆, and let γ > 0 be
any �xed edge activity. Then there is an FPTAS for the partition function of the monomer-dimer
model with edge activity γ for all graphs in G. More speci�cally, the running time of the FPTAS for
producing an (1± ε) factor approximation is (n/ε)O(

√
γ∆ log ∆).

As discussed above, the previous best deterministic approximation algorithm for the parti-

tion function of the monomer-dimer model was due to Bayati et al. [BGK
+

07], and ran in time

(n/ε)O(
√
γd log d)

for graphs of degree at most d+ 1. The above algorithm replaces the maximum
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degree constraint of Bayati et al. by a corresponding constraint on the connective constant,

without requiring any bounds on the maximum degree. In particular, for graphs such as G(n, d/n)
which have bounded connective constant and unbounded degree, our analysis yields a polynomial

time algorithm (for any �xed value of the edge activity γ) in contrast to the sub-exponential time

algorithm obtained by Bayati et al. [BGK
+

07]. Using an observation of Kahn and Kim [KK98],

Bayati et al. also pointed out that the

√
d factor in the exponent of their running time is optimal for

algorithms which are based on Weitz’s framework and which use only the fact that the maximum

degree of the graph is at most d + 1. A similar observation shows that the

√
γ∆ factor in the

exponent of our running time is optimal for algorithms in the Weitz framework which use bounds

on the connective constant; we will discuss this in more detail following the proof of Theorem 4.10.

Before proceeding with the proof, we again note that, exactly as in the case of the hard core

model, Theorem 4.10 implies an analog of Corollary 4.6 for graphs drawn from the Erdős–Rényi

model G(n, d/n). We now proceed with the proof. As in the case of the hard core model, the

�rst step is to choose an appropriate message. Unfortunately, unlike the case of the hard core

model where we could show that an already known message was su�cient, we need to �nd a new

message function in this case. We claim that the following message works:

φ(x) ··=
1

2
log

(
x

2− x

)
, so that Φ(x) ··= φ′(x) =

1

x(2− x)
. (4.7)

Note that φ is strictly increasing and continuously di�erentiable on the interval (0, 1], and its

derivative is bounded away from 0 on that interval. Thus, φ satis�es the conditions required in

the de�nition of a message (note that the bound b used in the de�nition is 1 in the case of the

monomer-dimer model). Now, in order to apply Lemma 4.4, we �rst study the symmetrizability of

φ in the following technical lemma.

Lemma 4.11. Fix r ∈ (1, 2]. The message φ as de�ned in eq. (4.7) is symmetrizable with exponent
r with respect to the tree recurrences {fd,γ}d≥1 of the monomer-dimer model.

We defer the proof of the above lemma to Section 4.8. As in the case of the hard core model,

we will need to make a careful choice of the exponent r in order to obtain an optimal decay factor.

We begin with a technical lemma which characterizes the behavior of the function ξ used in the

de�nition of the decay factor. For ease of notation, we drop the subscript φ from the notation for

ξ.

Lemma 4.12. Consider the monomer-dimer model with edge activity γ, and let φ be the message
chosen in (4.7). For any q > 1, we have ξq(d) = Ξq(d, p̃γ(d)), where p̃γ(d) satis�esΞ

(0,1)
q (d, p̃γ(d)) =

0 and is given by

p̃γ(d) ··=
√

1 + 4γd− 1

2γd
.

Proof. Plugging in Φ from eq. (4.7) in the de�nition of Ξ, we get

Ξq(d, x) = dq−1

(
γx(2− x)fd,γ(x)

2− fd,γ(x)

)q
= dq−1

(
γx(2− x)

1 + 2γdx

)q
, since fd,γ(x) =

1

1 + γdx
.
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Taking the partial derivative with respect to the second argument, we get

Ξ(0,1)
q (d, x) =

2qΞq(d, x)

x(2− x)(1 + 2γdx)

[
1− x− γdx2

]
.

For �xed d, and 0 ≤ x ≤ 1, the quantity outside the square brackets is always positive, while the

expression inside the square brackets is strictly decreasing in x. Thus, any zero of the expression

in the brackets in the interval [0, 1] will be a unique maximum of Ξq . By solving the quadratic, we

see that p̃γ(d) as de�ned above is such a solution. Thus, Ξq(d, x) is maximized at p̃γ(d) as de�ned

above, and hence ξq(d) = Ξq(d, p̃γ(d)).

Given the edge activity γ and an upper bound ∆ on the connective constant of the graph

family being considered, we now choose D > max(∆, 3/(4γ)). We claim that we can get the

required decay factor by choosing

1

r
= 1− 1√

1 + 4γD
;

1

q
= 1− 1

r
=

1√
1 + 4γD

. (4.8)

Note that the choice of D implies that 1 < r ≤ 2, so that φ is symmetrizable with respect to r.
The following lemma shows that this choice of r indeed gives us the required decay factor. As

in the case of the hard core model, we emphasize the dependence of the decay parameter on the

model parameters by setting

νγ(d) ··= ξq(d),where q is as chosen in eq. (4.8).

Lemma 4.13. Fix γ > 0 and D > 3/4γ, and let q be as chosen in (4.8). Then the function νγ :
R+ → R+ is maximized at d = D. Further, the decay factor α is given by

α = νγ(D) =
1

D

(
1− 2

1 +
√

1 + 4γD

)q
.

Proof. We consider the derivative of νγ(d) with respect to d. Recalling that νγ(d) = ξ(d) =
Ξ(d, p̃γ(d)) and using the chain rule, we have

ν ′γ(d) = Ξ(1,0)(d, p̃) + Ξ(0,1)(d, p̃)
dp̃

dd

= Ξ(1,0)(d, p̃), since Ξ(0,1)(d, p̃) = 0 by de�nition of p̃

=
Ξ(d, p̃)

d(1 + 2γdp̃)
[q − 1− 2γdp̃] =

Ξ(d, p̃)

d(1 + 2γdp̃)

[√
1 + 4γD −

√
1 + 4γd

]
, (4.9)

where in the last line we substitute the values p̃γ(d) = (
√

1 + 4γd− 1)/(2γd) from Lemma 4.12

and q =
√

1 + 4γD from eq. (4.8). Now, we note that in eq. (4.9) the quantity outside the square

brackets is always positive, while the quantity inside the square brackets is a strictly decreasing

function of d which is positive for d < D and negative for d > D. It follows that ν ′γ(d) has a

unique zero at d = D for d ≥ 0, and this zero is a global maximum of νγ .
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We are now ready to prove our main result for the monomer-dimer model, Theorem 4.10.

Given Lemmas 4.4 and 4.13, the proof needs some standard arguments similar to those used in the

proof of Theorem 4.5 for the hard core model in Section 4.3.

Proof of Theorem 4.10. Let F be any family of �nite graphs with connective constant at most ∆.

Given the vertex activity γ of the monomer-dimer model, we choose D = max(∆, 3/(4γ)). Using

Lemma 4.13, we then see that the decay factor α appearing in Lemma 4.4 can be chosen to be

α =
1

D

(
1− 2

1 +
√

1 + 4γD

)q
.

Now, let G be any graph (with n vertices) from F , and let v be a vertex in G. As observed in

Chapter 2, it is su�cient to construct an FPTAS for pv(G) in order to derive an FPTAS for the

partition function.

Consider now the self-avoiding walk tree TSAW (v,G) rooted at v (as de�ned in Section 2.1).

From Godsil’s theorem (Theorem 2.1), we know that pv(G) = pv(TSAW (v,G)). Let C` denote the

cutset inTSAW (v,G) consisting of all vertices at distance ` from v. SinceF has connective constant

at most ∆, there exist constants a and c such that if ` ≥ a log n, we have

∑`
i=1N(v, `) ≤ c∆`

.

We will now apply Lemma 4.4 with q as de�ned in eq. (4.8). We �rst observe that the quantities L
and M in the lemma can be taken to be

L = 1, and, M =
1

2
log(1 + 2γn),

since the degree of any vertex inG is at most n. Now, de�ning c0 ··= (M/L)q , and using |C`| ≤ c∆`

and D ≥ ∆, we have

|Fv(0`)− Fv(1`)|q ≤ c0

∑
u∈C`

α` ≤ c · c0 · (α∆)` , using |C`| ≤ c∆`
,

≤ c · c0 ·
(

1− 2

1 +
√

1 + 4γD

)q`
, using D ≥ ∆ after substituting for α.

(4.10)

Raising both sides to the power 1/q and substituting for c0 and q, we then have

|Fv(0`)− Fv(1`)| ≤
1

2
c1/
√

1+4γD · log(1 + 2γn) ·
(

1− 2

1 +
√

1 + 4γD

)`
. (4.11)

To analyze the running time, we note that in order to obtain a (1± ε) multiplicative approximation

to pv(G), it is su�cient to obtain a ±ε/(1 + γn) additive approximation; this is because pv(G) ≥
1/(1 + γn)) since the degree of each vertex in G is at most n. Now, as observed in Section 2.1.1,

pv(G) always lies between the quantities Fv(0`) and Fv(1`), so in order to obtain a ±ε/(1 + γn)
approximation, it is su�cient to choose ` ≥ a log n large enough so that the right hand side of
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eq. (4.11) is at most ε/(1 + γn). Denoting by β the quantity in the parenthesis on the right hand

side of eq. (4.11), we can ensure this by choosing

` ≥ 1

log(1/β)

[
log

1 + γn

ε
+ log log

(√
1 + 2γn

)
+

1√
1 + 4γD

log c

]
.

Further, given such an `, the running time of the algorithm isO(
∑`

i=1 N(v, `)) = O(∆`), since this

is the time it takes to expand the self-avoiding walk tree up to depth `. Noting that 1/(log(1/β)) =√
γ∆ + Θ(1), we obtain an algorithm running in time

((1 + γn)/ε)O(
√
γ∆·log ∆)

which provides a (1 ± ε) multiplicative approximation for pv(G). Recalling the arguments in

Section 2.3, we see that this yields an algorithm for approximating the partition function up to

a multiplicative factor of (1± ε) with the same asymptotic exponent in the running time. This

completes the proof.

Remark 4.2. Note that eq. (4.11) can be interpreted as showing that (when ∆ > 1/(4γ)), strong

spatial mixing holds with rate 1 − 2
1+
√

1+4γ∆
on graphs of connective constant at most ∆, and

the factor

√
γ∆ in the exponent of our runtime is a direct consequence of this fact (in particular,

strong spatial mixing at rate c translates into the exponent being proportional to log c). Recall that

Bayati et al. [BGK
+

07] obtained an algorithm with the same runtime but only for graphs with

maximum degree ∆ + 1 (which is a strict subset of the class of graphs with connective constant

∆). This was due to the fact that their analysis essentially amounted to proving that eq. (4.11)

holds for the special case of graphs of maximum degree ∆ + 1. Using an observation of Kahn

and Kim [KK98] that the rate of spatial mixing on the in�nite d-ary tree is 1− 1/Θ(
√
γ∆), they

concluded that such a runtime was the best possible for algorithms that use decay of correlations

in this direct fashion. We note here that since the in�nite d-ary tree also has connective constant

exactly d, this observation also implies that the rate of strong spatial mixing obtained in eq. (4.11)

is optimal for graphs of connective constant ∆ (in fact, the rate of strong spatial mixing on the

d-ary tree is exactly 1− 2
1+
√

1+4γd
).

We now conclude this chapter by providing the technical details omitted from the previous

sections.

4.5 Description of numerical results
Four more than hundred, multiplied by eight,
And then added to sixty-two thousand,
Approaches the circumference of a circle
With diameter twenty thousand.

–
¯
Aryabhat.a, Āryabhat. īya. (c. 500 CE)
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In this section, we describe the derivation of the numerical bounds in Table 4.1. As in [SSY13],

all of the bounds are direct applications of Theorem 4.5 using published upper bounds on the

connective constant for the appropriate graph (except for the starred bound of 2.538 for the case

of Z2
, which we discuss in greater detail below). The exact connective constant is not known for

the Cartesian lattices Z2,Z3,Z4,Z5
and Z6

, and the triangular lattice T, and we use the rigorous

upper and lower bounds available in the literature [MS96, Wei]. In contrast, for the honeycomb

lattice, Duminil-Copin and Smirnov [DCS12] rigorously established the connective constant to

be H is

√
2 +
√

2 in a celebrated breakthrough, and this is the bound we use for that lattice. In

order to apply Theorem 4.5 for a given lattice of connective constant at most ∆, we simply need

to compute λc(∆) = ∆∆

(∆−1)(∆+1) , and the monotonicity of λc guarantees that the lattice exhibits

strong spatial mixing as long as λ < λc(∆).

We now consider the special case of Z2
. As we pointed out in Section 4.3, any improvement in

the connective constant of a lattice (or that of the Weitz SAW tree corresponding to the lattice)

will immediately lead to an improvement in our bounds. In fact, as we discuss below, Weitz’s

construction allows for signi�cant freedom in the choice of the SAW tree. We show here that

using a tighter combinatorial analysis of the connective constant of a suitably chosen Weitz SAW

tree of Z2
, we can improve upon the bounds obtained by Restrepo et al. [RST

+
13] and Vera et

al. [VVY13] using sophistical methods tailored to the special case of Z2
. Our basic idea is to exploit

the fact that the Weitz SAW tree adds additional boundary conditions to the canonical SAW tree

of the lattice. Thus, it allows a strictly smaller number of self-avoiding walks than the canonical

SAW tree, and therefore can have a smaller connective constant than that of the lattice itself.

Further, as in [SSY13], the proof of Theorem 4.5 only uses the Weitz SAW tree, and hence the

bounds obtained there clearly hold if the connective constant of the Weitz SAW tree is used in

place of the connective constant of the lattice.

The freedom in the choice of the Weitz SAW tree—brie�y alluded to above—also o�ers the

opportunity to incorporate another tweak which can potentially increase the e�ect of the boundary

conditions on the connective constant. In Weitz’s construction, the boundary conditions on the

SAW tree are obtained in the following way (see Theorem 3.1 in [Wei06]). First, the neighbors of

each vertex are ordered in a completely arbitrary fashion: this ordering need not even be consistent

across vertices. Whenever a loop, say v0, v1, . . . , vl, v0 is encountered in the construction of the

SAW tree, the occurrence of v0 which closes the loop is added to the tree along with a boundary

condition which is determined by the ordering at v0: if the neighbor v1 (which “started” the

loop) happens to be smaller than vl (the last vertex before the loop is discovered) in the ordering,

then the last copy of v0 appears in the tree �xed as “occupied”, while otherwise, it appears as

“unoccupied”.

The orderings at the vertices need not even be �xed in advance, and di�erent copies of the

vertex v appearing in the SAW tree can have di�erent orderings, as long as the ordering at a

vertex v in the tree is a function only of the path from the root of the tree to v. We now specialize

our discussion to Z2
. The simplest such ordering is the “uniform ordering”, where we put an

ordering on the cardinal directions north, south, east and west, and order the neighbors at each

vertex in accordance with this ordering on the directions. This was the approach used by Restrepo
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et al. [RST
+

13].

However, it seems intuitively clear that it should be possible to eliminate more vertices in the

tree by allowing the ordering at a vertex v in the tree to depend upon the path taken from the

origin to v. We use a simple implementation of this idea by using a “relative ordering” which

depends only upon the last step of such a path. In particular, there are only three possible options

available at a vertex v in the tree (except the root): assuming the parent of v in the tree is u: the

�rst is to go straight, i.e., to proceed to the neighbor of v (viewed as a point in Z2
which lies in the

same direction as the vector v − u, where v and u are again viwed as points in Z2
). Analogously,

we can also turn left or right with respect to this direction. Our ordering simply stipulates that

straight > right > left.
To upper bound the connective constant of the Weitz SAW tree, we use the standard method

of �nite memory self-avoiding walks [MS96]—these are walks which are constrained only to not

have cycles of length up to some �nite length L. Clearly, the number of such walks of any given

length ` upper bounds N(v, `). In order to bring the boundary conditions on the Weitz SAW tree

into play, we further enforce the constraint that the walk is not allowed to make any moves which

will land it in a vertex �xed to be “unoccupied” by Weitz’s boundary conditions (note that a vertex

u can be �xed to be “unoccupied” also because one of its children is �xed to be “occupied”: the

independence set constraint forces u itself to be “unoccupied” in this case, and hence leads to

additional pruning of the tree by allowing the other children of u to be ignored). Such a walk can

be in one of a �nite number k (depending upon L) of states, such that the number of possible

moves it can make to state j while respecting the above constraints is some �nite number Mij .

The k × k matrix M = (Mij)i,j∈[k] is called the branching matrix [RST
+

13]. We therefore get

N(v, `) ≤ eT1M `1, where 1 denotes the all 1’s vector, and e1 denotes the co-ordinate vector for

the state of the zero-length walk.

