
JITProf: Pinpointing JIT-unfriendly JavaScript Code

Liang Gong
Michael Pradel
Koushik Sen

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-144

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-144.html

August 3, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

JITPROF: Pinpointing JIT-unfriendly JavaScript Code

Liang Gong Michael Pradel Koushik Sen
{gongliang13,pradel,ksen}@cs.berkeley.edu

EECS Department, UC Berkeley

Abstract
Most modern JavaScript engines use just-in-time (JIT) com-

pilation to translate parts of JavaScript code into efficient
machine code at runtime. Despite the overall success of JIT
compilers, programmers may still write code that uses the
dynamic features of JavaScript in a way that prohibits prof-
itable optimizations. Unfortunately, there currently is no tech-
nique that helps developers to identify such JIT-unfriendly
code. This paper presents JITPROF, a profiling framework
to dynamically identify code locations that prohibit profitable
JIT optimizations. The basic idea is to associate execution
counters with potentially JIT-unfriendly code locations and to
use these counters to report code locations that match code
patterns known to prohibit optimizations. We instantiate the
idea for six JIT-unfriendly code patterns that cause perfor-
mance problems in the Firefox and Chrome browsers, and
we apply the approach to popular benchmark programs. Our
results show that refactoring these programs to avoid perfor-
mance problems identified by JITPROF leads to performance
improvements of up to 26.3% in 12 benchmarks.

1. Introduction
JavaScript is the most widely used client-side language for
writing web applications. It powers various popular websites
including Gmail, Facebook, Twitter, and Google Docs. More
recently, JavaScript has found its way into mobile platforms,
such as Firefox OS, Tizen OS, iOS, and Android, as well as
desktop platforms, such as Windows 8 and Chrome OS. A key
reason behind the popularity of JavaScript is that it can run on
any platform that has a modern web browser.

Another key reason behind the popularity of JavaScript
among programmers is that it is a flexible, dynamically typed
language. For example, programmers can add and delete
object properties, and truncate and expand arrays at any point
during an execution. Access to nonexistent object properties
and out of bounds array elements returns the undefined

value instead of raising an exception. These dynamic features
make programming in JavaScript convenient, but they also
make it difficult to compile JavaScript into efficient machine
code. For example, the fact that object properties can be added
and deleted forces JavaScript engines to implement objects as
hash tables, making property lookup an expensive operation.

To avoid these performance penalties, modern JavaScript
engines implement just-in-time (JIT) compilation [3,8,13,16],
which translates and optimizes JavaScript code into efficient

machine code while the program executes. An important
premise for effective JIT optimization is that programmers
use the dynamic features of JavaScript in a systematic way.
For example, JIT compilers exploit the fact that object proper-
ties are often added to an object of a given type in a specific
order or that out of bounds array accesses occur rarely. JIT
compilers exploit these regularity assumptions to generate ef-
ficient machine code at runtime. If a code block satisfies the
assumptions, the JavaScript engine executes efficient, gener-
ated machine code. Otherwise, the engine must fall back to
slower code or to interpreting the program.

Despite the overall success of JIT compilers, program-
mers may still write code that uses the dynamic features of
JavaScript in a way that prohibits profitable JIT optimizations.
We call such code JIT-unfriendly code. Previous research [32]
shows that programmers extensively use the dynamic features
of JavaScript, including dynamic addition and deletion of ob-
ject properties, that often result in JIT-unfriendly code. Unfor-
tunately, there currently is no technique that helps developers
to identify JIT-unfriendly code.

In this paper, we propose a profiling framework, called
JITPROF, that dynamically identifies code locations that pro-
hibit profitable JIT optimizations. The basic idea is to associate
execution counters to potentially JIT-unfriendly operations
and to use these counters to report code locations that match
code patterns known to be JIT-unfriendly. JITPROF associates
meta-information with JavaScript objects, updates this infor-
mation at runtime, and uses the meta-information to identify
JIT-unfriendly operations. For example, JITPROF tracks hid-
den classes and inline cache misses, which are two important
concepts in JIT optimization, by associating a hidden class
with every JavaScript object and a cache-miss counter with
every code location that accesses an object property.

We implement JITPROF1 in a prototype framework written
purely in JavaScript. JITPROF instruments JavaScript code
through source-to-source transformation and the instrumented
code checks and reports at runtime various JIT-unfriendly code
locations. We instantiate the JITPROF framework for six JIT-
unfriendly code patterns that cause performance problems in
the Firefox and Chrome browsers. We apply our approach to
the programs in the SunSpider and Octane benchmark suites.
Even though the JavaScript engines of Firefox and Chrome

1The tool is available as open-source at https://github.com/
Berkeley-Correctness-Group/Jalangi-Berkeley/tree/
master/src/js/analyses/jitaware

https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley/tree/master/src/js/analyses/jitaware
https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley/tree/master/src/js/analyses/jitaware
https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley/tree/master/src/js/analyses/jitaware

are tuned towards these benchmarks, JITPROF identifies var-
ious JIT-unfriendly code locations. Based on these reports,
we manually refactor 11 programs by replacing JIT-unfriendly
code with JIT-friendly code. These simple changes give sta-
tistically significant improvements of execution time of up to
19.7% and 26.3% in Firefox and Chrome, respectively. In the
ranked list of code locations that JITPROF reports, all of these
optimization opportunities are at the first or second position.
In contrast, traditional CPU-time profiling often reports the
methods that contain these code locations at a lower rank.

A key advantage of JITPROF compared to traditional CPU-
time profilers [15] is that it not only identifies performance
problems, but it also explains the cause of these problems.
This is particularly important for scripting languages whose
performance behaviors are often unpredictable and heavily
depend on the runtime characteristics of the program.

Another key advantage of JITPROF is that the framework
can easily be extended to incorporate other programming pat-
terns that prevent JIT optimizations. Such an extension does
not require detailed knowledge of the internals of a JIT com-
piler. Instead, an extension writer needs to understand the
JIT-unfriendly code pattern at a high-level and to write a few
lines of JavaScript code that use JITPROF’s API. Our exist-
ing analyses require between 53 and 278 lines of JavaScript
code. This user-level extensibility is important because JIT
compilers evolve rapidly and because different JIT compilers
may not employ the same set of optimizations.

A third advantage of JITPROF is that it is not tied to any
JavaScript engine. Our prototype tool is written purely in
JavaScript. As an alternative, a JITPROF-like approach could
be implemented within a JavaScript engine. However, such
an implementation would be hard to maintain and extend by
anyone who is not familiar with the specific engine, and it
would not be useful for other JIT engines that implement
potentially different set of optimizations.

In summary, this paper makes the following contributions:
• We study popular JavaScript engines and extract common

code patterns that reduce performance because they prohibit
effective JIT optimization (Section 2).

• We present a profiling framework that automatically detects
these JIT-unfriendly code patterns at runtime (Section 3) and
describe its implementation as a JIT engine-independent
source-to-source transformation (Section 4).

• We evaluate the approach with 40 well known JavaScript
benchmark programs and demonstrate that our approach
pinpoints valuable optimization opportunities in 12 of them.

2. JIT-unfriendly Code Patterns

This section presents and discusses some of the important code
patterns that are difficult to handle for JavaScript JIT compil-
ers, and that often lead to performance bottlenecks. JITPROF
detects instances of all these JIT-unfriendly code patterns in
widely used benchmark programs. In this section, we illustrate

1 function C(i) {
2 if (i % 2 === 0) {
3 this.a = Math.random();
4 this.b = Math.random();
5 } else {
6 this.b = Math.random();
7 this.a = Math.random();
8 }
9 }

10 function sum(base, p1, p2) {
11 return base[p1] + base[p2] ;
12 }
13 for(var i=1;i<100000;i++) {
14 sum(new C(i), ’a’, ’b’);
15 }

function C(i) {
if (i % 2 === 0) {
this.a = Math.random();
this.b = Math.random();

} else {
this.a = Math.random();
this.b = Math.random();

}
}
function sum(base, p1, p2) {
return base[p1] + base[p2];

}
for(var i=1;i<100000;i++) {
sum(new C(i), ’a’, ’b’);

}

Figure 1: Example for inconsistent object layouts (left) and im-
proved code (right). The highlighted code on the left pinpoints
the JIT-unfriendly code location. The highlighted code on the
right shows the difference to the code on the left.

each pattern with a simple example. The full source code of
these micro-benchmarks is available for download.2

The code patterns described in this section are JIT-
unfriendly for two reasons. First, several patterns prevent
the JIT compiler from executing specialized code. For exam-
ple, JIT compilers often speculate that runtime types at a code
location match the types observed in prior executions of this
location. Second, several patterns prevent the JIT compiler
from using a specialized data representation or force the JIT
compiler to transform data from one representation to another.

