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Abstract
BAG: A Designer-Oriented Framework for the Development of AMS Circuit Generators
by
John Wiley Crossley
Doctor of Philosophy in Engineering — Electrical Engineeing and Computer Sciences
University of California, Berkeley

Professor Elad Alon, Chair

The recent trend in embedding multiple applications into a single System-on-Chip (SoC) has
resulted in an increase in the number of Analog/Mixed-Signal (AMS) components integrated per
die. Although the AMS components typically occupy a small fraction of the whole IC, they often
require the longest design time because typical AMS design flows require substantial manual
intervention from the designer throughout the design process. It would thus be desirable to
automate the design of AMS circuits and foster their reuse across multiple SoCs and technology
generations, to shorten time-to-market of new products and to free analog designers from
performing repetitive tasks. In this thesis, we present the Berkeley Analog Generator (BAG)
framework, an integrated framework for the development of generators of AMS circuits.

Generators are parameterized design procedures that produce sized schematics and correct
layouts optimized to meet a set of input specifications. BAG extends previous work by
implementing interfaces to integrate all steps of the design flow into a single environment and by
providing helper classes — at the schematic and particularly at the layout level — to aid the
designer in developing truly parameterized and technology-independent AMS circuit generators.
The BAG framework simplifies and helps codify common tasks in the AMS design flow
including technology characterization, schematic and testbench translation, simulator interfacing,
physical verification and extraction, and layout creation. BAG addresses one of the most labor-
intensive tasks, layout, by providing template-based extensible layout generators for different
styles of circuits to help designers create their own parameterized layout generators. In order to
demonstrate the completeness of the BAG framework, the development process of several
generators for an integrated switched-capacitor (SC) regulator and its associated subcircuits are
presented as a case study and the top level SC regulator generator is used to create three
instances of a SC voltage regulator targeting different power densities, absolute output power,
and aspect ratios.
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Chapter 1 — Introduction

Chapter 1 - Introduction

1.1 The case for analog design automation

The recent trend in embedding multiple applications into a single System-on-Chip (SoC) has
resulted in a substantial increase in the number of digital and Analog/Mixed-Signal (AMS)
components integrated per die [1]. Although the core functionality in such integrated systems is
often implemented with digital circuitry, some functions that are required to guarantee system
functionality and performance (e.g. radio transceivers, temperature sensors, voltage regulators,
high speed 10, PLLs) rely on AMS design techniques. Compared to digital circuit design flows,
AMS circuit design lacks a common set of well-defined steps in the design flow or the ability to
capture a design procedure in an executable way. As a result, even though digital circuits
dominate in terms of their total die area — as shown in the A7 SoC in Figure 1.1 — AMS circuits
are increasingly the gating factor preventing designs from being completed on time and/or within
budget.

: DRAM interface
[;| LCD interface
PLL

DRAM interface

DRAM interface

GPU core GPU core

L1 GPU shared
digital logic

GPU core GPU core
DRAM interface

[Cameraieriace] [ —*—]

Figure 1.1: Apple A7 SoC with some of the AMS blocks highlighted [2].
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As shown in the example AMS design flow of Figure 1.2, AMS designers are directly
involved in many steps of the design process, and are also critical in connecting the various steps
into a cohesive design flow. While some individual steps — like SPICE simulation and parasitic
extraction — do not require a human-in—the—loopl, others (e.g. custom layout) require extensive
manual labor. Even the automated steps still require designers to interpret the results, modify
design parameters, and pass information to other steps of the design. In contrast, digital design
flows centralize all manual efforts into a set of design scripts. The steps of the digital design
process, all of which are highly automated, are then connected and controlled from the script
rather than directly by the designer. Once a design script has been fully debugged, it is usually
possible to modify the inputs (e.g. to modify register transfer language (RTL) descriptions or
update the standard cell libraries) and successfully rerun the design procedure without requiring
additional work from the designer.

RTL fecioleay Specifications VEE I L
Info Info

Gate-lovel Schematic
Synthesis Sizing
Simulation
Digital Design Place and AMS
Designer Script Route Designer Custom
Layout
Timing
Analysis Extraction
Digital AMS Circuit
InCsI:ac:::te Instance
Jinaglit Automated
the loop
Digital Design Flow AMS Design Flow

Figure 1.2: Digital vs. AMS design flow.

Today’s AMS design flows unfortunately do not have the same property. In fact, the amount
of human intervention required for AMS designs is actually increasing due to the increasing
interaction between the layout design steps and circuit performance that occurs as designs are
started in or migrated to more advanced technology nodes. Creating and verifying ‘“high-
quality” (i.e., meeting performance/power as well as reliability/yield constraints) layouts is
perhaps the largest single task in a typical AMS circuit design. Unlike digital flows, the layout
designer usually still hand-places devices and draws polygons for routing. If manual layout were
just a matter of a single continuous process, one time for every tapeout, without requiring any
modifications or restarts along the way, it might not be such a big time sink. Unfortunately that
situation almost never occurs. Unless the designer has very accurate initial layout parasitics, it is
usually the case that after the first-pass layout is completed and the circuit is simulated to include
the extracted parasitics, the whole design sizing must be performed again. This of course, leads

" SPICE circuit simulation takes a netlist and a testbench script as inputs and produces as output
calculated voltages and currents for the nodes and branches of the circuit. While human involvement may
be used to produce the inputs and examine the outputs, the process of solving the differential equations is
fully automated. Designers tend to take this kind of automation for granted because the amount of effort
for the equivalent manual procedure is so high that it is not considered a viable option. Layout parasitic
extraction is similarly automated and accepted as the standard.
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to changes in the layout, and if those changes are significant enough, it can require almost as
much time as the first pass layout. In some cases it might even be more if the designer realizes
that they neglected certain constraints during the first pass. All of this effort is only assuming a
normal layout procedure and not accounting for any of the numerous layout-affecting scenarios
that could result from a change in the specifications or a change to the process.

Given the labor-intensive nature of manual AMS circuit design, it would thus be highly
desirable to automate the design of AMS circuits, in a manner analogous to automated digital
design techniques, and foster their reuse across multiple SoCs and technology generations. This
would shorten the time-to-market of new products, and would free analog designers from
performing repetitive tasks (e.g. circuit redesign due to a change in the specifications or
technology migration).

In order to understand the advantages that design automation can bring to AMS circuit
design, it is useful to examine a representative example design that uses the traditional, manual
design flow. The digital phase locked loop (DPLL) shown in Figure 1.3 is one implementation
of a clock generator — which is a common AMS circuit block — that was created using a manual
AMS design flow. The goal of this design was to generate a low-jitter clock in the presence of
significant supply noise with minimal power consumption [3]. The most unique parts of the
design were the overall architecture combining three different control paths, and the circuit
techniques used to control the phase of the DCO. Most of the sub-blocks involved — such as the
current DAC, capacitor DAC, low-pass filter, and phase frequency detector — used standard
architectures and well-understood design procedures. Despite this, a large portion of the total
work that went into the design was spent on these blocks, which although they were necessary
for the correct function of the circuit, were not critical to the main advances we intended to
demonstrate with the PLL architecture. From an academic perspective, automating these types
of circuits could allow research to be more focused and allow less time to be spent implementing
excessive amounts of ancillary circuits just to demonstrate one new idea. Automating designs
like these is also attractive from an industrial perspective in order to simplify and speed up the
design process as well as to improve the productivity of AMS circuit designers.

IIDPLL with Linear Phase Control

Coarse ICenter
Frequency | Code
Control :

BB i —
Frequency |
Control !

Phase :
Control L

Figure 1.3: Digital PLL Block Diagram.
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Ancillary circuits are not the only type of circuits that could benefit from automation. New
architectures and design techniques could spread faster and have wider impact if designers had
more resources other than research papers and design review slide decks. In Figure 1.3, the
linear regulator used to filter out supply noise in the digital PLL made use of design techniques
from recent work on replica compensated regulators [4]. In contrast to the previously mentioned
circuits, the regulator had a more direct impact on the jitter performance and supply rejection of
the PLL and the chosen regulator architecture was less widely known (and more importantly, not
known to the author at the time, who was the PLL designer). A research paper can be helpful
when learning how to design a new circuit, but if that is the only resource available, it leaves a
lot of room for misunderstanding on the part of the reader and miscommunication on the part of
the writer. Having an automated design procedure for the regulator that could be examined and
rerun with different parameters, even if the procedure required modifications in order to reuse it
in the context of the PLL, would have been very useful in understanding the circuit, speeding up
the design process, and achieving the best performance.

So far, the digital PLL example has been used to motivate the general notion of AMS circuit
design automation without suggesting any specific features that should be included in an
automated design flow. One feature that would have been particularly useful in the final days
before the tape-out deadline of the digital PLL is a degree of programmability in the aspect ratio
of the layout. Figure 1.4 shows two top-level layouts for the digital PLL that were separated in
their time-of-completion by two days. The layout on the left, which measures 1x1 mm and is
pin-limited, had just been completed when the foundry sent notification that the shuttle run only
had room for chips with one dimension smaller than 450 um. The layout on the right was
completed two days later (just in time to meet the deadline) after considerable manual layout
modifications. If the foundry had specified 400 instead of 450 um, the manual layout
modification effort would have been too large to meet the deadline because it would have
required modification of the PLL core itself and not just the bond pads, power grid and top level
routing. An automated layout procedure that could target a particular aspect ratio or constrain a
single dimension of the layout would have worked in both scenarios and would have had the
added benefit of giving the designer (who once again, was the author of this thesis) a lot more
sleep and a lot less stress over the final two days of the tapeout period.
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Figure 1.4: Digital PLL chip layout before and after a last minute change to the allowable
dimensions.

1.2 Previous Work

The idea of automating analog circuit design is by no means novel, and significant effort
using a variety of methodologies has been made to automate various steps of the AMS circuit
design flow. In [5], Gielen and Rutenbar give an excellent overview of many of these efforts,
which they divide into two broad categories: “knowledge-based techniques” and “optimization-
based techniques”. In knowledge-based automation techniques [6], [7], design steps tailored to
specific circuit architectures (e.g. Flash ADC, Switched-Capacitor filters, etc.) are encoded into a
design procedure, i.e. scripts that replicate the activity of the designer. These scripts are usually
fast to run, as well as serving as functional documentation of the design, and the designer
maintains full control of the flow, thus easing modifications and debugging. On the other hand,
the activity of setting up the scripts can be long and error prone, and new scripts are needed for
each new design, so a library of design plans is required to make these approaches widely
adoptable. Optimization-Based Techniques [8], [9], in contrast to knowledge-based techniques,
keep the functional description of the design under analysis separated from a library of available
architectural implementations. The user enters the desired system functionality in terms of
behavioral models and performance constraints. Synthesis is then cast into one or more
optimization problems, where the user-defined cost function and constraints drive the tool to
select and size the library architecture that optimally meets the specifications. These constraint-
driven approaches have been shown to produce high- performing designs, and can, in principle,
seamlessly operate on a large class of AMS circuits using the same design steps. On the other
hand, they can have long runtimes due to the large design space to be explored for practical
analog circuits (> 100 devices), and can still require substantial design experience to properly
constrain the optimizer. Further, the returned circuit implementation might be difficult to debug
or modify, since the tool acts as a black-box to the user, preventing them from building intuition
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on how the design has been generated.

Despite these efforts, the AMS circuit designer community has been reticent to widely adopt
automation software, remaining anchored to the highly manual nature of the custom flow. We
believe that historically this reluctance has stemmed from the lingering difference in perspective
between the two communities. The CAD community has mainly focused on developing
modeling frameworks to capture system functionality and optimization algorithms for
architecture selection and sizing, but it has left to the designers the burden of creating a library of
architectures compatible with the proposed frameworks. The designer community, instead, has
lamented the excessive initial effort required to set up a new automated design flow, and has
shown skepticism towards automation, motivated both by the belief that a better design can be
obtained through a manual effort and by the fear of losing their central role (and perhaps their
job) in the design process.

This situation is now rapidly changing. The need to integrate an increasing number of AMS
circuits per chip has pushed the designer community to an inflection point with regards to design
automation, since: 1) the ability to quickly redesign a block now outweighs the initial effort to
set up an automated synthesis flow; 2) there is a concrete request to create more designs with the
same number of people, instead of the same number of designs with fewer people, and; 3) the
efforts of almost three decades of research have improved the tools that can help automate
individual steps in the analog CAD design flow.” In the following chapters, we describe our
effort towards enabling a widely-adopted shift in the methodology used to design AMS circuits
through the creation of a design framework capable of codifying all the steps of the design flow,
the development of helper classes to ease (from the designer’s perspective) the process of
codifying the schematic sizing and especially the layout procedure, and the creation — using the
aforementioned framework and helper classes — of circuit generators for a non-trivial circuit
capable of creating multiple instantiations targeting different input specifications.

1.3 Organization

Chapter 2 introduces the Berkeley Analog Generator (BAG) framework, a design framework
for AMS circuits capable of integrating all steps of the design flow, from architectural-
specification definition to correct layout implementation, into procedural analog generators. A
definition of an AMS circuit generator is provided followed by an explanation of the goals of the
BAG project, a description of a generator design procedure, and details of the framework’s
implementation. Chapter 3 focuses on the BAG framework’s approach towards automating
layout by enabling designers to create layout generators for specific circuit architectures. In
order to assist the designer in creating layout generators, the BAG framework provides template-
based extensible layout generators for two styles of parameterized layout, suited respectively to
heterogeneous and homogeneous AMS circuits. Chapter 4 presents a case study for a switched-
capacitor converter generator that is used to create three converter instances targeting different
output power levels and efficiencies as well as different physical aspect ratios. Finally, we
conclude and discuss plans for the future of the BAG framework in Chapter 5.

’In fact, CAD research in the field is still active, both in the academic and industrial worlds [10]-[13]
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Chapter 2 — Berkeley Analog Generator
Framework

In this chapter, we present BAG, the Berkeley Analog Generator, an integrated framework
for the development of generators of AMS circuits — i.e., parametric design procedures to
synthesize a schematic and layout of a circuit according to a set of input specifications. We
developed BAG with the goals of closing the gap between the designer and CAD communities,
and providing designers with a framework that allows them to take advantage of the CAD tools
available to help automate their designs and foster reuse. Designers can use BAG to develop
circuit architectures closely following all steps of their familiar custom flows. At the same time,
BAG also assists them in defining an abstraction of the architecture free of most implementation
details (e.g. device sizing and technological parameters) in order to create a library of
components suitable to be embedded within the desired optimization framework.

Using the previously introduced classification, BAG belongs to the knowledge-based
category, in that the design flow is codified as a set of procedural scripts. We believe that this
approach is more likely to be adopted by the designer community, because it maintains the
central role of designers. Moreover, we argue that most optimization- based techniques proposed
in the literature still require substantial design experience to produce high-quality results. At the
same time, though, they enforce algorithmic steps in the design flow that can prevent the
designer from fully driving the project towards the desired direction. We chose a dual approach.
The basic version of the proposed flow is knowledge-based, so that the designer can maintain
control. Specific sub-tasks can then be automated at the will of the designer to improve runtime
and/or design performance. Instead of designing a specific circuit instance as in the standard
custom flow, the designer uses BAG to develop a circuit generator, agnostic towards technology
information and parameterized by the desired input specifications. The time overhead in setting
up the flow is thus amortized by reusing the generator to synthesize circuit instances with
varying input specifications and across technology nodes. The availability of circuit generators
also eases hierarchical top-down design, where complex blocks recursively instantiate sub-
components fulfilling specifications propagated from the higher level.

2.1 What is an AMS circuit generator?

An AMS circuit generator is a set of design functions that can create a fully sized schematic
and a layout of a circuit according to a set of input specifications. Any such generator should, at
a minimum, be capable of reading a set of input specifications, automatically sizing all schematic
components, generating a corresponding physical layout that meets all design rules and Layout
Versus Schematic (LVS) checks, and outputting the resulting circuit performance, which need to
meet all specifications while optimizing some application-specific figure of merit. Borrowing
terminology and graphical representation from the Unified Modeling Language (UML) [14], we
thus define the inferface Analog Generator shown in Figure 2.1. Each circuit generator can be
implemented as a class that has to implement all the methods specified in the Analog Generator
interface. Although individual generators require specific procedures to optimize the
performance of the design under analysis, much of the effort in creating a generator is not unique
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to any single circuit. An AMS circuit generator framework can thus provide a set of abstract
base classes to help a designer create new generators by providing interfaces to tools that
perform common functions in the design process. Figure 2.1 shows an example of some of these
functions as part of a sample abstract base class from which all analog generator classes could
inherit.

<<Abstract Class>>
<<Interface>>

Module
Analog Generator

specs: Spec[*]

perfs: Perf[*]
ReadSpecifications() <+ = - CodeStubGeneration()
DesignSchematic() RunOptimizer()
DesignLayout() LaunchSimulations()
VerifyArchitecture() RunDRC()
WritePerformances() RunLVS()

GenerateSizedSchematic()

Figure 2.1 : AMS circuit generator interface and an example abstract class implementation of the
interface.

In our approach to analog circuit design automation, a designer’s deliverable is not a single
instance of a sized schematic and clean layout for a particular circuit, but rather a generator for a
desired class of circuits. These generators can replicate, in an automated fashion, the design
procedure that would have been used for a traditional, manual design.

2.2 Goals for the BAG Framework

The primary goal of the BAG project is to provide a framework that encourages and enables
circuit designers to become circuit generator designers. To that end, given the poor adoption rate
of existing automation tools, there are several important aspects that we try to address in order to
create a framework that designers can and will actually use. These aspects, which will be
described further in this section, are: completeness, ease of adoption, and ease of reuse.

2.2.1 Completeness

An automation framework that only focuses on a portion of the design procedure can be very
useful, but is much less likely to be adopted in the long run. Many of the key benefits of
automation, including the ability to rapidly adapt and reuse pre-existing designs and perform
quick design iterations, are precluded if the framework requires substantial manual effort for
even a single design step. As an example, the performance of AMS circuit designs, especially
those made in today’s advanced technology nodes, are greatly impacted by the effect of layout
parasitics. Therefore, including some form of layout automation in the framework is vital in
order to enable meaningful design iterations that do not require massive amounts of manual
tweaking, or worse — complete redesign — when translated from schematic to layout.
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Remaining comprehensive in the face of advancements in design tools depends on the
framework being extensible. One way to ensure a framework remains complete is to hire a
group of developers to maintain and enhance the framework. Another way, which is much more
feasible for an academic project, is to allow the same community that uses the framework to
modify and improve the source code of the framework itself. In order for this method to work,
the framework must be adopted by a large enough number of people so that the small fraction
who actually contribute useful code are sufficient to cover a large variety of design techniques
and tools necessary for a truly comprehensive framework. One way to encourage this is to
release a framework’s source code’ under an open source license using a collaborative source
code revision control tool such as GIT [16]. This doesn’t guarantee that people will use the
framework or contribute improvements or bug fixes, but at least it enables the widest possible
audience and hopefully improves the odds of finding enough contributors to maintain the
framework.

2.2.2 Ease of Adoption

Conventional wisdom says you never get a second chance to make a good first impression.
The first impression a new user forms of a design system highly depends on the effort, and
especially the amount of time, required to start using the system effectively. The more difficult
and the longer this time period, the more the designer will resist trying the tool and the less likely
they will be to adopt it in the long term. In order to minimize this time, an AMS automation
framework must build on the base-level of knowledge and common skill-sets possessed by most
AMS designers, and must do so in a way that seems somehow familiar to the designer.

Allowing designers to codify their existing design procedures, rather than forcing them to
conform to a specific design style will let designers more readily adapt to a generator-centric
design methodology. If they have to learn a new or unfamiliar design style, whether it be
optimization-based or knowledge-based, in addition to a new framework of tools for executing
the design process, they will then require more time to adapt which might provide an excuse to
dismiss the tool completely.

Another way the framework can reduce the initial learning curve is to provide an
intermediate step between a manual, hand-tweaked circuit design and a fully scripted circuit
generator. An interactive, console-based script interface can serve as this intermediate step by
allowing the designer to explore the design manually using traditional techniques but still using
the same functions that will eventually be used for the fully scripted generator. In this way, the
task of writing the generator code can be made somewhat less difficult as the designer can adapt
code fragments from the command history of the interactive session and there can be less
duplication of design effort.

A pointer to the BAG framework source code can be found [15]
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2.2.3 Ease of Reuse

While it is important to reduce the difficulty of the designer’s first experience with writing a
generator, it is equally important that their subsequent experiences offer substantial time savings
compared to standard design practices, otherwise the designer will have no incentive to continue
using it. To that end, an AMS automation framework must encourage and enable simple reuse
mechanisms. A common scheme used to simplify the reuse of a complex codebase is object-
oriented programming (OOP) [17].

There are many resources available that expound at length on the topic of object-oriented
programming [18], [19], so this section will only present the handful of OOP concepts that are
particularly useful to the task of creating a reusable AMS automation framework. One of these
concepts is encapsulation, which dictates that data and the procedures that operate on that data
are grouped together in self-contained bundles called objects. Objects of the same type, i.e.
containing the same categories of data (though not necessarily the same data) and the same
operations, are said to be instances of a particular class of objects. An object is a natural
representation for a circuit model since a circuit is something that has certain attributes, e.g.
connectivity and sizing, but also performs a particular operation amongst inputs and outputs. In
order to create a design framework for circuit generators, we merely have to extend the concept
of a circuit as an object to include all the operations and data necessary for the design procedures
that produce an instance of a circuit instead of just the end result. OOP also enables direct reuse
of code by enabling classes to inherit functionality and data in a hierarchical fashion from
higher-level classes. This concept can easily be applied to circuits that belong to the same class
to provide certain functions that are shared by all circuits of that class such as simulation
testbenches, e.g. a phase noise simulation testbench that works for both LC and ring oscillators.

A final factor impacting the reusability of generators designed using a particular framework
is the structure of the framework itself. If interfaces are defined inappropriately, it can be
difficult to encapsulate the shared functionality of the generators. Similarly, if circuit generators
are created at too high a level within the circuit hierarchy, there won't be very much reuse. As an
extreme example, if a PLL was created as a single monolithic generator made up of primitives,
i.e. no sub modules are themselves generators, then nobody would be able to reuse the charge
pump or VCO from the PLL for other circuits without substantial modification to the generator
code.

2.3 Framework Implementation

A set of abstract goals is not sufficient information to begin working on a complex codebase.
Before an actual generator framework can be created, several questions must be answered: What
will the design flow for creating a generator for a new circuit architecture look like? What
programming languages and tools will be needed to build a framework that enables this design
flow? How will the framework be organized? This section will answer these questions with
regard to the development of the BAG framework and also describe a set of useful helper classes
that, while not required to implement the interface defined in Figure 2.1, help the BAG
framework achieve some of the goals of the previous section.
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2.3.1 Generator Design Flow Description

Although the end product is a collection of code, as shown in Figure 2.2, the BAG design
flow begins in much the same way as an instance-based, manual design flow — i.e. by capturing a
specific circuit architecture in schematic form. However, instead of entering a sized schematic,
the designer creates a parametric schematic where only the connectivity among circuit devices is
fully specified, while neither device sizes nor process information are provided. The purpose of
the parametric schematic is to annotate as much of the designer's intent as possible [20]. In order
to do so, we created technology-agnostic primitive devices (e.g. NMOS and PMOS transistors,
resistors, capacitors, etc.), whose sizes can be left blank (to be filled in later) or assigned
meaningful parameter names to express, €.g., matching and ratio constraints. Primitives can also
be assigned specific intent, e.g. a transistor can be annotated as fast or low power.

BAG Generator Design Flow BAG Generator Execution
Parametric Parametric
Schem_atlc Testbe.nch | Specifications | | Technology File |
Creation Creation

| Code Stub Generation |

| Interactive Schematic Exploration | :I Generator |<->| External Tools|

| Schematic Sizing Codification | |
I

| Circuit Instance |

| Layout Drawing Codification |

| Layout Exploration |

(@ (b)

Figure 2.2: Design flow used to produce a generator using BAG (a) and the generator execution
process to produce a circuit instance (b).

Next, the designer creates a parametric testbench schematic in the same manner used for the
design schematic, and enters the associated simulation setup -- including simulation type,
simulation parameters, and probe points -- through Cadence ADE [13]. Testbench schematics in
BAG are atomic, i.e. only one simulation per testbench, which improves their reusability. The
parameterized design and testbench schematics are imported recursively in BAG and used to
create stub class definitions, which inherit from the DesignModule and TestbenchModule classes
respectively, for every unique cell in the hierarchy.

Since it is difficult to design a technology independent generator without being able to debug
or test it using a real technology, the recommended BAG design flow entails the selection of a
representative process technology for use in the next steps of the design flow. By forcing the
designer to access all technology-specific information through a well-defined interface, the job
of translating the technology-dependent design exploration into a technology-independent
generator is made more tractable, reducing the burden on the designer. Ultimately, however, the
process independence of a generator does depend on the designer.
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Once the initial classes for the design under development and its associated testbenches are
created, and an initial process technology has been selected, the designer can then — without
writing any code — create an instance of the design. In the traditional flow, the designer debugs
and explores the design by choosing some initial sizing, simulating, viewing the results, and
iteratively adjusting the sizing until specifications are met. This flow can be replicated in BAG,
with the important difference that the exploration is done in an interactive, code-based
environment. Performing the initial exploration using the same code constructs that will be used
in the final generator is key to lowering the designer effort in writing the generator code. For
example, snippets of code used in the exploration process can be used to build
DesignSchematic() and VerifyArchitecture() methods that are required to implement an Analog
Generator interface, as defined in Figure 2.2.

The next step is creating a parameterized layout. Similar to the exploration step for
schematic sizing, the designer can view the layout in an interactive environment where they can
test changes before incorporating them into a DesignLayout() function. Once an initial layout
has been created, the designer can return to the interactive environment and run physical
verification checks — Design Rule Checking (DRC) and Layout Versus Schematic (LVS) —to
then be added to a VerifyArchitecture() function. The designer can modify the layout and iterate
until the design is DRC and LVS clean. The layout parasitics can then be extracted and post-
layout simulations run. Using the results of these simulations, the designer can revisit the
DesignSchematic() function and modify it as necessary to account for layout effects. Given the
importance of these effects on designs in modern technologies, it can be useful to perform the
layout generator creation step earlier — before spending much time on the DesignSchematic()
function — since any design procedure developed without reasonable estimations of the layout
effects would need to be modified later in any case.

After the initial pass through the design flow, the designer can iteratively refine the generator
class to improve the design’s performance, e.g. by calling numerical or equation based
optimizers, and/or make the generator faster, more robust, and more reusable. In a complete
generator, all knowledge of the design should be codified in the generator class definition. Once
the generator is complete, the designer can pass input specifications and technology information
to it in order to produce unique design instances of an architecture, as depicted on the right side
of Figure 2.2.

2.3.2 Language and Tools

Several platforms were considered for implementing the BAG framework, including Matlab,
Perl, Python, SKILL and Tcl. Table 2.1 shows a mostly subjective comparison of these
languages. For a more objective analysis, see [21]. All of the languages have some strong
points. SKILL is a proprietary language tied strongly to Cadence’s Virtuoso, the most popular
existing analog CAD tool suite, but it lacks the breadth of functionality available with most of
the other languages. Perl has a lot of useful libraries available and is quite fast, but is notoriously
difficult to read. Tcl is a popular choice in electronic design automation (EDA) tools and is
generally easier to understand than Perl, but it lacks speed and has fewer useful libraries. Matlab
is easy to use and has an excellent interactive shell, but it is also somewhat slow, and its object-
oriented features are less mature than many of the other languages.
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Ultimately, Python was chosen as the implementation language for several reasons. It has
strong support for object-oriented features such as abstract base classes and multiple inheritance
which can help achieve the desired goals of easy extensibility and reuse. Additionally, Python’s
indentation-based structure and highly readable syntax are well suited for inexperienced or
novice programmers’. It is also fast, both in terms of execution time and the amount of time
required to create working code.

TCL Python Perl Matlab SKILL
Code Readability | Good Excellent | Bad Good Fair
(0]0) Tacked On | Builtin Tacked On | Tacked On Tacked On
External Libraries | Fair Excellent | Good Good Bad
Interactive Shell Yes Yes No Yes Yes
Speed Fair Good Good Fair Fair

Table 2.1: Subjective comparison of scripting language choices for creating an AMS circuit
generator framework.

More expressive generators can be written by leveraging the plethora of off-the-shelf
packages provided in Python, ranging from numerical and scientific computing (NumPy [22] and
SciPy [23]), to graphical plotting (Matplotlib [24]), and numerical optimization (e.g., CVXPY
[25]). Python also has a powerful interactive command line that can enable generator designers
to rapidly iterate during the generator codification process. The default python console provides
most of this functionality, but there are other add-ons for python, namely Ipython [26], that offer
even more integration of the aforementioned tools. Ipython provides a pylab mode that
integrates NumPy, SciPy, and Matplotlib functionality into the console along with improved
code completion and debugging tools. Figure 2.3(a) shows a plot result from a simulation run
from the pylab console. Recent versions of Ipython introduce a notebook mode, similar to
Matlab’s cell mode [27], where scripts can also be written in an active document format that can
be edited and run from a web browser. Results, in the form of standard output text and inline
graphics can be saved along with the script itself. This format, show in Figure 2.3(b), can be
useful for debugging scripts because the user can rerun certain cells without rerunning the whole
script. It is also useful for recording the results of a scripting session along with detailed
documentation that can be inserted inline with the code using a simple, wiki-like markup
language.

* Increasingly, AMS circuit-designers coming out of school have a substantial amount of practical
programming experience, so this point is less critical than it may have been in the past.
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Figure 2.3 : Ipython plot window and console (a) and browser-based notebook interface (b).

The choice of the Python platform is further supported by the availability of Synopsys'
PyCell framework, which provides a (freely-available) API for creating process-independent
parameterized layout cells (PCells) using "'DRC correct-by-construction" functions. As will be
described in more detail in the next chapter, PyCells are used as the basis for automating layout
in the BAG framework. At design time, PyCell API functions can be used to concisely express
the desired relative placements of geometric objects. The enforcement of DRC correctness is
postponed until compile time when the PyCell API reads the design rules from the technology
file and performs the actual placement. For example, the designer can specify to "‘place two
transistors as close as possible to one another" and the PyCell API will automatically enforce a
process-specific distance between the two devices such that the DRC rules for all layers in the
two devices are met. By thoughtfully building up hierarchical geometries using these functions,
it is possible to create PyCells that can be compiled for different technology nodes. Figure 2.4
shows an example of the PyCell API placing two PMOS transistors next to each other as close as
possible on all layers excluding the nwell layer, and then enclosing both transistors within an
nwell rectangle sufficient to meet the minimum enclosure rules for the nwell layer.

