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Abstract

Real-time Safe Semi-Autonomous Control with Driver Modeling
by
Victor Andrew Shia

Distracted driving is still a major concern on roadways today. According to the US Department of
Transportation, in 2011, 387,000 people were injured in crashes involving a distracted driver.
While there has been tremendous work in vehicular safety systems, as the velocity of the vehicle
increases, threat assessment becomes more difficult to predict. In this regime, understanding how
the driver behaves is critical in determining the safety of the vehicle. This work presents a
framework for incorporating human driver modeling with a controller to provide a
semi-autonomous system for vehicle safety. We describe how the system is built, present metrics
to evaluate its utility and conduct real-time experiments with a safety controller to verify the

utility of incorporating the driver’s behavior while designing a semi-autonomous system.
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1 Introduction

Despite the improvement of vehicle safety features in recent years, the number of traffic crashes and
fatalities remains high [4]. The National Highway Transportation Safety Administration reported
that in 2011, 3,331 people were killed in distracted driving related incidents and another 387,000
were injured. Though it is difficult to quantify why these accidents occur, it is agreed that in-vehicle
information systems (e.g. vehicle navigation systems) and other devices such as cell phones make
the driver prone to distraction which degrades driving performance. Using data from vehicles
instrumented with cameras, several studies have estimated that driver distraction contributes to
between 22 to 50% of all crashes [23,30]. Alarmingly, even with the advances in technology, a
recent report conducted indicates that the percentage of fatal crashes due to distraction is rising [6].
In 2011, the Transport Research Laboratory in UK found that distracted drivers spent between 40-
60% of the time looking at their phone, resulting in the inability to maintain central lane position
and lower response/reaction times [7]. With newer technologies such as augmented reality glasses

coming to the market, there are growing concerns about how this will affect vehicle safety.

One potential resolution to the driver distraction problem is the autonomous vehicle [24,33,35,
36]. Autonomous vehicles date back to the 1980s starting with Ernst Dickmann at the Bundeswehr
University Munich which drove at 63 km/h on streets without traffic [13, 14]. Also in the 1980s,
DARPA funded the Autonomous Land Vehicle project bringing together several universities to
use laser radar, computer vision and autonomous control to drive at 31 km/h [32,39]. In the
1990s, the California Partners for Advanced Transportation Technology (PATH) demonstrated a
concept called platooning and showed remarkable results with stability and safety [17]. However,
due to the advanced infrastructure required, the technology was never realized in industry until
the DARPA Grand Challenge 2004, 2005, and 2007, this challenged universities to develop a
fully autonomous vehicle on modern infrastructure. Afterwards, Google continued to develop the
autonomous vehicle until now, logging hundred of thousands of hours on the road and garnering

much attention from the public.

Although autonomous vehicles have taken the public and lawmaker’s attention recently, the
deployment of these systems has been hindered principally due to the lack of formal methods to

verify the safety of such systems in arbitrary situations. Recognizing this shortcoming of theoret-
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ical verification algorithms in the face of a growing number of accidents due to driver distraction,
several car companies have moved quickly to design active safety systems to avoid accidents.
Volvo, for example, has developed one of the most advanced such systems called City Safety that
detects potential collisions by treating the driver’s input as a disturbance, computing the reachable
set of the car over a short time horizon (approximately 500 milliseconds), and immediately decel-
erating the car if it detects an intersection of the reachable set with an obstacle [11]. Confidence
in this autonomous breaking maneuver was achieved via extensive testing over several million
kilometers. BMW, Lexus, Hyundai, Ford, and many other car companies have recently entered
the semi-autonomous vehicle market. At CES 2013, Toyota presented its semi-autonomous Lexus
Advanced Active Safety Research Vehicle which is intended to take-over when it detects an im-
minent threat [19]. However, these car safety systems have been limited to low speeds since the

reachable set at higher speeds grows large.

As these types of semi-autonomous systems become more elaborate and are applied in higher
speed situations, threat assessment and driver prediction must occur over a much longer time hori-
zon, which means that the reachable set becomes large. In these situations, we move from a
scenario where the driver can simply be treated as a disturbance to a scenario where the driver be-
havior becomes fundamental to the design of a provably safe semi-autonomous vehicle otherwise
the semi-autonomous system begins to behave as a fully autonomous system. However, as each
driver may behave differently, a single universal driver model for all semi-autonomous vehicle sys-
tems is insufficient. Instead, we must develop a system framework that adjusts to different drivers
by taking advantage of real-time empirical observations of the driver such as posture, hand posi-
tion, gaze, heart-rate and other sensory data. However, once this shift occurs, empirical validation
becomes difficult due to the reliance of the system on the driver model itself. Fortunately recent
advances in numerical optimization techniques have shown that provably safe controllers can be
designed robustly given a particular circumstance [5,9]. We leverage the framework described
in [37] to design a real-time system that can utilize empirical observations of the driver to keep the

vehicle safe.

Modeling driver behavior has been studied for decades in a variety of communities. The human
factors community, as described in the surveys found in [8, 28], has focused on quantifying the
amount of attention required to accomplish a variety of tasks, and the level of distraction due to

a variety of common preoccupations that arise during driving. These studies do not provide a
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method to predict the driver’s behavior given a particular level of distraction and a particular task

complexity.

Other communities have used body sensors on the driver [29], eye trackers [15,38], inside cam-
eras [34], or facial tracking [10,16,22,25,26] to predict the driver’s behavior. Although this meth-
ods can predict driver intent with 70-90% accuracy with varying prediction times, these approaches
do not provide a means to employ the prediction during controller design or a method to quantify
the utility of the given prediction in preventing accidents; Trivedi et al at UC San Diego has done
tremendous work in the computer vision area in predicting intent and driver behavior and a review
of the literature can be found in [16]. For this project, we quantify driver distraction, predict future
vehicle states and trajectories, develop statistical models of driving behavior and predictions, and
couple this prediction with controller design to construct a provably safe semi-autonomous vehicle

framework and illustrate its utility in preventing accidents during an experiment.