Since the entries of M are non-negative, the Perron-Frobenius theorem implies that one of the

maximum magnitude eigenvalues of the matrix M is a positive real number γ. Using Gelfand’s

formula (which states that γ = lim`→∞ ‖M `‖1/`
, for any �xed matrix norm) with the `∞ norm to

get the last equality, we see that

lim sup
`→∞

N(v, `)1/` ≤ lim sup
`→∞

(eT1M
`1)1/` ≤ lim sup

`→∞
‖M `‖1/`

∞ = γ.

Hence, the largest real eigenvalue γ of M gives a bound on the connective constant of the Weitz

SAW tree.

Using the matrix M corresponding to walks in which cycles of length at most L = 26 are

avoided, we get that the connective constant of the Weitz SAW tree is at most 2.433 (we explicitly

construct the matrix M and then use Matlab to compute its largest eigenvalue). Using this bound

for ∆, and applying Theorem 4.5 as described above, we get the bound 2.529 for λ in the notation

of the table, which is better than the bounds obtained by Restrepo et al. [RST
+

13] and Vera et
al. [VVY13]. With additional computational optimizations we can go further and analyze self

avoiding walks avoiding cycles of length at most L = 30. The �rst optimization is merging

“isomorphic” states (this will decrease the number of states and hence the size of M signi�cantly,

allowing computation of the largest eigenvalue): formally, the state of a SAW will be a su�x of
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length s such that the Manhattan distance between the �nal point and the point s steps in the past

is less than L− s (note that the state of a vertex in the SAW tree can be determined from the state

of its parent and the last step), and two states are isomorphic if they have the same neighbors at

the next step of the walk. The second optimization is computing the largest eigenvalue using the

power method. For L = 30 we obtain that the connective constant of the Weitz SAW tree is at

most 2.429, which on applying Theorem 4.5 yields the bound 2.538 for λ, as quoted in Table 4.1.

4.6 Proofs omitted from Section 4.2
This section provides the proof of Lemmas 4.2 and 4.4, both of which require fairly standard

arguments.

Proof of Lemma 4.2. De�ne H(t) ··= fφd,λ(tx+ (1− t)y) for t ∈ [0, 1]. By the scalar mean value

theorem applied to H , we have

fφd,λ(x)− fφd,λ(y) = H(1)−H(0) = H ′(s), for some s ∈ [0, 1].

Let ψ denote the inverse of the message φ: the derivative of ψ is given by ψ′(y) = 1
Φ(ψ(y))

, where Φ

is the derivative of φ. We now de�ne the vector z by setting zi = ψ(sxi + (1− s)yi) for 1 ≤ i ≤ d.

We then have∣∣∣fφd,λ(x)− fφd,λ(y)
∣∣∣ = |H ′(s)| =

∣∣∣〈∇fφλ,d(sx+ (1− s)y),x− y
〉∣∣∣

= Φ(fd,λ(z))

∣∣∣∣∣
d∑
i=1

xi − yi
Φ(zi)

∂fd,λ
∂zi

∣∣∣∣∣ , using the chain rule

≤ Φ (fd,λ(z))
d∑
i=1

|yi − xi|
Φ(zi)

∣∣∣∣∂fd,λ∂zi

∣∣∣∣ , as claimed.

We recall that for simplicity, we are using here the somewhat non-standard notation
∂f
∂zi

for the

value of the partial derivative
∂f
∂Ri

at the pointR = z.

We now give the proof of Lemma 4.4.

Proof of Lemma 4.4. Recall that given a vertex v in T≤C , Tv is the subtree rooted at v and containing

all the descendants of v, and Fv(σ) is the value computed by the recurrence at the root v of Tv
under the initial condition σ restricted to Tv . We will denote by Cv the restriction of the cutset C
to Tv.

By induction on the structure of Tρ, we will now show that for any vertex v in Tρ which is at

a distance δv from ρ, and has arity dv, one has

|φ(Fv(σ))− φ(Fv(τ))|q ≤M q
∑
u∈Cv

α|u|−δv . (4.12)
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To see that this implies the claim of the lemma, we observe that since Fρ(σ) and Fρ(τ) are in

the interval [0, b], we have |Fv(σ) − Fv(τ)| ≤ 1
L
|φ(Fv(σ)) − φ(Fv(τ))|. Hence, taking v = ρ in

eq. (4.12), the claim of the lemma follows from the above observation.

We now proceed to prove eq. (4.12). The base case of the induction consists of vertices v which

are either of arity 0 or which are in C . In the �rst case (which includes the case where v is �xed

by both the initial conditions to the same value), we clearly have Fv(σ) = Fv(τ), and hence the

claim is trivially true. In the second case, we have Cv = {v}, and all the children of v must lie in

C ′. Thus, in this case, the claim is true by the de�nition of M .

We now proceed to the inductive case. Let v1, v2, . . . vdv be the children of v, which satisfy

eq. (4.12) by induction. In the remainder of the proof, we suppress the dependence of ξ on φ and

q. Applying Lemma 4.3 followed by the induction hypothesis, we then have for some positive

integer k ≤ dv

|φ(Rv(σ))− φ(Rv(τ))|q ≤ ξ(k)
dv∑
i=1

|φ(Rvi(σ))− φ(Rvi(τ))|q , using Lemma 4.3

≤M qξ(k)
dv∑
i=1

∑
u∈Cvi

α|u|−δvi , using the induction hypothesis

≤M q
∑
u∈Cv

α|u|−δv , using ξ(k) ≤ α and δvi = δv + 1.

This completes the induction.

4.7 Proofs omitted from Section 4.3

4.7.1 Maximum of νλ
In this section, we prove Lemma 4.9.

Proof of Lemma 4.9. We �rst prove that given λ, x̃λ(d) is a decreasing function of d. For ease of

notation, we suppress the dependence of x̃λ(d) on d and λ. From Lemma 4.8, we know that x̃ is

the unique positive solution of dx̃ = 1 + fd(x̃). Di�erentiating the equation with respect to d (and

denoting
dx̃
dd

by x̃′), we have

x̃+ dx̃′ = −fd(x̃)

[
dx̃′

1 + x̃
+ log(1 + x̃)

]
which in turn yields

x̃′ = −(1 + x̃) [fd(x̃) log(1 + x̃) + x̃]

d(1 + d)x̃
. (4.13)

Since x̃ ≥ 0, this shows that x̃ is a decreasing function of d.
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We now consider the derivative of νλ(d) with respect to d. Recalling that νλ(d) = ξ(d) =
Ξ(d, x̃λ(d)) and then using the chain rule, we have

ν ′λ(d) = Ξ(1,0)(d, x̃) + Ξ(0,1)(d, x̃)
dx̃

dd

= Ξ(1,0)(d, x̃), since Ξ(0,1)(d, x̃) = 0 by de�nition of x̃

= Ξ(d, x̃)

[
q − 1

d
− q log(1 + x̃)

2(1 + fd,λ(x̃))

]
=
qΞ(d, x̃)

d

[
1− 1

q
− log (1 + x̃)

2x̃

]
. (4.14)

Here, we use 1 + fd,λ(x̃) = dx̃ to get the last equality. We now note that the quantity inside the

square brackets is an increasing function of x̃, and hence a decreasing function of d. Since Ξ(d, x̃)
is positive, this implies that there can be at most one positive zero of νλ(d), and if such a zero

exists, it is the unique maximum of νλ(d).

We now complete the proof by showing that ν ′λ(d) = 0 for d = ∆c(λ). At such a d, we have

λ = λc(d) = dd

(d−1)d+1 . We then observe that x̃(d) = 1
d−1

, since

1 + fd(x̃) = 1 +
dd

(d− 1)d+1
· (d− 1)d

dd
=

d

d− 1
= dx̃.

As an aside, we note that this is not a coincidence. Indeed, when λ = λc(d), x̃ as de�ned above is

well known to be the unique �xed point of fd, and the potential function Φ was chosen in [LLY13]

in part to make sure that at the critical activity, the �xed point is also the maximizer of (an analog

of) Ξ(d, ·).

We now substitute the value of
1
q

and x̃ at d = ∆c to verify that

νλ(∆c) =
qΞ
(

∆c,
1

∆c−1

)
2∆c

[
(∆c − 1) log

(
1 +

1

∆c − 1

)
− (∆c − 1) log

(
1 +

1

∆c − 1

)]
= 0,

as claimed. Substituting these values of d and x̃, along with the earlier observation that f∆c(x̃) =
x̃ = 1

∆c−1
, into the de�nition of νλ, we have

νλ(∆c) = Ξ

(
∆c,

1

∆c − 1

)
= ∆q−1

c

(
x̃

1 + x̃

f∆c(x̃)

1 + f∆c(x̃)

)q/2
=

1

∆c

,

which completes the proof.



CHAPTER 4. CORRELATION DECAY AND THE CONNECTIVE CONSTANT 46

4.7.2 Symmetrizability of the message
In this section, we prove Lemma 4.7. We start with the following technical lemma.

Lemma 4.14. Let r ≥ 1, 0 < A < 1, γ(x) ··= (1 − x)r and g(x) ··= γ(Ax) + γ(A/x). Note that
g(x) = g(1/x), and g is well de�ned in the interval [A, 1/A]. Then all the maxima of the function
g in the interval [A, 1/A] lie in the set {1/A, 1, A}.

Before proving the lemma, we observe the following simple consequence. Consider 0 ≤
s1, s2 ≤ 1 such that s1s2 is constrained to be some �xed constant C < 1. Then, applying the

lemma with A =
√
C we see that γ(s1) + γ(s2) is maximized either when s1 = s2 or when one of

them is 1 and the other is C .

Proof of Lemma 4.14. Note that when r = 1, g(x) = 2−A(x+1/x), which is maximized at x = 1.

We therefore assume r > 1 in the following.

We consider the derivative g′(x) = Ar
[
(1− A/x)r−1 1

x2 − (1− Ax)r−1
]
. Note that g(x) =

g(1/x) and that g′(x) and g′(1/x) have opposite signs, so it is su�cient to study g in the range

[1, 1/A]. We now note that in the interior of the intervals of interest g′ always has the same sign

as

h(x) ··= Axt+1 − xt + x− A,

where t ··= r+1
r−1

> 1 for r > 1. We therefore only need to study the sign of h in the interval

I ··= [1, 1/A]. We note that h(1) = 0, and consider the derivatives of h.

h′(x) = A(t+ 1)xt − txt−1 + 1,

h′′(x) = t(t+ 1)xt−2

[
Ax− 1

r

]
.

Note that h′(1) = (t+ 1)[A− 1/r]. We now break the analysis into two cases.

Case 1: A ≥ 1/r. In this case, we have h′′(x) > 0 for x in the interior of the interval I , and

h′(1) ≥ 0. This shows that h′(x) > 0 for x in the interior of I , so that h is strictly increasing

in this interval. Since h(1) = 0, this shows that h (and hence g′) are positive in the interior

of I . Thus, g is maximized in I at x = 1/A.

Case 2: A < 1/r. We now have h′(1) < 0 and h′′(1) < 0. Further, de�ning x0 = 1
Ar

, we see that

h′′ is negative in [1, x0) and positive in (x0, 1/A] (and 0 at x0). Since h′(1) < 0, this shows

that h′ is negative in [1, x0], and hence can have no zeroes there. Further, we see that h′ is
strictly increasing in [x0, 1/A], and hence can have at most one zero x1 in [x0, 1/A].

If no such zero exists, then h′ is negative in I . In this case, we see that h (and hence g′) is

negative in the interior of I , and hence g is maximized at x = 1. We now consider the case

where there is a zero x1 of h′ in [x0, 1/A]. By the sign analysis of h′′, we know that h′ is

negative in [1, x1) and positive in (x1, 1]. We thus see that h is decreasing (and negative) in

(1, x1) and increasing in (x1, 1/A). It can therefore have at most one zero x2 in (x1, 1/A].
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If no such zero exists, then h (and hence g′) is negative in the interior of I , and hence g
is maximized at x = 1. If such a zero x2 exists in (x1, 1/A], then—because h is increasing

in (x1, 1/A) and negative in (1, x1]—h (and hence g′) is negative in (1, x2) and positive in

(x2, 1/A), which shows that g is maximized at either x = 1 or at x = 1/A.

We now prove Lemma 4.7.

Proof of Lemma 4.7. We �rst verify the second condition in the de�nition of symmetrizability:

lim
x→0+

1

(1 + x)Φ(x)
= lim

x→0+
2

√
x

1 + x
= 0.

We now recall the program used in the de�nition of symmetrizability, with the de�nitions of Φ
and fd substituted, and with r = a/2:

max
d∑
i=1

(
x

1 + x

)r
, where

λ
d∏
i=1

1

1 + xi
= B (4.15)

xi ≥ 0, 1 ≤ i ≤ d

Note that eq. (4.15) implies that xi ≤ λ/B − 1, so that the feasible set is compact. Thus, if the

feasible set is non-empty, there is at least one (�nite) optimal solution to the program. Let y be

such a solution. Suppose without loss of generality that the �rst k co-ordinates of y are non-zero

while the rest are 0. We claim that yi = yj 6= 0 for all 1 ≤ i ≤ j and yi = 0 for i > k.

To show this, we �rst de�ne another vector s by setting si = 1
1+xi

. Note that si = sj if and

only if xi = xj and si = 1 if and only if xi = 0. Note that the constraint in eq. (4.15) is equivalent

to

d∏
i=1

si = B/λ. (4.16)

Now suppose that there exist i 6= j such that yiyj 6= 0 and yi 6= yj . We then have si 6= sj and

0 < s1, s2 < 1. Now, since r = a/2 ≥ 1 when a ≥ 2, Lemma 4.14 implies that at least one of the

following two operations, performed while keeping the product sisj �xed (so that the constraints in

eqs. (4.15,4.16) are satis�ed), will increase the value of the sum γ(si)+γ(sj) =
(

yi
1+yi

)r
+
(

yj
1+yj

)r
:

1. Making si = sj , or

2. Making yi = 0 (so that si = 1).

Thus, if y does not have all its non-zero entries equal, we can increase the value of the objective

function while maintaining all the constraints. This contradicts the fact that y is a maximum, and

completes the proof.
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4.8 Symmetrizability for the monomer-dimer model
In this section, we prove Lemma 4.11. As in the case of the hard core model, we begin with an

auxiliary technical lemma.

Lemma 4.15. Let r and a satisfy 1 < r ≤ 2 and 0 < a < 1 respectively. Consider the functions
γ(x) ··= xr(2− x)r and g(x) ··= γ(a− x) + γ(a+ x). Note that g is even and is well de�ned in the
interval [−A,A], where A ··= min(a, 1− a). Then all the maxima of the function g in the interval
[−A,A] lie in the set {−a, 0, a}.

The lemma has the following simple consequence. Let 0 ≤ s1, s2 ≤ 1 be such that (s1+s2)/2 is

constrained to be some �xed constant a ≤ 1. Then, applying the lemma with s1 = a−x, s2 = a+x,

we see that γ(s1) + γ(s2) is maximized either when s1 = s2 = a or when one of them is 0 and

the other is 2a (the second case can occur only when a ≤ 1/2).

Proof of Lemma 4.15. Since g is even, we only need to analyze it in the interval [0, A], and show

that restricted to this interval, its maxima lie in {0, a}.
We begin with an analysis of the third derivative of γ, which is given by

γ′′′(x) = −4r(r − 1)(1− x)(1− (1− x)2)r−2

[
3− (2r − 1)(1− x)2

1− (1− x)2

]
. (4.17)

Our �rst claim is that γ′′′ is strictly increasing in the interval [0, 1] when 1 < r ≤ 2. In the

case when r = 2, the last two factors in eq. (4.17) simplify to constants, so that γ′′′(x) =
−12r(r − 1)(1 − x), which is clearly strictly increasing. When 1 < r < 2, the easiest way to

prove the claim is to notice that each of the factors in the product on the right hand side of is a

strictly increasing non-negative function of y = 1−xwhen x ∈ [0, 1] (the fact that the second and

third factors are increasing and non-negative requires the condition that r < 2). Thus, because of

the negative sign, γ′′′ itself is a strictly decreasing function of y, and hence a strictly increasing
function of x in that interval.

We can now analyze the behavior of g in the interval [0, A]. We �rst show that when a > 1/2,

so that A = 1− a 6= a, g does not have a maximum at x = A when restricted to [0, A]. We will

achieve this by showing that when 1 > a > 1/2, g′(1 − a) < 0. To see this, we �rst compute

γ′(x) = 2r(r − 1)xr−1(2− x)r−1(1− x), and then observe that

g′(1− a) = γ′(1)− γ′(2a− 1)

= −γ′(2a− 1) < 0, since 0 < 2a− 1 < 1.