(a)

trans_a = Instance("tsmcN65/pch",ParamArray(w="1u'))
2 trans_b - Instance("tsmcN65/pch",ParamArray(w-'800n"))
(b) trans_b.fgPlace(EAST, trans_a,ShapeFilter().exclude(Layer("Nw")))
4 trans_group = Grouping(components=[trans_a,trans_b])
trans_group. fgAddEnclosingRects( [Layer("Nw")])

Figure 2.4: Synopsys PyCell layout (a) resulting from correct-by-construction operations (b).
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The PyCell API is also part of the interoperable process design kit (iPDK) specification [28].
The iPDK is an attempt by a large group of EDA vendors and foundries (most notably TSMC),
to create an interoperable custom design framework. It is built around the already widely-
adopted OpenAccess [29] design database and uses PyCells to provide parameterized layout
cells. At the time of the writing of this dissertation, it seems that the iPDK, and through it the
PyCell API, is seeing increasing adoption. Correct-by-construction operations are extremely
useful, but if no foundry offers a PDK that supports PyCells, then it wouldn’t make sense to
include them in the framework.

Although support for open standards is not a primary goal of the BAG framework, we tried
to choose open tools and APIs whenever possible to ensure the most interoperability and reduce
dependence on proprietary standards that can change at the whim of a single EDA company.
The code for the Synopsys tools used for creating PyCells, while not open source, is held in
escrow with the condition that, should Synopsys ever stop offering it free of charge or providing
support, the source will be released to Si2, the industry organization responsible for maintaining
the OpenAccess API. We also tried to give the designer freedom of choice in terms of design
tools by identifying the core functionality required for the design flow and defining a standard
interface between that core functionality and the specific tools used to provide that
functionality. In practice, although we have tried to define a general interface that could enable
any EDA tool to be incorporated into the BAG framework, in most cases we have initially only
enabled a single tool for each piece of the design flow.

2.3.3 Code Organization

The codebase for the BAG framework can be split roughly into two groups of classes as
depicted in Figure 2.5. The generator description group contains classes used to express the
design itself, including the physical connectivity, device sizes, and the design procedure. In
some sense, these classes provide all the functionality needed for a circuit designer to write a
generator. What they lack is the ability to generate a specific instance of a circuit. The generator
session group contains classes that provide interfaces to all the external tools and process
information that are necessary to execute a generator and produce a circuit instance in a given
technology. The central classes’ for the generator description and generator session groups are
Module and BagProject respectively. This section will describe the division of functionality and
design data amongst these, and other, classes.

> These classes are important to making a functional framework and so need to be understood, but
they do not present particularly interesting challenges. The more compelling contributions of this work
are the helper classes covered in 2.3.4 and the layout styles in Chapter 3.
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Figure 2.5 : BAG class structure UML diagram.

2.3.3.1 Generator Session Classes

We define the generator session as the process of executing a generator to produce an
instance of a particular circuit. The purpose of the BagProject class is to store information
related to the gemerator session as well as interfaces to external tools required during the
generator session in a central location that can be easily referenced from anywhere in the
generator code. It is important that these interfaces not incur excessive execution-time overhead,
i.e. on top of the inherent overhead of the tool being interfaced. This section will describe
further the primary child classes of BagProject: DBAccess, DBInterface, CDFInterface, and
Technology.

2.3.3.1.1 DBAccess

Many of the external tools interfaced by the BAG framework belong to the Cadence Virtuoso
[13] design suite. The purpose of the DBAccess class is to provide a single interface point for all
the classes in the BAG framework that need to access Cadence tools such as those for setting
CDF parameters (CDFlInterface) and those for running the Cadence simulation environment
(OceanSimulator and SpectreSimulator). There were several alternatives for implementing this
interface. One option to transfer data between Cadence and the BAG framework was to wrap the
Cadence Integrator’s Toolkit C API with Python using SWIG [30] or a similar automated
software interface generator. We chose not to do this because the integrator toolkit only provides
functions for accessing the design database, and not for running the full set of tools in the design
suite such as the Spectre circuit simulator. Another option was to launch specific Cadence
executables using python’s os.system() function and redirect the output to a file for eventual
parsing. We also rejected this method for two reasons. First, it blocks the execution of
subsequent python code until the executable process exits. Second, it leads to wasted time
loading and reloading the executable. The full Virtuoso executable can take several seconds to
load so if the BAG framework calls low-level — i.e. usually quick execution time — functions
from Cadence, the overhead of launching and killing the executable process becomes
unacceptably large. In order to avoid this penalty, the BAG framework launches a single
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Cadence process and leaves it open during the whole design session, passing information back
and forth between the framework and Cadence as necessary.

The communication between the BAG framework’s DBAccess class and the Cadence
executable is facilitated by the Pexpect module [31]. Pexpect is used to spawn an interactive
console-based process and control it through code using a query/response interface rather than
through direct user input. Pexpect allows the BAG framework to have a virtual Virtuoso console
running in the background in order to run SKILL commands and scripts. It also allows non-
blocking execution so the process can continue running in the background for the whole design
session. Other classes that require access to Cadence tools contain a link to the generator
session’s BagProject object and consequently a link to the DBAccess object and Cadence
executable.

2.33.1.2 DBInterface & OAlnterface

Custom circuit designs are typically stored in a database that groups together the schematic,
symbol, layout, and other data regarding a particular cell into a single library entry. Since the
BAG framework is intended to be as tool-agnostic as possible, an abstract base class called
Databaselnterface defines a generic interface to a design database. The two main design
databases are the OpenAccess and the CDBA databases. The BAG framework currently only
has a subclass for the OpenAccess database called OAlnterface. OpenAccess was chosen over
CDBA as the initial database implementation because it is non-proprietary and used by all the
major custom circuit design suites from the top EDA vendors.

The OAlnterface class has functions used to instantiate layout instances used for DRC, LVS,
and extraction. It also has functions to help create sized schematics by copying and modifying
template schematics. OAlnterface depends on a python module [32] that has python wrappers
for the OpenAccess C++ API®. This functionality could also have been provided by the Cadence
Integrator’s toolkit C API, but that would have required extra effort to wrap the C API with
Python. Another option was to use Cadence’s SKILL API for modifying the OpenAccess
database, but we chose using the OpenAccess API directly to remain as tool-agnostic as possible.

2.3.3.1.3 CDFInterface & SkillCDFInterface

The OpenAccess database, though quite extensive, neglects to provide a standard mechanism
for storing and modifying the user-settable parameters associated with schematic cells or for the
callback functions associated with these parameters. These parameters, or common description
format (CDF) parameters (based on Cadence’s name for them), are used to store parameters like
transistor width and length, model information to be used for simulation, and other electrical and
geometric attributes of the device or cell they are associated with. The CDFlinterface class

% The Python OpenAccess wrappers used in the BAG framework have recently been fully rewritten
and integrated into a comprehensive tool called OaScript [33] that provides wrappers for the OpenAccess
API in four common scripting languages: Python, TCL, Ruby, and Perl. Future versions of the BAG
framework should switch to the new wrappers as they are better tested and much more likely to be
supported over the long term. This should have no impact on the external interface of the OAlnterface.
class though so other classes that depend on OAlnterface should not be affected.
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provides a set of functions to read and write CDF parameters in BAG. For our implementation,
because of our choice of the Cadence Virtuoso suite as the initial schematic entry tool, we
implemented a subclass of CDFlinterface to enable access to Cadence’s CDF parameters through
the SKILL language APIL. This class, SkillCDFInterface, depends on the DBAccess class for
access to the Cadence process that is required to execute any SKILL code. In the future, a
subclass of CDFlInterface could be written to support the iPDK’s TCL-based iCDF parameters or
other proprietary CDF alternatives.

2.3.3.1.4  Technology

The Technology class provides the BAG framework access to process-specific information
used during the generation of a circuit instance. This information is read in from a specially
formatted YAML [34] file called BAG tech.yaml which must be created for each new process
added to the BAG framework. This file stores information about the allowable range for various
device parameters as well as their default values. It also contains important information
regarding simulation models and process corners.

2.3.3.2 Generator Description Classes

The hierarchical nature of circuit designs provides a natural structure on which to base the
organization of the design framework. As shown in Figure 2.5, the Module class is the primary
class containing a description of the circuit generator itself. The Module class is the basic
building block used for storing and manipulating the design data. All circuits drawn at the
schematic level have an associated class that inherits functionality from Module. The Module
class provides functions for accessing and modifying the circuit’s schematic hierarchy and sizing
information as well as for linking the logical connectivity to one or more physical layouts (which
will be discussed in greater detail in the next chapter).

The Module class defines an intermediate circuit representation format that contains the
connectivity and parameter information for a specific cell. It has two main subclasses,
DesignModule and TestbenchModule, which are respectively used for cells that contain
representations of the circuits being designed and testbench circuits that provide the auxiliary
circuitry needed to properly simulate the circuits being designed. DesignModules are connected
hierarchically based on the structure of the circuit schematic hierarchy. TestbenchModules are
linked to a specific DesignModule and are attached as child objects in the object hierarchy.
Since the DesignModule is used as the device-under-test (DUT) within its associated
TestbenchModules, it is usually desirable for the TestbenchModule to have a pointer to its parent
DesignModule rather than to an independent instance of the DesignModule. That way, if the
generator writer modifies the parameters of the parent DesignModule, they don’t need to copy
those parameters to all of the associated DUTs within the DesignModule’s associated
TestbenchModules before running simulations. The BAG framework attempts to automatically
detect the presence of the parent DesignModule as the DUT within a specific TestbenchModule
and create a pointer to it. This is illustrated in Figure 2.6, which depicts the object hierarchy of a
comparator and two of its testbenches upon instantiation (a) and after automatic DUT detection

(b).
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Figure 2.6: TestbenchModules with a single DUT before (a) and after (b) automatic DUT detection
and with multiple DUTSs before (c) and after (d) user-specified DUT detection.

Figure 2.6(c) shows a TestbenchModule used for characterizing the frequency tuning range
of a supply-regulated voltage-controlled oscillator (VCO). Within the BAG framework, this
TestbenchModule is associated with the PLL DesignModule rather than the VCO or regulator
DesignModules. In general, TestbenchModules should be associated with the lowest level
DesignModule that contains all of the DUTs used within that TesthenchModule. For simple
testbench schematics that contain a single DUT, the link from the testbench DUT to the parent
DesignModule is made automatically. For the PLL example shown in Figure 2.6(d), the link
must be made manually in the initialization function for the PLL object.

Modules contain several attributes that store the schematic/netlist information for a circuit.
Instances is a python dictionary in which the keys are the instance names of all the subcircuits of
the current module and the values are the corresponding Modules associated with each instance
name. The Module object also contains attributes that point directly to each of the instances
listed in the Instances dictionary. This provides a shorter notation when accessing subcircuits,
especially when they are several levels deep — e.g.

pll.loop filter.amplifier.M1

instead of

pll.instances['loop_filter'].instances['amplifier'].instances['M1']

In addition to the subcircuit instance information, the connectivity for the cell is also stored
in the Module object’s child objects. Pins is a dictionary that stores the input/output connection
points for the current module. Connections is a list of connectivity between nets and pins, both
the pins at the current level of the hierarchy and the pins of the subcircuit instances. The net
information from the Connection objects can also be accessed though a child object of Module
called nets.
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2.3.3.2.1  PyNetlist

The data structures for instances, pins, and connections stored in the Module are also grouped
together in a class called PyNetlist. A PyNetlist object contains the minimal amount of netlist
information to translate a Module instance to or from a schematic or netlist. The PyNetlist class
can be initialized from a YAML file containing the netlist information that is created directly
from a schematic template made in Cadence. It can also be created from an existing Module
object and then parsed to create a netlist for use in simulation or LVS operations. A PyNetlist
object is essentially a generator instance or a generator skeleton that respectively contains the
circuit sizing and connectivity information or a placeholder for that information. Unlike the
Module objects, it does not contain any information about the design procedure.

2.3.3.2.2 Parameters

Parameters are a key attribute shared by all types of Modules. They store the process-
specific sizes associated with a generated circuit instance. Each parameter has several attributes
including a name, value, default value, and an optional callback function that is called every time
the parameter value is updated. All the parameters for a particular Module are stored together in
a dictionary-like container object that is a direct child of the Module object. Pointers to each
parameter are also created as children of the Module object for ease of access. Parameters are
created automatically during the template schematic and template testbench schematic import
process and can also be added by the generator writer in the initialization function of a specific
Module subclass.

Setting and adjusting parameter values is one of the most common tasks a generator writer
must perform, so the framework provides several ways of simplifying and speeding up parameter
setting. One way is by overloading the assignment operator to simplify code for setting a single
parameter value. If a parameter is assigned to a Parameter object, e.g.

amp.M1.width = Parameter('width',desired_width)

then the assignment operator functions as expected. If, however, the parameter is set to a
variable that stores a number, e.g.

amp.M1.width = desired_width

then the value of the existing parameter is assigned to the number in question. Without
overloading the user would have to write

amp.M1.width.value = desired_width

Parameters can also be set en masse using the set_parameters() function at the Module level. By
default, this function recursively sets all parameters with the specified name, and at the level of
the current module and below, to a specific value. This is useful for setting default values for a
module, such as channel length or multiplier, which can then be overridden on a device-by-
device basis if necessary.



Chapter 2 — Berkeley Analog Generator Framework 21

2.3.4 Helper Classes

Given a particular circuit topology, a designer typically makes assumptions about which
design procedure should be used to size the circuit and how the layout should be structured. In
many cases, these assumptions are shared across a specific category of circuits, so it is useful to
create helper functions that aid with the specific sizing and layout procedures. The BAG
framework groups them into helper classes associated with specific circuit categories in order to
enable reuse and to reduce the effort required for the initial codification of a generator. This
section will describe helper classes for primitive devices, custom digital logic, and circuits with
connectivity that depends on the input parameters. Layout related helper classes, which we refer
to as layout styles, will be described further in the next chapter.

2.3.4.1 Primitive Devices Classes and LookupTable

BAG includes helper classes for primitive devices — i.e. transistors, capacitors, and resistors —
that provide the generator writer access to device characterization data for the primitive device in
any technology node. This allows designers to write sizing procedures in terms of technology
independent function calls that reference characterization data lookup tables. These helper
classes also enable the automatic mapping of device intent, based on the device characterization
data, to specific devices in a given technology. The helper classes also provide callback
functions for the primitive device parameters that verify that the parameter values fall within the
valid range and on the grid specified by the process. Figure 2.7 shows an example of a primitive
device template for an NMOS transistor and several generated instances resulting from that

device.
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Figure 2.7: NMOS primitive device class schematic template and three example instances with
different parameters.

Many knowledge-based design techniques rely on accurate models of basic device
characteristics for use in analytical calculations. For example, the gn/l4 sizing methodology [35],
commonly used to design analog circuits such as amplifiers, requires the ratio of the small-signal
transconductance to drain current as a function of device sizing and bias voltages. The primitive
device helper class for transistors builds and maintains a lookup table containing the small-signal
parameters for different bias conditions, channel lengths, channel widths, process corners, and
temperatures. The transistor helper classes include a size for() function that allows the designer
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to set the device width based on the desired gm/la. When the generator writer builds the template
schematic for a particular generator, they build it out of primitive device templates. Then, they
size the devices using the size for() function without knowledge of the specific process
technology parameters that will be used in the instances created by the generator. In Figure 2.7,
the generated schematic instance sizes are created during the execution of the generator when the
size_for() function looks up information from the target process’ saved lookup table.

Another example of primitive device characterization is used in the SC DC-DC converter
generator, presented in more detail later in Chapter 4. The performance of the converter is
highly dependent on the capacitance density of the flying capacitor unit cell used in the design.
The primitive helper classes are used to help characterize the capacitor density and bottom-plate
ratio of the capacitor cell. In the plots of Figure 2.8(b), each point on the curves corresponds to a
simulation — for both 65nm and 40nm processes — of a post-layout netlist extracted from a
capacitor cell consisting of a MOS capacitor in parallel with a metal finger capacitor. The cell
has a programmable size, aspect ratio, polysilicon density, and number of metal layers for the
MOM capacitor, as shown in the four layouts of Figure 2.8(a). Being able to characterize the
capacitor cell allows the designer to make informed design tradeoffs during the initial stages of
the design and reduce the number of iterations required to converge to a final sizing.
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Figure 2.8: Extracted capacitor density and bottom plate ratio simulation results (b) for a unit
capacitor PyCell (a) in commercial CMOS 40nm and 65nm processes.

40 50

In order to help facilitate the creation and maintenance of the device characterization lookup
tables associated with device primitives, the LookupTable class provides a generic interface for
initializing and maintaining a table of extracted performance metrics. When a LookupTable
object is first initialized, it runs a large set of simulations by sweeping a specified set of input
parameters and saves the input parameter values and output performance metrics to a file.
Functions in the primitive device helper classes, such as size_for(), then call a search function to
locate the desired record in the lookup table. If the parameters of the lookup table do not meet
the specified tolerances, then the LookupTable object can automatically launch further
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simulations in order to try to find points that do meet the specified tolerances.

2.3.4.2 Logical Effort

Most AMS circuits have some number of digital logic gates for control or driving purposes.
The method of logical effort [36] is a common technique used to size a chain of logic gates in
order to optimize the overall path delay given a target load capacitance. LogicalEffort is an
abstract base class that provides access to necessary process information — through links to the
BAG tech.yaml file information stored in the Technology class — and defines a simple interface
for custom digital logic gates to implement logical effort based sizing routines. For now, the
class only requires each module that inherits from LogicalEffort to have a function, called
size_for_effort(), that can size a logic gate for a specific target effort as well as load capacitance
and can return the input capacitance. In the future, the class could be expanded to also handle
calculations for the optimal effort for a given path. Figure 2.9 shows how to call the
size_for_effort() function to size a chain of 3 inverters for a target effort of 4.0 and a load
capacitance of 200 fF.

200 fF

inv1 inv2 inv3

cload = 200e-15

1
2 inv [self.inv3,self.inv2,self.inv1l] :
3 cload = inv.size for effort(effort=4.0,cload-cload)

Figure 2.9: Sizing three inverter chain using LogicalEffort’s size_for_effort() function.

2.3.4.3 Variable Structure Device

Although BAG generators typically have netlists with fixed structures, some types of circuits
have netlists that vary in a predictable manner based on their input specifications. For example,
the number of bits in a resistor string DAC specifies the dimensionality required for the array of
resistor unit cells, and a radix parameter also specifies the connectivity of the switch network
used to select one of the voltages from the resistor string and connect it to the DAC output.
Figure 2.10(a)-(c) illustrate the array and tree structures for the resistor string DAC example
across several combinations of bit and radix specifications. BAG supports common variable
structure generators, including arrays and trees, with an ArrayModule class that can procedurally
create the circuit schematic structure using the base sub-elements of the structure and a simple
specification of the pattern. ArrayModule inherits functionality from a more general
VariableStructureModule class that provides the machinery necessary to adjust the module
connectivity according to certain parameters. The code listing for an example array module can
be found in Appendix A.1.1.
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Figure 2.10: Three specific instances of a variable structure architecture for a resistor string DAC
with bits = 2, radix = 4 (a), bits = 3, radix = 4 (b), and bits = 3, radix = 2 (¢).

Each VariableStructureModule object has a set of regular design parameters and a set of
parameters that can lead to a structural change called structural parameters. When a structural
parameter is changed, it sets the value of an attribute of the module indicating that it requires a
structural update. The designer can cause this structural update to happen immediately after the
structural parameter value is changed by having the callback function for that structural
parameter directly call the wupdate structure() function. By default, the update structure()
function is not called after every parameter change because that can waste a lot of time especially
when the designer sets a large number of structural parameters in one contiguous code block.
Instead of updating the structure after each one, it makes more sense to set all of the parameters
and then just update the structure once. By default, operations that require an up-to-date netlist
call update structure() directly to make sure that the current circuit netlist matches the value
specified by the structural parameters. As an example, the functions that launch simulations call
update_structure() before doing any other action.

2.3.4.4 Veriloga

When cells have a variable structure, they often need a testbench with a variable structure. A
simple example is a DAC; in order to measure the DNL of a DAC, we need a digital source with
a variable number of output bits. One way to implement a source like this is to write some
simple veriloga code. The veriloga helper class allows the designer to include veriloga blocks in
their testbenches. Note that this class would also be useful in the future to allow simulations to
swap out a spice model of a schematic cell with a veriloga model.

2.4 Design Flow Example

In this section, the design flow of Figure 2.2 is elucidated through an example design of the
power-gated NOR driver shown in Figure 2.11(a). This design is relevant because it is used as a
building block of the DC- DC converter that will be described in Chapter 4. Figure 2.11(b)
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shows the entry of the parameterized schematic. One of the inputs of the NOR gate is a high-
speed signal, used to drive one of the switches of the converter, while the other input is a static
enable signal. The designer captures this information by setting the width parameters of the two
input NMOS transistors to the skewed values Wn and Wn fast. Moreover, the designer can
capture the desired intent for each device in the circuit, e.g. they can specify that the high-speed
transistor be mapped to the fastest transistor available (e.g. a low threshold voltage (LVT)
device) and the static device to a low-leakage device (e.g. a high threshold (HVT) device).

vdd L L
W Wn_fast
s rmosd
presty : device_intent fast n
vdd
stack low_power
high_voltage
prmosd g proos4 | Mult standard

< vdd

1S Il
m Cancel Apply Defaults Previal

e (©)

Figure 2.11: First design flow step of a power-gated NOR driver (a) illustrating parameterized
schematic entry (b).

class BAG_templates__pg_nor(DesignModule):

Fill in the function of this design module here.

def __init__ (self, prj, parent=None, in_testbench=False) :

Inherits functionality from DesignModule class.

generic_cell = GC('pg_nor', 'BAG_templates')
DesignModule.__init__ (self,prj, generic_cell, parent, in_testbench)

DesignSchematic(self) :

Generator designer should codify design procedure here.

Figure 2.12: Automatically created class stub of a power-gated NOR.

Next, the designer uses BAG to import the parametric schematic information and produce the
stub class shown in Figure 2.12 as well as a stub class for a transient testbench. These classes
enable the designer to instantiate a power-gated NOR object and its associated testbench in the
interactive Python environment shown in Figure 2.13. From this environment, the designer can
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access the design hierarchy and parameters using a simple dot syntax — e.g.

pg_nor.NM1.W = desired_width

The designer can then — within the interactive environment — explore the design by choosing an
initial sizing, simulating, viewing the results, and adjusting the schematic sizes based on the
results.

In [2]: import BAG
prj = BAG.BagProject()
prj.import_sch_to template(cell='pg nor')
pg_nor = prj.classes['BAG pg nor'](prj)
tb = pg_nor.testbench_modules['pg nor tb tran']

In [4]: tb.run_sim()
schematic_out = tb.probes['/out'].value
schematic_in = tb.probes['/a'].value

In [19]: schematic_ianlot(label='input',1w=4)
schematic_out.plot(label='output (schematic)',lw=4)
legend(loc='center right')

Out[19]: <matplotlib.legend.Legend at ©x7cdcc50>

—nput

= output (schematic)

©0 101 102 103 108 105 106 107_ ice

Figure 2.13: Interactive schematic exploration of a power-gated NOR.

Within the BAG framework, PyCells for custom digital cells — like the skewed, power-gated
NOR of this example— can be generated automatically. The netlist information is used to create
an intermediate data structure — as shown in Figure 2.14 — that is readable by the Standard Cell
layout style described later in Chapter 3 [37].
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[dict(name = 'vdd',
type = 'rail', m),
dict(name ‘p_rowl’,
type 'device_group',
tran_type ‘pmos’,
subelements [dict(name 'PUNba‘’,
B = ['vdd'],
G=['b", 'a'l,
nodeList = ['netl6', 'netl5', 'z'l,
param_mapping = dict(L = "MI1L',
W ‘MW,
mult = 'Mlmult')),
dict(name = 'PUNenb', = )1,
dict(name 'route_groupl’,
type 'route_group’,
subelements = [dict(name = 'netl6',
layer 'metall’,
term_type = None,
terminal = 'netl6'),
dict(name = 'enb',
layer 'metall’,
term_type 'INPUT,
terminal = 'enb'),m] ),
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subelements [dict(name = 'PDNen', =),
dict(name = 'PDNba',=m) ] ),
dict(name = 'vss',
type = 'rail’, m) ]

Figure 2.14 : Fully automated PyCell generation of a power gated NOR.

Figure 2.15 shows a PyCell debugging environment provided by Synopsys where the
designer can test further changes if needed before incorporating them into the PyCell code. Once
an initial PyCell is compiled, the designer can return to the interactive Python environment to run
physical verification checks (DRC and LVS), extract layout parasitics, and rerun the testbench
simulations (Figure 2.16). The designer now has enough information to implement the methods
of the generator interface into the BAG Gated-NOR generator class.
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more about how to use these functions.

Start exploring MyTestingLib/MyTestingCell ...
MyTestingCell> m = Instance(’BAG_std_cells_ca/skewed_power_nor_custon’)
space violation: add another bar

remove bar: netl3

space violation: add another bar

MyTestingCell>

Figure 2.15: Interactive layout exploration using PyCell Explorer.
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In [6]: pg _nor.update 1ib instance()
pg nor.create layout for lvs()
pg_nor.back annotate sizings()
pg_nor.run_lvs()
pg_nor.run_rcx(extraction type='RC')

In [7]: tb.run_sim(extracted='RC"')
layout out = tb.probes['/out'].value

In [20]: schematic_in.plot(label='input', lw=4)
schematic out.plot(label='output (schematic)',blw=4)
layout out.plot(label='output (layout)',blw=4)
legend(loc="'center right')

Out[20]: <matplotlib.legend.Legend at 0x7f05cl0>

100 101 102 103 104 105 106 107, 108

Figure 2.16: Interactive schematic exploration with post-layout extraction.
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Chapter 3 — Layout

As mentioned in the previous chapter, a circuit generator framework must provide a way to
codify all portions of the design process including layout. Unfortunately, analog layout
generators are much more difficult to create than digital layout generators. In the digital world,
layout generation is typically provided by place and route tools that rely on a functionally
complete library of highly regular, easily-composable structures — i.e. digital standard cells — to
automatically build hierarchical layouts from a circuit netlist. For analog circuits, the only
functionally complete library of structures is the technology library itself. Since the devices in
the technology library do not share a common template, they are not easily composable, and the
tools for automatically placing and routing them are much more complex than the corresponding
digital tools.

3.1 Layout in the BAG Framework

The layout portion of the BAG framework, just like the framework as a whole, must be
simple to learn and easy to adapt for new layouts and new processes. Generated layouts should
be LVS and DRC correct across most, if not all, of the allowable parameter space. If the
designer encounters a corner case where the layout fails to meet DRC or LVS, it must be
straightforward to modify the layout generator to fix the error.

Techniques for creating AMS layout generators generally fall into the same two categories as
comprehensive circuit generators: optimization-based and knowledge-based. Optimization-
based techniques usually require the circuit designer to enter constraints in a special format that
is then passed to a tool that automatically places the devices and performs routing. In contrast to
knowledge-based techniques, it is not necessary for the designer to write procedures that
explicitly create geometric objects. There are several commercially available optimization-based
tools for analog placement and routing including Synopsys Helix [38] and Pulsic’s Unity Analog
Router [39]. Due to limited time, we have so far focused on just a few knowledge-based
techniques and have not included interfaces for these commercial tools yet. However, the intent
of the BAG framework is to allow the designer to choose whatever method for creating
parametric layouts they want, so interfacing with optimization-based AMS layout tools is on the
development roadmap.

Layout generation efforts in the BAG framework have largely focused on knowledge-based
techniques for AMS layout built around parameterized cells (Pcells). Pcells are procedures
written by layout designers that read in user-specified parameter values and create corresponding
geometric objects in the design database of the cell. When writing Pcells, designers must take
care to account for all relevant design rules in order to ensure a DRC correct layout. Typically,
these are written using Cadence’s proprietary SKILL language, but the OpenAccess database
provides a plugin interface so that they can be written in any language including C, TCL, or
Python. Pcells are almost universally used for low-level device primitives — e.g. transistors — but
avoided for even simple multi-device cells because of the amount of coding effort necessary to
make a DRC clean layout.
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In order to reduce this effort, Ciranova’ introduced PyCells that still directly create geometry,
but use functions that automatically check and account for the design rules so that the produced
layout is DRC correct by construction. This helps designers create more robust layout generators
with much simpler code; in fact, in many cases these generators can be directly compiled for
several different processes without changing the code, as shown in Figure 3.1. PyCells do have
some disadvantages though, for example large PyCells that do not take advantage of structural
repetitions can have long compile times, an anathema to iterative design flows. The generator
designer should thus carefully plan the demarcation of hierarchical boundaries and take
advantage of the capability of caching the layout of sub-modules if possible.
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Figure 3.1: Instances of an amplifier PyCell compiled using a 65nm (a) and 40nm (b) technology file
and of a network of power switches and drivers compiled using a 65nm (c) and a 40nm (d)
technology file.
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Figure 3.2 shows the three different paths enabled so far for creating layout generators in the
BAG framework. All three rely on PyCells, but each requires a different amount of further
design effort. For top level and high level cells with complex hierarchies, the designer can create
a fully custom PyCell. The BAG framework provides some extra functions beyond the basic
PyCell API, but of the three paths, this one certainly requires the most effort from the designer.
At the other end of the spectrum, custom digital cell layouts can be fully generated as described
in [37].

