Automated Discovery of User Trackers

Sakshi Jain

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-229
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-229.html

December 19, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

| would like to take this opportunity to thank my advisor Prof. David
Wagner, you have been a great mentor to me. | would like to thank you
for constantly encouraging me exploring my interests in security and my
research. Your advice on both research and my career has been
immensely helpful. | am grateful to Prof. Vern Paxson for guiding me very
closely for my thesis project and teaching me how to do diligent and
methodical research. Thank you Mobin Javed for long discussions over
tea about research problems, career and life in general. Thank you for
your contribution in analysis section of the project and for spending time
directing the project. My research would not have been possible without
the generous support of ISTC for Secure Computing, Intel.

Automated Discovery of User Trackers

by Sakshi R. Jain

Research Project
Submitted to the Department of Electrical Engineering and Computer Sciences, University

of California at Berkeley, in partial satisfaction of the requirements for the degree of Master of
Science, Plan 1I.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Vern Paxson
Research Advisor

(Date)

& sk sk sk sk sk ok

Professor David Wagner
Research Advisor

(Date)

Acknowledgment

I would like to take this opportunity to thank my advisor Prof. David Wagner, you have been
a great mentor to me. I would like to thank you for constantly encouraging me exploring my
interests in security and my research. Your advice on both research and my career has been
immensely helpful. I am grateful to Prof. Vern Paxson for guiding me very closely for my
thesis project and teaching me how to do diligent and methodical research. Thank you Mobin
Javed for long discussions over tea about research problems, career and life in general. Thank
you for your contribution in analysis section of the project and for spending time directing the
project. I would also like to thank my friends and family who have been my support during
all the ups and downs of a grad life. My research would not have been possible without the
generous support of ISTC for Secure Computing, Intel.

Abstract

Web tracking, the practice by which web sites collect information about the user’s browsing
history across one or more sites, is highly prevalent on the web today. This is done using unique
identifiers (trackers) that can be mapped to client machines and user accounts. Although such
tracking has desirable properties like personalization and website analytics, it raises serious
concerns about online user privacy. Conventional trackers like browser cookies and Flash cook-
ies are widely known to the community; however there is potentially more tracking information
being sent to servers around the world unbeknownst to the users and security community at
large.

This work is motivated by the possibility of discovering previously unrecognized forms
of trackers, either potential or actual in an “automated” fashion from raw network traf-
fic. In this work, we built a tool that processes users’ network traces and outputs tracker
strings such as usernames, cookies, IMEI numbers and the like, that uniquely identify a ma-
chine/device/browser. The key challenge in automatically capturing trackers from raw traces is
dealing with enterprise-sized data. We tackle this problem by applying data-driven multi-stage
filtering, thereby pruning the size of network traces to be analyzed. Each filtering step has a
trade-off between between false positive rate and potentially interesting information lost (false
negatives). It is important to carefully maintain a balance between the two while choosing each
new filter. Our tool uses six major filters and outputs a set of potential trackers for each user in
the network. We found trackers that were sent as a part of URL parameters, User Agent, as well
as in the non-HTTP payload apart from cookies.

1 Introduction

The term web tracking has been traditionally used to describe the practice by which websites
collect information about a user’s browsing activity across one or more sites. In this context,
a tracker is any piece of information that can uniquely identify web activity by a user. Some
commonly known trackers include first and third party cookies, Google Analytics cookies, Flash
cookies and usernames. Some trackers do not identify the human user, rather identify the client
machine or browser instance. For example, username can be used to track a user across various
client machines, vs some third-party cookies can only track a browser instance. How long can
a user be tracked using the same tracker string depends on the server that is tracking and the
purpose of tracking. For example, session cookies are trackers that last for a browsing session
and are deleted when the user closes the browser, whereas persistent cookies often last for
years and get deleted only when they expire or the user explicitly deletes them. Our work is
motivated by the possibility of discovering previously unknown forms of tracking mechanisms,
either potential or actual.

Identifying new potential trackers can help us answer two questions. First, what are the
different classes of web-tracking? Do we find any examples of tracking mechanisms not known
to the community? Second, how much tracking power can an organization with eavesdropping
power achieve? The higher the frequency with which these trackers appear in a network, and
the greater the number of networks the adversary can eavesdrop, the higher tracking power it
achieves. The implications of this tracking power are two-fold: (i) an adversary can identify the
presence of a machine on a network by building a rich set of trackers particular to a machine,
and (ii) a site or an enterprise can attribute individual network flows in NAT ed traffic to the
respective users behind the NAT.

Previous works on host and user tracking have manually identified potential tracker strings
and studied their effectiveness in uniquely identifying a host or a user. Third party cookies,
User Agent, username and IP address are some examples of such previous identified trackers.
Our work, on the other hand, examines whether we can automatically capture previously un-
recognized forms of trackers, either potential or actual, from raw network traces. In an effort
towards this direction, we built a tool that achieves this semi-automatically. The tool uses no
knowledge of application layer protocols and works directly on the payloads at transport layer.
It processes users’ network traffic and outputs candidate tracker strings like cookies, tracking
parameters in URLs, user IDs, Google Analytics cookies and the like. It is largely automatic
except for a manual analysis component as the last step to validate the output of the tool.

The working of the tool depends on characterizing potential trackers by repeated occurrence
of a string, seen only from one machine/device in the network. Note that we use potential be-
cause this definition does not exclusively characterize trackers. It is possible that this network-
view approach classifies some of the actual trackers as non-trackers, because of two reasons:
(1) the string did not repeat, i.e., was only observed once for a user in the observance window,
or (i1) the tracker is user-specific rather than device-specific, and hence repeats across multiple
devices (belonging to the same user). Further, in this work we are interested in finding trackers
that are persistent. Ideally, the longer a tracker continues to uniquely identify a machine, the
stronger is its tracking power. Since size of network traces increases quickly with the size of
the enterprise, dealing with the size of data and validating true trackers while weeding out false
positives are the key challenges in this work. Our tool makes use of two key ideas along with
various optimization techniques to tackle these problems, namely, (i) multistage filtering and
(if) streaming algorithms. We found that, though the tool uses very generic techniques that are
not application dependent, it was able to efficiently capture quite a few novel tracking strings

apart from the well-known trackers like cookies. We believe that the design of our tool is such
that it is memory efficient and can handle reasonably large size of input traffic.