We motivate the need for semi-autonomy by considering the “simplest” semi-autonomous ve-
hicle architecture which treats the driver’s input into the vehicle as a disturbance. The simplest
semi-autonomous vehicle architecture would construct a reachable set for the vehicle and would
apply a controller whenever the reach set of the vehicle intersected with an obstacle. Unfortunately
this framework is too conservative since by treating the driver’s steering, throttle and braking as a
disturbance the simplest architecture predicts a large set of potential future trajectories and there-
fore acts too early and too often. To illustrate this shortcoming, suppose, for example, that the
semi-autonomous controller employs a breaking maneuver and does not want to decelerate the
vehicle too quickly. At highway speeds, the set of reachable states over a 2 second time horizon
is large and likely intersects with some obstacle all the time. As a result, the controller would
continually believe that the driver was in trouble and constantly take over control of the vehicle,

even though the driver most likely would be safe.

Remark 1: We are ultimately interested in the control of a vehicle whose evolution is given as the

solution of the vehicle dynamics:
z(k+1) = f(z(k), u(k)), VkeN, (D

where x(k) € R™ is the state of the vehicle at time k, u(k) € U is the input into the vehicle
dynamics at time k where U C R™ is a compact, connected set containing the origin, and x(0),

the initial state, is assumed given. For a fixed future time horizon N € N the constraint function,
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¢x : R x {0,..., N} — R, describes the safe part of the environment which the vehicle travels
in. That is, the state of the car remains outside of obstacles in the environment (safe) at a time k if
on(z(k), k) < 0, by definition. Observe that if we know the location of the obstacles at k = 0 but
are only aware of bounds on the movement of each obstacle, then we can still encapsulate these

bounds into the constraint function, ¢y.

An outline of this paper is as follows: in Section 2, we present a real-time implementation of
the framework described in [37] that uses a driver model to predict likely vehicle behavior by using
empirical observations and another component that determines when to intervene. In Section 2.2,
we present several metrics to evaluate the performance of the driver model and real-time system.
Section 3 describes the implementation of the vehicle model, controller, and simulator. In Section
4, we construct a real-time driver-in-the-loop experiment and illustrate the utility of incorporating
empirical observations of the drivers poser in the control loop to prevent accidents. Section 5
describes how the data is processed. Section 6 provides an evaluation of the system with respect

to the metrics and Section 7 concludes this manuscript.
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2 Semi-Autonomous Vehicle Framework

2.1 Problem Formulation

Our semi-autonomous vehicle framework divides the problem of determining when to intervene

into three components: driver prediction, intervention detection, and autonomous control.

The first component of the proposed three component semi-autonomous vehicle framework
predicts driver behavior and is called the Vehicle Prediction Multifunction (VPM). A high level
explanation is as follows: given prior knowledge of driving behavior and the current state of the
vehicle and driver, the VPM predicts a set of likely future trajectories and inputs that the driver
will take in the next N time steps. Formally, we incorporate the prior observations denoted O (this
may include past states of the driver, past inputs, past vehicle trajectories, and past environment
scenarios from training data) and the current information Z = {N, N, z(0), ¢7, On } (Where N €
N denotes the past time horizon and 6y represents the observations of the human for the last NV
time steps) in order to predict a smaller and more useful set of potential states for the vehicle and

the future expected steering. The component is defined below:

Component 1: Vehicle Prediction Multifunction (VPM): Fixing N, N € N (future and past time

horizons respectively) and choosing a € [0, 1] (probability of prediction accuracy) and k €

{0,..., N}, construct the vehicle prediction multifunction denoted A(a, k, O, T) as the solution
to:
argmin ||
QCRn? (2)

st. P((X(k)—2(0) CQ|0,T)>a,

where |Q| denotes the area of the set ), and P ((X (k) — x(0)) C A | O, I) denotes the probability
that the difference between a solution to Equation (1) beginning at x(0) in k time steps, denoted
X(k), and x(0) is inside of the set §) given the prior observations and prior information (note

X (k) is capitalized in order to distinguish it as the random variable).

The vehicle prediction multifunction is the smallest size set that contains « probable vehicle tra-
jectories in k time steps given prior observations and current information. In order to construct this

function, we require a model linking X (k) with prior observations, which we obtain by learning
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driver behavior. In essence, X (k) represents likely future trajectories and A(«, k, O, Z) represents
the set that encapsulates an « portion of those trajectories. In Section 3.3, we describe how we
construct the required conditional distribution and how we construct the vehicle prediction multi-

function. .

Using the vehicle prediction multifunction and the constraint function, the second component
of the semi-autonomous vehicle framework is a binary-valued function that determines when the
driver is in need of assistance. This is defined formally as follows:

Component 2: The vehicle intervention function (VIF) denoted g, is 1 when the driver requires

aid and is defined as:

a0 =1t T ((AakO.D)NCHD) #0 N

0 otherwise,
where C(k,Z) = {z € R" | ¢n(z — x(0), k) > 0}, the set of unsafe positions, and f : A — R, is

a function that operates on the set from A(a, k, O, T).

The vehicle intervention function is 1 if a function f of « probable vehicle trajectory intersects
an obstacle in the next N time steps given our past observations and current information. In our
previous work [37], the function f used was the identity relation. For this project, we consider the

average of the set, which corresponds to the driver’s expected future trajectory.

If the VIF determines that the driver needs aid, then f(A(«, k,O,T)) is sent to the vehicle’s
semi-autonomous controller to determine a necessary minimum-norm input to augment the ex-

pected driver’s input to ensure that the vehicle stays within the safety constraints.

Component 3: The controller, denoted \ : R" x R" — RY, determines an input to the vehicle for

the next N time steps and is defined as:

ou = MNf(Ala, k,0,1)),C(k,T)) “4)

where du can be either an augmented input to the driver’s steering or the actual steering for

fully autonomous control.

Algorithm 1 describes our semi-autonomous vehicle framework.
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Algorithm 1 Semi-Autonomous Vehicle Framework
I: Data: N, N € Nand 2(0) € R"

2: Letu(k) =0,Vk € {0,...,N}.
3: for Each time step do

4:  update ¢y and f, and set z(0) equal to the vehicle’s current state.