The contribution of this work is primarily for cells that fit in between these two categories.
For AMS cells with only a few levels of hierarchy that fit into one of several categories of
common layout styles, the BAG framework provides abstract base PyCells that the designer can
use as a base for their PyCell code. These styles provide useful functions for performing
common tasks in the layout and can even provide a complete layout procedure so that all the
designer must do is enter parameters into a template data structure. Using only a handful of such
layout styles, our goal is to provide a quick path to creating DRC/LVS correct layouts so that the
designer can quickly begin design iterations including the effects of layout parasitics. Ideally,
these layouts can be used with minimal modification, but in the event that they require
modification, they are designed to be easy to alter and extend. The remainder of this chapter will
focus on the four styles created for the BAG framework so far: Standard Cell, Standard Row,
Standard Block, and Array.

Parametric Schematic

Common
low-level
cell?

Process
Independent
Pcell

Yes

AN

Automatic
Pcell
Generation

DRC/LVS
Clean?

Figure 3.2: BAG layout generator flow.

3.2 BAG Standard Styles

The Standard family of layout styles — i.e. Standard Cell, Standard Row, and Standard Block — is
intended for use as the default layout style for all AMS cells ranging from individual cells like
amplifiers, comparators, and level shifters to larger blocks formed from hierarchical
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interconnections of cells. A general style that can handle almost any type of cell is very useful as
an initial layout generator so that designers can easily create layouts early on in the generator
writing process. This enables the designer to quickly identify and focus on the most important
layout parasitics and use that information in the schematic sizing procedure. Beyond providing
rapid layout feedback, the goal for the Standard styles is to create high quality layouts so that,
for many cells, the initial layout is good enough (i.e. DRC and LVS clean with reasonable
parasitics) — freeing the designer from spending any significant amount of time modifying the
layout. Standard style cells also have programmable aspect ratios that make them ideally suited
for placement around and between other AMS blocks with more rigid layout requirements.

3.2.1 Standard Cell

The basic unit of the Standard family of layout styles is the Standard Cell style. Standard
Cell style is used to implement leaf cells, i.e. cells that are built entirely from primitive elements.
All of the Standard styles are implemented as abstract PyCell classes that read a data structure
entered by the designer and translate it into a layout. The data structure defining Standard Cell
layouts, shown in Figure 3.3, consists of Python dictionaries that provide details about the layers
and relative locations of power rails, transistor devices, and the cell terminals and internal
routing nets. For many cells, creating this data structure is sufficient to produce a DRC and LVS
clean layout, however, for more complex cells, the designer must extend or override the
functionality of the Standard Cell class.

[ dict(type = 'rail’,

name 'vbD*,
layer="metall', = } Rall
’
dict(type ‘device_group’,
name 'pmos_group',
tran_type="pmos', } Device
subelements [m], = Group
),
dict(type 'route_group’,
name 'route_groupl’,
subelements [m], = } Route
)| rou
dict(type = 'device_group’, Gro P
name ‘nmos_group",
tran_type="'nmos", Device
subelements [em], ==
i Group
dict(type = 'rail’,
name 'GND', | & &
layer-'metall’, e Rail {
)

Figure 3.3: Standard Cell layout style.

Standard Cell PyCells have a number of parameters that allow the designer to control e.g. the
vertical pitch of the cell, the width of power rails, the vertical space dedicated to NMOS vs.
PMOS devices, whether the cell is in deep nwell or not, the flavors of the devices (LVT, HVT,
thick oxide...), whether (and where) to add dummies to each device, whether to add vertical pins
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on either side of the cell, etc. Figure 3.4 illustrates several of these capabilities for an amplifier
circuit; this figure also demonstrates an additional parameter that allows the class to
automatically adjust the ratio of vertical space dedicated to NMOS vs. PMOS devices in order to
equalize the number of PMOS fingers to the number of NMOS fingers and avoid wasting space.
This is illustrated by the reduction of empty space next to the PMOS devices and the overall cell
width between Figure 3.4(c) and Figure 3.4(d)-(f).

Figure 3.4: A 5-transistor amplifier PyCell (a) after sequentially lowering the vertical pitch (b),
increasing the rail width (c), balancing the NMOS and PMOS ratios (d), adding dummies (e), and
increasing the channel length (f).
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The parameters available in Standard Cell PyCells are enabled by a python class that reads in
the user-entered data structure and follows a specific procedure to generate a layout instance.
This procedure, using the 5-transistor amplifier circuit shown in Figure 3.5 as an example, is as
follows:

mirror. out
inp 4 tail :"— inm
bias |

Figure 3.5: S-transistor amplifier schematic.

1. Initial Placement — An initial placement of the three main components of all Standard
Cells — rails, device groups, and route groups — is made using the order specified in the
Python data structure. Placement is done relative to the mason-dixon line — i.e. the line
through the middle of a routing group that separates the PMOS device groups (by default
in the northern region of the cell) from the NMOS device groups. This initial placement,
illustrated in Figure 3.6, makes use of the correct-by-construction PyCell methods to
ensure a DRC-clean placement, but does not attempt to meet the vertical pitch constraint,
which specifies the distance between the top and bottom rails.

Placement
Order

mason-dixon —————————————————————

>|

Vertical
Pitch

Placement
Order

tail

¢

v
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o}

Figure 3.6: Initial placement of a 5-T amplifier in the Standard Cell style.

2. Resizing Loop - A device resizing loop iterates through the devices in each device group
and attempts to fit them in the vertical space allocated for that device group (based on
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ratios allocated for the PMOS to NMOS regions as well as each device group) by
increasing the number of fingers in the device while maintaining a constant (subject to
quantization error) device width. As shown in Figure 3.7, the loop completes when the
devices have been resized sufficiently that the power rails can be placed such that they
meet the cell's vertical pitch constraint.

e "
|||||\~IIIIIIIII

m|rror
mason-dlxon _________________

Vertical
Pitch

DRC
Error

Figure 3.7: Automatic resizing of device groups in a standard cell in order to fit within the user-
specified vertical pitch.

3. Initial Routing - Routing from the devices in each device group to the rails and to the
routes in the route group is performed (see Figure 3.9(a)). The current routing
mechanism relies on proper net ordering and device ordering in the data structure to
avoid shorts. More sophisticated routing algorithms could be incorporated into the
Standard Cell style in the future in order to simplify and/or improve the routing.

4. Routing Repair — The initial routing is not necessarily free of DRC errors so a cleanup
step is performed that can repair certain types of DRC errors such as those created when
devices from above and below connect routes to the same horizontal net and cause
minimum spacing errors as shown in Figure 3.8(a). Drawing a rectangle to fill in the
minimum spacing region can repair this. Also, if the contacts associated with the two
routes are too close, the routing repair step simply removes one of the contacts. Another
problem fixed during the repair step is associated with vertical routes from above and
below connecting to adjacent horizontal nets, as shown in Figure 3.8(b). In order to
repair this DRC error, the internal spacing between the horizontal nets is automatically
increased, and steps 3 through 4 are rerun.
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(a)

Figure 3.8: Two DRC errors and their associated fixes performed during the routing repair step.

5. Routing Finalization - The cell is finalized by trimming excess material from routes,
creating pins, and adding/modifying enclosing layers as shown in Figure 3.9(b).

(b)

Figure 3.9: 5-transistor amplifier layout after initial routing (a) and routing finalization (b).

3.2.2 Standard Row

The power of the Standard family of layout styles is fully realized when several Standard
Cells are connected together in such a way that the interconnected block still retains its
programmability, especially the flexible aspect ratio. There are two styles in the BAG
framework that enable the interconnection of Standard Cells. The simpler of these, the Standard
Row style shown in Figure 3.10, is used to connect a row of Standard Cells if their inputs and
outputs are connected only to adjacent cells. The cells and the route groups used to connect them
are placed following the order specified in a data structure that the layout designer creates in the
PyCell file. An example PyCell that uses the Standard Row style can be found in Appendix
A22.
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Figure 3.10: Standard Row style cell.

3.2.3 Standard Block

Standard Row is useful for small groups of Standard Cells with simple connectivity, but for
more complex hierarchical blocks, fully specifying the routing can be challenging due to the
limitations imposed by the Standard Row route groups and by the potentially large number of
routes. Also, because Standard Row layouts are limited to a single row of cells, it can be
difficult to enable a flexible aspect ratio when the number of cells in the row becomes large. To
enable larger hierarchical blocks, the Standard Block style, illustrated in Figure 3.11, has the
capability to stack rows of Standard Cells (or Standard Row objects), includes a more flexible
semi-automated routing mechanism as well as a function for creating a simple power grid. An
example code listing for a Standard Block cell can be found in Appendix A.2.4.

Figure 3.11 Standard Block style.
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Standard Block style cells utilize the following algorithm to generate layouts:

1.

Initial Placement — The initial placement of standard cells is made from left to right and
top to bottom using the order specified in the data structure initialized in the PyCell code.
By default, cells within the same row are placed next to each other as close as possible
such that they still meet the DRC rules, and then rows are placed on top of each other and
aligned to a center point. The layout designer can also specify explicit alignment points
within two or more rows to control vertical alignment. Cells in different rows can be
aligned by inserting extra space using the spacer cells shown in Figure 3.12(a). Figure
3.12(b) shows a spacer cell being inserted between two cells in order to avoid a DRC
error.

.
(a) (b)

Figure 3.12: Two spacer cell instances (a) and the usage of spacer cells to prevent DRC errors
during cell placement (b).

During the cell placement, the power rails of each cell are temporarily removed (see
Figure 3.13(b)) so that placement operations only take into account the spacing between
the cores of each cell and ignore the power rails, which will be connected together during
the final step.

2. Initial Routing — Inter-cell routing works as follows:

i.  Input and output pins of Standard Block cells are placed vertically on metal4®.
The designer can specify in the PyCell whether they want to allow the cell to
automatically pick the location of these pins, or they can specify that they want a
pin placed in a particular order within one of three bundles at the left, center, and
right of the cell. Figure 3.13(c) shows a single routing channel being added to the
rightmost bundle.

¥ The Standard Block style requires the use of the lowest four layers of metal inerconnect. It does not
currently allow routing in higher metal layers but enabling this would not require major modifications to
the code.



Chapter 3 — Layout

39

(b) (c)

Figure 3.13: A Standard Block cell after initial placement with (a) and without (b) power rails and
the same cell after the first routing step where a single vertical routing channel has been placed in
the rightmost bundle.

1l

iii.

1v.

After the bundles are created, all the remaining nets that are connected to a top
level pin are assigned to a free vertical routing channel from left to right in the
order specified by the designer, as shown in Figure 3.14(a).

Horizontal routing channels are assigned within each row for every net in the row
(see Figure 3.14(b)). If the locations of the vertical routes associated with the
horizontal route are known, then the horizontal route can be limited to a particular
region, freeing up that horizontal routing channel for other routes. If not, by
default, the entire length of the cell is temporarily dedicated to a single net.
Vertical routing channels for any remaining nets that are shared between rows are
placed on the x-axis as shown in Figure 3.14(c). The position of each vertical
route is chosen so that the final length of interconnect required for the net will be
minimized once the excess metal is trimmed from the horizontal routes in the cell
finishing step.

> >
(a) o (b) - (c) -

Figure 3.14: During the initial routing phase a Standard Block cell has all top level pins assigned to
a vertical channel (a), has horizontal channels assigned to all intra-row nets (b), and then has a
vertical channel assigned for any inter-row nets (c).

3. Power Grid — A simple power grid is created according to the power grid specification
in the PyCell code. The specification sets a pattern for power rails and a target width and
spacing. If the spacing cannot be met because of existing routing channels, the power rail
is placed in the next available routing channel as shown in Figure 3.15(a). The power
grid step can be run before the initial routing if the designer desires a more regular grid.
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4. Final Routing — Given the location of all the vertical routes at the higher and lower metal
levels, the horizontal routes can now be reorganized within the horizontal routing
channels to minimize the length of each net and minimize the total number of horizontal
routing channels required (see Figure 3.15(b)).

5. Cell Finishing — The power rails for each of the Standard Cells, removed during the
initial placement, are added back in on a row-by-row basis and are strapped up to metal3
and connected to the power grid on metal4 (see Figure 3.15(c)). Excess material from
routes and power grid rails is also removed in order to minimize parasitic coupling but it
can be added back in by a higher level PyCell if it is needed for connectivity or to
connect the power grid of two cells.

. J

(a) (b)

Figure 3.15: A Standard Block cell is finalized by adding a power grid (a), trimming and
reorganizing routes (b), and rerouting the power rails on each row (c).

3.3 BAG Array Style

The repeated patterns that appear in the schematics of the variable tree structures described in
2.3.4.3 also appear in the layouts of those cells. BAG includes a layout Array style to simplify
the creation of PyCells for cells constructed by repeatedly placing a handful of unit elements in a
grid pattern. Figure 3.16 shows a floorplan of such a cell where an array of unit cells is
connected using a common-centroid pattern. The style also includes provisions for inserting
additional cells for auxiliary purposes - e.g., biasing and/or dummy cells.
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Figure 3.16: Array style floorplan of top level array and example layout of a unit cell.

Implementing a layout in the Array style involves two PyCells: the top-level array PyCell
which should inherit from the Array style class, and the unit cell PyCell which can be a fully
custom PyCell, or can inherit from another style class such as Standard Cell. The top-level array
PyCell has parameters to adjust the number of cells (or number of bits) in the array, the unit cell
placement pattern, the symmetry of adjacent cells, and the number as well as the arrangement of
auxiliary cells. It also helps route control signals at the edges of the array.

The unit cell PyCell can use any style the designer wants, but must adhere to a few basic
rules in order to function properly when it is instantiated by a top level array cell. First, it should
be DRC correct when abutted on any side to other unit cells on its cell boundary. Also, as shown
in Figure 3.17, it should have a parameter that can be used to control whether it is a regular unit
cell, a dummy cell, or some other auxiliary cell like a bias cell. If it is difficult to write a single
unit PyCell that can create all the different auxiliary cells, then separate PyCells for each type of
auxiliary cell can be wrapped by a higher level PyCell which can then be used as the unit cell of

an array.
) ) )
| | = n N
(b)

(a) (c) (d)

Figure 3.17: Using only the highlighted vias and stiches, a unit cell (a) can be configured for control
by an odd bit (b), control by an even bit (c), or configured as a dummy cell (d).

Figure 3.18 shows three instances of a programmable array for two, three, and four bits of
programmability. These instances use the default placement pattern of binary-weighted cells for
Array Style cells. The main benefit of this pattern is that it only uses one horizontal and one
vertical routing channel per control bit no matter how many bits are in the array. Even numbered
control bits (as shown in Figure 3.17(c)) are routed to the left edge of the array horizontally and
odd numbered control bits (as shown in Figure 3.17 (b)) are routed to the top vertically. If this
pattern is not suitable for a particular application, the designer can select another placement
pattern or can create their own.
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Figure 3.18: Three instances of binary weighted DACs 2, 3, and 4 bits.

3.4 Summary

An AMS circuit generator is not complete unless it can generate a full layout. There are
commercially available tools for automating the creation of analog circuit layouts, but they have
not yet seen widespread adoption by designers. We believe the main complaint designers have
with these tools — most of which are optimization-based tools — is the difficulty in creating
constraints that can help the tool perform a layout in a way that is similar to the way the designer
would manually layout the circuit. Some readers might rightly point out that manual layout
techniques can be non-optimal and might include unnecessary levels of symmetry or possess
other aesthetically pleasing but electrically irrelevant properties. While this may be true and the
layout produced by an optimization-based AMS layout tool might actually match — or even
exceed — the performance of a manual layout, it is also true that it is much easier for a designer to
debug a layout when they are familiar with it and understand the details of how it was created’.
Constraint-driven optimization tools can often lead to non-intuitive results, leading to extra time
spent adding extra constraints in order to force the tool to behave as the designer wishes.

Due to these issues with existing constraint-based approaches, the initial efforts towards
enabling designers to easily create layout generators using the BAG framework have primarily
focused on knowledge-based techniques that allow designers to fully specify the procedure for
building a parameterized layout. Naturally, these layouts match more closely with the designer’s
plan but codifying a complex circuit can require many lines of code and a lot of time. To
mitigate these issues, we created several Python classes that designers can use as the basis for
building their own PyCell layout generators for a few common styles of AMS circuits. It is our

? It is also important to recognize that designers have an inherent bias to trust the layout they
personally envisioned more than one created by something (or someone) else. This isn’t a
particularly justifiable or defensible bias but it is a reality that must be addressed.
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hope that using just a handful of these layout styles, the BAG framework can provide a quick
path for creating layout generators for 90% of the circuit generators created using the framework.

The main styles of the BAG framework are the Standard styles: Standard Cell, Standard
Row, and Standard Block. These styles allow the designer to enter a design in a simple Python
data structure wherein the order of elements in the data structure corresponds to the relative
placement of the elements in the layout. They are also general enough to use for almost any
circuit so they are useful for creating initial layout generators to provide accurate layout parasitic
estimates early on in the design process. The Standard styles can be used for cells made of
device primitives and/or groups of dissimilar cells; the Array style is used to create regular
layouts for groups of a single unit cell. When combined with a unit cell layout built from the
Standard Cell style, this can be used to build DAC and ADC structures and other regular arrays.
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Chapter 4 — Integrated SC Regulator

The previous 2 chapters have described the functionality of the BAG framework using only
simple example circuits such as basic digital gates and a 5-transistor amplifier. In order to
demonstrate the true utility of an analog circuit automation framework, it must be used to create
generators for more complex circuit blocks. The most complex circuit generator created using
BAG so far is a fully-integrated Switched-Capacitor (SC) regulator. This chapter begins with
some brief background on the operation of switched-capacitor converters before moving to a
description of a fully-integrated switched-capacitor regulator architecture capable of responding
to sub-nanosecond load current transients. The main topics of this chapter are a description of
both the generator and the process of creating the generator for this switched-capacitor regulator
architecture.

4.1 Switched-capacitor Converters

As the number of digital cores and peripheral blocks with separate voltage supplies in
modern SoCs increases, integrated voltage regulators (IVRs) are becoming increasingly desirable
as a means of providing multiple voltage supplies without requiring costly external components.
Since a typical chip requires several independent supplies with different output voltage and
efficiency requirements, the initial design effort spent creating an IVR generator can be
immediately amortized across several instances. Furthermore, as IVRs are needed all over the
SoC, having a layout with a programmable aspect ratio can help ease floor-planning by allowing
the designer to fill in arbitrarily-shaped spaces on the die. IVRs do not typically have many
critical, high speed input/output signals, so it is also useful to be able to adapt their shape to
accommodate placement and routing constraints imposed by more critical high speed blocks
such as transceivers or data paths.

Low-dropout regulators (LDOs) are a common choice for integrated voltage regulators, but
their efficiency scales linearly with their conversion ratio (i.e. the ratio of the converter’s output
voltage to its input voltage), and in many cases this inefficiency is unacceptable. In order to
achieve higher efficiencies, designers use switching regulators. The buck converter is probably
the most popular step-down converter used for efficient power conversion, but it relies on high
quality inductors, which are difficult to integrate on chip in a cost effective way. Switched-
capacitor converters [40] rely on dense capacitors rather than high quality inductors, generally
making them more well-suited to complete integration on the die.

4.1.1 Switched-Capacitor DC-DC Converter Operation

The basic operation of a simple two-to-one step-down — i.e. having an ideal voltage
conversion ratio of 2 — switched-capacitor converter is depicted in Figure 4.1(a). Two non-
overlapped clocks, Phase 1 and Phase 2, control a group of switches that alternately shift a
capacitor, called the flying capacitor, from being connected between an input and an output
voltage to being connected between the output voltage and ground. While this switching action
delivers power from the input to the output at the desired conversion ratio, it also creates an
undesirable ripple voltage shown on the V,, waveform at the bottom of Figure 4.1(a). The loss
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in system efficiency associated with this ripple can be improved by interleaving several of the
switched-capacitor units. Figure 4.1(b) illustrates interleaving with two flying capacitors 90
degrees out of phase with each other. The number of interleaved phases along with the topology
of the SC converter, frequency of switching, size of the flying capacitors, and size of the
switches determine the exact relationship of the output voltage to the input voltage and the
efficiency of the power conversion. For a more thorough analysis of switched-capacitor DC-DC
converters, see [41].

V. Ml MZ Vout V. Ml MZ Vout
T n— T
C C
~_-Jly ~_-Jly
1 M3 M4 1 M3 M4
M1 M2
LI
Interleaving T Sty
Phase1__1 |1 [ 1 Phase1__1 |1 [ 1
Phase 1b™ | 1 I Phase 1b ™ | 1 I

Phase 2b [~ 1 1 [

(a) (b)

Figure 4.1: Switched-capacitor Operation.

When controlled by a fixed frequency, as in Figure 4.1, a switched-capacitor converter does
not truly regulate the output voltage. In order to create a regulated switched-capacitor converter
(i.e., a switched-capacitor regulator), the frequency of the flying capacitor switching action must
be controlled through a closed loop that compares the output voltage to a desired reference
voltage. One way of doing this is by using a lower-bound hysteretic feedback controller shown
in Figure 4.2 [42]. The lower-bound comparator detects when the output voltage drops below
the reference and triggers a flip in the state of the switched-capacitor switch network. This
action regulates the output voltage to the desired value despite changes in input voltage or load
current such as the current steps in Figure 4.2(c).
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Figure 4.2: A lower bound hysteretic control circuit (a) used to control a switched-capacitor
converter unit cell (b) and the waveforms (c) depicting its operation.

4.1.2 Switched-Capacitor Regulator Architecture

Since fully integrated SC converters are physically close to their loads and have fewer
inductive and capacitive parasitics to deal with, they can inherently be made to respond faster
than off-chip converters. If an integrated convert’s regulation loop can fully capitalize on this
capability, it can be used to enable fast dynamic voltage and frequency scaling (DVFS) which
can lead to substantial power savings [43]. For this reason, creating regulation schemes that
achieve very fast response times is an open and worthwhile challenge. Therefore, we chose to
implement (using BAG) a generator for a switched-capacitor regulator that extends the work of
[40]-[42] with a very fast response time that can maintain output regulation in the presence of
sub-nanosecond load current transients.

SC converters have an inherent voltage conversion ratio determined by their topology.
Unfortunately, as a regulation loop adjusts the output voltage and the effective conversion ratio
shifts below the inherent ratio of the topology, the efficiency of the converter drops linearly. In
order to mitigate this, the architecture chosen for the SC regulator generator uses a
reconfigurable switched-capacitor unit cell [41] that can switch between 1/2 to 2/3 conversion
ratios. This allows the converter to be reconfigured for higher efficiency depending on the
desired conversion ratio. The regulation loop used to control the reconfigurable unit cells is
similar to the lower bound control shown in the previous section, but modified to handle multi-
phase interleaving and to maintain a loop response time that is as fast as possible. Each phase has
a separate asynchronous comparator that triggers a flip in the state of that phases’ switched-
capacitor unit cell as soon as the output voltage drops below the desired reference. Once the
output voltage has increased as a result of that flip in the switched-capacitor unit cell’s state, the
next comparator in the chain is enabled.

By having a comparator located locally within each phase, the critical path from the
comparator to its associated switched-capacitor unit cell is minimized. This is crucial to
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maintaining a fast response to transient load current steps because the maximum switching
frequency of the converter, and therefore the maximum load current that the converter can
supply while still maintaining output voltage regulation, is limited by this critical path delay.
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Figure 4.3: Implemented SC Converter regulation loop with asynchronous lower bound control and
its behavior in the presence of a load current step.

4.2 Switched-Capacitor Regulator Generator

As highlighted in Figure 4.4, an SC regulator instance is made of an even number of
interleaved phases (the exact number is determined at optimization time) and a corresponding
number of bias current DACs. Each of the interleaved phases is itself made of four parts: a
collection of flying capacitors, a network of power switches and drivers, a control core, and a
load current DAC.
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Figure 4.4: Switched-capacitor Regulator Generator.

In order to fully validate the functionality and flexibility of the BAG framework and to verify
the quality of the resulting circuits, we utilized the SC regulator generator to create three
different instantiations, each targeting different specifications in terms of total output power,
power density, and aspect ratio, as shown in Table 4.1. The following section will describe the
creation of a BAG generator for the regulator as well as the creation of generators for the main
sub-blocks utilized by the regulator.

Specification Regulator A Regulator B Regulator C
Power Density 1 W/mmz 0.2 W/mm2 W b
Output Power 1w 100 mW 100 mW
Aspect Ratio [H/W] [ 0.35 1.2 0.5

Table 4.1: Switched-capacitor Regulator Target Specifications.

4.2.1 Sub-Circuit Generators

We created generators for each sub-block in a bottom-up fashion so that during the
development of the higher-level generators, the lower level generators would be available to
instantiate the sub-blocks. However, during the execution of a generator, the specifications are
typically passed top-down to each sub-block in order to optimize global performance — e.g. to
create as compact of a layout as possible.

4.2.1.1 SC Interleaved Phase Generator

Each interleaved phase is made of two out-of-phase reconfigurable switched-capacitor
circuits consisting of two flying capacitors and nine switches along with their drivers. Each
phase also has a control block that creates the signals used as inputs to the switch drivers. The
generator code for sizing this circuit is trivial because the higher level SC regulator generator
handles its sizing. The layout generator is a fully custom PyCell and does not use a specific
layout style. The PyCell’s main actions are wrapping the capacitor around the edges of the
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control block and switch network, creating routing channels between the capacitors to carry
static control signals and the comparator enable signal, and driving the switch network and
control block PyCells to fit in the targeted space.
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Figure 4.5: SC Interleaved Phase schematic (a) and layout (b).

4.2.1.2 Control Core Generator

The control core circuit’s main function is to decide when to switch the state of the switched-
capacitor unit cell. To that end, it contains an asynchronous comparator whose output drives a
toggle flop followed by a phase splitter that outputs two 180° out-of-phase signals. These out-
of-phase signals are then fed to a circuit that creates non-overlapping versions in two voltage
domains — between Vi, and V,, and between V., and ground — in order to supply the control
signals to the power switch driver circuits in the SC interleaved phase unit cell. The delay from
the enable signal of the comparator until the time at which the output voltage is boosted from the
charge added in by the switched-capacitor unit represents the fastest speed the converter can
maintain regulation. Minimizing the delay of the critical path shown in Figure 4.6 is equivalent
to maximizing the allowable switching frequency of the converter and is directly related to the
achievable output power. This delay also limits the speed that the regulation loop can respond
to changes in the output load.

The primary goal of the control core generator is to minimize the critical path delay. Sizing
is done using the logical effort helper class (see 2.3.4.2) to size the elements of the critical path.
First, the asynchronous comparator is sized for minimal power and a specified minimum delay.
Then, using the driver size specifications passed down from the SC interleaved cell generator,
the optimal fanout target is calculated and used to size the rest of the critical path. The falling
edge detector is sized to prevent a race condition that can occur if a comparator is enabled before
the output voltage has jumped due to the signal from a previous comparators output. In addition
to the critical path, the control core generator also sizes measurement circuits that can be used to
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characterize each interleaved phase, circuitry for resetting the asynchronous comparator once the
next phase’s comparator has been enabled, and circuitry for modifying the effective reference
voltage depending on the output load.
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Figure 4.6: Control core critical path.

The generator of the control core layout inherits from the Standard Block class (see 3.2.3),
and all of the subcircuits used in the control core inherit from either Standard Row or Standard
Cell. Figure 4.7 shows asynchronous comparator instances implemented using Standard Row.
These layouts use a feature of the Standard styles that allows the designer to create isolated
power islands using deep nwell regions and breaks in the power rails.

Decoupling Reference Latching Output

Capacitors Element Element Buffers

Figure 4.7: Asynchronous comparator PyCell compiled with 65nm and 40nm technology files.

An instance of the layout generator for the full implemented control core can be seen in
Figure 4.8. The asynchronous comparator is highlighted in the bottom left of the figure to
provide a sense of scale. The top three rows contain the non-overlap and level shift circuitry for
the two phases of unit switched-capacitor cells. Their layouts are roughly mirror symmetric
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about the center of the y-axis in order to avoid mismatch. Control signals that interface with one
SC cell or the other are placed in the left and right routing bundles while signals used for the
asynchronous comparator and the shared portion of the control path are placed in the central
routing bundle. The vertical portion of the power grid (thick yellow routes) is placed after the
routing with extra spacing allocated to avoid adding extra load capacitance to any high speed
signals. The power grid rails are also trimmed to avoid extra load capacitance, but this can be
disabled with a parameter if a higher level PyCell needs the power grid to reach the borders of
the cell.

Routing Bundles

Asynchronous Comparator

Figure 4.8: Control Block PyCell.

4.2.1.3 Switch Network Generator

The switch network circuit, shown in Figure 4.9, consists of all of the power switches used in
the SC converter as well as the first stage of digital logic driving the gates of the power switches.
In order to enable decreased gate switching losses under light load conditions, the power
switches are partitioned into 4 equal segments, each controlled by a separate driver. The power
switches are sized based on the results of a high level optimization script, and the gate capacitors
of these switches are used to size the driver gates for an optimal target effort. This target effort is
passed from the higher level SC interleaved phase generator that has information about the entire
critical path (and not just the final stage).
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Figure 4.9: Power switches and drivers.

out

The layout of the switch network could be implemented using the Standard Block style, but
we chose to implement it as a custom PyCell in order to ensure a compact layout and to avoid
potential electromigration issues. Each partitioned switch is implemented as a PyCell like the
one shown in Figure 4.10(a) in order to limit the finger width of the switches and maintain a
strong connection to the gate. The drivers for most of the switches are NOR and NAND gates
created using the Standard Cell layout style. In order to enable the switch network to
reconfigure from a conversion ratio of 1/2 to 2/3, two of the switches, M5 and M7, require more
complex drivers (see the M7 driver schematic in Figure 4.10(b)). As shown in Figure 4.11(d), the
MS5 driver has twice the vertical pitch of the other cells. Therefore, in order to avoid potential
electromigration issues due to excessively large finger widths, its layout is implemented using
the Standard Block style, as shown in Figure 4.10(c), to connect several vertically stacked copies
of a unit element of the M5 driver in parallel.

Another challenge for the switch network layout is the need to deal with multiple voltage
domains. It is difficult to handle the isolated pwells and deep nwell boundaries used to create
separate voltage domains in a way that can easily scale with different switch widths, driver sizes,
and target aspect ratios. The relative locations of the switch/driver groups were chosen to
minimize the total number of deep nwell regions required in order to minimize the penalty that
results from the large minimum spacing requirement associated with the deep nwell layer.
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Figure 4.10: Power switch PyCell (a), M7 driver schematic (b), and MS driver PyCell (c).