We now start with the observation that g′′′(x) = γ′′′(a+ x)− γ′′′(a− x), so that because of

the strict monotonicity of γ′′′ in [0, 1] (which contains the interval [0, A]), we have g′′′(x) > 0 for

x ∈ (0, A]. We note that this implies that g′′(x) is strictly increasing in the interval [0, A]. We also

note that g′(0) = 0. We now consider two cases.
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Case 1: g′′(0) ≥ 0 Using the fact that g′′(x) is strictly increasing in the interval [0, A] we see

that g′′(x) is also positive in the (0, A] in this case. This, along with the fact that g′(0) = 0,

implies that g′(x) > 0 for x ∈ (0, A], so that g is strictly increasing in [0, A] and hence is

maximized only at x = A. As proved above, this implies that the maximum of g must be

attained at x = a (in other words, the case g′′(0) ≥ 0 cannot arise when a > 1/2 so that

A = 1− a 6= a).

Case 2: g′′(x) < 0 Again, using the fact that g′′(x) is strictly increasing in [0, A], we see that

there is at most one zero c of g′′ in [0, A]. If no such zero exists, then g′′ is negative in [0, A],
so that g′ is strictly decreasing in [0, A]. Since g′(0) = 0, this implies that g′ is also negative

in (0, A) so that the unique maximum of g in [0, A] is attained at x = 0.

Now suppose that g′′ has a zero c in (0, A]. As before, we can conclude that g′ is strictly

negative in [0, c], and strictly increasing in [c, A]. Thus, if g′(A) < 0, g′ must be negative in

all of (0, A], so that g is again maximized at x = 0 as in Case 1. The only remaining case

is when there exists a number c1 ∈ (c, A] such that g′ is negative in (0, c1) and positive in

(c1, A]. In this case, we note that g′(A) ≥ 0, so that—as observed above–we cannot have

A 6= a. Further, the maximum of g in this case is at x = 0 if g(0) > g(A), and at x = A
otherwise. Since we already argued that A must be equal to a in this case, this shows that

the maxima of g in [0, A] again lie in the set {0, a}.

We now prove Lemma 4.11.

Proof of Lemma 4.11. We �rst verify the second condition in the de�nition of symmetrizability:

lim
pi→0

1

Φ (pi)

∣∣∣∣∂fd,γ∂pi

∣∣∣∣ = lim
pi→0

γpi(2− pi)(
1 + γ

∑d
j=1 pj

)2 = 0.

We now recall the program used in the de�nition of symmetrizability with respect to exponent r,
with the de�nitions of Φ and fd,γ substituted:

max γrfd,γ(p)2r

d∑
i=1

pri (2− pi)r, where

1

1 + γ
∑d

i=1 pi
= B

0 ≤ pi ≤ 1, 1 ≤ i ≤ d

Since we are only interested in the values of p solving the program, we can simplify the program
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as follows:

max
d∑
i=1

pri (2− pi)r, where

d∑
i=1

pi = B′ ··=
1−B′

γB

0 ≤ pi ≤ 1, 1 ≤ i ≤ d

We see that the feasible set is compact. Thus, if it is also non-empty, there is at least one (�nite)

optimal solution to the program. Let y be such a solution. Suppose without loss of generality that

the �rst k co-ordinates of y are non-zero while the rest are 0. We claim that yi = yj 6= 0 for all

1 ≤ i ≤ j ≤ k.

For if not, let i 6= j be such that yiyj 6= 0 and yi 6= yj . Let yi+yj = 2a. The discussion following

Lemma 4.15 implies that at least one of the following two operations, performed while keeping

the sum yi + yj �xed and ensuring that yi, yj ∈ [0, 1] (so that all the constraints in the program

are still satis�ed), will increase the value of the sum γ(yi) + γ(yj) = yri (2− yi)r + yrj (2− yj)r:

1. Making yi = yj , or

2. Making yi = 0 (so that yj = a).

Thus, if y does not have all its non-zero entries equal, we can increase the value of the objective

function while maintaining all the constraints. This contradicts the fact that y is a maximum, and

completes the proof.
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Chapter 5

Related work and open problems

We now conclude Part I with a discussion of previous research and open questions concerning the

approximation of partition functions and decay of correlations in spin systems. Approximating

the partition function has traditionally been studied in the framework of Markov Chain Monte

Carlo (MCMC) methods. For the hard core model on bounded degree graphs, this line of work

culminated in papers by Dyer and Greenhill [DG00a] and Vigoda [Vig01], who gave MCMC based

FPRASs for λ < 2/(d− 1) for graphs of maximum degree at most d+ 1. Weitz [Wei06] (see also

[BG08]) introduced a new paradigm by using correlation decay directly to design a deterministic
FPTAS and gave an algorithm under the condition λ < λc(d) for graphs of degree at most d+ 1;

this range of applicability was later proved to be optimal by Sly [Sly10] (see also [SS12, GGŠ
+

14]).

To date, no MCMC based algorithm is known to have a range of applicability as wide as Weitz’s

algorithm. The same is true for the anti-ferromagnetic Ising model, where again the correlation

decay based algorithms described in Chapter 3 have the best (and in light of the results of Sly and

Sun [SS12], optimal, unless NP = RP) range of applicability.

Interestingly, however, the situation is reversed if we consider the ferromagnetic Ising model,

for which Jerrum and Sinclair [JS93] gave an MCMC based FPRAS which is valid for all graphs at

all values of the edge and vertex activities. In contrast, the methods of the last few chapters cannot

be used to get an FPTAS even in the uniqueness region, since, as observed by Weitz [Wei06], weak

spatial mixing does not imply strong spatial mixing for the ferromagnetic Ising model (see [SST14]

for a proof). A similar situation obtains for the case of the monomer-dimer model. Again, there is

an MCMC based FPRAS for the partition function (due to Jerrum and Sinclair [JS89]) valid for all

graphs for all values of the edge activity. However, the best known deterministic approximation

algorithms are those described by Bayati et al. [BGK
+

07] and in Chapter 4, which require bounds

on the maximum degree and the connective constant respectively.

Nevertheless, the main feature of Weitz’s method—that of establishing strong spatial mixing

on all graphs of degree d+ 1 whenever weak spatial mixing holds on the d-ary tree—is of great

interest in its own right. For example, it improved upon the known range of the fugacity λ
under which the hard core model exhibits strong spatial mixing on speci�c lattices like Z2

. The

phenomenon of strong spatial mixing itself has its origin in the study of fast mixing of Markov

chains [MO94a, MO94b], and Weitz’s results automatically led to improvements in the range of λ
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under which Markov chains for sampling from the hard core Gibbs measure on Z2
were known to

exhibit fast mixing. Since Z2
has degree 4, Weitz’s result implies that strong spatial mixing holds

when λ < λc(3) = 1.6875. Restrepo, Shin, Tetali, Vigoda and Yang [RST
+

13] extended Weitz’s

approach using sophisticated computational methods tailored to Z2
to improve the bound to

λ < 2.38. Their methods were later extended by Vera, Vigoda and Yang [VVY13], who improved

the bound further to λ < 2.48.

However, none of the above mentioned results could handle even special classes of unbounded

degree graphs. Thus, the problem of sampling from the hard core model on graphs drawn from

G(n, d/n) (which have unbounded degree) was studied using MCMC methods by Mossel and

Sly [MS09] and more recently by Efthymiou [Eft14], who gave a fast MCMC based sampler for

λ < 1/(2d). In contrast, Corollary 4.6 implies that a polynomial time correlation decay based

sampler exists which works up to λ < λc(d). Note that λc(d) > e/d, so that the above condition

subsumes the bound λ < e/d conjectured in [Eft14]. Nevertheless, it must be mentioned that

in spite of their smaller range of (provable) applicability, MCMC based samplers often have the

advantage that when fast mixing holds, their runtime for producing a sample that is at most ε-far

from the Gibbs distribution scales only as poly (log(1/ε)), where as that of correlation decay based

samplers scales as poly (1/ε).

In contrast to the case of the hard core model, much more progress has been made on relating

spatial mixing to notions of average degree in the case of the zero �eld ferromagnetic Ising model.

Lyons [Lyo89] demonstrated that on an arbitrary tree, a quantity similar in �avor to the connective

constant, known as the branching factor, exactly determines the threshold for uniqueness of the

Gibbs measure for this model. For the ferromagnetic Ising model on general graphs, Mossel and

Sly [MS09, MS13] proved results analogous to our Theorem 4.5. An important ingredient in the

arguments in both [Lyo89] and [MS09, MS13] relating correlation decay in the zero �eld Ising

model to the branching factor and the connective constant is the symmetry of the “+” and “−”

spins in the zero �eld case. In work related to [Lyo89], Pemantle and Steif [PS99] de�ne the

notion of a robust phase transition (RPT) and relate the threshold for RPT for various “symmetric”

models such as the zero �eld Potts model and the Heisenberg model on general trees to the

branching factor of the tree. Again, an important ingredient in their arguments seems to be the

existence of a symmetry on the set of spins under whose action the underlying measure remains

invariant. In contrast, in the hard core model, the two possible spin states of a vertex (“occupied”

and “unoccupied”) do not admit any such symmetry.

Since the publication of Weitz’s paper (and of [BG08]), the correlation decay method has been

applied to several other problems. In addition to the examples in the last few chapters, these

include applications to general two spin systems [LLY13], to counting colorings [GK07, LY13]

and to counting edge covers [LLL13]. Nevertheless, extending the tight connections between

correlation decay on trees and algorithms for approximating the partition function on bounded

degree graphs for spin systems with three or more spins remains open. The state of the problem

of counting colorings illustrates the situation nicely. The relevant parameters here are the number

of colors q, and the maximum degree d of the graph to be colored. A fairly simple path-coupling

argument gives an MCMC based FPRAS for the problem under the condition q > 2d [Jer95].

A more elaborate MCMC based algorithm due to Vigoda [Vig00] gives a sampler under the
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condition q < 11d/6. In contrast, the best known correlation decay based algorithms still require

q > 2.58d [LY13]. The main obstacle in getting close to the best known MCMC based bounds—and

ideally, improving upon them—is that no crisp reductions to the self-avoiding walk tree of the

kind a�orded by the theorems of Godsil (Theorem 2.1) and Weitz (Theorem 2.2) are known for

spin systems with more than two spins.
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Part II

Hardness of computing averages
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Chapter 6

Averages and zeros of polynomials

In contrast to the �rst part of this thesis, this chapter and the two following it deal with complexity

theoretic questions about exact computation. More speci�cally, we will consider the question

of exactly computing the mean of some natural observables of the ferromagnetic Ising and the

monomer-dimer models. Our approach to these problems will be based on the beautiful results of

Lee and Yang [LY52] and Heilmann and Lieb [HL72] characterizing the location of the complex

zeros of the partition function. In this chapter, we set up the problems formally and introduce

our basic framework for bringing the zeros of the partition function into play. The following two

chapters then instantiate the approach for the Ising and monomer-dimer models respectively.

6.1 Mean observables
We begin by recalling our de�nitions of partition functions and observables, and then describing

the speci�c examples that we will study. Recall that we introduced partition functions in the

following framework. We are given as input a graph G = (V,E) which implicitly de�nes a set

Ω = Ω(G) of combinatorial structures, or con�gurations (such as matchings in G, or k-colorings

of its vertices). We further have a weight function w : Ω→ R+
that assigns a positive weight to

every element σ ∈ Ω, giving rise to a probability distribution π(σ) = w(σ)/Z; the normalizing

factor Z :=
∑

σ∈Ωw(σ) is called the partition function.

An observable is a non-negative function f : Ω→ R+∪{0}, such that f(σ) is easily computable

for each σ ∈ Ω. Our goal is to compute the mean of f with respect to π, i.e.,

〈f〉 :=
∑
σ

π(σ)f(σ) =

∑
σ w(σ)f(σ)

Z
.

We now describe the speci�c observables that we will study, and their relationship with the

partition function.
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6.1.1 The ferromagnetic Ising model: Mean magnetization
Recall that in the ferromagnetic Ising model, the con�gurations are assignments of spin values

{+,−} to the vertices of G, i.e., Ω = {+,−}V . Recall that the weight of a con�guration σ is

wI(σ) ··= βd(σ)λp(σ), (6.1)

where d(σ) is the number of disagreements in σ (i.e., the number of edges {u, v} ∈ E with

σ(u) 6= σ(v)), and p(σ) is the number of vertices v ∈ V with σ(v) = +. Note that the model

has two parameters: the edge potential β, satisfying 0 < β ≤ 1, which governs the strength of

the interaction between neighboring spins; and the vertex activity λ > 0, which speci�es the

tendency for spins to be +. Thus, when β < 1, this Gibbs distribution favors agreement between

neighboring spins, so that the interaction is indeed ferromagnetic. Similarly, the distribution

favors ‘+’ (respectively, ‘−’) spins when λ > 1 (respectively, when λ < 1). The partition function

ZI(G, β, z) is the sum of the weights in eq. (6.1).
1

The observable we will be most concerned with here is the magnetization p(σ), which is just

the number of +-spins in σ. Its average, the mean magnetization, is a fundamental quantity in

statistical physics:

〈p〉 ··=
∑

σ wI(σ)p(σ)

ZI
.

Other widely studied averages include the mean energy 〈d〉 (the average size of the cut between

+-spins and −-spins) and the susceptibility χ ··= 〈p2〉 − 〈p〉2 (the variance of the magnetization).

6.1.2 The monomer-dimer model: Average monomer count
The con�gurations Ω in this case are all matchings (independent sets of edges) in G. We consider

a more general de�nition of the weights than that used in previous chapters; the weight weight of

a matching σ is now given by

wM(σ) ··= λu(σ)
∏
e∈σ

γe, (6.2)

where u(σ) is the number of unmatched vertices (monomers) in σ. The parameter λ > 0 is the

vertex weight (or monomer activity), while for each edge e ∈ E, γe is an edge weight (or dimer
activity). (In the formulation used in previous chapters, λ was 1 and all γe were equal.) The Gibbs

distribution π(σ) = wM(σ)/ZM is a natural weighted distribution on matchings, and the partition

function ZM := ZM(G, {γe}e∈E, λ) is the weighted matching polynomial of G.

A natural observable here is u(σ), the number of unmatched vertices (or monomers). Note

that (|V | − 〈u〉)/2 is just the average size of a (weighted) matching in G (or equivalently, the

average number of dimers).

1
In this chapter, we will often explicitly include the graphG itself as a parameter to the partition function. Further,

to distinguish between the partition functions of di�erent models, we will rely on subscripts; i.e.,ZI will denote the

partition function of the Ising model, ZM that of the monomer-dimer model and ZS that of a general two spin system.
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6.1.3 The partition function and mean observables
Part of the importance of the partition function comes from the fact that various important mean

observables can be written in terms of its derivatives. This property will be of crucial importance

in our technical development, so we describe it here in some detail.

Consider �rst the Ising model partition function ZI as a polynomial in λ (actually a bivariate

polynomial in λ and β):

ZI =

|V |∑
k=0

αkλ
k, where αk =

∑
σ:p(σ)=k

βd(σ)
.

The mean magnetization then becomes

〈p〉 =

∑
k kαkλ

k

ZI
=
DZI
ZI

, (6.3)

where D denotes the di�erential operator λ ∂
∂λ

. Similarly, the mean energy and susceptibility χ
can be written

〈d〉 = β

∂
∂β
ZI

ZI
; χ ··= 〈p2〉 − 〈p〉2 =

D2ZI
ZI
−
(
DZI
ZI

)2

. (6.4)

Similarly, for the monomer-dimer model the partition function ZM can be written as

ZM = ZM(G, (γe)e∈E , λ) ··=
|V |∑
k=0

αkλ
k,

where αk =
∑

σ:u(σ)=k

∏
e∈σ γe is a weighted sum over matchings with k unmatched vertices. The

average number of monomers is then

U = U(G, (γe)e∈E , λ) ··= 〈u〉 =
DZM
ZM

, (6.5)

where D again denotes the di�erential operator λ ∂
∂λ

. Note that the average dimer count D =
D(G, (γe)e∈E , λ) (equivalently, the average number of matchings) is simply given by

D(G, (γe)e∈E , λ) =
1

2

(
n− U(G, (γe)e∈E , λ)

)
,

where n is the number of vertices in the graph G.



CHAPTER 6. AVERAGES AND ZEROS OF POLYNOMIALS 58

6.2 Partition function zeros and computational complexity
Our goal now is to prove that computing the mean magnetization and the average monomer count

are both complexity theoretically hard. We begin with an informal overview of our approach.

It is tempting to argue that computing an average as in, say, (6.3) is at least as hard as computing

the partition function ZI , because (6.3) is a rational function and thus by evaluating it at a small

number of points we could recover the numerator and denominator polynomials by rational

interpolation. Since the partition function is #P-hard in almost all cases of interest (including

ZI and ZM above at all but trivial values of the parameters), we would be done. In fact, such

interpolation arguments are a staple of proofs of #P-hardness of partition functions.