The remainder of this thesis is organized as follows. We begin with related work. Sec. 3
details the characteristics of the dataset we use in building and evaluating the tool. Sec. 4
outlines a naive approach to detecting tracker strings followed by challenges associated. We
motivate and briefly discuss the techniques used in our tool in this section. Sec. 5 describes the
various components of our tool and Sec. 6 enumerates the multistage filtering technique and the
various filters employed. We describe detailed implementation of our tool in Sec 7. Finally we
discuss the analysis results in Sec. 8 and conclude with Sec. 9.

2 Related Work

Literature relevant to our work can be divided into two domains, (i) privacy diffusion and (i)
methodology for pattern recognition on network traffic.

Leakage of both private information about a user’s browsing activity across various web-
sites and personally identifiable information' has attracted attention by security and privacy
researchers. Krishnamurthy et.al. [12] highlight the seriousness of the privacy diffusion prob-
lem by examining the penetration of identifiers placed by third party aggregators in overall web
traffic across 4 years. They show that the penetration of top 10 third-party servers tracking
user-viewing habits across a large set of popular websites grew from 40% in Oct’05 to 70% in
Sep’08.

Many past efforts focused on capturing identifiers in network traffic that can be employed
for host tracking or obtaining PII unbeknownst of the user. It has been shown that third-parties
can link PII leaked by Online Social Networks (OSN) with user activities both within and out-
side the OSN sites [11]. They achieve this by studying the leakage of unique identifiers like
usernames used by OSNs as a part of Referer field, request URI, and Cookie fields in the HTTP
requests sent to third parties. Previous studies on host tracking, also called host fingerprinting,
leverage packet-level information to identify the differences in software systems [3, 4, 5] or
hardware devices [9]. Other works on tracking web clients require probing hosts’ system con-
figurations [8], the installation order of browser plug-ins [13] or application level IDs [15]. [16]
compares the effectiveness of host identifying information revealed by a variety of trackers like
User Agent, IP prefix, Cookie ID, and its implications on cookie churning. They show that
88% of returning users can still be tracked even if they clear cookies or utilize private browsing.
All of the previous works on leakage of user-identifiable information depend on first manually
identifying pieces of interesting information (trackers) sent by user’s machine on the network
and then using one or combinations of these pieces for tracking. Our work is comparatively
different since it focuses on automatically discovering previously unknown forms of tracking
identifiers from raw network traces.

The methodology used by our tool consists of both existing and novel techniques for mining
interesting contents from network traffic. Sumeet Singh et. al. built EarlyBird, a prototype for
automated extraction of worm signatures from the network [14]. They do this by characterizing
worms as strings sent in the network that are highly prevalent and widely dispersed. They
develop multiple counting algorithms to sift through network contents for such strings they
characterize as worms. Honeycomb is another host-based intrusion detection system employs

IPersonally Identifiable Information is (PII) any information that can be used to distinguish or trace an indi-
vidual’s identity either alone or when combined with other information that is linkable to a specific individual

[11]

Table 1: Statistics about data used

Count of unique IPs 512
Total number of days 15
Count of NAT IPs 4

Count of unique MAC addresses behind NAT | 290

Count of users outside NAT 500
Total count of users 790
Count of users with non-zero contents 786

pattern matching to identify NIDS signatures as longest common sub-sequence from strings
found in message exchanges with honeypots [10]. Like our tool, neither of these two systems
use knowledge specific to the application-layer protocol. We use a similar underlying method
to characterize what trackers are, sift through network traffic and apply multistage filtering
algorithms to automate their detection.

3 Data

In this section, we describe the dataset used in this report. For our analysis, we use fifteen
days’ raw network traces captured at the border router of ICSI’s (International Computer Sci-
ence Institute) network. This network contains 512 unique IP addresses in the address range
192.150.186.0/15 with 4 IP addresses corresponding to NATs. We use the DHCP and NAT logs
to resolve individual machines behind the four NATs. DHCP logs provide a mapping between
MAC address and internal IP while NAT logs provide a mapping between private connection
tuple and public connection tuple. Using these two logs, one can map public source IP and
public source port to a MAC address behind the NAT for a given timestamp. The ICSI network
has in total of 290 unique MAC addresses behind the 4 NATs. We have about 790 (500 non-
NAT + 290 behind NAT) distinct “users” in our dataset where 786 users have non-zero traffic
content. For the sake of simplicity, we consider each IP and each unique MAC address behind
NATSs as a separate user for our analysis in the remaining part of the report even though the
same individual user can own a desktop with a fixed public IP and a laptop connected to a NAT,
thereby occupying two users instead of one in our users list. The total size of out dataset is
approximately 3.5 terabytes with an average size of 4.4 gigabytes per user and 274 megabytes
per user per day.

4 Key Challenges

From the definition of trackers, we conclude that we can characterize all candidate user-
identifiable strings as strings occurring repeatedly on a network and seen from only one de-
vice/machine. There are multiple naive approaches that can capture strings that satisfy these two
requirements. In this section, we show one possible algorithm and discuss the key challenges
with this naive approach thereby motivating the need to develop other sophisticated techniques.
We end this section by giving an overview of the two key techniques used in our tool to solve
this problem.

Algorithm 1: Naive approach to uniqueness
Input: usery, users, ...user,, where user; is a list of strings for user ¢
Output: list of unique strings for each user
INITIALIZE string_count to dictionary of form {str: list of users}
for each user i do

for each string str in user; do

| ADD user; to the list string_count|str]

end
end
for each str in string_count do

| DELETE str if count of users for str > 1

end
10 for each user i do
11 ‘ OUTPUT user; N strings in string_count
12 end

o N N T R W N =

4.1 Naive Approach

We present one possible approach to obtaining unique persistent strings in the network. Algo-
rithm 1 provides pseudo code for obtaining a set of unique strings for each user in the network.
The algorithm goes as follows. For each user 7, separate out the traffic contents from the net-
work and extract substrings of all possible lengths into a list user;. Initialize a global table
string_count which maintains a list of unique users each substring occurred for. Scan through
the list of substrings for each user and populate the entry in table string_count appropriately.
Once the contents of all the users have been processed, delete the substrings from the table for
which the count of unique users was greater than one. We are now left with a global list of just
those substrings for which there was exactly one user it was found in. In order to map these
substrings to the desired user, we output the intersection of the respective user’s strings with the
strings left in the table string_count. This step ensures the uniqueness property per user.