50 ifg(a,0,7) ==1 then

6: set dou = A(f(A(e, k,0,7)),C(k, 7))
7: apply du to the vehicle

8: endif

9: end for

rEnvironmentaI Model1 Human Model Vehicle Model

Driver Prediction

L3
S

\, - J
1

"l
----------- ->[ Driver Intervention J(-----------

Figure 1: Semi-autonomous framework with driver modeling.

In the algorithm, line 4 updates the environmental constraints and observations of the driver;
line 5 represents the calculation of the vehicle prediction multifunction and intervention function;

line 6-7 represents the application of the semi-autonomous controller.

The idea behind this framework is to modularly incorporate driver, vehicle, and environment
data. The driver model provides information on the state of the driver in real time and predicts
likely future driving behavior, in either steering wheel angle space or real world space. It is fur-
ther described in Section 3.3. The environment model provides information on outside obstacles,
pedestrians, and road curvature. It is further described in Section 3.1. The vehicle model is used

in the vehicle safety controller which incorporates the environment model to determine an input to
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keep the car safe if necessary. It is described in Section 3.2.

2.2 Metrics to Evaluate Performance

To evaluate the performance of our vehicle prediction multifunction and the vehicle intervention

function, we utilize the 4 metrics presented in [37] described below.

In this subsection, we define four separate metrics: the Accuracy of the Vehicle Prediction
Multifunction (AVPM), the Precision of the Vehicle Prediction Multifunction (PVPM), the Recall
of the Vehicle Intervention Function (RVIF), and the Precision of the Vehicle Intervention Func-
tion (PVIF). The AVPM and the PVPM measure the informativeness of our vehicle prediction

multifunction and the RVIF and the PVIF measure the utility of the vehicle intervention function.

While the most informative set prescribed by the vehicle prediction multifunction would pre-
dict a single vehicle trajectory that was always accurate, this requires perfect knowledge of the
intent of the driver. Instead, we forecast a set of potential trajectories. Intuitively, AVPM denotes
how accurate the set is and PVPM denotes how much smaller the predicted set of trajectories is
compared to the reachable set. Notice that the AVPM can act either on steering wheel angles or
the vehicle trajectories while the PVPM only can act on the vehicle trajectories. During our ex-
periment in Section 4, we measure the informativeness of our prediction by first determining if the
observed vehicle behavior for the next N time steps was inside of the predicted set at each of the

next N time steps. Explicitly, fixing o € [0, 1] suppose we are given M distinct observed vehicle

trajectories for N time steps beginning at time step ¢ denoted {z,  : {0,..., N} — R"}}, then:
| M N
AVPM = — 2 ;Eo Lz, %(k) € Ala, k, 0, T;)}, (5)

where 1 is the indicator function and the current information, Z;, is indexed by the time step 7 since
the vehicle prediction multifunction is a function of the initial condition of the vehicle, z; 7(0).
We also measure the informativeness of the predicted set by computing one minus the area of the
predicted set for the next N time steps over the area of the set of reachable states for the next N

time steps:

M _
PVPM = 1 — 1 Z | UiV:(LA(a, k,O,T;)| "
M U, R(kT))

=1
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where R(k,Z;) is the set of reachable states at time step k beginning at z; 5(0). We normalize
by the set of reachable states since it is always accurate, but imprecise because it assumes that the

vehicle behaves arbitrarily.

Similarly, the most useful vehicle intervention function would only act if and when the vehicle
was actually going to get into an accident. Unfortunately the determination of this most useful
intervention procedure is difficult since it demands being clairvoyant. To understand these concepts
in this context, we borrow several definitions from the binary classification literature [12]. We
define an observed N time step vehicle trajectory to be “true” if an accident is actually observed
at any instance in the next NV time steps, and we define an observed N time step vehicle trajectory
to be “false” if an accident is not observed in any of the next N time steps. We define an observed
vehicle trajectory to be “positive” if the vehicle intervention function (i.e. the classifier in our
context) returns 1, and we define an observed vehicle trajectory to be “negative” if the vehicle

intervention function returns 0.

The RVIF is then defined as the true-positive observations divided by the sum of the true-
positive observations and false-negative observations (note that in the binary classification liter-
ature this is when the observation is true, but the classifier returns negative) and measures the
sensitivity of the vehicle detection function. If the RVIF is 1, then the semi-autonomous vehicle
framework intervened whenever an accident occurred. Notice that if the vehicle intervention func-
tion relied on the set of reachable states, then there would be no false-negative observations since
an accident could have only occurred if there was a non-trivial intersection between the reachable
set and an obstacle. Therefore, this choice of vehicle intervention function would always be perfect

with respect to this metric.

The PVIF is defined as the true-positive observations divided by the sum of the true-positive
observations and false-positive observations (note that in the binary classification literature this is
when the observation is false, but the classifier returns positive). If the PVIF is much less than
1 then the semi-autonomous vehicle framework intervened far more than was actually required.
If this is the case the vehicle begins to behave more like an autonomous vehicle. Suppose again
that the vehicle intervention function relied on the set of reachable states, then there would most
likely be a large number of false-positive events since the reachable set would intersect with some

obstacle in the neighboring lanes that the driver in all likelihood would never have an accident
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with. Our goal in the remainder of this paper is to illustrate the informativeness and utility of
considering prior observations before the current time step, the driver state function and the vehicle
trajectory generated by the numerical optimization algorithm for the current time step in the semi-

autonomous vehicle framework by using these four metrics.
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3 System Architecture

In this section, we describe in detail each of the components required in Section 2.

3.1 Environment model

The environment model provides information on the state of the road and obstacles such as pedes-
trians or other vehicles. This can be obtained through commercial off-the-shelf systems such as
Mobileye [3] or radar systems now installed in many vehicles. In our experiments described in
Section 4, our simulator provides radar with known road curvature so we have complete certainty

of the environment.

3.2 Vehicle model

This subsection was written by Yiqi Gao in Professor Francesco Borrelli’s MPC lab and included

for clarity’s sake.