However, in the context of averages, the problem with this argument is that, viewed as

polynomials in the variable λ, ZI and its derivative DZI may have common factors (equivalently,

viewed as polynomials in the complex variable λ, they may have common zeros); and in this case

we are clearly not able to recover ZI by rational interpolation. Indeed it seems hard a priori to

rule out the possibility that non-trivial interactions between ZI and its derivative could conspire

to make the average much easier to compute than ZI itself. Thus we are naturally led to the

following question:

Question: Is it possible for the partition function Z and its derivative to have common zeros?2

If the answer is no, then we will be able to conclude that computing the average is as hard as

computing Z itself, and thus #P-hard in all interesting cases.

Our main goal will be to carry through this program using resolutions of the above question in

several interesting cases. However, before proceeding, we mention a possible alternative approach

to deal with the issue of repeated zeros. Since a generic polynomial does not have repeated zeros,

one could try to argue that any given graph G can be perturbed so that its partition function has

distinct zeros, and so that the magnetization of the perturbed graph is close to the magnetization

of the original graph. One could then perform the interpolation operations with respect to the

perturbed graph, and hope that if the perturbations are small enough then the reduction still goes

through. Indeed, this is our intuition for why the magnetization (and other averages) should be

hard to compute.

However, it is not clear how to convert this intuition into a formal proof: in addition to a rather

involved error analysis, this would require showing that the partition function of a “perturbed”

Ising model behaves like a generic polynomial with respect to the structure of its zeros, which

seems no easier than answering the Question above. Our approach sidesteps this issue by tackling

the question directly, and in addition establishes a non-trivial property of the zeros of the partition

function that may be of independent interest.

In line with the above program, we begin with two of the most well known results about

location of zeros of partition functions. The �rst of these is the beautiful result of Lee and

Yang [LY52] on the zeros of the partition function ZI(G, β, z) of the ferromagnetic Ising model.

Before describing the result, we introduce a generalization of the Ising model in which the vertex

2
Note that a common zero of Z and DZ corresponds to a repeated zero of Z , so this question is equivalent to the

question of whether Z may have repeated zeros.
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activities can vary across vertices of G. Suppose that the vertex activity at vertex v is zv. The

weight of a con�guration σ is then de�ned as

wI(σ) ··= βd(σ)
∏

v:σ(v)=+

zv,

and the partition function is given by ZI(G, β, (zv)v∈V ) =
∑

σ wI(σ). We also take this opportu-

nity to de�ne the following related linear di�erential operator DG, which will be useful in the

next chapter:

DG ··=
∑
v∈V

zv
∂

∂zv
.

Note that using this operator, we can write the magnetization M(G, β, (zv)v∈V ) in the generalized

version of the Ising model exactly as in eq. (6.3):

M(G, β, (zv)v∈V ) =
DGZI(G, β, (zv)v∈V )

ZI(G, β, (zv)v∈V )
.

We now proceed to describe the Lee-Yang theorem.

Theorem 6.1 ([LY52]). Let G be any undirected graph and suppose 0 < β ≤ 1. Then the complex
zeros of ZI(G, β, z), considered as a polynomial in z, satisfy |z| = 1.

Actually, Lee and Yang proved the following multivariate version of their theorem, the proof

of which was later considerably simpli�ed by Asano [Asa70].

Theorem 6.2 ([LY52, Asa70]). Let G = (V,E) be a connected undirected graph, and suppose
0 < β < 1. Suppose (zv)v∈V is a set of complex valued vertex activities such that |zv| ≥ 1 for all
v ∈ V , and |zu| > 1 for at least one u ∈ V . Then ZI(G, β, (zv)v∈V ) 6= 0.

Theorem 6.2 is readily seen to imply Theorem 6.1 by setting zv = z for all v ∈ V , and then

using the symmetry ZI(G, β, z) = z|V |ZI(G, β, 1/z). We now consider the partition function of

the monomer-dimer model. In [HL70], Heilmann and Lieb announced the following result (see

[HL72] for the complete proof).

Theorem 6.3 ([HL70,HL72]). LetG = (V,E) be any graph, and (γe)e∈E be a collection of positive
real edge weights. The complex zeros of ZM(G, (γe)e∈E, z), considered as a polynomial in z, satisfy
< (z) = 0. Further, if G contains a Hamiltonian path, all the zeros are simple. Here, < (z) denotes
the real part of the complex number z.

We also record a standard fact about rational interpolation, which will be needed in our

hardness reductions. While it is clear that it is not in general possible to determine all coe�cients

of a rational function given its values at any number of points, this can be done if we impose a

few simple conditions, as stated in the following theorem.
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Theorem 6.4 ([MD62]). Suppose R(x) = p(x)
q(x)

where gcd(p(x), q(x)) = 1 and both p(x) and q(x)

are of degree n. Suppose p̃(x) and q̃(x) are polynomials of degree at most n satisfying

p̃(xi)

q̃(xi)
= R(xi)

for 2n + 2 distinct values x1, x2, . . . x2n+2. Then there is a constant c such that p(x) = cp̃(x) and
q(x) = cq̃(x).

Notice that given the evaluations at the points xi one can write down a system of 2n + 2
homogeneous linear equations for the 2n+ 2 unknown coe�cients of p and q. The theorem then

guarantees that this system has rank exactly 2n + 1. Thus, since Gaussian elimination can be

implemented to run in strongly polynomial time (see, e.g., [Edm67]), a polynomial time algorithm

for evaluating R immediately yields a polynomial time algorithm for determining some p̃ and

q̃ satisfying the conditions of the above theorem. If we know at least one non-zero coe�cient

of p or q, we can then determine the proportionality constant c, and hence p and q also, in time

polynomial in n.

6.3 Conclusion
This chapter sets up the groundwork for the next two chapters, which will use the program

introduced in Section 6.2 to prove hardness results for the mean magnetization of the Ising model

and the average monomer-count of the monomer-dimer model respectively. In the former case,

we will actually need to extend the Lee-Yang theorem (Theorem 6.1) to show that the partition

function has no repeated zeros, while in the case of the monomer-dimer model, our reduction will

be more combinatorial.
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Chapter 7

The mean magnetization: Extending the
Lee-Yang theorem

In this chapter, we prove the following hardness theorem for the exact computation of the mean

magnetization of the ferromagnetic Ising model.

Theorem 7.1. For any �xed 0 < β < 1 and any �xed λ 6= 1, the problem of computing the mean
magnetization of the Ising model on connected graphs is #P-hard. Moreover, the problem remains
#P-hard even when the input is restricted to graphs of maximum degree at least 4.

Note that in the case λ = 1 the mean magnetization is trivially |V |/2 by symmetry. Theorem 7.1

con�rms that in all non-trivial cases, the problem of computing the fundamental average quantity

associated with the Ising model is as hard as it could possibly be. Furthermore, the result also

holds for bounded degree graphs, which are relevant in the statistical physics setting. The result

can also be extended to arbitrary ferromagnetic two-spin systems and to planar graphs: we discuss

the details of these extensions in Section 7.4.

We will also prove a similar (but slightly weaker) result for the susceptibility of the Ising model.

Theorem 7.2. For any �xed 0 < β < 1, the problem of computing the susceptibility of the Ising
model on connected graphs, when λ is speci�ed in unary1, is #P-hard. Moreover, the problem remains
#P-hard even when the input is restricted to graphs of maximum degree at least 3.

Remark 7.1. The requirement that λ be part of the input seems to be an artifact of the rational

interpolation operations we use in our proof. In particular, our proof of Theorem 7.1 shows

hardness for �xed λ by “simulating” di�erent values of λ by suitably modifying the graph. To

adapt this reduction approach to prove hardness for susceptibility (at �xed values of λ) seems

to require the polynomial time computation of magnetization as a subroutine. However, we

conjecture that computing the susceptibility should be hard even for �xed values of λ (including

λ = 1).

1
When λ is a non-integer rational number, this means that the numerator and denominator of λ are speci�ed in

unary.
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The above complexity theoretic results will be obtained as almost immediate corollaries of our

following extension of the Lee-Yang theorem.

Theorem 7.3. LetG = (V,E) be a connected graph, and suppose 0 < β < 1. Then the zeros of the
polynomial DZI(G, β, λ) (in λ) satisfy |λ| < 1.

Since the Lee-Yang Theorem says that all zeros of ZI satisfy |λ| = 1, Theorem 7.3 immediately

implies that ZI and DZI have no common zeros. Note that the restriction that G be connected is

needed: there exist disconnected graphs for which the conclusion of the theorem does not hold. A

simple example is a graph consisting of two isomorphic disconnected subgraphs. For the same

reason we require β < 1. We also note that standard facts from complex analysis (in particular,

the Gauss-Lucas theorem) imply that the zeros of DZI lie in the convex hull of those of ZI , and

hence within the closed unit circle. The content of Theorem 7.3 is that they must lie in the interior
of the circle. This re�nement is of course crucial for our application.

In the next section, we give a proof of Theorem 7.3, and the proof of the complexity theoretic

corollaries follow. However, before proceeding we �rst give an informal description of the structure

of the proof. We will actually prove a more general result concerning the zeros of the multivariate

partition function ZI(G, β, {λv}v∈V ) which is analogous to the multivariate version of the Lee-

Yang theorem (Theorem 6.2). Our proof is based on a delightful combinatorial proof of the Lee-Yang

Theorem due to Asano [Asa70], which begins with the empty graph (which trivially satis�es the

theorem) and builds the desired graph G by repeatedly adding edges one at a time; by a careful

induction one can show that the Lee-Yang property is preserved under each edge addition. Our

proof follows a similar induction, but the argument is more delicate because we are working with

the more complicated polynomial DZI rather than ZI . In particular, in the inductive step we need

to invoke a correlation inequality due to Newman [New74].

7.1 An extended Lee-Yang theorem
In this section we prove Theorem 7.3, our extension of the classical Lee-Yang theorem. Let

G = (V,E) be a connected graph with |V | = n and |E| = m, with vertex activity zi at the ith
vertex. When clear from the context , we will write Z(G) and M(G) for the partition function

ZI(G, β, (zv)v∈V ) and the mean magnetization M(G, β, (zv)v∈V ) of the Ising model on G. In

terms of the linear operator DG de�ned in Section 6.2, we then have M(G) = DGZ(G)/Z(G).

For convenience, we will use the shorthand Y ′ = DGY (when G is clear from the context) in

this section. Notice that this is slightly non-standard, as this shorthand is usually used for the

actual derivative. In particular, when all the zi are equal to z, we have Y ′ = z ∂Y
∂z

with our notation.

Also, observe that the operator DG obeys the usual product rule: (Y1Y2)′ = Y ′1Y2 + Y1Y
′

2 .

In our proof, we will also need the following generalization of the partition function. We call

an assignment of positive integer valued weights w : V → Z+
to the vertices of G legal if w(v) is

at least equal to the degree of v, for all v ∈ V .
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De�nition 7.1. Let w be a legal collection of weights for G. The weighted partition function
Zw(G) is then de�ned as

Zw(G) ··=
∑

σ∈{+,−}V
βd(σ)

∏
v:σ(v)=+

zw(v)
v , (7.1)

where, as before, d(σ) is number of disagreeing edges in the con�guration σ.

Notice that the multivariate Lee-Yang theorem (Theorem 6.2) holds also for the weighted partition

function, since all the weights are positive integers and we are e�ectively just changing variables

from zv to z
w(v)
v .

We will also need the following consequence of a correlation inequality of Newman [New74],

whose proof can be found in Section 7.5.

Theorem 7.4 ([New74, Theorem 3.2]). Let G be any graph, and let w be a legal collection of
weights for G. Suppose 0 < β < 1, and |zv| ≥ 1 for all v ∈ V are such that Zw(G) 6= 0. Then2

< (M(G)) = <
(
Z ′w(G)

Zw(G)

)
≥ n/2.

In the special case of real valued activities, the above theorem is equivalent to the well known

Gri�ths inequality [Gri67], which states the intuitive fact that in a ferromagnetic Ising model

where all activities favor the + spin, the magnetization must be at least n/2.

For ease of reference in the inductive proof, we give a name to the property we want to establish.

Recall that when all the vertex activities are equal to z, the classical Gauss-Lucas theorem, together

with the Lee-Yang theorem, implies that the zeros of the derivative DG(Z(G)) lie on or inside the

unit circle. Our goal is to establish that they actually lie inside the unit circle. Accordingly, we use

the following terminology:

De�nition 7.2 (Strict Gauss-Lucas property). A graph G = (V,E) has the strict Gauss-Lucas
property (SGLP) if for every set of activities such that |zv| ≥ 1 for all v ∈ V , and every 0 < β < 1,

one has DGZ(G) 6= 0. The graph has the weighted strict Gauss-Lucas property (WSGLP) if for all

legal weights w, DGZw(G) 6= 0 necessarily holds under the same conditions.

Note that WSGLP easily implies SGLP: we simply choose w(v) = ∆ for all v, where ∆ is the

maximum degree of G. From WSGLP, we then have that whenever |zv| ≥ 1 and 0 < β < 1,

DGZw(G) = ∆DGZ(G) 6= 0, and hence DGZ(G) 6= 0. Thus Theorem 7.3 is implied by the

following more general statement.

Theorem 7.5. Every connected graph has the weighted strict Gauss-Lucas property, and hence also
the strict Gauss-Lucas property.

2
Recall that we are using here the slightly non-standard notation Z ′

w(G) = DGZw(G), as described at the

beginning of this section.
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We now proceed to prove Theorem 7.5, using induction on the number of edges in the graph

G. We �rst consider the base case of a connected graph with a single edge.

Lemma 7.6 (Base Case). Let G be the graph consisting of a single edge connecting two vertices.
Then G has the weighted strict Gauss-Lucas property.

Proof. In this case we have Zw(G) = zw1
1 zw2

2 + β(zw1
1 + zw2

2 ) + 1 and therefore DGZw(G) =
(w1 + w2)zw1

1 zw2
2 + β(w1z

w1
1 + w2z

w2
2 ), with w1, w2 ≥ 1. When |z1| , |z2| ≥ 1, the latter vanishes

only if

w1 + w2 = β

∣∣∣∣ w2

zw1
1

+
w1

zw2
2

∣∣∣∣ ≤ β

(
w2

|zw1
1 |

+
w1

|zw2
2 |

)
≤ β (w1 + w2) ,

which cannot hold since 0 < β < 1.

For the inductive case, we require two operations: adding a new vertex to the graph, and

merging two existing vertices. These operations are formalized in the following lemmas.

Lemma 7.7 (Adding a vertex). Suppose G = (V,E) is a connected graph satisfying the weighted
strict Gauss-Lucas property. Let u be a vertex not in V . Then, the graph G1 obtained by attaching
the new vertex u to any vertex (say v1) of G also has the weighted strict Gauss-Lucas property.

Lemma 7.8 (Merging vertices). SupposeG = (V,E) is a connected graph satisfying the weighted
strict Gauss-Lucas property. Consider any two vertices, say v1 and v2, in G that are not connected
by an edge. The graph G1 obtained by merging v1 and v2 into a single vertex v (while making all
the edges incident on v1 and v2 incident on v) also has the weighted strict Gauss-Lucas property.

Remark 7.2. Note that the merge operation produces a multigraph with parallel edges when

the vertices v1 and v2 share common neighbors, since all the edges to the common neighbors

now become incident on the new vertex v. However, as will become apparent in the proof of

Theorem 7.5 below, the merge operation is never applied to vertices with common neighbors

when the underlying graph being constructed is simple. Nevertheless, we note that the proof

of Theorem 7.5 given below holds also when the graph G is allowed to have parallel edges, and

this latter fact will be useful in our extension to general two-state ferromagnetic spin systems in

Section 7.4. We also note that self-loops can never be produced by the merge operation (since the

merge operation is not applicable to vertices connected by an edge). Further, self-loops cannot

make any non-trivial contribution to the weight of a con�guration, and hence can be safely

neglected for the purposes of computing the partition function and the magnetization.

Before proceeding with the proofs of the above lemmas, we show how to use them to prove

Theorem 7.5.

Proof of Theorem 7.5. We will prove by induction on m that any connected graph with at most m
edges satis�es WSGLP. By Lemma 7.6, this statement is true when m = 1. Now suppose that the

statement is true when m = k, and consider any connected graph G with k + 1 edges.

In case G has a cycle, there exist vertices u and v such that the edge {u, v} can be removed

from G to obtain a connected graph H . Since H has at most k edges, H satis�es WSGLP by the
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inductive hypothesis. Let v1 be a vertex not in G. By Lemma 7.7, the graph H ∪{{u, v1}} satis�es

WSGLP. We can now merge v1 and v to obtain G, which therefore satis�es WSGLP by Lemma 7.8.