The top level layout procedure of the switches and drivers is designed to minimize the
amount of empty space in the layout. Using the programmable vertical pitch capability of the
driver PyCells and switch PyCell, the bottom row of switches and drivers shown in Figure 4.11
(a) is first placed with a target width set to meet electro-migration specifications. Then a binary
search is performed on the pitch of the top row (Figure 4.11(a)-(c)) to match the width of the
bottom row. Performing the binary search on the width of the top row while fixing the bottom
row is slightly faster than the alternative due to the slower layout generation time of the bottom
row resulting from the added complexity of the M7 driver compared to the drivers in the top row.
Finally the M5 driver and switch are placed on the left side of the two rows with a vertical pitch
set equal to the total height of the two rows (Figure 4.11(d)). This compact layout (see Figure
4.11(e)) would have been hard to obtain using an optimization-based layout generator without
specifying a very large number of constraints.
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Figure 4.11: A binary search matches the width of the top row of power switches and drivers with
the bottom row (a)-(c) before the final M5 switch placed (d). The actual layout is overlaid by the
cartoon in (e).
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4.2.1.4 Flying Capacitor Generator

The efficiency that a SC converter can achieve for a particular power density is strongly
dependent on the density of the flying capacitors. In order to achieve the densest possible
capacitor layout, a PyCell was created covering a MOS capacitor with a programmable number
of layers of metal finger capacitors. Since the achievable capacitor density is crucial to the
optimization of the overall circuit, this PyCell is characterized early on in the generator’s design
procedures (as described in 2.3.4.1) so that the sizes of the switches and capacitors can be
determined before laying out the full converter.

One of the main constraints on the achievable capacitor density is the polysilicon maximum
density design rule. In order to achieve the absolute highest density possible, once the full
converter PyCell is ready, the density of the MOS capacitor in the flying capacitor PyCell can be
optimized using a binary search for the highest density such that the full converter meets the
maximum polysilicon density design rule.

4.2.1.5 DAC Generators

The SC converter uses two different DAC generators for calibration and testing purposes.
Both generators use the ArrayModule class described in 2.3.4.3 to enable the variable structure
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schematic required to generate a DAC with a variable number of bits. They also both use the
Array style PyCell class described in 3.3 to simplify the layout procedure.

4.2.1.5.1 Bias Current DAC

The bias current DAC is used to calibrate the asynchronous comparators in the control block.
It needs to be able to provide the proper current to reduce the offset of the comparator to a few
mV. Once the asynchronous comparator is sized, the nominal required current can be calculated
through simulation; the bias DAC is then sized (using the size for() function described in
2.3.4.1) in order to provide that nominal bias current at the worst-case process corner when
programmed with a digital value that is one half of its full scale value. The LSB size, and
therefore the number of bits required for the bias DAC, is chosen to be small enough to limit the
offset due to the step size to be less than a few mV.

The schematics and layouts for the three unit cells used by the Array style bias DAC PyCell
are shown in Figure 4.12. The core of the unit cell uses the Standard Cell style and then vertical
and horizontal routing channels are added on top of it and connected using programmable vias
that transform the cell into a current source element, a mirror bias cell, or a dummy cell. The
routing channels also include ground shields for the bias and output lines and are designed to be
abutted with or without mirroring across the y-axis.

i 11
BASIC CELL BIAS CELL DUMMY CELL

Figure 4.12: Bias DAC unit elements configured as a basic unit cell, a bias cell, and a dummy cell.

There are no high speed signal paths or high current wires in this design so the default
configuration of the Array style is sufficient for the bias current DAC PyCell. The unit cells
from Figure 4.12 are used to build the full array PyCell instances shown in Figure 4.13.
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Figure 4.13: Bias Current DAC layout instances for 2 and 4 bit configurations.

4.2.1.5.2 Load DAC

The benefits of fully integrated SC regulators, and in particular the speed of the transient load
response, are maximized if the load circuit they are supplying is located on the same die. The
parasitic inductance incurred when routing power off the die, through the package, and to a load
circuit often precludes the sub-nanosecond response time that is one of the goals of this SC
regulator. In order to mimic the fast switching transients of a processor core, a dummy load
DAC is integrated with each interleaved phase of the regulator. The schematic of the load itself
is quite simple; as illustrated in Figure 4.14, it is just an array of unit-sized NMOS devices
controlled by a binary-weighted digital code and connected between the power rails. In order to
demonstrate the speed of the SC converter, it is useful to have the capability to adjust the speed
of the transient load steps. In order to do this, the gates of the NMOS load devices are driven by
a set of current-starved inverters whose bias current is digitally programmed using instances of
the bias DAC shown previously. The DAC is sized to supply the maximum load current at the
peak output voltage specification (1.2 V) under nominal conditions.
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Figure 4.14: Load DAC array and slew rate limiter schematics.

The major design considerations for the load DAC are electromigration and thermal power
dissipation. Long channel devices are used to decrease the power density of the load DAC and
the DAC itself is distributed with the interleaved phase cells such that each interleaved phase has
a single copy of the load DAC. The power rails are also upsized to avoid electromigration
problems. Figure 4.15 shows the schematic and layout for the unit cells used in the load array.
As described earlier in 3.3, the basic Array style pattern dictates that the control signals for even
bits are routed to the borders of the array horizontally and for odd bits are routed vertically.

3%
BASIC CELL DUMMY CELL

Figure 4.15: Load DAC unit elements configured as a basic unit cell (with an even or odd control
bit) and a dummy cell.

Figure 4.16 shows one of the actual load DAC layouts generated for one of the top level
converters. A simple wrapper PyCell is created to place the slew rate limiter above the load
DAC and connect the routes between them. The power nets of both circuits are connected to the
top level power grid later when the load DAC PyCell is instantiated in the SC interleaved phase
PyCell.
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7 BIT LOAD ARRAY

Figure 4.16: Load DAC final layout with slew rate limiter."

4.2.2 Top Level SC Regulator Generator

Based on the analytical optimization flow presented in [41], we created a Python function
that accepts as inputs basic process characterization data (obtained by reading the technology
database provided by the Primitive Device helper classes) on switch impedance and capacitance

' The connection between the slew rate limiter and the load DAC array shown here is unoptimized.
The route shown here was constrainted by the default location of the load array’s control pins in the top
left corner. As will be dicussed in 5.1, improved routing functions are needed to provide flexible
connections that avoid wasting space.
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density (see Figure 2.8) as well as target output power specifications. The function then
determines the optimal switch and capacitor sizing for the regulator core and the optimal number
of interleaved phases. Figure 4.17 shows a block diagram of a six phase SC regulator.
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Figure 4.17: 6-phase instance of an interleaved switched-capacitor converter with per-phase lower
bound control blocks.

The outputs of the system-level optimization are hierarchically passed to the generators for
all of the sub-blocks. Figure 4.18 shows the hierarchical layouts of the three different converters
targeting the specifications listed in Table 4.1. The top-level regulator generator inherits from
the ArrayModule helper class (2.3.4.3) to instantiate the desired number of interleaved phases.
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Figure 4.18: Final layouts of three complete SC regulator designs.

After the first iteration of the design flow has been completed, pre (see Figure 4.19 for the
top-level schematic simulation of the 1 W regulator responding to load current steps) and post-
layout simulations are run to evaluate the regulator performance, and the sizing flow is iterated to
take the updated parasitic information into account. The automation of the design flow
substantially lowers the cost of each iteration (in our implementation, each iteration is fully
automated, and it takes around three hours to run), thus enabling a tighter tuning and verification
of the regulator performance with respect to a manual flow.
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Figure 4.19: Load transient step response simulation result.



Chapter 4 — Integrated SC Regulator 61

4.2.3 Digital Interface

So far, we have focused solely on AMS circuit generators and neglected the fact that most
AMS circuits at some point must interface with a digital circuit. In the case of the SC converter,
this digital circuit contains a register file of configuration bits that can be written from off chip
through a serial interface as well as the digital logic necessary to control the load DAC described
in 4.2.1.5. In order to handle the physical interface between these two blocks, the SC converter
PyCell creates a file that stores the coordinates and shapes of the top level pins as well as the
coordinates of the cell’s border. This information is passed as an input to the place and route
script used to generate the layout for the synthesized digital block, and the two cells can be
instantiated together and aligned such that all the connections are made in a DRC and LVS clean
way as shown in Figure 4.20.

The electrical interface between the blocks is handled through careful overdesign of the drive
strength of signals on the digital side, and by putting local buffers on most signals in the AMS
block right next to the point where they connect to the digital block. This works for the case of
this SC converter generator but it is not a general solution. In the future, it would be simple to
create a function to automatically extract the post-layout capacitance for all the pins of the AMS
blocks and pass that information to the digital tool in the same manner the pin locations are
currently passed. Creating a truly general solution for connecting AMS generators and
synthesized digital blocks would require substantial additional work, but through careful
partitioning of the two domains to minimize the interactions, this work can be substantially
reduced.

SYNTHESIZED DIGITAL

Connections
between
synthesized and
BAG-generated
instances

Figure 4.20: Generated AMS instance combined with a synthesized digital block.
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Chapter 5 — Conclusion

The number and complexity of analog/mixed-signal circuits included in modern SoC designs
is rising, and these circuits are increasingly becoming the primary critical bottleneck gating chip
tapeouts even though they often occupy only a small portion of the total die area. In order to
address this issue, we argued the need for a more automated methodology in AMS circuit design
— specifically, that designers should no longer be focused on producing a sized schematic and
layout of a singular circuit instance, but instead should produce circuit generators that can
procedurally create schematics and layout of a circuit according to a set of input specifications
utilizing the designer’s codified knowledge. Therefore, to ease the creation of these AMS circuit
generators, we implemented a collection of Python-code called the Berkeley Analog Generator
(BAG).

In order to reduce the learning curve for creating generators and to ease the adoption of the
BAG framework, we borrowed heavily from the familiar manual design flow — especially for the
initial steps of schematic and testbench-entry, which are nearly identical to the traditional flow.
We chose Python as a user-friendly implementation language, and tried to structure the
framework around an interactive flow that provides designers with an intermediate design
exploration step after conceptualizing a new architecture, but before being tasked with writing
code for a generator. While developing generators using the BAG framework, we noticed many
design procedures relied on pre-characterizing certain key portions of the circuit. In this thesis,
we demonstrated helper classes that assist with the creation and maintenance of simulation-based
characterization information for device primitives as well as user-created cells. Other helper
classes were created to enable circuits with variable structures and to assist with common sizing
techniques like the method of logical effort.

We demonstrated the completeness of the BAG framework, i.e. that it can be used for a
complete AMS design flow, with an integrated switched-capacitor regulator generator — a
complex hierarchical system relevant to modern SoC architectures. By building hierarchical
parameterized layouts, we were able to create a top level parameterized layout for the SC
regulator and demonstrated its ability to handle different target aspect ratios and sizes. Initially
we planned to use commercial AMS place-and-route tools driven by constraints for higher level
layout generators because we assumed that it would be frustratingly difficult to create
parameterized layouts for cells with many levels of hierarchy. However, as we added more
functionality to the layout styles and built more complex manual PyCells for the SC converter,
we found that we preferred the level of control that came from using PyCells as compared to a
constraint-based automatic tool. It was very useful to be able to reuse the placement and routing
methods in the Standard styles while still being able to add customized procedures for certain
cells on top of the base style.

We also showed that, through judicious use of the PyCell correct-by-construction API and by
constraining the layout to fit into one of the BAG layout styles, layout generators can be made
portable from one process to another with few changes to the underlying code. This portability
depends on the new process having a similar number of metal layers and generally similar design
rules to the old process. If these requirements are met, even complex hierarchical blocks can be
compiled for different processes using single PyCell source file.
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5.1 Future Work

The BAG framework is essentially functionally complete in that it can be used to create
generators for any kind of AMS circuit. Currently however, a generator writer implementing a
design using the BAG framework might need to invest significant effort to e.g. use their
preferred design or layout style because it is not yet enabled in the BAG framework. They might
also encounter a problem related to a constraint imposed on the design stemming from the use of
one of the helper functions or styles that are already in BAG. The potential improvements
suggested in this section address one of these two problems by enabling more design techniques
with the BAG framework or improving the speed and usability of those already in the
framework.

In section 2.3.4.4, we described the BAG framework’s handling of veriloga blocks for use in
testbench circuits, but it would be useful to have a more complete mixed-mode simulation
capability available from within BAG. SPICE level simulation of complex analog circuits can
be computationally expensive and have lengthy run times, so one common solution AMS
designers employ is to simulate key blocks at the full SPICE level of accuracy while other blocks
(e.g. control blocks) are simulated with faster methods using event-driven or behavioral models
written in verilog or verilogams respectively. There are many tools for running mixed-mode
simulations of this sort, and one can imagine a simple interface in BAG whereby each Module
could have a default simulation method associated with it that could be adjusted as necessary.

Another simple improvement that could be easily implemented is a function for
automatically calculating certain electrical parameters from post-layout parasitic extractions or
post-layout simulations. For example, it would be useful to have a property associated with each
pin of a Module that could return the effective capacitance seen looking into that pin which could
be used for interfacing with digital synthesis tools or sizing chains of digital logic. The value
could be calculated by recursively finding the capacitance of all connected pins and parsing the
extracted netlist for parasitic wiring capacitances, or — depending on the accuracy desired — it
could be calculated from simulation of the extracted netlist. All the necessary tools to implement
this feature are already in BAG, but have not yet been assembled into a simple-to-use function.

The existing Standard styles are quite powerful in terms of enabling designers to create
layouts with flexible aspect ratios that can implement most structures that appear in AMS
circuits. However, there are several areas for improvement. Routing at the Standard Cell level is
limited to only the lower two metal layers and the user must be careful to order the horizontal
routing channels to avoid any shorts between vertical routes from the bottom of the cell to a
higher horizontal routing channel as well as vertical routes from the top of the cell to a lower
horizontal routing channel. Currently this limitation is avoided by creating extra horizontal
routing channels for a single net, but the ideal solution is a more complex routing mechanism
that can handle crossovers. Another limitation in Standard Cell is the inability to route from a
device pin to a routing channel within a routing group that is not immediately adjacent to the
device pin in the vertical stack. This precludes making layouts that look like the one in for the
comparator in Figure 5.1 where there are PMOS precharge devices connected to nearly every
internal node of the circuit that has five stacked device groups. This layout is very similar to a
Standard Cell PyCell but is actually a fully custom PyCell because the designer wanted to avoid
the current limitations of Standard Cell.
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Figure 5.1 Manual PyCell of a comparator.

Another potential improvement for the Standard layout styles is to incorporate
electromigration and thermal awareness into the PyCells. Currently, the geometric constraints
for electromigration are calculated in custom code snippets within specific circuit generators
(e.g. the power switches of the SC converter) once the initial sizing is determined. A more
general method could be created where electrical information is passed to the layout by default.
For example, the maximum current through every device could be stored in the Module and
passed along with the netlist information to the PyCell. The Standard styles could then take this
into account at each phase of the layout procedure and save the designer a lot of effort.

A final avenue for expanding the BAG framework is related to the restricted design rules that
occur in more advanced technology nodes. In general, the complexity of code required to
implement specific layout styles can be greatly simplified by drastically reducing the allowable
design space through enforcing very strict routing grids and device placement grids. In older
technologies, the performance penalty paid for oversimplifying the layout could be large, but in
newer processes with multiple lithographic patterning steps for the lower layers, the DRC rules
are already beginning to force extremely regular grid structures. Thus, the penalty for further
restrictions might be small enough to be outweighed by the potential gains from the speedup in
design iterations. If the grids are regular enough, layout could be performed on abstracted data
structures expressed as a set of 2-dimensional arrays, i.e. one for each process layer. By
characterizing the regular grid structure, post-layout parasitics could perhaps be estimated very
quickly and with high accuracy. Writing placement and routing functions for such a simple
representation of the layout would be much easier, and would hopefully lead to more
experimentation on the part of designers. The speed of layout generators could potentially be
dramatically increased, which could free designers to spend more time optimizing their designs
at the system level.
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Appendix A

A.1 BAG Generator Code

This section has generator class listing files for example generators.

A.1.1 Load DAC Array

1. #!/usr/bin/python

2. # -*- coding: utf-8 -*-

3. from BAG.DesignDescription.ArrayModule import ArrayModule

4. from BAG.DesignDescription.GenericCell import GenericCell as GC

5. from numpy import floor, log2

6.

7.

8. class BAG_templates__ load_dac_array(ArrayModule):

9.

10. e

11. e

2

13. def inst_pin_formula(self, pin_name):

14. e

15. Maps an instance pin name to a function that returns the net name.
16.

17. Args:

18. pin_name: (str) Instance pin name for a single instance of the
19. unit cell in the arry.

20.

21. Returns:

22. A function that takes two parameters (m,n) and returns a net_name.
23. The parameters identify the instance being operated on and the
24. net_name should be the net connected to the specified instance pin
25. <pin_name> on the instance indexed by (m,n).

26.

27. Example:

28.

29. Raises:

30.

31. BAG USER ACTION REQUIRED: Fill in the inst_pin_dict dictionary.

32. The keys to this dictionary are the names of the pins on

33. the unit cell (which should be the only cell in the template

34. schematic for the array module). The values for the keys

35. are functions. They can be other functions defined in this

36. class or lambda functions. Either way they must have two parameters
37. 'm'" and 'n' which represent the outer and inner (or row and column)
38. iteration indexes that will be used in constructing the array. These
39. indexes are integers which can be used to form the net name that the
40. instance pin will be attached to. See some examples below:

41.

42. Examples:

43, 1 - The corresponding pins on all instances are shorted to the same pins.
44, The 'a' and 'z' pins on all the unit cell instances are connected
45, to nets named 'in' and 'out'pins

46. inst_pin_dict = {'vdd': lambda m,n: 'vdd',

47. 'a': lambda m,n: 'in',

48. 'z': lambda m,n: 'out',

49. 'vss': lambda m,n: 'vss'}
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2 - The 'a' and 'z' pins on each unit cell instances are connected
to a net in a bus named 'in' and ‘'out' respectively
inst_pin_dict = {'vdd': lambda m,n: 'vdd',
'a': lambda m,n: 'in<' + "%d"%(n) + '>',
'z': lambda m,n: ‘out<' + "%d"%(n) + '>',
vss': lambda m,n: 'vss'}

3 - The '"a' and 'z' pins on each unit cell instances are connected
to a net in a bus named 'in' and ‘'out' respectively. The number
of cells connected to each net in the bus increases by 2 for each
additional net in the bus (one instance on net 'in<®@>', two instances
on net 'in<1>', 4 instances on net 'in<2>' and so on.
inst_pin_dict = {'vdd': lambda m,n: 'vdd',
'a': lambda m,n: 'in<' + "%d"%(floor(log2(n+l))) + '>',
'z': lambda m,n: 'out<' + "%d"%(floor(log2(n+l))) + '>',
'vss lambda m,n: 'vss'}

L

inst_pin_dict = {'control': lambda m, n: 'control’,

'VSS': lambda m, n: 'VSS', 'VDD': lambda m, n: \
'VDD'}

return inst_pin_dict[pin_name]

HH o ----mmmmmmee oo Example 1 for defining a tree structure ------------
## This example assumes pin names 'in', 'out', 'vdd', and 'vss'. Modify as necessary.

## Comment out the lines above defining inst_pin_dict and returning inst_pin_dict[pin_n

ame]

## and uncomment this block of code as well as the other 2 blocks below labeled with 'E

xample

## 1 for defining a tree structure’

HHEHHFHFHEHFHEHFHFEHFEHFEHHEH

100.
lo1.
102.
103.
104.
105.
106.
107.
108.

def

def

inst_pin_dict = {'vss': lambda m,n: 'vss',
'vdd': lambda m,n: 'vdd',
'a self.instance_input_net,

z': self.instance_output_net}

return inst_pin_dict[pin_name]

instance_output_net(self,m,n)
Serves same purpose as

if m == self.dim_©.value-1 : # last iteration
return ‘out’
else
return 'int_' + "%d"%(int(m+1)) + '_' + "%d"%(int(n/self.radix.value))

instance_input_net(self,m,n) :

ifm == : # first iteration
return 'in<' + "%d"%(int(n)) + '>'
else
return 'int_' + "%d"%(int(m)) + '_' + "%d"%(int(n))

——————————————————— Example 1 for defining a tree structure ------------

def pin_formula(self, pin_name):

Maps the cell pin names to functions that returns the net name.

Args:
pin_name: (str) A cell pin name at the top level of the array cell.
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Returns:
A function that takes no parameters and returns a net_name.

Example:
Raises:

BAG USER ACTION REQUIRED: Fill in the pin_dict dictionary.

The keys to this dictionary are the names of the pins on

the array cell (which should be the pin symbols in the template
schematic for the array module). The values for the keys

are functions. They can be other functions defined in this

class or lambda functions. These functions can access the parameters

of the array class including 'dim_@' and 'dim_1' which are the default a

iteration indexes. The values returned by these functions
are the net names that should be connected to the pins. The pins will
be renamed so their names match the net names.

Examples:
1 -

The corresponding pins on all instances are shorted to the same pins.

The 'a' and 'z' pins on all the unit cell instances are connecte

to nets named 'in' and 'out'pins
pin_dict = {'vdd': lambda : 'vdd',
'in': lambda : 'in',
out': lambda : 'out',
vss': lambda : 'vss'}

2 - The '"a' and 'z' pins on each unit cell instances are connected
to a net in a bus named 'in' and ‘out' respectively
pin_dict = {'vdd': lambda : 'vdd',

in': 1lambda : 'in<' + "%d"%(self.dim_1.value-

1) + ":0>',

out': lambda : 'out<' + "%d"%(self.dim_1.value-

1) + '":0>',

ssary.

vss': lambda : 'vss'}

HH o -----mmmmmee oo Example 1 for defining a tree structure ------------

## This example assumes pin names 'in', 'out', 'vdd', and 'vss'. Modify as nece
## Comment out the 1lines below defining pin_dict and uncomment this code block

## as well as the other 2 blocks above/below labeled with 'Example 1 for definin

g a tree structure’

# pin_dict = {'vss': lambda : 'vss',
# 'in': lambda : 'in<' + "%d"%(int(2**self.dim_@.value-

1)) + ":0>',

# out': lambda : 'out',
# 'vdd': lambda : 'vdd',
# vss': lambda : 'vss'}
HH ----mmmmmmee - Example 1 for defining a tree structure ------------

pin_dict = {'control': lambda : 'control', 'VSS': lambda : \
'VsSs', 'vDD': lambda : 'VDD'}
return pin_dict[pin_name]

def testbench_formula(self):

[
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161. How to alter the testbench instances and their inst_pins so they

162. can connect properly to the new

163. testbench_pin_dict = { 'DNL" : { 'vdd': lambda 'vdd'

164. )

165. e

166.

167. pass

168.

169. # testbench_pin_dict =

170.

171. def instance_formula(self, m, n):

172. e

173. BAG USER ACTION SUGGESTED: Formula generates the suffix

174. for the iterated unit cells.

175. e

176.

177. return '%04d' % int(m) + '_' + '%@4d' % int(n)

178.

179. def __init_ (

180. self,

181. prj,

182. parent=None,

183. in_testbench=False,

184. DE

185. generic_cell = GC('load_dac_array', 'BAG_templates')

186. ArrayModule.__init__ (self, prj, generic_cell, parent,

187. in_testbench)

188.

189. # self.dim_©@ must be an integer but self.dim_1 can be either an integer
or a function that

190. # returns an integer.

191.

192. self.dim_0 = 1

193. self.dim_1 = 1

194.

195.

196. #H ----mmmeeo e Example 1 for defining a tree structure ------

197. # # This example assumes pin names 'in', 'out', 'vdd', and 'vss'. Modif
y as necessary.

198. # # Comment out the 2 lines above defining self.dim_© and self.dim_1 and
uncomment this code block

199. # # as well as the other 2 blocks above labeled with 'Example 1 for defi
ning a tree structure’

200. # self.radix = self.add_design_parameter(DP(yaml_param_dict="'radix',modu
le_handle=self,callback=self.update_array))

201. # self.radix = 4

202. # self.num_bits = self.add_design_parameter(DP(yaml_param_dict="num_bits
',module_handle=self,callback=self.update_array))

203. # self.num_bits = 4

204. # self.dim_0.set_expression('int(numpy.ceil(self.module.num_bits.value/n
umpy.log2(self.module.radix.value)))")

205. # self.dim 1 = lambda outer_iter: int((2**self.num_bits.value)/(self.rad
ix.value**outer_iter))

206. #H ----mmmeeo e Example 1 for defining a tree structure ------

207.

208. #H ----mmmmmee e Example 2 for defining a tree structure -------

209. # self.dim 1 = lambda outer_iter: (27%outer_iter.value) #Use this definit

ion for self.dim_1 if the second dimension



Appendix A

69

210. # #of the array depe
nds on the level as in a decoder or other

211. # #tree-
like circuit. The function you write should take a single

212. # #parameter represe
nting the outer iteration variable

213. # outer_iter = 0 # inner_iter = 270 =
1

214. # / N\

215. # outer_iter =1 # # inner_iter = 271 =
2

216. # /N 7\

217. # outer_iter = 2 # #4# # inner_iter = 272 =
4

218. ##t - Example 2 for defining a tree structure -------

A.1.2 DCDC Phase Unit Cell Generator

#!/usr/bin/python
# -*- coding: utf-8 -*-

MODULE BAG_templates_ conv_unit_cell2 wocap

VWO NOUDWRNBR
+*
H
-
E]
S
o
S
>
E]
o
a
c
—_
™
wn

11. Fill in the funciton of this design module here

14, "

16. from BAG.DesignDescription.VarStructDesignModule import VarStructDesignModule
17. from BAG.DesignDescription.GenericCell import GenericCell as GC

18. from pylab import ceil

19. from copy import copy, deepcopy

20. import pdb

21. from BAG.DesignDescription.logical_effort import logical_effort

22. import yaml

29. class BAG_templates__conv_unit_cell2_wocap(VarStructDesignModule,
30. logical_effort):

32, wunn
33, wnn

35. def __init_ (

36. self,

37. prj,

38. parent=None,

39. in_testbench=False,
40. ):

41. e
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42.
43.
44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
lo1.
102.

....(dn

def

def

If project_name is empty then a new user_project will be created
both the CAD and python directories)

generic_cell = GC('conv_unit_cell2 wocap', 'BAG_templates')
VarStructDesignModule._ init__ (self, prj, generic_cell, parent,
in_testbench)

# self.force_schematic = True

logical_effort.__init__ (self)
self.width_finger_pairs = [['M5_finger_w', 'M5_fingers']]
self.rBulk = 1.0
self.areaUnitCap = 1.0
self.interleaving = 1
self.HoverW = 0.0
self.route4lVS = 'False’
self.widthM5 = 0.0
self.cachedParameterFile =
self.path2CompCore = "'
self.powerLevel = "'
self.default_pycell 1lib_cell = \

"demo_cells oa_lib/DCDC20utOfPhaseWoCaps'

simple_size(self):
pass

set_default_sizes(
self,

g_mult=1,
g_width=None,
g_length=None,
g_pnrat=None,
vin=2.0,

vref=0.9,
unit_inv_cap=1le-15,
switch_load_cap=2.0e-12,
target_fanout=4.0,
nonoverlap_ratio=2.0,

):

ccell = self
prj = self.prj

# size the switches

gate_cap_ff_per_um = 1.0 # extract this number
total_switch_width = switch_load_cap / 1le-15 \
/ gate_cap_ff_per_um * 1le-6
for the_cell in [ccell.I19.1I0, ccell.I20.10]:
for the_cap in [the_cell.C1, the_cell.C2]:
the_cap.set_parameters('W', 500e-6)
the_cap.cap_mult = 10
the_cap.mult = 280
the_cell.p_switch_width = g_width * 1@
the_cell.n_switch_width = g_width * 1@
the cell.n_switch_mult = int(total_switch_width
/ the_cell.n_switch width.value)
the cell.p_switch_mult = int(total switch_width
/ the_cell.p_switch width.value)
the_cell.cfly = 2.8e-10

70
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the_cell.cfly _ic = vref

unit_inverter_gate_cap = g_width * 3 * gate_cap_ff_per_um / 1le-6
switch_gate_cap = ccell.I20.I0.n_switch_width.value \
* the_cell.n_switch_mult.value * gate_cap_ff_per_um / le-6
switch_load = int(switch_gate_cap / unit_inverter_gate_cap)
if not g_width:
dummy M = prj.classes['BAG_prim__nmos4'](prj)
dummy_M.W = 0.0
g _width = 2.0 * dummy_M.W.value
del dummy_M
if not g_length:
dummy_M = prj.classes['BAG_prim__nmos4'](prj)
dummy_M.L = 0.0
g_length = dummy_M.L.value
del dummy_M
if not g_pnrat:
g_pnrat = 1.6
ccell.set_parameters('PN_ratio', g_pnrat)
ccell.set_parameters('L', g_length)
ccell.set_parameters('W', g_width)

ccell.set_parameters('stack', 1)
# set capacitor cell driver sizes
ccell.I20.pnrat = g_pnrat * 2 # multiply by 2 because this is a nor gat

ccell.I20.pgatedrive_W = g_width
ccell.I19.pnrat = g _pnrat * 2 # multiply by 2 because this is a nor gat

ccell.I19.pgatedrive_W = g_width
gatedrive_mult = ceil(switch_load / (target_fanout * 3 / 5.0)) # logica

1 effor of nor is 3/5

nts

ccell.I20.pgatedrive_mult = gatedrive_mult
ccell.I19.pgatedrive_mult gatedrive_mult

ccell.sw _cap = switch_load_cap

ccell.critical_path.set_default_sizes(g_mult, g width,
g_length, g_pnrat)

ccell.critical_path.adjust_mults(gatedrive_mult,
target_fanout=target_fanout,
nonoverlap_ratio=nonoverlap_ratio)

# these phase_splitters drive clock of the toggle flop

load_mult = ceil(ccell.critical_path.dflop.pg_mult.value
+ ccell.critical_path.dflop.tristate_mult_2.value
+ ccell.critical_path.dflop.tristate_mult.value)
ccell.phase_split_long.size_to_drive(load_mult, target_fanout)

# comparator should actually sized based on delay and mistmatch constrai

mult_normalization_factor = \
ccell.phase_split_long.inverting_stage.W.value \
/ ccell.phase_split_long.buf_stage 1.W.value
ps_mult = ccell.phase_split_long.buf_stage_1.mult.value \
+ mult_normalization_factor \
* ccell.phase_split_long.inverting_stage.mult.value
comp_mult = ceil(ps_mult / target_fanout)
ccell.comparator.set_default_sizes(comp_mult, g width)
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160.