2.1. Inconsistent Object Layouts

A common pattern of JIT-unfriendly code is to construct ob-
jects of the same type in a way that forces the compiler to use
multiple representations for the sets of object properties. Such
inconsistent object layouts prevent an optimization that spe-
cializes property accesses based on recurring object layouts.
Example. The program in Figure 1 has two functions: C is a
constructor that creates an object with two properties a and b.
The properties are initialized in two possible orders depending
on the value of the constructor’s parameter i. The function
sum has three parameters: base is an object, and p1 and
p2 are property names. The expression base[p1] returns
the value of the property whose name is stored as a string
in the variable p1. The main loop of the program repeatedly
constructs objects of type C and passes them to sum. The
performance of the example can be significantly improved
by swapping lines 6 and 7. The modified code, given on the
right of Figure 1, runs 7.5% and 19.9% faster than the original
example in Firefox and Chrome, respectively.3

Explanation. The reason for this speedup is that the original
code creates numerous C objects with two possible layouts
of the properties. In one layout, a appears at offset 0 and b

2 https://github.com/Berkeley-Correctness-Group/
Jalangi-Berkeley/tree/master/tests/jitaware/
experiments/benchmarks/microbench

3All performance improvements reported in this paper are statistically
significant; Section 5.1 explains our methodology in detail.

2

https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley/tree/master/tests/jitaware/experiments/benchmarks/microbench
https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley/tree/master/tests/jitaware/experiments/benchmarks/microbench
https://github.com/Berkeley-Correctness-Group/Jalangi-Berkeley/tree/master/tests/jitaware/experiments/benchmarks/microbench

Property Offset
Hidden Classes Objects

Offset 0 0.4
Offset 1 0.3
Hidden Class

Property Offset
b 0

Property Offset
b 0
a 1

Property Offset
a 0

Hidden Class

Offset 0 0.2
Offset 1 0.3

Property Offset
a 0
b 1

1

2

3

4

5

Hidden Classes

Figure 2: Structure of objects and hidden classes.

appears at offset 1, whereas in the other layout, the order is
reversed. As a result, the JIT compiler fails to specialize the
code for the property lookups in sum. Instead of optimizing
this code so that it accesses the properties at a fixed offset, the
executed code accesses the properties via an expensive hash
table lookup. We next explain this problem in more detail.

Background: Hidden Classes and Inline Caching. In
JavaScript, an object is a map from property names to property
values. Looking up a property of an object can be expensive if
the object is represented as a hash map. To avoid expensive
property lookups, most JavaScript engines store a representa-
tion of each object’s memory layout and use this representation
by caching the offset of properties accessed at particular code
locations. For this purpose, the object is represented in two
parts: an array with the values of the object’s properties and
a map from property names to offsets, called hidden class. A
property lookup has two steps. First, the JavaScript engine
retrieves the offset of the property from the hidden class. Sec-
ond, the engine uses the offset to retrieve the value of the
property from the array representing the object. Whenever a
new property is added to an object, the engine appends the
value to the array that represents the object and updates the
object’s hidden classes so that it reflects the new object layout.

Figure 2 shows how objects of type C from the original
example in Figure 1 are represented in memory. When an
object of type C is instantiated at line 14, an empty array
representing the object is created and the hidden class of the
object points to an empty map (1). When the execution reaches
line 6, the array of the object is updated by adding a value at
offset 0, and the hidden class of the object now points to a
map that assigns b to 0 (2). When executing line 7, another
value is added to the array at offset 1, and the hidden class of
the object now points to a map that assigns b to 0 and a to 1
(3). Similarly, if the execution takes the then branch at line 2,
an object is created whose array contains values at offsets 0
and 1, respectively. However, the hidden class of this object
maps a to 0 and b to 1 (5), i.e., the hidden class differs from
the hidden class created when taking the other branch. The
JavaScript engine reuses existing hidden classes if the order
of properties matches. For example, the engine uses the same
hidden classes whenever it executes the then branch in line 2.

Given the above representation of an object in JavaScript,
the value of a property of an object at a code location can be
retrieved quickly by a mechanism called inline caching [10].

The basic idea is to cache the offset of the property that was
previously used at a code location and to reuse this offset
if the program repeatedly accesses the same property name
in the same hidden class. In other words, the JIT compiler
specializes the code for property accesses based on the as-
sumption that object layouts recur at code locations. To this
end, the JavaScript engine maintains for every code loca-
tion that performs a property access base.prop two vari-
ables: cached_hidden_class, which points to the hidden
class that was used last at this location, and cached_offset,
which contains the offset accessed last at this location. To
access the property, the engine checks whether the hidden
class of base is the same as cached_hidden_class. In this
case, called inline cache hit, the engine returns the property
value stored at cached_hidden_class[cached_offset].
Otherwise, called inline cache miss, the engine looks up the
property’s offset in the current hidden class and caches both
for the next time the code location is reached. Inline cache
misses are significantly more expensive than inline cache hits.
For code that accesses a property where the property name
is stored in a variable, such as at line 11 of Figure 1, inline
caching stores the property name in addition to the hidden
class and the offset. Real-world JavaScript engines may use
more sophisticated variants of inline caching than what we
describe here, such as polymorphic inline caches [20] that
store multiple previously seen hidden classes and offsets.

Hidden classes and inline caching explain why changing the
order of initializing properties in Figure 1 leads to a significant
performance improvement. If we swap lines 6 and 7, all
objects of type C created at line 14 have the same hidden class.
Therefore, all but the first accesses to the properties a and b

result in an inline cache hit. In contrast, the unmodified code
results in an inline cache miss at each property access in line 11
because the cached hidden class alternates between the two
hidden classes described above.

2.2. Polymorphic Operations

Another common source of JIT-unfriendly behavior are code
locations that apply an operation to different sets of types when
reaching the location multiple times. We call such operations
polymorphic operations.
Example. The plus operation in Figure 3 at line 2 operates on
numbers when f is called after executing line 10 and on strings
when f is called after executing line 13. The performance of
the example can be significantly improved by splitting f into a
function that operates on numbers and a function that operates
on strings, as shown on the right of Figure 3. The modified
code runs 92.1% and 72.2% faster than the original example
in Firefox and Chrome, respectively.
Explanation. This change significantly improves the perfor-
mance because it enables the JavaScript engine to execute
specialized code for the plus operation. The change turns
a polymorphic operation into two monomorphic operations,
i.e., into operations that always execute on the same types of

3

1 function f(a, b) {
2 return a + b ;
3 }
4

5

6

7 for(var i=0;i<5000000;i++){
8 var arg1, arg2;
9 if (i % 2 === 0) {

10 a = 1; b = 2;
11

12 } else {
13 a = ’a’; b = ’b’;
14

15 }
16 f(a, b);
17 }

function f(a, b) {
return a + b;

}
function g(a, b) {
return a + b;
}
for(var i=0;i<5000000;i++){
var arg1, arg2;
if (i % 2 === 0) {

a = 1; b = 2;
f(a, b);

} else {
b = ’a’; b = ’b’;
g(a, b);

}

}

Figure 3: Example of polymorphic operation (left) and im-
proved code (right).

1 var x, y;
2 var rep=300000000;
3 for(var i=0;i<rep;i++){

4 y = x | 2 ;

5 }

var x = 0, y;
var rep=300000000;
for(var i=0;i<rep;i++){
y = x | 2;

}

Figure 4: Example for a binary operation on undefined (left)
and improved code (right).

operands. In the modified code, the operation at line 2 always
executes on numbers, and the operation at line 5 always exe-
cutes on strings. For example, the JIT compiler can optimize
the monomorphic plus into a few quick integer instructions
and inline these instructions at the call site of f. In contrast,
the JIT compiler cannot optimize the original code because
the types of operands change every time line 2 executes.

2.3. Binary Operation on undefined

Binary operations, such as +, -, *, /, %, |, and &, that are exe-
cuted on undefined values (which has well-defined seman-
tics in JavaScript), can cause a loss of performance compared
to applying the same operations on non-undefined values.
Example. The code on the left of Figure 4 reads the
undefined value from x and implicitly converts it into zero.
Modifying this code so that x is initialized to zero preserves
the semantics and significantly improves the performance. The
modified code on the right is 1.8% and 82.8% faster than the
original code in Firefox and Chrome, respectively.
Explanation. The reason for this performance difference is
that the original code prevents the JavaScript engine from
executing code specialized for numbers. Instead, the engine
falls back on code that performs additional runtime checks
and that coerces the undefined value into a number.

2.4. Non-contiguous Arrays

In JavaScript, arrays can have “holes”, i.e., the elements at
some indexes between zero and the end of the array may be
uninitialized. Such non-contiguous arrays cause slowdown.
Example. The code on the left of Figure 5 initializes an array
in reverse order so that every write at line 4 is accessing a non-
contiguous array. Modifying this code so that the array grows

1 for (var j=0; j<400; j++) {
2 var array = [];
3 for (var i=5000;i>=0;i--){
4 array[i] = i;
5 }
6 }

for (var j=0; j<400; j++) {
var array = [];
for(var i=0;i<=5000;i++){
array[i] = i;

}
}

Figure 5: Example of non-contiguous arrays (left) and im-
proved code (right).