In case G is a tree, there exists an edge {u, v} such that v is of degree 1. Again, we obtain a

connected graphH with at most k edges by removing the edge {u, v}. By the inductive hypothesis,

H satis�es WSGLP, and hence by Lemma 7.7, G does too. This completes the induction.

We turn now to the proofs of Lemmas 7.7 and 7.8, for which we will need the following

additional lemma.

Lemma 7.9. Let G be a connected graph. Fix any set S of vertices of G, and let Z+
w (S) denote the

partition function restricted to con�gurations on the subgraphG−S, with all the vertices in S �xed
to have spin +.3 Consider any set of vertex activities satisfying |zv| ≥ 1 for v ∈ G − S. Then,
for 0 < β < 1 and any set of permissible weights on the vertices of G, we have Z+

w (S) 6= 0 and
< (Z+

w (S)′/Z+
w (S)) ≥ 0. In particular, for any positive real a, we have Z+

w (S)′ + aZ+
w (S) 6= 0.

Proof. Observe that Z+
w (S) is proportional to the product of weighted partition functions on

connected components of the graph G− S, where the activities on the vertices connected to S in

these components (of which there is at least one in each component) have increased in magnitude

by a factor of at least 1/β > 1. We can therefore conclude using Theorem 6.2 that Z+
w (S) 6= 0. The

second condition < (Z+
w (S)′/Z+

w (S)) ≥ 0 then follows from Theorem 7.4 applied to G− S.

We �rst prove Lemma 7.8, since its proof is somewhat simpler.

Proof of Lemma 7.8. Consider any legal weight assignment on G1. If the weight of v in G1 is wv,
we can write wv = w1 + w2 such that the weight assignment giving weights w1 and w2 to v1 and

v2 respectively is legal for G. By partitioning into four cases based on the spins of v1 and v2, we

can write the corresponding weighted partition function Zw(G) and its derivative as

Zw(G) = Azw1
1 zw2

2 + Cz1
w1 +Dz2

w2 +B; (7.2)

Zw(G)′ = (A′ + (w1 + w2)A)zw1
1 zw2

2 + (C ′ + w1C)zw1
1 + (D′ + w2D)zw2

2 +B′, (7.3)

for polynomialsA, B, C , D in the remaining variables zi. Notice that in the notation of Lemma 7.9,

A = Z+
w ({v1, v2}). Similarly, denoting the activity at the merged vertex by z, we have the

following expressions for G1:

Zw(G1) = Azw1+w2 +B; (7.4)

Zw(G1)′ = (A′ + (w1 + w2)A)zw1+w2 +B′, (7.5)

with A and B as de�ned above. Now consider any �xing of the activities such that |zi| ≥ 1 for

i > 2. Since G satis�es the weighted strict Gauss-Lucas property, we get by setting z1 = z2 in

eq. (7.3) that the (univariate) polynomial

(A′ + (w1 + w2)A)zw1+w2 + (C ′ + w1C)zw1 + (D′ + w2D)zw2 +B′

3
Note that the terms in Z+

w (S) include the interactions between the (�xed) vertices in S and the vertices inG−S,

but exclude the vertex activities in S.
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in z has no zeros satisfying |z| ≥ 1. Also, we know from Lemma 7.9 that A′ + (w1 + w2)A 6= 0.

Thus, we must have that the product of the zeros, B′/(A′ + (w1 + w2)A), satis�es∣∣∣∣ B′

A′ + (w1 + w2)A

∣∣∣∣ < 1.

However, using eq. (7.5), this implies that if |zi| ≥ 1 for i > 2, then Zw(G1)′ can be zero only if

|z| < 1, and hence G1 satis�es the weighted strict Gauss-Lucas property.

Finally, we give the proof of Lemma 7.7.

Proof of Lemma 7.7. Note that any legal set of weights for G1 can be obtained by adding one to

the weight w1 of v1 in a legal set of weights w of G, and then assigning u an arbitrary weight

w0 ≥ 1. With a slight abuse of notation, we denote these related weight assignments (one on G
and the other on G1) by the same letter w. We now partition the terms in Zw(G) based on the

spin of v1 to get

Zw(G) = Azw1
1 +B;

Zw(G)′ = (A′ + w1A)zw1
1 +B′,

where w1 is the weight of v1 in G. Here, A, B are polynomials in the remaining variables zi, and

A is of the form Z+
w ({v1}) in the notation of Lemma 7.9. We again assume 0 < β < 1 and |zi| ≥ 1

for i > 1. We now consider G1. Denoting the activity at u by z, we can write

Zw(G1) = A(β + zw0)zw1+1
1 +B(1 + βzw0);

Zw(G1)′ = (A′ + w1A)(β + zw0)zw1+1
1 + A(β + (w0 + 1)zw0)zw1+1

1 +B′(1 + βzw0)

+ w0βBz
w0 .

Now suppose that G1 does not satisfy the weighted strict Gauss-Lucas property, and hence |z|
and |z1| are both also at least 1, but Zw(G1)′ = 0. It follows from Theorem 7.4 that we then also

have Zw(G1) = 0. We now proceed to derive a contradiction to the above observations. For

convenience, we denote zw1+1
1 by y in what follows.

Using Lemma 7.9, we know that A 6= 0 and that A′ + w1A 6= 0 for our setting of activities. By

Theorem 6.2 applied to Zw(G) and the weighted strict Gauss-Lucas property applied to Zw(G)′,
we get ∣∣∣∣BA

∣∣∣∣ ≤ 1, and

∣∣∣∣ B′

A′ + w1A

∣∣∣∣ < 1. (7.6)

Also, since Zw(G1) = 0, we must have

y = −B
A

1 + βzw0

β + zw0
. (7.7)

Notice that y is well de�ned since A 6= 0, |z| ≥ 1 and β < 1. Further, since β < 1, we have

|1 + βzw0| < |β + zw0| when |z| > 1 (respectively, |1 + βzw0| ≤ |β + zw0| when |z| ≥ 1). Since
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we also have |B| ≤ |A|, it follows from the above consideration that either one of |z| > 1 or

|B| < |A| would imply that |y| < 1, which is a contradiction to our assumption that |z1| ≥ 1
(since y = zw1+1

1 ). Thus, we must have

|z| = 1 and

∣∣∣∣BA
∣∣∣∣ = 1. (7.8)

Now, substituting the value of y from eq. (7.7) into Zw(G1)′ = 0, we get

B′(1 + βzw0) + βw0Bz
w0 = ((A′ + w1A) (β + zw0) + A(β + (w0 + 1)zw0))

B

A

1 + βzw0

β + zw0
.

Dividing through by (A′ + w1A)(1 + βzw0), setting c = A/(A′ + w1A) and rearranging terms,

we get

B′

A′ + w1A
=
B

A

(
1 + c+ w0c

(
zw0

β + zw0
+

1

1 + βzw0
− 1

))
=
B

A

{
1 + c+ w0c

(
2<
(

zw0

β + zw0

)
− 1

)}
, since |z| = 1. (7.9)

Notice that these divisions are well de�ned sinceA′+w1A 6= 0, and β < 1 and |z| = 1 implies that

(1 + βzw0) 6= 0 as well. Note also that c is of the form 1/(w1 + c′) where <(c′) = < (A′/A) ≥ 0
by Lemma 7.9 and our earlier observations about A: it therefore follows that <(c) ≥ 0. However,

we then calculate that for |z| = 1 and β < 1, < (z/(β + z)) > 1/2. Combining this with the

inequality <(c) ≥ 0 derived above, we see that the factor inside the braces in (7.9) has real part

(and hence absolute value) at least 1. Using |B| / |A| = 1 from (7.8), we then see that the right

hand side of (7.9) always has absolute value at least 1, which gives us the required contradiction

to (7.6). This shows that G1 satis�es the weighted strict Gauss-Lucas property.

This �nishes the proof of Theorem 7.5, and hence, as discussed above, also that of Theorem 7.3.

In Section 7.6 we give an alternative analytical proof of a version of Theorem 7.3 that is also

su�cient for our purposes.

7.2 Hardness of computing the mean magnetization
We now use our extended Lee-Yang theorem (Theorem 7.3) to prove Theorems 7.1 and 7.2 via

reductions from the problem of computing the partition function of the Ising model, which is

known to be #P-hard even for bounded degree graphs [DG00b, BG05]. More speci�cally, we will

use the following #P-hardness result.

Theorem 7.10 ([BG05, Theorem 1],[DG00b, Theorem 5.1]). Fix β satisfying 0 < β < 1. The
problem of computing the partition function ZI(G, β, 1) of the Ising model on connected graphs of
maximum degree ∆ ≥ 3 is #P-hard.
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For simplicity, we prove �rst a version of Theorem 7.1 without the bounded degree constraint.

The extension to bounded degree graphs requires some more combinatorial work and is deferred

to Section 7.3.

Proof of Theorem 7.1. We assume λ > 1, since the case λ < 1 is symmetrical. For given 0 < β < 1,

suppose that we have an algorithm A which, given a connected graph G, outputs the mean

magnetization M(G, β, λ) in polynomial time. Let G be a graph of n vertices. Notice that as a

rational function in z, M(G, β, z) is a ratio of the two polynomials, DZI(G, β, z) and ZI(G, β, z),

which are both of degree n. Further, since G is connected, these polynomials are co-prime by

Theorem 7.3. Thus, if we could e�ciently evaluate M(G, β, z) at 2n+ 2 distinct points z using

algorithm A, we could uniquely determine the coe�cients of ZI(G, β, z) by Theorem 6.4 (since

we know that the constant term in ZI(G, β, z) is 1). We could then determine ZI(G, β, 1) in

polynomial time. Theorem 7.10 would then imply that computing the mean magnetization for the

given values of the parameters β and λ is #P-hard.

In order to evaluate M(G, β, z) at 2n+ 2 distinct values, we consider the graph G(k) obtained

by attaching k new neighbors to each vertex of v. We then have

ZI(G(k), β, λ) = (1 + βλ)nkZI(G, β, λk), and (7.10)

M(G(k), β, λ) =
knβλ

1 + βλ
+

[
1 +

kλ(1− β2)

(1 + βλ)(β + λ)

]
M(G, β, λk), (7.11)

where λk = λ
(
β+λ
1+βλ

)k
. Notice that when β < 1, all the λk are distinct, and further, M(G, β, λk)

can be easily determined given M(G(k), β, λ). Therefore, we can evaluate M(G(k), β, λ) for

0 ≤ k ≤ 2n + 1 using the algorithm A, and then using eqs. (7.10) and (7.11) we can determine

M(G, β, λk) in polynomial time. Since these evaluations are at distinct points, the reduction is

complete.

Proof of Theorem 7.2. For a given β as speci�ed in the theorem, suppose that there is a polynomial

time algorithm A which, given a graph G of maximum degree ∆, and a value of λ in unary,

outputs the susceptibility χ(G, β, λ). Notice that as a rational function in z, χ(G, β, z) is a ratio of

the two polynomials ZI(G, β, z) · D2ZI(G, β, z)− (DZI(G, β, λ))2
and ZI(G, β, z)

2
, which are

both of degree 2n. Further, since G is connected, these polynomials are co-prime by Theorem 7.3.

To see this, notice that any common complex zero of these two polynomials must be a common

zero of ZI(G, β, λ) and DZI(G, β, λ), which is prohibited by Theorem 7.3.

To complete the reduction, we notice that we can choose 4n + 2 distinct values of λ in the

interval (0, 1] all of which have a unary representation length of at most 5n. Thus, using A, we

can e�ciently evaluate χ(G, β, z) at 4n + 2 distinct values of z. By Theorem 6.4 we can then

use these evaluations to uniquely determine the coe�cients of ZI(G, β, z)
2

(since we already

know that the constant coe�cient is 1), and hence, ZI(G, β, 1), in polynomial time. Because of

Theorem 7.10, this implies that the problem of computing the susceptibility at the given value of

β is #P-hard.
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7.3 Hardness for bounded degree graphs
In our proof of Theorems 7.1 in Section 7.2, we realized di�erent values of λ required for the

interpolation by attaching k extra vertices to each vertex of G. This necessarily entails a large

increase in the degree of G. In this section, we give an alternative way of realizing di�erent values

of λ which entails an increase in degree of exactly one, and which therefore allows us to complete

the proofs of the stronger, degree-bounded version of Theorem 7.1.

We denote by Pk a path of k vertices. Let p+
k (respectively, p−k ) be the partition function

ZI(Pk, β, λ) restricted to con�gurations in which the leftmost vertex of Pk is �xed to spin ‘+’

(respectively, ‘−’). We also set rk ··=
p+
k

p−k
. Notice that p−1 = 1 and p+

1 = r1 = λ. The following re-

currence relations show that, for �xed β and λ, p+
k , p

−
k , and rk can be computed in time polynomial

in k:

p+
k = λ(βp−k−1 + p+

k−1); (7.12)

p−k = βp+
k−1 + p−k−1; (7.13)

rk = λ
β + rk−1

1 + βrk−1

; (7.14)

Notice that p+
k , p

−
k , and r+

k are all functions of λ. We note that values of their derivatives with

respect to λ can also be computed in time polynomial in k via the following recurrence relations:

ṗ−1 = 0, ṗ+
1 = ṙ1 = 1, and

ṗ+
k = p+

k /λ+ λ(βṗ−k−1 + ṗ+
k−1); (7.15)

ṗ−k = βṗ+
k−1 + ṗ−k−1; (7.16)

ṙk =
ṗ+
k p
−
k − p

+
k ṗ
−
k(

p−k
)2 ; (7.17)

Here, we use the dot notation for the derivative with respect to λ. Using a simple induction, one

can also show that when β < 1, ṙk > 0 for all k.

Now consider a connected graph G. For k ≥ 1, we de�ne G(k) as the graph obtained by

attaching to each vertex v of G a di�erent instance of the path Pk, such that v is connected to the

“leftmost” vertex of Pk via an edge. Notice that the maximum degree of G(k) is one more than the

maximum degree of G. We now consider the Ising model on the graphs G(k). We have

ZI(G(k), β, λ) = (p−k+1)nZI(G, β, λk), (7.18)

where n is the number of vertices in G and λk = rk+1. Notice that when 0 < β < 1, the sequence

λk is strictly increasing and greater than 1 (respectively, strictly decreasing and less than 1) when

λ > 1 (respectively, when λ < 1): this follows from the observation that the right hand side of the

recurrence (7.14) is a strictly increasing function of rk−1, and that r2 > r1 (respectively, r2 < r1)

when λ > 1 (respectively, when λ < 1). We also have

M(G(k), β, λ) =
nλṗ−k+1

p−k+1

+
λṙk+1

rk+1

M(G, β, λk). (7.19)
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We can now complete the proof of Theorem 7.1.

Proof of Theorem 7.1. As in the proof for the case of unbounded degree graphs (Section 7.2), we

assume λ > 1 (since the case λ < 1 is symmetrical) and suppose that we have a polynomial time

algorithm A which, given a connected graph G of maximum degree ∆ ≥ 4, outputs the mean

magnetization M(G, β, λ) in polynomial time.

Now consider any connected graph G of maximum degree ∆− 1 ≥ 3. As shown in the proof

in Section 7.2, Theorem 7.3 implies that if we can e�ciently evaluate M(G, β, z) at 2n+ 2 distinct

values of z using our hypothetical algorithm A, we can uniquely determine the coe�cients of

ZI(G, β, z), and hence also ZI(G, β, 1), in polynomial time. In view of Theorem 7.10, this would

imply that the problem of computing the mean magnetization in graphs of maximum degree at

least 4 for parameter values β and λ is #P-hard.

In order to evaluate M(G, β, z) at 2n + 2 distinct values, we evaluate M(G(k), β, λ) for

1 ≤ k ≤ 2n + 2 using our hypothetical algorithm A. Notice that this can be done since the

construction of the G(k) (as given in this section) implies that its maximum degree is one more

than the maximum degree of G. Using eqs. (7.12) to (7.17) and (7.19), and the fact that ṙk > 0 for

all k, we can then determine M(G, β, λk) in polynomial time. Since λk is a strictly increasing

sequence, these evaluations are at distinct points, and hence the reduction is complete.

7.4 Extensions: General two state ferromagnetic spin
systems and planar graphs

We now show how to extend our results to general two-state ferromagnetic spin systems and

planar graphs. Recall that a general two-state spin system [GJP03] is parametrized by a (+,+)
edge potential α1, a (−,−) edge potential α2, and a vertex activity λ. As before, given a graph

G = (V,E), we de�ne a probability distribution over the set of con�gurations σ : V → {+,−}
via the weights wS(σ) given by

wS(σ) = λp(σ)α
e+(σ)
1 α

e−(σ)
2 ,

where e+(σ) (respectively, e−(σ)) denotes the number of edges with ‘+’ (respectively, ‘−’) spin

on both end-points, while p(σ) denotes the number of vertices with + spin. The partition function

ZS(G,α1, α2, λ) and the magnetization MS(G,α1, α2, λ) are given by

ZS(G,α1, α2, λ) ··=
∑

σ∈{+,−}V
wS(σ);

MS(G,α1, α2, λ) := 〈p〉 =

∑
σ p(σ)wS(σ)

ZS(G,α1, α2, λ)
.