In this section, we present the mathematical models used for control design. Consider the
vehicle sketch in Figure 2. We use the following set of differential equations to describe the vehicle

motion within the lane,

mi = mynp + 2F, 5 + 2Fy,, (7a)
mij = —mi) + 2F,; + 2F,, (7b)
L) = 2aF,; — 2bF,,, (7c)
&y =1 =, (7d)
é, = ycos(ey) + T sin(ey), (Te)
§ = @cos(epsi) — ysin(ey), (71)

where m and I, denote the vehicle mass and yaw inertia, respectively, a and b denote the distances
from the vehicle center of gravity to the front and rear axles, respectively. & and y denote the

vehicle longitudinal and lateral velocities, respectively, and 2/1 is the turning rate around a vertical
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]
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1
I
1
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desired path

g ﬂr =i

s
r”
e
r"
r”
. A
< N\EyY -
" 2
/

-

Figure 2: Modeling notation depicting the forces in the vehicle body-fixed frame (F,, and F,),
the forces in the tire-fixed frame (F}, and F,,), and the rotational and translational velocities. The

relative coordinates e, and e, are illustrated on the sketch of the road as well as the road tangent

V.

axis at the vehicle’s center of gravity. e, and e, in Figure 2 denote the vehicle orientation and
lateral position, respectively, in a road aligned coordinate frame and ¢/, is the angle of the tangent
to the road centerline in a fix coordinate frame. s is the vehicle longitudinal position along the lane
center.f ;s and I, are front and rear tire forces acting along the vehicle lateral axis, F, s and [,

forces acting along the vehicle longitudinal axis

The longitudinal and lateral tire force components in the vehicle body frame are modeled as,

F,. = F, cos(0,) — F, sin(dy), (8a)
Fy = Fi.sin(d,) + Fex cos(dy), (8b)

where x denotes either f or r for front and rear tire, J, is the steering angle at wheel. We introduce
the following assumption on the steering angles.

Assumption 1: Only the steering angle at the front wheels can be controlled. i.e., 6y = 6 and
0, = 0. In addition, an actuator which corrects the driver commanded steering angle, such that

0 = 04+ 0., is available, where 64 is the driver commanded steering angle and 0.. is the correcting
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steering angle component.

The longitudinal force in the tire frame, f, is calculated from the equation

fl* = BrﬂFz* (9)

where 3, € [—1,1] is referred to as the braking ratio. 3, = —1 corresponds to full braking
and 3, = 1 corresponds to full throttle. f., is computed using a modified nonlinear Fiala tire
model [21]:

02
—Catan(ay) + 55— [tan(o)[tan (o)
3
Jox = — Mﬁtan%&*), if |ou] < ag (10)

—npF,sgn(ay), if |a.| > ag

where «, denotes the tire slip angle, i« denotes the friction coefficient, and F'z, denotes the
. . . . . /U2 E2—f2 .
vertical load at each wheel. C,, is the tire cornering stiffness and = TI which can be
written as ) = /1 — 2. ag = tan_l(?’”o“—Fz) denotes the saturation point of the slip ratio. u is
assumed to be a known constant and is the same for all wheels. We also assume the vertical forces
F,, to be constants and are determined by the steady state weight distribution of the vehicle with

no accelerations at the center of the gravity.

The slip ratios «, are approximated as follows:

?J‘i"mb_d’ ozT:y_,bl/} (11)

T T

Oéf:

We write the model (7) to (11) in the following compact form:

£(t) = f(E(),u(t)) (12)

where & = [2, 7,1, ey, ey, s| and u = [§, B,] are the state and input vectors respectively.
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3.3 Component 1: Vehicle Prediction Multifunction (VPM)

In this subsection, we describe how we construct component 1, the vehicle prediction multifunction
based off of work in [37]. During the experiment considered in Section 4, we want to illustrate
the utility of considering various types of prior observations and current information. Therefore,

in this section we consider the construction of the required distribution in generality.

We hypothesize that given a level of distraction for the driver and a specific environment,
the distribution of the potential vehicle trajectories at a particular time step has distinct modes.
For example, the distribution of potential vehicle trajectories when the driver is attentive will be
different for when the driver is distracted; likewise, the vehicle trajectories for a curved and straight
road will differ. To recover these distinct modes, we apply a k-means clustering algorithm on the
prior observations, O, and present two types of probability distributions for each mode: one using
the empirical cumulative distribution defined on the observations within that mode [20, 31] and
one by fitting the potential vehicle trajectories to a gaussian at each particular time step. For each
mode M, there is a set O C O of observations associated with each mode. Notice that we are

currently performing unsupervised learning.

3.3.1 Empirical distribution VPM

For each mode M, we have O, = {o;}; where i denotes the time step and each o; is a vector
composed of observations (steering angle, environment constraints and postures) for that mode.
Fixing N € N with respect to each observation o;, we can associate the actual observed vehicle
input and trajectory for the next NV time steps beginning at time step i which we denote by U

{0,....N} = Rand 2, : {0,...,N} = R".

As Algorithm 1 runs at each time step, we are given current information, Z, which includes the
vehicles current initial condition which we denote by x(0), determine which mode the driver is in,

and outputs the set A(«, k, O, Z).

Letting M denote the mode to which Z belongs, for some 21, 2z € R”, let 2 = {z € R"|2; <

x < z} and we define the probability that the future steering at time step &, denoted x(k), and the
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vehicle’s initial condition x(0) is in € ( between z; and 25 ) as:
1
Pz <a(k) —2(0) < 2 [ 0,1) = ™M Y Hak) < (z5(k) —2;5(0)) < 2(k)} (13)
vieM
where | M| denotes the number of elements in mode M. During our experiment in Section 4, we
find the minimum z; (most counter-clockwise turn) and maximum z, (most clockwise turn) such

that the probability in Equation (13) is 1.