In order to now restrict the substrings per user to those which were persistent across a
certain time window, use the same naive approach except now, instead of maintaining a global
dictionary of strings and their associated list of users, maintain a dictionary of strings and a list
of days it occurred on. Once the persistence check has been applied too, we are left with desired
tracker strings for each user.

4.2 Challenges

The approach described above clearly achieves our objective of weeding out any user content
which was either not unique or was not persistent across a certain time window. However,
in its current form, Algorithm 1 is far from practical both in terms of both time and space
requirements. We go over the key challenges posed by this approach as follows.

Scale

In the current form, the memory requirement for Algorithm 1 is strictly greater than the total
size of all unique substrings across all users because of the need to store the table string_count
in memory while processing. Algorithm 1 extracts out substrings of all possible lengths from
each user’s network traffic. This is ideal since it would give us exactly the user content that is

interesting. Note however, that the memory requirement for storing all possible substrings is of
the order O(}_, L?) where L; is the total number of bytes in the network trace of user i. For
the dataset we are working with, the total size of input trace files is about 3.5 TB, and the naive
algorithm would need far more memory than that. Since the resources available at hand cannot
process this big data in memory, it becomes important to explore other techniques for attacking
the problem.

Validation

Validating whether a string output by Algorithm 1 is truly a tracker is another key challenge
in using this approach. The number of false positives (substrings which are not trackers but
marked as trackers by the algorithm) obtained by simply applying the conditions of uniqueness
and persistence can be large. Since we manually perform validation of candidate substrings
output by the tool, a high false positive rate leads to a large burden on the analysis. To
intuitively understand why the number of false positives would be large, consider the following
scenarios.

1. Server connection unique to a user: If a user regularly establishes connections with a
server S to which no other user in the network connects, with high probability any content sent
to this server would be unique to the user and our algorithm would wrongly mark it as a tracker.

2. Server content unique to a user: Consider a scenario in which a user connects to a
common server but repeatedly visits a unique webpage, for example, a song on some radio
station, or a video on youtube.com. Any content from this web page would be unique to the
user and our algorithm would wrongly mark it as a tracker.

3. Encrypted traffic: Our algorithm would wrongly mark a large proportion of encrypted
data as trackers. This is because repeating cipher text marked as trackers would not imply
repeating underlying plain text. In fact, cipher text found repeating by the algorithm would
most likely be due to collision of the outputs of the encrypting function for different inputs.

4.3 Key ideas

The challenges mentioned above make the problem of identifying user trackers in network
traffic a difficult one. In order to tackle these hurdles, we propose a two-fold approach.

Multistage Filtering

The key objective of this work is not to be comprehensive in identifying all tracker strings
but to capture as many new trackers as possible. This relaxed goal allows us to first remove
any content which has a low probability of finding trackers and then apply the constraints of
uniqueness and persistence on a smaller set of remaining data. For our tool, we employ multiple
filters to achieve this. For each filter, we consider the trade-off between the processing benefit
and reduced false positive rate obtained by using the filter on one hand, and true interesting
trackers lost on the other. This approach of progressively winnowing down the input stream
not only makes our tool more scalable but also reduces the overhead of manual analysis for
validation.

Multi-stage filtering

tcp payload/connection [str, metadata] stream 1 Candidate trackers with context
P 1 —ee e
' | |
| 1 ‘\l" | '-|V 1 [v
Raw | B I} lconnection | ' | | Stringbased | ! | Context | | Manual
B o e ro i licin I ! g g
traces i |based filtering slicing filtering i building analysis
] ? i ¢
: | . |
L Filtered connections Filtered [str, metadata) stream

Figure 1: How we process network traces to identify trackers

Streaming Algorithms

Though multistage filtering provides a large reduction in the size of data to be processed, di-
rectly applying Algorithm 1 is still not feasible due to the sheer size of the input. To deal with
this situation, we develop streaming algorithms that can accurately and efficiently perform filter-
ing with more modest memory requirements. The key idea is to use streaming which processes
data streams in which input is presented as a sequence of items and can be examined in only
a few passes. These algorithms use memory much smaller than the total size of input and are
typically used when the entire dataset cannot fit in memory. We would however like to point out
to the reader that our algorithm is not entirely streaming. We do rely on a sorting step performed
on each user’s partial network traffic which does have non trivial memory requirements.

5 Architecture Overview

In this section, we give a step-by-step overview of our approach. We decompose the processing
task into a pipeline of filters. Figure 1 shows the entire pipeline schematically. We defer the
details of the implementation including the rationale behind each component until the following
two sections.

We process raw network traces captured at a border router. We preprocess these traces using
network traffic analysis tool Bro [2] to produce content files for each user. Each content file
corresponds to the stream of TCP payload data for a separate TCP connection. The first fil-
tering step, connection-based filtering, uses the metadata associated with each connection, i.e.,
information contained in the five tuple (P, sourcelP, sourcePort, destinationIP, destinationPort),
where P is the transport layer protocol, to either filter it out or feed it to the next step. Of the
connections that remain, we slice the traces into sliding windows of k bytes which we refer as
“strings”. To be able to rebuild the original context from the sliding windows for analysis, we
associate each string with some metadata. This metadata includes the time window in which
the string appeared, the path to the content file it appeared in, and the byte offset in the corre-
sponding content file. By the end of this step, we have a list of k-byte strings and associated
metadata for each user. Before feeding these to the next step, we sort the list of strings for each

-

o

o

=S

1+ .