1 var array = [], sum = 0;
2 for(var i=0;i<100;i++)
3 array[i] = 1;
4 for(var j=0;j<100000;j++) {
5 var ij = 0;
6 var len = array.length;
7 while (array[ij]) {
8 sum += array[ij]
9 ij++;

10 }
11 }

var array = [], sum = 0;
for(var i=0;i<100;i++)
array[i] = 1;

for(var j=0;j<100000;j++) {
var ij = 0;
var len = array.length;
while (ij < len) {
sum += array[ij];
ij++;

}
}

Figure 6: Example of accessing undefined array elements.

contiguously leads to a significant performance improvement.
The modified code on the right is 97.5% and 90.2% faster than
the original code in Firefox and Chrome, respectively.
Explanation. Non-contiguous arrays are JIT-unfriendly for
three reasons. First, JavaScript engines use a slower implemen-
tation for non-contiguous arrays than for contiguous arrays.
Dense arrays, where all or most keys are contiguous start-
ing from zero, are represented using linear storage. Sparse
arrays, where keys are non-contiguous, are implemented as
hash tables, and looking up elements is relatively slow. Sec-
ond, using non-contiguous arrays may degrade performance
because the JavaScript engine may change the representation
of an array if its density changes during the execution. Third,
non-contiguous arrays are JIT-unfriendly because JIT compil-
ers speculatively specialize code under the assumption that
arrays do not have holes. For example, Hackett et al. [17]
describe a type inference-based JIT optimization implemented
in Firefox, which marks arrays as contiguous or potentially
non-contiguous (called “packed” and “unpacked” in [17]) and
which generates optimized code for contiguous arrays.

2.5. Accessing Undefined Array Elements

Another array-related source of inefficiency is accessing an
uninitialized, deleted, or out of bounds array element.
Example. The code in Figure 6 creates an array and repeatedly
iterates through it. The original code on the left checks whether
it has reached the end of the array by checking whether the cur-
rent element is defined, i.e., the code accesses an uninitialized
array element each time it reaches the end of the while loop.
The modified code on the right avoids accessing an undefined
element and instead continues the while loop as long as the
current index ij is smaller than the length of the array. This
change results in a significant performance improvement of
73.9% and 70.2% in Firefox and Chrome, respectively.
Explanation. Accessing undefined array elements causes
slowdown for reasons similar to ones discussed in Section 2.4.

4

1 var array = [];
2 for(var i=0;i<10000000;i++)
3 array[i] = i/10;
4 array[4] = "abc";
5 array[4] = 1.23;

var array = [];
for(var i=0;i<10000000;i++)

array[i] = i/10;
array[4] = 3;
array[4] = 1.23;

Figure 7: Example of storing non-numeric values into numeric
arrays.

JIT-unfriendly code pattern Firefox Chrome

Inconsistent object layouts 7.5% 19.9%
Polymorphic operations 92.1% 72.2%
Binary operations on undefined 1.8% 82.8%
Non-contiguous arrays 97.5% 90.2%
Accessing undefined array elements 73.9% 70.2%
Storing non-numeric values in numeric arrays 14.9% 83.8%

Table 1: Performance improvements on micro-benchmarks of
JIT-unfriendly code patterns.

2.6. Storing Non-numeric Values in Numeric Arrays

JavaScript arrays may contain elements of different types.
However, for good performance, programmers should avoid
to store non-numeric values into an otherwise numeric array.
Example. The code on the left of Figure 7 creates a large
array that contains only numeric values. Then, the code as-
signs a non-numeric value to one of the array’s elements.
The modified code on the right avoids storing a non-numeric
value, which leads to a significant performance improvement
of 14.9% and 83.8% in Firefox and Chrome, respectively.
Explanation. If a dense array contains only numeric values,
such as 31-bit signed integers 4 or doubles, then the JavaScript
engine can represent the array as a fixed sized C-like array of
integers or doubles, respectively. Operations on such arrays
are faster than on arrays containing values of arbitrary types.
If a numeric array in a program is updated with a non-numeric
value, the JavaScript engine must change the representation of
the array from a fixed-sized integer/double array to an array
of non-numeric values, which is an expensive operation.

Table 1 summarizes the JIT-unfriendly code patterns and the
performance improvement we measure for micro-benchmarks
when avoiding these patterns.

3. Dynamic Analyses to Detect JIT-unfriendly
Code Patterns

The previous section describes several code patterns that pro-
hibit profitable JIT optimizations. In this section, we describe
JITPROF, a profiling approach that detects these code patterns
at runtime and reports them to the developer. Our experi-
ence with JITPROF shows that JIT-unfriendly code reported
by JITPROF often causes noticeable performance bottlenecks,
and that developers can optimize JavaScript code by refactor-
ing JIT-unfriendly code into JIT-friendly code.

4Both the Firefox and the Chrome JavaScript engine use tagged inte-
gers [7], where 31-bit represent a signed integer and the remaining bit distin-
guishes an integer value from a pointer.

To detect instances of the code patterns described in the pre-
vious section, JITPROF keeps track of particular operations
that happen at runtime. For example, the analysis keeps track
of operations that read and write properties of an object, called
put and get property operations, respectively, and of binary
operations, such as arithmetic and logical operations. For each
code pattern, JITPROF associates a zero-initialized counter
with source code locations that may execute a JIT-unfriendly
operation. We call this counter the unfriendliness counter.
Whenever the analysis observes a JIT-unfriendly operation,
it increments the unfriendliness counter of the respective op-
eration. In addition to keeping track of runtime operations,
JITPROF associates meta-information, called shadow objects,
with runtime objects. At the end of the program’s execution,
JITPROF reports code locations with a non-zero unfriendli-
ness counter to the developer. We rank reports by their un-
friendliness counter, i.e., by how frequently a JIT-unfriendly
operation occurs at a particular code location, and (for some
patterns) by an estimate of how profitable it is to fix the prob-
lem. Similar to other profiling approaches, we expect develop-
ers to inspect only the top-ranked reports.

In the following, we describe a dynamic analysis for each
of the JIT-unfriendly code patterns.

3.1. Tracking Inconsistent Object Layouts

To find performance problems caused by inconsistent object
layouts (Section 2.1), JITPROF tracks the hidden class associ-
ated with each object and the number of inline cache misses
that occur at code locations that perform a property get or put
operation. The unfriendliness counter for this code pattern
represents how often a location suffers from an inline cache
miss and an estimate of how profitable it is to fix the problem.

The analysis represents the hidden class of an object as a
list of the object’s property names. The list is stored in the
shadow value associated with the object, and it represents the
order in which the object’s properties are initialized. This rep-
resentation of hidden classes is independent of the underlying
JavaScript engine and abstracts from the implementation of
hidden classes in JavaScript engines. The analysis updates the
hidden class associated with each object as follows:
• Whenever an object gets created using an object literal or

using a constructor, the analysis iterates over the property
names of the object and checks if there exists a hidden
class that matches the list of property names. If there is a
matching list, the analysis sets the list as the shadow value
of the newly created object. If there is no matching list, the
analysis creates a new list of property names and associates
it with the object. The list is also added to a global database
of hidden classes so that the analysis can later reuse it when
searching for a particular hidden class.

• Whenever a put property operation is performed on an ob-
ject, the analysis checks if the property name involved in
the operation is already present in the hidden class of the
object. If the property name exists, the analysis does noth-

5

ing. Otherwise, the analysis extends the hidden class by
adding the new property name to the list of property names.
Then, the analysis checks if the new list of names matches
any existing hidden class. If a match is found, the analysis
associates the matching hidden class with the object. Other-
wise, the analysis creates a new hidden class with the list of
property names, associates the list with the object, and adds
the list to the database of hidden classes.

Based on the information about the hidden class of each
object, JITPROF tracks whether property get and put oper-
ations result in inline cache misses by maintaining for each
such location the following information:

• The value cached_hidden_class, which points to the hidden
class of the base object of the get or put property operation
that was executed most recently at the code location.

• The value cached_prop_name, which stores the name of
the most recently accessed property at the code location.

• The unfriendliness counter cicm, which represents the num-
ber of inline cache misses observed at this get or put prop-
erty operation.

Whenever the program performs a get or put property op-
eration, the analysis updates the information associated with
the operation’s code location. If the hidden class of the oper-
ation’s base object matches the cached_hidden_class and if
the accessed property matches the cached_prop_name, then
the analysis does nothing. This case corresponds to an inline
cache hit, i.e., the code specialized by the JIT compiler for
this location can be executed. If the cached_hidden_class
or the cached_prop_name does not match, then the anal-
ysis increments cicm and updates cached_hidden_class and
cached_prop_name. This case corresponds to an inline cache
miss, i.e., the JIT compiler cannot execute the code specialized
for this location and must fall back on the slower, generic code.
The analysis also keeps track of the number of occurrence of
each hidden class.

At the end of the execution, JITPROF reports a ranked list of
all code locations with a non-zero number cicm of inline cache
misses. The results are ranked by the sum of cicm and a number
csecond that estimates how profitable it is to fix a problem
at a particular location. The value csecond is the number of
occurrences of the second most frequently observed hidden
class at the location. This approach is a heuristic to break ties
when multiple locations have similar numbers of inline cache
misses. The rationale is that the location with a larger csecond
is likely to be more profitable to fix because making the two
most frequent hidden classes consistent can potentially avoid
more inline cache misses.

For the example in Figure 1, the analysis tracks the hidden
classes illustrated in Figure 2, identifies various inline cache
misses at line 11, and reports this line to the developer, as
illustrated by the highlighted code on the left of the figure.