161. # size gates in clk_output driver

162. # should be sized based on comparator

163.

164. clk_driver_mult = 4

165. ccell.pull up_keeper.mult = clk_driver_mult * 2

166. ccell.pull down_keeper.mult = clk_driver_mult

167. ccell.pull down_reset.mult = clk_driver_mult

168. ccell.pull _up_long_1.set_default_sizes(g_mult=g mult,

169. g _width=g_width, g_length=g _length, g_pnrat=g_pnrat)

170. ccell.pull _up_long_2.set_default_sizes(g_mult=g mult,

171. g _width=g_width, g_length=g _length, g_pnrat=g_pnrat)

172. ccell.pull up_long_1.pull_up_mult = clk_driver_mult * 2

173. ccell.pull up_long_2.pull_up_mult = clk_driver_mult * 2

174.

175. # make sure reset parameter uses thick gate devices so it can handle ful
1

176. # scale voltages on its inputs

177.

178. ccell.reset_inv_fs.set_parameters('device_intent',

179. "high_voltage')

180. dummy_M = prj.classes['BAG_prim__nmos4'](prj)

181. dummy_M.device_intent = 'high_voltage'

182. dummy_M.W = 0.0

183. dummy_M.L = 0.0

184. the_width = dummy_M.W.value

185. the_length = dummy_M.L.value

186. del dummy_M

187. ccell.reset_inv_fs.W = the_width

188. ccell.reset_inv_fs.L = the_length

189.

190. # pnration should be fine

191.

192. def get_pycell to_bag mapping(self, 1lib_cell):

193. if 1lib_cell == 'demo_cells oa_lib/DCDC20utOfPhaseWoCaps"':

194. pycell to_bag mapping = [['control', self.control_core,

195. 'BAG_std_cells oa/comp_core2'], ['load',

196. self.load_dac, 'BAG_std cells oa/load _dac'], ['slew'

197. , self.load _dac.slew_rate_limiter,

198. 'BAG_std _cells oa/slew_rate_limiter'], ['switches',

199. self.swcap_w_driver_out_phase,

200. ‘demo_cells oa_1lib/DCDC_unit_cell noM5']]

201.

202. # ['caps',, 'demo_cells oa_lib/dense_unit_
capNM' ]

203.

204 . return pycell_to_bag mapping

205.

206. def pycell mapper(self, 1lib_cell, use_pycell defaults=False):

207. e

208. This function should map the BAG parameters to pycell parameters and ret
urn a dictionary

209. which can then be passed (through a yaml file) to the pycell

210. e

211.

212. the_params = {}

213. the cell = GC(self.cell name, self.inst_lib_name)

214.

215. # the pycell to_bag mapping should help map the subpycells to BAG module
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# each row should be of the format [ pycell instance_name, bag module, 1

if 1lib_cell == 'demo_cells oa_lib/DCDC20utOfPhaseWoCaps"':
self. dict_for_param_file = {}
self. dict_for_param_file['instance_parameters'] = dict()
for (pycell_instance_name, bag_module, 1ib_cell) in \
self.get_pycell to_bag mapping(lib_cell):

self. dict_for_param_file['instance_parameters'
1[pycell_instance_name] = \
bag_module.pycell mapper(lib_cell)

self. dict_for_param_file.update(dict(
rBulk=self.rBulk,
areaUnitCap=self.areaUnitCap,
interleaving=self.interleaving,
HoverW=self.HoverW,
route4lLVS=self.route4lLVs,
widthM5=self.widthM5,
cachedParameterFile=self.cachedParameterFile,
loadBits=self.load_dac.bits.value,
vRefWidth=self.parent_module.parent_module.parent_module.vRefWid

))

self.param_file = self.prj.project_directory + '/OOP_"' \
+ self.powerLevel + '.yaml'

yaml_string = yaml.dump(self._dict_for_param_file)

print 'DCDC20utOfPhaseWoCaps yaml parameter file %s' \
% self.param_file

the _file = open(self.param_file, 'w')

the_file.write(yaml_string)

the_file.close()

the_params = {'param_file': self.param_file}

# 'polyDensity': float(self.polyDensity.value),

the_params.update(self. dict_for_param file)
if not use_pycell defaults:

return the_params
else:

return {}

pycell reverse_mapper(self, result_props):

This level doesn't get the control core and switch cell parameters in th

self.M5_finger_w = result_props['M5_finger_w']
self.M5_fingers = result_props['M5_fingers']

# [ 'switches', self.swcap_w_driver_out_phase, "demo_cells oa_lib/DCDC_un
# pycell reverse_mapper for swcap_w_driver_out phase gets called automat
swcap.If.MIM4 _finger_w = result props['MIM4_finger_w']*le-6
swcap.I0.MIM4_fingers = result_props['MiM4_fingers']

swcap.If.M2M3_finger_w = result props['M2M3_finger_w']*le-6
swcap.I0.M2M3_fingers = result_props['M2M3_fingers']

H H HH
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def

def

# swcap.I®.M6M9 finger_ w = result props['M6M9_finger w']*le-6
# swcap.IO.M6M9_fingers = result_props['M6M9_fingers']

# swcap.I®.M7M8 finger_w = result _props['M7M8 finger w']*le-6
# swcap.I®.M7M8 fingers = result_props['M7M8 fingers']

# swcap.I0.M1M4_true_mult = result_props['M1M4_true_mult']

# swcap.I®.M2M3 true _mult = result_props['M2M3_true mult']

# swcap.IO.M6M9_true mult = result_props['M6M9_true mult']

# swcap.I®.M7M8 true mult = result_props['M7M8 true mult']
create_layout_for_lvs(

self,

flatten=False,

use_pycell defaults=False,
route4lLVS=False,

):

the cell = GC(self.cell name, self.inst_lib_name)
pcell = GC('DCDC20utOfPhaseWoCaps', 'demo_cells_oa_lib")
lib_cell = pcell.lib_name + '/' + pcell.cell _name
if route4lLVsS:
self.routed4lVS = 'True’
else:
self.routed4lVS = 'False’
param_dict = self.pycell mapper(lib_cell, use_pycell defaults)

# layout : schematic

pin_dict = {'pmos_bias': 'pmos_slew_bias’,
'nmos_bias': 'nmos_slew_bias'}

# incomplete
# pin_dict = zip(self.pins.keys(),self.pins.keys())
# pdb.set_trace()

result_props = \
self.prj.db.instantiate_layout_for_extraction(the_cell,
pcell, param_dict, pin_dict, flatten=flatten)
self.result_props = result_props

_perform_structure_update(self):

The user should implement this function so the structure of the
module is updated based on the parameter

values. It will be called triggered when any structural design
parameters are altered although it will not actually be run until
update_structure is called.

VarStructDesignModule._perform_structure_update(self)

self.pins['load_code'].pin_name = 'load_code<%d:0>"' \
% (self.load _dac.bits.value - 1)
self.pins['load_code'].net_name = 'load_code<%d:0>"' \

% (self.load _dac.bits.value - 1)
self._update_connections_from_children()
for x in self.connections:

if x.net_name == 'load_code':
X.net_name = 'load_code<%d:0>"' \
% (self.load_dac.bits.value - 1)
if x.pin_name == 'load_code' and not x.inst_name:

X.pin_name = 'load_code<%d:0>"' \

74
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333. % (self.load _dac.bits.value - 1)

334.

335. # self.pin_order = [self.pins[x].pin_name for x in self._orig_pin_order
1

336.

337. def _update_connections_from_children(self):

338. e

339. Refresh the connections on this module by starting with the original sch
ematic connections

340. (from the yaml file) and then update them according to the current pins
object

341. in all child instances

342. e

343.

344. self.connections = deepcopy(self._original_connections)

345, for (inst_name, inst) in self.instances.iteritems():

346. for (orig_pin_name, pin) in inst.pins.iteritems():

347. if not pin.pin_name == orig_pin_name:

348.

349, # print inst_name,pin['pin_name'],orig pin_name

350. # indicates this pin name has been changed due to a structur
al change

351. # so we should update that in the current parent module

352.

353. for x in self.connections:

354. if x.inst_name == inst_name and x.pin_name \

355, == orig_pin_name:

356. X.pin_name = pin.pin_name

357. x.orig _pin_name = orig pin_name

358. break # should only be one pin with that name

359.

360. def generate_layout(self):

361. '''"''Generates the layout of the current Module. Abstract function

362. that should be implemented by all functions that inherit from

363. DesignModule.

364. ettt

365.

366. pass

367.

368. def design(

369. self,

370. DCDC_params={},

371. the_switch_params={},

372. num_phases=10,

373. L=60e-9,

374. target_effort=None,

375. cell height=None,

376. switch_device_intent='standard’,

377. later_stage_device_intent="fast’,

378. power_scale_factor=0.6,

379. **kwargs

380. 3

381. ''""'"Abstract function that should be implemented by all functions

382. ....that inherit from DesignModule.

383. et

384.

385. oop = self

386.

387. # power_scale factor = 0.25

388.
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self.update_device char() # There aren't any nmos or pmos at this level

so it probably uses defaults
for arg in (
"pnrat’,
'stack_2n',
‘cgate’,
‘cgaten’,
‘cgatep’,
'stack_3n',
"stack_2p',
'stack _3p',
‘gamma’,
"tinv',
):
exec "%s = kwargs.get('%s',self.%s)" % (arg, arg, arg)
nt into local variables for this function

# put argume

oop.set_parameters('pcell id', 'basic')
if self.prj.__dict__.has_key('Wmin"):
Wmin = self.prj.Wmin
else:
Wmin = 400e-9
snap = self.prj.snap
oop.control_core.simple_size()
if cell_height:
oop.control_core.cell_height = cell_height
# set M5 size
self.M5_fingers =1
self.M5_finger_w = DCDC_params['instance_parameters']['OOP'
1['M5width'] / 1e6
self.rBulk = DCDC_params['instance_parameters']['0O0P'][ 'rBulk’]
self.areaUnitCap = DCDC_params['instance_parameters']['OOP'
1["areauUnitCap']
self.interleaving = DCDC_params['instance_parameters'][ 'OOP'
1["interleaving']
self.HoverW = DCDC_params['instance_parameters']['00P'][ 'HoverW'
1
self.widthM5 = DCDC_params['instance_parameters'][ 'OOP'
1[ 'M5width']
self.cachedParameterFile = './OOPParams_"' \
+ DCDC_params[ 'powerLevel'] + '.yaml'
self.path2CompCore = 'control core_' + DCDC_params[ 'powerLevel']
self.powerLevel = DCDC_params[ 'powerLevel’]
self.fix_widths()
M5_load_cap = self.M5_in_phase.total_width * cgate
oop.swcap_w_drivers_in_phase.simple_size(the_switch_params=the_switch_pa
rams,
switch_device_intent=switch_device_intent,
M5_load_cap=M5_load_cap)
oop.swcap_w_driver_out_phase.simple_size(the_switch_params=the_switch_pa
rams,
switch_device_intent=switch_device_intent,
M5_load_cap=M5_load_cap)
# oop.Cfly in phase.simple_size()
# oop.cfly out phase.simple size()
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cur_volt pair = [(1.0, 0.8), (1.0, 1.2)]
oop.load_dac.design(bits=7, cur_volt_pairs=cur_volt_pair,

num_phases=num_phases)

# figure out which path has the highest fanout

partitions = the_switch_params['swPartitions']
nov_ratio = 1.0
nov_pg ratio =1 / 4.0 # pg inputs to are 4 times smaller than what the

nov_driver = oop.control_core.critical_path.nov_ls.nov_high

# intrinsic delay factors

p_nor2 = (pnrat * stack 2p + 2) / (1 + pnrat)
p_nand2 = (pnrat * 2 + stack_2n) / (1 + pnrat)

p_flying_

p_nov_h = (2 * pnrat + 1) / (1 + pnrat)
p_nov_1 = (pnrat + 2) / (1 + pnrat)
p_pg =1

delay_fanout = 4.0

# side loads from layout parasitics

cin_8 side_load = 5e-15

c1

c2

c3

c4

Cc5

ce

c7

c8

co

= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M1.W.
* oop.swcap_w_drivers_in_phase.I10.10.M1.
* cgatep)
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M2.W.
* oop.swcap_w_drivers_in_phase.I10.10.M2.
* cgaten)
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M3.W.
* oop.swcap_w_drivers_in_phase.I10.10.M3.
* cgaten)
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M4.W.
* oop.swcap_w_drivers_in_phase.I10.10.M4.
* cgatep)

inv = (stack 3p * pnrat + 1) / (1 + pnrat)

value
mult.value

value
mult.value

value
mult.value

value
mult.value

= power_scale_factor * oop.M5_out_phase.W.value \

* oop.M5_out_phase.mult.value * cgaten
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M6.W.
* oop.swcap_w_drivers_in_phase.I0.10.M6.
* cgatep)
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M7.W.
* oop.swcap_w_drivers_in_phase.I10.10.M7.
* cgaten)
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M8.W.
* oop.swcap_w_drivers_in_phase.10.10.M8.
* cgaten)
= power_scale_factor * partitions \
* (oop.swcap_w_drivers_in phase.I0.I0.M9.W.
* oop.swcap_w_drivers_in_phase.I10.10.M9.

value
mult.value

value
mult.value

value
mult.value

value
mult.value

77
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* cgatep)
# logical_effort

g_nor2 = (stack_2p * pnrat + 1) / (1 + pnrat)
g_nand2 = (stack_2n + pnrat) / (1 + pnrat)

# for nonoverlap driver the ratio of the outl load cap mutliplied by tha

t stages logical effort to the load cap of out2 times

514.

515.
516.
517.
518.
519.
520.

521.
522.
523.
524.
525.
526.
527.
528.

529.
530.

531.
532.
533.
534.
535.

536.
537.
538.
539.
540.

541.
542.
543.
544.
545.
546.
547.
548.
549.
550.
551.
552.
553.
554.
555.
556.
557.

ing driven)

# that stages logical effort (the logical effort of the stage that is be

# cload_ratio=(C2/C1)*(g_nor2)/(g_nand2)
# cload_ratio_w M5 = ((3.0*C2)/(2.0*C1))*(g_nor2)/(g_nand2)

g _flying_inv = stack_3p * pnrat / (1 + pnrat)

# g nov = nov_driver.get_logical_effort(cload_ratio=cload_ratio)#((1+pnr

at)*(nov_ratio*2*nov_pg ratio+l))/(1l+pnrat)#assume that the

g nov_out2 = (1 + stack_2p * pnrat + stack_2p * pnrat * (gamma
* 2.0 / delay_fanout + 4.0 / delay_fanout ** 3)) \
/ (1 + pnrat)
g_nov_outl = (stack_2n + pnrat + stack_2n * (gamma * 2.0
/ delay_ fanout + 4.0 / delay_ fanout ** 3)) / (1
+ pnrat)
gpg =1 # i am sizing the pg like an inverter and sizing the inverter

driving the pmos so Cin is the same as an inverter and ignoring a bunch of other stuff

# one of the non-

overlap drivers drives 3 gates instead of 2 so the opitmization should be done for that

+*

C_load_M14_driver = C1+C4

C_load_M23_driver = C2+C3

C load w M5 = C5 + C1 + C2 + C3 + C4

C_load wo M5 = C1 + C2 + C3 + C4

g6 W _M5 = nov_driver.get logical effort(cload_ratio=cload ratio_w_M5)

H H HH

# g6_wo_M5 = nov_driver.get_logical_effort(cload_ratio=cload_ratio)
# branching 5 = C_load_wo_M5*g6_wo_M5/ \
# (C_load_w_M5*g6_w_M5)

# 1 clk2_h path calculate expression for equivalent branching factor giv

en fixed C loads of the switches

b8 = 1 # includes driver of M5
b7 = 2 # nonoverlap driver

b6 =1 + g nor2 * g nov_outl * C2 / (g_nand2 * g nov_out2 * C1)

b5 = 2 + 0.1 # 0.1 for bottom plate parasitics

b4 =1

b3 = 25 / 9.0 # set by phase splitter; need to work out actual number
b2 =1

bl =1

# b0 = 1 #inverter inside the comparator

print 'Branching factors: %s %s %s %s %s %s  %s' % (
b1,
b2,
b3,
ba,
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# 2 calculate optimal fanout per stage

gl =1 # inverter inside comparator (second stage with fixed size)
g2 = g pg # pass gate in d flop

g3 =1 #

g4 = 1 # stage 1 of phase splitter

g5 =1 # stage 2 of phase splitter

g6 = 1 # level shift inverter

g7 = g_nov_out2

g8 = g _nand2

cinl = oop.control_core.comparator.Wn.value \
* oop.control_core.comparator.nmult_inv2.value * cgaten \
+ oop.control _core.comparator.Wp.value \
* oop.control_core.comparator.pmult_inv2.value * cgatep

# cinl = 0.4e-

6*(cgaten+pnrat*cgatep) #(minimum sized inverter (with M1 min area constraint))
G =gl * g2 * g3 * g4 * g5 * g6 * g7 * g8
F=0C1/ cinl
B =bl * b2 * b3 * b4 * b5 * b6 * b7 * b8
PE=G*F *B
h = PE ** (1 / 8.0)

if target_effort:
h = target_effort
self.target_effort = h

# now use this to size the path
# size the M1 and M6 nand gates
# pdb.set_trace()

for driver in (oop.swcap_w_drivers_in_phase.M1_driver,
oop.swcap_w_drivers_in_phase.M6_driver,
oop.swcap_w_driver_out_phase.M1_driver,
oop.swcap_w_driver_out_phase.M6_driver):
cin8_nand = driver.size_ for_effort(
pnrat=pnrat,
stack_2n=stack_2n,
effort=h,
cload=C1,
branching=1,
cgate=cgaten,
)
driver.set_parameters('device_intent’,
later_stage_device_intent)

# size M4 and M9 nor gates and M5 driver
# for now just size with the same fanout

for driver in (oop.swcap_w_drivers_in_phase.M4_driver,
oop.swcap_w_drivers_in_phase.M9 _driver,
oop.swcap_w_driver_out_phase.M4_driver,
oop.swcap_w_driver_out_phase.M9 driver):

driver.size for_effort(

79
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pnrat=pnrat,
stack_2n=stack_2n,
effort=h,
cload=C4,
branching=1,
cgate=cgaten,

)

driver.set_parameters('device_intent’,

later_stage_device_intent)

# size M3 and M8 nor gates and M5 driver
# for now just size with the same fanout

for driver in (oop.swcap_w_drivers_in_phase
oop.swcap_w_drivers_in_phase
oop.swcap_w_driver_out_phase
oop.swcap_w_driver_out_phase
cin8_nor = driver.size for_effort(

pnrat=pnrat,

stack_2p=stack_2p,

effort=h,

cload=C3,

branching=1,

cgate=cgatep,

)

driver.set_parameters('device_intent’,

.M3_driver,
.M8 driver,
.M3_driver,

.M8 driver):

later_stage_device_intent)

# size M2 and M7 nor gates and M5 driver
# for now just size with the same fanout

for driver in (oop.
oop.
oop.
oop.

swcap_w_drivers_in_phase.M2_driver,
swcap_w_drivers_in_phase.M7_driver,
swcap_w_driver_out_phase.M2_driver,

swcap_w_driver_out_phase.M7_driver):

driver.size for_effort(
pnrat=pnrat,
stack_2p=stack_2p,
effort=h,
cload=C2,
branching=1,
cgate=cgatep,
)

driver.set_parameters('device_intent’,

later_stage_device_intent)

for driver in (oop.swcap_w_drivers_in_phase
oop.swcap_w_drivers_in_phase
driver.size for_effort(
pnrat=pnrat,
stack_3p=stack_3p,
effort=h,
cload=C5,
branching=1,
cgate=cgatep,
)

driver.set_parameters('device_intent',

.M5_driver,

.M5_driver):

later_stage_device_intent)

80
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# need to size paths to other gates for the same delay
# pdb.set_trace()
# size the clock driver
# cp = oop.control core.clock_driver
# size the test circuit
# pdb.set_trace()
# now size the nov level shifters
# these return cin6 sideload because stage 6 and 7 are in this block

cp = oop.control_core.critical path

(cin6, cin6_sideload) = cp.nov_ls.nov_high.size_for_effort(
effort=h,
branching=b7,
branching2=b6,
cload=cin8_nand,
cload_ratio=cin8_nor / cin8_nand,
device_intent=later_stage_device_intent,

)
(cin6, cin6_sideload) = cp.nov_ls.nov_low.size for_effort(
effort=h,

branching=b7,

branching2=b6,

cload=cin8_nand,

cload_ratio=cin8 _nor / cin8_nand,
device_intent=later_stage_device_intent,

)
(cin6, cin6_sideload) = cp.nov_ls_b.nov_high.size_for_effort(
effort=h,

branching=b7,

branching2=b6,

cload=cin8_nand,

cload_ratio=cin8_nor / cin8_nand,
device_intent=later_stage_device_intent,

)
(cin6, cin6_sideload) = cp.nov_1ls b.nov_low.size for_effort(
effort=h,

branching=b7,

branching2=b6,

cload=cin8_nand,

cload_ratio=cin8_nor / cin8_nand,
device_intent=later_stage_device_intent,

)

# now size the level shifter caps (at inputs and outputs)
# input caps first; they are 10 times the size of the input capacitance

they are driving. This is accomplished

726.
727.
728.
729.
730.
731.
732.
733.
734.
735.
736.
737.
738.

# by setting the channel length 10 times larger than normal.

max_width = 20e-6
W_1s_cap = snap(ciné / cgaten)
mult = 1.0
while W_1s cap > max_width:
W_1s cap = snap(W_1s_cap * mult / (mult + 1))
mult = mult + 1.0
for 1s_cap in (oop.control core.cap_ls 1,
oop.control core.cap_ls 2):
1s _cap.W = W_1s_cap
1s _cap.L = snap(L * 10.0)
1s_cap.mult = mult * 2 # times 2 because we are using thick ox
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1s_cap.device_intent = 'high_voltage’
print 'Sizing level shifter caps to W=%s L=%s mult=%s' \
% (1ls_cap.W.value, 1ls_cap.L.value, 1ls_cap.mult.value)

# now output caps
# Ccoupling is 1/4 the size of Cload

W_coupling = snap(cin8_nand / cgaten)
mult = 1.0
while W_coupling > max_width:
W_coupling = snap(W_coupling * mult / (mult + 1))
mult = mult + 1.0
for nov_cap in (cp.M_clkl_coupling, cp.M_clk2_coupling,
cp.M_clklb_coupling, cp.M_clk2b_coupling):
nov_cap.L =L
nov_cap.mult = mult * 2 # times 2 because we are using thick ox
nov_cap.W = W_coupling
nov_cap.device_intent = 'high_voltage'
if snap(W_coupling / 10.0) > Wmin:
nov_cap.W = snap(W_coupling / 10.0)
nov_cap.L = snap(L * 10.0)

print 'Sizing gate driver coupling caps to W=%s L=%s mult=%s' \
% (nov_cap.W.value, nov_cap.L.value, nov_cap.mult.value)

print 'Target effort: %s' % self.target_effort
# now size the phase_splitter

phase_splitter_load cap = cp.phase_splitter.size for_effort(
pnrat=pnrat,
effort=h,
cload=cin6,
branching=b5,
cgate=cgaten,
device_intent=later_stage_device_intent,

)
# now size the dflop

# import pdb
# pdb.set_trace()

dflop_load cap = cp.dflop.size_for_effort(
pnrat=pnrat,
effort=h,
cload=phase_splitter_load_cap,
branching=b3,
cgate=cgaten,
device_intent=later_stage_device_intent,

)
#
ccell = oop.control_core
# now the clk output driver has been sized, we can size the delay cell
cload_clk_driver = cgaten \

* (ccell.clk_driver.toggle_out_nor.Wn.value
* ccell.clk_driver.toggle out_nor.nmult.value
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ccell.clk_driver.toggle_out_nor.Wp.value
ccell.clk_driver.toggle_out_nor.pmult.value
ccell.clk_driver.clk _driver.M1.W.value
ccell.clk_driver.clk _driver.Ml.mult.value
ccell.clk_driver.clk _driver.NM3.W.value

* ccell.clk_driver.clk_driver.NM3.mult.value)
ccell.toggle_clock_delay.size_for_effort(cload=cload_clk_driver)

+ x4+ x +

ccell.corel.cfly = 10e-9/18.0
ccell.core2.cfly = 10e-9/18.0
ccell.corel.rsw_on = 0.02
ccell.core2.rsw_on = 0.02
ccell.corel.cfly ic = vref
ccell.core2.cfly ic = vref

HHEHFHHEFH

+*

size volt _position_control

switch_m2_width = oop.swcap_w_drivers_in_phase.I0.I0.M2.W.value \
* oop.swcap_w_drivers_in_phase.I0.I0.M2.mult.value
ccell.volt_position_control.simple size(width=80.0e-

6) # hard code this for now

ounted for

829.

of %s'

830.
831.
832.

t of %s'

833.
834.
835.

\

# pdb.set_trace()
# size the inverter inside the comparator if needed
# need to extract the sideloads and redo calculations with sideloads acc

print 'Win_7 = %s Win_6 = %s Win_4 = %s' \
% (cin8_nand / cgate, cin6é / cgate, phase_splitter_load_cap
/ cgate)

oop.load_dac.bits = 7
print 'M1_driver is driving a total width of %s and has a logical effort

% (C1 / cgaten, g8)
print 'M1_driver input width is %s' % (cin8_nand / cgate)
print 'Nonoverlap is driving a total width of %s and has a logical_effor

% (b7 * cin8_nand / cgate, g7)
print 'Nonoverlap input width is %s' % (ciné / cgate)
print 'Phase Interp Stage2 is driving a total width of %s and has a logi

cal effort of %s' \

836.
837.
838.
839.
840.

% (b5 * cin6 / cgate, g5)
phis2 = cp.phase_splitter.buf_stage_2.Wp.value \
+ cp.phase_splitter.buf_stage 2.Wn.value
print 'Phase Interp Stage2 input width is %s' % phis2
print 'Phase Interp Stagel is driving a total width of %s and has a logi

cal _effort of %s' \

841.
842.
843.
844.
845.
846.

ort of %s'

847.
848.
849.
850.
851.

of %s'

852.

\

\

% (phis2, g4a)
phisl = cp.phase_splitter.inverting_stage.Wp.value \
+ cp.phase_splitter.inverting_stage.Wn.value
print 'Phase Interp Stagel input width is %s' \
% (phase_splitter_load_cap / cgate)
print 'Dflop buffer is driving a total width of %s and has a logical_eff

% (phase_splitter_load_cap / cgate, g3)
dflop_inv = cp.dflop.output_driver_Wn.value \
* cp.dflop.output_driver nmult.value * (1 + pnrat)
print 'Dflop buffer input width is %s' % dflop_inv
print 'Dflop pg is driving a total width of %s and has a logical_effort

% (dflop_inv, g2)
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853.
854.
855.
856.
857.
858.
859.
860.
861.
862.
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# dflop_inv = cp.dflop.output_driver_Wn.value*(1l+pnrat)

print 'Dflop pg input width is %s' % (dflop_load_cap / cgate)
print 'comparator gate should be driving a Dflop pg input of %s' \

% (cinl / cgate
# pdb.set_trace()

self.fix_widths()

A.2 BAG PyCell Code

This section contains PyCell code for examples of several different layout styles.

A.2.1 5 Transistor Amplifier PyCell

VLCoOoNOTUVTS WNER

19.

22.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.

#!/usr/bin/python
# -*- coding: utf-8 -*-
from _ future__ import with_statement

__version__

__author__ =

= '$Revision: #1 $'
'John Crossley'

from BAG_layout import *

import pdb

. from operator import itemgetter
. import inspect

. class simple_amp(std_cell):

* self.target_effort)

paramNames = dict(L='L', Wn="Wn', Wp="Wp', Wtail='Wtail',
tail_height_ratio='tail_height_ratio")

# types:

'rail', 'route_group'

ce_row, device

(NORTH to SOUTH list of ordered groups), route, devi

layout_info = [ # shared_source, shared_drain, series, parallel
# 'enforce_even_fingers' : True, #

{

‘name': 'VDD',
'type': 'rail’,
‘layer': 'metall’,
'terminal’': 'VDD',

'term_type': 'INPUT_OUTPUT',
‘contact_to': 'diffusion',
'enclose_contact': ['nimplant', 'nwell'],

s

‘name': 'p_rowl',
'type': 'device_group',
'tran_type': 'pmos’,

'height_ratio': None,

'vertical_align': 'SOUTH',

'subelements': [{
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42. 'name': 'Mpmos’,

43, 'param_mapping': {'W': 'Wp', 'L"': 'L'},
44, 'G': ['OUTN', 'OUTN'],

45, 'D': ['OUTN', 'OUTP'],

46. 's': ['vDD'],

47. 'B': ['VDD'],

48. 'layout_type': 'shared_source’,
49. 'align_position': 'CENTER',

50. ‘align_point': 1,

51. Jap

52. 1},

53. {'name': ‘'route_groupl', 'type': 'route_group’,
54. 'subelements': [{

55. 'name': 'OUTN',

56. ‘layer': 'metall’,

57. 'terminal’: None,

58. 'term_type': None,

59. oA

60. ‘name': 'OUTP',

61. ‘layer': 'metall’,

62. ‘terminal’': 'OUTP',

63. 'term_type': 'OUTPUT',

64. 33

65. {

66. ‘name': 'n_rowl',

67. 'type': 'device_group',

68. "tran_type': 'nmos’,

69. 'height_ratio': None,

70. 'vertical_align': 'NORTH',

71. 'subelements': [{

72. 'name’: 'Mnmos',

73. 'param_mapping': {'W': 'Wn', 'L"': 'L'},
74. 'G': ['"INP', "INN'],

75. 'D': ['OUTN', 'OUTP'],

76. 'S': ['source'],

77. 'B': ['GND'],

78. 'layout_type': 'shared_source’,
79. 'align_position': 'CENTER',

80. ‘align_point': 1,

81. Jap

82. 1},

83. {'name': ‘'route_group2', 'type': 'route_group',
84. 'subelements': [{

85. ‘name': "INN',

86. ‘layer': 'metall’,

87. '"terminal’': "INN',

88. 'term_type': "INPUT',

89. oA

90. ‘name': "INP',

91. ‘layer': 'metall’,

92. 'terminal’': "INP',

93. 'term_type': "INPUT',

94. oA

95. 'name': 'source',

96. ‘layer': 'metall’,

97. 'terminal’: None,

98. 'term_type': None,

99. oA

100. '‘name': 'BIAS',

101. ‘layer': 'metall’,

102. ‘terminal’': 'BIAS',

85
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103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.