Therefore, recalling A in Section 2, we define A(a, k, O, Z) as:

argmin ||
QcR®
(14)

st W1| S 11 () < (k) — 2,5(0)) < 2(B)} = 1,

VieM
3.3.2 Gaussian distribution VPM

To apply the VPM to a stochastic controller, we hypothesize that in a given scenario, the driver’s
future trajectory and steering wheel angles can be described by a gaussian distribution over time.
To construct the gaussian distribution, we construct P in the following manner: Let x,, (k) be the
average steering corresponding to associated observed vehicle behavior and o,, (k) corresponding

to the standard deviation of steering behavior in mode M .

Letting M denote the mode to which Z belongs, for some z € R"™ we define the probability
that the future steering at time step &, denoted z(k)as:

1 _ (@) —zm(k)?

P((z(k) —2(0)) <2 [ 0,1) = STANo 207 (k) (15)

3.4 Component 2 and 3: Robust Predictive Control Problem

Once component 1 and 2 predict that the driver may run into trouble, our controller will apply an
input to the system to keep the vehicle safe. This problem of lane keeping and obstacle avoidance

can be formulated as a Model Predictive Control (MPC) Problem. At each sampling time, an finite
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time constrained optimal control problem is solved to determine an optimal input sequence. The
computed input is only applied to the system for a finite time interval before the MPC problem is

re-solved using new measurements from sensors to find the new input.

The general MPC optimization problem can be written as:
min J(z(t),u)
sit. tpy1 = f(xp,up), k=0,..., N —1
h(a:k,uk)g(),k;:(),...,ﬁ—l (16)

Ty € Xf
xo = x(0)

where « is the optimal input, x is the state, f is discrete dynamical equation, h are the con-
straints (where a negative value means the constraint is satisfied), x s is the target set, and x is the

initial state.

First, we looked at 2 types of control inputs to put into the system. The first method, which we
describe and use in [37], is where the controller fully takes over when the driver model predicts that
the driver may be in danger. The second method, which we use, uses the expected driver steering
as the initial input and tries to apply the minimum norm input (aka least input required) to keep the

vehicle safe.
This method is formulated below:

We discretize the system (12) with a fixed sampling time 7 to obtain,

Eer1 = fa(&, up), (17)
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and formulate the optimization problem being solved at each time instant as

N-1
121811 0w el [F 4 [ Aueinels + Ae (18a)
k=0
st &prart = fa(&tnts Uirne)s (18b)
Uik = Ottyypg + Uy, (18c)
OUpyhyy = OUpy—1,0 + AUyypy, (18d)
P(&tqts Urgny) < 1, € >0, (18e)
Uy € U, (18f)
Aty iy € AU, (182)
§ee = &(1), (18h)

where ¢ denotes the current time instant and &, denotes the predicted state at time ¢ 4 k ob-
tained by applying the control sequence u = {us4, ..., U+ } to the system (17) with &, = £(%).
(18e) denotes the state constraints imposed by lane keeping and obstacle avoiding and have been
imposed as soft constraints, by introducing the slack variable € in (18a) and (18e). A more detailed
description on the constraint formulation can be found in [18]. u{77$" is the predicted driver steer-
ing input at time step k, provided by the driver model. ;. is the correcting control input to the
driver’s input. Au,yy, is the change rate of the correcting control to the driver’s input. R, .S and
A are weights of appropriate dimension penalizing the control correcting, change rate of control

correcting, and violation of the soft constraints, respectively.

This MPC problem is solved every 200ms whether or not the driver model predicts that the
driver will be safe or not. When the driver is expected to be safe, it is trivial to see that du is zero at
optimal. However, when the driver is expected to perform unsafely, the MPC problem will supply

some input to keep the vehicle safe.
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4 Experimental Design

The follow section describes the experiment that was conducted to analyze the proposed frame-
work. A large part of this experimental design was inspired by the survey [7]. The purpose of
these experiments was to show that the predicted future set of the driver model is informative with
more information. A study by Redelmeier and Tibshirani [27] found little correlation in accident
risk between those having hand-held phones and hands-free mobile devices, suggesting that risk of
collision is not related to physically holding the phone. Therefore, to test the effect of distraction
or quantify distraction, we had to distract the driver by having them send a text message on the

phone.

4.1 Experimental Setup

The workflow, illustrated in Figure 3 and experimental setup, as illustrated in Figure 4 and 5 con-
sists of a driving simulator, a Microsoft Kinect, and smartphone to simulate distraction. We use
a high end gaming steering wheel and pedals (Logitech G-25) which interfaces with the driving
simulator through Simulink. The driving simulator, CarSim 8.02, communicates with a real-time
dSpace DS1006 hardware-in-the-loop (HIL) over a fiber-optic link for the physics and model com-
putations at 50 frames per second and a real-time dSpace DS1401 MicroAutoBox over an ethernet
link for the MPC controller [1,2] . CarSim’s vehicle model is proprietary, but CarSim outputs
information at each time step about the state of the vehicle and environment. This includes infor-
mation at each time step about the global coordinates of the car, the path of the center of the road in
global coordinates, the radius of curvature of the road, the longitudinal and lateral velocities of the
car at each time step, the location of all of the obstacles in global coordinates, the longitudinal and
lateral velocities of all of the obstacles, and a radar sensor telling us which obstacles are observable

from the vehicle.

The dSpace DS1006 box sends the vehicle state via CANbus to the dSpace DS1401 MicroAu-
toBox which runs the MPC controller. CANbus, short for Controller Area Network bus, is the
industry standard that allows microcontrollers and devices to communicate with each other in ve-

hicles. The MPC optimization problem is solved every 200ms and sends the controlled vehicle
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Figure 3: Schematic of the vehicle simulator

state via CANbus back to the DS1006 box. The DS1401 box also sends data via an ethernet link

to the main driving simulator machine for recording.

The Microsoft Kinect is used to obtain joint locations in 3D space for the upper extremities at
30 Hz. The DS1401 box sends the vehicle state via CANbus to the driver model running on the
main computer, which predicts future driving behavior in under 10ms, and returns it to the DS1401

for the MPC optimization procedure.

To keep the text messages consistent, we provide an android smartphone for the subject to use.
A simple app used in [37] was used and displayed multiple questions. The response was not stored

or checked.