3.2. Tracking Polymorphic Operations

To detect performance problems caused by polymorphic op-
erations (Section 2.2), JITPROF tracks the types of operands
involved in unary and binary operations. The unfriendliness
counter for this code pattern represents how often an operation
at a particular code location is polymorphic. The analysis
maintains the following information for each code location
that performs a unary or binary operation:
• The most recently observed type op1_type of the left

operand.
• The most recently observed type op2_type of the right

operand (for binary operations only).
• The unfriendliness counter cpoly, which represents the num-

ber of times that the types of the operands have changed
during the program’s execution.
Whenever the program performs a binary operation, the

analysis checks whether the types of the operands match the
stored op1_type and op2_type. If the types match, then the
analysis does nothing. This case corresponds to an opera-
tion that the JIT compiler can effectively optimize through
pre-computed type-specific code. If at least one of the two
observed types differs from the respective stored type, then
the analysis increments cpoly, and it updates op1_type and
op2_type with the current operand types. In this case, the
JavaScript engine cannot execute type-specific code but must
fall back on the slower, generic implementation. The analysis
performs similar checks and updates for unary operations. At
the end of the execution, JITPROF reports code locations with
a non-zero number cpoly of polymorphic operations and ranks
them in the same way as described in Section 3.1.

For the example in Figure 3, the analysis warns about
the polymorphic operation at line 2 because the types of its
operands always differ from the previously observed types.

3.3. Tracking Binary Operations on undefined

To detect performance problems caused by binary operations
with undefined operands (Section 2.3), JITPROF tracks all
binary operations and maintains an unfriendliness counter
cunde f for each code location with a binary operation. The
counter represents how often the operation operates on an
undefined operand. Whenever the program executes a
binary operation, the analysis checks whether one of the
operands is undefined. In this case, the analysis increments
cunde f . At the end of the execution, JITPROF reports the code
locations with a non-zero value of cunde f and ranks them by
the unfriendliness counter.

For the example in Figure 4, the analysis warns about line 4
because the first operand of the operation is frequently ob-
served to be undefined.

3.4. Tracking Non-contiguous Arrays

To detect performance problems caused by non-contiguous
arrays (Section 2.4), JITPROF tracks writes of array elements

6

that make the array non-contiguous. The analysis maintains
an unfriendliness counter cnon−cont for each code location that
writes into an array. The counter represents how often a code
location makes an array non-contiguous. For each put property
operation where the base is an array and where the property
is the index, the analysis checks whether the index of the
element to be updated is less than 0 or greater than the length
of the array. In this case, the operation inserts an element that
makes the array non-contiguous by leaving a hole between the
existing array and the inserted element. Therefore, the analysis
increments the counter cnon−cont for the code location. At the
end of the execution, JITPROF reports all code locations with
a non-zero cnon−cont , ranked by the unfriendliness counter.

For the example in Figure 5, the analysis warns about line 4
because it transforms the array into a non-contiguous array
every time the line is executed.

3.5. Tracking Access to Undefined Array Elements

To find performance problems caused by accessing undefined
array elements (Section 2.5), JITPROF tracks all operations
that read array elements. The unfriendliness counter cuninit
for this code pattern represents how often a code location
reads an undefined array element. Similar to writes into ar-
rays, reading an array element in JavaScript is a get prop-
erty operation where the base object is an array and where
the property name is the index. The analysis checks for
each get property operation that reads an array element from
base whether the index is defined in the array by calling
base.hasOwnProperty(index). If this check fails, the
program accesses an undefined array element, and the analysis
increments the cuninit counter of the code location. At the end
of the execution, JITPROF reports all code locations with a
non-zero number cuninit of reads of undefined array elements
and ranks them by the unfriendliness counter.

For the example in Figure 6, the analysis warns about line 7
because it reads an undefined array element every time the
while loop terminates.

3.6. Tracking Non-numeric Stores into Numeric Arrays

To detect performance problems caused by transforming nu-
meric arrays into non-numeric arrays (Section 2.6), JITPROF
tracks the state of each array and operations that may change
the state of arrays. The unfriendliness counter for this code pat-
tern represents how often a particular code location transforms
a numeric array into a non-numeric array.

The analysis maintains a simple state machine for each ar-
ray (Figure 8). The state machine has three states: unknown,
numeric, non-numeric. When an array gets created, the anal-
ysis initialized the state machine for this array and stores its
initial state in the shadow value of the array. The state is
initialized to unknown if the array is empty or if all elements
are uninitialized. If all the elements of the array are numeric,
then the state is initialized to numeric. Otherwise, the state is
initialized to non-numeric. The analysis updates the state of

UNK

NA

NOA

numeric element

non-numeric element

non-numeric element

numeric element

numeric/non-numeric element

NA means numeric array. NOA means non-numeric array.
UNK means uninitialized array of unknown type.

Figure 8: State machine of an array.

an array whenever the program writes into the array through a
put property operation. If the operation stores a non-numeric
value in a numeric array, the state machine transitions from
numeric to non-numeric. If a numeric value is stored in a
numeric array, the state of the array remains unchanged. If a
numeric value is stored in an unknown array, the state of the
array transitions to numeric. In all other scenarios, the state of
the array is changed to non-numeric.

The analysis maintains an unfriendliness counter cnon−num
for each code location that writes an array element. If ex-
ecuting an operation leads to a transition from numeric to
non-numeric, then the analysis increments cnon−num for the
corresponding code location. At the end of the execution,
JITPROF reports all code locations that transform numeric
into non-numeric arrays, i.e., all code locations with a non-
zero value of cnon−num, ranked by cnon−num.

For the example in Figure 7, the analysis warns about line 4
because it writes a non-numeric value into a numeric array.

3.7. Discussion

The dynamic analyses described in this section approximate
the behavior of popular JIT engines to identify JIT-unfriendly
code locations. These approximations are based on simpli-
fying assumptions about how JIT compilation for JavaScript
works, which may not always hold for every JavaScript engine.
For example, we model inline caching in a monomorphic
way and ignore the fact that a JavaScript engine may use
polymorphic inline caching. Approximating the behavior of
the JavaScript engine is a deliberate design decision that al-
lows for implementing analyses that check for JIT-unfriendly
code patterns with a few lines of code, and without requiring
knowledge about the engine’s implementation details. Eval-
uating our approach with state of the art JavaScript engines
(Section 5) shows that it effectively identifies valuable opti-
mization opportunities, suggesting that our dynamic analyses
model the engine’s behavior in a reasonable way.

4. Implementation
We implement JITPROF via a source-to-source transforma-
tion that adds analysis code to a given program. This ap-
proach avoids limiting JITPROF to a particular JavaScript
engines. The implementation is built on top of the instru-
mentation and dynamic analysis framework JALANGI [33].

7

The framework instruments a JavaScript programs through
source-to-source transformation and then, the instrumented
code is executed in place of the original code. A JALANGI-
instrumented JavaScript program provides two capabilities to
a dynamic analysis. First, it allows the analysis to associate
an arbitrary value, called shadow value, with any object in the
program to store meta-information about the object. Second,
JALANGI supports shadow execution on shadow values, a tech-
nique in which an analysis can update the shadow values and
analysis state on each operation performed by the program.
The operations considered by JALANGI are at a lower level
than JavaScript statements, e.g., complex expressions are split
into multiple unary and binary operations.

For each JIT-unfriendly code pattern, JITPROF contains a
dynamic analysis that uses shadow values and shadow exe-
cution to identify occurrences of the pattern. For example,
the analysis to detect inconsistent object layouts (Section 3.1)
stores a representation of the hidden class of each object as the
object’s shadow value. The analysis uses shadow execution to
update the hidden class whenever an object property is added
or deleted. Furthermore, the analysis uses shadow execution
to check at each operation that accesses a property whether
to increment the unfriendliness counter. The implementation
tracks unfriendliness counters for code locations via a global
map that assigns unique identifiers of code locations to the cur-
rent unfriendliness counter at the location. The map is filled
lazily, i.e., JITPROF tracks counters only for source locations
that are involved in a JIT-unfriendly code pattern.

Given the JALANGI framework, the implementations of the
analyses are relatively simple, making it straightforward to
extend JITPROF with additional JIT-unfriendly code patterns.
Our implementations of the analyses in Section 3 require
between 53 and 278 lines of JavaScript code.

5. Evaluation
To evaluate the effectiveness of JITPROF, we apply it to
the SunSpider [2] and Octane [1] benchmark suites. We
inspect the code locations that JITPROF identifies, refactor
them by replacing JIT-unfriendly code with JIT-friendly code,
and measure whether these simple changes lead to a perfor-
mance improvement in the Firefox and Chrome web browsers
(Section 5.2). Furthermore, we compare the effectiveness of
JITPROF with traditional CPU-time profiling (Section 5.3).
We want to note that finding JIT compilation-related perfor-
mance problems in the SunSpider and Octane benchmarks is
non-trivial because these benchmarks have been used exten-
sively to tune the performance of popular JavaScript engines.

