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Abstract

Achieving Consistent Latencies in Datacenter Networks

by

David Zats
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Randy Katz, Chair

In this thesis, we begin by analyzing the increasing trend of running large-scale services on
Warehouse Scale Computers to provide user functionality. We see that user demands for
interactivity place stringent requirements on these services, compelling them to consistently
meet tight deadlines. To provide users a rich experience while meeting these deadlines,
services typically parallelize requests, dividing tasks among many servers to speed-up com-
putation. Consequently, services depend on the network to provide consistent, low-latency
communication so that servers can coordinate and deliver their results in a timely manner.

We explain why current networks are poorly suited for delivering consistent, low-latency
performance. These networks typically run the TCP/IP stack, which explicitly trades con-
sistent performance for generality and interoperability. This decision was appropriate for the
Internet, which was designed to interconnect heterogeneous networks. However, given the
new stringent requirements that these networks must support, we hypothesize that they can
no longer accept this design decision. Instead, they must employ a series of tightly-integrated
layers to deliver the consistent latencies services depend on.

To understand the benefits of foregoing generality, we design and implement two ap-
proaches DeTail and FastLane. DeTail is a network stack that employs a series of tightly
integrated layers. Each layer in the DeTail stack depends on, and overcomes the limitations
of, others, reducing the latency spikes that often plague networks. FastLane employs an al-
ternate approach, where network components directly communicate with transports, helping
them respond more agilely to events that drive up latencies.

To evaluate these approaches, we employ both simulation and implementation platforms.
Based on these platforms, we see that both DeTail and FastLane are able to dramatically
reduce latencies by foregoing generality and having the layers of the network stack directly
depend on the functionality of others. We argue that this approach is a fruitful one and will
become increasingly important as network requirements become increasingly stringent.
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Chapter 1

Introduction

Today, more applications are being provided to users through Warehouse-Scale Comput-
ing [40]. Warehouse-Scale Computing employs large-scale datacenters, consisting of hundreds
of thousands of machines to provide Internet-Scale services. Users access these services re-
motely (e.g., through a web browser), obtaining access to the functionality they provide.
While users typically expect the response times experienced with locally-running applica-
tions, these services may be tasked with performing operations far exceeding the computa-
tional and / or storage capacity of individual servers. To provide high-quality results while
meeting tight user-expected response times, services parallelize the computation of every
request, spreading processing across thousands of servers.

In this environment, predictably meeting these tight response times, termed user-
interactivity deadlines, is critically important. Measurement studies have demonstrated the
high financial cost of missing user-interactivity deadlines, indicating that users both perceive
and react negatively to services with delayed response-times [44]. At the same time, the high
degree of parallelism employed by services to speed up computation makes it challenging to
consistently meet these deadlines as just one slow or faulty component can stall the whole
computation. Fortunately, unpredictability in server computation time has been largely mit-
igated through backup tasks that are launched on different servers when the the original ones
stall [21, 57].

However, achieving predictable network latencies continues to be a challenge. As net-
works represent a shared environment, congestion from too many servers transmitting at the
same time quickly, and unpredictability, drives up latencies. Launching backup tasks is not
an appropriate solution as doing so only creates additional resource demands, further aggra-
vating congestion events. At the same time, measurement studies indicate the unpredictable
network latencies, alone, can lead to missed deadlines [18] and hence represent a limiting
factor in the drive towards richer services. In this work, our goal is to achieve tighter, more
predictable network latencies so fewer deadlines are missed, improving the user experience.

We begin by describing Warehouse-Scale Computing and the reasons for this trend,
the structure and types of Internet Services, and why meeting user-interactivity deadlines
is critically important. We then describe the challenges involved in achieving predictable



Section 1.1. Warehouse Scale Computing 2

network latencies and the unique opportunities for doing so in datacenter networks. In this
context, we present our research statement and our hypothesis, discussing how we intend to
use tighter integration across network layers to achieve more uniform network latencies. We
conclude with the roadmap for the rest of the thesis.

1.1 Warehouse Scale Computing

As described in [40], Warehouse Scale Computing is the practice of co-locating tens or
hundreds of thousands of servers in one location, or warehouse. While co-location is not a
recent phenomenon, what is new is the scale at which it is being performed. All of these
servers are typically owned by one entity and they operate together to provide services to a
large number of users, subject to interactive latency bounds. Currently, more functionality
is moving from client-based applications to Internet-based services.

Many reasons have been cited for driving this trend [40]. Some services, such as web
search require an ever-increasing number of servers to index the expanding Internet. In other
cases, ease of use and manageability are key drivers. Users do not need to worry about man-
aging their local platform, while companies can reduce the costs associated with providing
legacy support and ensuring compatibility across a wide range of hardware. Furthermore,
companies can employ statistical multiplexing, reducing per-user costs, simply by leveraging
the fact that only a fraction of their customer base will use their services at any one point
in time. These many powerful incentives suggest that this trend will continue.

1.2 Internet Services

The resources made available by Warehouse Scale Computing, in turn, have driven the
creation of massive-scale Internet Services, spanning these large computation domains. Two
common examples of web services are (i) customized page creation and (ii) web search. Both
these services depend on the many servers of a datacenter collaborating together to provide
a rich result to the user in a timely manner.

In the case of customized page creation, the contents of a page are customized for the
individual user accessing the web site. For example, a Facebook page contains a News Feed,
Search, Advertisements, and even a Chat application. The contents of each of these com-
ponents depend on the user accessing the web site. The News Feed contains events recently
reported by the user’s friends while the Chat application reports which of the user’s friends
are currently online. This level of per-user customization limits the amount of precomputa-
tion that can be performed. Instead, when a user signs in, the contents of each component are
processed in parallel by different servers in the datacenter. These results are then combined
into a coherent whole.

On the other hand, in web search, a query is typically divided up into subqueries that are
sent to individual servers [18, 56]. The individual servers process their portion of the query
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in parallel, reducing the total time necessary to perform the computation. Upon completion,
they send their results to the aggregator which, as in the case of for customized page creation,
combines them into a coherent whole. In both these cases, we see that thousands of servers
must work together to address a single request.

1.3 Meeting user-interactivity deadlines

Meeting user-interactivity deadlines is both very challenging and critically important
for Internet Services. With the large number of servers communicating and processing in
parallel, there is a significant chance at least one will stall when processing every query.
When this happens, all of the computation that depends on the delayed response will stall
as well. By driving up the time taken to generate the complete result, these delays cause
user-interactivity deadlines to be violated.

Violating user interactivity deadlines is costly. Prior studies have shown that users do
not tolerate inflated web page response times. Amazon’s experiments show that increasing
page completion times by just 100ms leads to a 1% loss in sales while Google sees that
increasing completion times by 500ms leads to a 20% loss in revenue [44]. As a result,
web sites expend much effort on reducing service response times [50]. Some reductions
are achieved by reducing the number of sequential dependencies required to perform the
computation. This allows more of the computation to be performed in parallel, reducing
the time taken by the service. However, the cost of missing these deadlines is so high that
ultimately functionality and hence the richness of the response is sacrificed to ensure that
deadlines are met.

To make matters more challenging, these deadlines must be met consistently. Even
meeting deadlines 99.9% of the time means that one in a thousand users will experience
poor performance [18]. This is a large number of customers for large-scale websites. Addi-
tionally, at least at one major online retailer, it is often the case that the more important
customers (i.e., those with longer histories) will experience longer processing times and hence
have a greater likelihood of missing their deadlines [32]. Thus the inability to consistently
deliver a high-quality response in a timely manner to a small fraction of the user base could
disproportionately affect the web site’s revenue. These challenging demands drive modern-
day websites to expend considerable effort on ensuring that user-interactivity deadlines are
missed as rarely as possible.

One common way to reduce the impact of unpredictable server processing delays is
to launch backup tasks, speculatively when it becomes evident that the original one has
stalled [21, 57]. While this approach is well-suited for servers whose resources are relatively
easy to isolate, it is poorly suited for the network. As the network represents a shared
environment, sending extra traffic between the source and destination is likely to aggravate
congestion events, forcing more delays, and perhaps even congestion collapse.

Isolating the traffic generated between different entities in the datacenter is extremely
challenging. Not only may services compete with each other for network resources, but the
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servers participating in the same service may also contend, causing unnecessary delays [55].
Mechanisms that explicitly allocate resources between servers are wasteful. With static
allocations, the servers needing extra resources are unable to obtain them even when others
are not using their full allocation. In the absence of a simple, efficient isolation strategy, we
must create a new set of techniques aimed at achieving more predictable network latencies
in the presence of congestion.

1.4 Achieving predictable network latencies

Currently, servers competing for network resources can dramatically increase network
latencies. Measurement studies from a production Microsoft datacenter show that the queu-
ing delays caused by congestion can cause RTTs to increase by 40x [18]. When this happens,
flows violate important transfer deadlines and stall the completion time of the query as a
whole.

The problem is far greater than that indicated by the published measurements. These
measurements do not include the time taken to retransmit dropped packets. In addition
queuing delays, these packets have to wait for the sender to perform the retransmission,
before arriving at the destination. As the sender may take a long time to discover that the
drop has occurred, we expect these packets to experience far higher latencies.

Fortunately, in datacenter networks there are many opportunities for reducing network
latencies. Modern datacenter networks have scaled out, leveraging many low-cost switches to
increase aggregate bandwidth in a cost-effective manner. Many paths typically exist between
a source and destination [15,37]. Often, when a link is congested, packets can take alternate
paths to reach the destination [24]. Additionally, the single administrative domain enables
us to develop new mechanisms and employ coherent policies to address congestion-related
issues.

However, the TCP/IP stack, which is typically run on today’s datacenters [18], makes
fundamental design decisions that limit its ability to effectively handle congestion and the
resultant increase in network latency. Each layer minimizes the assumptions made about the
others, focusing instead on mechanisms that attempt to ascertain the state of the network in-
directly. For example, instead of assuming the network will inform it when congestion occurs,
TCP relies on packet drops. While these decisions are well-suited for the Internet, which
connects heterogeneous networks, they are poorly suited for the datacenter. By minimizing
the assumptions employed by each layer, the TCP/IP stack foregoes many opportunities for
responding more quickly and accurately to congestion. Since a quick, accurate congestion
response can often dramatically reduce network latencies, we must take a different approach
for datacenter networks.

1.5 Research statement and hypothesis

Based on this observation, we make the following hypothesis:
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Foregoing generality, by having each layer of the network stack make explicit
assumptions about, and pass information to, the others, allows us to respond
to congestion more quickly and accurately, reducing high-percentile network
latencies.

We explore two design alternatives that strive to achieve this goal. The first, DeTail,
presents a tightly integrated network stack where the layers work together to overcome
each others limitations. The second, FastLane, enlists switches to explicitly signal senders
when packet drops occur, thereby avoiding the long time taken by traditional drop detection
mechanisms. We see that both of these approaches are effective at reducing high-percentile
flow completion times, supporting our hypothesis.

1.6 Thesis roadmap

In the following chapter, we begin by describing modern datacenter network topologies.
We then discuss the basic assumptions employed by TCP/IP stack, explaining why they
lead to poor high-percentile performance in these environments. Next we describe the tools
available to us that we can leverage to improve network latencies. We conclude this section
by highlighting prior proposals for datacenter networks and discussing where they fall short.

Chapter 3 describes the platforms we use to evaluate different datacenter networking
proposals. Performing a thorough evaluation is challenging primarily because of the diffi-
culty in reproducing effects only experienced at large scale. We describe the combination of
testbed-based implementations and scaled up simulations we employ to address this issue.

Chapter 4 analyzes the impact of inflated high-percentile latencies on page creation.
To perform this analysis, we compare a measured latency distribution from a production
datacenter with a family of distributions having tighter latency bounds. Our analysis shows
that high-percentile latencies have a far greater impact on page creation than the median.
Based on these results, the remainder of our thesis focuses on proposing and evaluating
mechanisms for achieving tighter latency bounds.

In Chapter 5, we present our first proposal, DeTail for reducing high-percentile laten-
cies. We begin by describing three important causes of high latencies: (i) packet drops and
retransmissions, (ii) uneven load balancing, and (iii) ineffective prioritization. We then pro-
pose a tightly integrated networking stack, which focuses on addressing all three problems.
We demonstrate how these layers work together, overcoming each others limitations, and
sharing information, to dramatically tighten latency bounds.

While DeTail is effective at reducing latencies for 1Gbps networks, we see that it requires
more buffering than is typically available for 10Gbps networks. Additionally, DeTail can
experience severe performance degradation when network components misbehave, with just
one misconfigured switch or server being able to stall the whole network. Given the need to
address these concerns for always-on Internet Services, in Chapter 6, we propose an alternate
approach. We enlist the switches to inform the senders which packet was dropped whenever
drops occur. We see that this approach has many of the same benefits as DeTail while
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avoiding its key limitations.
Chapter 7 concludes the thesis. We recap how our two proposals support our hypothesis

that by having the layers of the network make more explicit assumptions about each other
and passing information between them, we are able to achieve tighter latency bounds. We
propose a series of next steps that can be taken to enrich this work and to further verify the
viability of this approach.
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Chapter 2

Related Work

To understand the challenges involved in achieving predictable network latencies, we
first describe the current datacenter topologies where our network protocols are run. In this
context, it becomes clear how the design decisions employed by the TCP/IP stack lead to
inflated high-percentile latencies. Fortunately, unlike the Internet as a whole, the layers of a
datacenter network stack are not restricted to making minimal assumptions about each other
and inferring behavior indirectly. We describe the unique design opportunities available in
datacenter networks that we can leverage to more effectively handle congestion. We conclude
this chapter by listing current attempts to do so and describing where they fall short.

2.1 Datacenter Network Topologies

Originally, datacenter network topologies employed a tree structure with servers at the
leaves. As depicted in Figure 2.1, switches interconnect these servers allowing them to
communicate. As every node in the tree is responsible for supporting all of the the traffic
between its children, it becomes increasingly difficult to support worst-case traffic demands
higher in the tree.

Consider the case where all servers in the left half of the tree are sending traffic to
the servers on the right half of the tree. We see that the links between the first level Tors
(Top of Rack Switches) and the second level Aggs (Aggregate switches) will carry twice the
load of the links connected to the servers. Furthermore, the links between the Aggs and
the Core switch will carry four times the load of the links connected to the servers. The
challenge is actually far greater than that depicted by this simple example. A single Tor
will be connected to many more servers, leading to a much larger multiplicative factor in
the load between the Tors and the Aggs. Similarly, many more Tors typically connect to a
single Agg, resulting in an even larger multiplicative load factor higher in the tree.

Ideally, nodes higher in the tree would leverage links with increasing capacities to match
these demands. In practice switches with high capacity links are far more expensive per
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Tors 

Aggs 

Core 

Figure 2.1: A traditional datacenter tree tropology.

Gbps than lower capacity ones [15]. To mitigate costs, datacenter networks resorted to high
oversubscription rates, with switches at each hop having far more downstream bandwidth
towards the servers than upstream bandwidth towards the Core. The resulting scarcity
of cross datacenter bandwidth was a performance bottleneck, limiting the throughput of
datacenter applications.

Cores 

Aggs 

Tors 

Figure 2.2: A scaled-out topology employing many lower-speed, lower-cost links to increase
aggregate bandwidth.

To address this limitation, many new topologies scale out, employing many lower-
capacity (and hence lower-cost) links between the source and destination in order to increase
aggregate bandwidth. Of these topologies, the one that has gained the most traction is the
folded-Clos approach advocated for by FatTrees and VL2 [15, 37]. We depict the specific
topology proposed by FatTree in Figure 2.2. Unlike in a traditional, oversubscribed, tree
topology, we see many more low-speed links as we go up towards the Cores forming the
root of the tree. By taking this approach, these topologies enable datacenters to achieve far
greater aggregate bandwidth in a cost-effective manner.

Many other datacenter topologies have been proposed, including DCell and Jellyfish
[39, 54]. DCell employs a recursive structure to scale out the bandwidth available, while
avoiding the need to use expensive high-speed switches. Jellyfish explores the bandwidth
and latency advantages of connecting top of rack switches randomly. Regardless of the
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approach, all of these proposals seek to alleviate the bandwidth bottleneck that plagued
traditional datacenters.

2.2 TCP/IP Design Decisions

Currently, datacenter networks typically run the TCP/IP stack [18]. As the TCP/IP
networking stack was created for the Internet, many of its design decisions are poorly suited
for datacenters. Here, we describe the TCP/IP networking stack and explain how its design
decisions lead to suboptimal performance for datacenter networks.

Link	  
Physical	  

Internet	  
Transport	  
Applica5on	  

Figure 2.3: The TCP/IP networking stack.

The TCP/IP stack consists of the series of layers depicted in Figure 2.3. Going down
the stack, we see that each layer depends on lower ones to provide smaller pieces of the
functionality required to transmit a message from one application to another. The appli-
cation layer contains the applications wishing to communicate. Each application generates
messages and passes them to the transport layer, which is responsible for delivering them to
the correct application running on the correct host. Transports can also provide reliability
services such as ensuring that transfers arrive reliably and in-order. The transport layer
breaks up the messages it receives into packets and relies upon the Internet layer to deliver
them to the correct host. The Internet layer achieves this goal, in part by relying on the Data
Link Layer, which is responsible for sending packets at every hop between the source and
the destination. To provide this functionality, the Data Link Layer leverages the Physical
Layer, which is responsible for transmitting and receiving the actual bits of the packet.