Each system is time synchronized via an NTP server. Each system also has different sampling
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Figure 4: Simulated environment from the driver’s view used in our experiment with posture data from the
Kinect and steering data from dSpace. Top-right: Human skeleton markers resulting from the Kinect data.

Bottom-left: Steering angle for past, current and future.

Figure 5: An example of an experimental setup. During the experiment, the subject was prevented from

viewing the left monitor.
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Mode Sampling rate
Kinect 30fps
DS1006 100H 2
DS1401 SHz
Car Simulator 50H z

Table 2: Sampling rates of the different systems

rates listed in Table 2.

The experiment was conducted over one 2 hour session. The first hour was for data collection
and model learning. The second hour for model validation. The subject was asked to keep the
vehicle’s speed between 65 and 70 miles per hour and to drive safely. The subject was asked to
stay in the lane unless an emergency forces him to depart from the lane. There was traffic in the
opposite lane and also in the driver’s lane. The traffic in the same lane (except during unexpected
events) travels at the same longitudinal velocity as the subject’s vehicle at any time, so the subject
can never reach those vehicles. This was done to limit the variability of potential interactions. In
order to simulate learning of the roadway, which is common for day-to-day commutes, we used

the same courses for a few of the same training and testing sets.

4.2 Generating the driver model

The driver model was trained on four 10 minute courses. Scenario 1 consists of a two-way, one
lane roadway with many turns and a few known objects in the way. Scenario 2 consists of a course
with 22 left and right turns. Scenarios 3 consists of a 2-way, 1 lane roadway. Scenario 4 consists
of a straight 2 lane highway with occasional turns. In all scenarios, the driver occasionally had to

respond to text messages when prompted.
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4.2.1 Training Scenario 1

Eights times throughout the drive, the driver received a text message and responded to it accord-
ingly. This required the driver to reach for the phone, look down to read the message, respond and

put the phone back.

4.2.2 Training Scenario 2

There were 14 left/right turns. Half of the turns were taken when the driver was texting.

4.2.3 Training Scenario 3

Eights times throughout the drive, the driver responded to text messages. Three minutes into the
drive, the driver experienced minor traffic. Five minutes into the drive, a lead car appeared. Seven
minutes into the drive, the lead car began to slow down while the driver was responding to the text

message.

4.2.4 Training Scenario 4

The driver was asked to stay in the right most lane, following a lead car, as much as possible.
Every 1200 meters, the lead car slowed down to a complete stop requiring the driver to make a
lane change. Half of the time, the user was asked to check a text message when the lead car began

to slow down.

4.3 Model verification

Based on our previous paper, we tested the driver model that utilized the driver posture for two
seconds and four seconds of future environment for our real-time implementation [37]. The driver

model was tested on four 10 minute courses. To test the efficacy of the controller, the controller
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Scenario 01 Scenario 02

Scenario 03 Scenario 04

Figure 6: The various training and testing scenarios. The blue dot represents the starting point, white dot

represents the end point, and red lines when the driver was asked to answer a text message.

was active for the first three scenarios. To test the other models, we turned off the controller for

the last scenario.
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S Data Processing

This section describes how the raw data is processed to create the driver model.

5.1 Steering and Vehicle Data

The steering and other vehicle data is obtained via 2 methods: through the CarSim saved file
and through the CANbus from DS1006. We record absolute steering angle from O degrees which
corresponds to straight driving. The CarSim data outputs steering angles at 100Hz and CANbus
outputs steering angles at 20Hz. A positive steering angle corresponds to a left turn and negative

steering angle corresponds to a right turn.

We also record the yaw and e, (error of the vehicle from the centerline). A positive yaw angle
corresponds to a left heading with respect to the centerline of the road. A positive e, means the car

is to the left of the centerline.

For our driver model, the steering data is fed to the clustering algorithm without any modifica-

tion as a stacked vector.

5.2 Environmental Data

The environmental data is obtained via 2 methods: through ControlDesk via the DS1401 box and
through the CANbus from DS1401, both sampled at SHz. The environment data is given as a
vector v € RV*2, Each row v;,. corresponds to the left and right environment bounds in meters at
time step ¢ with respect to the current heading and position of the car. The bounds correspond to
anything that the vehicle should avoid from the edge of the road to obstacles such as vehicles or
pedestrians. For example, v;. = [6.5, —1.5] denotes that at time step 4, the car has 6.5 meters on
the left before an obstacle or the edge of the road and 1.5 meters on the right before the edge of
the road or an obstacle. Therefore, if the road curves to the left without any obstacles, at time step

i, v;. = [+, +], which represents that the environmental bounds at time step 7 are to the left of the
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Figure 7: Environmental bounds for a straight road with and without obstacles. The solid black lines
represent the edges of the road. The thin black line represents the environment bounds. The green line

represents the feature vector. The yellow line represents the center of the two-lane roadway.

current vehicle position.

To allow the driver model to cluster the environment data, we construct a feature vector ¢ €

RY by taking the average of each row of v.

¢W(Z) = average(’vi,: )

Figure 7 and 8 illustrate examples of the environmental bounds v and the feature vector ¢ and

Tables 5, 6 represent the numerical values.



5 DATA PROCESSING

v | va | Ox(9) v.1 | v | ox(9)
6.5|-1.5| 25 6.5 | -1.5 2.5
65 |-1.5| 25 65| -1.5 | 25
65 |-1.5| 25 65| -1.5 | 25
65| -1.5| 25 6.5 | -0.25 | 3.125
6.5|-1.5| 25 6.5 1 3.75
65 |-1.5| 25 6.5 | 2.25 | 4.375
6.5 |-15] 25 6.5| 3.5 5
65| -1.5| 25 6.5| 3.5 5

Table 3: Numerical environmental bounds fora  Table 4: Numerical environmental bounds for a

straight road without obstacles straight road without obstacles with obstacles
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Figure 8: Environmental bounds for a curved road with and without obstacles
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v | v | ox(i) v | v | oxl(d)
65 |-15| 25 65 |-15| 25
65 |-15| 25 6.5 | -1.5 2.5
75 | 0.5 4 75 | 0.5 4
85 | 1.5 5 8.5 2 5.25
95 | 25 6 95 | 6.5 8
105 | 3.5 7 10.5] 9.5 10
1151 4.5 8 115 4.5 8
125] 5.5 9 1251 5.5 9