a Candidate

E trackers
Encrypted Server Unique Non-repeating Common
traffic originated server strings strings

data data
- Connection based filtering - String based filtering

Candidate trackers

Figure 2: Various filters in order as they appear in our tool

Table 2: Filtering strengths of all connection-based filters

Filtering Stage Filter Name Inter-quartile range | Median
Connection-based Encrypted traffic 314.5 1.0
Connection-based | Server Originated traffic 1.3 2.0
Connection-based Unique Server data 160.0 1.2

user. The next step, string-based filtering, filters these strings using various uniqueness and
persistence conditions. The output of these steps is a small set of candidate tracker strings for
each user. We analyze the candidates manually for validation. To assist manual analysis, we
rebuild the original strings from their sliding windows. This helps us in the validation process
by providing the context in which the string appeared in the original trace, for example, whether
it was a part of the URL or Cookie or Referer or in the payload. The final output of our tool
is the set of strings that we believe can be used as trackers and are worth highlighting to the
security community at large.

6 Multistage Filtering

In this section, we describe the various filters contained in connection and string based filtering
steps. A schematic diagram with the various filters is shown in Figure 2. For each filter, we
discuss in detail what the filter achieves and the trade-offs considered while selecting it.

6.1 Connection-based filtering

This step performs filtering based on the properties of a connection, identified by the five-tuple
(P, sourcelP, sourcePort, destination]P, destinationPort), where P is the transport layer protocol.
We remove three kinds of content from our analysis: (i) encrypted connections, (ii) connections
to servers visited by only a single user, and (ii7) all data sent by the server to the client, for all

10

connections. In this section, we discuss the trade-of for choosing each filter, how we implement
the filter, and its filtering strength. We define filtering strength for a user as the ratio of filtered
TCP payload and total size of input TCP payload. Note that our input data contains connections
made from outside ICSI to within ICSI as well as machines which are dormant. Since the
data is skewed w.r.t. size of network traffic on each machine, we describe the overall filtering
strength using median and interquartile range of individual user filtering strengths. Note that
each filter’s strength depends on which filters ran previous to it; for uniformity, we quote the
standalone filtering strength of each filter. If k the input to the tool, standalone filtering strength
is the value obtained by dividing the size of k£ by the size of the output when the filter under
consideration is applied directly on k.

Remove encrypted connections

We identify encrypted connections as those where the destination port is in the list {22 (SSH),
443 (HTTPS)}, and remove both the originator and responder bytestreams of such connections.
This filter is motivated both by the reduction in false positives and the difficulty in validating
trackers manually. Repeating cipher text caught by our tool does not correspond to repeating
underlying plain text and typically does not correspond to a tracker. Validation too is difficult
since the strings captured are not human readable and we cannot obtain the underlying context
in which they were sent. Note that by choosing this filter, not only do we let go of trackers sent
in encrypted form but also some of the potentially interesting information that was sent as a part
of the encryption protocol in plain text, for example, TLS handshakes.

The overall filtering strength of encryption-based filter is given by the interquartile range of
about 314.5.

Remove server-originated bytestream

Next, we remove all responder bytestreams, i.e., all data sent by a server to a client. Trackers
have to appear in client-originated data bytestreams, for a server to use them to identify a client.
Typically, they will occur atleast once from the server and many times from the client. There-
fore, it suffices to look at just one of the two directions. We focus on client-originated data and
ignore server-originated for three reasons: (i) there is less client data typically, (i) trackers typ-
ically occur more in client data and hence are easier to detect and (iii) server-originated content
can lead to many false positives. This is because it is very common to have content such as
web pages, videos or documents repeating for the same user, but not across users. For example,
consider a user listening to the a song on multiple days, while no one else on the network listens
to the same song by the same provider. This would cause a false positive (it would look like
a tracker) if we didn’t filter out server-originated data. Thus, we largely reduce the number
of false positives by removing the server-side content. We do, however, lose some potentially
interesting strings. For example, consider a site which shows a cleartext welcome page with the
user’s unique username post authentication. However, the proportion of such potential trackers
is very small as compared to the huge increase in computation that would be needed to find
them.

The overall filtering strength of server-based filter is given by the interquartile range of
about 1.34. The value is much lower than expected since there are multiple connections made
to servers within ICSI from outside and these servers act as individual users in our dataset. The
average of individual user filtering strength is however 24.7 and maximum value attained is
4674.8.

11

Table 3: Filtering strengths of all string and context baed filters

Filtering Stage Filter Name Average
String-based Non persistent strings 1.5
String-based Common strings 26.7

Fine-grained filtering Context Filtering 1.7

Remove unique server connections

If only a single user in the network connects to a particular server, all of the connections between
the user and the server are filtered out in this step. Unlike the previous two filters, which can
be independently applied to each user, this step not only depends on the connections of the
user under consideration but also on the connections made by other users in the network. For
simplicity, we identify each server by its IP address rather than its domain name. It is possible
that the same domain is accessed by two users with different server IP addresses and hence
marked as unique for each, thereby wrongly filtering out all the content from this domain for
both the users.

A major benefit of using this filter comes from the reduction in false positive rate. Any
content unique to the server would be almost surely wrongly marked by the tool as a candidate
tracker for the corresponding user. This would include server-specific URLs, web pages and
documents which in reality do not serve as good trackers. Similar to the previous filter, we do
potentially lose a few trackers.

The filtering strength of this filter largely depends on the connections made by other users
in the network. The overall filtering strength of this filter is given by the interquartile range of
about 160.

6.2 Slicing

This step creates a sliding window of strings from the network traces. We choose 8 bytes as
the size of the sliding window based on two factors, (i) processing overhead and (if) interesting
tracking strings lost. The total size of substrings obtained using a window of size k bytes would
be k times the input trace file. Thus, we would like & to be as small as possible. However, also
note that any tracker string with length greater than £ could be lost in the process since it is
not necessary for a substring of a tracker to remain unique and hence the tool might filter the
substring out. The plot in Figure 3 shows a CDF of the count of unique strings (hence potential
tracker strings) vs. their frequency for the values of & in the set {8, 64, 128, 256}. Since the
number of unique strings does not change much going from k£ = 256 to £ = 8 while giving a
large reduction in total data size, we choose k = 8 as the size of our sliding window.