From the discussion of each layer’s functionality, two aspects of the TCP/IP networking
stack become clear. First, each layer only communicates with the ones right above or below
it. For example, Transport does not interact with the Data Link Layer and cannot obtain
information about it to make more informed decisions. Prior work has shown how this lack of
information can lead to extreme performance degradation in the presence of unreliable links
[23]. Second, we see that the interface between layers is minimal. For example, transport
cannot request that the Internet Layer deliver a packet reliably.
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These examples highlight how the TCP/IP stack traded performance for generality to
enable communication even when different technologies were employed at different layers.
While well-suited for the Internet, which is designed to interconnect heterogeneous networks
[28], this approach is poorly suited for datacenters. As datacenters are typically controlled
by one administrative entity, it is simple to ensure that certain mechanisms be deployed at
various layers of the stack, thereby allowing other layers to depend on them to achieve better
performance.

Consider how the current limitations affect TCP’s performance. As mentioned earlier,
the Internet Layer does not provide any reliability guarantees. To provide a reliable service
to the application, TCP must address this problem within its own layer. TCP achieves this
by requiring that the destination send acknowledgments to the source whenever packets are
received. If the source does not obtain an acknowledgment within a certain period of time,
it times out and retransmits the packet.

The absence of detailed network state forces TCP to contend with many performance
limitations. For example, it is unclear how the timeout should be set. If it is set too low,
then too many packets will be retransmitted simply because the acknowledgment did not
arrive on time. These spurious retransmissions would lead to a significant, and unnecessary,
increase in network load. If the timeout is set too high, then the source will sit and wait
far too long to retransmit the packet, causing unnecessary delays. While TCP mitigates
this problem by using previous round-trip-times as an indicator of when a timeout should
occur, queuing delays can make round-trip-times highly variable [18, 42]. As a result, TCP
must still wait a long time to ensure that the packet drop has occurred, often unnecessarily
delaying its retransmission.

In an attempt to further reduce retransmission delays, enhancements were adopted to
leverage out-of-order delivery as an early indicator of loss [34]. That is, packets not received
before those transmitted later were presumed to be lost. As soon as this loss is detected, TCP
retransmits them, avoiding the need to wait for a timeout. Unfortunately, this approach is
problematic for datacenters for multiple reasons. First, many paths typically exist between
a source and destination. Ideally, we would spread packets across these paths to evenly
balance the load. However, doing so will increase the likelihood that they be delivered to the
destination out of order, causing TCP to believe that a loss had occurred. Second, messages
in the datacenter are small [24]. If a message only consists of one packet, then there will
not be any later transmissions indicating that the previous one had been dropped. Instead,
TCP will have to fall back, relying on timeouts.

In the absence of other signals in the network, TCP uses the same packet drop detection
mechanisms as an indication of congestion, dropping its transmission rate. Unfortunately,
at the point that TCP detects a packet drop, the network has been congested for a long time
as the buffers of the switch will first fill before a packet is dropped. To address this problem,
a mechanism called ECN (Explict Congestion Information) [33], was added to inform TCP
earlier that congestion was occurring. ECN provides TCP with 1 bit of information specifying
that a queue has built up. TCP then reduces its rate to drain the queue, thereby reducing
the latency experienced by delay-sensitive flows. This approach is used in combination with
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Random Early Drop (RED) [35], which performs probabilistic marking based on average
queue lengths and CoDel [48], which marks packets if the minimum queue occupancy over a
certain duration exceeded a threshold. While ECN provides more information to transport,
it is still quite minimal, opting for generality and interoperability over performance. For
example, as ECN does not inform TCP how much it should reduce its rate by, TCP typically
cuts its rate by half and then searches for the correct rate by increasing it periodically and
checking to see if congestion occurs. Furthermore, as support for ECN is optional, TCP
cannot depend on its existence and must be robust to environments where only a subset of
the switches over which a flow traverses employ / enable ECN marking.

In addition to making TCP take a long time to react to packet drops and to find its
appropriate sending rate, the absence of direct signals from other layers make TCP prone
to pathological conditions that can cause dramatic throughput degradation and / or latency
spikes. One such problem is Incast [55]. Incast is a phenomenon where many sources
simultaneously send to the same destination, experience packet drops, and timeout, causing
link underutilization. This phenomenon is common in datacenters as they must typically
aggregate results across many servers that were enlisted to parallelize processing. These
problems demonstrate the perils of relying on a stack consisting of independent layers which
make minimal assumptions about each other when trying to achieve predictable network
latencies.

2.3 Datacenter Design Opportunities

Fortunately, the datacenter environment is unique. The single administrative domain
provides the opportunity to tightly integrate the layers of the stack, achieving greatly im-
proved network performance. Furthermore, single administrative control makes it possible
to modify all of the servers and / or switches in a datacenter, creating a homogenous envi-
ronment where all nodes leverage the same stack, further simplifying design and deployment.

Additionally, modern commodity switches provide a suite of protocols that can be used
to improve datacenter performance [3]. Here we focus on two, which are important for
our goal of achieving reduced network latencies. The first, Pause, and its extension Priority
Flow Control (PFC) performs link-layer flow control [12]. The second, Quantized Congestion
Notification (QCN) performs fine-grained rate limiting at the link layer [5]. We now discuss
each in turn.

Pause leverages inter-switch communication to prevent packet drops. When the buffers
of a switch start to fill, it sends Pause messages to all of its neighbors contributing to con-
gestion, asking them to postpone transmission. As the buffers drain, the switch will inform
its neighbors that it is safe to resume transmission. With the tight timing requirements that
exist with Pause [13], it can be configured in such a way as to prevent congestion-related
packet drops. Networks that do so are typically known as lossless.

A key advantage of Pause is that it operates at a much finer time granularity than
end-to-end approaches employed by host-based protocols (e.g. TCP). Consider how long it



Section 2.3. Datacenter Design Opportunities 12

takes for TCP to react to congestion. First the switch must mark that congestion is being
experienced by setting the ECN flag. Then the packet must travel to the destination, where
a specially marked acknowledgment is generated to inform the source that congestion is
occurring. This acknowledgment must then travel back to the source. Finally, the source
receives the acknowledgment, reducing its transmission rate. In contrast, a switch experi-
encing congestion can generate a Pause message in hardware, have it sent to the appropriate
neighbors, which react to it in hardware, postponing transmission over the link. Clearly,
Pause is far more effective at preventing packet drops than a host-based approach.

However, Pause also suffers from a significant disadvantage known as head-of-line block-
ing. As an example, lets look at the case where two flows A and B, are sharing a link. The
switch receiving packets from this link starts to experience congestion, with too many flows
simultaneously contending for the same output port. In our example, only flow A is con-
tributing to this contended output port, while flow B is traversing through another one. If
the switch decides to send a Pause message, it will inform the previous hop to postpone
transmission over the link, in effect unnecessarily delaying the transmission of flow B.

PFC was introduced to mitigate this problem by allowing the transmission of eight
different priorities, or traffic classes, to be postponed individually. By mapping different
traffic types into different priorities, PFC removes the head-of-line blocking that would occur
between them. Unfortunately, head-of-line blocking can still occur within a priority, and
there are relatively few priorities, making the division of traffic coarse-grained. Therefore,
while helpful, PFC must still be used carefully to avoid a significant drop in throughput.

Another protocol at our disposal is Quantized Congestion Notification (QCN). With
QCN, switches monitor their output queues. As queues start to build, switches send noti-
fications back to the sources, requesting that they reduce their rate by a certain amount.
Sources respond, dropping their rate. To recapture bandwidth that is no longer used, after
a short duration, sources will begin probing the network by slowly increasing their transmis-
sion rate. By performing fine-grained rate adjustments, we have seen that QCN is capable of
achieving high throughputs while maintaing low queue occupancies and hence low latencies.

Unfortunately, QCN also has some important limitations. First, QCN relies on hardware
rate limiters at sources. The number of such rate limiters is fixed, typically to a small
number. This means that a large fraction of the source’s traffic may have to share the same
rate limiter, causing head-of-line blocking where multiple flows are capped to the rate of the
flow contributing most to congestion and hence having the slowest rate. Second, QCN works
independently of, and is unaware of TCP. This means that QCN and TCP may interfere,
making conflicting decisions. Or, QCN may hide congestion information from TCP, leading
to suboptimal decisions. Therefore QCN, like PFC, must be used judiciously to achieve high
networking performance.
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2.4 Recent Datacenter Network Proposals

The need to create new approaches to achieve predictable latencies as well as the oppor-
tunity to quickly make significant modifications in datacenter environments have generated
many proposals for addressing various aspects of the problem. These approaches primarily
focus on three areas: (i) reducing the likelihood or cost of packet drops, (ii) evenly balancing
network load, and (iii) effectively prioritizing latency-sensitive flows.

As described earlier, packet drops pose a problem for TCP because they can lead to
resource-wasting timeouts. One way to address this problem is by reducing the likelihood of
packet drops. Two prior solutions that advocate for this approach are DCTCP and HULL
[18,19]. Both of these approaches strive to reduce TCP’s buffer occupancy while maintaining
high throughputs. Leaving switch buffers free enables them to absorb unpredictable traffic,
reducing the likelihood of packet drops and retransmissions.

DCTCP achieves its goal by modifying TCP’s response to ECN marks. In response
to both ECN marks and packet drops, TCP traditionally cuts its rate by half. It then
periodically increases its rate by a fixed increment. This coarse-grained rate reduction forces
TCP to require high ECN thresholds (and correspondingly large buffers) to achieve high
throughputs. If ECN thresholds are not set sufficiently high such that TCP overshoots its
ideal rate by a large fraction, then when TCP cuts its rate in half, it will spend a long time
transmitting at less than its ideal rate. This will result in a large drop in throughput.

To address this problem, DCTCP proposes employing fine-grained rate adjustments
based on the frequency with which ECN marks occur. For example, if only a few ECN
marks are received within a short duration, TCP will only reduce its rate by 20%. This fine-
grained rate adjustments enable ECN thresholds to be set much lower without a significant
drop in throughput. By setting the ECN thresholds lower, we experience a corresponding
drop in buffer utilization, freeing switch buffers to be used for absorbing unpredictable packet
bursts.

One problem that DCTCP fails to address is that servers typically send traffic in large
bursts. A key reason why these bursts occur is that modern network interface cards enable
TCP to offload large amounts of data to them. These network interface cards then divide up
the data into packets for TCP, and transmit them. Having the network interface card pack-
etize the data, allows servers to reduce CPU loads and is necessary for efficiently achieving
the high network speeds required in datacenter networks.

At the same time, these bursts pose significant challenges for the network. Bursts can
cause packet drops even if sources are all transmitting at their ideal average rates. When two
bursts arrive at a switch at the same time, they fill up buffers, potentially overflowing them.
Furthermore, they make it more challenging to determine when to set the ECN threshold.
Setting it too low causes it to react to a burst, unnecessarily decreasing throughput. Setting
it too high leads to greater buffer occupancies and hence a reduced ability for switches to
absorb unpredictable traffic.

To address this problem, HULL proposes new, simple hardware for pacing out packets.
The hardware is placed after the network interface card and is designed to match the aver-
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age incoming and outgoing transmission rates. By spreading out bursts, HULL avoids the
problems associated with handling them, enabling DCTCP to operate much more effectively.

An alternative approach to reducing the problem associated with packet drops is to
mitigate the cost of them. This is the approach advocated for by [55] and by pFabric [20].
Both of these approaches advocate for reducing the minimum retransmission timeout far
below the 200ms typically used in today’s Internet. They both showcase greatly reduced
high-percentile latencies with sub 1ms timeouts. While effective, this approach has a limit
at which employing tighter timeouts will lead to spurious retransmissions and the resultant
increase in network load.

The second problem, evenly balancing load across the network, while highly desirable, is
particularly challenging given TCP’s sensitivity to out-of-order delivery. Recently multiple
efforts have been proposed to address this problem. Hedera, employs a centralized approach
where a controller periodically remaps flows to alleviate hot-spots [16]. By performing these
operations infrequently, Hedera reduces the likelihood of out-of-order delivery. Another
approach, MPTCP [52], leverages a host-based solution where each host opens multiple
subflows to the same destination. Subflows take different paths and each one behaves like
a traditional TCP flow. In response to congestion, MPTCP balances load across these
subflows, moving traffic away from congested paths.

The third problem of effectively prioritizing latency-sensitive flows came from the fact
that all packets transmitted in a datacenter network used to have the same priority. When
they arrived at a switch, they were processed in FIFO order, waiting their turn to be trans-
mitted. This approach supported TCPs focus on cross-flow fairness, where every flow should
obtain its fair share of a congested link’s bandwidth.

This decision is suboptimal for datacenter environments where some flows are much
more latency-sensitive than others [18, 56]. Clearly, the packets of such flows should be
given a higher priority than the packets of latency-insensitve ones. To create a prioritization
mechanism, two questions arise: (i) how to determine a flow’s priority and (ii) which switch
mechanisms to employ to enforce it. D3 and PDQ determine priorities based on the flow’s
deadline and then traverse through the path, reserving bandwidth. They do this frequently
(once every round-trip-time) to support newly-arriving flows with short deadlines. pFabric
takes a different approach, determining priorities based on the number of bytes remaining
in the flow and employing switch-based modifications that pick and transmit packets based
on this value.

While these approaches make strides in addressing the problems they focus on, often
they are unable to completely resolve them. DCTCP and HULL are unable to completely
avoid packet drops while Hedera and MPTCP both operate a timescales that are far too
coarse-grained to assist short flows. Other approaches, such as D3 and PDQ have the
significant drawback of requiring that no transmissions occur during the first round-trip-
time (RTT) because they must first make a reservation. This is a significant limitation for
datacenters where most flows could complete in just one RTT [24]. Finally, some approaches,
such as pFabric, make strong assumptions about the ability to predictably achieve tight
timeouts, which may be difficult to do in practice.
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Perhaps more importantly, it is often unclear how these mechanisms can be combined
into a coherent solution. By making smaller rate adaptations in response to ECN marks,
DCTCP’s and HULL’s fine-grained mechanisms take longer to converge to the ideal rate,
making them difficult to combine with an adaptive load balancing scheme. D3 and PDQ on
the other hand, make it challenging to evenly balance load without either over-reserving or
under-reserving resources since they do not know ahead of time which of their requests will
be granted.

In a departure from prior work, in this thesis, we strive to simultaneously address multi-
ple causes of unpredictable flow completion times, or to at a minimum develop mechanisms
that could be readily combined into a complete solution. But before doing so, we must
develop a platform for evaluating different proposals and analyze the impact of inflated
high-percentile flow completion times on page creation. The next two chapters address each
of these issues in turn.
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Chapter 3

Platform

As mentioned in the previous chapter, to evaluate various datacenter proposals, we must
create one or more platforms in which to compare them. This represents a significant chal-
lenge. Different platforms have varying limitations which make them incapable of evaluating
differing aspects of the datacenter proposals we are comparing. Testbeds typically are not
sufficiently large, lacking the hundreds of servers necessary to observe datacenter phenom-
ena. Those that are typically do not support rich custom topologies (e.g. FatTrees) with
configurable switch behavior. Simulations on the other hand are unable to verify that their
results accurately model real-world phenomena.

In this chapter, we present our approach to addressing this problem. We employ two
platforms: a simulator and a test-bed based implementation. By using the test-bed based
implementation to verify our basic assumptions and the simulator to evaluate scaled-up
performance, we are able to perform a much more thorough evaluation. We now describe
each of our platforms in turn.

3.1 Simulation

Many options exist for simulating datacenter network proposals. Broadly, there are two
types of simulators: packet-level simulators and flow-level simulators. Common examples
of packet-level simulators include NS-2 [10] and NS-3 [11]. These simulators calculate the
transmission and reception times of each packet as it traverses every hop from the source
to the destination. They explicitly account for queuing by having packets ”wait” at a node
until its transmission time. In certain cases, these simulators can even process the code of
the TCP Linux stack to determine exactly when events such as retransmission should take
place [9].

Unfortunately, all of these benefits come with a significant limitation: packet-level sim-
ulators are unable to scale to the tens or hundreds of thousands of nodes typically employed
in datacenters. The two primary reasons for this limitation are that (i) the large amount of
per-packet processing required to simulate transmission through the network and (ii) the dif-
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ficulty of parallelizing event-based simulators. As a result, all of the packet-level simulators
we are aware of are single-threaded.

An alternative is to employ flow-level simulators. Prior work has demonstrated that
these simulators achieve far greater scalability than packet-level simulators [52]. Unfor-
tunately, they do so at a cost: as they no longer simulate the dynamics of every packet
traversing through the network, these simulators do not enable fine-grained analysis. Since
the focus of this thesis is on high-percentile latencies, we depend on this fine-grained analy-
sis to evaluate the viability of different protocols for datacenter networks. Consequently, we
focus on achieving the best performance possible with packet-level simulators.

To create a simulation environment, we chose with NS-3 as a starting point [11]. In
addition to the challenges typically facing packet-level simulators, NS-3 has two additional
problems: (i) it is not designed to handle a large number of small connections entering and
leaving throughout the duration of the simulation and (ii) it lacks implementations of many
of the components typically available in modern datacenter switches.

Addressing the first problem required two steps. First, we traced through NS-3 opera-
tions for connection establishment and teardown, ensuring all resources were released once
a connection finished, reducing the memory leaks in the system. Second, we had to ensure
that the connections, themselves were deallocated as soon as the transfer was completed.
For example, we needed to remove TCP’s TIMED-WAIT state, which is designed to have a
socket persist after transmission to process any spuriously retransmitted packets. To avoid
this problem, we deallocate the socket as soon as the transfer completes and send Reset
(RST) packets, avoiding the long durations associated with TCP’s traditional connection
teardown.