5.1. Experimental Methodology

Table 2 lists the programs used for the evaluation, along with
their number of lines of code. The table also shows the running
time of the benchmark when we profile it with JITPROF and
the slowdown imposed by JITPROF compared to running the
benchmark without any instrumentation. Our implementation

Benchmark LOC
Time of

profiling run
(sec)

Profiling
slowdown

(×)

SunSpider-Controlflow-Recursive 25 3.61 62
SunSpider-Bitops-Bits-in-Byte 26 36.78 593
SunSpider-Bitops-Bitwise-And 31 18.05 282
SunSpider-Math-Partial-Sums 33 7.92 144
SunSpider-Bitops-Nsieve-Bits 35 23.95 380
SunSpider-Bitops-3bit-Bits-in-Byte 38 21.68 355
SunSpider-Access-Nsieve 39 19.65 333
SunSpider-Math-Spectral-Norm 51 13.92 204
SunSpider-Access-Binary-Trees 52 6.36 104
SunSpider-3d-Morph 56 14.5 219
SunSpider-String-Unpack-Code 67 4.67 55
SunSpider-Access-Fannkuch 68 62.52 893
SunSpider-String-Fasta 90 11.38 175
SunSpider-String-Validate-Input 90 0.15 2
SunSpider-Math-Cordic 101 44.7 638
SunSpider-String-Base64 136 13.31 221
SunSpider-Access-Nbody 170 28.5 438
SunSpider-Crypto-SHA1 225 8.29 133
SunSpider-String-Tagcloud 266 8.92 96
SunSpider-Crypto-MD5 288 7.47 118
SunSpider-Date-Format-Tofte 300 13.79 246
SunSpider-3d-Cube 339 50.71 8
SunSpider-Date-Format-Xparb 418 5.15 37
SunSpider-Crypto-AES 425 19.69 289
SunSpider-3d-Raytrace 443 19.9 280
SunSpider-Regexp-DNA 1,714 0.15 2

Octane-Splay 395 0.73 14
Octane-Navier-Stokes 407 168.8 2,519
Octane-Richards 537 4 70
Octane-DeltaBlue 880 7.05 113
Octane-Raytrace 904 23.46 345
Octane-Code-Load 1,527 2.9 43
Octane-Crypto 1,697 259.79 2,763
Octane-Regexp 1,765 14.42 110
Octane-Earley-Boyer 4,683 90.15 1,024
Octane-Box2d 9,537 203.13 441
Octane-Gbemu 11,106 757.01 2,482
Octane-Typescript 25,911 1,41,659 878
Octane-Pdfjs 33,062 234.9 748
Octane-Mandreel 277,375 6,201.94 3,674

Table 2: Programs used for the evaluation.

is not optimized for reducing slowdown but instead focuses
on providing a JavaScript engine-independent framework that
is easily extensible.

For each JIT-unfriendly code pattern, JITPROF reports a
ranked list of code locations. We inspect at most the top three
code locations per program and pattern, and we try to refactor
the program to avoid the JIT-unfriendly code. We apply only
semantics-preserving changes that affect at most a few lines
of code. Each change fixes only the problem reported by
JITPROF and does not apply any other optimization.

To assess whether a change improves the performance, we
compare the execution time of the original and the mod-
ified program in two popular browsers, Firefox 31.0 and
Chrome 36.0. To obtain reliable performance data [9, 14, 27],
we repeat the following steps 50 times: (1) Open a fresh
browser instance and run the original benchmark. (2) Open a
fresh browser instance and run the modified benchmark. Each
run yields a benchmark score (explained below), giving a total
of 100 scores per browser. Given these scores, we use the
independent T-test (95% confidence interval) to check whether
there is a statistically significant performance difference be-

8

Benchmark CPR

JITPROF Ch. Avg. improvement

Rank LOC (stat. significant)
Firefox Chrome

SunSpider-Crypto-SHA1 6 1 in UAE,
PO, BOU 6 3.3% 26.3%

SunSpider-String-Tagcloud - 1 in IOL 15 - 11.7%

SunSpider-Crypto-MD5 9 1 in UAE,
PO, BOU 6 - 24.6%

SunSpider-Format-Tofte 1 1 in UAE 2 - 3.4%
SunSpider-3d-Cube 5 1 in NCA 1 - 1.1%
SunSpider-Format-Xparb 1 1 in PO 2 19.7% 22.4%
SunSpider-3d-Raytrace 5 1 in NNA 4 - 2.6%

Octane-Splay 6 1 in IOL 2 3.5% 15.1%
Octane-SplayLatency 6 1 in IOL 2 - 3.8%
Octane-DeltaBlue 7 2 in IOL 6 1.4% -
Octane-RayTrace 1 1 in IOL 18 - 12.9%
Octane-Box2D 25 2 in IOL 1 - 7.5%

CPR means CPU Profiler Rank. Ch. LOC is the number of changed LOC.
IOL means inconsistent object layouts. PO means polymorphic operations.
BOU means binary operation on undefined. NCA means non-contiguous
arrays. UAE means accessing undefined array elements. NNA means storing
non-numeric values in numeric arrays.

Table 3: Performance improvement achieved by avoiding JIT-
unfriendly code patterns.

tween the original and the modified program. All performance
differences we report are statistically significant. The experi-
ments are performed on Mac OS X 10.9.2 using a 2.40GHz
Intel Core i7-3635QM CPU machine with 8GB memory.

To assess the performance of a single benchmark execu-
tion, we rely on the measurement infrastructure that is part
of the SunSpider and Octane benchmarks. SunSpider bench-
marks report a performance score that is the total amount of
time used to complete a fixed amount of computation, i.e., a
lower score means better performance. Therefore, we compute
performance improvement as (soriginal − smodi f ied)/soriginal for
SunSpider, where soriginal and smodi f ied mean the average score
for the original and modified benchmark, respectively. Since
some SunSpider benchmarks run too short to reliably mea-
sure their performance, we modify their test harness code
by increasing the number of repetitions of the computation.
Octane benchmarks report a performance score that is pro-
portional to the number of repetitions performed in a fixed
amount of time, i.e., a higher score means better perfor-
mance. Therefore, we compute performance improvement
as (smodi f ied − soriginal)/soriginal for Octane.

5.2. JIT-unfriendly Code Found by JITPROF

JITPROF detects JIT-unfriendly code that causes easy to avoid
performance problems in 12 of the 40 benchmarks. Table 3
summarizes the performance improvements achieved by avoid-
ing these problems. The “JITPROF Rank” column indicates
which analysis detects a problem and the position of the prob-
lem in the ranked list of reported code locations. The table
also shows how many lines of code we change to avoid the
problem. The last two columns of the table show the perfor-
mance improvement achieved with these changes. Avoiding
JIT-unfriendly code patterns leads to improvements of up to

19.7% and 26.3% in Firefox and Chrome, respectively. In
the following, we discuss representative examples of perfor-
mance problems and how to avoid them. The Appendix list
all examples from Table 3 that we are not discussed in this
section.

Inconsistent Object Layouts in Octane-Splay. JITPROF
reports a code location where inconsistent object layouts
occur a total of 135 times. Specifically, the layout
of the objects frequently alternate between two layouts:
key|value|left|right and key|value|right|left.
The problem boils down to the following code, which ini-
tializes the properties left and right in two possible orders
depending on the outcome of the conditional check at line 2:

1 var node = new SplayTree.Node(key, value);
2 if (key > this.root_.key) {
3 node.left = this.root_;
4 node.right = this.root_.right;
5 ...
6 } else {
7 node.right = this.root_;
8 node.left = this.root_.left;
9 ...

10 }

To fix the problem, we swap the first two statements in the
else branch so that the code always creates an object with
layout key|value|left|right. This simple change results
in a 3.5% and 15.1% improvement in Firefox and Chrome,
respectively.

Polymorphic operations in SunSpider-Format-Xparb.
JITPROF reports a code location that frequently performs
a polymorphic plus operation. Specifically, the analysis ob-
serves operand types "string + string" 699 times and operand
types "object + string" 3,331 times. The behavior is caused by
the following function, which returns either a primitive string
value or a String object, depending on the value of val:

1 String.leftPad = function (val, size, ch) {
2 var result = new String(val);
3 if (ch == null) {
4 ch = " ";
5 }
6 while (result.length < size){
7 result = ch + result;
8 }
9 return result;

10 }

To avoid this problem, we refactor String.leftPad by
replacing line 2 with:

1 var result = val + ’’;
2 var tmp = new String(val) + ’’;

The modified code initializes result with a primitive
string value. For a fair performance comparison, we add
the statement at line 2 to retain a String object construction
operation and a monomorphic "object + string" concate-
nation operation. This simple change leads to 19.7% and
22.4% performance improvement in Firefox and Chrome, re-
spectively. Fixing the problem without the statement that calls
the String constructor, which is the solution a developer may
choose in practice, leads to an even larger improvement.

9

Multiple undefined-related Problems in SunSpi-
der-MD5. JITPROF reports occurrences of three JIT-
unfriendly code patterns for the following code snippet:

1 function str2binl(str)
2 {
3 var bin = Array();
4 var mask = (1 << chrsz) - 1;
5 for (var i = 0; i < str.length * chrsz; i += chrsz)
6 bin[i>>5] |= (str.charCodeAt(i/chrsz) & mask)<<(i%32);
7 return bin;
8 }

The function creates an empty array and then reads unini-
tialized elements of the array in a loop before assigning values
to those elements. JITPROF reports that the code accesses
undefined elements of an array 3,956 times at line 6. Further-
more, the approach reports that this line repeatedly performs
bitwise OR operations on the undefined value. Finally, the
approach also reports that this operation is polymorphic be-
cause it operates both on numbers and on undefined.