6.3 String-based filtering

In this step, we perform filtering based on the properties of individual strings in user traces.
Recall that the input to this step is a list of eight-byte strings and associated metadata per user,
generated using a sliding window on the connections left after the connection-based filtering
step. We apply two filters in this step: (i) remove non-persistent strings, and (ii) remove strings
common across users, corresponding to the two conditions of persistence and uniqueness as
required by the definition of trackers. For each filter, we provide filtering strength described by

12

the total size of out of the filter across all users divided by the total size of the input to the filter
across all users.

Remove non-persistent strings

This step weeds out all strings which do not repeat over multiple time windows, where the time
window can be as small as an hour to as big as a week. The bigger the time window, the stronger
is the tracker in terms of its tracking power. In our analysis, we use a day as the time window.
Thus, our tool only retains strings which are observed on two different days. This filtering step
can be independently applied on each user’s list of strings.

Note that any string that occurs only once in a user’s trace is automatically filtered out in
this step. This might mean losing some true trackers which happen to appear only once in our
dataset of limited size. However we accept this trade-off since without multiple occurrences we
cannot validate if the string is a tracker. Thus, this filter not only helps us in strengthening the
trackers found but also in reducing the false positive rate.

The filtering strength of this step is about 1.5.

Remove strings common across users

In this step, we filter out any strings that are observed across multiple users. This filter follows
by our definition of a tracker that a tracker must be unique to a user. Note that in this step, we
also filter out strings which are true trackers but appear in traces from two different users due
to a single individual using multiple devices. For example, we would filter out a username on a
site that is accessed by a user on their phone as well as laptop. However, if there exists at least
one user in the network who accesses the same site only using a single device, our tool will
capture the tracker. Thus, in this step, we might lose a few user-specific trackers but we do not
lose any device-specific trackers.
The filtering strength obtained in this step is approximately 26.7.

7 Implementation

In this section, we go over the details of implementation of the various components of the tool
along with the tricks and techniques used to reduce its memory footprint. As a reference, a
schematic visualization of the tool and the various filtering steps are shown in Figure 1 and
Figure 2 respectively.

We use the network traffic analysis tool Bro [2] to extract the TCP payload per connec-
tion for each user in content files. We perform the next step, i.e., connection based filtering,
by imposing checks on the five-tuple (P, sourcelP, sourcePort, destinationIP, destinationPort),
where P is the transport layer protocol. The connections which are not filtered out are sliced
using a sliding window of size 8 bytes to generate a stream of strings and associated metadata
for each user. Each element in a user’s list of strings looks like (str, D, P, B), where str is the
value of the string, D is the day it occurred on, P is the path to corresponding content file and
B is the byte offset. By choosing a sliding window instead of all possible substrings, we reduce
the total size of substrings from quadratic to linear in the size of the input trace. In order to be
able to rebuild the original context from the sliced strings, we use the byte offset and path to
the original content file stored in the metadata associated with each string. Thus, we not only
reduce the total size of data to be processed, but also do not lose any information.

13

—k=8§

— k=64
— k=128
— k=256

nur ofuniqus aingz

L 1 1 1 | EE Gl | L L 1 L 1 TR
10 ' 1’
frequency of stings

Figure 3: log-linear plot of cummulative distribution function of count of unique strings vs. their fre-
quency of occurrence in one user’s trace

Before proceeding to the next step of sorting, we place the strings into 256 different buckets
depending on the ASCII encoding of their first character, for example, all strings starting with
“a” will go to bucket number 65. Since in string-based filtering, whether a string is filtered out
or pushed to the analysis stage solely depends on the various statistics corresponding to the
particular string, bucketing does not interfere with the processing but in fact partitions the data
nicely to make sorting easier. The output at this stage is a folder structure with 256 buckets
each containing n files, n being the number of users. Each file contains all strings of that user
starting with a particular character. Sorting is the only non-streaming component in the tool.
The memory footprint of the tool mainly depends on how efficiently we can sort each of these
files. Note that, since sorting is performed on each user and each bucket separately, the tool will
remain tractable as the number of users increases, the bottle-neck being the user with biggest
trace size.

The next step, string-based filtering, ensures uniqueness and persistence of the strings left.
Though the size of input to this step is much smaller than the initial size, it is still not small
enough for the naive Algorithm 1 to work efficiently. In order to surmount this hurdle, we resort
to a specific class of algorithms called streaming algorithms. Streaming algorithms process
massive data like the network traces in our case and assume that the data is presented as a
stream. Since storing and indexing of large amounts of data is expensive and may not always
be feasible, this technique processes data as it appears and uses limited processing space (less
than linear in size of the input). Such algorithms make very few passes over the data, typically
just one, but at no point is the entire dataset loaded in memory. We develop filtering algorithms
using this technique for the two string-based filtering steps, namely removing non-persistent
strings and removing common strings. Note that though using streaming algorithms help us
in reducing the memory consumed by the tool, the disk storage space required for subsequent
processing steps increases.

14

7.1 Removing non-persistent strings

This filter weeds out any string in a user’s trace that did not repeat across multiple days. The
input to this step is a list of strings for each user, and associated with each string is the day it
occurs on. A pseudo code for the streaming algorithm for this filter is provided in Algorithm 2.
Input data is read as a stream of objects where each object is a [str;, day] tuple. Since the input
is sorted according to the string, information about all the days the string occurred on appears
adjacent to each other in the stream, making it possible to process the data in a streaming
fashion. In order to decide whether a string under consideration should be filtered or not, the
algorithm maintains the information about the string value (curr_str), day (curr_day) and its
start line (start_line) from the first time the string appeared in the stream. As the stream
proceeds, either the same string would reappear with same or different days or a new string
would appear. If before the new string appears, no day other than curr_day was observed
for string curr_str, we know that the curr_str did not appear on multiple days and hence the
algorithm filters it out. If on the other hand, a different day (# curr_day) was observed for
curr_str before seeing a new string, it implies that the string appears on multiple days and
hence the algorithm prints it to the output filtered stream.