The second problem represents a different type of challenge. Not only do we need to
implement the required functionality, we need to ensure that the reaction times to different
operations are correct. For example, when employing link-level flow control, we would see
very different behavior based on the time it takes for pause messages to be transmitted
and responded to. To address this problem, we analyze IEEE standards specifying required
reaction times [13], product documentation [4, 12], and prior studies of server processing
times [43]. Where appropriate, we include these delays in our simulation to improve its
accuracy.

3.2 Implementation

Creating the implementation environment is also challenging. To properly analyze the
behavior of different networking proposals, we need knowledge and control of the underlying
network topology. Additionally, as many proposals depend on switch modifications, we
require the capability of modifying switch behavior (both hardware and software) as well.
These requirements make IaaS-based solutions infeasible as they do not provide knowledge
or control over the underlying network [2], which is unfortunate as they would have enabled
us to evaluate proposals at larger scales.
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Figure 3.1: Emulab enables us to create custom topologies. Enabling / disabling certain
links (left) allows us to use the switch as a patch-pannel to achieve the desired topology
(right).

Instead, we rely on a combination of Emulab [7] and Click [45]. Emulab is a testbed
environment that allows us to create a custom topology between a set of servers, while Click
is a software router platform. In combination, these two technologies enable us to create a
custom topologies and evaluate different networking proposals.

Emulab testbeds typically have servers that are connected to the same switch multiple
times [25]. In this environment, we can specify both which links are enabled as well as how
they are connected together. Figure 3.1 demonstrates how this powerful abstraction allows
us to use the switch as a patch-pannel, creating a custom topology between the servers in
the testbed. On the left, we see the physical links that are connected together, while on the
right we see the logical topology this creates. Once the topology is created, all that remains
is having the appropriate servers in the topology emulate switches (e.g., the top two servers
in this Figure).

To emulate switch behavior, we chose Click. Click is a modular software router platform
designed to make adding new functionality simpler. In Click, every operation is performed
by a unique module. Different modules are used for polling a port to see if packets have
arrived, looking up the destination IP address to determine the next hop, decrementing IP’s
time to live field, recomputing the checksum, sending the packet to the output port, and
many of the other operations performed by a router. A configuration file is used to specify
the flow of packets through these components.

A key benefit of this design is that it allows new components with the needed func-
tionality to be placed anywhere between existing ones. Similarly, existing components can
be swapped out with new ones performing different functionality. This extreme modularity
dramatically increases prototyping speed by enabling us to quickly program new functional-
ity.

Unfortunately, while Click’s modularity makes adding new features simple, this platform
does not focus on achieving predictable performance.We require that our software routers



Section 3.2. Implementation 19

Server	  
	  
	  
	  
	  
	  
	  

Click	   Driver	  
ToDevice DMA 

Figure 3.2: Path packets take after being ”sent” by Click. The are (i) stored in the device
driver’s ring buffer, (ii) DMAed to the NIC, and (iii) stored in the NICs buffer before being
placed on the wire.

and end hosts perform predictably to obtain accurate measurements, especially at high
percentiles. To address these limitations, we make the following key modifications to the
Click platform.

3.2.1 Controlling Switch Buffers

One problem we faced with Click is that it does not control the complete forwarding
path between packet reception and transmission. When Click ”sends” a packet, it is actually
enqueued on the driver’s ring buffer. Later, the packet is DMAed to the NIC, where it sits
in another buffer until finally being placed on the wire. We depict this in Figure 3.2.

In total, the NIC and driver buffers can store hundreds of KB worth of packets. This
is significant, especially compared to the limited buffers commonly available on modern
ethernet switches [3]. Minimizing the occupancy of these buffers (while maintaining high
throughput) is critical for many reasons. First, it allows the buffering employed by Click to
more accurately reflect the per-port buffering capacity of real switches. Second, it allows the
decisions taken by Click to take effect in the appropriate amount of time, instead of waiting
for a large number of packets to be flushed out out the driver and NIC. Finally, it enables
Click to have a more accurate understanding of the congestion being experienced.

We explored two alternatives to addressing this problem. The first was to reduce the
size of the ring buffer at the driver, causing it to fill sooner and keeping more packets under
Click’s control. The second was to cap Click’s sending rate to one that is slightly smaller
(e.g. 2%) than that of the link. We chose the latter approach because (i) it would control
the buffers used by both the driver and the NIC (the first approach only helps the driver)
and (ii) it is a general approach that works across different drivers.

There was one difficulty with this approach. We needed to strike a balance between the
desire to keep buffers as lightly utilized as possible and keeping the driver and NIC buffers
sufficiently full to ensure high throughput. Fortunately, our experiments show that for the
1Gbps links used in our implementation, allowing up to 8KB to be forwarded to the driver
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and NIC before the expected transmission time is sufficient for maintaining high throughput.

3.2.2 Scheduling Modules Predictably

Another challenge is ensuring that Click’s modules are scheduled predictably to minimize
the variance in packet processing times. There are two aspects of this problem: (i) Click’s
data flow abstractions do not enable us to specify when certain functionality should be
executed and (ii) Linux treats the processes and kernel threads running Click just like any
other, often choosing to swap them out in favor of performing other computation. Both of
these problems make it challenging to achieve predictable packet processing times.

Addressing the first aspect of the problem primarily involves understanding how Click
maps modules into threads of execution and the order in which it executes them. Fortunately,
in multithreaded environments, Click provides the functionality to allow us to specify which
modules will be executed by which threads. However, it does not allow us to specify in which
order they will be executed. Furthermore, as a default, it employs a stride scheduler which
strives to achieve greater efficiency by running modules that do useful work more frequently
than those that do not.

While effective, Click’s stride scheduler has an undesirable side effect. Consider the case
where a module is tasked with performing an important operation that occurs relatively
infrequently. With Click’s stride scheduler, when that event occurs, it will take the stride
scheduler a long time to run that module, delaying its operation. To address this problem,
we swap the stride scheduler with a round-robin one. With the round-robin scheduler, every
Click module runs at a predictable frequency, ensuring that important events will not be
unnecessarily delayed.

The second problem represents a greater challenge. Ideally, we want the processes
and kernel threads running Click to never be swapped out, so as to prevent any blips in
performance. One possibility is to port Click to another operating system with more explicit
control of how threads and processes are scheduled. Given the high development costs
associated to with such an approach, we choose to work with the Linux scheduler instead,
leveraging all the knobs it provides.

The Linux scheduler allows a subset of available cores to be isolated at boot time. When
this flag is specified, the Linux scheduler will avoid running tasks on these cores. This means
that any threads or processes we choose to run on these cores will experience a minimally
contended environment. By pinning Click’s processes and threads to these cores, we minimize
how frequently they are interrupted, achieving more predictable packet processing times.

3.2.3 Minimizing Control Traffic

The last problem we face with Click is reducing the amount and impact of control traffic.
Control traffic transmission and processing can cause network unpredictability. ARP, for
example, which dynamically creates a mapping between IP and MAC addresses can delay
packet transmission until the mapping for a new IP address is obtained. Similarly, distributed
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routing protocols can take a long time to converge, causing packets to take suboptimal paths,
or worse yet travel in circles.

As the focus of this work is primarily on the achieving predictability over static topolo-
gies, we sidestep this problem by hard-coding all the necessary IP to MAC mappings as well
as the next-hop decisions that are made as packets traverse from the source to the destina-
tion. This ensures that packet transfer times are determined based on queuing, propagation,
and transmission delays instead of delays due to the transmission and processing of control
traffic.

Having created both our simulation and implementation environments, in the next chap-
ter, we turn our attention to analyzing the impact of unpredictable flow completion times
on page creation workflows. In Chapters 5 and 6, we propose and evaluate two alternatives
to addressing this problem.
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Chapter 4

Impact of Highly Variable Latencies

In this chapter, we evaluate the impact of highly variable latencies on page creation.
To perform this evaluation, we must understand both the distribution of latencies typically
encountered as well as the page creation workflows commonly employed. We analyze each
in turn, leveraging traffic measurements from production datacenters for the former and
previously reported workflow patterns for the latter.

From this analysis, we see that page creation workflows are typically both complex and
application-dependent. So we model a set of simple workflows, stressing the properties typ-
ically found in the more complex, real-world ones. We compare how these simple workflows
perform under the measured distribution to synthetic ones having tighter latencies, showing
that highly variable latencies significantly impact page creation times.

Given the large impact on page creation, we propose solutions for addressing this prob-
lem in the following chapter.

4.1 Traffic Measurements

Microsoft researchers [18] have published measurements from a production datacenter
network. Servers connect to this network via 1 Gbps links and run services like web search.
Figure 4.1 (reproduced from [18]) depicts the measured intra-rack round-trip-times (RTTs).
While RTTs are typically low, congestion causes them to vary by two orders of magnitude,
forming a long-tail distribution. In this particular environment, intra-rack RTTs take as little
as 61µs and have a median duration of 334µs. But, in 10% of the cases, RTTs take over
1ms. In fact, RTTs can be as high as 14ms. These RTTs are the measured time between
the transmission of a TCP packet and the receipt of its acknowledgement. Since switch
queue size distributions match this behavior [17], the variation in RTTs is caused primarily
by congestion.
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Figure 4.1: Measured intra-rack RTTs, reproduced from [18].

4.2 Page Creation Workflows

The most commonly described page creation workflow is called Partition-Aggregate
[18, 56]. This workflow is typically used to parallelize operations such as web search, re-
ducing completion times. We depict this workflow in Figure 4.2. Top level aggregators
(TLAs) receive search requests. They divide (partition) the query across multiple mid-level
aggregators (MLAs), who further partition the query across worker nodes. Worker nodes
perform the computation in parallel and send their results back to their MLA. Each MLA
aggregates the results it receives and forwards them on to the TLA. The TLA aggregates
results obtained from all MLAs, providing a complete result.

The interactions to create a page may be much more complicated than those depicted by
the figure. A partition-aggregate tree may have more levels and multiple partition-aggregate
trees may executed to obtain the result to a single query [18]. As a result, conservative
timeouts must typically be set at each level so that higher levels have sufficient time to
aggregate the results. Typically 10ms is given to each worker node and 50ms is given to
each aggregator. When a node takes too long to respond, the web site has two poor options.
It can either (i) return early, degrading the quality of the result or (ii) delay the response,
violating user-interactivity deadlines.

In 2013, Facebook reported that they employ even more complex workflows to construct
a single page [49]. In these workflows, over 1000 objects may be retrieved to construct a single
page. To make matters more complicated, these retrievals may have sequential dependencies.
That is, the server may have to wait for the results of previous retrievals to determine the
next object to request. This severely limits the achievable parallelism and hence the number
of operations that can be reliably performed within user-interactivity deadlines.

From these two examples, we see that workflows are both complex and application-
dependent. In the next section, we evaluate how the tail of latencies impacts page creation
workflows.
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Figure 4.2: Partition-aggregate workflow. To satisfy top-level user-interactivity deadlines of
200ms, workers are typically given 10ms deadlines and MLAs are given 50ms deadlines.
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Figure 4.3: Intra-rack RTTs following a normal distribution (synthetic). The distributions
vary in their median, which is set to be 1x, 2x, or 3x of that of the measured distribution.

As the workflows employed for page creation have complex interactions that depend
greatly on the functionality being provided, evaluating them is challenging. Our approach
is to employ models that stress the key aspects of these workflows. Looking back at the
previous section, we see that regardless of the functionality being provided, workflows have
sequential and parallel components. So, we evaluate the impact of long tails by creating
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Figure 4.4: Intra-rack RTTs following a exponential distribution (synthetic). The distri-
butions vary in their median, which is set to be 1x, 2x, or 3x of that of the measured
distribution.

models of sequential and parallel workflows and quantifying how they would be affected by
highly variable latencies.

Our models take as input (i) the amount of time it takes the server to obtain a response
for each request and (ii) the number of parallel/sequential requests in each workflow. We
obtain values for the former by drawing them from the measured distribution in Figure 4.1.
This approach assumes that each request/response takes one RTT, which is appropriate
since we must send requests to nodes before we can obtain responses from them. We note
that this is a conservative assumption because we assume no server processing delays and
no packet drops. Packet drops cause retransmissions, and perhaps even timeouts, inflating
latencies.

As comparison points, we investigate how these workflows perform under normal and
exponential distributions. For both distribution types, we report the results for a family of
curves having medians that are 1x, 2x, and 3x that of the measured distribution. To ensure
a fair comparison, we require that the minimum value drawn from these distributions be
larger than or equal to the minimum in the measured one. Figures 4.3 and 4.4 depict the
normal and exponential distributions, respectively.

A key parameter when specifying the normal distribution is the standard deviation (σ).
For the purpose of understanding the impact of tails on workflows, we set sigma to be the
difference between the 50th and 16th percentile of the measured distribution. We chose to
set sigma based on the lower percentile (16th) instead of the higher one (84th percentile)
because we wanted to highlight the benefits of a smaller tail. This provides a better contrast
to the measured distribution.

We now analyze how these different distributions affect our parallel and sequential work-
flows, discussing each in turn. Since high-percentile completion times are considered to be
a key metric, we focus on 99.9th percentile workflow completion times. This is the highest
percentile evaluated by prior work [18,31].
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Figure 4.5: Probability that a number of workers in a 40-worker workflows miss their 10ms
deadline under the exponential distribution.

In parallel workflows, an aggregator requests results from many workers at the same
time. As shown in Figure 4.2, workers currently have just 10ms to perform their computation
and deliver their result. Results from worker nodes who do not meet this deadline are
typically discarded. To make matters worse deadlines are becoming tighter, as workflows
become more complex to provide richer content, while meeting the same user-interactivity
requirements.

To assess the impact of different distributions, we report how they affect workflows with
varying numbers of workers. We vary the number of workers from 40, the number typically
responding to the same MLA, to 4000. We compute the number of workers that have missed
their deadlines by drawing the round trip times from the specified distributions and counting
how many have exceeded the 10ms threshold.

A challenge with our evaluation is determining how many times to run the model.
Running the model more times increases the number of data points, enabling analysis at
finer-grained percentiles. At the same time, increasing the number of runs increases compu-
tation time. To balance these two competing concerns, we chose to run each model 10000
times. This ensures that even at the 99.9th percentile, there will be 10 runs having a larger
number of workers miss their deadlines.

40-worker
We first evaluate the likelihood that a 40-worker workflow has a certain number of work-
ers miss their deadlines. We depict the probabilities under the exponential distribution in
Figure 4.5 and the measured distribution in Figure 4.6. Under the normal distributions
(not depicted), our model does not see a single worker miss their deadline. Looking at the
exponential distribution with the longest tail (where the median is 3x of the measured one),
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Figure 4.6: Probability that a number of workers in a 40-worker workflow miss their 10ms
deadline under the measured distribution.

we see that at the 99.9th percentile a 40-worker workflow will see 1 (2.5%) worker miss its
deadline. On the other hand, a 40-worker workflow under the measured distribution will
see 4 (10%) workers miss their deadline. As both the worst-case normal and exponential
distributions can have medians 3x higher than that of the measured one, this experiment
demonstrates that tail performance impacts workflows much more than the median.
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Figure 4.7: Probability that a number of workers in a 400-worker workflows miss their 10ms
deadline under the exponential distribution.

400-worker
By scaling the workflow up to a larger number of workers (400), we uncover new properties.
In Figures 4.7 and 4.8 we report the probability that a certain number of workers will miss
their deadlines under the exponential and measured distributions, respectively. Once again,
our model sees no missed deadlines under the normal distribution. Under the measured
distribution, at the 99.9th percentile, a workflow will have 15 (3.75%) workers miss their
deadlines. Compare this to to the exponential distribution with the largest tail, where just
3 (0.75%) of workers miss their deadlines.
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Figure 4.8: Probability that a number of workers in a 400-worker workflow miss their 10ms
deadline under the measured distribution.

Perhaps most important, is the performance of the median workflow. We see that under
all distributions other than the measured one, the median workflow has zero missed dead-
lines. Under the measured distribution, the median workflow has 6 (1.5%) of its workers miss
their deadlines. Thus for sufficiently large workflows, it becomes likely that some workers
will miss their deadlines during most queries.
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Figure 4.9: Probability that a number of workers in a 4000-worker workflows miss their 10ms
deadline under the exponential distribution.

4000-worker
We scale up the number of workers once more to 4000. The impact of the exponential
and measured distributions on the number of workers that miss their deadlines is depicted
in Figures 4.9 and 4.10, respectively. As before no workers miss their deadlines under the
normal distribution. Looking at the impact of the measured distribution, we see that for this
large workflow, we expect workers to miss their deadlines for every query. And the number
of workers that miss their deadlines is not small; at least 34 (0.85%) of workers miss their
deadlines across all our runs with the measured distribution.
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Figure 4.10: Probability that a number of workers in a 4000-worker workflow miss their
10ms deadline under the measured distribution.

Clearly, these results have demonstrated that tail performance has greater impact on
workflow completion times than the median. But there are two attributes to the tail that
must be considered – its length and the probability of hitting it, or heaviness. In our
experiments, the max value drawn from our exponential distributions was 13.35, while the
maximum value drawn from our measured distribution was 13.95. At the same time, our
results show a dramatic difference between the number of missed deadlines between the
worst-case exponential distribution and the measured one.

For the purposes of this evaluation, we quantify the heaviness of the tail as the proba-
bility of drawing values larger than 10ms. Since our focus is on the response times that lead
to missed deadlines, this quantification is appropriate for our purposes. We see that under
the measured distribution, the probability of drawing a value larger than 10ms is over 1.4%.
Compare this with 0.095% under the worst-case exponential distribution. As the median
4000-worker workflow misses 1.5% and 0.075% of its deadlines under the measured and ex-
ponential distributions, respectively, the heaviness of the tail seems to be a better indicator
of the difference we see in workflow performance.