86

'term_type': "INPUT',
3

‘name': 'n_row2',
'type': 'device_group',
"tran_type': 'nmos’,
'height_ratio': 'tail_height_ratio’,
'vertical_align': 'NORTH',
'subelements': [{
'name’': 'Mtail’,
'param_mapping': {'W': 'Wtail', ‘'L': 'L'},
'G': ['BIAS'],
'D': ['source'],
's': ['GND'],
'B': ['GND'],
'layout_type': 'single’,
'align_position': 'CENTER',
‘align_point': 1,
Jap
s

'name': 'GND',
'type': 'rail’,
‘layer': 'metall’,
'terminal’': 'GND',
'term_type': 'INPUT_OUTPUT',
'‘contact_to': 'diffusion',
‘enclose_contact': ['pimplant'],
s

]

default = dict(Wn=1.0, nmos_ratio=0.64, verticalPitch=10.2,
extra_rail space_bottom=0.12)

R e e e e e e
@classmethod
def defineParamSpecs(cls, specs):
"""Define the PyCell parameters. The order of invocation of

specs() becomes the order on the form.

Arguments:
specs - (ParamSpecArray) PyCell parameters

These are the parameters in the paramNames dictionary -

define them here

148.
149.
150.
151.
152.
pecs
153.
154.
155.
156.
157.
158.
159.

[selfcopy, hlink] = printmeth(cls)

# Super makes all the parent functions available in the new defineParamS
super(simple_amp, cls).defineParamSpecs(specs)

mySpecs = ParamSpecArray()

# Set up specs

L = specs.tech.getMosfetParams('nmos', cls.oxide, 'minLength') # minimu

m length (get from tech file)

160.

L = cls.grid.snap(L) # snap to grid
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161.

162. # stepConstraint = starting value, step size, and resolution (maybe numb
er of points?) or max value

163.

164. stepConstraint = StepConstraint(cls.maskgrid, start=L,

165. resolution=cls.resolution, action=FailAction.REJECT)

166.

167. # myspecs: (name, (default OR L you've defined), constraint)

168.

169. mySpecs('L', cls.default.get('L', L), constraint=stepConstraint)

170.

171. Wn = specs.tech.getMosfetParams('nmos', cls.oxide, 'minWidth')

172. Wn = cls.grid.snap(Wn)

173. stepConstraint = StepConstraint(cls.maskgrid, start=Wn,

174. resolution=cls.resolution, action=FailAction.REJECT)

175. mySpecs('Wn', cls.default.get('Wn', Wn),

176. constraint=stepConstraint)

177. mySpecs('Wp', cls.default.get('Wp', Wn),

178. constraint=stepConstraint)

179. mySpecs('Wtail', cls.default.get('Wtail', Wn),

180. constraint=stepConstraint)

181. mySpecs('tail_height_ratio', 0.25)

182.

183. # Parameter renaming: adds mySpecs (what you've defined above) into spec
s

184.

185. renameParams (mySpecs, specs, cls.paramNames)

186.

187. # This is a Debugging call and should ALWAYS be the last line of a metho
d

188.

189. savemeth(cls, selfcopy, hlink)

190.

191. L e e e e e

192.

193. def define_derived_parameters(self):

194. e

195. Any derived parameters that are referenced in self.layout_info should be
defined here

196.

197. For example, in the pmos device_group below the param_mapping of 'W' is
'"Wp'. If Wp is not a

198. parameter defined at the pycell level, then self.Wp must be defined in t
his function.

199.

200. 'subelements' : [ { ‘'name':'M3M4°',

201. "param_mapping': {'W':'Wp"' },

202. 'G' : ['IN1','IN2'],

203. ‘D' : ['OUT'],

204, 's' : ['VDD'],

205. 'B' : ['VDD'],

206. 'layout_type' : 'series' #sh
ared_source, shared_drain, series, parallel

207. 1,

208.

209. def define_derived_parameters(self) :

210. self.Wp = self.grid.snap(self.PNratio*self.Wn)

211.

212. Basically, the contents of params get turned into fields, so here you sh

ould add any derived parameters as fields if they
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213. don't appear in params
214. e
215.
216. [selfcopy, hlink] = printmeth(self)
217.
218. # This is a Debugging call and should ALWAYS be the last line of a metho
d
219.
220. savemeth(self, selfcopy, hlink)
A.2.2 Asynchronous Comparator
1. #!/usr/bin/python
2. # -*- coding: utf-8 -*-
3. from __ future__ import with_statement
4.
5. __version__ = '$Revision: #1 $'
6. __author__ = 'John Crossley'’
7.
8. from BAG_layout import *
9. import pdb
10. from operator import itemgetter
11.
2
13. class async_comp(std_cell_row):
14.
15. e
16. This is a new version of the async_comp that inherits from std_cell row
17. e
18.
19. paramNames = dict(
20. L="L",
21. input_width="input_width"',
22. mult_input_mirror="'mult_input_mirror',
23. bias_enable_width='bias_enable_width',
24. mult _bias_enable mirror="'mult_bias_enable _mirror',
25. bias_width='bias_width',
26. mult_input="mult_input’,
27. mult_precharge="mult_precharge’,
28. mult_bias _mirror="'mult_bias_mirror',
29. mult_bias_enable='mult_bias_enable',
30. mult bias="mult _bias',
31. inv_feedback_width="inv_feedback_width',
32. mult_ feedback="'mult_feedback',
33. inv_n_width="inv_n_width"',
34. inv_p width="inv_p_width',
35. inv2_n_width="inv2_n_width',
36. inv2_p width="inv2_p_ width',
37. inv_en_n_width="inv_en_n_width',
38. inv_en_p width="inv_en_p_ width',
39. extra_vertical_pitch_vref='extra_vertical pitch_vref',
40. decap_p_width="decap_p width',
41. decap_length="decap_length’,
42. decap_n_width="decap_n_width',
43, decap_n_type="'decap_n_type’,
44, decap_p_type="'decap_p_type’,
45, )
46.
a47. # types: ‘'route_group' (WEST to EAST list of ordered routes), route, std_cell, std

_cell row
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48.

49. pin_info = [{

50. 'name': 'VREF',

51. "term_type': 'INPUT_OUTPUT',

52. 'subelements': [{'instance': 'async_comp_pl', 'terminal': 'VDD'

53. }, {'instance': 'M_bias_decouple’',

54. "terminal’': 'VDD'},

55. {"instance': 'M_bias_decouple VREF_GND',

56. "terminal’': 'VDD'}],

57. "type': 'rail’,

58. > £

59. 'name’': 'VDD',

60. "term_type': 'INPUT_OUTPUT',

61. 'subelements': [{'instance': 'async_comp_p2', 'terminal': 'VDD'

62. }, {'instance': 'async_comp_p3',

63. "terminal': 'VDD'}],

64. "type': 'rail’,

65. 3 A

66. 'name’': 'GND',

67. "term_type': 'INPUT_OUTPUT',

68. 'subelements': [{'instance': 'M_bias_decouple_VREF_GND',

69. "terminal': 'GND'},

70. {'instance': 'M_bias_decouple’,

71. "terminal’': 'GND'}, {'instance': ‘'async_comp_p1l’

72. , 'terminal’': 'GND'},

73. {'instance': 'async_comp_p2', 'terminal': 'GND'

74. }, {'instance': 'async_comp_p3',

75. "terminal': 'GND'}],

76. "type': 'rail’,

77. 1

78.

79. layout_info = [ # extra space on left and right of this routing group (in um)

80. # {'name': 'con_vref', 'layer':'metal', 'terminal': None, 'term_ty
pe': None },

81. # extra space on left and right of this routing group (in um)

82. #

83. # extra space on left and right of this routing group (in um)

84. # {'name': 'int', 'layer':'metal2', 'terminal': None, 'term_type':
None },

85. # extra space on left and right of this routing group (in um)

86. # 'mirror_y' 'True',

87. # extra space on left and right of this routing group (in um)

88. # 'mirror_y' 'True',

89. # extra space on left and right of this routing group (in um)

90. # extra space on left and right of this routing group (in um)

91. {

92. 'name': 'M_bias_decouple VREF_GND',

93. "type': 'std_cell’,

94. 'lib_cell': "'BAG_std_cells oa/cap_decouple’,

95. 'param_mapping': {

96. '"Wn': 'decap_n_width',

97. '"Wp': 'decap_p_width',

98. 'L': 'decap_length’,

99. 'extra_vertical pitch_top': 'extra_vertical pitch_vref'

100. ,

101. 'verticalPitch': 'pl verticalPitch',

102. 'extend_enclosing_layers_to_pr': ‘'extend_enclosing_layers_pmos_c
ap

103. B

104. 'device_type_nmos': 'decap_n_type',

105. 'device_type_pmos': 'decap_p_type',
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106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.

133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.

ap

145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.
163.
164.
165.

'extra_space_for_thick_ox':

s
'pin_mapping': {'VDD':
s

‘name’: 'route_groupml’,

'type': 'route_group’,

'extra_space': 0.4,

'subelements': [{
'name’': 'bias',
‘layer': 'metal2’,
"terminal’': None,
"term_type': None,
Jap

s

‘con_vref',

'name': 'M_bias_decouple',

'type': 'std_cell’,

'1ib_cell': 'BAG_std_cells_oa/async_cap_decouple’,

‘param_mapping': {

'"Wn': 'decap_n_width',
'"Wp': 'decap_p_width',

'L': 'decap_length’,

'extra_vertical pitch_top':

B
'verticalPitch': 'pl verticalPitch',
'extend_enclosing_layers_to_pr':

'device_type_nmos': 'decap_n_type"',
'decap_p_type',

'device_type_pmos':

'extra_space_for_thick_ox':

s

'pin_mapping': {
'VDD': ‘'con_vref',
'comp_bias': 'bias',
'comp_bias_global':
'GND': 'GND',
Ts

s

‘name’: 'route_group@',

'type': 'route_group’,

'extra_space': 0.2,

'subelements': [{
'name’': 'bias',
‘layer': 'metal2’,
'terminal’': None,
"term_type': None,
3 A
'name’': 'bias2',
‘layer': 'metal2’,
"terminal’': None,
"term_type': None,
3 A
'name': 'con_vref',
‘layer': 'metall’,
"terminal': None,
"term_type': None,
e

1

'bias2’',

'extra_space_for_thick_ox',

'extra_vertical pitch_vref'

'extra_space_for_thick_ox',

90

'extend_enclosing_layers_pmos_c
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166. {
167. ‘name’: ‘async_comp_pl',
168. 'type': 'std_cell’,
169. '1ib_cell': 'BAG_std_cells_oa/async_comp_pl',
170. 'param_mapping': {
171. "input_width': "input_width',
172. 'mult_input_mirror': 'mult_input_mirror',
173. 'bias_enable_width': 'bias_enable_width',
174. 'mult_bias_enable mirror': 'mult_bias_enable _mirror',
175. 'bias_width': 'bias_width',
176. 'mult_bias mirror': 'mult_bias_mirror',
177. 'extra_vertical pitch_top': 'extra_vertical pitch_vref'
178. ,
179. 'verticalPitch': 'pl verticalPitch',
180. 'extend_enclosing_layers_to_pr': ‘'extend_enclosing_layers_pmos_c
ap'
181. s
182. },
183. 'pin_mapping': {
184. 'bias': 'bias',
185. 'bias2': 'bias2',
186. 'vref_in': 'con_vref',
187. 'VDD': ‘'con_vref',
188. 'GND': 'GND',
189. },
190. 1},
191. {
192. ‘name’: 'route_groupl’,
193. 'type': 'route_group’,
194. 'extra_space': 0.2,
195. 'subelements': [{
196. 'name’': 'bias',
197. ‘layer': 'metal2’,
198. '"terminal': 'bias’,
199. "term_type': 'INPUT_OUTPUT',
200. 'extra_space': 0.0,
201. 3, {
202. 'name’': 'bias2',
203. 'layer': 'metal2’,
204. '"terminal': 'bias2’,
205. "term_type': 'INPUT_OUTPUT',
206. 'extra_space': 0.0,
207. 11,
208. 1},
209. {
210. ‘name': ‘async_comp_p2',
211. 'type': 'std_cell’,
212. '1ib_cell': 'BAG_std_cells_oa/async_comp_p2',
213. 'param_mapping': {
214, "input_width': "input_width',
215. 'mult_input': "mult_input’,
216. 'mult_precharge': 'mult_precharge',
217. 'bias_enable_width': 'bias_enable_width',
218. 'mult_bias_enable': 'mult_bias_enable',
219. 'bias_width': 'bias_width',
220. 'mult_bias': 'mult_bias',
221. 'share_nwell left': 'share_nwell left p2',
222. 'extend_enclosing_layers_to_pr': ‘'extend_enclosing_layers_to_pr_
p2'
223. s

224. Io
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225. 'pin_mapping': {

226. 'bias': 'bias',

227. 'bias2': 'bias2',

228. 'vDD': 'VDD',

229. 'GND': 'GND',

230. 'enable': 'int_enable',
231. 'int': 'int',

232. },

233. 1},

234. {

235, ‘name’: 'route_grouple’,
236. 'type': 'route_group’,

237. 'extra_space': 0.2,

238. 'subelements': [{

239. 'name’': 'int',

240. ‘layer': 'metal2’,

241. "terminal’': None,

242. "term_type': None,

243, 'extra_space': 0.1,
244, }, {

245, 'name': 'int_enable’,
246. ‘layer': 'metal2’,

247. "terminal': 'int_enable',
248. "term_type': 'INPUT_OUTPUT',
249. 11,

250. 1},

251. {

252. '‘name': 'inv_enable 2",
253, "type': 'std_cell’,

254, '1ib_cell': 'BAG_std_cells_oa/Inverter_pass_through',
255, ‘param_mapping': {'L': ‘L', 'Wn': 'Wn_inv',
256. '"PNratio': 'pnrat_inv'},
257. 'pin_mapping': {

258. "IN': 'enable b',

259. 'OUT': 'int_enable’,
260. 'int': 'int',

261. 'vDD': 'VDD',

262. 'GND': 'GND',

263. },

264. 1},

265. {

266. ‘name’: 'route_groupll’,
267. 'type': 'route_group’,

268. 'extra_space': 0.2,

269. 'subelements': [{

270. 'name': ‘'enable b',
271. ‘layer': 'metal2’,

272. 'terminal’': None,

273. "term_type': None,

274. }, {

275. 'name’': 'int',

276. ‘layer': 'metal2’,

277. "terminal’': None,

278. "term_type': None,

279. 'extra_space': 0.1,
280. 11,

281. 1},

282. {

283. 'name': 'inv_enable 1",
284. 'type': 'std_cell’,

285. '1ib_cell': 'BAG_std_cells_oa/Inverter_pass_through',
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286. ‘param_mapping': {'L': ‘L', 'Wn': 'Wn_inv',
287. '"PNratio': 'pnrat_inv'},
288. 'pin_mapping': {

289. '"IN': 'enable',

290. 'OUT': 'enable b',

291. 'int': 'int',

292. 'vDD': 'VDD',

293. 'GND': 'GND',

294. },

295. 1},

296. {

297. ‘name’: 'route_groupl2’,

298. 'type': 'route_group’,

299. 'extra_space': 0.2,

300. 'subelements': [{

301. 'name’': 'enable',

302. ‘layer': 'metal2’,

303. '"terminal’': 'enable',

304. "term_type': "INPUT',

305. 3, {

306. 'name’': 'int',

307. ‘layer': 'metal2’,

308. "terminal': 'internal_node',

309. "term_type': 'INPUT_OUTPUT',

310. 'extra_space': 0.1,

311. 11,

312. 1},

313. {

314. ‘name': ‘async_comp_p3"',

315. "type': 'std_cell’,

316. '1ib_cell': 'BAG_std_cells_oa/async_comp_p3_v2',
317. ‘param_mapping': {

318. 'inv_feedback width': 'inv_feedback width',
319. 'mult_feedback': 'mult_feedback',
320. 'inv_n_width': "inv_n_width',
321. "inv_p_width': "inv_p width',
322. 'inv2_n_width': "inv2_n_width',
323. 'inv2_p_width': "inv2_p width',
324. },

325. 'pin_mapping': {

326. 'vDD': 'VDD',

327. 'GND': 'GND',

328. 'out': 'out',

329. 'in': 'int',

330. },

331. 1},

332. {

333, ‘name': 'route_group_out',

334, 'type': 'route_group’,

335, 'extra_space': 0.2,

336. 'subelements': [{

337. 'name’': 'out',

338. ‘layer': 'metal2’,

339. "terminal': 'out',

340. "term_type': 'OUTPUT',

341. 11,

342. 1},

343. ]

344.

345. default = dict(Wn=0.4, nmos_ratio=0.45, PNRatio=2.0,

346. verticalPitch=5.0, railWidth=0.36)
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347.
348.
349.
350.
351.
352.
353.
354,
355.
356.
357.
358.
359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.
375.
376.
377.
default
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
394.
395.
396.
397.
398.
399.
400.
401.
402.
403.
404 .
405.
406.
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R e e e e e
@classmethod
def defineParamSpecs(cls, specs):

"""Define the PyCell parameters. The order of invocation of

specs() becomes the order on the form.

Arguments:

specs - (ParamSpecArray) PyCell parameters

[selfcopy, hlink] = printmeth(cls)

super(async_comp, cls).defineParamSpecs(specs)

mySpecs = ParamSpecArray()

Wn = specs.tech.getMosfetParams('nmos', cls.oxide, 'minWidth')

Wn = cls.grid.snap(Wn)

stepConstraint = StepConstraint(cls.maskgrid, start=Wn,

resolution=cls.resolution, action=FailAction.REJECT)

Wn = cls.default.get('Wn', Wn)

Wn = cls.grid.snap(Wn)

L = specs.tech.getMosfetParams('nmos', cls.oxide, 'minLength')

L = cls.grid.snap(L)

stepConstraint = StepConstraint(cls.maskgrid, start=L,

resolution=cls.resolution, action=FailAction.REJECT)
mySpecs('L', cls.default.get('L', L), constraint=stepConstraint)
# "" choice for type lets the lower level transistor wrapper choose the

nmos_types = cls.tech_yaml[‘'devices']['nmos4'][ 'device_types’
T.keys() + [""]

mySpecs('decap_n_type', "',
constraint=ChoiceConstraint(nmos_types, REJECT))

pmos_types = cls.tech_yaml[‘'devices']['pmos4'][ 'device_types’
l.keys() + ['']

mySpecs('decap_p_type', "',
constraint=ChoiceConstraint(pmos_types, REJECT))

mySpecs('input_width', cls.default.get('input_width', Wn),
constraint=stepConstraint)

mySpecs('bias_enable_width', cls.default.get('bias_enable_width'
, Wn), constraint=stepConstraint)

mySpecs('bias_width', cls.default.get('bias_width', Wn),
constraint=stepConstraint)

mySpecs('inv_feedback_width"',
cls.default.get('inv_feedback_width', Wn),
constraint=stepConstraint)

mySpecs('inv_n_width', cls.default.get('inv_n_width', Wn),
constraint=stepConstraint)

mySpecs('inv_p_width', cls.default.get('inv_p_width', Wn),
constraint=stepConstraint)

mySpecs('inv2_n_width', cls.default.get('inv2_n_width', Wn),
constraint=stepConstraint)

mySpecs('inv2_p_width', cls.default.get('inv2_p_width', Wn),
constraint=stepConstraint)

mySpecs('inv_en_n_width', cls.default.get('inv_en_n_width',
Wn), constraint=stepConstraint)
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407. mySpecs('inv_en_p_width', cls.default.get('inv_en_p_width',

408. Wn), constraint=stepConstraint)

409. mySpecs('decap_n_width', cls.default.get('decap_n_width', 10

410. * Wn), constraint=stepConstraint)

411. mySpecs('decap_p_width', cls.default.get('decap_p_width', 10

412. * Wn), constraint=stepConstraint)

413. mySpecs('decap_length', cls.default.get('decap_length', 10

414. * L), constraint=stepConstraint)

415.

416. mySpecs('mult_feedback', cls.default.get('mult_feedback', 2),

417. constraint=StepConstraint(1, start=1,

418. action=FailAction.REJECT))

419. mySpecs('mult_input_mirror', cls.default.get('mult_input_mirror'

420. , 2), constraint=StepConstraint(1, start=1,

421. action=FailAction.REJECT))

422. mySpecs('mult_bias_enable_mirror',

423. cls.default.get('mult_bias_enable_mirror', 2),

424, constraint=StepConstraint(1, start=1,

425, action=FailAction.REJECT))

426. mySpecs('mult_bias_mirror', cls.default.get('mult_bias_mirror',

427. 2), constraint=StepConstraint(1l, start=1,

428. action=FailAction.REJECT))

429. mySpecs('mult_input', cls.default.get('mult_input', 2),

430. constraint=StepConstraint(1, start=1,

431. action=FailAction.REJECT))

432. mySpecs('mult_precharge', cls.default.get('mult_precharge', 2),

433. constraint=StepConstraint(1, start=1,

434, action=FailAction.REJECT))

435, mySpecs('mult_bias_enable', cls.default.get('mult_bias_enable’,

436. 2), constraint=StepConstraint(1l, start=1,

437. action=FailAction.REJECT))

438. mySpecs('mult_bias', cls.default.get('mult_bias', 2),

439. constraint=StepConstraint(1l, start=1,

440. action=FailAction.REJECT))

441. mySpecs('extra_vertical_pitch_vref', 0.0,

442. constraint=RangeConstraint (0.0, None,

443, action=FailAction.REJECT))

444

445, # Parameter renaming

446.

447 . renameParams (mySpecs, specs, cls.paramNames)

448.

449, # This is a Debugging call and should ALWAYS be the last line of a metho
d

450.

451. savemeth(cls, selfcopy, hlink)

452,

453, e e e e e e e

454,

455, def define_derived_parameters(self):

456. e

457. Any derived parameters that are referenced in self.layout_info should be
defined here

458.

459. For example, in the pmos device_group below the param_mapping of 'W' is
'"Wp'. If Wp is not a

460. parameter defined a the pycell level, then self.Wp must be defined in th
is function.

461.

462. 'subelements' : [ { ‘'name':'M3M4°',
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463.
464.
465.
466.
467.
468.

ared_source, shared_drain, series, parallel

469.
470.
471.
472.
473.
474.
475.
476.
477 .
1s
478.
479.
480.
481.
482.
483.
484.
485.
486.

487.
488.
489.
490.
491.
492.
493.

¥

"param_mapping': {'W':'Wp' },

'G' o ['IN1','IN2'],
‘D' : ['OUT'],
‘st [von'].

'B' : ['VDD'],

'layout_type' 'series’

def define_derived_parameters(self) :
self.Wp = self.grid.snap(self.PNratio*self.Wn)

[selfcopy, hlink] = printmeth(self)
self.share_nwell left p2

96

#sh

self.nmos_ratio_pmos_cap = ©0.24 # was 0.16 but reduced it for small cel

self.pl _verticalPitch = self.verticalPitch \

- self.extra_vertical pitch_vref
self.extend_enclosing_layers_to_pr_p2
self.extend_enclosing_layers_pmos_cap
self.Wn_inv = self.inv_en_n_width

'False’
'False’

self.pnrat_inv = self.inv_en_p width / self.inv_en_n_width

self.extra_space_for_thick_ox

# This is a Debugging call and should ALWAYS be the last line of a metho

savemeth(self, selfcopy, hlink)

def final steps(self):

[x.destroy() for x in self.layout_info[3]['subelements’
1[2][ 'routes_to_this_route_bar'].getComps() if isinstance(x,

Contact)]

A.2.3 Load DAC Array PyCell

VCoOoNOTUVTDS WN PR

#!/usr/bin/python
# -*- coding: utf-8 -*-

from _ future__ import with_statement

import math
import pdb
import os

import yaml

. # import PyCellCode_tsmcN65 as pcc
. from cni.geo import *
. from cni.constants import *
. from cni.dlo import *
. from BAG_layout.ArrayMethods import ArrayMethods

. # from demo_cells.ArrayMethods import ArrayMethods

. class load_dac(ArrayMethods):

. from cni.integ.common import createInstances, renameParams, \
reverseDict, stretchHandle, Compare
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24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

"""Define the PyCell class.

paramNames = dict(
W n="W.n',
L n="Ln'",
pwr_width_horiz="pwr_width_horiz',
pwr_width_vert='pwr_width_vert',
drain_width="'drain_width',
rc_width="rc_width"',
nmos_ratio="'nmos_ratio',
verticalPitch="'verticalPitch"',
mirrorx="mirrorx"',
mirrory="'mirrory"',

)
default = dict(
bits=4,

mirrorx="true',
mirrory="'false’,
pwr_width_horiz=0.8,
pwr_width_vert=0.8,
verticalPitch=2.2,

W _n=1.2,
L_n=.06,
nmos_ratio=.74,
)

oxide = 'thin'

# Unit cell name
cell name = 'BAG_std_cells_oa/load_dac_ucell/layout’

@classmethod
def defineParamSpecs(cls, specs):
""" Define the PyCell parameters.

super(load_dac, cls).defineParamSpecs(specs)

minmetall = float(specs.tech.getPhysicalRule('minWidth',
cls.layer['metall']))

maskgrid = specs.tech.getGridResolution()

cls.specs = specs

cls.tech = specs.tech

cls.maskgrid = specs.tech.getGridResolution()
cls.resolution = specs.tech.uu2dbu(1) * 10
cls.grid = Grid(cls.maskgrid, snapType=SnapType.ROUND)

mySpecs = ParamSpecArray()

Wmin_nmos = specs.tech.getMosfetParams('nmos', cls.oxide,
'minWidth")

Wmin_pmos = specs.tech.getMosfetParams('pmos', cls.oxide,
'minWidth")

Lmin_nmos = specs.tech.getMosfetParams('nmos', cls.oxide,
'minLength")
Lmin_pmos = specs.tech.getMosfetParams('pmos', cls.oxide,

97
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85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.
lo1.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
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'minLength")

W_n = Wmin_nmos

W_n = cls.grid.snap(W_n)

stepConstraint = StepConstraint(cls.maskgrid, start=W_n,
resolution=cls.resolution, action=FailAction.REJECT)
mySpecs('W_n"', cls.default.get('W_n', W_n),
constraint=stepConstraint)

L_n = Lmin_nmos

L_n = cls.grid.snap(L_n)

stepConstraint = StepConstraint(cls.maskgrid, start=L_n,
resolution=cls.resolution, action=FailAction.REJECT)
mySpecs('L_n', cls.default.get('L_n', L_n),
constraint=stepConstraint)

def

pwr_width_horiz = float(cls.default.get('pwr_width_horiz', -1))
pwr_width_horiz_constraint = RangeConstraint(0.1, 10.0,

action=FailAction.REJECT)

mySpecs('pwr_width_horiz', pwr_width_horiz,

constraint=pwr_width_horiz_constraint)

pwr_width_vert = float(cls.default.get('pwr_width_vert', -1))
pwr_width_vert_constraint = RangeConstraint(0.1, 10.0,

action=FailAction.REJECT) # TODO: this shoudn't be hard coded

specs('pwr_width_vert', pwr_width_vert,

constraint=pwr_width_vert_constraint)

rc_width = float(cls.default.get('rc_width',

cls.metal_min_width[cls.layer[ 'metal2']]))

rc_width_constraint = \

RangeConstraint(cls.metal_min_width[cls.layer[ 'metal2']],
10.0, action=FailAction.REJECT)

specs('rc_width', rc_width, constraint=rc_width_constraint)

drain_width = float(cls.default.get('drain_width',

cls.metal_min_width[cls.layer['metal2']]))

drain_width_constraint = \

RangeConstraint(cls.metal_min_width[cls.layer[ 'metal2']],
10.0, action=FailAction.REJECT)

specs('drain_width', drain_width,

constraint=drain_width_constraint)

nmos_ratio = cls.default.get('nmos_ratio', 0.42)
mySpecs('nmos_ratio', nmos_ratio,

constraint=RangeConstraint(0.01, .99,
action=FailAction.REJECT))

verticalPitch = cls.default.get('verticalPitch', 60.0

* minmetall)

mySpecs('verticalPitch', verticalPitch,

constraint=StepConstraint(cls.maskgrid,
start=minmetall, resolution=cls.resolution,
action=FailAction.REJECT))

renameParams (mySpecs, specs, cls.paramNames)

setupParams(self, params):

Do parameter checking.
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146. super(load_dac, self).setupParams(params)
147. self.name_num = ©
148. self.max_iter = 50
149. self.bias_enable = False
150.
151. # self.max_dist = self.max_distance_from_bias
152.
153. def genTopology(self):
154. o
155. e
156.
157. # First, we must calculate the number of extra contacts needed to make e
ach cell
158. # mirrorable.
159.
160. params = ParamArray(
161. cell_intent='dummy"',
162. pwr_width_horiz=self.pwr_width_horiz,
163. rc_width=self.rc_width,
164. drain_width=self.drain_width,
165. verticalPitch=self.verticalPitch,
166. W_n=self.W_n,
167. L_n=self.L_n,
168. )
169. instance_data = self.make unit_cells mirrorable(self.cell name,
170. params)
171.
172. # Save the transistor parameters as well
173.
174. self.result_props['cs_fing width'] = \
175. instance_data[ 'M1_finger_width']
176. self.result_props['cs_nf'] = instance_data['M1_num_fingers']
177.
178. # Define connectivity for "normal" cells -
this will change for different designs!
179.
180. dummy_params = ParamArray (
181. cell_intent="'dummy"',
182. pwr_width_horiz=self.pwr_width_horiz,
183. rc_width=self.rc_width,
184. drain_width=self.drain_width,
185. verticalPitch=self.verticalPitch,
186. W_n=self.W_n,
187. L_n=self.L_n,
188. make_mirrorable="'False',
189. extra_vdd_rail_contacts_right=self.extra_vdd_rail_contacts_right,
190. extra_gnd_rail_contacts_right=self.extra_gnd_rail_contacts_right,
191. extra_vdd_rail contacts_left=self.extra_vdd _rail contacts_left,
192. extra_gnd_rail_contacts_left=self.extra_gnd_rail_contacts_left,
193. )
194.
195. prefixes = {'dummy': 'D', 'normal_even': 'I', ‘'normal_odd': 'I'}
196.
197. self.createArray(dummy_params, dummy_params, prefixes) # pass dummy_par
ams to bias_params but bias is disabled
198.
199. def connect_up_to_power_grid(self):
200. for hpin in self.horizontal_power_pins:
201. the_shape = hpin.getShapes()[0]
202. the_net = hpin.getTerm().getName()

203. m3_shape = Rect(self.layer['metal3'], the_shape.getBBox())
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204. m5_shape = Rect(self.layer['metal5'], the_shape.getBBox())
205. for vpin in self.vertical_power_pins:
206. if vpin.getTerm().getName() == the_net:
207. vshape = vpin.getShapes()[0]
208. overlap = vshape.fgAnd(the_shape,
209. self.layer[ 'metall'])
210. pl = overlap.getBBox().lowerLeft()
211. p2 = overlap.getBBox().upperRight()
212. AbutContact(
213. vshape.getLayer(),
214. m5_shape.getLayer(),
215. routeDirl1=NORTH_SOUTH,
216. routeDir2=EAST_WEST,
217. pointl=p1,
218. point2=p2,
219. abutDir=EAST_WEST,
220. )
221. overlap.destroy()
222. hpin.removeShape(the_shape)
223. hpin.addShape(m5_shape)
224, for vpin in self.vertical_power_pins:
225. the_shape = vpin.getShapes()[0]
226. the_net = vpin.getTerm().getName()
227. m6_shape = Rect(self.layer['metal6'], the_shape.getBBox())
228. m7_shape = Rect(self.layer['metal7'], the_shape.getBBox())
229. for hpin in self.horizontal_power_pins:
230. if hpin.getTerm().getName() == the_net:
231. hshape = hpin.getShapes()[0]
232. overlap = hshape.fgAnd(the_shape,
233. self.layer['metall'])
234, pl = overlap.getBBox().lowerLeft()
235. p2 = overlap.getBBox().upperRight()
236. AbutContact(
237. hshape.getLayer(),
238. m6_shape.getLayer(),
239. routeDirl=EAST_WEST,
240. routeDir2=NORTH_SOUTH,
241. pointl=p1,
242. point2=p2,
243, abutDir=EAST_WEST,
244, )
245, overlap.destroy()
246. pl = m6_shape.getBBox().lowerLeft()
247. p2 = m6_shape.getBBox().upperRight()
248. AbutContact(
249. m7_shape.getLayer(),
250. m6_shape.getLayer(),
251. routeDirl1=NORTH_SOUTH,
252. routeDir2=NORTH_SOUTH,
253, pointl=p1,
254, point2=p2,
255. abutDir=NORTH_SOUTH,
256. )
257. vpin.removeShape(the_shape)
258. vpin.addShape(m7_shape)
259. for hpin in self.horizontal_power_pins:
260. hpin.destroy()
261. del self.horizontal power_pins
262.
263. def genLayout(self):

264. """ Construct the PyCell geometries.
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265. e

266.