At any point in time, Algorithm 2 maintains only a constant number of variables and 2
pointers to the streams in the memory. Since the memory consumption is independent of the
size of the input stream, this algorithm is easy to scale for much larger data sets.

7.2 Removing common strings

Pseudo code for the streaming algorithm for identifying unique strings for each user is provided
in Algorithm 3. The input to this step is n streams u',u?, ..., u®, where n is the number of
users and each stream u! is the output of the previous persistence filtering step for user i. Since
information about the day associated with each string is not relevant for this step, we represent
an object of a stream simply by the string value str. Note that similar to the previous case, each
input stream u' to this step is sorted on the ASCII encoding of str. The algorithm maintains
a list of pointers curr_strs to the current str in each stream u'. It also maintains a separate
list of pointers to the output stream of each user o!, 0?, ..., 0™ where it prints all the filtered
content. At every step, the algorithm generates a list of streams min_streams which point to
the smallest string (comparison is performed based on ASCII encoding) in curr_strs. If this
list contains more than one stream, the algorithm filters out this string from each stream it was
observed in and moves on to the next string. If on the other hand, the min_streams list contains
only a single stream, say u!, it means that the smallest string was unique to the stream u'. All
the occurrences of this string in u! are then copied over to o' and the next string in u' is loaded
into curr_strs. This goes on, until all streams have been seen once entirely.

At every point in time, Algorithm 3 maintains only 2n pointers to input and output streams
and a constant number of variables in the memory.

8 Analysis

The output of the string-based filtering step contains the sliding windows of candidate trackers
strings. In order to manually validate each string found, i.e., to mark whether it is a tracker or
not, it is important to be understand the context in which it appeared, i.e., where in the TCP
payload was that string sent on the network. In order to do that, context building is performed
using the byte offset metadata stored with each string in the output. The output of context

15

Algorithm 2: Removing non persistent strings per user

Input: stream u : {uy, ug,... } Where u; = is [str; day] tuple. Stream u is sorted on str
Output: stream o : {01, 0,... } of filtered objects, where o; = [str, day]
curr_str <— uy[str]
curr_day < u; [day|
curr_line, start_line < 1
curr_interesting < False
while not at end of stream u do
READ next object into u;
INCREMENT curr_line by 1
if w;[str] # curr_str then
if curr_interesting is True then
‘ PrintToOutputStream(start_line, curr_line)
end
curr_str < w;[str]
curr_day < u;[day]
start_line <— curr_line
curr_interesting < False
else
if curr_interesting is True then
‘ €0 to next iteration
end
if u;[day] # curr_day then
‘ SET curr_interesting to True
end
23 end
24 end
25 if curr_interesting is True then
26 \ PrintToOutputStream(start_line, curr_line)
27 end

D-TE- BN - D N T S I

S S N T N T R O e S S S
N = S 0 NN R W N =S

building not only rebuilds the tracking string from its sliding windows, but also provides the
context line and thereby the header (if it exists) under which the string appears.

To give an idea of the overhead of analysis in the last step, we provide statistics about the size
of the filtered content output by the tool that needs to be analyzed. Of the 790 users analyzed,
only 244 users had non zero tracker strings at the output with a total size of the context files to
be inspected about 815 MB.

8.1 Sanity Check

The motivation behind building the tool was to see whether a generic approach can identify
trackers in the network and potentially find new unknown tracking strings. Before moving onto
finding novel tracker strings sent over the network, as a sanity check, the tool must at least
find the trackers well-known to the security community, i.e., cookies. To see this, we randomly
sampled “Cookie” attribute values from the raw traces and looked them up in the final analysis
data for the user. We found that for all instances, if the connection in which the cookie occurred

16

Algorithm 3: Removing common strings

Input: streams uy, ug, ..., u, where each stream u; is a list of objects {u; 1, u; 9, ...} of
form wu; ; = [str] for each user ¢. Each stream w; is sorted on str
Output: streams 01, 0z, ..., 0. Each 0; = {0; 1, 0; 2,... } is a stream of candidate trackers
for user ¢
INITIALIZE curr_strs = [uy1,Ua1, .., Un1]
while not at end of all streams do
min_string <— SmallestString(curr_strs)
INITIALIZE min_streams to empty list []
for i going from I to n do
if curr_strs|i] = min_string then
‘ APPEND 1 to min_streams
end
end
if |min_streams| = 1 then
| PrintToOutputStream(o;), where min_streams = {i}
end
for : € min_streams do
READ next object u; ; from stream u;
SET curr_strs[i] to u;
end
end

o 0 N T R W N =

e~ = < =
0N R W N =D

o
N

was retained after the connection based filtering step, then the cookie would appear in our final
analysis data. Thus our tool at least captures the trackers it is expected to.

8.2 Fine-grained Filtering

In order to further reduce the overhead of manual analysis, we added two more filters; the URL
path filter removes tracker strings that appeared only in a URL path, and not URL parameters,
and the cookie filter removes all the tracker strings that appeared in cookies. The motivation be-
hind URL path filter is (i) web pages with unique names raise the false positive rate, (i7) it is not
likely that tracking is performed using a specific path in the site’s directory structure. We believe
that scenarios where users visit a webpage that remains open across multiple days on the user’s
browser would fall under this category. As an example, the url http://www.modcloth.
com/shop/shoes-heels/tropical-tasting—heel was captured by our tool with
tropical-tasting-heel marked as unique. The motivation for cookie filter is to find novel tracker
strings. Since the security community is aware of cookies being used as tracker strings, we re-
move them from our analysis. This further reduces the size of files to be analyzed by a factor of
approximately 1.7; the total file size now is approximately 483 MB. The total number of users
to be analyzed at this stage is 244.