4.3.1 Sequential

As mentioned earlier, many workflows have serial dependencies where the next request
cannot be performed until the results of the previous one have been obtained. Thus a request
that hits the tail in this environment may cause the whole workflow to stall, delaying the time
it takes to complete. When this happens, the same sequential dependencies make it much
harder to abandon the request and return early. Today, web-sites address these problems by
working to reduce the number of sequential requests required for each page creation [50].

To obtain some intuition about the impact of the tail in this environment, we model
a sequential workflow. In this workflow, a single server performs a series of requests. Each
request is only performed once the results of the previous one have arrived. The workflow
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Figure 4.11: 99.9th percentile completion times of sequential workflows under the measured
distribution.
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Figure 4.12: 99.9th percentile completion times of sequential workflows under the normal
distribution.

completes when the last request has arrived. As before, we draw request completion times
from the normal, exponential, and measured distributions. We also run our model 10000
times for the same reasons described for parallel workflows.

In Figures 4.11, 4.12, and 4.13, we report the 99.9th percentile completion times under
the measured, normal and exponential distributions. Datacenter workflows are expected to
meet user-interactivity deadlines of 200ms, 99.9% of the time. So, these figures demonstrate
how many requests the workflow can reliably support under each distribution, for a given
deadline.

These figures indicate that increases in median completion time lead to significant in-
creases in workflow completion time. Under the normal distribution the number of retrievals
we can support within 200ms drops from 500 to a little over 150 as the median increases by
3x. In the exponential distribution, the number of sequential queries we can support within
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Figure 4.13: 99.9th percentile completion times of sequential workflows under the exponential
distribution.

200ms drops from 350 to 100 as we increase the median by 3x.
We note however, that the tail still significantly impacts performance. All of the normal

distributions we evaluated outperform the measured one, which must have fewer than 150
sequential data retrievals to complete within 200ms. Both the exponential distributions
having 1x and 2x the median also outperform the measured one.

Unlike the parallel workflows, the performance of sequential ones depends most on the
mean. Under the normal distribution, increasing the median by 3x increases the mean by
the same amount. This corresponds closely to the 3x drop we experience in the number of
data retrievals. We experience the same behavior for the exponential distribution. Finally,
we see that the exponential distribution with a median of 3x has a higher mean than the
measured one and hence performs worse. As the mean of the distribution depends greatly
on both the length and the heaviness of the tail, improving high-percentile performance is
very important for these workflows as well.

4.3.2 Takeaways

Long-tailed latency distributions make it challenging for workflows used for page creation
to meet interactivity deadlines. While events at the long tail occur rarely, workflows have
so many retrievals, that it is likely that several will experience long delays for every page
creation. Hitting the long tail is so significant that workflows actually perform better under
distributions that have higher medians but shorter tails.

At the same time, tail performance is likely to be far worse than that depicted in Figure
4.1. Packet drops may cause retransmissions, or worse yet trigger timeouts, dramatically
inflating tail latencies. Servers may experience unpredictable delays, hurting response times
as well.

Facebook engineers tell us that leaving highly variable latencies unaddressed forces their
applications to choose between two poor options [26]. They can set tight data retrieval time-
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outs for retrying requests. While this increases the likelihood that they will render complete
pages, long tails generate non-productive requests that increase server load. Alternatively,
they can use conservative timeouts that avoid unnecessary requests, but limit complete web
page rendering by waiting too long for retrievals that never arrive. A network that reduces
tail latency allows such applications to use tighter timeouts to render more complete pages
without increasing server load.

Throughout the remainder of this thesis, we focus on high-percentile latencies as the are
a much better indicator of workflow performance than the median. In the next chapter, we
discuss the key causes of long latencies and present a solution, DeTail that addresses these
problems.
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Chapter 5

DeTail

In the previous chapter, we evaluated how tail latencies impact page creation workflows.
We showed that the tail significantly delays workflow completion times, reducing the quality
of the page that may be constructed within user-interactivity deadlines.

Given these problems, in this chapter, we begin by focusing on the causes of high
latencies. We see that there are three key causes: (i) packet losses and retransmissions, (ii)
uneven load balancing, and (iii) the absence of prioritization. We describe each in turn,
explaining how they contribute to increased latencies.

As discussed in Chapter 2, while each of these causes has been studied by prior work,
and new mechanisms have been proposed, none of them represents a complete solution.
The previously proposed mechanisms typically only focus on a subset of the causes and its is
unclear how to combine them into a coherent whole that addresses all aspects of the problem.
To provide a complete solution, we depart from prior work by proposing a new stack, DeTail,
consisting of a series of tightly integrated layers that work together to overcome all three
causes of long-tails.

DeTail leverages link-layer flow control to prevent packet drops, network-layer per-packet
adaptive load balancing to evenly balance load, and in-network prioritization to provide re-
sources to latency-sensitive flows. Finally, DeTail employs end-host rate throttling, miti-
gating the head-of-line blocking that can occur due to link-layer flow control. We evaluate
DeTail on a network consisting of 1Gbps links, demonstrating its effectiveness at reducing
the tail.

While effective, DeTail’s reliance on link-layer flow control to create a lossless intercon-
nect presents two sets of challenges. First, as link speeds increase, the buffer requirements
for creating a lossless interconnect do as well. Second, approaches based on link-layer flow
control can experience extreme performance degradation when switches and/or end-hosts
misbehave. In the next chapter, we propose a solution that addresses both of these prob-
lems.
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5.1 Causes of Long Tails

As described in Chapter 2, prior work focused on three causes of long tails: (i) packet
losses and retransmissions, (ii) uneven load balancing, and (iii) the absence of prioritization.
Here we delve deeper, providing a thorough explanation of how each of these causes increases
tail latency. We then briefly revisit competing proposals, highlighting where they fall short.
In the next section, we present DeTail and demonstrate how it address all three causes.

5.1.1 Packet Losses and Retransmissions

Packet losses can drive up latencies, especially when they lead to resource-consuming
timeouts. In datacenters, these timeouts are typically set to 1 − 10ms [18, 55]. Since data-
center round-trip-times can be in the 10’s to 100’s of µs [20], just one timeout guarantees
that the short flow will hit the tail. Using shorter timeouts may mitigate this problem, but
it increases the likelihood of spurious retransmissions that increase network and server load.

Additionally, partition-aggregate workflows increase the likelihood of Incast [18, 56].
Workers performing computation typically respond simultaneously to the same aggregator,
sending it short flows. This sometimes leads to correlated losses that cause many flows to
timeout and hit the tail.

5.1.2 Uneven Load Balancing

Uneven load balancing drives up latencies when traffic is unnecessarily forwarded on
a more congested path, despite the availability of less congested ones. Recall that modern
datacenter topologies leverage multiple slower paths between a source and destination to
increase aggregate bandwidth [15, 38, 39]. At the same time, TCP’s single-path assumption
typically limits datacenter networks to performing flow-based hashing to spread load across
available paths. Since hashing is random and does not take into account flow size, this
approach can lead to congestion hotspots, driving up latencies for all flows traversing through
them.

Topological asymmetries make handling this problem even more important. Datacenter
network failures are common [30] and can affect the network in a variety of ways. For
example, a common type of failure reduces the speed of a 1Gbps link to 100Mbps [52].
Even when failures do not occur, asymmetries can occur due to incremental deployments
or network reconfigurations. From prior work [52], we have seen that an adaptive approach
that spreads a flow’s packets across multiple paths is an effective starting point for addressing
such asymmetries.

5.1.3 Absence of Prioritization

Datacenter networks represent a shared environment where many flows have different
sizes and timeliness requirements. Traces from production datacenters show us that they
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must support both latency-sensitive and latency-insensitive flows, with sizes ranging from
2KB to 100MB [18].

To achieve high throughputs, large throughput-sensitive background flows will try to
consume all available bandwidth and buffers. When the packets of short, latency-sensitive
flows arrive, they may become enqueued behind those of the large background flows. This
increases the likelihood that latency-sensitive flows will hit the long tail and miss their
deadlines. We must consider different flow requirements to avoid harming latency-sensitive
flows.

5.1.4 Current Solutions Insufficient

Packet Losses Prioritization Load Balancing
DCTCP

√
× ×

HULL
√

× ×
pFabric

√ √
×

D3
√ √

×
Hedera × ×

√

MPTCP × ×
√

DeTail
√ √ √

Table 5.1: Effectiveness of prior work at addressing causes of long tails in networks.

Prior approaches have been proposed to address each of these problems. We described
these approaches in Chapter 2. Here, we highlight the causes that each of these approaches
fails to address. As shown in Table 5.1, DCTCP, HULL, pFabric, and D3 do not perform dy-
namic load balancing. On the other hand, Hedera and MPTCP neither handle prioritization
nor mitigate the effects of packet loss.

Unfortunately, it is unclear how these approaches can be combined into a coherent
solution that addresses all three causes of high latency. Furthermore, certain solutions such
as pFabric rely on mechanisms such as extremely tight timeouts that may be difficult to
achieve in practice. Given these limitations, in the next section we propose a new stack that
employs a series of tightly integrated layers to simultaneously address all of the causes of
tail latency.

5.2 The DeTail Stack

DeTail is a new stack that leverages a set of tightly integrated layers to address the
causes of long tails. In this section, we first provide an overview of DeTail’s functionality
and discuss how it reduces tail latency. We then delve into the stack internals, describing
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Figure 5.1: The DeTail network stack uses cross-layer information to address sources of long
tails in flow completion times.

the specific mechanisms performed at every layer. We conclude this section by providing
intuition about how to set the parameters of the stack.

5.2.1 Overview

In Figure 5.1, we depict the DeTail stack. We see that each of the tightly integrated
layers makes explicit assumptions about and obtains information from the others. Here we
discuss how DeTail addresses all three causes of high latency.

Our first goal when creating DeTail is to reduce packet drops and retransmissions while
avoiding making single-path assumptions such as those employed by TCP. Furthermore, as
high-percentile performance is extremely important, we focus on minimizing drops or ideally
preventing them altogether.

Given these requirements, we choose to leverage link-layer flow control to construct a
lossless fabric [5]. Switches in lossless fabrics use link-layer flow control to prevent their
neighbors from transmitting to them when their buffers are full, thus ensuring that packets
are not dropped due to congestion. Since the network is now responsible for preventing packet
drops, this obviates the need for transport-level mechanisms that leverage the single-path
assumption to respond to them more quickly (e.g., TCP’s fast-recovery and fast retransmit).
By simply disabling these mechanisms, we create our reorder resistant transport.

Next, we focus on creating an approach to balancing load across available network paths.
The decision to employ link-layer flow control allows us to be ambitious - we can have every
switch make load balancing decisions on a per-packet basis. However, a key question is how
we can inform switches of downstream congestion so they can make more informed decisions.

Fortunately, link-layer flow control makes addressing this problem much more tractable.
When network congestion increases beyond a certain point, flow control prevents upstream
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Figure 5.2: Assumed CIOQ Switch Architecture

switches from transmitting. If congestion continues to increase, the buffers at these upstream
switches will fill, eventually preventing their upstream switches from transmitting as well.
As link-layer flow control causes congestion information to propagate upstream, we simply
use local buffer occupancies at every switch as an indicator of downstream congestion.

Lastly, we need to consistently prioritize the latency-sensitive short flows in the network.
To do so, we identify the locations in the fabric where priorities should be set and considered.
We made the applications responsible for setting priorities and ensure that the queuing,
transmission, load balancing, and flow-control decisions our network employs all consider
priority.

5.2.2 Stack Internals

Now we discuss the internal mechanisms in the DeTail stack that achieve the function-
ality presented earlier. We begin by describing our assumed switch architecture. Then we
go up the stack, discussing what DeTail does at every layer. We conclude by discussing the
benefits of our stack.

Assumed Switch Architecture

In Figure 5.2, we depict a four-port representation of a Combined Input/Output Queue
(CIOQ) Switch. The CIOQ architecture is commonly used in today’s switches [4, 47]. This
architecture employs both ingress and egress queues, which we denote as InQueue and
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Figure 5.3: We maintain per-priority counters for each queue. Each counter representing the
drain bytes for that priority. For clarity, in this figure, we count packets instead of bytes.

EgQueue, respectively. A crossbar moves packets between these queues.
When a packet arrives at an input port (e.g., RX Port 0), it is passed to the forwarding

engine (IP Lookup). The forwarding engine determines on which output port (e.g., TX Port
2) the packet should be sent. Once the output port has been determined, the packet is
stored in the ingress queue (i.e., InQueue 0) until the crossbar becomes available. When this
happens, the packet is passed from the ingress queue to the egress queue corresponding to
the desired output port (i.e., InQueue 0 to EgQueue 2). Finally, when the packet reaches
the head of the egress queue, it is transmitted on the corresponding output port (i.e., TX
Port 2).

To ensure that high-priority packets do not wait behind those with low-priority, the
switch’s ingress and egress queues perform strict priority queueing. Switches are typically
capable of performing strict priority queueing between eight different priorities [8]. We use
strict prioritization at both ingress and egress queues.

We employ strict priority queuing and higher layers of the stack make decisions based
on ingress and egress queue occupancies. Thus, we cannot simply provide one counter
per queue. Doing so will make higher layers unable to differentiate between queues that
are full of high-priority packets and queues that only have low priority ones. Clearly, the
inability to differentiate between these situations may cause suboptimal decisions to be made,
particularly when handling high-priority packets.

We address this problem by having the switch provide per-priority ingress and egress
queue occupancies to higher layers in the stack. Each queue maintains a drain bytes counter
per priority. As shown in Figure 5.3, this is the number of bytes of equal or higher priority
in front of a newly arriving packet. We chose this approach for two reasons. First, as our
switches use strict priority queuing, it provides an accurate quantification of the amount of
time the newly arriving packet will spend waiting in the queue. Second, we can maintain
these values by simply incrementing/decrementing the counters for each arriving/departing
packet in parallel. As a result, this approach works well, even at fast link speeds.

Having higher layers continuously poll the counter values of each queue may be pro-
hibitively expensive. To address this issue, the switch associates a signal with each counter.
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Whenever the value of the counter is below a pre-defined threshold, the switch asserts the
associated signal. These signals enable higher layers to quickly select queues without hav-
ing to obtain the counter values from each. When multiple thresholds are used, a signal
per threshold is associated with each counter. We describe how these thresholds are set in
Section 5.2.3.

Link Layer

At the link layer, DeTail employs flow control to create a lossless fabric. While many
variants of flow control exist [14], we use the one that recently became part of the Ethernet
standard: Priority Flow Control (PFC) [12]. PFC has already been adopted by vendors and
is available on newer Ethernet switches [8].

The switch monitors ingress queue occupancy to detect congestion. When the drain
byte counters of an ingress queue pass a threshold, the switch reacts by sending a Pause
message informing the previous hop that it should stop transmitting packets with the spec-
ified priorities. When the drain byte counters reduce, it sends an Unpause message to the
previous hop asking it to resume transmission of packets with the selected priorities1.

We generate Pause/Unpause messages based on ingress queue occupancies because pack-
ets stored in these queues are attributed to the port on which they arrived. By sending Pause
messages to the corresponding port when an ingress queue fills, DeTail ensures that the cor-
rect source postpones transmission.

Our choice of using PFC is based on the fact that packets in lossless fabrics can expe-
rience head-of-line blocking. With traditional flow control mechanisms, when the previous
hop receives a Pause message, it must stop transmitting all packets on the link, not just
those contributing to congestion. As a result, packets at the previous hop that are not con-
tributing to congestion may be unnecessarily delayed. By allowing eight different priorities
to be paused individually, PFC reduces the likelihood that low-priority packets will delay
high priority ones.

Network Layer

At the network layer, DeTail makes congestion-based load balancing decisions. Since
datacenter networks have many paths between the source and destination, multiple shortest
path options exist. When a packet arrives at a switch, it is forwarded on to the shortest
path that is least congested.

As mentioned earlier, DeTail monitors egress queue occupancies to make load balancing
decisions. Ideally, DeTail would pick an acceptable port with the smallest drain byte counter
at its egress queue for every forwarding decision. However, with the large number of ports
in today’s switches, the computational cost of doing so is prohibitively high. We leverage

1PFC messages specify the duration for which packet transmissions should be delayed. We use them here
in an on/off fashion.
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bitwise AND (&) of these two bitmaps gives the set of selected ports from which one is
chosen.

the threshold-based signals described earlier. By concatenating all the signals for a given
priority, we obtain a bitmap of the favored ports, which are lightly loaded.

DeTail relies on forwarding engines to obtain the set of available shortest paths to a
destination. We assume that associated with each forwarding entry is a bitmap of acceptable
ports that lead to shortest paths for matching packets2.

As shown in Figure 5.4, when a packet arrives, DeTail sends its destination IP address
to the forwarding engine to determine which entry it belongs to and obtains the associated
bitmap of acceptable ports (A). It then performs a bitwise AND (&) of this bitmap and
the bitmap of favored ports (F) matching the packet’s priority, to obtain the set of lightly
loaded ports that the packet can use. DeTail randomly chooses from one of these ports and
forwards the packet3.

During periods of high congestion, the set of favored ports may be empty. In this case,
DeTail performs the same operation with a second, larger threshold. If that does not yield
results either, DeTail randomly picks a port from the bitmap. We describe how to set these
thresholds in Section 5.2.3.