Table 5: Numerical environmental bounds fora  Table 6: Numerical environmental bounds for a

curved road without obstacles curved road without obstacles with obstacles

5.3 Human Posture

The human posture is obtained via the Microsoft Kinect. A Visual studio application was devel-
oped using the Microsoft Kinect SDK v1.6 and built primarily off of the SkeletalViewer example
code. The 3D positions of both hands, elbows and shoulders after calibration were used to deter-
mine the posture at 20Hz. Calibration is performed at the beginning of every experiment to place
the coordinate system of the kinect on the driver. The driver gets into driving position, waits for
the Kinect to catch onto the driver’s skeleton, and holds still for 10 seconds. The kinect uses the
neck and shoulder points to create the x-y plane with the cross product representing the z-axis with
the neck as the origin. The y-axis would be the line between the shoulders and x-axis would be the

cross product of the y and z-axis. An example is shown in Figure 9.

The 3D positions obtained by the kinect are stacked into a feature vector y € R?7*V,

5.4 Clustering

After the raw data is processed, we create a driver model using the training data. We define a situa-
tion to be a single instance of 2 seconds of driver posture (Section 5.3) and 4 seconds of lookahead

of the future environment (Section 5.2). While these situations are technically unlabeled, we can
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Figure 9: Posture of the driver

view a situation as such: driving straight while attentive, driving straight while distracted, turning
while attentive, turning while distracted, etc. The intuition is to cluster similar situations with each
other and assigned a set of likely future steering wheel angles and vehicle trajectories for each
cluster. Each cluster can also be understood as a mode, defined in Section 3.3. For the remainder

of this manuscript, they are equivalent.

This is implemented using k-means clustering in MATLAB. Using the vectors ¢, denoting
the environment data, and 6y, denoting the human posture, we cluster these situations into 100
clusters. After clustering, in each cluster, we obtain the actual 1.2 seconds of future steering wheel
angles and vehicle trajectory data and combine them to build the probability distributions described
in Section 3.3. Since k-means is the simplest clustering algorithm there is, future work includes

developing a better driver model with more advanced machine learning techniques.

An example of 5 of the 100 clusters for a single subject is shown in Figure 11. Notice that in
a few of the clusters, the driver’s right hand, denoted in blue, is up, indicating that it is most likely

off the steering wheel.
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Figure 10: Posture of the driver overlaid on an image with axes

29
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Figure 11: Example of 5 clusters. Each row represents 1 mode (cluster). The first column represents the
environmental scenario in the mode. The second column represents the driver posture in the mode for the
past 2 seconds. Red denotes the left hand while blue denotes the right hand. The third column represents the
predicted steering in that mode, which then can be pushed through the vehicle dynamics to obtain probable

vehicle trajectories.
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5.5 Real-time driver modeling

After processing the data in MATLAB, the centroid of each cluster and the future bounds and
trajectories are written to a text file. A kinect program, based off the SkeletalViewer example,
was developed to receive environment bounds from CANbus at 5Hz and steering data from the
CANbus at 20Hz, determine which cluster the current situation falls into, and returns the predicted
future driver behavior in steering angles over the CANbus to the controller. The entire prediction

can be run in under 10 ms.

5.6 Data visualization

In order visualize the inputs and outputs of the system, we coded a visualization script in MATLAB

to display the inputs into the driver model as well as the environment data shown in Figure 12.
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Figure 12: Two instances of the data visualization MATLAB script. Top left displays the road data and

prediction set, top right displays the current environment feature vector (blue) and nearest neighbor (red),

bottom middle displays the current human posture (left and right arms) and middle right displays the nearest

neighbor, bottom left shows the past steering (dotted red), future predicted steering set (green), expected

predicted steering (dotted blue) and actual future steering (solid red).
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6 Evaluation

In this subsection, we describe how we analyze the experimental data. We ran the experiment
on 20 individuals. For each subject, we trained the driver model algorithm using data from the 4

training scenario and tested our performance on the data from the 4 testing scenarios.

6.1 Evaluation of the controller (Scenarios 1-3)

In order to illustrate the utility of the controller in the loop, we ran the driver model in the loop
with the MPC controller for the first 3 test scenarios. For the driver model, we considered a vehicle
prediction multifunction by clustering the data corresponding to the environment bounds generated
for the next NV time steps beginning at time step i and the driver state ¢; n from the previous N
time steps ending at time step . That is, in Equation (14) we set o; = (¢, % : {0,...,N} —
R",0;n : {—N,...,0} — R?*™X). This is meant to illustrate the utility of incorporating the
prior observations, the driver state function, and the environment in the semi-autonomous vehicle
framework. For this model we fixed the number of modes chosen by the k-means algorithm to 100,

set N = 40, and set N = 40.

To test the efficacy of the controller, we use the metrics defined in Section 2.2. Once again, the
idea is to make sure that the system keeps the vehicle safe but does not assume control too often,
otherwise, the vehicle would essentially be a fully autonomous system. We compare this driver
model to the reachable set, which metric values we obtain from [37]. From the results shown in
Table 7, we see that the prediction set during the experiments with the real-time controller on had
an AVPM (accuracy) of 0.8835 and PVPM (precision) of 0.5623 indicating that the predicted set
was on average 88% accurate and 56% smaller than the reachable set. Also, when the vehicle was
in a highly precarious situation, the controller took over 92% of the time and 96% of the time when

the controller took over, it prevented an accident from happening.
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AVPM PVPM RVIF PVIF
Reachable Set 1/0 0 1 0.0031
Driver Model | 0.8835/0.0458 | 0.5623/0.0924 | 0.9216,/0.0739 | 0.9670/0.0224

Table 7: The mean/std performance of the 3 model semi-autonomous vehicle frameworks with respect to

the 4 metrics over all subjects for 50 modes
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Figure 13: Attentive, Straight driving
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Figure 16: Distracted, Curved driving

6.2 Comparison of models (Scenario 4)

In order to illustrate the utility of our approach, we consider five different implementations of the

vehicle prediction multifunction for the last test scenario.

e In Model 1, we ignored all prior observations and defined the vehicle prediction multifunc-
tion as the reachable set. This serves as an illustration of the baseline performance of existing
active safety systems with respect to the AVPM and PVPM. We obtain these metric values
from [37].