Remark 7.3. The Ising model corresponds to the special case α1 = α2 = 1/β.
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It is well known that general two-state spin systems can be represented in terms of an Ising

model in which the activity at each vertex depends upon the degree of the vertex [GJP03]. In

particular, if G is a ∆-regular graph then all vertex activities in the equivalent Ising model are the

same, and one has

wS(σ) = α
|E|
2 wI(σ) (7.20)

where the Ising model has an edge potential β = 1/
√
α1α2 and a vertex activity λ′ = λ(α1/α2)∆/2

.

A two-spin system is called ferromagnetic if the above translation produces a ferromagnetic Ising

model, that is, when α1α2 ≥ 1.

However, the above translation does not allow us to directly translate our hardness result for

the ferromagnetic Ising model, since our results were not derived for regular graphs. We will

instead do a reduction similar to the ones done in our earlier proof, but starting from the following

somewhat stronger hardness result for the partition function.

Remark 7.4. In this section, we allow graphs to have parallel edges (in computing the degree of

a vertex, we count each parallel edge separately). As observed in Remark 7.2 in Section 7.1, our

extended Lee-Yang theorem (Theorem 7.3) holds also in this setting.

Theorem 7.11 ([CK10, Theorem 1]). Fix α1, α2 > 0 with α1α2 > 1 and ∆ ≥ 3. The problem of
computing the partition function ZS(G,α1, α2, 1) on ∆-regular graphs is #P-hard.

We will then prove the following theorem. We will also show later in this section that the

theorem can be strengthened so that the #P-hardness holds even when the input is restricted to

planar graphs.

Theorem 7.12. Fix α1, α2, and λ > 0, such that α1α2 > 1 . The problem of computing the mag-
netization MS(G,α1, α2, λ) on connected graphs of maximum degree at least 4 is #P-hard, except
when α1 = α2 and λ = 1, in which case it can be solved in polynomial time.

Remark 7.5. Notice that when α1α2 = 1, the problem reduces to the case of a graph consisting

of isolated vertices, and hence can be solved in polynomial time. Similarly, in the case α1 = α2

and λ = 1, the two spins are symmetric, and the magnetization is therefore n/2, where n is the

number of vertices in G.

Before proceeding with the proof of Theorem 7.12, we will need to analyze the model on

graphs G(k) de�ned in Section 7.3. As before, we begin by analyzing the model on the path

P (k). We denote by p+
k (respectively, p−k ) the partition function ZS(Pk, α1, α1, λ) restricted to

con�gurations in which the leftmost vertex is �xed to be ‘+’ (respectively, ‘−’). We also de�ne

the ratio rk = p+
k /p

−
k . Similarly, we denote by m+

k (respectively, m−k ) the average magnetization

of the path Pk conditioned on the leftmost vertex being �xed to ‘+’ (respectively, ‘−’). We have
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p+
1 = r1 = λ, p−1 = 1 and m+

1 = 1,m−1 = 0, and the following recurrences for k ≥ 1:

p+
k = λ(α1p

+
k−1 + p−k−1) (7.21)

p−k = α2p
−
k−1 + p+

k−1 (7.22)

rk = λ
α1rk−1 + 1

α2 + rk−1

(7.23)

m+
k = 1 +

α1m
+
k−1p

+
k−1 +m−k−1p

−
k−1

α1p
+
k−1 + p−k−1

(7.24)

m−k =
α2m

−
k−1p

−
k−1 +m+

k−1p
+
k−1

α2p
−
k−1 + p+

k−1

(7.25)

Under the condition α1α2 > 1, one can prove using a simple induction that for all k ≥ 1,

m+
k −m

−
k > 0, and that when (α1−1)λ−(α2−1) > 0 (respectively, when (α1−1)λ−(α2−1) < 0),

the rk form a strictly increasing (respectively, strictly decreasing) sequence, and hence are all

distinct.

For reasons that will become clear shortly, we need the rk to be distinct, and hence we will

need to handle the remaining case (α1 − 1)λ− (α2 − 1) = 0 specially. We observe that unless

α1 = α2 = 1, or α1 = α2 and λ = 1, both of which are excluded in the hypothesis of the theorem,

we cannot have both (α1 − 1)λ− (α2 − 1) = 0 and (α2
1 − 1)λ− (α2

2 − 1) = 0. To take advantage

of this, we will modify P (k) by replacing each edge in P (k) by two parallel edges. We call the

resulting graph P (k)′, and again de�ne the quantities p+
k , p

−
k .rk,m

+
k and m−k by recursion on

P (k)′. Notice that for k = 1, these quantities are the same as those for P (k); however for k ≥ 2,

we now need to modify the recurrences above by replacing α1 and α2 by α2
1 and α2

2 respectively.

As before, we have m+
k − m−k > 0 for all k ≥ 1. Further, by our observation, the rk form a

strictly monotone sequence. Thus, in the case (α1 − 1)λ− (α2 − 1) = 0, we rede�ne G(k) to use

the paths P (k)′ in place of P (k). In what follows, we will assume that G(k) are appropriately

de�ned taking into account the values of λ, α1 and α2, and will not explicitly keep track of the

above modi�cation. Notice that the maximum degree of G(k) is max(∆ + 1, 3), where ∆ is the

maximum degree of G.

Given the above de�nition of G(k), we have the relations

ZS(G(k), α1, α2, λ) = (α2p
−
k + p+

k )nZS(G,α1, α2, λk) (7.26)

MS(G(K), α1, α2, λ) = nm−k + (m+
k −m

−
k )MS(G(k), α1, α2, λk), (7.27)

where λk = λ(α1rk + 1)/(α2 + rk). Since the rk form a strictly monotone sequence, it follows

that (since α1α2 > 1) so do the λk. In particular, all the λk are distinct.

Proof of Theorem 7.12. Proceeding as in the proof of Theorem 7.10, we �x any λ > 0 andα1, α2 > 0
satisfying α1α1 > 1, and suppose that there exists a polynomial time algorithm B which, given a

connected graph H of maximum degree ∆ ≥ 4, outputs MS(G,α1, α2, λ).
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Now consider any connected regular graphG = (V,E) of degree d := ∆−1 ≥ 3 on n vertices.

From the translation in eq. (7.20), we see that for any λ > 0,

ZS(G,α1, α2, λ) = α
|E|
2 ZI

(
G, β, λ

(
α1

α2

)d/2)
, and

MS(G,α1, α2, λ) = MI

(
G, β, λ

(
α1

α2

)d/2)
,

where β = 1/
√
α1α2 < 1. Theorem 6.4 along with our main Theorem 7.3 then implies that if

we can e�ciently evaluate MS(G,α1, α2, z) at 2n+ 2 distinct values of z using our hypothetical

algorithm B, we can uniquely determine the coe�cients of ZS(G,α1, α2, z), and hence also the

value of ZS(G,α1, α2, 1), in polynomial time. In view of Theorem 7.11, this would imply that

the problem of computing the mean magnetization in graphs of maximum degree at least 4 for

parameter values α1, α2 and λ is #P-hard.

In order to evaluate MS(G,α1, α2, z) at 2n + 2 distinct values of z, we instead compute

MS(G(k), α1, α2, λ), for 1 ≤ k ≤ 2n + 2, using our hypothetical algorithm B. Notice that this

can be done since the construction of G(k) implies that its maximum degree is one more than the

maximum degree ofG. Using eqs. (7.21) to (7.25) and (7.27), and the fact thatm+
k −m

−
k > 0 for all

k, we can then determine MS(G,α1, α2, λk) in polynomial time. Since λk is a strictly monotone

sequence as shown in the discussion above, these evaluations are at distinct values of z, and hence

the reduction is complete.

We now extend our results to the case of planar graphs of bounded degree. Our starting point

is the following planar graph version of Theorem 7.11, again due to Cai and Kowalczyk [CK10].

Theorem 7.13 ([CK10, Theorem 1]). Fix α1, α2 > 0 with α1α2 > 1, α 6= α2 and ∆ ≥ 3. The
problem of computing the partition functionZS(G,α1, α2, 1) on planar∆-regular graphs is #P-hard.

In order to extend Theorem 7.12 to planar graphs, we consider the cases α1 6= α2 and α1 =
α2 = α separately. In case α1 6= α2, we proceed exactly as in the proof of Theorem 7.12 given

above, except that we start with a planar d-regular graphG in the reduction, and use Theorem 7.13

instead of Theorem 7.11 as our starting hardness result. Since G is planar, so are the G(k), and

hence we see that computing MS(H,α1, α2, λ) on planar graphs H , for α1, α2 and λ satisfying

the condition α1 6= α2 in addition to the conditions of Theorem 7.12 is #P-hard.

We now turn to the case α1 = α2 = α > 1 (with λ 6= 1). In this case, we start with the fact

that computing ZS(G, 2α, α
2
, 1) on planar ∆-regular graphs is #P-hard (this is a direct corollary of

Theorem 7.13) . We again proceed exactly as in proof of Theorem 7.12, starting with an arbitrary

planar (∆− 1)-regular graph G (for ∆ ≥ 4), and noting that the G(k) are planar too. Notice that

the proof then shows that assuming the existence of a polynomial time algorithm to compute the

magnetization in planar graphs of maximum degree ∆, we can evaluate the coe�cients of the

polynomial Zs(G,α, α, z), and hence also the quantity ZS(G,α, α, 2d). However we then use the
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translation to the Ising model given above to see that

ZS(G,α, α, 2d) =
(α

2

)|E|
ZS

(
G, 2α,

α

2
, 1
)
,

which shows that we can also evaluate ZS(G, 2α, α
2
, 1) in polynomial time. This establishes the

#P-hardness in the remaining case α1 = α2 (with λ 6= 1).

We thus see that in Theorem 7.12, the input graphs can be restricted to be planar, and the same

hardness result still holds.

7.5 Proof of Theorem 7.4
As indicated earlier, Theorem 7.4 is an easy corollary of the following result of Newman [New74]

(restated in our notation).

Theorem 7.14 ([New74, Theorem 3.2 and eq. 3.5]). Consider the ferromagnetic Ising model
on a graph G = (V,E) on n vertices, where we allow the edge potentials also to be variable, with
the condition that the edge potential βuv on every edge uv satis�es 0 < βuv < 1. Let (zv)v∈V be a
collection of complex vertex activities such that |zv| > 1 for all v ∈ V . Then,

<
(
M(G, (βuv)uv∈E , (zv)v∈V )

)
>
n

2
.

Remark 7.6. Note that the main di�erence between the above theorem and Theorem 7.4 is that

the above theorem only applies when all the vertex activities have magnitudes strictly larger than

1, while Theorem 7.4 also allows vertex activities with magnitude 1.

We now proceed with the proof of Theorem 7.4.

Proof of Theorem 7.4. Let w be any weight assignment (not necessarily legal) of positive integral

weights to the vertices of G. Consider the graph H obtained from G by appending to each vertex

v of G a chain Cv of w(v) − 1 vertices. Further, we let the edge potential be β on all edges of

H which were present in G, and 0 < γ < 1 on all the edges which are either part of some Cv,
or connect a vertex v to its associated chain Cv. Let (yv)v∈V be a set of vertex activities on V .

Henceforth, we will drop the subscript and refer to this set of activities as (yv). With a slight abuse

of notation, we also denote by (yv) the collection of activities on H such that for any vertex x in

H such that x ∈ Cv for some v ∈ V , we have yx = yv.
Now consider any collection of activities such that |yv| > 1 for all v ∈ V . From Theorem 7.14,

we get that for any γ ∈ (0, 1),

< (M(H, {β, γ} , (yv))) >
n

2
. (7.28)
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Since |yv| > 1 for all v, the Lee-Yang theorem
4

implies that both ZI(H, {β, γ} , (yv)) as well as

Zw(G, β, (yv)) are non-zero (when 0 < γ < 1). We can therefore take the limit γ → 0 in eq. (7.28)

to get

n

2
≤ lim

γ→0
< (M(H, {β, γ} , (yv))) = <

(
Z ′w(G, β, (yv))

Zw(G, β, (yv))

)
= < (M(G, β, (yv))) . (7.29)

We now take a sequence

((
y`v
))∞
`=1

of activity assignments such that

∣∣y`v∣∣ > 1 for all ` and v and

such that lim y`v = zv . Since we assume in the hypothesis of the theorem that Zw(G, β, (zv)v∈V ) 6=
0, we can take the limit `→∞ in eq. (7.29) to get

n

2
≤ lim

`→∞
<
(
M
(
G, β,

(
y`v
)))

= < (M(G)) ,

which completes the proof.

7.6 An alternative analytical proof of Theorem 7.3
We conclude with an alternative, analytical proof of the following, slightly weaker version of

Theorem 7.3. This section is based on joint work with Mario Szegedy.

Theorem 7.15. Let G = (V,E) be a connected undirected graph on n vertices, and assume 0 <
β < 1. If (yv)v∈V are complex numbers such that |yv| = 1 for v ∈ V , thenDGZ(G, β, (yv)v∈V ) 6= 0.

Remark 7.7. By setting all yv to be equal, we see from the above theorem that the derivative of

the (univariate) partition function has no zeros on the unit circle. Combined with the Lee-Yang

theorem, this establishes that the partition function and its derivative have no common zeros, and

hence the above theorem is also su�cient for the purposes of our complexity theoretic results.

As before, we observe that given any vertex u ∈ V , we can decompose the partition function

as

Z(G, β, (zv)v∈V ) = βdeg(u)Z
(
G− u, β,

(
z+
v

)
v∈V−{u}

)
zu

+ Z
(
G− {u} , β,

(
z−v
)
v∈V−{u}

)
, (7.30)

where z+
w = z−w = zw when w 6∼ u in G, and z+

w = zw/β, z
−
w = βzw when w ∼ u in G. We will

denote the linear and constant coe�cients in the above decomposition as Au(G, β, (zv)v∈V−{u})
and Bu(G, β, (zv)v∈V−{u}) respectively, so that Z = Auzu +Bu.

It then follows from the �rst part of Lemma 7.9 that for any connected undirected graph

G = (V,E), 0 < β < 1, and a collection of vertex activities (zv)v∈V such that |zv| = 1 for all

v ∈ V , the coe�cient Au de�ned above is non-zero. We can now prove Theorem 7.15.

4
Although we stated Theorem 6.2 only for uniform edge potentials, Asano’s proof [Asa70] in fact supports our

current conclusion with variable edge potentials and a possibly disconnected graph.
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Proof of Theorem 7.15. Let G and β be as in the hypotheses of the theorem. Suppose now that

there exists a point (yv)v∈V such that |yv| = 1 for all v, and DGZ(G, β, (yv)v∈V ) = 0. We will

show that this leads to a contradiction to the Lee-Yang theorem.

We begin by proving that that Z(G, β, (yv)v∈V ) = 0 as well. To see this, de�ne the univariate

polynomial

f(t) ··= ZG(G, β, (tyv)v∈V ),

and observe that f ′(1) = DGZ(G, β, (yv)v∈V ) = 0. Further, the Lee-Yang theorem implies that

f(t) 6= 0 when |t| 6= 1, so that all the zeros of f lie on the unit circle. From the Gauss-Lucas

lemma, we then see that the derivative f ′ can be zero at a point α on the unit circle if and only if

f itself is 0 at the that point. Thus, since f ′(1) = 0, we also have f(1) = Z(G, β, (yv)v∈V ) = 0.

We now consider the function

g(t) ··= Z(G, β,
(
etyv

)
v∈V ).

Note that g′(t) = DGZ(G, β, (etyv)v∈V ), so that the preceding discussion implies that g(0) =
g′(0) = 0. Since g is entire and not identically zero, we can then conclude from the power

series development of g around 0 that there exist ε, δ > 0 such that for 0 < |t| ≤ ε, we have

0 < |g(t)| ≤ δ |t|2.

Now, �x any vertex u in G, and consider the decomposition of the partition function in terms

of the polynomials Au and Bu described above. From the remark just preceding the proof, we

have Au(G, β, (yv)v∈V−{u}) 6= 0. Since Au is a polynomial, continuity implies that there exist

positive ε1 and δ1 such that when |yv − xv| ≤ ε1 for all v ∈ V − {u}, we have

|Au(G, β, (xv)v∈V−{u})| ≥ δ1.