2Bitmaps can be obtained with the TCAM and RAM approach as described in [15].
3Round-robin selection can be used if random selection is costly
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Transport Layer

A transport-layer protocol must address two issues to run on our load-balanced, lossless
fabric. It must be resistant to packet reordering and it cannot depend on packet loss for
congestion notification.

Our lossless fabric simplifies developing a transport protocol that is robust to out-of-
order packet delivery. The lossless fabric ensures that packets will only be lost due to
relatively infrequent hardware errors/failures. As packet drops are now much less frequent,
it is not necessary that the transport protocol respond agilely to them. We simply need to
disable the monitoring and reaction to out-of-order packet delivery. For TCP NewReno, we
do this by disabling fast recovery and fast retransmit. While this leads to increased buffering
at the end host, this is an acceptable tradeoff given the large amount of memory available
on modern servers.

Obtaining congestion information from a lossless fabric is more difficult. Traditionally,
transport protocols monitor packet drops to determine congestion information. As packet
drops no longer happen due to congestion, we need another approach. To enable TCP
NewReno to operate effectively with DeTail, we monitor the drain byte counters at all
output queues. Low priority packets enqueued when the appropriate counter is above a
threshold have their ECN flag set. This forces the low priority, deadline-insensitive TCP
flow contributing to congestion to reduce its rate.

These types of modifications often raise concerns about performance and fairness across
different transports. As the vast majority of datacenter flows are TCP [18] and operators
can specify the transports used, we do not perform a cross-transport study here.

Application Layer

DeTail depends upon applications to properly specify flow priorities based on how
latency-sensitive they are. Applications express these priorities to DeTail through the sock-
ets interface. They set each flow (and hence the packets belonging to it) to have one of eight
different priorities. As the priorities are relative, applications need not use all of them. In
our evaluation, we only use two.

Applications must also react to extreme congestion events where the source has been
quenched for a long time. They need to determine how to reduce network load while min-
imally impacting the user. As the correct mechanisms depend heavily on the application
running and the functionality it performs, this is outside the scope of our work.

Benefits of the Stack

DeTail’s layers are designed to complement each other, overcoming limitations while
preserving their advantages.

As mentioned in Chapter 2, link-layer flow control can cause head-of-line blocking. In
addition to using priority, we mitigate this by employing adaptive load balancing and ECN.
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Adaptive load balancing allows alternate paths to be used when one is blocked and ECN
handles the persistent congestion that aggravates head-of-line blocking.

DeTail’s per-packet adaptive load balancing greatly benefits from the decisions made
at the link and transport layers. Recall that using flow control at the link layer provides
the adaptive load balancer with global congestion information, allowing it to make better
decisions. And the transport layer’s ability to handle out-of-order packet delivery allows the
adaptive load balancer more flexibility in making decisions.

5.2.3 Parameter Settings

Now that we have described the mechanisms employed by DeTail, we discuss how to
choose their parameters. We also assess how end-host parameters should be chosen when
running DeTail.

Link Layer Flow Control

A key parameter is the threshold for triggering PFC messages. Pausing a link early
allows congestion information to be propagated more quickly, making DeTail’s adaptive load
balancing more agile. At the same time, it increases the number of control messages. As
PFC messages take time to be sent and responded to, setting the Unpause threshold too low
can lead to buffer underflow, reducing link utilization.

To strike a balance between these competing concerns, we must first calculate the time
to generate PFC messages. We use the same approach described in [12] to obtain this value.

For 1GigE, it may take up to 36.456µs for a PFC message to take effect4. 4557B (bytes)
may arrive after a switch generates a PFC message. As we pause every priority individually,
this can happen for all eight priorities. We must leave 4557B × 8 = 36456B of buffer space
for receiving packets after PFC generation. Assuming 128KB ingress buffers, this implies
a maximum Pause threshold of (131072B − 36456B)/8 = 11827 Drain Bytes per priority.
Setting the threshold any higher leads to potential packet loss.

Calculating the Unpause threshold is challenging because the specifics of congestion
cause queues to drain at different rates. Our calculations simply assume a drain rate of
1Gbps, requiring an Unpause threshold of at least 4557B to ensure the ingress queues do
not underflow. However, ingress queues may drain faster or slower than 1Gbps. If they drain
slower, additional control messages may have to be sent, re-pausing the priority. If they
drain faster, our egress queues reduce the likelihood of link underutilization.

These calculations establish the minimum and maximum threshold values to prevent
packet loss and buffer underflow. Between the desire for agility and reduced control message

4We do not consider jumbo frames. Also, PFC is only defined for 10GigE. We use 1GigE for manageable
simulation times. We base PFC response times on the time specified for Pause Frames. This is appropriate
since 10GigE links are given the same amount of time to respond to PFC messages are they are to Pause
Frames.
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overhead, we set the Unpause threshold to the minimum value of 4557 Drain Bytes and the
Pause threshold to 8192 Drain Bytes (halfway between the minimum and the maximum).

Clearly, the optimal threshold settings, and hence the buffer requirements differ based
on both the number of priorities as well as link speeds. We discuss the implications for
environments with higher link speeds and more priorities in the following chapter.

Adaptive Load Balancing

When performing threshold-based adaptive-load balancing, we must determine how
many thresholds to have for a given priority (i.e., most favored, favored, and least favored
ports) as well as what these thresholds should be. Clearly, increasing the number of thresh-
olds increases complexity, so the benefits of each additional threshold must outweigh the
complexity cost.

Through a simulation-based exploration of the design space with the other parameters
as described above, we determined that having two thresholds of 16KB and 64KB yields
favorable results.

Explicit Congestion Notification

The threshold for setting ECN flags represents a tradeoff. Setting it too low reduces the
likelihood of head-of-line blocking but increases the chance that flows will back off too much,
underutilizing the link. Setting it too high has the opposite effect. Through experiments,
we determined that a threshold of 64KB drain bytes appropriately makes this tradeoff.

End-Host Timers

Setting the timeout duration (i.e., RTOmin in TCP) of end host timers too low may
lead to spurious retransmissions that waste network resources. Setting them too high leads
to long response times when packets are dropped.

Traditionally, transport-layer protocols recover from packet drops caused by congestion
and hardware failures. Congestion occurs frequently, so responding quickly to packet drops
is important for achieving high throughput. However, DeTail ensures that packet drops only
occur due to relatively infrequent hardware errors/failures. Therefore, it is more important
for the timeout duration to be larger to avoid spurious retransmissions.

To determine a robust timeout duration for DeTail, we simulated all-to-all incast 25
times with varying numbers of servers (connected to a single switch) and different values of
RTOmin. During every incast event, one server receives a total of 1MB from the remaining
servers. We saw that values of 10ms and higher effectively avoid spurious retransmissions.

Unlike this simulation, datacenter topologies typically have multiple hops. Hence, we
use 200ms as RTOmin for DeTail in our evaluations to accommodate larger topologies.
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5.3 Experimental Setup

As described in the previous section, DeTail depends heavily on the type of switch used
and the timing of various events (e.g. Pause/Unpause reaction times). Before evaluating
how DeTail performs, we must simulate and emulate the switch model using the platforms
described in Chapter 3. Here we describe the modifications to our simulator and implemen-
tation in turn. In the following section, we evaluate DeTail.

5.3.1 Simulator

Our NS-3 based simulator closely follows the switch design depicted in Figure 5.2. Dat-
acenter switches typically have 128-256KB buffers per port [18]. To meet this constraint, we
chose per-port ingress and egress queues of 128KB.

Network simulators typically assume that nodes are infinitely fast at processing packets,
this is inadequate for evaluating DeTail. We extended NS-3 to include real-world processing
delays. Based on prior work, we employ 1Gbps links with 25µs switching delays [18]. We
rely upon published specifications to break-down this delay as follows, providing explanations
where possible:

• 12.24µs transmission delay of a full-size 1530B Ethernet frame on a 1GigE link.

• 3.06µs crossbar delay when using a speedup of 4. Crossbar speedups of 4 are commonly
used to reduce head of line blocking [47].

• 0.476µs propagation delay on a copper link [12].

• 5µs transceiver delay (both ends of the link) [12].

• 4.224µs forwarding engine delay (the remainder of the 25µs budget).

We incorporate the transceiver delay into the propagation delay. The other delays are
implemented individually, including the response time to PFC messages.

One remaining limitation of the simulator is its lack of support for ECN. Consequently,
our simulations do not evaluate explicit congestion notification (as discussed in Section 5.2.2).
As we will show, even without ECN-based throttling of low priority flows our simulations
demonstrate impressive results.

5.3.2 Implementation

By default, our Click implementation does not use CIOQ. Instead, the forwarding engine
places packets directly into the output queue. This output-queued approach is poorly suited
to DeTail because we rely on ingress queues to determine when to send PFC messages.

To address this difference, we modify Click to have both ingress and egress queues.
When packets arrive, the forwarding engine simply annotates them with the desired output
port and places them in the ingress queue corresponding to the port on which they arrived.
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Crossbar elements then pull packets from the ingress queue to the appropriate egress queue.
Finally, when the output port becomes free, it pulls packets from its egress queue.

Despite all of our attempts to optimize Click, Pause / Unpause messages still take far
longer to be created and acted upon in software than in dedicated hardware. As a result,
we had to either decrease the number of supported priorities or increase the buffers used
within Click to prevent congestion-related packet drops. In the following section, we will
show that our evaluation workloads consist of two traffic classes. As a result, we opted to
decrease the number of priorities to two, thereby allowing us to provide a better assessment
of the advantages of DeTail given the typical buffer constraints experienced in datacenter
networks.

5.4 Experimental Results

In this section, we evaluate DeTail through extensive simulation and implementation,
demonstrating its ability to reduce tail latencies for a wide range of workloads. We begin
with an overview describing our traffic workloads and touch on key results. Next, we compare
simulation and implementation results, validating our simulator. Later, we subject DeTail
to a wide range of workloads under a larger topology than permitted by the implementation
and investigate its scaled-up performance.

5.4.1 Overview

To evaluate DeTail’s ability to reduce the flow completion time tail, we compare the
following approaches:

Flow Hashing (FH ): Switches employ flow-level hashing. This is the status quo and is
our baseline for comparing the performance of DeTail.

Lossless Packet Scatter (LPS): Switches employ packet scatter, sending each packet on
a randomly chosen shortest path, along with Priority Flow Control (PFC). While
not industry standard, LPS is a naive multipath approach that can be deployed in
current datacenters. The performance difference between LPS and DeTail highlights
the advantages of Adaptive Load Balancing (ALB).

DeTail: As already explained in previous sections, switches employ PFC and ALB.

All three cases use strict priority queueing and use TCP NewReno as the transport
layer protocol. For FH, we use a TCP RTOmin of 10ms, as suggested by prior work [18,55].
Since LPS and DeTail use PFC to avoid packet losses, we use the standard value of 200ms
(as discussed in Section 5.2.3). Also, we use reorder buffers at the end-hosts to deal with
out-of-order packet delivery.

We evaluate DeTail against LPS only in Section 5.4.4. For all other workloads, LPS
shows similar improvements as DeTail and has been omitted for space constraints.
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Traffic Model: Our traffic model consists primarily of high-priority data retrievals. For
each retrieval, a server sends a 10-byte request to another server and obtains a variable
sized response (i.e., data) from it. The size of the data (henceforth referred to as retrieval
data size) is randomly chosen to be 2KB, 8KB, or 32KB, with equal probability. We chose
discrete data sizes for more effective analysis of 99th and 99.9th percentile performance. The
rate of generation of these data retrievals (henceforth called retrieval rate) and the selection
of servers for the retrievals are defined by the traffic workload. We assumed the inter-arrival
times of retrievals to be exponentially distributed (that is, a Poisson process). Where speci-
fied, we also run low-priority, long background data transfers.

Key results: Throughout our evaluation, we focus on 99th and 99.9th percentile data re-
trieval latencies, or completion times, to assess DeTail’s effectiveness. We use the percentage
reduction in the completion times provided by DeTail over Flow Hashing as the metric of
improvement. Our key results are:

• DeTail completely avoids congestion-related losses, reducing 99.9th percentile comple-
tion times of data retrievals in all-to-all workloads by up to 71% over Flow Hashing.

• DeTail effectively moves packets away from congestion hotspots that may arise due to
disconnected links, reducing 99.9th percentile completion times by up to 89% over Flow
Hashing. LPS does not do as well and actually performs worse than FH for degraded
links.

• Reductions in individual data retrievals translate into improvements for sequential and
partition-aggregate workflows, reducing their 99.9th percentile completion times by 54%
and 78%, respectively.

5.4.2 Simulator Verification

We use our implementation platform to validate our simulator. We construct a 36-
node, 16-server FatTree topology. Over-subscription is common in datacenter networks [6].
To model the effect of a moderate over-subscription factor of four, we rate-limited the ToR-
to-aggregate links to 500Mbps and the aggregate-to-core links to 250Mbps.

We designated half of the servers to be front-end (web-facing) servers and half to be
back-end servers. Each front-end server continuously selects a back-end server and issues a
high-priority data retrieval to it. The data retrievals are according to a Poisson process and
their rate is varied from 100 to 1500 retrievals/second.

For validation, our simulator used the same workload and topology, with parameters
matched with that of the implementation. Figure 5.5 compares the simulation results with
the implementation measurements. For rates ranging from 500 to 1500 retrievals/sec, the
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Figure 5.5: Comparison of simulation and implementation results - Reduction by DeTail
over FH in 99th and 99.9th percentile completion times of 2KB and 8KB data retrievals

percentage reduction in completion time predicted by the simulator closely matches imple-
mentation measurements (results for 32KB data retrievals and LPS are similar). Note that
the difference increases for lower rates. We hypothesize that this is due to end-host pro-
cessing delays that are present only in the implementation (i.e., not captured by simulation)
dominating completion times during light traffic loads.

Our results demonstrate that our simulator is a good predictor of performance that
one may expect in a real implementation. Next, we use this simulator to evaluate larger
topologies and a wider range of workloads.

5.4.3 Microbenchmarks

We evaluate the performance of DeTail on a larger FatTree topology with 128 servers.
The servers are distributed into four pods having four ToR switches and four aggregate
switches each. The four pods are connected to eight core switches. This gives an over-
subscription factor of four in the network (two from top-of-rack to aggregate switches and
two from aggregate to core switches). We evaluate two traffic patterns:

• All-to-all: Each server randomly selects another server and retrieves data from it. All
128 servers engage in issuing and serving data retrievals.
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Figure 5.6: CDF of completion times of 8KB data retrievals under all-to-all workload of 2000
retrievals/second

• Front-end / Back-end: Each server in first three pods (i.e, front-end server) retrieves
data from a randomly selected server in the fourth pod (i.e., back-end server).

The data retrievals follow a Poisson process. In addition, each server is engaged in, on aver-
age, one 1MB low-priority background flow. Using a wide range of workloads, we illustrate
how ALB and PFC employed in DeTail reduce the tail of completion times as compared to
FH.

All-to-all Workload: Each server generates retrievals at rates ranging from 500 to 2000 re-
trievals/second, which corresponds to load factors5 of approximately 0.17 to 0.67. Figure 5.6
illustrates the effectiveness of DeTail in reducing the tail, by presenting the cumulative dis-
tribution of completion times of 8KB data retrievals under a rate of 2000 retrievals/second.
While the 99th and 99.9th percentile completion times under FH were 6.3ms and 7.3ms,
respectively, DeTail reduced them to 2.1ms and 2.3ms; a reduction of about 67% in both
cases. Even the median completion time improved by about 40%, from 2.2ms to 1.3ms.
Furthermore, the worst case completion time was 28ms under FH compared to 2.6ms Flow
completion times can increase by an order of magnitude due to congestion and mechanisms
employed by DeTail are essential for ensuring tighter bounds on network performance.

Figure 5.7 presents the reductions in completion times for three data sizes at three
retrieval rates. DeTail provided up to 70% reduction at the 99th percentile (71% at 99.9th

percentile) completion times. Specifically, the 99.9th percentile completion times for all sizes
were within 3.6ms compared to 11.9ms under FH. Within each data size, higher rates have
greater improvement. The higher traffic load at these rates exacerbates the uneven load
balancing caused by FH, which ALB addresses.

5load factor is the approximate utilization of the aggregate-to-core links by high-priority traffic only
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Figure 5.7: All-to-all Workload - Reduction by DeTail over FH in 99th and 99.9th percentile
completion times of 2KB, 8KB and 32KB retrievals

Front-end / Back-end Workload: Each front-end server (i.e., servers in the first three
pods) retrieves data from randomly selected back-end servers (i.e., servers in the fourth pod)
at rates ranging from 125 to 500 retrievals/second, which correspond to load factors of ap-
proximately 0.17 to 0.67 on the aggregate-to-core links of the fourth pod. Figure 5.8 shows
that DeTail achieves 30% to 65% reduction in the completion times of data retrievals at the
99.9th percentile. This illustrates that DeTail can perform well even under the persistent
hotspot caused by this workload.

Long Background Flows: DeTail’s approach to improving data retrievals (i.e., high-
priority, short flows) does not sacrifice background flow performance. Due to NS-3’s lack of
ECN support, we evaluate the performance of background flows using the 16-server imple-
mentation presented earlier. We use the same half front-end servers and half-backend servers
setup, and apply a retrieval rate 300 retrievals/second. Additionally, front-end servers are
also continuously engaged in low-priority background flows with randomly selected back-end
servers. The background flows are long; each flow is randomly chosen to be one of 1MB,
16MB or 64MB with equal probability. Figure 5.9 shows that DeTail provides a 38% to
60% reduction over FH in the average completion time and a 58% to 71% reduction in the
99th percentile. Thus, DeTail significantly improves the performance of long flows. A more
extensive evaluation of DeTail’s impact on long flows is left for future work.