To avoid this conglomerate of JIT-unfriendly operations, we
refactor the code as follows:

1 function str2binl(str)
2 {
3 var len = (str.length * chrsz)>>5;
4 var bin = new Array(len);
5 for (var i = 0; i < len; i++) bin[i] = 0;
6 var mask = (1 << chrsz) - 1;
7 for (var i = 0; i < str.length * chrsz; i += chrsz)
8 bin[i>>5] |= (str.charCodeAt(i/chrsz) & mask)<<(i%32);
9 return bin;

10 }

The modified code avoids all three JIT-unfriendly code pat-
terns. It initializes the array bin with a predefined size (stored
in the variable len) and then initializes all of its elements
with zero. Although we introduce additional code, this change
leads to a 24.6% performance improvement in Chrome.
Non-contiguous Arrays in SunSpider-Cube. JITPROF de-
tects code that creates a non-contiguous array 208 times. The
example is similar to Figure 5: an array is initialized in reverse
order, and we modify the code by initializing the array from
lower to higher index. As a result, the array increases con-
tiguously, which results in a small but statistically significant
performance improvement of 1.1% in Chrome.
Non-numeric Values in Numeric Arrays in SunSpi-
der-Raytrace. JITPROF reports that the SunSpider-Raytrace
benchmark transforms a numeric array into a non-numeric
array 30 times. The reason is that the program initializes an
array that is supposed to represent pixels with 30 zeros:

1 var size = 30;
2 var pixels = new Array();
3 for (var y = 0; y < size; y++) {
4 pixels[y] = new Array();
5 for (var x = 0; x < size; x++) {
6 pixels[y][x] = 0;
7 }
8 }

The code initializes pixels[y] as a numeric array, but
the program later stores 30 non-numeric values into the array
that each represent a pixel (each pixel is a numeric array of
length three). Since the initial zero values are never used in
the program, we refactor the initialization code as follows:

1 var size = 30;
2 var tmp = [0,0,0];
3 var pixels = new Array();
4 for (var y = 0; y < size; y++) {
5 for (var x = 0; x < size; x++) {
6 pixels[y][x] = tmp;
7 }
8 }

The new code informs the JIT engine that the array should
contain only array values, which avoids adapting the data
representation at runtime. The change improves performance
by 2.6% in Chrome.

5.3. Comparison with CPU-time Profiling

The most prevalent existing approach for finding performance
bottlenecks is CPU-time profiling [15]. To compare JITPROF
with CPU-time profiling, we analyze the benchmark programs
in Table 3 with the Firebug Profiler.5 CPU-time profiling re-
ports a list of functions in which time is spent during the execu-
tion, sorted by the time spent in the function itself, i.e., without
the time spent in callees. The “CPU Profiler Rank” column in
Table 3 shows for each JIT-unfriendly location identified by
JITPROF the CPU profiling rank of the function that contains
the code location. Most code locations appear on a higher rank
in JITPROF’s output than with CPU profiling. The function of
one code location (SunSpider-String-Tagcloud) does not even
appear in the CPU profiler’s output, presumably because the
program does not spend a significant amount of time in the
function that contains the JIT-unfriendly code.

In addition to the higher rank of JIT-unfriendly code loca-
tions, JITPROF improves upon traditional CPU-time profiling
by pinpointing a single code location and by explaining why
this location causes performance problems. In contrast, CPU-
time profiling suggests entire functions as optimization candi-
dates. For example, the performance problem in SunSpider-
Format-Tofte is in a function with 291 lines of code. Instead
of letting developers find an optimization opportunity in this
function, JITPROF precisely points to the problem.

Overall, our results suggest that JITPROF enables develop-
ers to find JIT-unfriendly code locations quicker than CPU-
time profiling. In practice, we expect both JITPROF and
traditional CPU-time profiling to be used in combination. De-
velopers can identify JIT compilation-related problems quickly
with JITPROF and, if necessary, use other profilers afterwards.

5.4. Non-Optimizable JIT-unfriendly Code

For some of the JIT-unfriendly code locations reported by
JITPROF, we fail to improve performance with a simple refac-
toring. A common pattern of such non-optimizable code is an
object that is used as a dictionary or map. For such objects,
the program initializes properties outside of the constructor,
making the object structure unpredictable and leading to multi-
ple hidden classes for a single object. Dictionary objects often
cause inline cache misses because the object’s structure varies

5https://getfirebug.com/wiki/index.php/Profiler

10

https://getfirebug.com/wiki/index.php/Profiler

in an unpredictable way at runtime, but we cannot easily refac-
tor such problems. Another common pattern is JIT-unfriendly
code that is not executed frequently and where eliminating the
JIT-unfriendly code requires adding statements. For example,
sometimes creating consistent object layouts requires adding
some property initialization statements in a constructor, and
executing these additional statements takes more time than
the time saved from avoiding the JIT-unfriendly code. De-
velopers can avoid inspecting and optimizing such code by
inspecting only the top-ranked JIT-unfriendly code locations,
which occur relatively often.

6. Related Work

6.1. Just-in-time Compilation

JIT compilation is widely used to improve the performance of
a program while it executes [4]. Recent work includes trace-
based dynamic type specialization [13], optimizing the repre-
sentation of arrays based on object access profiles [30], mem-
oizing side effect-free methods [42], identifying and removing
short-lived objects [34], just-in-time value specialization [8],
and studying how the effectiveness of JIT compilation depends
on the order in which compilation units are (re)-compiled [11].
Hackett et al. [17] improve the performance of the Firefox
JavaScript engine through combined static-dynamic type in-
ference that enables the engine to omit unnecessary runtime
checks, given that the program matches particular regularity
assumptions. Ahn et al. improve Chrome’s JavaScript engine
by modifying the structure of hidden classes to increase the
inline caching hit rate [3]. These approaches improve the per-
formance of existing programs, whereas JITPROF pinpoints
code locations that developers may refactor to improve perfor-
mance on existing JavaScript engines. Even though we expect
further improvements of JIT compilation in the future, we
also expect that there will always remain code that cannot be
compiled into efficient machine code by a given JIT compiler.
Our work addresses the problem of identifying such code.

6.2. Performance Analysis and Profiling

A recent study [21] shows that performance bugs are a com-
mon problem. In the following, we discuss existing ap-
proaches to detect and diagnose such problems. St-Amour
et al. [36] propose to instrument a compiler so that it creates a
log of all optimization decisions and to use this log to suggest
to the developer code changes that enable currently missed
optimizations. In contrast to this compile time analysis imple-
mented inside a compiler, JITPROF is a runtime analysis that
is implemented without modifying the JavaScript engine.

JavaScript developers often rely on web sites that compare
the execution time of particular code snippets across JavaScript
engines6 or on advice on how to write efficient JavaScript
code [45]. In contrast to these generic and program-agnostic

6For example, http://jsperf.com.

guidelines, our approach points to optimization opportunities
in a given program.

Hauswirth et al. [19] propose multi-layer profiling to un-
derstand the whole-system performance of programs executed
in a virtual machine. PowerScope [12] is a profiler for mea-
suring energy consumptions at procedure and process level.
CProf [24] and StatCache [6] are cache profiling systems that
identify memory cache misses in frequently executed parts of
a program. These approaches and our work share the idea of
analyzing the interaction between a program and its execution
environment. PerfDiff is a dynamic analysis to understand
and localize performance differences between execution en-
vironments [46]. Instead, our work pinpoints performance
problems that may exist in multiple execution environments.

There are various profilers and dynamic analyses to detect
inefficient memory usage and other performance bottlenecks.
Xu et al. propose approaches to find underutilized or overuti-
lized containers [39], unnecessarily copied data [40], and
objects where the cost to create the object exceeds the ben-
efit from using it [41]. Yan et al. detect common patterns
of excessive memory usage through reference propagation
profiling [43]. TAEDS is a framework to record and analyze
data structure evolution during the execution [37]. Marinov
and O’Callahan propose an analysis to find optimization op-
portunities due to equal objects [26], and Xu refines this idea
to detect allocation sites where similar objects are created
repeatedly [38]. Toddler [29] detects loops where all itera-
tions have similar memory access patterns and proposes to
move the corresponding code out of the loop. Profiling is
also used to understand the performance of interactive user
interface applications [22, 31] and large-scale, parallel HPC
programs [5, 35]. Pin is a runtime instrumentation framework
for binaries that includes profilers and cache simulators [25].
Other approaches combine execution traces from multiple
users to localize performance problems [18, 44]. All these
approaches detect performance problems that are independent
of the program’s execution environment. Instead, JITPROF
focuses on JIT-unfriendly code locations. LLVM [23] is a
framework to support program analysis at compiler level. This
framework is capable of gather profiling information for later
analysis and optimization. Mytkowicz et al. [28] compare four
Java profilers and show that non-uniform sampling may skew
the profiling results. Our implementation of JITPROF avoids
this problem by not sampling the execution.

7. Conclusion
This paper presents JITPROF, a profiling framework to pin-
point code locations that prohibit profitable JIT optimizations.
We realize our idea for six code patterns that lead to perfor-
mance bottlenecks on popular JavaScript engines and show
that JITPROF finds instances of these patterns in widely used
benchmark programs. Simple changes of the programs to
avoid the JIT-unfriendly code patterns lead to significant per-
formance improvements of up to 26.3%. Our work is the

11

http://jsperf.com

foundation for an easy to use tool that pinpoints JIT-related
optimization opportunities without the need to fully under-
stand the JavaScript engine. Given the increasing popularity
of JavaScript, we consider our work to be an important step to-
ward improving the efficiency of an increasingly large fraction
of all executed software.