We now choose

t = min

(
1, ε,

ε1
2
,
δ1

2δ

)
> 0,

and let xv = etyv for all v ∈ V . Note that |xv| = et ≥ 1 + t. We also have |yv − xv| = et − 1 ≤
2t ≤ ε1 (since t ≤ min (1, ε1/2)). Denoting Au(G, β, (xv)v∈V−{u}) by ω, we see from the last

paragraph that ω ≥ δ1. Further, we have Z(G, β, (xv)v∈V ) = g(t), so that if (zv)v∈V is collection

of vertex activities such that zv = xv for v 6= u, the decomposition in eq. (7.30) implies that

Z(G, β, (zv)v∈V ) = g(t) + ω(zu − xu).

Thus, if we choose zu = xu − g(t)/ω, we get a zero of the partition function. We now show that

|zv| > 1 for all v so that this is a contradiction to the Lee-Yang theorem. When v 6= u, we have

|zv| = |xv| ≥ 1 + t > 1. For zu, we have (using t ≤ ε followed by t ≤ δ1/(2δ))

|zu| =
∣∣∣∣xu − g(t)

ω

∣∣∣∣ ≥ |xu| − |g(t)|
|ω|

≥ 1 + t− δt2

δ1

≥ 1 +
t

2
> 1,

which completes the proof.
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Chapter 8

The average monomer count: The
Heilmann-Lieb theorem

This chapter carries forward the program introduced in Chapter 6 with a proof of the following

hardness result for the average monomer count in the monomer-dimer model.

Theorem 8.1. For any �xed λ > 0, the problem of computing the average number of monomers
(equivalently, the average size of a matching) in the monomer-dimer model on connected graphs
with edge weights in the set {1, 2, 3} is #P-hard. Moreover, the problem remains #P-hard even when
the input is restricted to graphs of maximum degree at least 5.

Remark 8.1. Note that our hardness result requires a small �nite number (three) of di�erent

values for the edge weights. However, this requirement can be removed if G is allowed to have

parallel edges; the theorem then holds for any single �xed non-zero edge weight (including the

uniform case in which all edge weights are 1).

As in the case of the ferromagnetic Ising model, our strategy is to exploit results about the

location of zeros of the partition function and its derivatives, the appropriate analog here being the

Heilmann-Lieb theorem (Theorem 6.3). Unlike the case of the Lee-Yang theorem, the Heilmann-

Lieb theorem already guarantees that the partition function and its derivative do not have any

common zeros, but only does so for the special case of Hamiltonian graphs, i.e., graphs that

contain a Hamiltonian path. In fact, Heilmann and Lieb [HL72] also present examples of connected
graphs G for which ZM has repeated zeros, so we cannot hope to prove an analog of Theorem 7.3

in this case. However, we will capitalize on their result for Hamiltonian graphs by adapting

existing #P-hardness reductions for ZM in such a way that the instances of ZM that appear in

the reduction always contain a Hamiltonian path. Speci�cally, we will give a reduction from the

problem Monotone 2-SAT of counting satisfying assignments of a monotone 2-CNF formula to

computing ZM in Hamiltonian graphs G. The reduction is an elaboration of Valiant’s original

#P-completeness proof for the permanent [Val79a], and is the subject of the rest of this chapter.



CHAPTER 8. THE AVERAGE MONOMER COUNT: THE HEILMANN-LIEB THEOREM 78

8.1 The monomer-dimer partition function in
Hamiltonian graphs

We now prove the following hardness result for the exact computation of the monomer-dimer

partition function in Hamiltonian graphs.

Theorem 8.2. There exists a polynomial time algorithmAwhich, when given as input aMonotone
2-SAT formula φ, outputs a weighted graph G with the following properties:

1. The weights in G are drawn from the set {1, 2, 3}.

2. Suppose φ has ν variables and µ clauses. Then, given the total weightW of perfect matchings
in G, the number of satisfying assignments of φ can be determined in polynomial time from
W , µ, and ν.

3. G contains a Hamiltonian path.

We observe here that Valiant’s reduction from #3-SAT [Val79a] can be easily modi�ed so that

it satis�es properties 1 and 2. However, it is property 3 that is crucial for our purposes, since

it allows the use of Theorem 6.3. We �rst show how Theorem 8.2 can be used to immediately

prove a slightly weaker version of Theorem 8.1, which shows hardness only on general graphs.

The proof showing hardness for bounded degree graphs is exactly analogous to that for the Ising

model given in the last chapter, and can be found in Section 8.2.

Proof of Theorem 8.1. Fix any λ > 0, and suppose that there exists a polynomial time algorithm B
which, given a connected graphH , with edge weights in the set {1, 2, 3} outputs U(H, (γe)e∈E, λ).

In the following, we suppress the dependence on edge weights (γe)e∈E for clarity of notation.

Given a Monotone 2-SAT formula φ, we can then produce the graph G = A(φ) in polynomial

time. Let n be the number of vertices in G. Since G contains a Hamiltonian path, Theorem 6.3

implies that ZM(G, z) and DZM(G, z) have no common zeros. Thus, being able to use algorithm

B to evaluate U(G, z) at 2n+ 2 di�erent values of z would allow us to uniquely determine the

coe�cients of ZM(G, z) in polynomial time by rational interpolation (Theorem 6.4), since we

already know that the coe�cient of zn is 1. This would allow us to obtainW (which is the constant

term in ZM(G, z)), and hence, by property 2, also the number of satisfying assignments of φ,

in polynomial time. This would show that the problem of computing U(G, λ) is #P-hard (since

#Monotone 2-SAT is #P-hard [Val79b]).

However, B only allows us to evaluate U(G, z) at z = λ. In order to “simulate” other values of

λ, we consider the graph G(k) obtained by attaching k new vertices to each vertex of G with unit

weight edges. We then have

ZM(G(k), λ) = λnkZM(G, λk); (8.1)

U(G(k), λ) = nk +
λ2 − k
λ2 + k

U(G, λk), (8.2)
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where λk = λ+ k/λ. Thus, by choosing 2n+ 2 di�erent values of k, none of which is equal to

λ2
, we can determine U(G, z) at 2n + 2 di�erent values of z by running B on G(k) and using

eq. (8.2). This completes the proof.

In the rest of this section, we prove Theorem 8.2 in a sequence of steps. For simplicity, we will

describe our reduction in terms of cycle covers in a directed graph rather than perfect matchings

in an undirected graph (this also allows us to directly compare our gadget construction with that

of Valiant [Val79a] at various steps). Given a weighted directed graph G = (V,E), we de�ne

the undirected bipartite graph Bip(G) = (V × {0, 1} , E ′) where the edge {(x, 0), (y, 1)} is in

E ′ with weight γe if and only if (x, y) is an edge in E with the same weight. Note that a subset

S ⊆ E forms a cycle cover of weight w in G if and only if the corresponding subset of edges

S ′ = {{(x, 0), (y, 1)} |(x, y) ∈ S} forms a perfect matching of weight w in Bip(G). In particular,

the total weight of all perfect matchings in Bip(G) is the same as the total weight of all cycle

covers of G.

Later, while arguing about the existence of Hamiltonian paths in graphs of the form Bip(G),
we will �nd it convenient to use the following short-hand notation for simple paths in the graph

Bip(G) in terms of the edges and vertices of G. Consider any simple path (x1, 1), (x2, 0), (x3, 1),

(x4, 0), . . . (xl, 1), where we have assumed for simplicity that l is odd. The edges correspond-

ing to this path in G are x1 ← x2, x2 → x3, x3 ← x4, . . . xl−1 → xl. Notice that alternate

edges are traversed in reverse in this representation. The path can therefore be represented

as x1 ← x2 → x3 ← x4 → . . . → xl. Similarly for a path starting on the other side, say

(x1, 0), (x2, 1), (x3, 0), (x4, 1), we have the representation x1 → x2 ← x3 → x4. Notice that a

path p2 starting at a vertex v in this notation can be appended to a path p1 ending at v if and only

if the arrows at v in p1 and p2 respectively are in opposite directions. We will refer to this notation

as the alternating path representation. Further, given an alternating path representation of a path,

we will refer to edges going right (such as x1 → x2 in the last example) as forward edges, and

edges going left (such as x2 ← x3 in the above example) as backward edges.

8.1.1 Overview of the reduction
We now look at the basic structure of our reduction, which is an elaboration of Valiant’s reduc-

tion [Val79a] as modi�ed by Papadimitriou [Pap94] and presented in [AB09]. Recall that given

a Monotone 2-SAT formula φ, the reduction needs to produce in polynomial time a directed

graph G such that the number of satisfying assignments of φ can be easily determined from the

total weight of cycle covers of G, and such that Bip(G) has a Hamiltonian path. Our �rst step is

to introduce a shared variable in all the clauses of φ: this shared variable will be useful later in

showing the existence of a Hamiltonian path through the gadget.

Observation 8.3. Let φ =
∧µ
i=1 ci be a Monotone 2-SAT formula with µ clauses, ν variables, and

s satisfying assignments. Let τ be a variable not appearing in φ and consider the 3-SAT formula

φ′ =

µ∧
i=1

(τ ∨ ci).
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The number of satisfying assignments of φ′ is s′ ··= 2ν + s.

Notice that each clause in φ′ has exactly three variables, and that the number of satisfying

assignments of φ can be easily determined given the number of satisfying assignments of φ′.
We start the construction of G by creating a separate variable gadget (see Figure 8.1) for each

of the variables τ , x1, x2, . . ., xν occurring in φ′. This gadget has an external dotted edge for each

appearance of the variable in the formula, and is designed so that any cycle cover must either use

all the dotted edges in a particular gadget, or none of them.

Figure 8.1: Variable gadget

As done in Valiant’s reduction, we then introduce a clause gadget (see Figure 8.2) for each

clause in φ′. Each clause gadget has one external dotted edge for each literal in the clause, and is

designed so that no cycle cover can include all the dotted edges; and so that for any other subset

of the dotted edges, there is exactly one cycle cover including all the edges in the subset and no

others. For each clause gadget, we label each of the three dotted edges in the gadget with one of

the three literals appearing in the clause. However, in this step, we ensure that in each gadget

the b→ c dotted edge is the one labeled with the literal τ , since this is needed to show that the

�nal construction has a Hamiltonian path. We now “pair” each dotted edge appearing in a clause

gadget with a dotted edge corresponding to the same literal in a variable gadget, so that each

dotted edge appears in exactly one pair.

We �rst consider cycle covers which obey the constraint that they must choose exactly one

edge from each such pair. We claim that the number of cycle covers satisfying this “pairing”

constraint equals the number of satisfying assignments of φ′. To see this, we associate a truth

assignment with every cycle cover by setting the variable v to true if the cycle cover uses all the

dotted edges in the variable gadget for v, and to false if it uses none of the dotted edges. Notice

that because of the pairing constraint, a cycle cover is uniquely determined by specifying its

assignment. Further, given the above properties of the clause gadget, exactly those cycle covers

are permitted whose associated assignments are satisfying assignments of φ′.
We now enforce the “pairing” constraint referred to above using a gadget similar to Valiant’s

XOR-gadget. The XOR-gadget has two ports (labeled a and d), each of which admits one incoming

and one outgoing edge (see Figure 8.3). To ensure the “pairing” constraint for a pair of dotted edges

e1 → f2 and e2 → f2, we replace them by the incoming-outgoing pair of a single XOR-gadget (see

Figure 8.3b). The gadget has the property that after the replacement, the weight of every cycle

cover which would have included exactly one of the two dotted edges e1 → f1 and e2 → f2 in

the original graph gets multiplied by a factor of 2 (for each replacement made), while the weight
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0

a

b c

Figure 8.2: 3-SAT clause gadget

of any cycle covers not satisfying the pairing constraint becomes 0 (see Section 8.3 for a proof).

The total weight of all cycle covers in the �nal graph so obtained is therefore 2ls′, where s′ is the

number of satisfying assignments and l is the total number of literals in φ′ (since one XOR-gadget

is needed to replace the pair of dotted edges for each literal). Further, replacing a pair of edges by

a XOR gadget does not change the in-degree or out-degree of any vertex already present.

Note that the XOR-gadget has edges of weight −1, which are not permitted in the monomer-

dimer model. This can be remedied by replacing the −1 weight edges by a large chain of edges (of

length, say, m2
where m is the number of edges in the original graph) of weight 2, with individual

vertices in the chain having self-loops (of weight 1). The total weight of cycle covers in the new

graph modulo 2m
2

+ 1 then gives the total weight of cycle covers in the original graph.

This last step of replacing the −1 edge by a long chain presents a challenge since we will

need to include all the vertices in the chain in our Hamiltonian path (equivalently, all −1 weight

edges must appear in the Hamiltonian path). For this reason, we cannot use Valiant’s XOR-gadget

directly. Our XOR-gadget, on the other hand, is such that the −1 weight edges can always be

included in our Hamiltonian path. However, we have to be careful in the orientation of the

XOR-gadgets in order to be able to construct a Hamiltonian path later: when replacing a pair of

dotted edges one of which belongs to τ ’s variable gadget, we orient the XOR-gadget so that the

incoming edge at vertex a in the XOR-gadget comes from the variable gadget. At all other pairs,

we orient the XOR-gadgets so that the incoming edge at the vertex a comes from a clause gadget.

8.1.2 Analyzing the reduction
We now proceed to analyze the output of the reduction to complete the proof of Theorem 8.2.

The use of XOR-gadgets to enforce the “pairing” constraint as described above introduces a factor

of 2 for each literal appearing in the clause, and therefore the total weight of cycle covers after

this step is 23µs′ ≤ 26µ
. To get rid of the −1 weight edges in the XOR-gadgets, we replace each

such edge by a chain of κ = 6µ− 1 vertices with self-loops of weight 1 and connecting edges of

weight 2. We call this �nal graph G. Since the initial total weight of cycle covers was at most 26µ
,

the weight of cycle covers in G (and hence the total-weight of all perfect matchings in Bip(G)),
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(b) Use of XOR-gadget

Figure 8.3: Replacing dotted edges e1 → f1 and e2 → f2

modulo 2κ+1 + 1, is exactly 23µs′. Since all steps in the construction of Bip(G) starting from

φ can be done in time polynomial in the representation size of φ, this proves parts 1 and 2 of

Theorem 8.2.

We now proceed to prove part 3, that is, that Bip(G) has a Hamiltonian path. We will use the

alternating path notation described above in order to keep our discussion in terms of the vertices

and edges ofG, and we will call this representation of a Hamiltonian path in Bip(G) an alternating
Hamiltonian path. In an alternating Hamiltonian path, each vertex of G is visited exactly twice,

and the length of the alternating path between the two visits is odd. This is equivalent to saying

that all vertices must appear exactly twice in an alternating Hamiltonian path, with all vertices

except the �rst vertex in the path having one incoming forward edge, and one incoming backward
edge.

Our gadgets so far are designed to have alternating Hamiltonian paths which can be pieced

together to form an alternating Hamiltonian path for G, and hence, we only need to list these

paths and show how to stitch them together. We begin with alternating Hamiltonian paths in the

clause gadget.

Observation 8.4. The clause gadget in Figure 8.2 has the alternating Hamiltonian path

c← 0→ a← c→ b← a→ 0← b

which uses all the dotted edges except the b→ c dotted edge.

Recall that in the construction of the reduction, we ensured that the new variable τ was

associated with the b → c dotted edge in each clause gadget. This will be used to connect the

above alternating Hamiltonian path in di�erent clause gadgets via connections to the variable

gadget for τ at the b→ c edge. Also, in the �nal construction, the dotted edges in the alternating

Hamiltonian path will be replaced by detours into the associated XOR-gadget.

We now consider the XOR-gadget in Figure 8.3a. It turns out that in some cases, we will need

to traverse the XOR-gadget partially, so that a path enters at a via a backward edge, uses the

a→ d edge, and then leaves via a backward edge at d. In order to cover the rest of the vertices,



CHAPTER 8. THE AVERAGE MONOMER COUNT: THE HEILMANN-LIEB THEOREM 83

we will then need to construct an alternating path that enters at a and leaves at d via forward
edges, and covers all the vertices except a and d twice. Another complication with the XOR-gadget

is the presence of two −1 weight edges which need to be replaced with chains of vertices with

self-loops. However, this will not be a problem if we can ensure that both of the alternating paths

described above use both the −1 weight edges, since an edge in an alternating path can always

be replaced by a chain of vertices with self-loops. We now show that, as we claimed above, our

modi�ed XOR-gadget satis�es all of these conditions.

Observation 8.5. The XOR-gadget in Figure 8.3a has the alternating Hamiltonian path

a← b→ b← a→ d← c→ c← d.

The gadget also has the following alternating path which enters at a and leaves from d using forward
edges, but which does not otherwise visit these vertices:

a← b→ b← c→ c← d.

Moreover, both these paths use the −1 weight edges b→ a and c→ c.