5.4.4 Topological Asymmetries

As discussed in Section 5.1.2, a multipath approach must be robust enough to handle
topological asymmetries due to network component failures or reconfigurations. We consider
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Figure 5.8: Front-end / Back-end Workload - Reduction by DeTail over FH in 99th and
99.9th percentile completion times of 2KB, 8KB and 32KB data retrievals
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Figure 5.9: Long Flows - Reduction by DeTail in completion times of long, low-priority flows

two types of asymmetries: disconnected links and degraded links. These asymmetries lead
to load imbalance, even with packet scatter. In this section, we show how ALB can adapt to
the varying traffic demands and overcome the limitations of packet-level scattering. Besides
FH, we evaluate DeTail against LPS to highlight the strength of ALB over packet scatter
(used in LPS ). We assume that the routing protocol used in the network has detected the
asymmetry and converged to provide stable multiple routes.

Disconnected Link: We evaluate an all-to-all workload with Poisson data retrievals on
the same topology described in the previous subsection, but with the assumption of one
disconnected aggregate-to-core link. Figure 5.10 presents the reduction in 99.9th percentile
completion times for both LPS and DeTail (we do not present 99th percentile for space
constraints). DeTail provided 10% to 89% reduction, almost an order of magnitude im-
provement (18ms under DeTail compared to 159ms under FH for 8KB retrievals at 2000
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Figure 5.10: Disconnected Link - Reduction by LPS and DeTail over FH in 99.9th percentile
completion times of 2KB, 8KB and 32KB retrievals

retrievals/second). LPS’s inability to match DeTail’s improvement at higher retrieval rates
highlights the effectiveness of ALB at evenly distributing load despite asymmetries in avail-
able paths.

Degraded Link: Instead of disconnecting, links can occasionally be downgraded from
1Gbps to 100Mbps. Figure 5.11 presents the results for the same workload with a degraded
core-to-agg link. DeTail provided more than 91% reduction compared to FH. This dramatic
improvement is due to ALB’s inherent capability to route around congestion hotspots (i.e.,
switches connected to the degraded link) by redirecting traffic to alternate paths. While the
99.9th percentile completion time for 8KB at 2000 retrievals/second (refer to Figure 5.11(b))
under FH and LPS was more than 755ms, it was 37ms under DeTail. In certain cases, LPS
actually performs worse than FH (i.e., for 2KB, 500 retrievals/second).

In both fault types, the improvement in the tail comes at the cost of increased median
completion times. As indicated in Chapter 4, reducing the tail is fair more important than
reducing the median when it comes to meeting deadlines.

5.4.5 Web Workloads

Next, we evaluate how the improvements in individual data retrievals translate to im-
provements in the sequential and partition-aggregate workflows used in page creation. Here
we randomly assign half the servers to be front-end servers and half to be back-end servers.
The front-end servers initiate the workflows to retrieve data from randomly chosen back-end
servers. We present the reduction in the 99.9th percentile completion times of these workflows.
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Figure 5.11: Degraded Link - Reduction by LPS and DeTail over FH in 99.9th percentile
completion times of 2KB, 8KB and 32KB data retrievals
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Figure 5.12: Sequential Workflows - Reduction by DeTail over FH in 99.9th percentile com-
pletion times of sequential workflows and their individual data retrievals

Sequential Workflows: Each sequential workflow initiated by a front-end server consists
of 10 data retrievals of size 2KB, 4KB, 8KB, 16KB, and 32KB (randomly chosen with equal
probability). As described in the Chapter 4, these retrievals are performed one after another.
Workflows arrive according to a Poisson process at an average rate of 350 workflows/second.
Figure 5.12 shows that DeTail provides 71% to 76% reduction in the 99.9th percentile com-
pletion times of individual data retrievals. In total, there is a 54% improvement in the 99.9th

percentile completion time of the sequential workflows – from 38ms to 18ms.

Partition-Aggregate Workflows: In each partition-aggregate workflow, a front-end server
retrieves data in parallel from 10, 20, or 40 (randomly chosen with equal probability) back-
end servers. As characterized in [18], the size of individual data retrievals is set to 2KB. These
workflows arrive according to a Poisson process at an average rate of 600 workflows/second.
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Figure 5.13: Partition-Aggregate Workflows - Reduction by DeTail over FH in 99.9th per-
centile completion times of partition-aggregate workflows and their individual retrievals

Figure 5.13 shows that Detail provides 78% to 88% reduction in 99.9th percentile comple-
tion times of the workflows. Specifically, the 99.9th percentile completion time of workflows
with 40 servers was 17ms under DeTail, compared to 143ms under FH. This dramatic im-
provement is achieved by preventing the timeouts that were experienced by over 3% of the
individual data retrievals under FH.

These results demonstrate that DeTail effectively manages network congestion, provid-
ing significant improvements in the performance of distributed page creation workflows.

5.5 Takeaways

Our evaluation demonstrates that DeTail achieves impressive performance results, re-
ducing the tail of flow completion times by over 70%. Furthermore, DeTail is robust to link
degradation and failure, which can lead to topological asymmetries. In the presence of these,
DeTail performs even better than flow hashing, reducing tail completion times by up to 91%.
From these results, we see the impressive ability of a tightly integrated set of layers to reduce
data retrieval latencies, achieving a much tighter distribution in completion times.

However, DeTail’s reliance on lossless interconnects represents to additional challenges.
First, although DeTail is effective at mitigating head-of-line blocking it can still occur and be
particularly harmful when hosts or servers misbehave. Consider the case where a switch or
host sends PFC messages nonstop, preventing the previous hop from sending to it. Messages
begin to queue at the previous hop, until it must in turn send PFC messages, stopping all
traffic destined to it. In this way, large portions of the network fabric may become blocked
by a single misbehaving entity. Facebook engineers tell us that that this limitation is a big
concern because of the high availability requirements of web-facing datacenters.

Second, DeTail requires a large amount of buffering to ensure lossless operation. Recall
that we must set aside capacity to ensure that packets are not dropped before PFC messages
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take effect. As link speeds and the number of available priorities increase, buffer requirements
will as well. This is especially significant given the small buffers typically available on today’s
switches.

In the next chapter, we present FastLane, our approach to addressing these limitations.



55

Chapter 6

FastLane

In the last chapter, we proposed a solution for reducing tail latency. While effective, this
approach has two limitations that need to be addressed: (i) it is not resilient to misconfigured
servers and switches and (ii) it has large buffer requirements that increase with link speed.
These limitations represent a significant hurdle in the presence of ever-increasing link speeds
and SLA requirements.

In this chapter, we begin by describing how these limitations stem from DeTail’s reliance
on lossless interconnects. By disallowing packet drops, lossless interconnects reduce the range
of environments they can effectively support. To address this problem, we propose a different
approach - we allow packet drops but require switches to directly notify senders when they
occur. As a result, direct notifications enable us to dramatically reduce tail latency while
avoiding the limitations of lossless interconnects.

We evaluate prior attempts to perform direct notification showing that they are unable
to achieve the anticipated tail reduction. Based on a thorough analysis, we determine which
design decisions prior approaches employed that limited their effectiveness. We use the
insights gained from this analysis to design FastLane, a new approach to directly notifying
the source when packet drops occur.

We evaluate FastLane, demonstrating its ability to reduce the tail by up to 81% on
networks with 10Gbps links and just 128KB of buffering per port. Furthermore, we demon-
strate that FastLane’s performance degrades gracefully with smaller buffer sizes, making it
appropriate for a wide range of environments. The one limitation of FastLane is that network
stacks incorporating it can no longer use local output queues as an indicator of downstream
congestion. We discuss how to address this problem at the end of this chapter.

6.1 The Disadvantages of Lossless Interconnects

The disadvantages of lossless interconnects stem from their decision to prohibit congestion-
related packet drops. Here we describe how this requirement leads to both susceptibility to
misconfigured servers / switches as well as to larger buffer demands.
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1. 

2. 

3. 

Figure 6.1: In response to a packet drop (1), the switch sends a notification directly to the
source (2). Upon receiving the notification, the source resends the packet (3).

Datacenter networks employing lossless interconnects become susceptible to switch/server
misconfiguration because they lose the ability to drop packets. If just one network device
is able to prevent its packets from draining, buildup will occur. As buffers begin to fill,
flow control messages will propagate, causing head-of-line blocking and stalling the whole
network. The network will experience lockup and be unusable until the buffers are somehow
cleared.

By allowing networks to drop packets, we can reduce the impact of misconfiguration.
Broadly, a misconfigured switch will have two options: it will be able to drop all packets or
to send them across all ports. If the misconfigured switch does the former, then only the
traffic traversing through it will be affected. Even if it does the latter, it will only be able to
consume a small fraction of the total resources of then network. In either case, the network
will degrade gracefully, avoiding lockup.

The increasing buffer requirements of lossless interconnects are even more apparent.
Because of the limited ability to reduce processing speeds and the inability to change prop-
agation delays, as link speeds go up, the receiving end must set aside evermore capacity
to accept evermore packets before Pause messages take effect. Switches that do not do
this will be unable to prevent congestion-related packet drops. As buffers represent a large
fraction and hence cost for a switch ASIC, these increased resource demands may become
prohibitively expensive [19].
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6.2 Direct Drop Notifications

Rather than preventing drops with link-layer flow control, we minimize the time it takes
to recover from them. By having switches directly notify sources of packet drops as soon as
they occur, we enable sources to retransmit early. Sources learn of packet drops as quickly
as possible, avoiding time-consuming timeouts which drastically inflate latency.

In Figure 6.1, we depict an example of how direct notifications work. When a packet
drop occurs, the switch transmits a notification back to the sender. Upon receiving the
notification, the sender decides when to retransmit the packet. Importantly, it does not wait
for a time-consuming timeout.

Unlike link-layer flow control, drop notifications do not have large buffer requirements
and are resilient in the face of misconfigured servers and switches. Since switches can still
drop packets, lockup will not occur. As we will show later in this chapter, drop notifications
only consume a small fraction of network resources (1% of bandwidth, 2.5% of buffers),
even under extreme traffic patterns. By simply placing limits on the bandwidth and buffers
used by notifications at every node in the network, we can limit the resources consumed by
misconfigured nodes, ensuring graceful degradation.

At the same time, drop notifications retain many of the same positive aspects of link-
layer flow control. Just like link-layer flow control, they improve high-percentile latencies by
avoiding timeouts. They also allow per-packet load balancing. With drop notifications, out
of order delivery is no longer necessary in order to quickly detect and recover from loss. As in
the previous chapter, we can disable the server’s reaction to out of order acknowledgements
and spread the packets across the paths available in the network.

6.3 Existing Direct Notification Schemes

Using direct notification for improving flow completion time was proposed by ICMP
Source Quench and Quantized Congestion Notification (802.1Qau) [1, 36]. To the best of
our knowledge, both have failed to gain widespread adoption, and Source Quench has since
been deprecated. Here we investigate why these proposals are ineffective at reducing high
percentile completion times in datacenters. We use the insights gained to propose a series
of design principles that must be satisfied for direct notification to be effective.

6.3.1 ICMP Source Quench

ICMP source quench was a protocol switches used to signal congestion to the source.
A switch experiencing congestion generates and sends ICMP messages to sources requesting
them to reduce their transmission rates. The quench message contained the first 8 bytes of
the offending packet’s transport header so the source could determine which flow to throttle.

The advantage of this approach is that it enabled switches to generate source quench
messages as frequently as their control plane supports. The specification did not have to



Section 6.3. Existing Direct Notification Schemes 58

concern itself with the generation rates of different switch hardware. However, conditions
under which such messages were sent were poorly defined, and the message itself did not
contain any information as to what triggered it. The latter is a main disadvantage, as it was
impossible for sources to identify whether the notification was sent in response to a packet
drop or building congestion. As a result, when Linux supported Source Quench, it responded
to those messages in the same way as it does to ECN [53]. It reduced the congestion window
but it did not retransmit the packets until out-of-order delivery or a timeout indicated a
loss.

Source quench messages suffered from two other problems. As they had the same priority
as the offending data packet, quench messages often took a long time to arrive at the source,
thus diminishing potential gains [22]. At the same time, there were no safeguards to ensure
that source quench messages did not overconsume resources in the presence of extreme
congestion.

To quantify the impact of these design decisions, we evaluated Source Quench using the
workload in §6.6. In this workload, we have bursts of short flows (up to 32KB in length) and
long flows (1 MB in length). Figure 6.2 shows the 99.9th percentile completion times for the
short flows. We see that under this workload, Source Quench does not perform significantly
better than TCP. More importantly, we see that an idealized drop notification mechanism,
without the limitations of Source Quench, could reduce high-percentile completion times by
81%.
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Figure 6.2: 99.9th percentile flow completion times.

6.3.2 Quantized Congestion Notification

As discussed in Chapter 2, Quantized Congestion Notification (QCN) is a direct no-
tification scheme proposed as part of the standardized data center bridging protocols [1].
With QCN, switches send notifications directly to sources, informing them the extent of the
congestion being experienced. Upon receiving notifications, sources reduce the rate of trans-
mission, based on the amount of congestion reported. Sources then periodically increase
their transmission rates until another notification is received.
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The key limitation of QCN is that rate-limiting is performed in the NIC. This has the
following problems: (i) transport is unaware of congestion being experienced and cannot
make more informed decisions (e.g., MPTCP selecting another path [52]), (ii) QCN cannot
discern whether acknowledgments are being received, and must instead rely on a combination
of timers and bytes transmitted to determine when to raise the transmission window, and
(iii) in practice NICs have an insufficient number of rate limiters, so flows may be grouped to-
gether, causing head-of-line blocking [18]. The lack of coordination between the rate limiter
and transport has led to significant drops and TCP timeouts. QCN can degrade TCP per-
formance so significantly that prior work recommends enabling QCN only in heterogeneous
environments where it is beneficial to control unresponsive flows (e.g., UDP) [29].

6.4 Direct Notification Design Principles

Based on the lessons learned from a deeper investigation of the advantages and the
disadvantages of the ICMP Source Quench and the QCN protocols, we have distilled a set
of design principles for direct notifications:

1. Notifications (and the triggers that generate them) must be well-specified:
When a notification does not make it clear which packet triggered it and whether
the original packet was dropped, sources cannot determine the appropriate action to
take. If sources respond conservatively, delaying transmission until an indirect indicator
(e.g. a timeout) arrives, flows will suffer large delays. If sources respond aggressively,
retransmitting the packet, they risk increasing network load aggravating congestion
events.

2. Notifications must be created in the data plane: When the network is congested,
switches may have to generate notifications for many flows within a short time. If
notifications are created by the control plane, they may overwhelm it in meeting the
generation requirements of the protocol. Ideally, a notification could be generated
using simple modifications on the original packet, thus ensuring quick generation in
the data plane.

3. Notifications must be transmitted with high priority: Queuing delays at each
hop can be much larger than uncongested network RTTs. Transmitting notifications at
high priority avoids these delays, informing the source as quickly as possible. Ideally,
the notification will be extremely small and prioritizing them will not significantly
delay the transmission of already enqueued data packets.

4. Safeguards must ensure that notifications do not aggravate congestion events:
The transmission of high-priority notifications takes resources away from other traffic.
We must ensure that notifications do not consume too many resources, aggravating
congestion events. In the presence of persistent congestion, notifications should be
dropped and sources should timeout, ensuring the stability of the network.
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5. Notifications must be sent to the transport layer: Lower-layer mechanisms for
regulating transmission rates do not have sufficient flow-level information to make in-
formed decisions about the state of congestion. As a result, they must employ heuris-
tics, which in turn may harm high-percentile flow completion times. Moreover, by
hiding congestion/drop information from transport, they prevent it from making the
best decision possible.

From Table 6.1, we see that ICMP Source Quench does not satisfy Design Principles
1-4 and QCN does not satisfy principles 3-5. We argue that while simple, these principles
are fundamental for achieving predictable flow completion times. In the next section, we
present the design of our direct notification scheme, FastLane, discussing how it achieves
these goals. In §6.6, we evaluate FastLane, demonstrating that it dramatically reduces tail
latency.

Principle 1 2 3 4 5
Source Quench × × × ×

√

QCN
√ √

× × ×
FastLane

√ √ √ √ √

Table 6.1: Design principles satisfied by ICMP Source Quench, QCN, and FastLane.

6.5 FastLane Protocol

In this section, we begin with an overview of FastLane. Next, we delve into the details
of FastLane’s notifications. We show that they provide pinpoint information to the source,
consume very few network resources, and can be generated with low latency. Later, we de-
scribe the safeguards FastLane employs to ensure that notifications do not consume excessive
resources during periods of extreme congestion. We conclude this section by discussing the
transport modifications required to support FastLane.

6.5.1 Overview

When multiple sources share a path, the queues of a switch on it may start to fill.
Initially, the switch has sufficient resources to buffer arriving packets. But eventually, it
runs out of capacity and must discard some packets. This is where FastLane takes action.
For every dropped packet, it sends a notification back to the source, informing it which
packet was lost.

To provide the source with sufficient information to respond effectively, the notification
must contain at least (i) the transport header and length of the dropped packet and (ii) a flag
that differentiates it from other packets. The notification is sent to the source with the highest
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Figure 6.3: Transforming packets into notifications.

priority, informing it of the drop as quickly as possible. Upon receiving this notification, the
source determines precisely what data was dropped and retransmits accordingly.