8.3 Results

The analysis of the filtered context files is expensive in terms of analyst time taken. It took about
7-8 hours of manual analysis to go over about 25 out of 244 users. Each line in the context file
corresponds to a line from the original content file with the tracker string highlighted. We

17

 http://www.modcloth.com/shop/shoes-heels/tropical-tasting-heel
 http://www.modcloth.com/shop/shoes-heels/tropical-tasting-heel

Table 4: Potential trackers found

Host Tracker Name Context Category
ui.skype.com uhash URL parameter account specific
dropbox.com user_id URL parameter account specific
symantec.com useragent user agent browser specific
courier.push.apple.com AppleiPhoneDevice Non-HTTP: TCP payload device specific
microsoft.com USR Non-HTTP: MSN ping message | account specific
freenode.net USER, NICK Non-HTTP: IRC Channel account specific
jupiter.apads.com deviceid HTTP POST payload device specific
safebrowsing.clients.google.com wrkey
s.amazon—-adsystem.com ad-sid, a2, id
aax—-us—east.amazon—-adsystem.com ad-sid, a2
tags.bluekai.com a_id, id
addthis.com uid
l.collective-media.net id
idsync.rlcdn.com id
p.acxiom-online.com id, uid
e.nexac.com id
d.agkn.com partner_id
cspix.mediabdegrees.com tpu
v.admaster.com.cn c
aktrack.pubmatic.com piggybackCookie
URL parameter unknown
image2.pubmatic.com piggybackCookie
d.xpl.ru4.com u
livepassdl.conviva.com uuid
pixel.quantserve.com fpa
api.embed.ly sid, key, uid
p.rfihub.com userid
loadus.exelator.com buid2, buid
static.crowdscience.com cp0, cpl
pagead2.googlesyndication.com uid
ums .adtechus.com userid, providerid
rtb-csync.smartadserver.com partneruserid
adnxs.com xuid
bizographics.com bizoid

print the entire line instead of just the tracker strings in order to obtain the context of each
string, i.e., whether it appeared in URL or User Agent or under some other header. We use
this context and resources available online (if any) about the string to understand whether the
tracker found is a false positive and if not, how is the string being used for tracking, i.e., whether
it is account/device/session/browser specific. Table 4 lists all the trackers we found, the domain
they were seen from, the context in which they appeared and their category.

Since the cookies have been filtered out for faster analysis, the Table does not include
those. Apart from cookies, a large number of other candidate strings were captured by
the tool. Interestingly the tool captured a user identifier sent across the network by Skype
as a parameter in the URL. The URL after logging into Skype application is of the for-
mat http://ui.skype.com/ui/2/2.1.0.81/en/getlatestversion?ver=2.

18

ui.skype.com
uhash
dropbox.com
user_id
symantec.com
user agent
courier.push.apple.com
Apple iPhone Device
microsoft.com
USR
freenode.net
USER, NICK
jupiter.apads.com
deviceid
safebrowsing.clients.google.com
s.amazon-adsystem.com
aax-us-east.amazon-adsystem.com
tags.bluekai.com
addthis.com
l.collective-media.net
idsync.rlcdn.com
p.acxiom-online.com
e.nexac.com
d.agkn.com
cspix.media6degrees.com
v.admaster.com.cn
aktrack.pubmatic.com
image2.pubmatic.com
d.xp1.ru4.com
livepassdl.conviva.com
pixel.quantserve.com
api.embed.ly
p.rfihub.com
loadus.exelator.com
static.crowdscience.com
pagead2.googlesyndication.com
ums.adtechus.com
rtb-csync.smartadserver.com
adnxs.com
bizographics.com
wrkey
ad-sid, a2, id
ad-sid, a2
a_id, id
uid
id
id
id, uid
id
partner_id
tpu
c
piggybackCookie
piggybackCookie
u
uuid
fpa
sid, key, uid
userid
buid2, buid
cp0, cp1
uid
userid, providerid
partneruserid
xuid
bizoid
http://ui.skype.com/ui/2/2.1.0.81/en/getlatestversion?ver=2.1.0.81&uhash=<uhash>
http://ui.skype.com/ui/2/2.1.0.81/en/getlatestversion?ver=2.1.0.81&uhash=<uhash>

1.0.81suhash=<uhash>. The parameter uhash ? is the hash of the user ID, the password
and own value of the hash function and is constant if the Skype user is fixed [7]. uhash can
very well act as a tracker for a user. If the same uhash was seen sent to Skype on two different
networks, one can infer that it was the same user on both the networks.

Another interesting discovery was of the Dropbox userid being sent over the net-
work in the clear. The url of the Dropbox application syncing with its server looks like
/subscribe?host_int=327016083&ns_map=334914819_1963134969091,
161392333_446837991117, ...,230181947_99014429755&user_1id=
uid&nid=74&ts=1389299857 with a clear text parameter called user_id being sent
along with its value. Since the Dropbox application regularly syncs with its server, tracking
information is being sent out on the network at regular intervals without requiring any user
activity.

We also found a few other candidate tracking strings which we believe are in-
teresting but do not have conclusively infer whether they can be used as track-
ers. For example, our tool captured a parameter called wrkey, which appears as
a response to safebrowsing.clients.google.com in the URL (example,
/safebrowsing/downloads?client=navclient-auto-ffox&appver=
24.3.0&pver=2.2&wrkey=<wrkey>) by Google’s safebrowsing server. The doc-
umentation provided by Google [6] says that wrkey key is sent to the client along with
other identifiable information as a private key for confidential communication with the
server. We found parameter called deviceTId with details of the phone® make and ser-
vice provider, being sent as a part of POST request payload to jupiter.apads.com.
Symantec was found to use a random looking user agent for its communication, for exam-
ple, User—-Agent :LmIpWZ1l/EyabGJVmgzlsozkF JjAUcO/OUgAAAAA. We did not
find any proof of it being unique to a machine or a user; however, since it was captured
by the tool, the User agent was definitely unique and persistent as seen over the whole
range of 15 days. Adaptv also sends out cookie information in the url under the parameter
adaptv_unique _use_cookie. The tool marked a few User Agents which were unique to the
respective users. Interestingly, we also found non-HTTP tracking strings like IRC and MSN
messenger ping messages, for example, our tool found “USR 3 SSO I uname @hotmail.com”
being sent to microsoft .com with the email address of the user* marked as the tracker.
Similarly, USER usernamexirc.freenode.net:purple and NICK nick were sent to
freenode.net, where username was the username of the corresponding user and NICK
was the nickname used by the user for communication. We also found a device token being
sent as a component of Apple’s Push Notification (APN) Service. APNs use this token to locate
the device and to authenticate the routing of a notification [1]. Other examples of suspicious
looking parameters sent on the network are included in the Table 4.