Remark 8.2. Since the XOR-gadget is connected to variable gadgets (except those for variable τ )

in G via an outgoing edge at a and an incoming edge at d, it will be possible to replace the a→ d
edge in the alternating Hamiltonian path above by a detour into the connected variable gadget

when constructing an alternating Hamiltonian path in G. Similarly, it will be possible to use the

a→ d edge as a replacement for the dotted edge in the variable gadget that was replaced by the

XOR-gadget, at the cost of visiting the vertices a and d once. The role of the second alternating

path is to visit the remaining vertices in a XOR-gadget which has already been partially traversed

in this way.

Remark 8.3. As pointed out above, it does not seem possible to include the two −1 weight

edges in both the above alternating paths in Valiant’s original construction. This necessitated the

construction of our new XOR-gadget in which the −1 weight edges are part of both the paths.

The edges in our construction are the same as those in Valiant’s construction, but the weights

have been chosen di�erently.

We now consider the variable gadget shown in Figure 8.1. We �rst work as if the dotted edges

are present. In this case, for any vertex v in the gadget except the leftmost vertex, we can construct

an alternating Hamiltonian path which covers all the vertices in the gadget, uses all the dotted

edges except the one between v and its predecessor and can be appended to an alternating path

that enters via a forward edge at v and leaves via a forward edge at v’s predecessor. Now consider

such a variable gadget used for a variable other than the special variable τ (we will see how to

traverse the variable gadget for the special variable τ in the next paragraph). When the dotted

edges are replaced by a XOR-gadget, this alternating path can still be traversed as described in

the remarks following Observation 8.5, by instead following a forward edge to the d vertex of the

XOR-gadget, following the a→ d edge in reverse, and then entering the variable gadget at the
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successor of v via the outgoing edge at the a vertex of the XOR-gadget. It is for this reason that

we enforced above the condition that when a XOR-gadget is connected to a variable gadget for a

variable other that τ , it is oriented so that the incoming external edge at its d vertex comes from

the variable gadget.

We now start constructing the alternating Hamiltonian path in G starting at the left-most

vertex in the variable gadget for τ . If all the dotted edges were present, this gadget is just a chain of

vertices, and hence there is an alternating Hamiltonian path that covers all its vertices. However,

each dotted edge has been replaced by an outgoing edge to the a vertex and an incoming edge

from the d vertex of a XOR-gadget. Thus, instead of following the dotted edges, our alternating

path will take a detour into the corresponding XOR-gadget, and after traversing several other

vertices, return via its d vertex to visit the other vertices in the variable gadget for τ . Thus, we

need to show that these detours into the XOR-gadgets can be used to make the alternating path

go through all the other vertices in G twice while respecting the required parity constraints.

We consider one such detour. We suppose that the XOR-gadget in question connects to a clause

gadget C for the clause τ ∨ v1 ∨ v2. While following the alternating path for the XOR-gadget, we

bypass the a→ d edge of the XOR-gadget and instead take a detour into the c vertex of C . We

then start following the alternating path in Observation 8.4. If the dotted edges c→ a and a→ b
(corresponding to the literals v1 and v2, respectively) were present, we would be able to complete

an alternating path covering all vertices in C and then return via a forward edge from the b vertex

of C into the d vertex of the XOR-gadget. We could then complete the alternating Hamiltonian

path in the XOR-gadget, and return via a forward edge into the variable gadget for τ . However,

since the dotted edges have been replaced by XOR-gadgets, we would need to take detours into

the XOR-gadgets replacing them. Suppose, without loss of generality, that we are trying to replace

the dotted edge c→ a, corresponding to the literal v1 (the procedure for replacing the dotted edge

a→ b corresponding to the literal v2 is exactly the same). At this point there can be two cases:

Case 1 Suppose that the vertices of the variable gadget for v1 have still not been covered by our

growing alternating Hamiltonian path. Consider the XOR-gadget X replacing the c→ a dotted

edge of C . We consider the alternating Hamiltonian path in Observation 8.5 starting at the a
vertex of X . We follow this path until we need to use the a→ d edge. At this point, we take a

detour into the variable gadget for v1 via a forward edge at vertex a ofX . The vertex uwe connect

to in the variable gadget cannot be a leftmost vertex, since its predecessor u′ is connected to vertex

d of X via a u′ → d edge. As discussed above, we will therefore get an alternating Hamiltonian

path for the vertex gadget which will leave the gadget through the u′ → d edge (though this will

end up using the a→ d edges in all other XOR-gadgets corresponding to occurrences of v1). We

can then complete the alternating Hamiltonian path for X , and this gives us an alternating path

starting with a backward edge at vertex a of X , ending with a backward edge at vertex d of X ,

and covering all vertices in X and the variable gadget of v1, while also using up the a→ d edge

in XOR-gadgets corresponding to all other occurrences of v1. We then use the forward edge from

vertex c of C to vertex a of X and the forward edge from vertex d of X to vertex a of C to replace

the dotted c→ a edge by the above alternating path.
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Case 2 Suppose that the variable gadget for the vertex v1 has already been covered by our

growing Hamiltonian path. Then, as seen in Case 1, in the XOR-gadget X corresponding to the

c→ a edge, the vertex a has already been visited using a backward edge, while d has already been

visited via a forward edge. Consider the second alternating path in Observation 8.5. Traversing

this alternating path from a to d will satisfy the remaining covering requirements for all the

vertices in X . Thus, as in Case 1 above, we can replace the c→ a dotted edge in the alternating

Hamiltonian path for C by an edge from vertex c of C to vertex a of X and an edge from vertex d
of X to vertex a of X . As before, this ensures that the vertices of this XOR-gadget are covered

while traversing the alternating Hamiltonian path for C .

Observe that since each clause gadget is connected to the variable gadget for τ , and since all

other variable and XOR-gadgets are connected to at least one of the clause gadgets, the above

alternating path eventually covers all of the individual gadgets. This completes the proof for the

existence of the alternating Hamiltonian path in G, and hence the proof of Theorem 8.2.

8.2 Hardness for bounded degree graphs
As in the case of the Ising model, our proof of Theorem 8.1 realized di�erent values of λ required

for the interpolation by attaching k extra vertices to each vertex of G, which entailed a large

increase in the degree of G. In this section, we show that the construction used in the case of the

Ising model can me recycled to prove the stronger, degree-bounded version of Theorem 8.1.

As before, we de�ne Pk to be a path of k vertices. We denote by yk the partition function

ZM(Pk, λ), where we assume that all edges in Pk have weight one, and suppress the dependence

on edge weights for clarity of notation. Note that y1 = λ. We further de�ne y0 = 1. We then have

the following recurrence for yk, which shows that it can be computed in time polynomial in k:

yk = λyk−1 + yk−2. (8.3)

Notice that yk is a function of λ. We now show that the value of its derivative with respect to λ
can also be computed in time polynomial in k via the following recurrence: ẏ0 = 0, ẏ1 = 1, and

ẏk = yk−1 + λẏk−1 + ẏk−2. (8.4)

Here, we use the dot notation for the derivative with respect to λ.

As before, given a connected graph G, we de�ne G(k) as the graph obtained by attaching to

each vertex v of G a di�erent instance of the path Pk, such that v is connected to the “leftmost”

vertex of Pk via an edge. The maximum degree of G(k) is thus one more than the maximum

degree of G. We now consider the monomer-dimer model on the graphs G(k). We have

ZM(G(k), λ) = ynkZM(G, λk), (8.5)

where n is the number of vertices in G and λk = yk+1/yk. We also have

U(G(k), λ) = nλtk + λ(tk+1 − tk)U(G, λk), (8.6)
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where tk = ẏk/yk. It turns out that the sequence (λ2k)k≥0 is strictly increasing and hence consists

of distinct values, and further that t2k+1 − t2k > 0 for all k. This follows easily from the following

explicit solutions for the yk and the λk:

yk =
ξk+1 − ηk+1

ξ − η
; λk =

ξk+2 − ηk+2

ξk+1 − ηk+1
,

where

ξ =
1

2

(
λ+
√
λ2 + 4

)
> 0; η =

1

2

(
λ−
√
λ2 + 4

)
< 0.

Notice that tk+1 − tk > 0 for even k implies that for such k, we can determine U(G, λk) given

U(G(k), λ), using equations (8.3), (8.4) and (8.6). We can now complete the proof of Theorem 8.1

for the bounded degree case.

Proof of Theorem 8.1. As in the proof for the case of unbounded degree graphs (see page 78), we �x

any λ > 0, and suppose that there exists a polynomial time algorithm B which, given a connected

graph H with edge weights in the set {1, 2, 3}, and of maximum degree ∆ ≥ 5, outputs U(H, λ)
(recall that we are suppressing explicit dependence on the edge weights for clarity of notation).

Given a Monotone 2-SAT formula φ, we then produce the graph G = A(φ) in polynomial time.

Notice that in the construction of G as given in Section 8.1.1, each vertex has degree at most 4:

this corresponds to the maximum of the in-degrees and the out-degrees over all vertices in the

directed version of the reduction.

As argued in the proof for the case of unbounded degree graphs, Theorem 6.3 and the existence

of a Hamiltonian path in G together imply that if we could use algorithm B to evaluate U(G, z)
at 2n+ 2 di�erent values of z, then we can determine the number of satisfying assignments of φ
in polynomial time. This would in turn imply that computing U(H, λ) for graphs H of maximum

degree at least 5 is #P-hard.

As before, in order to realize other values of λ, we consider the graphs G(k) (as described in

this section), for k = 0, 2, 4, . . . 4n + 4. Notice that the maximum degree of G(k) is one more

than that of G, and hence is at most 5. Further, as argued in the remarks following eqs. (8.5) and

(8.6), these choices of k ensure that the values λk are distinct, and that U(G, λk) can be easily

determined from U(G(k), λ). We can therefore determine U(G, z) at 2n+ 2 di�erent values of z
by running B on the G(k), as required.

8.3 The XOR-gadget
We conclude with a proof of the properties of the XOR-gadget used in the reduction in Section 8.1.1.

Claim 8.6. The total weight of cycle covers of the XOR-gadget in Figure 8.3a is 2 when either

• a is connected to an external incoming edge and d is connected to an external outgoing edge;

or
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• a is connected to an external outgoing edge and d is connected to an external incoming edge.

For all other external connections of a and d, the total weight of cycle covers of the gadget is 0.

Proof. When the total number of incoming external edges at a and d is not equal to the total

number of outgoing external edges, the XOR-gadget cannot admit a cycle cover due to parity

constraints, and thus, the total weight of all cycle covers in these cases is trivially zero. A simple

way to see this is that a cycle cover corresponds to a perfect matching in the natural undirected

bipartite representation of the gadget discussed above. When the numbers of external incoming

and outgoing edges are not equal, the bipartite graph does not remain balanced and hence cannot

have a perfect matching. For all other con�gurations, in which the number of external incoming

and outgoing edges are equal, the weights of all cycle covers can be shown to have the claimed

value by exhaustive enumeration.
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Chapter 9

Related work and open problems

Extensive research has been done on the classi�cation of partition functions based on the computa-

tional complexity of their exact computation. For several interesting general classes of spin systems,

dicohotomy theorems are known which characterize the partition function of a given spin system as

being either computable in polynomial time or #P-hard [CC12,GGJT10,CCL10,Bul06,BG05,DG00b].

However, there appear to be no analogous results on the complexity of computing averages such as

the magnetization. In contrast, for both the mean magnetization of the ferromagnetic Ising model

and for the average monomer count of the monomer-dimer model, randomized approximation
algorithms (which give an additive approximation) follow from the corresponding MCMC based

algorithms for sampling from the Gibbs distribution [JS89, JS93]. However, as we saw in Part I,

the complexity of the sampling problem for anti-ferromagnetic spin systems such as the hard

core model and the anti-ferromagnetic Ising model is closely related to the uniqueness phase

transition [Wei06, Sly10, SS12, SST14]. It is an open questions whether hardness results analogous

to those in [Sly10, SS12] can be proven for the approximate computation of averages related to

these models.

Even the question of the exact computation of the mean observables for these spin systems

remains open. The methods of the preceding chapters cannot be directly applied, since results

completely characterizing the location of zeros of the partition function of these systems are not

available. For example, the best known such result for the partition function of the hard core

model—due to Chudnovsky and Seymour [CS07]—is only applicable to claw-free graphs (note that

this later result is already a strict generalization of the Heilmann-Lieb theorem). It remains open

whether results such as those of Chudnovsky and Seymour can be exploited to prove #P-hardness

results for the mean observables of the hard core model; note that our strategy of reducing from a

partition function computation via an interpolation operation is unlikely to work directly, since

we do not expect the problem itself to be hard on claw-free graphs.

The study of the location of zeros of the partition function itself was initiated by Yang and

Lee [YL52] in connection with the analysis of phase transitions. In the follow-up paper [LY52],

they instantiated this approach for the ferromagnetic Ising model by proving the celebrated results

that is now known as the Lee-Yang theorem and using it to conclude that the ferromagnetic

Ising model can have at most one phase transition. The Lee-Yang approach has since become
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a cornerstone of the study of phase transitions, and has been used extensively in the statistical

physics literature: see, e.g., [Asa70, HL72, New74, SF71, BBCK04, BBC
+

04] for speci�c examples,

and Ruelle’s book [Rue83] for background.

Zeros of partition functions have also been studied in a purely combinatorial setting without

reference to the physical interpretation: see, for example, Choe et al. [COSW04] for a collection

of such results about zeros of a general class of partition functions. Another important example

is the work of Chudnovsky and Seymour [CS07] cited above, who show that the zeros of the

independence polynomial of claw-free graphs lie on the real line. A result of a somewhat di�erent

�avor is that of Ruelle [Rue10], who provides a characterization of polynomials for which the

Lee-Yang theorem holds. There have also been attempts to relate the Lee-Yang program to the

Riemann hypothesis [New91]. However, we are aware of only two works which consider the

multiplicity of the zeros of the Ising partition function: Heilmann and Lieb [HL72] and Biskup

et al. [BBC
+

04, BBCK04]. In [HL72], a theorem similar to our Theorem 7.3 is proven in the

special case when the underlying graph G has a Hamiltonian path and β is close enough to 1
(depending upon the graph G). Similarly, in the special case of the Ising model, the results of

[BBC
+

04] imply our result but only when β is close to 0, and only in the special case of lattice

graphs [BBCK04,Bis12]. Note that neither of these results appears to be su�cient for the purposes

of our hardness result.

Lee-Yang theorems have also been studied in mathematics in connection with the theory of

stability preserving operators. The main problem underlying this area is the characterization of

linear operators that preserve the class of polynomials, called Ω-stable polynomials, which are

guaranteed not to vanish when their arguments lie in some �xed set Ω. This research area has its

origins in the work of Laguerre [Lag82] and of Pólya and Schur [PS14], and also has connections to

control theory [Cla92] and to electrical circuit theory [Bru31]. It has also seen considerable recent

activity, especially through the breakthrough results of Borcea and Brändén, who completely

characterize stability preserving operators for multivariate polynomials in various important

settings [BB09a, BB09b].

Part of this activity stems from the fact that stability theory provides some very powerful tools

for various combinatorial problems; we conclude with three di�erent examples of its applications.

As our �rst example, we refer to the work of Scott and Sokal [SS05], who show that D-stability of

the multivariate hard core partition function (where each vertex has a di�erent fugacity) for D a

product of origin-centered disks in the complex plane, has very strong connections to the Lovász

Local Lemma. More formally, given an undirected graph G = (V,E), the multivariate hard core

partition function of G is the polynomial

Z((zv)v∈V ) ··=
∑

I: independent set in G

∏
v∈I

zv.

Scott and Sokal show that this polynomial is stable with respect to the product of closed discs∏
v inV

D(0, pv)
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of radii pv around the origin if and only if the Lovász Local Lemma holds on the graph G with the

probabilities (pv)v∈V at the vertices.

Another example concerns the probability generating functions (pgf) of multivariate probability

distributions. In this case, stability of the pgf with respect to the half plane =(z) > 0 implies

negative association properties for the underlying distribution [BBL09]. An important example of

a distribution satisfying such a property is the uniform distribution over the spanning trees of a

graph. Coupled with the list of various algebraic operations which preserve stability and their

natural probabilistic interpretations when the polynomial being studied is a pgf, this connection

provides a set of very powerful tools for studying such distributions. An example of the use of

these tools are the breakthrough results of Oveis Gharan, Saberi and Singh [OGSS11] for the

traveling salesperson problem.

Our concluding example is the work of Marcus, Spielman and Srivastava [MSS13a], who

developed techniques based on stability theory to study the eigenvalues of 2-lifts of graphs. These

were then used to prove the existence of bipartite Ramanujan expanders of every given degree.

Marcus et al. later extended their techniques to give a positive resolution of the Kadison-Singer

conjecture [MSS13b].
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