267. control _nets = ['en']

268. power_nets = ['vdd', 'vss']

269. ArrayMethods.genLayout(self)

270.

271. # create just the power pins so that we can move them up from M1/M2 to M
7

272.

273. self.create_pins(

274. self.layer[ 'metal2'],

275. (1,

276. 0.0,

277. (1,

278. power_nets,

279. (1,

280. )

281. self.connect_up_to_power_grid()

282.

283. # create the other pins

284.

285. [bars, y_top] =\

286. self.connect_routing_channels(self.layer[ 'metal3'],

287. self.layer[ 'metal2'], control_nets)

288. self.create_pins(

289. self.layer[ 'metal2'],

290. bars,

291. y_top,

292. control_nets,

293. (1,

294. [1,

295, )

296. num_dummy_cells = ©

297. num_bias cells = @

298. for i in range(@, self.x_len):

299. for j in range(@, self.y_len):

300. if self.getCellType(i, j) == 'dummy':

301. num_dummy_cells += 1

302. elif self.getCellType(i, j) == 'bias':

303. num_bias_cells += 1

304. if self.result_file != '':

305. self.result_props[ 'num_dummy_cells'] = num_dummy_cells

306. self.label pins()

307. self.updateProperties()

308.

309. def genInstParams(self, i, cnt_num):

310.

311. # Handle the case of the dummy inside the array, that matches with cell
0

312.

313. params = ParamArray()

314. if i ==

315. cell _type = 'dummy’

316. elif cnt_num % 2 != 0:

317.

318. # 0dd cell

319.

320. cell type = 'normal_odd’

321. else:

322.

323. # Even cell
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324.
325.

326.

para

327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.

341.

A24

W oo NGOV D WN R

e Y
ONOUVDAWNR O -

19.

20.
21.
2220
23.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

#
#
. #
#
#

retu

Control Core

#!/usr/bin/python

cell type = 'normal_even’

ms = ParamArray(

cell intent=cell_type,

pwr_width_horiz=self.pwr_width_horiz,
pwr_width_vert=self.pwr_width_vert,

rc_width=self.rc_width,

drain_width=self.drain_width,

verticalPitch=self.verticalPitch,

W_n=self.W_n,

L_n=self.L_n,

make_mirrorable="'False',
extra_vdd_rail_contacts_right=self.extra_vdd_rail_contacts_right,
extra_gnd_rail_contacts_right=self.extra_gnd_rail_contacts_right,
extra_vdd_rail contacts_left=self.extra_vdd rail contacts_left,
extra_gnd_rail_contacts_left=self.extra_gnd_rail_contacts_left,

rn [cell_type, params]

# -*- coding: utf-8 -*-
from __future__ import with_statement

from BAG_layout import *

import pdb

from operator import itemgetter

This pycell is the controler for a DCDC switched capacitor regulator.

hronous comparator

comp_core3.py vs comp_core2.py - comp_core3 moves the level shifter caps

(pmos in isolated nwells) into the control
core cell and moves all pmos caps (both

level shifter and output couplers) to an
isolated row between the 2 level shifter rows

. class comp_core(std_block):

102

It consists of an async

whose output is preset to a logic high value and drops to logic low after the supply voltage (

which is the input)

drops below a reference voltage.

Attributes:

Pycell Parameters:

L - The default channel length used for devices.
nov_Wn_tristate - the channel width for the

paramNames = dict(

L="L",

nov_Wn_tristate="nov_Wn_tristate’,
nov_PNratio="'nov_PNratio',
nov_Wn="nov_Wn",

nov_Wp="nov_Wp',
nov_Wn_mid="nov_Wn_mid",
nov_Wp_mid="nov_Wp_mid",
reset_inv_Wn="reset_inv_Wn',
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38. PNratio='PNratio’,

39. Wn="Wn",

40. Wn_clk_driver="Wn_clk_driver',

41. toggle_out_width="toggle_out_width',

42. out_buffer_width="out_buffer_width',

43. Wn_uct_nand="Wn_uct_nand"',

44. Wn_uct_nand_xor="Wn_uct_nand_xor"',

45. reset_inv_width="reset_inv_width',

46. pullup_width="pullup_width"',

47. Wn_inv="Wn_inv"',

48. Wn_uct_bufl="Wn_uct_bufl’,

49. Wn_uct_buf2="Wn_uct_buf2"',

50. Wn_uct_inv="Wn_uct_inv',

51. ps_Wn_inv="ps_Wn_inv"',

520 ps_Wn_bufl="ps_Wn_bufl’,

53. ps_Wn_buf2="ps_Wn_buf2"',

54. vertical_pitch_center="'vertical_pitch_center’,

55. extra_vertical_pitch="extra_vertical_pitch’,

56. cell_height="cell_height',

57. power_grid_pitch="power_grid_pitch',

58. )

59.

60. ordered_pins = [ # dict(name='Cl_pos_in_phase',justification="LEFT"),
61. # dict(name='VIN', pin_name='VIN2',justification='LEFT"),
62. # dict(name='VOUT', pin_name='VOUT2',justification='LEFT"),
63. # dict(name='GND', pin_name='GND2',justification='LEFT"),
64. # dict(name='Cl_pos_out_phase',justification="RIGHT"),
65. dict(name='clkl', justification='LEFT"),

66. dict(name='clkl_h', justification='LEFT'"),

67. dict(name='clk2', justification='LEFT"),

68. dict(name='clk2_h', justification='LEFT'"),

69. dict(name='clk2_feedback', justification='LEFT'),

70. dict(name='clk_in', justification='CENTER"),

71. dict(name='clk_out', justification='CENTER'),

72. dict(name="'clk_out_buffered', justification="CENTER'),
73. dict(name="'fliplb_h", justification='CENTER'),

74. dict(name='fliplb', justification='CENTER"),

75. dict(name="'flip2b_h", justification='CENTER'),

76. dict(name="'flip2b', justification='CENTER"),

77. dict(name='clk_xor', justification='CENTER'"),

78. dict(name="'comp_bias_global', justification="CENTER'),
79. dict(name="'comp_bias', justification='CENTER'),

80. dict(name="'clklb_feedback', justification='RIGHT'),
81. dict(name='clklb', justification='RIGHT'),

82. dict(name='clklb_h', justification='RIGHT'),

83. dict(name='clk2b', justification='RIGHT'),

84. dict(name='clk2b_h', justification='RIGHT'),

85. ]

86.

87. power_grid = {'pitch': 'power_grid_pitch', 'subelements': [{
88. 'name': 'VIN',

89. "term_type': 'INPUT_OUTPUT',

90. 'route’: 'rail’,

91. 'width': ‘'vrailWidth',

92. 'extra_space': 'M4_rail_spacing',

93. 3 A

94. 'name': 'VOUT',

95. "term_type': 'INPUT_OUTPUT',

96. 'route': 'rail’,

97. 'width': ‘'vrailWidth',

98. 'extra_space': 'M4_rail_spacing’,

103
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104

99. 3 A

100. 'name': 'GND',

101. "term_type': 'INPUT_OUTPUT',

102. 'route': 'rail’,

103. 'width': ‘'vrailWidth',

104. 'extra_space': 'M4_rail_spacing',

105. 31}

106.

107. pass_through_pins = [{'name': 'comparator', 'pin': 'int_enable’,

108. ‘term_name': 'comp_int_enable'},

109. {'name': ‘'comparator', 'pin': 'internal_node',

110. "term_name': 'comp_internal_node'}]

111.

112. # types: 'rail', 'route_group' (NORTH to SOUTH list of ordered groups), route, device_row, dev

ice

113.

114. pin_info = [ # {'name' : 'VIN', 'pin_name': 'VIN2','term_type' : "INPUT_OUTPUT" , 'route’
'rail’', 'width': 'vrailWidth', ‘'extra_space' : 'M4_rail_spacing' },

115. # {'name' : 'VOUT', ‘'pin_name': 'VOUT2', 'term_type' :"INPUT_OUTPUT" , 'route’
'rail’', 'width': 'vrailWidth', 'extra_space' : 'M4_rail_spacing' },

116. # {'name' : 'GND', 'pin_name': 'GND2', 'term_type' : "INPUT_OUTPUT" , 'route’
'rail’', 'width': 'vrailWidth', 'extra_space' : 'M4_rail_spacing' },

117. {

118. ‘name': 'VIN',

119. "term_type': 'INPUT_OUTPUT',

120. 'route’': 'rail’,

121. 'width': 'vrailWidth',

122. 'extra_space': 'M4_rail_spacing',

123. 1,

124. {

125. 'name': 'VOUT',

126. "term_type': 'INPUT_OUTPUT',

127. 'route’': 'rail',

128. 'width': 'vrailWidth',

129. 'extra_space': 'M4_rail_spacing',

130. 1,

131. {

132. ‘name': 'GND',

133. "term_type': 'INPUT_OUTPUT',

134. 'route’': 'rail’,

135. 'width': 'vrailWidth',

136. 'extra_space': 'M4_rail_spacing',

137. 1,

138. {

139. 'name': 'VREF',

140. "term_type': 'INPUT_OUTPUT',

141. 'route’': 'isolated_rail’,

142. 'width': 'vrailWidth',

143. 'extra_space': 'M4_rail_spacing’,

144. 1,

145. {

146. ‘name': 'vcomp_pos',

147. "term_type': None,

148. 'route’': 'rail’,

149. 'width': 'vrailWidth',

150. 'extra_space': 'M4_rail_spacing',

151. 1,

152. {

153. 'name': 'clk_out',

154. "term_type': 'OUTPUT',

155. 'route’': 'signal’,
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'extra_space': 'M4_signal_spacing',
1

'name': 'clk_out_buffered’,
"term_type': 'OUTPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

'name': 'clk_xor',

'term_type': 'OUTPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

‘name': 'clk2_h",

"term_type': 'OUTPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

‘name': 'clkl_h",

'term_type': 'OUTPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',
1

‘name': 'clk2',

"term_type': 'OUTPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

‘name': 'clkl',

'term_type': 'OUTPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',
1

‘name': 'clk2b_h',
"term_type': 'OUTPUT',

'route’': 'signal’,
'extra_space': 'M4_signal_spacing',
s

‘name': 'clklb_h',
'term_type': 'OUTPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

‘name': 'clk2b',

"term_type': 'OUTPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

'name': 'clklb',

"term_type': 'OUTPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',
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1

'name': 'comp_bias_global’,
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1,

'name': 'comp_bias"',

"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

‘name': 'clk_in",

"term_type': 'INPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',
1,

'name': 'clklb_feedback’,
"term_type': 'INPUT',

'route’': 'signal’,
'extra_space': 'M4_signal_spacing',
s

'name': 'clk2_feedback',
"term_type': 'INPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',
1,

'name': 'clk_feedback’,
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

'name': 'toggle_clock',
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1,

'name': 'spi_enable_xor_test’,
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1

'name': 'spi_resetb_h',
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',
1,

'name': 'spi_resetb’,

"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1
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'name': 'spi_start’,

"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'test_clk',

"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'spi_toggle_out_enable_b',
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'spi_extra_delay’,

"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'spi_extra_delay_h',

"term_type': 'INPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',

1

'name': 'spi_volt_position_conductance_h<4>",
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'spi_volt_position_conductance_h<3>",
"term_type': 'INPUT',

'route’': 'signal’,

‘extra_space': 'M4_signal_spacing',

1

'name': 'spi_volt_position_conductance_h<2>",
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'spi_volt_position_conductance_h<1>",
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1

'name': 'spi_volt_position_conductance_h<o>",
"term_type': 'INPUT',

'route’': 'signal’,

'extra_space': 'M4_signal_spacing',

1
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This row contains the voltage positioning circuitry which is in the high vo

'name': 'spi_en_volt_positionb_h",
"term_type': 'INPUT',
'route’': 'signal’,
'extra_space': 'M4_signal_spacing',
s
{
'name': 'Cl_pos_in_phase’,
"term_type': 'INPUT_OUTPUT',
'route’': 'rail',
'width': 'vrailWidth',
'extra_space': 'M4_rail_spacing',
s
{
‘name': 'Cl_pos_out_phase’,
"term_type': 'INPUT_OUTPUT',
'route’': 'rail’,
'width': 'vrailWidth',
'extra_space': 'M4_rail_spacing',
s
{
‘name': 'flip2b_h',
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,
'extra_space': 'M4_signal_spacing',
s
{
'name': 'flip2b’,
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,
‘extra_space': 'M4_signal_spacing',
s
{
'name': 'fliplb’,
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,
'extra_space': 'M4_signal_spacing',
s
{
‘name': 'fliplb_h",
"term_type': 'INPUT_OUTPUT',
'route’': 'signal’,
'extra_space': 'M4_signal_spacing',
s
1
layout_info = [ # Row ©
#
ltage domain therefore it is in DNW
# ('LEFT','RIGHT', 'CENTER")
# #Row 1
#

shifter circuits

HOoH H OH HF OB HH

#This row contains the high voltage domain portion of the level-

("LEFT', 'RIGHT", 'CENTER")

#Row 1.5

#This row contains DC blocking caps
("LEFT', 'RIGHT", 'CENTER")

Row 2

Row 3

("LEFT', "RIGHT", 'CENTER")
{'name"' : 'clk_in_inv’',

'lib_cell' : 'BAG_std_cells_oa/Inverter’,
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415.

425.

435.

440.
441.
442.
443.
444,
445,
446.
447.
448.
449.
450.
451.
452.
453,
454,
455,
456.
457.
458.

# 'param_mapping': { 'vertical_pins' : 'vertical_pins', },
# 'pin_mapping' : { "IN" ¢ 'clk_in',
# 'OUT' : ‘'clk_inb"',
# 'vDD' : 'VOUT',
# 'GND' : 'GND',
# }
# 3,
# #Row 4
# 'param_mapping': { ‘'verticalPitch' : ‘'vertical_pitch_center', 1},
# 'extra_vertical_pitch_vref' : ‘'extra_vertical_pitch_vref',
# disconnect between vdd rail to left and vdd rail to right
# filler should include minimum amount of nwell
# this is a dummy pin to force the std_block to connect
# the lower level reset net (it isn't connected in the dflop pycell)
'param_mapping': {'extra_vertical_pitch_bottom': 'volt_position_spacing’
, 'deep_nwell': '"true_value',
'verticalPitch': 'vertical_pitch_volt_position'
1
‘mirror_x': 'False',

'justification': 'LEFT',
'subelements’: [{

‘name': 'volt_position’,

'1ib_cell': 'BAG_std_cells_oa/volt_position’,

‘mirror_y': 'False',

‘mirror_x': 'False',

‘param_mapping': {'share_pwell left': 'false_value',
'share_pwell_right': 'false_value'},

'pin_mapping': {
"en_volt_positionb_h_left': 'spi_en_volt_positionb_h"
2
'in_phase_en_h': 'clkl_h"',

'volt_position_conductance_h<4>"': 'spi_volt_position_conductance_h<4>",
'volt_position_conductance_h<3>"': 'spi_volt_position_conductance_h<3>",
'volt_position_conductance_h<2>"': 'spi_volt_position_conductance_h<2>",
'volt_position_conductance_h<1>': 'spi_volt_position_conductance_h<1>",
'volt_position_conductance_h<@>"': 'spi_volt_position_conductance_h<o>",
'Cl_pos_in_phase': 'Cl_pos_in_phase’,

'Cl_pos_out_phase': 'Cl_pos_out_phase’',

'en_volt_positionb_h_right': 'spi_en_volt_positionb_h"

)
'out_phase_en_h': 'clk2b_h",
'vcomp_pos': 'vcomp_pos',
'VDD': 'VIN',
'GND': "VOuT',

})
3
}J
'param_mapping': {'deep_nwell': ‘true_value',
'verticalPitch': 'vertical_pitch_nov'},
‘mirror_x': 'True',

'justification': 'LEFT',
'subelements’: [{
‘name': 'nov_1',
'1ib_cell': 'BAG_std_cells_oa/nov_level_shift_2',
‘mirror_y': 'True’,
'simple_filler': 'True',
'param_mapping': {
MLog 9L°,
'"Wn_tristate': 'nov_Wn_tristate’,
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459.
460.
461.
462.
463.
464.
465.
466.
467.
468.
469.

475.

485.

495,

110
'"PNratio': 'nov_PNratio’,
'share_pwell_right': 'false_value’,
'"Wn': 'nov_Wn',
'"Wp': 'nov_Wp',
'"Wn_mid': 'nov_Wn_mid',
'"Wp_mid': 'nov_Wp_mid',
'extra_nwell_space': 'extra_nwell_space’,
})

'pin_mapping': {
'outb_slow_fall': 'clk2_h",

'outb_slow_rise': 'clkl_h',

'in': 'fliplb_h"',

'extra_delay': 'spi_extra_delay_h',
'reset': 'reset_h',

'resetb': 'resetb_h',

'setb': 'VOUT',

'vdd': 'VIN',

'vss': 'VOUT',
'buffered_ls_signal': 'buffered_ls_signal_ 1',
'feedback_2': 'feedback_2_1",
'fast_feedback_pmos': 'fast_feedback_pmos_1",
'fast_feedback_nmos': 'fast_feedback_nmos_1",
'mux_input_a2': "mux_input_a2_1°',
s
oA
‘name': 'reset_h_pre_inv’,
'1ib_cell': 'BAG_std_cells_oa/Inverter',
‘mirror_y': 'False',
‘param_mapping': {'Wn': 'reset_inv_Wn',
'PNratio’': 'PNratio’,
‘vertical_pins': 'vertical_pins'},
'pin_mapping': {
"IN': 'spi_resetb_h',
'OUT': 'reseth_intl’,
'VDD': 'VIN',
'GND': "VOuT',

1

oA

‘name': 'resetb_h_inv',

'1ib_cell': 'BAG_std_cells_oa/Inverter',

‘mirror_y': 'False',

'param_mapping': {'Wn': 'reset_inv_Wn',
'PNratio’': 'PNratio’,
'vertical_pins': 'vertical_pins'},

'pin_mapping': {
"IN': 'reseth_intl’,
'OUT': 'resetb_h',
'VDD': 'VIN',
'GND': "VOuT',

s

oA

‘name': 'reset_h_inv',

'1ib_cell': 'BAG_std_cells_oa/Inverter’',

‘mirror_y': 'False',

‘param_mapping': {'Wn': 'reset_inv_Wn',
'PNratio’': 'PNratio’,
‘vertical_pins': 'vertical_pins'},

'pin_mapping': {
"IN': 'resetb_h',
'OUT': 'reset_h',
'VDD': 'VIN',
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520. 'GND': "VOuT',
521. },
522. 3, {
523. ‘name': 'nov_4',
524. '1ib_cell': 'BAG_std_cells_oa/nov_level_shift_2',
525 ‘mirror_y': 'False',
526. 'param_mapping': {
527. MLog 9L°,
528. '"Wn_tristate': 'nov_Wn_tristate’,
529. '"PNratio': 'nov_PNratio’,
530. 'share_pwell_right': 'false_value’,
531. '"Wn': 'nov_Wn',
532. "Wp': 'nov_Wp',
533. '"Wn_mid': 'nov_Wn_mid',
534. '"Wp_mid': 'nov_Wp_mid',
535 'extra_nwell_space': 'extra_nwell_space',
536. },
537. 'pin_mapping': {
538. 'outb_slow_fall': 'clkilb_h',
539. 'outb_slow_rise': 'clk2b_h',
540. 'in': 'flip2b_h"',
541. 'extra_delay': 'spi_extra_delay_h',
542. 'reset': 'reset_h',
543. 'resetb': 'resetb_h',
544, 'setb': 'VIN',
545, 'vdd': 'VIN',
546. 'vss': 'VOUT',
547. 'buffered_1ls_signal': 'buffered_ls_signal 4',
548. 'feedback_2': 'feedback_2_4',
549. 'fast_feedback_pmos': 'fast_feedback_pmos_4',
550. 'fast_feedback_nmos': 'fast_feedback_nmos_4',
535l 'mux_input_a2': "mux_input_a2_4"',
552. },
553. ,
554, },
555 {'justification': 'LEFT',
556. 'param_mapping': {'extra_vertical_pitch_top': 'extra_vertical_pitch_dnw’
557 , 'verticalPitch': 'vertical_pitch_caps'}, 'subelements': [
558. {
550, ‘name': 'M_clkl_coupling’,
560. '1ib_cell': 'BAG_std_cells_oa/pmos_cap_m2',
561. 'simple_filler': 'True',
562. 'param_mapping': {
563. 'vdd_rail_pin_in_metal': 'number_one',
564. 'deep_nwell': 'false_value',
565. 'share_nwell_right': 'share_nwell_pmos_cap',
566. 'share_nwell_left': 'share_nwell_pmos_cap',
567. 'extend_enclosing_layers_to_pr': 'extend_enclosing_layers_pmos_cap'
568. ,
569. 'nmos_ratio': 'nmos_ratio_pmos_cap’,
570. },
571. 'pin_mapping': {
572. '"PLUS": 'clkl_h',
573. '"PLUS_rail': None,
574. '"MINUS': 'clk1',
575. 'GND': 'GND',
576. },
577. },
578. {
579. ‘name': 'M_clk2_coupling’,

580. '1ib_cell': 'BAG_std_cells_oa/pmos_cap_m2',
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‘simple_filler': 'True',
'param_mapping': {
'vdd_rail_pin_in_metal': 'number_one',
'share_nwell_right': 'share_nwell_pmos_cap’,
'share_nwell_left': 'share_nwell_pmos_cap"',
"extend_enclosing_layers_to_pr': 'extend_enclosing_layers_pmos_cap'
)
'nmos_ratio': 'nmos_ratio_pmos_cap’,
})

'pin_mapping': {
'"PLUS': 'clk2_h',
'"PLUS_rail': None,
"MINUS': 'clk2',
"GND': 'GND',

1
¥
‘name': 'cap_ls_1',
'1ib_cell': 'BAG_std_cells_oa/pmos_cap_m2',
'simple_filler': 'True',
‘param_mapping': {
'vdd_rail_pin_in_metal': 'number_one',
'share_nwell_right': 'share_nwell_pmos_cap’,
'share_nwell_left': 'share_nwell_pmos_cap"',
'extend_enclosing_layers_to_pr': 'extend_enclosing_layers_pmos_cap'
)
'nmos_ratio': 'nmos_ratio_pmos_cap’,
s

'pin_mapping': {
'"PLUS': 'flip2b_h',
'"PLUS_rail': None,
'MINUS': 'flip2b',
"GND': 'GND’,

s
I8
‘name': 'cap_ls_2',
'1ib_cell': 'BAG_std_cells_oa/pmos_cap_m2',
‘mirror_y': 'True’,
'simple_filler': 'True',
‘param_mapping': {
'vdd_rail_pin_in_metal': 'number_one',
'share_nwell_right': 'share_nwell_pmos_cap',
'share_nwell_left': 'share_nwell_pmos_cap',
'extend_enclosing_layers_to_pr': 'extend_enclosing_layers_pmos_cap'
)
'nmos_ratio': 'nmos_ratio_pmos_cap’,
s

'pin_mapping': {
'"PLUS': 'fliplb_h',
'"PLUS_rail': None,
'MINUS': 'flipib',
"GND': 'GND',

})

}J

‘name': 'M_clklb_coupling',

'1ib_cell': 'BAG_std_cells_oa/pmos_cap_m2',
‘mirror_y': 'True’,

'simple_filler': 'True',

‘param_mapping': {

112
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642. 'vdd_rail_pin_in_metal': 'number_one',
643. 'deep_nwell': 'false_value',
644. 'share_nwell_right': 'share_nwell_pmos_cap’,
645. 'share_nwell_left': 'share_nwell_pmos_cap"',
646. "extend_enclosing_layers_to_pr': 'extend_enclosing_layers_pmos_cap'
647. ,
648. 'nmos_ratio': 'nmos_ratio_pmos_cap’,
649. },
650. 'pin_mapping': {
651. '"PLUS": 'clklb_h',
652. '"PLUS_rail': None,
653. '"MINUS': 'clkilb',
654. 'GND': 'GND',
655. },
656. },
657. {
658. ‘name': 'M_clk2b_coupling',
659. '1ib_cell': 'BAG_std_cells_oa/pmos_cap_m2',
660. ‘mirror_y': 'True’,
661. ‘simple_filler': 'True',
662. 'param_mapping': {
663. 'vdd_rail_pin_in_metal': 'number_one',
664. 'share_nwell_right': 'share_nwell_pmos_cap’,
665. 'share_nwell_left': 'share_nwell_pmos_cap"',
666. "extend_enclosing_layers_to_pr': 'extend_enclosing_layers_pmos_cap'
667. ,
668. 'nmos_ratio': 'nmos_ratio_pmos_cap’,
669. },
670. 'pin_mapping': {
671. '"PLUS": 'clk2b_h',
672. '"PLUS_rail': None,
673. '"MINUS': 'clk2b',
674. 'GND': 'GND',
675. },
676. },
677. 1},
678. {'param_mapping': {'verticalPitch': 'vertical_pitch_nov'},
679. ‘mirror_x': 'True', 'subelements': [{
680. 'name': 'nov_2',
681. 'lib_cell': 'BAG_std_cells_oa/nov_level_shift_2°',
682. ‘mirror_y': 'True',
683. 'simple_filler': 'True',
684. 'param_mapping': {
685. ‘L°g L7,
686. 'Wn_tristate': 'nov_Wn_tristate’,
687. 'PNratio’: 'nov_PNratio',
688. '"Wn': "nov_Wn',
689. 'Wp': 'nov_Wp',
690. '"Wn_mid': 'nov_Wn_mid',
691. '"Wp_mid': 'nov_Wp_mid',
692. },
693. 'pin_mapping': {
694. ‘outb_slow_fall': 'clk2',
695. ‘outb_slow_rise': 'clkl',
696. 'in': 'fliplb',
697. ‘extra_delay': 'spi_extra_delay"’,
698. 'reset': 'reset',
699. 'resetb': 'resetb’,
700. 'setb': 'GND',
701. ‘vdd': 'VOUuT',

702. 'vss': 'GND',
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'buffered_ls_signal': 'buffered_ls_signal_2°',
'feedback_2': 'feedback_2_2',
'fast_feedback_pmos': 'fast_feedback_pmos_2"',
'fast_feedback_nmos': 'fast_feedback_nmos_2"',
‘mux_input_a2': 'mux_input_a2_2",
¥
3 A
'name': 'reset_pre_inv',
'lib_cell': 'BAG_std_cells_oa/Inverter’,
‘mirror_y': 'True',
'param_mapping': {'Wn': 'reset_inv_Wn', 'PNratio': 'PNratio’
, 'vertical_pins': 'vertical_pins'},
'pin_mapping': {
"IN': 'spi_resetb’,
'OUT': 'reset_intl',
'vDD': 'VOUT',
'GND': 'GND',