During periods of congestion, it may be best to postpone retransmitting the dropped
packet. Section 6.5.4 describes how transports decide when to retransmit. To protect against
extreme congestion, FastLane also employs explicit safeguards that cap the bandwidth and
buffers used by notifications (Section 6.5.3).

6.5.2 Generating Notifications

Drop notifications must provide sources with sufficient information to retransmit the
dropped packet (Principle 1). To achieve this goal, they should include (i) a flag / field
differentiating them from other packets, (ii) the source and destination IP addresses and
ports denoting the appropriate flow, (iii) the sequence number and packet length to denote
which bytes were lost, and (iv) the acknowledgement number and control bits so the source
can determine the packet type (i.e., SYN, ACK, FIN).

A naive approach to generating notifications would involve the control plane’s general-
purpose CPU. But the control plane could become overwhelmed when traffic bursts lead to
drops, generating many notifications within a short duration.

Instead, we developed a series of simple packet transformations that can quickly be
performed in the data plane (Principle 2). The transformations to create a FastLane
notification are depicted in Figure 6.3. We start with the packet to be dropped and then
(i) flip the source and destination IP address, (ii) set the IP TOS field, and (iii) truncate
the packet, removing all data past the TCP header. We then forward the packet on to the
input port from which it arrived. The input port assigns and transmits the packet with the
highest priority (Principle 3). While we expect that this approach would be performed in
hardware, we note that transforming a packet only takes 12 lines of Click code [45].

Our transformations need to provide one more piece of information - the length of the
original packet. We have two options for accomplishing this (i) we can avoid modifying the
total length field in the IP header, keeping it the same as the original packet, or (ii) we can
create a TCP option that contains the length and is not truncated. Our evaluation uses the
former approach.
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This approach relies solely on simple packet manipulation. Prior work has demonstrated
that such operations can be performed very quickly in the data plane [27]. Additionally,
sending the packet back on the input port, while not strictly necessary, avoids the need
to perform an additional IP lookup. Lastly, as the IP header checksum is a 16 bit one’s
complement checksum, flipping the source and destination IP addresses does not change its
value. We can simply update it incrementally for the changes in the TOS field.

6.5.3 Controlling Resource Consumption

Notifications sent in response to drops can contribute to congestion in the reverse path.
They take bandwidth and buffers away from regular packets, exacerbating congestion events.
As FastLane prioritizes notifications so they arrive as quickly as possible, safeguards must
be in place to ensure that they do not harm network performance.

Our safeguards take the form of bandwidth and buffer caps (Principle 4). To un-
derstand how to set these caps, we must analyze both average and short-term packet loss
behavior and the resulting increase in notification load. A high-level goal when setting
these caps is for notifications to be dropped when the network is experiencing such extreme
congestion, that the best option is for sources to timeout.

Controlling Bandwidth

To understand how much bandwidth should be provisioned for drop notifications, we
analyze the impact that average packet drop behavior has on notification load. Through this
approach, we can bound worst-case bandwidth use.

Given a drop probability, p, we calculate the fraction of the load used by notifications
as:

ln =
psn

sr + psn
, (6.1)

where sr is the average size of a regular (non-notification) packet and sn is the size of the
notification. To obtain a quantitative result, we assume that packets are 800 B long and
notifications are 64 B long. We choose the packet size based on reports from production
datacenters [24]. Based on these assumptions, we see that just 1% of the load would be used
by notifications if 12% of the packets were being dropped. As a 12% drop rate would cause
TCP’s throughput to plummet, we cap the links of every switch, clocking out notifications
at a rate limited to 1% of the capacity of the link. We ensure that our approach is work
conserving – both FastLane’s notifications and regular traffic use each other’s spare capacity
when available.

When FastLane’s notifications are generated faster than they are clocked out, the buffers
allocated to them start to fill. Once these buffers are exhausted, notifications are dropped.
We argue that at this point, the network is so congested that letting the drop occur and
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Figure 6.4: The fraction of a switch’s buffers used by notifications when ports receive bursts
simultaneously.

triggering a timeout is the best course of action for returning the network to a stable state.
We describe how to size the buffers used by notifications next.

Controlling Buffers

Traffic bursts may lead to many packets being dropped over short timescales. As a
result, many drop notifications may be created and buffered at the switch. We need to
determine how much buffering to set aside for drop notifications, so we can leave as much as
possible for regular transmissions. To do this, we must consider a variety of factors, including
burst size and how many bursts can arrive simultaneously at a switch.

We begin by looking at a single burst. In the worst case, there may be no buffering
available to absorb the packets of the burst. Then the number of bytes necessary to store
the resulting notifications is approximated by the following equation:

bsize ×
nsize

dsize
× (1− 1

pin
), (6.2)

where bsize is the size of the burst, nsize is the size of the notification, dsize is the size of
the average data packet and pin is the number of ports simultaneously sending to the same
destination. The first part of this equation calculates how many notifications (in bytes) would
be created if all of the packets in the burst were dropped. The second part of the equation
accounts for the fact that the port receiving the burst is simultaneously transmitting packets.
This means that bsize / pin packets will sent by the output port while receiving the burst.
They will not be dropped and notifications for them will not be generated.

Multiple bursts may arrive at the same switch simultaneously. For each one we will
need to store the number of bytes specified by Equation 6.2. However, the same input port
cannot simultaneously contribute to multiple bursts. When combined with Equation 6.2,
this means that assigning an input port to a new burst reduces the number of notifications
generated by the previous one.
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To provide some intuition for the implications of this property, we plot the fraction of
buffers consumed when varying numbers of a switch’s ports simultaneously receive bursts.
For this calculation we assume (i) burst sizes of 160KB, doubling the typical burst size re-
ported by prior work [18] and (ii) a 48-port switch with 128KB per port as seen in production
TOR switches [3].

In Figure 6.4, we depict the fraction of the switch’s buffers consumed when varying
numbers of its ports receive simultaneous bursts. When calculating these values, we assume
that all the input ports are used and that they are spread evenly across the bursts.

From this figure, we observe that increasing the number of ports that are simultaneously
receiving bursts beyond a certain point decreases the number of drops and hence the number
of notifications generated. To understand why this happens, we look at Equation 6.2. Note
that as the number of simultaneous burst increases, the number of ports contributing to each
goes to 1, driving the number of bytes used by notifications to zero.

Based on this analysis, we see that allocating 2.5% of switch buffers should be sufficient
to support drop notifications. In our evaluation we use a cap of 2.5% × 128KB = 3.2KB.
However, we note that FastLane is still useful even when its buffer allocation is exhausted
and some notifications are dropped. Environments with strict deadlines will see a larger
fraction of flows complete on time [41,56]. Scenarios with hundreds of sources participating
in Incast will complete faster because there will be fewer rounds of timeouts and synchronized
pull-backs.

6.5.4 Transport Modifications

Now that we have described how to generate notifications safely and efficiently, we turn
our attention to the transport modifications required to make use of them (Principle 5).
Here, we discuss how TCP uses notifications to improve high-percentile flow completion
times. Later, we demonstrate the generality of our approach by describing how pFabric can
leverage notifications as well.

TCP

TCP uses notifications to perform retransmission and rate throttling as well as to sup-
port multiple paths. We now describe the details of each in turn.

Retransmission and Rate Throttling: The goal of FastLane is to enable transport
protocols to quickly identify and retransmit dropped packets. However, in certain cases,
retransmitting as quickly as possible may aggravate congestion events. In the presence of
persistent congestion, retransmitted packets may be dropped at the point of congestion,
over and over again, creating a ping-pong effect. This wastes both upstream bandwidth and
buffers and is hence undesirable.

Our modifications to TCP must strike a balance between retransmitting dropped packets
as quickly as possible and delaying transmission to mitigate congestion events. Fortunately,
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addressing this problem for Control Packets (i.e., SYN, FIN, ACK) is simple. We retrans-
mit them immediately as they are small and hence unlikely to significantly contribute to
congestion1.

The retransmission of data packets is more challenging to address. Ideally, we would
wait precisely the amount of time necessary to avoid a packet drop before retransmitting.
Unfortunately, given the complex dynamics of the network in addition to unpredictable
server delays, determining the wait time is very difficult. Instead, we propose a simpler
approach. We measure the ping-pong behavior to determine how much to throttle the
number of simultaneous retransmissions.

Every TCP source maintains a list of entries for packets being retransmitted, sorted by
their sequence number. Here, retransmitted packets are those which are unacknowledged
and for which notifications have been received since the last timeout. Entries in this list are
annotated with the number of retransmission attempts entry.retx as well as a flag indicating
whether a packet is being retransmitted entry.issent. The source also maintains two variables
sim retx and bound sim. sim retx tracks the number of retransmissions in flight, while
bound sim sets the upper bound. Similarly to TCP’s congestion recovery scheme, on the
first drop notification triggering recovery, we set bound sim to α = cwnd

2
, where cwnd is the

congestion window. For every drop notification while in recovery mode, we exponentially
decrease bound sim according to the following equation:

bound sim← α

max(entries.retx)

We then traverse the list, in order of sequence number, retransmitting packets for which
entry.issent is false until sim retx ≥ bound sim. As acknowledgments for retransmitted
packets arrive, reducing sim retx, additional packets in the list are retransmitted. When all
of the packets in the list are acknowledged, the source exits recovery, setting the congestion
window to α. The algorithm for processing drop notifications is presented in 1.

For clarity, we omit the following functionality. As TCP relies on cumulative acknowl-
edgements, we must always resend the packet with the smallest sequence number to ensure
forward progress. This means that even if sim retx equals bound sim, we must retransmit
the first packet whenever a notification arrives for it. We achieve this by allowing sim retx
to grow above bound sim when it is necessary to satisfy this constraint.

Supporting Multiple Paths: The cumulative nature of acknowledgments makes it chal-
lenging to extend TCP to effectively use multiple paths. Cumulative acknowledgments do
not specify the number of packets that have arrived out of order. This number is likely to be
high in multipath environments (unless switches restrict themselves to flow hashing). Pack-
ets received out of order have left the system and are no longer contributing to congestion.

1Cases where control packet retransmission significantly adds to congestion are extreme. In this situation,
we rely on the bandwidth and buffer caps to drop notifications, forcing timeouts and returning the network
to a stable state.
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Algorithm 1 Maintains a list of entries for dropped packets

If entry.seqno exists in list
entry.retx← entry.retx+ 1
entry.issent← 0
sim retx← sim retx− 1

Else
create new entry for seqno
entry.retx← 1
entry.issent← 0
insert entry into list

bound sim← α/max(entries.retx)

For entry in list
If sim retx < bound sim && entry.issent is 0

retransmit packet having entry.seqno
entry.issent← 1
sim retx← sim retx+ 1

Thus this information would allow TCP to safely inflate its congestion window and hence
achieve faster completion times.

To address this problem, we introduce a new TCP option that contains the number of
out-of-order bytes received past the cumulative acknowledgment. When a source receives an
acknowledgment containing this option, it accordingly inflates the congestion window. This
allows more packets to be transmitted and reduces dependence on the slowest path (i.e., the
one whose data packet was received late).

How much the congestion window should be increased depends on whether the acknowl-
edgment is a duplicate. If the acknowledgement is new, then the window should be inflated
by number of out-of-order bytes stored in the TCP option. If the acknowledgment is a du-
plicate, then the window should be inflated by the maximum of the new out-of-order value
and the current inflation value. This ensures correct operation even when acknowledgments
themselves are received out-of-order.

pFabric

pFabric is a recent proposal that combines small switch buffers, fine-grained prioriti-
zation, and small RTOs to improve high percentile flow completion times [20]. To leverage
the multiple paths available in the datacenter, pFabric avoids relying on in-order delivery.
Instead it uses SACKs to determine when packets are lost and timeouts to determine when
to retransmit them.

When a FastLane notification arrives, we have pFabric store it in a table, just like TCP.
But, the response to notifications is based on the congestion control algorithm of pFabric.
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Before resending any data packets, the source sends a probe to the destination. The probe
packet is used as an efficient way to ensure that congestion has passed. Once the probe is
acknowledged, the source begins resending up to bound sim packets. In this case, bound sim
starts at 1 whenever a notification arrives, and increases exponentially with every successful
retransmission, in effect simulating slow start.

6.6 Experimental Results

We now evaluate the performance of FastLane under a wide variety of datacenter-
oriented network configuration and application workloads — we vary short flows from 2KB
to 32KB, network utilization from 20% to 80%, the fraction of total load contributed to
by short flows from 10% to 50%, buffer sizes from 16KB to 128KB, and the resource caps
imposed on FastLane from 0.25× to 2× of those computed in §6.5.

We compare the performance of FastLane against that of TCP-NewReno with CoDel
early marking [34, 48] and pFabric [20]. TCP-NewReno is a well-established, well-tested
simulation model and pFabric is a multipath protocol focused on improving the performance
of short flows. For both protocols, we send data in the first RTT, similar to TCP Fast
Open [51]. While DCTCP [18] is the best-known TCP for data centers, we chose to compare
our performance to the more recently proposed pFabric since the latter outperforms both
DCTCP and PDQ [18,41] under similar workloads.

Our key findings from the evaluation are:

• FastLane reduces 99.9th percentile short flow latency, or completion times, by 81%
over TCP and 52% over pFabric. We note that pFabric outperforms DCTCP by 4x at
the 99th percentile.

• FastLane achieves the above performance by using just 1% higher bandwidth and 2.5%
larger buffers for notifications. Perhaps more surprisingly, FastLane actually reduces
TCP’s sensitivity to shallow buffers.

• While the actual numbers vary, FastLane consistently reduces high percentile comple-
tion times of short flows across all network configurations and application workloads
used in the evaluation.

6.6.1 Methodology

In this section, we provide some details about the methodology, including the network
and protocol configuration, and application workloads.

Network Configurations. Our simulation platform uses a 128-server FatTree topology,
with an oversubscription factor of 4. The network has 10 Gig links with 128KB per port
when running TCP and 64KB per port when running pFabric. These numbers are based
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on the amount of buffering typically available in TOR switches [3] and pFabric’s buffer
calculation [20], respectively. Based on [43], we model server processing delays as taking 5µs
per packet, processing up to 16 packets in parallel.

For our implementation, we employ a 16-server, full bisection bandwidth, FatTree topol-
ogy. All of the links in the topology are 1 Gbps. Given the reduced link speeds, we scale
buffers to 64KB per port.

Timeouts. For our simulations, we set the timeout for TCP to be 1ms and for pFabric to
be 250µs. 1ms timeouts for TCP are considered aggressive based on prior work [18]; setting
250µs timeouts for pFabric balances pFabric’s desire for small timeouts with the practical
limitations of timeout generation and unpredictable server delays [43, 55]. However, for our
implementation, we use the traditional datacenter timeout value of 10ms [18].

Notifications and Load balancing. We evaluate TCP both with Source Quench and
with FastLane. When Source Quench assists TCP, quench message generation is triggered
by CoDel’s marking algorithm. When FastLane assists TCP (and pFabric), we institute
bandwidth and buffer caps on notifications. Based on our analysis in §6.5, we cap the
bandwidth to 1% and the buffers to 2.5% of 128KB = 3.2KB. For load balancing, we use flow
hashing when in-order delivery is required (i.e., for TCP) and use packet scatter otherwise.

Application workflows, short flows and long flows. All experiments use request-
response workflows. Requests are initiated by a 10 byte packet to the server. We classify
requests into two categories: short and long. Short requests result in a response that can
be a flow of size 2, 4, 8, 16, or 32KB, with equal probability. This spans the range of small,
latency-sensitive flows typically observed in datacenters [18]. As these requests are usually
encountered in partition-aggregate workflows, our sources initiate them in parallel, such that
the total response size is 32 KB, 64KB, 96KB, 128KB, or 160KB with equal probability. Note
that 160KB / 2KB = 80 senders, twice the number of workers typically sending to the same
aggregator [18].

Long requests generate a response that is 1MB in length. Since most servers are typically
engaged in just one or two long flows at a time [18], our long requests follow an all-to-all
traffic pattern.

6.6.2 Simulation Results

We now present the simulation results for FastLane We first report our results across a
range of utilizations for a workload where 10% of the load is caused by short request-response
workflows and 90% of the load is caused by long workflows. This is the distribution typically
seen in production datacenters [24]. Then we keep the utilization constant at 60% and vary
the fraction of the load caused by the short request-response workflows. After establishing
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Figure 6.5: Reduction in 99.9th percentile flow completion time for varying network utiliza-
tions when TCP is assisted by FastLane with flow hashing (FL-FH) and with packet scatter
(FL-PS)
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Figure 6.6: Reduction in 99.9th percentile flow completion time for varying network utiliza-
tion when pFabric is assisted by FastLane (FL).
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Figure 6.7: Reduction in 99.9th percentile flow completion times for varying fraction of short
flows when TCP is assisted by FastLane with with flow hashing (FL-FH) and with packet
scatter (FL-PS)
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Figure 6.8: Reduction in 99.9th percentile flow completion time for varying fraction of short
flows when pFabric is assisted by FastLane (FL).

the high-level benefits of FastLane, we evaluate its sensitivity to (i) bandwidth and buffer
caps, (ii) smaller buffer sizes, and (iii) varying amounts of server latency. For all of these
experiments, we define utilization as the average load on the core.

Varying Utilization

Figure 6.5 shows the performance of FastLane (with respect to TCP) for 99.9th per-
centile flow completion times as network utilization changes from 20% to 80%. In most
cases, Source Quench does not benefit TCP, so we do not report its results. FastLane, on
the other hand, dramatically improves performance irrespective of whether flow hashing is
used. At 20% utilization, 2KB flow completion times reduce from 1.12ms to 0.21ms, an 81%
reduction, when using FastLane with packet scatter (FL-PS). A priori, one would expect
that as network utilization increases, the benefits of FastLane would be reduced since higher
loads decrease the amount of time that can be saved by avoiding a timeout. However, even
at 80% utilization, FL-PS helps 2KB flows reduce their completion times by over 70%.