9 Conclusion

Web sites today use tracking techniques to collect information about users’ browsing activity.
Conventional trackers used for this purpose are well known to the security community and
have recently spurred serious concerns about users’ privacy. In this work, we build a tool that
given the network traces, automatically identifies more such user-identifiable information sent

2We used a place holder for the value instead of the actual value since we believe that is could be a user-
identifying string

3the device was a phone in this case which was clear from other values of the parameters in POST request

“We confirmed that this was the real email address of a user in our network

19

http://ui.skype.com/ui/2/2.1.0.81/en/getlatestversion?ver=2.1.0.81&uhash=<uhash>
http://ui.skype.com/ui/2/2.1.0.81/en/getlatestversion?ver=2.1.0.81&uhash=<uhash>
/subscribe?host_int=327016083&ns_map=334914819_1963134969091,161392333_446837991117,...,230181947_99014429755&user_id=uid&nid=74&ts=1389299857
/subscribe?host_int=327016083&ns_map=334914819_1963134969091,161392333_446837991117,...,230181947_99014429755&user_id=uid&nid=74&ts=1389299857
/subscribe?host_int=327016083&ns_map=334914819_1963134969091,161392333_446837991117,...,230181947_99014429755&user_id=uid&nid=74&ts=1389299857
safebrowsing.clients.google.com
/safebrowsing/downloads?client=navclient-auto-ffox&appver=24.3.0&pver=2.2&wrkey=<wrkey>
/safebrowsing/downloads?client=navclient-auto-ffox&appver=24.3.0&pver=2.2&wrkey=<wrkey>
deviceId
jupiter.apads.com
User-Agent: LmIpWZ1/EyabGJVmgz1sozkFjAUcO/OUgAAAAA
microsoft.com
USER
username * irc.freenode.net :purple
NICK
nick
freenode.net
username
NICK

over the network. Scaling the tool to handle large network traces and validating the candidate
trackers output by the tool were major key challenges faced by us in this work. We present
two key techniques used in our tool to tackle these challenges, namely multi-stage filtering and
streaming algorithms. Our tool is successfully able to capture novel trackers sent on the network
along with the ones that are well known in the security community. We believe that this tool
can provide useful insights into leakage of privacy sensitive information on web today.

References

[1] Apple Push Notification Service. https://developer.apple.com/
library/mac/documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/Chapters/ApplePushService.html.

[2] Bro. https://www.bro.org/.

[3] Nmap free security scanner. http://nmap.org.

[4] Project details for pOf. http://lcamtuf.coredump.cx/p0f.shtml.

[5] Project details for xprobe. http://sourceforge.net/projects/xprobe/.

[6] Safe Browsing API. https://developers.google.com/safe-browsing/
developers_guide_v2.

[7] C. M. Arranz. IP Telephony: Peer-to-peer versus SIP. http://kth.diva-portal.
org/smash/get/diva2:513157/FULLTEXTO01.pdf, 2005.

[8] P. Eckersley. How unique is your web browser? In Privacy Enhancing Technologies,
pages 1-18. Springer, 2010.

[9] T. Kohno, A. Broido, and K. C. Claffy. Remote physical device fingerprinting. Dependable
and Secure Computing, IEEE Transactions on, 2(2):93—-108, 2005.

[10] C. Kreibich and J. Crowcroft. Honeycomb: Creating intrusion detection signatures using
honeypots. SIGCOMM Comput. Commun. Rev., 34(1):51-56, Jan. 2004.

[11] B. Krishnamurthy and C. E. Wills. On the leakage of personally identifiable information
via online social networks. In Proceedings of the 2Nd ACM Workshop on Online Social
Networks, WOSN °09, pages 7-12, New York, NY, USA, 2009. ACM.

[12] B. Krishnamurthy and C. E. Wills. Privacy diffusion on the web: a longitudinal perspec-
tive. In WWW, pages 541-550, 2009.

[13] J. R. Mayer. Any person... a pamphleteer: Internet anonymity in the age of web 2.0.
Undergraduate Senior Thesis, Princeton University, 2009.

[14] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting. In Pro-
ceedings of the 6th Conference on Symposium on Opearting Systems Design & Implemen-
tation - Volume 6, OSDI’04, pages 4-4, Berkeley, CA, USA, 2004. USENIX Association.

[15] Y. Xie, F. Yu, and M. Abadi. De-anonymizing the internet using unreliable ids. In Pro-
ceedings of the ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM
’09, pages 75-86, New York, NY, USA, 2009. ACM.

20

https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Chapters/ApplePushService.html
https://www.bro.org/
http://nmap.org
http://lcamtuf.coredump.cx/p0f.shtml
http://sourceforge.net/projects/xprobe/
https://developers.google.com/safe-browsing/developers_guide_v2
https://developers.google.com/safe-browsing/developers_guide_v2
http://kth.diva-portal.org/smash/get/diva2:513157/FULLTEXT01.pdf
http://kth.diva-portal.org/smash/get/diva2:513157/FULLTEXT01.pdf

[16] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host fingerprinting and tracking on the
web: Privacy and security implications. In NDSS. The Internet Society, 2012.

21

	1 Introduction
	2 Related Work
	3 Data
	4 Key Challenges
	4.1 Naive Approach
	4.2 Challenges
	4.3 Key ideas

	5 Architecture Overview
	6 Multistage Filtering
	6.1 Connection-based filtering
	6.2 Slicing
	6.3 String-based filtering

	7 Implementation
	7.1 Removing non-persistent strings
	7.2 Removing common strings

	8 Analysis
	8.1 Sanity Check
	8.2 Fine-grained Filtering
	8.3 Results

	9 Conclusion