Acknowledgment
This research is supported in part by NSF Grants CCF-
0747390, CCF-1018729, CCF-1423645, and CCF-1018730,
and gifts from Mozilla and Samsung. The authors would like
to thank Luca Della Toffola for his valuable feedback.

References
[1] Octane Benchmark Suite (v1). https://developers.google.

com/octane/.
[2] SunSpider Benchmark Suite. https://www.webkit.org/

perf/sunspider/sunspider.html.
[3] Wonsun Ahn, Jiho Choi, Thomas Shull, María J. Garzarán, , and Josep

Torrellas. Improving JavaScript performance by deconstructing the
type system. In PLDI, 2014.

[4] John Aycock. A brief history of just-in-time. pages 97–113, 2003.
[5] Robert Bell, Allen D. Malony, and Sameer Shende. Paraprof: A

portable, extensible, and scalable tool for parallel performance profile
analysis. In Euro-Par, pages 17–26, 2003.

[6] Erik Berg and Erik Hagersten. Fast data-locality profiling of native
execution. In SIGMETRICS, pages 169–180. ACM, 2005.

[7] Craig Chambers, David Ungar, and Elgin Lee. An efficient implemen-
tation of self - a dynamically-typed object-oriented language based on
prototypes. In OOPSLA, pages 49–70, 1989.

[8] Igor Costa, Péricles Alves, Henrique Nazare Santos, and Fernando
Magno Quintão Pereira. Just-in-time value specialization. In CGO,
pages 1–11, 2013.

[9] Charlie Curtsinger and Emery D. Berger. STABILIZER: statistically
sound performance evaluation. In Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages 219–228.
ACM, 2013.

[10] L. Peter Deutsch and Allan M. Schiffman. Efficient implementation of
the smalltalk-80 system. In POPL, pages 297–302, 1984.

[11] Yufei Ding, Mingzhou Zhou, Zhijia Zhao, Sarah Eisenstat, and Xipeng
Shen. Finding the limit: examining the potential and complexity of
compilation scheduling for jit-based runtime systems. In ASPLOS,
pages 607–622, 2014.

[12] Jason Flinn and Mahadev Satyanarayanan. Powerscope: A tool for
profiling the energy usage of mobile applications. In WMCSA, pages
2–10. IEEE Computer Society, 1999.

[13] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R. Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith,
Rick Reitmaier, Michael Bebenita, Mason Chang, and Michael Franz.
Trace-based just-in-time type specialization for dynamic languages. In
PLDI, pages 465–478, 2009.

[14] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically rig-
orous Java performance evaluation. In Conference on Object-Oriented
Programming, Systems, Languages, and Application (OOPSLA), pages
57–76. ACM, 2007.

[15] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof:
A call graph execution profiler. In SIGPLAN Symposium on Compiler
Construction, pages 120–126. ACM, 1982.

[16] Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference
for JavaScript. In Conference on Programming Language Design and
Implementation (PLDI), pages 239–250. ACM, 2012.

[17] Brian Hackett and Shu yu Guo. Fast and precise hybrid type inference
for javascript. In PLDI, pages 239–250. ACM, 2012.

[18] Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie.
Performance debugging in the large via mining millions of stack traces.
In International Conference on Software Engineering (ICSE), pages
145–155. IEEE, 2012.

[19] Matthias Hauswirth, Peter F. Sweeney, Amer Diwan, and Michael
Hind. Vertical profiling: understanding the behavior of object-oriented
applications. In Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 251–269, 2004.

[20] Urs Hölzle, Craig Chambers, and David Ungar. Optimizing
dynamically-typed object-oriented languages with polymorphic in-
line caches. In ECOOP, volume 512 of Lecture Notes in Computer
Science, pages 21–38. Springer, 1991.

[21] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. In
Conference on Programming Language Design and Implementation
(PLDI), pages 77–88. ACM, 2012.

[22] Milan Jovic, Andrea Adamoli, and Matthias Hauswirth. Catch me if
you can: performance bug detection in the wild. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 155–170. ACM, 2011.

[23] Chris Lattner and Vikram S. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In CGO, pages 75–88.
IEEE Computer Society, 2004.

[24] Alvin R. Lebeck and David A. Wood. Cache profiling and the spec
benchmarks: A case study. IEEE Computer, 27(10):15–26, 1994.

[25] Chi-Keung Luk, Robert S. Cohn, Robert Muth, Harish Patil, Artur
Klauser, P. Geoffrey Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim M. Hazelwood. Pin: building customized program analysis tools
with dynamic instrumentation. In PLDI, pages 190–200. ACM, 2005.

[26] Darko Marinov and Robert O’Callahan. Object equality profiling. In
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 313–325, 2003.

[27] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Producing wrong data without doing anything obviously
wrong! In ASPLOS, pages 265–276, 2009.

[28] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F.
Sweeney. Evaluating the accuracy of java profilers. In Conference on
Programming Language Design and Implementation (PLDI), pages
187–197. ACM, 2010.

[29] Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler:
detecting performance problems via similar memory-access patterns.
In ICSE, pages 562–571. IEEE / ACM, 2013.

[30] Rei Odaira and Toshio Nakatani. Continuous object access profiling
and optimizations to overcome the memory wall and bloat. In ASPLOS,
pages 147–158, 2012.

[31] Lenin Ravindranath, Jitendra Padhye, Sharad Agarwal, Ratul Mahajan,
Ian Obermiller, and Shahin Shayandeh. AppInsight: mobile app per-
formance monitoring in the wild. In Conference on Operating Systems
Design and Implementation (OSDI), pages 107–120. USENIX, 2012.

[32] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An
analysis of the dynamic behavior of javascript programs. In PLDI,
pages 1–12. ACM, 2010.

[33] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs.
Jalangi: A selective record-replay and dynamic analysis framework
for JavaScript. In European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2013.

[34] Ajeet Shankar, Matthew Arnold, and Rastislav Bodík. Jolt: lightweight
dynamic analysis and removal of object churn. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 127–142. ACM, 2008.

[35] Sameer Shende and Allen D. Malony. The tau parallel performance
system. International Journal of High Performance Computing Appli-
cations, pages 287–311, 2006.

[36] Vincent St-Amour, Sam Tobin-Hochstadt, and Matthias Felleisen. Op-
timization coaching: optimizers learn to communicate with program-
mers. In OOPSLA, pages 163–178, 2012.

[37] Xiao Xiao, Jinguo Zhou, and Charles Zhang. Tracking data structures
for postmortem analysis. In ICSE, pages 896–899. ACM, 2011.

[38] Guoqing Xu. Finding reusable data structures. In Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA), pages 1017–1034. ACM, 2012.

[39] Guoqing Xu and Atanas Rountev. Detecting inefficiently-used contain-
ers to avoid bloat. In Conference on Programming Language Design
and Implementation (PLDI), pages 160–173. ACM, 2010.

[40] Guoqing (Harry) Xu, Matthew Arnold, Nick Mitchell, Atanas Roun-
tev, and Gary Sevitsky. Go with the flow: profiling copies to find
runtime bloat. In Conference on Programming Language Design and
Implementation (PLDI), pages 419–430. ACM, 2009.

12

https://developers.google.com/octane/
https://developers.google.com/octane/
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html

[41] Guoqing (Harry) Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev,
Edith Schonberg, and Gary Sevitsky. Finding low-utility data structures.
In Conference on Programming Language Design and Implementation
(PLDI), pages 174–186, 2010.

[42] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic
purity analysis for Java programs. In Workshop on Program Analysis
for Software Tools and Engineering (PASTE), pages 75–82. ACM,
2007.

[43] Dacong Yan, Guoqing (Harry) Xu, and Atanas Rountev. Uncovering
performance problems in Java applications with reference propaga-
tion profiling. In International Conference on Software Engineering,
(ICSE), pages 134–144. IEEE, 2012.

[44] Xiao Yu, Shi Han, Dongmei Zhang, and Tao Xie. Comprehending
performance from real-world execution traces: a device-driver case. In
ASPLOS, pages 193–206, 2014.

[45] Nicholas C. Zakas. High performance javascript - build faster web
application interfaces. 2010.

[46] Xiaotong Zhuang, Suhyun Kim, Mauricio J. Serrano, and Jong-Deok
Choi. Perfdiff: a framework for performance difference analysis in a
virtual machine environment. In Symposium on Code Generation and
Optimization (CGO), pages 4–13. ACM, 2008.