We make two remarks regarding results in Figure 6.5. First, it may seem that FastLane
is less beneficial for 32KB flows. However, a deeper look into our results suggests that 32KB
flows suffer less timeouts as our workload has fewer of them simultaneously transmit to the
same destination. As a result, FastLane has fewer opportunities to help. Second, packet
scatter does not seem to provide significant benefits. This is primarily due to the short flow
sizes — if we turn our attention to the long 1 MB flows, we notice that FL-PS reduces their
average completion times by 62%.

As shown in Figure 6.6, FastLane also reduces the 99.9th percentile flow completion
times for pFabric. At 40% network utilization, FastLane reduces 2KB completion times
from 0.41ms to 0.20ms, a 52% reduction. FastLane does not affect pFabric’s long flow
performance, other than at 80% utilization where it reduces average completion times by up
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Figure 6.9: FastLane’s sensitivity to the bandwidth and buffer caps when aiding TCP).
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Figure 6.10: FastLane’s sensitivity to the bandwidth and buffer caps when aiding pFabric.
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Figure 6.12: Reduction in 99.9th percentile completion time for varying buffer sizes for
pFabric with and without FastLane.

to 38%.

Varying Fraction

We now evaluate the performance of FastLane with total load fixed to 60% and the short
flows contributing to a larger fraction of the network load (see Figure 6.7 and Figure 6.8).
Even when 50% of the load is due to short flows, FastLane provides significant benefit to
TCP (e.g., FL-PS reduces the 99.9th percentile completion times of both 2 and 4KB flows
by over 70%). And FastLane’s benefits for 32KB flows actually increase under this traffic
mix because the more bursty workload leads more flows to experience timeouts, providing
FastLane more opportunities to help. As shown in Figure 6.8, FastLane continues to provide
significant benefits to pFabric as well.

With respect to long flows, the results for TCP are very similar to the case of short
flows contributing to 10% of the network load. For pFabric, in the extreme case of short
flows contributing to 50% of the load, average long flow completion times do inflate by 23%.
We argue that this is a worthwhile tradeoff to make as FastLane decreases latency-sensitive,
short flow completion times by up to 47% in this scenario.

Sensitivity Analysis

We now evaluate the performance of FastLane with varying bandwidth and buffer caps
for the notifications, varying buffer sizes, and varying server latency. For these experiments,
we set the total network load to be 60% and consider the scenario where short flows contribute
to 50% of the network load. This workload has the greatest number of bursts and should
hence stress FastLane the most.

Sensitivity to Bandwidth and Buffer Caps:
Here we explore how sensitive FastLane is to the 1% bandwidth and 2.5% buffer caps that
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we use throughout the evaluation. We simultaneously scale the bandwidth and buffer caps
by the same factor (e.g., a scaling of 0.5 reduces the bandwidth and buffers available to noti-
fications by half). Normally, FastLane’s notifications may use extra bandwidth beyond that
specified by the cap when the link is idle (i.e., they are work conserving). To more accurately
understand the effect of the cap, we prohibit notifications from using extra resources in this
experiment.

In Figures 6.9 and 6.10, we depict FastLane’s sensitivity to the cap when it is assisting
TCP and pFabric, respectively. These figures show 99.9th percentile completion time for
varying flow sizes, normalized by the completion times when no scaling is used (i.e., cap
scaling = 1). The characteristics of FastLane with TCP and FastLane with pFabric are
quite different. Both do not see a significant performance hit until we scale the bandwidth
and buffers to below 0.75. However, FastLane’s performance degrades more gradually when
assisting pFabric because pFabric’s fine-grained timeouts reduce the performance impact of
packet drops. Based on these results, we see that our current bandwidth and buffer caps
balance the need to be robust to extreme congestion environments with the desire to consume
fewer resources.

Small Buffer Performance:
Here we evaluate how FastLane performs with smaller buffer sizes. We start with the default
TCP and pFabric buffers of 128KB and 64KB, respectively, and reduce them to see the
performance impact. We keep the buffer cap constant at 3.2KB throughout this experiment.

In Figure 6.11, we report the results for FastLane when assisting TCP. The numbers for
each flow are normalized by the 99.9th percentile completion time that would occur at 128KB
(each protocol and flow is normalized separately). We see that with FastLane, TCP’s 99.9th
percentile flow completion times do not degrade as we reduce buffer sizes. Without FastLane,
TCP’s performance degrades rapidly and severely. However, we note that FastLane is not
immune to the impact of buffer reduction. Its average flow completion times do increase as
buffer sizes decrease. In particular, average long flow completion times increase by 98% from
1.89 ms to 3.76 ms as we go from 128KB to 32KB.

Figure 6.12 shows the results for the same experiment performed with pFabric. FastLane
is not able to prevent the 99.9th percentile completion times of 8, 16 and 32KB flows from
increasing. Average long flow completion times suffer as well, increasing by approximately
5× for both FastLane and unaided pFabric as we reduce buffers from 64KB to 16KB.

We highlight a few important points. First, pFabric already tries to use the minimum
buffering possible. Second as these numbers are normalized to what each flow would achieve
in Figure 6.8, FastLane outperforms pFabric even in situations where they have same nor-
malized value. Thus, FastLane improves pFabric’s short flow performance at all of these
points.

These results show us that FastLane improves TCP’s ability to use small buffers and
does not harm pFabric’s ability to do the same. The ability to degrade gracefully in the
presence of small buffers is important. Buffering typically consumes 30% of the space and
power of a switch ASIC, limiting the number of ports a single switch can support [19].
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Figure 6.13: 99.9th percentile reduction in flow completion time with varying server paral-
lelism.

Server Parallelism:
Our simulations have a server model that processes 16 packets in parallel. As server hardware
varies greatly, we explore how different amounts of parallelism affect flow completion times.
Figure 6.13 reports the reduction in 99.9th percentile flow completion times for TCP and
pFabric as a function of server parallelism. FastLane’s performance improvement does not
diminish as the amount of parallelism increases.

6.6.3 Implementation Results

We now discuss the implementation results for FastLane. For ease of implementation,
when developing FastLane, we disabled the more advanced features of Linux TCP (i.e.,
SACK, DSACK, Timestamps, FRTO, Cubic). To provide a fair comparison, we show results
for FastLane versus TCP with these features disabled. But, we also report how FastLane
compares to TCP with all of these features enabled. We show that FastLane still outperforms
TCP, demonstrating its utility.

We begin by running the same base workload as the simulation, varying the utilization
while keeping the fraction of load contributed by short flows constant at 10% (see Section
6.6.2). Then we evaluate how FastLane performs under a workload consisting of longer flow
sizes. To avoid the hardware limits of our virtualized topology (Emulab), we partition the
nodes into frontend and backend servers, with frontend servers requesting data from backend
servers.

Varying Utilization

Figure 6.14 reports the reduction in 99.9th percentile flow completion times when Fast-
Lane assists TCP under various utilizations. We see that FastLane reduces the flow comple-
tion times of short flows by up to 68% (e.g., at 20% utilization, 8KB flows complete in 4.6 ms
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Figure 6.14: (Implementation result) Reduction in TCP’s 99.9th percentile flow completion
time when assisted by FastLane.

Util 2KB 4KB 8KB 16KB 32KB

20% 51% 61% 68% 63% −4%

40% 55% 63% 64% 55% 46%

60% 44% 53% 58% 51% 40%

80% 32% 42% 48% 40% 22%

Table 6.2: (Implementation result) Reduction in 99.9th percentile flow completion vs TCP
with advanced features.

with FastLane as compared to 14.4 ms with unaided TCP). Average long flow completion
times reduce at high utilizations as well - we report a 23% reduction at 80% load. But at
low utilizations, FastLane’s long flow performance slightly underperforms unaided TCP’s.

Table 6.2 compares FastLane’s completion times to TCP with SACK, DSACK, Times-
tamps, FRTO, and Cubic enabled. In general, FastLane achieves a comparable reduction as
that reported in Figure 6.14, demonstrating its utility. The one point where FastLane slightly
underperforms TCP is for 32KB flows at 20% utilization. This occurs because the inflation
in flow completion times occurs after the 99.9th percentile for this flow size, utilization, and
workload.

Long Flows

Our implementation setup allows us to evaluate the flow completion times of longer flows,
while maintaining manageable runtimes. Table 6.3 reports the reduction in average flow
completion times when FastLane is used versus unaided TCP and TCP with the advanced
features enabled (TCP-A). Flow sizes are 1, 16, or 64 MB with equal probability.

We see that FastLane reduces average completion times by as much as 31% at high uti-
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FL (TCP) FL (TCP-A)

Util 1MB 16MB 64MB 1MB 16MB 64MB

20% -4% -4% -4% 6% 3% 2%

40% 10% 7% 8% 14% 12% 11%

60% 28% 26% 26% 21% 23% 23%

80% 29% 30% 28% 25% 29% 31%

Table 6.3: (Implementation result) Reduction in average completion time of long flows

lizations. However, when the network is under-utilized, FastLane may slightly underperform
TCP for long flows. We believe that this performance impact is small and that the benefits
of FastLane far outweigh its modest cost.

6.6.4 Takeaways

Our results show that FastLane achieves its goal, leveraging tight layer integration to
reduce the effect of packet drops on flow completion times, without incurring the limitations
of lossless interconnects. We see that FastLane not only requires very few buffer resources,
just 3.2KB per port for 10Gbps links, but that its performance degrades gracefully with
decreasing buffer sizes.

The one disadvantage of using FastLane as compared to a lossless interconnect is that
while it enables per-packet load balancing, it does not provide the adaptive load balancer
with any information about the path to select. This is because we no longer employ flow
control and hence do not propagate information about downstream congestion. To address
this issue, we could employ a mechanisms such as those advocated by F10 [46]. We leave
determining the best way to incorporate their approach to future work.
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Chapter 7

Conclusion

Through the process of designing and implementing DeTail and FastLane, we learned
many lessons, which we document here. Perhaps the most important one is the realization
that we have only begun the enormous effort necessary to drive down tail latencies. We
touch upon some of the many avenues for future exploration. We conclude by revisiting our
thesis and summarizing how DeTail and FastLane provide two compelling examples of the
benefits of tightly integrating the layers of the network stack.

7.1 Lessons Learned

Our experiences with DeTail and FastLane represent many important lessons, some of
which we discuss here. First, we learned the need to design with failure in mind. While
failures are typically rare, our focus on high-percentile latencies required that we consider
them in our designs. Second we learned the value of having a carefully designed, controlled
environment when evaluating high-percentile latencies. Only in such an environment can we
separate out the impact of various proposals from the noise of the system. Finally, we saw
how the combination of multiple evaluation platforms allows us to have greater confidence
in our conclusions. This is especially true in environments where an at-scale testbed is
unavailable. Here we delve into each of these lessons, describing their significance in turn.

7.1.1 Handling Failures

The focus on high-percentile latencies coupled with the need to engage many servers to
answer every query drove us to consider and design for hardware failure. We learned that
failure can manifest itself in different ways. Devices could stop performing a task (e.g. a
link failing) or they could start to behave erratically, and unpredictably (e.g. a server or
switch constantly transmitting pauses). We saw that proposals that degrade gracefully in
the presence of such failures have a much higher likelihood of adoption.
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Handling network failures where certain devices stop performing a task is straight-
forward. By simply routing traffic around the damaged link / switch we can avoid using it.
Doing so allows the network to degrade gracefully and is an effective temporary solution.
Handling cases where devices start to behave erratically is much more challenging. Since we
cannot predict the erratic behavior, we need to focus on reducing the harm that these devices
can cause to the network as a whole. We can achieve our goal by both designing functionality
that a device is unable to use to harm the whole network as well as by leveraging nearby
devices to ensure that the erratic behavior of the failed one is contained. FastLane is an
example where we have removed the dependence on pause to reduce the harm a single device
can have on the network as a whole and have used rate limiters so that nearby nodes can
contain erratic message transmission.

Our experience taught us that given the requirement to handle failures, datacenter
networking proposals should be designed at the outset to degrade gracefully in their presence.

7.1.2 Carefully Controlled Evaluation Environment

Reliably measuring and comparing the high-percentile latencies of our implementations
is challenging. Our implementations depend on systems consisting of many complex compo-
nents that interact in unpredictable ways. This is especially true at the timescales we focus
on in datacenter networks. We must understand and control these interactions to obtain
meaningful results from our testbed.

Many examples of these interactions and the approaches we used to address them are
described in Chapter 3. We were unable to make progress in evaluating different design
alternatives until we had taken all of these steps to create a controlled environment. Fur-
thermore, many of these issues were not uncovered until we had implemented a datacenter
networking proposal. For example, we only became aware of the driver’s large ring buffer
when implementing priority flow control. In hindsight, we would have likely been more pro-
ductive had we invested the time necessary to carefully analyze the systems operating in our
testbed upfront. By first understanding and learning how to predict the interactions of these
systems, we would have had a saved time later in the process when we were attempting to
distill the benefits of various networking proposals.

7.1.3 Combining Multiple Evaluation Platforms

One decision which was very beneficial was to create both simulation and implemen-
tation platforms at the outset. This decision had two key advantages. First, it enabled
us to understand when the simulation or implementation was not reporting expected re-
sults. Given the complexities of the environment, with many transfers constantly starting
and stopping, having these two platforms helped us to better understand the high-percentile
latencies we should be achieving and which platform contained the bug or limitation. Sec-
ond, by using the implementation platform, we could validate the assumptions made by our
simulator, and have much greater confidence in our scaled up simulation results. Given the
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lack of a large-scale tested with fine-grained network control, we believe the combination of
these two platforms represents the only viable alternative.

7.2 Future Work

Understanding and reducing tail latencies is challenging. As discussed throughout this
thesis, the TCP/IP stack was not designed to achieve predictable high-percentile perfor-
mance. Advances in (ii) admission control, and (iii) cross-service priority inheritance, and
(iii) datacenter-wide performance debugging, would enable us to make further strides towards
our goal. We discuss each in turn, describing how they would help us to better understand
and reduce the tail.

7.2.1 Admission Control

Ultimately, latency increases when a network is unable to support the load that is
offered to it. Instead of being transmitted through the network, packets begin to queue,
causing latencies to spike. Most of our efforts have been focused on more efficiently using
network resources, such as alternate paths. It is likely that opportunities still exist to further
improve network efficiency. However, regardless of how efficient our network is, services will
eventually overload it. To address this case, we need to develop mechanisms that inform
services when the network is unable to support their load and must deny their transmissions.

By informing services early and upfront, we could allow them to make more informed
decisions about how much load to shed. Unlike the network, which only has the information
contained in the packet header, services have much more knowledge of which transfers can
be abandoned to minimally impact the user. Knowing that they have exceeded network
capacity early (as opposed to waiting for a timeout) also provides them more time to mask
this problem for the end-user. These potential benefits highlight the need to develop mecha-
nisms that detect network overload (as opposed to a transient burst) and that interface with
services, informing them when traffic cannot be admitted.

7.2.2 Priority Inheritance

Determining the priority of a transfer between two servers is nontrivial. Services are
often composed of, or interact with others to answer a request. Certain services or requests
may be deemed more important than others, requiring tighter latency guarantees. Or they
may have different deadline requirements altogether. To address this problem, we cannot
simply look at the type of transfer being performed. Instead, all of the transfers performed
in satisfying a request must consider its priority.

We can propagate request priority by setting up special rules such as having each trans-
fer inherit the priority of the arriving one which triggered it. By employing these simple
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mechanisms, we can ensure that the services in the datacenter work in concert to meet user
latency requirements.

7.2.3 Datacenter-wide Performance Debugging

Modern datacenters consist of many components which must work together to deliver a
result. When it takes too long to answer a request, it is challenging to determine the cause
of the delay. Network packets may have been dropped causing a timeout. Or a server may
be running too many resource-intensive tasks that are competing for resources. We need
a mechanism to determine how much time a request spends at each stage of processing to
allow us to debug performance problems.

With such stringent expectations that requests be answered within tight latency bounds,
performing debugging only represents the first step. We must determine how to detect
performance issues when they arise, as quickly as possible. Additionally, we must develop
systems that automatically mitigate these issues, instead of waiting for an operator to parse
through the logs to determine the problem and execute a solution. Online, datacenter-wide
performance debugging represents a significant opportunity to address these problems.

7.3 Thesis Summary

In this thesis we begin by identifying a class of workloads, that while increasingly com-
mon, are poorly supported by existing datacenter networks. These workloads consist of
many interactions, all of which must complete within tight latency bounds to satisfy user
demands. As datacenter networks are based on the TCP/IP stack, they inherit its design
decisions favoring generality and interoperability over high, predictable performance.

Our hypothesis is that by foregoing this generality and by tightly integrating the layers of
the network stack, we can improve performance, dramatically reducing tail latency. Our two
proposals, DeTail and FastLane, support this hypothesis. DeTail presents a network stack
whose layers depend on each other and work together to overcome their respective limitations.
FastLane takes a different approach, having switches provide transport explicit information
so it can make better decisions. Both of these examples highlight the many opportunities for
improving network efficiency that can be attained by removing the unnecessary burdens of
generality and interoperability. We believe that this approach is well-suited for datacenters
and that continuing on the path to tighter integration will enable them to deliver richer
services, further enhancing the user experience.
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