¥
3 A
'name': 'resetb_inv’,
'lib_cell': 'BAG_std_cells_oa/Inverter’,
‘mirror_y': 'True',
'param_mapping': {'Wn': 'reset_inv_Wn', 'PNratio': 'PNratio’

, 'vertical_pins': 'vertical_pins'},
'pin_mapping': {
"IN': 'reset_intl’,
'OUT': 'resetb',
'vDD': 'VOUT',
'"GND': 'GND',

¥
3 A
'name': 'reset_inv',
'1lib_cell': 'BAG_std_cells_oa/Inverter’,
'mirror_y': 'False',
'param_mapping': {'Wn': 'reset_inv_Wn', 'PNratio': 'PNratio’

, 'vertical_pins': ‘'vertical_pins'},
'pin_mapping': {
"IN': 'resetb’,
'OUT': 'reset’,
'vDD': 'VOUT',
'GND': 'GND',
¥
3 A
'name': 'nov_3"',
'lib_cell': 'BAG_std_cells_oa/nov_level_shift_2',
'mirror_y': 'False',
'param_mapping': {
Lt 'L,
'Wn_tristate': 'nov_Wn_tristate’,
'PNratio’: 'nov_PNratio',
'Wn': "nov_Wn',
'"Wp': 'nov_Wp',
'"Wn_mid': 'nov_Wn_mid',
'"Wp_mid': 'nov_Wp_mid',
¥
'pin_mapping': {
‘outb_slow_fall': 'clklb',

‘outb_slow_rise': 'clk2b',
'in': 'flip2b’,
'extra_delay': 'spi_extra_delay’,

'reset': 'reset’,
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764. 'resetb': 'resetb’,
765. 'setb': 'VOouT',
766. ‘vdd': 'VOUuT',
767. 'vss': 'GND',
768. 'buffered_ls_signal': 'buffered_ls_signal_3',
769. 'feedback_2': 'feedback_2_3',
770. 'fast_feedback_pmos': 'fast_feedback_pmos_3"',
771. 'fast_feedback_nmos': 'fast_feedback_nmos_3"',
772. '‘mux_input_a2': 'mux_input_a2_3",
773. },
774. 31}
775. {
776. 'param_mapping': {},
777. 'mirror_x': 'False',
778. 'justification': 'LEFT',
779. 'subelements': [
780. {
781. 'name’: 'uct_nandl’,
782. 'lib_cell': 'BAG_std_cells_oa/Nand’,
783. "param_mapping': {
784. Ltro'Lt,
785. '"Wn': "Wn_uct_nand',
786. 'PNratio': 'pnrat_nand',
787. 'vertical_pins': 'vertical_pins',
788. },
789. "pin_mapping': {
790. "IN1': 'spi_enable_xor_test’',
791. "IN2': 'clk_in',
792. 'OUT': 'uct_clk_in_b"',
793. 'vDD': 'VOUT',
794. 'GND': 'GND',
795. },
796. },
797. {
798. 'name’: ‘'uct_invl',
799. 'lib_cell': 'BAG_std_cells_oa/Inverter’,
800. "param_mapping': {
801. ‘Log OL°,
802. '"Wn': "Wn_uct_inv',
803. 'PNratio': 'pnrat_inv',
804. 'vertical_pins': 'vertical_pins’',
805. },
806. "pin_mapping': {
807. "IN': 'uct_clk_in_ b",
808. 'OUT': 'uct_clk_in',
809. 'vDD': 'VOUT',
810. 'GND': 'GND',
811. },
812. },
813. {
814. 'name’: 'uct_nand2’',
815. 'lib_cell': 'BAG_std_cells_oa/Nand’,
816. "param_mapping': {'Wn': 'Wn_uct_nand',
817. 'PNratio': 'pnrat_nand',
818. 'vertical_pins': 'vertical_pins'},
819. "pin_mapping': {
820. "IN1': 'spi_enable_xor_test"',
821. "IN2': 'clk_feedback',
822. 'OUT': 'uct_clk_out_b',
823. 'vDD': 'VOUuT',

824. 'GND': 'GND',
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825. },
826. },
827. {
828. "name’: ‘'uct_inv2',
829. 'lib_cell': 'BAG_std_cells_oa/Inverter’,
830. "param_mapping': {'Wn': 'Wn_uct_inv',
831. 'PNratio': 'pnrat_inv',
832. 'vertical_pins': 'vertical_pins'},
833. "pin_mapping': {
834. "IN': 'uct_clk_out_b',
835. 'OUT': 'uct_clk_out’,
836. 'vDD': 'VOUT',
837. 'GND': 'GND',
838. },
839. },
840. {
841. "name’: ‘'uct_dflop_1',
842. 'lib_cell': 'BAG_std_cells_oa/dflop’,
843. 'param_mapping': {},
844. "pin_mapping': {
845. ‘clk': 'uct_clk_in',
846. ‘clk_b': 'uct_dflop_1_clk_b_connect’,
847. 'reset': 'uct_dflop_1_reset_connect’,
848. 'intl': 'uct_dflop_1_intl_connect’,
849. 'resetb': 'resetb',
850. 'Q': 'uct_Q1',
851. 'D': 'test_clk’,
852. 'vdd': 'VouTt',
853. 'vss': 'GND',
854. },
855. },
856. {
857. "name’: ‘'uct_dflop_2',
858. 'lib_cell': 'BAG_std_cells_oa/dflop’,
859. "param_mapping': {},
860. 'pin_mapping': {
861. 'clk': 'uct_clk_out’,
862. 'clk_b': 'uct_dflop_2_clk_b_connect’,
863. 'reset': 'uct_dflop_2_reset_connect’,
864. 'intl': 'uct_dflop_2_intl_connect’,
865. 'resetb’': 'resetb',
866. 'Q': 'uct_Q2',
867. 'D': 'test_clk’,
868. 'vdd': 'VouTt',
869. 'vss': 'GND',
870. },
871. },
872. {
873. 'name’: ‘'start_inv’',
874. 'lib_cell': 'BAG_std_cells_oa/Inverter’,
875. 'param_mapping': {'Wn': 'Wn', 'PNratio': 'pnrat_inv'
876. , 'vertical_pins': 'vertical_pins'},
877. "pin_mapping': {
878. "IN': 'spi_start’,
879. 'OUT': 'startb_intl’,
880. 'vDD': 'VOUuT',
881. 'GND': 'GND',
882. },
883. },
884. {

885. 'name’: ‘'start_inv2',
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'lib_cell': 'BAG_std_cells_oa/Inverter’,
"param_mapping': {'Wn': 'Wn', 'PNratio':
, 'vertical_pins': 'vertical_pins'},

"pin_mapping': {
"IN': 'startb_intl',
'OUT': 'startb_int2’',
'vDD': 'VOUuT',
"GND': 'GND',
}J

})

"name’: ‘'start_inv3',

'lib_cell': 'BAG_std_cells_oa/Inverter’,
"param_mapping': {'Wn': 'Wn', 'PNratio':
, 'vertical_pins': 'vertical_pins'},

"pin_mapping': {
"IN': 'startb_int2',
'OUT': 'startb',
'vDD': 'VOUuT',
"GND': 'GND',
}J

})

'name’: 'pull_up_start',

'lib_cell': 'BAG_std_cells_oa/falling_edge_detect_pull_up'

3

"param_mapping': {'pullup_width': 'pullup_width’,

'Wn_inv': 'Wn_inv'},
'pin_mapping': {
'in': 'startb',
out': 'clk_feedback',
'vDD': 'VOUT',
"GND': 'GND',
}J

3

'name’': 'inv_pre2',

'lib_cell': 'BAG_std_cells_oa/Inverter’,

"param_mapping': {

L8 L%

"Wn': "Wn_inv"',

'PNratio': 'pnrat_inv',
'vertical_pins': 'vertical_pins’',
}J

'pin_mapping': {
"IN': 'clklb_feedback"',
'OUT': 'clklb_feedback_b"',
'vDD': 'VOUT',
"GND': 'GND',
}J

})

'name’': 'nand_pre2’',
'lib_cell': 'BAG_std_cells_oa/Nand’,
"param_mapping': {

L8 L%

"Wn': "Wn_inv"',

'PNratio': 'pnrat_nand',
'vertical_pins': 'vertical_pins’',
}J

"pin_mapping': {

117



Appendix A

"IN1': 'clk2_feedback',
"IN2"': 'clklb_feedback_b"',
'OUT': 'clklb_feedback_gated’,
'vDD': 'VOUuT',
"GND': 'GND',
}J

})

'name’': 'pull_up_long_ 1',

'lib_cell': 'BAG_std_cells_oa/falling_edge_detect_pull_up'

)
"param_mapping': {'pullup_width': 'pullup_width’,
'Wn_inv': 'Wn_inv'},
"pin_mapping': {
'in': 'clklb_feedback_gated"',
‘out': 'clk_feedback',
'vDD': 'VOUT',
"GND': 'GND',

b
3
"name’: 'clk_driver',
'lib_cell': 'BAG_std_cells_oa/clk_driver',
"param_mapping': {'Wn': 'Wn_clk_driver’,
‘extra_vdd_rail_contacts_right': 'number_five'
)
‘extra_gnd_rail_contacts_right': 'number_five'
s
"pin_mapping': {
'reset': 'reset’,
'resetb’': 'resetb',
'clk_out': 'clk_feedback’,
'clk_next': "toggle_clockb_delayed’,
'clk_outb': 'clk_outb',
'startb': 'startb',
'vDD': 'VOUT',
'GND': 'GND',
1
b

'name’': 'pull_up_long_2',

'lib_cell': 'BAG_std_cells_oa/falling_edge_detect_pull_up'

)
"param_mapping': {'pullup_width': 'pullup_width’,
'Wn_inv': 'Wn_inv'},
"pin_mapping': {
'in': 'clk2_feedback_gated’,
‘out': 'clk_feedback',
'vDD': 'VOUT',
"GND': 'GND',
1
s

'name’': 'nand_prel’,
'lib_cell': 'BAG_std_cells_oa/Nand’,
"param_mapping': {

L8 L%

"Wn': "Wn_inv',

'PNratio': 'pnrat_nand',
'vertical_pins': 'vertical_pins’,

1

118
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1008.
1009.
1010.
1011.
1012.
1013.
1014.
1015.
1016.
1017.
1018.
1019.
1020.
1021.
1022.
1023.
1024.
1025.
1026.
1027.
1028.
1029.
1030.
1031.
1032.
1033.
1034.
1035.
1036.
1037.
1038.
1039.
1040.
1041.
1042.
1043.
1044.
1045.
1046.
1047.
1048.
1049.
1050.
1051.
1052.
1053.
1054.
1055.
1056.
1057.
1058.
1059.
1060.
1061.
1062.
1063.
1064.
1065.
1066.
1067.
1068.

'pin_mapping': {
"IN1': 'clklb_feedback",
"IN2"': 'clk2_feedback_b',
'OUT': 'clk2_feedback_gated',
'vDD': 'VOUT',
"GND': 'GND',
}J

})

'name’': 'inv_prel’,
'lib_cell': 'BAG_std_cells_oa/Inverter’,
"param_mapping': {

L':o'L',

'"Wn': "Wn_inv',

'PNratio': 'pnrat_inv',
'vertical_pins': 'vertical_pins',
}J

"pin_mapping': {
"IN': 'clk2_feedback',
'OUT': 'clk2_feedback_b',
'vDD': 'VOUuT',
"GND': 'GND',
}J

})

'name’: 'toggle_out_nor’,
'lib_cell': 'BAG_std_cells_oa/Nor',
"param_mapping': {'Wn': 'toggle_out_width"',
'PNratio’': 'PNratio',
‘vertical_pins': 'vertical_pins'},
'pin_mapping': {
"IN1': 'spi_toggle_out_enable_b',
"IN2': 'toggle_clockb_delayed',
'OUT': 'clk_drv_nor_int’',
'vDD': 'VOUuT',
"GND': 'GND',
}J
})

'name’: ‘'out_buffer’,
'lib_cell': 'BAG_std_cells_oa/Nor',
"param_mapping': {'Wn': ‘out_buffer_width"',
'PNratio’': 'PNratio',
‘vertical_pins': 'vertical_pins'},
'pin_mapping': {
"IN1': 'clk_drv_nor_int’',
"IN2': 'clk_feedback',
'OUT': 'clk_outb',
'vDD': 'VOUT',
"GND': 'GND',

s
1
'name’: ‘'output_inverter_3',
'lib_cell': 'BAG_std_cells_oa/Inverter’,
"param_mapping': {'vertical_pins': ‘'vertical_pins'
¥

"pin_mapping': {
"IN': 'clk_outb',
'OUT': 'clk_out_intl',
'vDD': 'VOUT',

119
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120
1069. 'GND': 'GND',
1070. },
1071. },
1072. {
1073. 'name’: ‘'output_inverter_2',
1074. 'lib_cell': 'BAG_std_cells_oa/Inverter’,
1075. "param_mapping': {'vertical_pins': ‘'vertical_pins'
1076. },
1077. "pin_mapping': {
1078. "IN': 'clk_out_int1’,
1079. 'OUT': 'clk_out_int2',
1080. 'vDD': 'VOUT',
1081. 'GND': 'GND',
1082. },
1083. },
1084. {
1085. 'name’: ‘'output_inverter',
1086. 'lib_cell': 'BAG_std_cells_oa/Inverter’,
1087. "param_mapping': {'vertical_pins': ‘'vertical_pins'
1088. },
1089. "pin_mapping': {
1090. "IN': 'clk_out_int2',
1091. 'OUT': 'clk_out_buffered',
1092. 'vDD': 'VOUuT',
1093. 'GND': 'GND',
1094. },
1095. },
1096. {
1097. 'name’': 'nand_xorl',
1098. 'lib_cell': 'BAG_std_cells_oa/Nand’,
1099. 'param_mapping': {'Wn': 'Wn_uct_nand_xor',
1100. 'PNratio': 'pnrat_nand',
11e01. ‘vertical_pins': 'vertical_pins'},
1102. 'pin_mapping': {
1103. "IN1': 'uct_Q2',
1104. "IN2': 'uct_Q1',
1105. 'OUT': 'xor_intl',
1106. 'vDD': 'VOUT',
1107. 'GND': 'GND',
1108. },
1109. },
1110. {
1111. 'name’': 'nand_xor2',
1112. 'lib_cell': 'BAG_std_cells_oa/Nand’,
1113. 'param_mapping': {'Wn': 'Wn_uct_nand_xor',
1114. 'PNratio': 'pnrat_nand',
1115. ‘vertical_pins': 'vertical_pins'},
1116. 'pin_mapping': {
1117. "IN1': 'xor_intl',
1118. "IN2': 'uct_Q1',
1119. 'OUT': 'xor_int2',
1120. 'vDD': 'VOUT',
1121. 'GND': 'GND',
1122. },
1123. },
1124. {
1125. 'name’: 'nand_xor3’',
1126. 'lib_cell': 'BAG_std_cells_oa/Nand’,
1127. 'param_mapping': {'Wn': 'Wn_uct_nand_xor',
1128. 'PNratio': 'pnrat_nand',

1129. ‘vertical_pins': 'vertical_pins'},
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1130.
1131.
1132.
1133.
1134.
1135.
1136.
1137.
1138.
1139.
1140.
1141.
1142.
1143.
1144.
1145.
1146.
1147.
1148.
1149.
1150.
1151.
1152.
1153.
1154.
1155.
1156.
1157.
1158.
1159.
1160.
1161.
1162.
1163.
1164.
1165.
1166.
1167.
1168.
1169.
1170.
1171.
1172.
1173.
1174.
1175.
1176.
1177.
1178.
1179.
1180.
1181.
1182.
1183.
1184.
1185.
1186.
1187.
1188.
1189.
1190.

'pin_mapping': {
"IN1': 'uct_Q2',
"IN2': 'xor_intl',
'OUT': 'xor_int3',
'vDD': 'VOUT',
"GND': 'GND',

s
1
'name’: 'nand_xor4’',
'lib_cell': 'BAG_std_cells_oa/Nand’,
'param_mapping': {'Wn': 'Wn_uct_nand_xor',
'PNratio': 'pnrat_nand',
‘vertical_pins': 'vertical_pins'},

'pin_mapping': {
"IN1': 'xor_int3',
"IN2': 'xor_int2',
'OUT': 'xor_out',
'vDD': 'VOUuT',
"GND': 'GND',

}J

})

"name’: ‘'uct_dflop_3',
'lib_cell': 'BAG_std_cells_oa/dflop’,
'param_mapping': {},
'pin_mapping': {
‘clk': 'uct_clk_in',
'clk_b': 'uct_dflop_3_clk_b_connect’,

'reset': 'uct_dflop_3_reset_connect’,
'intl': ‘'uct_dflop_3_intl_connect’,
'resetb': 'resetb',

'Q': 'clk_xor_pre',

'D': 'xor_out',

'vdd': 'VouT',
'vss': 'GND',
}J

})

"name’: ‘'uct_out_bufl’,
'lib_cell': 'BAG_std_cells_oa/Inverter’,
"param_mapping': {'Wn': 'Wn_uct_bufl’',
'PNratio': 'pnrat_inv',
‘vertical_pins': 'vertical_pins'},
'pin_mapping': {
"IN': 'clk_xor_pre',
'OUT': 'clk_xor_b',
'vDD': 'VOUT',
"GND': 'GND',
}J
})

"name’: ‘'uct_out_buf2',
'lib_cell': 'BAG_std_cells_oa/Inverter’,
"param_mapping': {'Wn': 'Wn_uct_buf2',
'PNratio': 'pnrat_inv',
'vertical_pins': 'vertical_pins'},
"pin_mapping': {
"IN': 'clk_xor_b',
'OUT': 'clk_xor',
'vDD': 'VOUT',

121
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1191. 'GND': 'GND',
1192. },
1193. },
1194. 1,
1195. },
1196. {'mirror_x': 'True', 'subelements': [{
1197. 'name': 'comparator’,
1198. '1lib_cell': "'BAG_std_cells_oa/async_comp',
1199. ‘param_mapping': {'nmos_ratio': 'comparator_nmos_ratio'},
1200. 'pin_mapping': {
1201. ‘bias': 'comp_bias"',
1202. ‘bias2': 'comp_bias_global’,
1203. ‘enable’: 'clk_feedback"',
1204. ‘out': 'toggle_clock’,
1205. 'VREF': 'VREF',
1206. 'VDD': ‘'vcomp_pos',
1207. 'GND': 'GND',
1208. 'int_enable': 'comp_int_enable’,
1209. ‘internal_node': 'comp_internal_node’,
1210. },
1211. ¥, {
1212. 'name': 'toggle_clock_delay"',
1213. "type': 'std_cell’,
1214. '1lib_cell': 'BAG_std_cells_oa/inverting_delay’,
1215. 'simple_filler': 'True',
1216. 'param_mapping': {'vertical_pins': 'vertical_pins’,
1217. ‘share_nwell_left': 'false_value'},
1218. 'pin_mapping': {
1219. "IN': '"toggle_clock’,
1220. 'OUT': 'toggle_clockb_delayed’,
1221. 'vDD': 'VOUT',
1222. 'GND': 'GND',
1223. },
1224. }, {
1225. ‘name': ‘'dflop’,
1226. '1lib_cell': 'BAG_std_cells_oa/dflop_cp’,
1227. ‘param_mapping': {'share_nwell left': 'false_value'},
1228. 'simple_filler': 'True',
1229. 'pin_mapping': {
1230. 'clk': 'dflop_clk_connect',
1231. 'clkb': "toggle_clock',
1232. 'clkb_buf': 'dflop_clkb_buf_connect’,
1233. 'reset': 'dflop_reset_connect’,
1234. 'intl': 'dflop_intl_connect’,
1235. 'resetb': 'resetb’,
1236. 'Q': 'clk_out',
1237. 'D': 'D',
1238. ‘vdd': 'VOUuT',
1239. 'vss': 'GND',
1240. },
1241. }, {
1242. 'name': 'feedback_inv',
1243. 'lib_cell': 'BAG_std_cells_oa/Inverter’,
1244. 'param_mapping': {'vertical_pins': 'vertical_pins'},
1245. 'pin_mapping': {
1246. "IN': 'clk_out',
1247. '‘out': 'D',
1248. 'vDD': 'VOUT',
1249. 'GND': 'GND',
1250. },

1251. b A
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1252.
1253.
1254.
1255.
1256.
1257.
1258.
1259.
1260.
1261.
1262.
1263.
1264.
1265.
1266.
1267.
1268.
1269.
1270.
1271.
1272.
1273.
1274.

1275.
1276.
1277.
1278.
1279.
1280.
1281.
1282.
1283.
1284.
1285.
1286.
1287.
1288.
1289.
1290.
1291.
1292.
1293.
1294.
1295.
1296.
1297.
1298.
1299.
1300.
1301.
1302.
1303.
1304.
1305.
1306.
1307.
1308.
1309.
1310.
1311.

'name': 'phase_splitter’,
'lib_cell': 'BAG_std_cells_oa/phase_splitter_ 21",
'param_mapping': {'Wn_inv': 'ps_Wn_inv’',

'"Wn_bufl': 'ps_Wn_bufl’,
'"Wn_buf2': 'ps_Wn_buf2'},
'pin_mapping': {
"IN': 'clk_in',
'ouT': 'flip2b',
'OUTB': 'flipib',
'vDD': 'VOUT',
'VSS': 'GND',
}J
313

default = dict(

Wn=1.0,
PNratio=2.0,
nov_PNratio=2.9,
railWidth=0.6,
rail_pins_in_metal=3,
power_grid_pitch=2.5,

123

param_file="'/tools/designs/crossley/BAG_2012/BAG_tsmc65/pycell_work/comp_core_file

cell_height=50.0,
L=0.06,

)

H#HHHH

@classmethod
def defineParamSpecs(cls, specs):

Define the PyCell parameters. The order of invocation of
specs() becomes the order on the form.

Arguments:
specs - (ParamSpecArray) PyCell parameters

IRIRT

super(comp_core, cls).defineParamSpecs(specs)
mySpecs = ParamSpecArray()

minmetall = float(specs.tech.getPhysicalRule( 'minWidth"',
cls.layer['metall']))

Wn = specs.tech.getMosfetParams('nmos', cls.oxide, 'minWidth')

Wn = cls.default.get('Wn', Wn)

Wn = cls.grid.snap(Wn)

stepConstraint = StepConstraint(cls.maskgrid, start=Wn,
resolution=cls.resolution,
action=FailAction.REJECT)

mySpecs('Wn', Wn, constraint=stepConstraint)

params_using_Wn_as_default = [
‘nov_Wn',
'nov_Wn_tristate’,
‘nov_Wp',
"nov_Wn_mid",
'nov_Wp_mid",
'"Wn_clk_driver',
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1312. 'toggle_out_width',
1313. ‘out_buffer_width',
1314. '"Wn_uct_nand’,
1315. '"Wn_uct_nand_xor',
1316. 'reset_inv_Wn',
1317. 'reset_inv_width',
1318. 'pullup_width',
1319. '"Wn_inv',
1320. '"Wn_uct_bufl’,
1321. '"Wn_uct_buf2',
1322. '"Wn_uct_inv',
1323. ]
1324.
1325. for the_p in params_using_Wn_as_default:
1326. mySpecs(the_p, cls.default.get(the_p, Wn),
1327. constraint=stepConstraint)
1328.
1329. mySpecs('ps_Wn_inv', cls.default.get('ps_Wn_inv', 4 * Wn),
1330. constraint=stepConstraint)
1331. mySpecs('ps_Wn_bufl', cls.default.get('ps_Wn_bufl', 4 * Wn),
1332. constraint=stepConstraint)
1333. mySpecs('ps_Wn_buf2', cls.default.get('ps_Wn_buf2', 4 * Wn),
1334. constraint=stepConstraint)
1335.
1336. L = specs.tech.getMosfetParams('nmos', cls.oxide, 'minLength')
1337. L = cls.grid.snap(L)
1338. stepConstraint = StepConstraint(cls.maskgrid, start=L,
1339. resolution=cls.resolution, action=FailAction.REJECT)
1340. mySpecs('L', cls.default.get('L', L), constraint=stepConstraint)
1341.
1342. PNratio = cls.default.get('PNratio', 1.0)
1343. mySpecs('PNratio', PNratio, constraint=StepConstraint(0.01,
1344. start=0.2, action=FailAction.REJECT))
1345.
1346. nov_PNratio = cls.default.get('nov_PNratio', 1.0)
1347. mySpecs('nov_PNratio', nov_PNratio,
1348. constraint=StepConstraint(0.01, start=0.2,
1349. action=FailAction.REJECT))
1350.
1351. vertical_pitch_center = cls.default.get('vertical_pitch_center'
1352. , 60.0 * minmetall)
1353. mySpecs('vertical_pitch_center', vertical_pitch_center,
1354. constraint=StepConstraint(cls.maskgrid,
1355, start=minmetall, resolution=cls.resolution,
1356. action=FailAction.REJECT))
1357.
1358. cell _height = cls.default.get('cell_height', 62.25)
1359. mySpecs('cell_height', cell_height,
1360. constraint=StepConstraint(cls.maskgrid,
1361. start=minmetall, resolution=cls.resolution,
1362. action=FailAction.REJECT))
1363.
1364. power_grid_pitch = cls.default.get('power_grid_pitch', 2.5)
1365. mySpecs( 'power_grid_pitch', power_grid_pitch,
1366. constraint=StepConstraint(cls.maskgrid, start=minmetall
1367. * 2, resolution=cls.resolution,
1368. action=FailAction.REJECT))
1369.
1370. mySpecs('extra_vertical_pitch', @.0,
1371. constraint=RangeConstraint(0.0, None,

1372. action=FailAction.REJECT))
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1373.

1374. # Parameter renaming

1375.

1376. renameParams (mySpecs, specs, cls.paramNames)

1377.

1378. # HHHE R R

1379.

1380. def final_steps(self):

1381. e

1382. v

1383.

1384. for (row_index, row) in enumerate(self.layout_info):

1385. print (row_index, 'row width is:', row['group’

1386. ].getBBox(ShapeFilter([self.layer[ 'pr'

1387. 11)) .getwidth())

1388. for (row_index, row) in enumerate(self.layout_info):

1389. print (row_index, 'row height is:', row['group’

1390. ].getBBox(ShapeFilter([self.layer[ 'pr'

1391. 11)) .getHeight())

1392.

1393. def define_derived_parameters(self):

1394. e

1395. Any derived parameters that are referenced in self.layout_info

1396. should be defined here

1397.

1398. For example, in the pmos device_group below the param_mapping of

1399. 'W' is '"Wp'. If Wp is not a parameter defined a the pycell level,

1400. then self.Wp must be defined in this function.

1401. 'subelements' : [ { ‘'name':'M3M4',

1402. "param_mapping': {'W':'Wp" },

1403. 'G' : ["IN1',"'IN2'],

1404. 'D' : ['OUT'],

1405. 's' : ['vDD'],

1406. 'B' : ['vDD'],

1407. 'layout_type' : 'series’ #shared_sourc
e, shared_drain, series, parallel

1408. },

1409.

1410. def define_derived_parameters(self) :

1411. self.Wp = self.grid.snap(self.PNratio*self.Wn)

1412. v

1413.

1414. # self.Wp = self.grid.snap(self.PNratio*self.Wn)

1415.

1416. self.pnrat_nand = 1.0

1417. self.pnrat_inv = 2.0

1418. self.vrailWidth = self.grid.snap(self.railWidth * 2.0)

1419. self.ps_PNratio = self.pnrat_inv

1420. self.num_stages = 3

1421. self.comparator_nmos_ratio = self.nmos_ratio # > (unknown date) This doesn't need
to match other cells so optimize it

1422.

1423. #  to handle equal pmos and nmos finger widths (
set to 0.5)

1424. # > (1-24-
13) If it doesn't match the ratio of the cells to the right then

1425. # it causes nwell to cut through the nmos diff
usion region which ain't good

1426.

1427. self.r = 1.0
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1428. self.number_one = 1

1429. self.number_five = 5

1430. self.nmos_ratio_pmos_cap = 0.24 # was 0.16 but reduced it for small cells

1431. self.vertical_pins = 'True'’

1432. self.enable_deep_nwell = 'True'

1433. self.false_value = 'False'

1434. self.true_value = 'True’

1435. self.share_nwell_pmos_cap = 'False’

1436. self.extend_enclosing_layers_pmos_cap = 'False’

1437.

1438. # self.vertical_pitch_center = 4.0

1439.

1440. self.extra_vertical_pitch = 1.5

1441.

1442. # self.extra_vertical_pitch_vref = 1.5

1443. # self.DNW_spacing = 2.25

1444,

1445. self.volt_position_spacing = 1.44 # ideally the top 2 rows should be sharing an i
solated PWELL but for the sake

1446.

1447. # development time I am creating 2 isolated PW
ELL regions

1448.

1449. self.extra_nwell_space = 0.06 # TSMC DRC fix

1450.

1451. # self.extra_nov_spacing = 6.0

1452.

1453. self.extra_vertical_pitch_dnw = 3.4

1454. total_extra_spacing = self.volt_position_spacing \

1455. + self.extra_vertical_pitch_dnw

1456.

1457. # calculate cell pitch based on desired cell height and fixed DNW_spacing paramete
[

1458.

1459. extra_ratio_for_nov = 1.0

1460. extra_ratio_for_volt_position = 0.7

1461. total_extra_raio = extra_ratio_for_nov \

1462. + extra_ratio_for_volt_position

1463. self.verticalPitch = self.grid.snap((self.cell_height

1464 . - total_extra_spacing) / (len(self.layout_info)

1465. + extra_ratio_for_nov))

1466. self.vertical_pitch_nov = self.grid.snap(self.verticalPitch

1467. * (1 + extra_ratio_for_nov / 2.0)) # +self.extra_nov_spacing

1468. self.M4_rail_spacing = 0.16

1469. self.M4_signal_spacing = 0.04

1470. self.vertical_pitch_volt_position = \

1471. self.grid.snap(self.verticalPitch * (1

1472. + extra_ratio_for_volt_position))

1473. self.vertical_pitch_caps = self.verticalPitch \

1474. - self.extra_vertical_pitch

1475.

1476.

1477. # pdb.set_trace()
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