13

Appendix

JITPROF detects some JIT-unfriendly code locations that we
do not discuss in Section 5.2 for space reasons. The Appendix
describes these remaining examples.
Access to Undefined Array Elements in SunSpider-For-
mat-Tofte. JITPROF reports that the following code accesses
an undefined array element 1,000 times:

1 var ia = input.split(’’);
2 var ij=0;
3 while (ia[ij]) {
4 ...
5 ij++;
6 }

The while loop iterates over the elements of the array
starting from index 0 and performs some operations on each
element. To check if the current index is within the bounds
of the array, the code checks if the element of the array at the
current index is defined or not. As a result, the code accesses
an undefined array elements every time it is executed. The
undefined array access can be eliminated by refactoring the
code as follows:

1 var ia = input.split(’’);
2 var ij=0, var len = ia.length, var sum = 0;
3 while (ij < len) {
4 sum += ia[ij];
5 ...
6 ij++;
7 }

In the refactored code, the while loop uses the length of
the array to make sure that the current index is always within
the bounds of the array. For a fair comparison, we also add
an additional load operation inside the loop at line 4. The
modified code yields a 3.4% improvement in Chrome.
Inconsistent Object Layouts in Octane-DeltaBlue.
JITPROF reports a code location where two inconsistent
object layouts occur 11,700 and 2,017 times, respectively. The
objects that occur at this code location frequently alternate
between two layouts: strength|v1|v2|direction and
direction|scale|offset|strength|v1|v2. The
reason for this JIT-unfriendly code is the following code:

1 function BinaryConstraint(var1, var2, strength) {
2 ...
3 this.v1 = var1;
4 this.v2 = var2;
5 this.direction = Direction.NONE;
6 ...
7 }
8

9 BinaryConstraint.prototype.output = function() {
10 return (this.direction == Direction.FORWARD) ?
11 this.v2 : this.v1;
12 }
13 ...
14 EqualityConstraint.inheritsFrom(BinaryConstraint);
15 ...
16 ScaleConstraint.inheritsFrom(BinaryConstraint);

Objects of type EqualityConstraint and objects of type
ScaleConstraint both inherit from BinaryConstraint,
which has a method output that uses the property
direction, v2 and v1 of the base object. Since
EqualityConstraint and ScaleConstraint have differ-

ent structures, accessing the property this.direction in-
side output can lead to inline cache misses.

To eliminate these inline cache miss, we append the output
method to the prototype object of EqualityConstraint and
ScaleConstraint, respectively:

1 EqualityConstraint.prototype.output = function() {
2 return (this.direction == Direction.FORWARD) ?
3 this.v2 : this.v1;
4 }
5

6 ScaleConstraint.prototype.output = function() {
7 return (this.direction == Direction.FORWARD) ?
8 this.v2 : this.v1;
9 }

As a result, the layout of this is always consistent when ac-
cessing constraint.output inside the method. The refac-
tored program results in a small but statistically significant
performance improvement of 1.4% in Firefox.
Inconsistent Object Layouts in Octane-RayTrace.
JITPROF reports that two inconsistent object layouts occur
26,298 and 25,042 times, respectively, at a particular code
location. The inline cache misses happen because the layout
of the objects involved in the property access frequently
alternate between two layouts that share the same structure
but that have different prototype objects. Some JavaScript
engines treat hidden classes that point to different prototype
objects as different hidden classes [3]. The code location
reported by JITPROF is this.initialize at line 4 of the
following code:

1 var Class = {
2 create: function() {
3 return function() {
4 this.initialize.apply(this, arguments);
5 }
6 }
7 };
8 ...
9 Flog.RayTracer.Color = Class.create();

10 ...
11 Flog.RayTracer.Light = Class.create();
12 ...

Objects of type Flog.RayTracer.Color and objects
of type Flog.RayTracer.Light are both created in
the function returned by Class.create. Each call of
Class.create returns a new function instance, which has
a fresh prototype object. As a result, each time the program
initializes objects of type Flog.RayTracer.Color and ob-
jects of type Flog.RayTracer.Light, they refer to different
prototype objects.

To eliminate these inline cache misses, we assign the
function as a literal to Flog.RayTracer.Color and
Flog.RayTracer.Light, respectively, so that when using
their constructors, the structure of this is always consistent:

1 Class.create();
2 Flog.RayTracer.Color = return function() {
3 this.initialize.apply(this, arguments);
4 }
5

6 Class.create();
7 Flog.RayTracer.Light = return function() {
8 this.initialize.apply(this, arguments);
9 }

14

The refactored program results in a 12.9% performance
improvement in Chrome.
Inconsistent Object Layouts in Octane-Box2D.
JITPROF detects inconsistent object layouts that oc-
cur 447 and 363 times, respectively. The inline cache
misses happen because the object layout observed
at the code location frequently alternate between
these two layouts: indexA|wA|indexB|wB|w|a and
indexA|indexB|wA|wB|w|a. The cause for this JIT-
unfriendly behavior is the following code:

1 X = x[t.m_count];
2 X.indexA = m.GetSupport(w.MulTMV(s.R, P.GetNegative()));
3 X.wA = w.MulX(s, m.GetVertex(X.indexA));
4 X.indexB = r.GetSupport(w.MulTMV(v.R, P));
5 X.wB = w.MulX(v, r.GetVertex(X.indexB));
6 ...
7

8 var C = t[x];
9 C.indexA = b.indexA[x];

10 C.indexB = b.indexB[x];
11 ...
12 C.wA = w.MulX(f, s);
13 C.wB = w.MulX(r, v);

The object X gets property wA initialized at line 3 and then
gets property indexB initialized at line 4. While object C
gets property indexB initialized before property wA. Later, a
get property operation retrieves indexB from object C and
object X, which leads to inline cache misses. We refactor this
JIT-unfriendly code pattern by swapping line 3 and line 4. The
refactored program results in a 7.5% improvement in Chrome.
Inconsistent Object Layouts in SunSpider-String-Tag-
Cloud. JITPROF reports inconsistent object layouts for the
property accesses v[i] at lines 6 and 8 in the following code:

1 function walk(k, v) {
2 var i, n;
3 if (v && typeof v === ’object’) {
4 for (i in v) {
5 if (Object.prototype.hasOwnProperty.apply(v, [i])) {
6 n = walk(i, v[i]);
7 if (n !== undefined) {
8 v[i] = n;
9 }

10 }
11 }
12 }
13 return filter(k, v);
14 }

The inline cache misses happen because the get property
operation v[i] at line 6 and the put property operation at line 8
access two different property names (popularity and tag)
in different loop iterations, even though all object layouts are
the same ([tag|popularity]). To avoid these inline cache
misses, we refactor the code as follows:

1

2 function walk(k, v) {
3 var i,n;
4 if (v && typeof v === ’object’) {
5 for (i in v) {
6 if (Object.prototype.hasOwnProperty.apply(v, [i])) {
7 if(i === ’tag’) {
8 n = walk(i, v.tag);
9 if (n !== undefined) {

10 v.tag = n;
11 }
12 } else if (i === ’popularity’) {
13 n = walk(i, v.popularity);

14 if (n !== undefined) {
15 v.popularity = n;
16 }
17 } else {
18 n = walk(i, v[i]);
19 if (n !== undefined) {
20 v[i] = n;
21 }
22 }
23 }
24 }
25 }
26 return filter(k, v);
27 }

In the refactored code, we first check if the property
name is tag or popularity. When the property name
matches, the control flow enters the corresponding branch
where the property accesses are hard-coded (e.g., v.tag and
v.popularity) so that none of the property get and put op-
erations causes any inline cache miss. We add the final else
branch to make sure that the refactored code preserves the
semantics. This refactoring results in a 11.7% improvement
in Chrome.
Multiple Problems in SunSpider-Crypto-SHA1. JITPROF
detects occurrences of multiple JIT-unfriendly code patterns
in SunSpider-Crypto-SHA1, which are similar to the example
in SunSpider-Crypto-MD5 (Section 5.2):

1 function str2binb(str)
2 {
3 var bin = Array();
4 var mask = (1 << chrsz) - 1;
5 for(var i = 0; i < str.length * chrsz; i += chrsz)
6 bin[i>>5] |=
7 (str.charCodeAt(i/chrsz) & mask)<<(32-chrsz-i%32);
8 return bin;
9 }

After refactoring the code in a similar way as in SunSpider-
Crypto-MD5, we notice a 26.3% performance improvement
in Chrome. In Firefox, we observe an improvement of 3.3% .
Non-contiguous Arrays in SunSpider-Cube. JITPROF de-
tects that the following code creates a non-contiguous array
208 times (already briefly explained in Section 5).

1 var CurN = new Array();
2 var i = 5;
3 for (; i > -1; i--)
4 CurN[i] = VMulti2(MQube, Q.Normal[i]);

The array CurN is initially empty and the for loop at line 3
stores array elements from higher index to lower index. As a
result, CurN is non-contiguous in the first four of five iterations.
We avoid this performance problem by modifying the loop so
that it modifies the array from the lower index to the higher
index. As a result, the array increases contiguously:

1 var CurN = new Array();
2 for (var i=0; i < 6; i++)
3 CurN[i] = VMulti2(MQube, Q.Normal[i]);

This change results in a small but statistically significant
performance improvement of 1.1% in Chrome.

15

	Introduction
	JIT-unfriendly Code Patterns
	Inconsistent Object Layouts
	Polymorphic Operations
	Binary Operation on undefined
	Non-contiguous Arrays
	Accessing Undefined Array Elements
	Storing Non-numeric Values in Numeric Arrays

	Dynamic Analyses to Detect JIT-unfriendly Code Patterns
	Tracking Inconsistent Object Layouts
	Tracking Polymorphic Operations
	Tracking Binary Operations on undefined
	Tracking Non-contiguous Arrays
	Tracking Access to Undefined Array Elements
	Tracking Non-numeric Stores into Numeric Arrays
	Discussion

	Implementation
	Evaluation
	Experimental Methodology
	JIT-unfriendly Code Found by JITProf
	Comparison with CPU-time Profiling
	Non-Optimizable JIT-unfriendly Code

	Related Work
	Just-in-time Compilation
	Performance Analysis and Profiling

	Conclusion