In Model 2, we constructed the vehicle prediction multifunction by clustering the data corre-
sponding to the environment bounds for the next N + 1 time steps beginning at time step 1.
That is, in Equation (14) we set 0; = (¢, : {0,..., N} — R"). This is meant to illustrate

the utility of building a vehicle prediction multifunction using the environment bounds.

In Model 3, we constructed the vehicle prediction multifunction by clustering the data corre-

sponding to the vehicle’s trajectory for the previous /V time steps ending at time step ¢. That
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AVPM PVPM RVIF PVIF
Model 1 1/0 0 1 0.0031
Model 2 | 0.9468/0.0248 | 0.3861/0.1745 | 0.9217/0.0529 | 0.7185/0.1849
Model 3 | 0.9469/0.0257 | 0.3909/0.1747 | 0.9232/0.0484 | 0.7191/0.1837
Model 4 | 0.9387/0.0302 | 0.4103/0.1588 | 0.9286,/0.0516 | 0.7119/0.1865

37

Table 8: The mean/std performance of the 6 model semi-autonomous vehicle frameworks with respect to

the 4 metrics over all subjects for 50 modes

is, in Equation (14) we set o; = (¢; v : {—N,...,0} — RZ). This is meant to illustrate

the utility of building a vehicle prediction multifunction using prior observations without

incorporating any observation of driver posture or the environment bounds.

e In Model 4, we constructed the vehicle prediction multifunction by clustering the data cor-

responding to the environment bounds generated for the next N + 1 time steps beginning at

time step ¢ and the driver state function from the previous /N +1 time steps ending at time step

i. That is, in Equation (14) we set 0; = (¢, : {0,..., N} = R". 0; y : {—N,...,0} —

R*™ ) This is meant to illustrate the utility of incorporating the prior observations, the

driver state function, and the environment in the semi-autonomous vehicle framework.

For models 2-4 we fixed the number of modes chosen by the k-means algorithm to 50 and 100,

set N = 40, and set N = 40.

The performance of each of the model semi-autonomous vehicle frameworks with respect to

our four metrics is illustrated in Table 9. It is immediately clear that by incorporating some in-

formation about the driver, we can construct a precise vehicle prediction multifunction without

degrading the accuracy considerably.

Consistent across the driver models, adding information regarding the driver reduces the size

of the future predicted set by approximately 50%, which may further decrease with a longer time

horizon, while maintaining an accuracy of approximately 90%. A RVIF indicates that 90% of

instances the driver was unsafe, the control system would have taken over. A PVIF indicates that

70% of the time the system assumed control, the driver would have gotten into an unsafe situation.
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AVPM PVPM RVIF PVIF
Model 1 1/0 0 1 0.0031
Model 2 | 0.9189/0.0311 | 0.4638/0.1698 | 0.9265/0.0501 | 0.7142/0.1853
Model 3 | 0.9134/0.0318 | 0.4826,/0.1650 | 0.91980.0559 | 0.7167/0.1884
Model 4 | 0.8958/0.0342 | 0.4995/0.1492 | 0.9266,/0.0454 | 0.7120/0.1879

Table 9: The mean/std performance of driver model with semi-autonomous vehicle frameworks with respect

to the 4 metrics over all subjects for 100 modes

We were able to measure this since the controller did not run in the last scenario.

At this point in time, the results show that providing any type of information is informative for
the semi-autonomous controller. However, it is currently inconclusive that providing information
on the posture of the driver significantly improves prediction accuracy. However, this does not
detract from the narrative that modeling what the driver does in different situations can help the

semi-autonomous controller perform better than current systems.

6.3 Issues encountered

These experiments were not without shortcomings. Common subject complaints involved the sys-
tem not providing enough tactile feedback and that the controller was too “jerky”, a limitation of
current hardware. The nonlinear MPC controller ran at 200ms per problem with only 3 inputs
over 1.2s, limiting the type of maneuvers and our analysis of the semi-autonomous system. When
subjects were driving with the phone in their hand, they often looked up at the road. As the current
algorithm used only driver pose to determine driver state, it affected the precision of the driver
model. This may be a reason why the driver model 4 which incorporated the human posture was
not able to perform better than the driver model 2. We found that the kinect performed poorly with
the steering wheel obstructing view of the subject’s hands. In order for the kinect to determine a
posture difference, the subjects were asked to text away from the steering wheel which may have

altered nominal driving behavior.
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7 Conclusion

In this work, we survey the existing literature on distracted driving and human factors, presented an
architecture for a provably safe semi-autonomous controller that predicts potential vehicle behav-
ior and intervenes when the vehicle is deemed in trouble, and conducted experiments with human
drivers with and without a real-time controller. Using four metrics that we define, we show in-
corporating a driver model during the construction of the semi-autonomous controller allows for
better performance than a semi-autonomous controller that treats the driver as a disturbance. This
semi-autonomous framework is modular and easily allows the use of different driver models and

controllers.

In order to realize this framework in practical situations, future work involves improving the
driver model, employing stochastic MPC to take advantage of the gaussian distributions from the
driver model, implementing a system in a vehicle that can perform real-time robust articulated
human tracking, and determining how to safely give control back controller to the driver. Systems
such as those presented in [15] may serve as systems to implement in our framework to improve
on the driver model and semi-autonomous vehicular safety systems. Immediate work includes
transitioning the simulator setup to a real car, using OpenCV and stereo cameras to determine
driver posture, eye-trackers to determine where the driver is looking, and capacitive touch sensors

on the steering wheel to determine a driver model.

While car companies continue to look into the semi-autonomous safety systems, these systems
mostly consider only the outside environment. Our work proposes that we should also look inside
the vehicle, at the driver, to predict future driving behavior and shows that it can improve vehicular

safety systems.
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