Methuselah: Intelligent Data Aging

Nick Lanham
Tim Kraska, Ed.
Michael Franklin, Ed.

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-46
http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-46.html

May 1, 2014




Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.



Methuselah: Intelligent Data Aging

by Nick Lanham

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:
Y, Committee:
/ 7 —
ity e
megor Michael Franklin
Research Advisor

12/17/) =

(Date)

k ok ok ok ok ok ok

Professor Ion Stoica
Second Reader

1 Y L

(Date)

[ e/ 5




Methuselah
Intelligent Data Aging

Nick Lanham, Tim Kraska, Michael J. Franklin

ABSTRACT

Recent years has seen an ever widening gulf develop between
access times for data stored in memory versus data on disk.
Concurrently, growth in main memory sizes has led to large
gains in the popularity of database systems that keep their
working sets primarily in memory. These systems make the
assumption that either all data in always in memory, or that
access to disk, managed by a standard buffer pool, will suffice.

However, with data sizes growing steadily and more quickly
than available main memory, it is clear that all in-memory
systems will need some way to move data to a cold backing
store.

This paper proposes a new online, statistics based, batch-
oriented technique to allow an RDBMS to leverage cold stor-
age to increase data capacity without overly impacting query
performance. Our solution couples well with semantic knowl-
edge about an application, making it easy to take advantage
of application specific access patterns. We develop a number
of techniques for efficient statistics gathering and manage-
ment, movement of data to cold storage, and querying of data
in cold storage. We show this approach fits well into the main
memory model, and that it has excellent performance in some
industry standard benchmarks, as well as for an Enterprise
Resource Planning benchmark we have developed.

1. INTRODUCTION

Recent growth in main memory sizes has led to large gains
in the popularity of database systems that keep the entire
database in memory [17, 16, 9, 13]. However, with data sizes
growing steadily and more quickly than available main mem-
ory, it is clear that all in-memory systems will need some
way to move data to a cold backing store.

It is therefore not surprising that several in-memory database
projects have recently proposed aging techniques to move
data from memory to disk. The H-Store team has proposed
“Anti-Caching” [9], whereas Microsoft’s Hekaton team has de-
veloped Project Siberia [13, 2]. Both systems can compute a
set of infrequently accessed rows in memory and move those

rows to some form of secondary or cold storage.

At its core, an aging system requires three main compo-
nents: a method to identify which data is hot and which is
cold, a way to move the cold data to secondary storage, and
the ability to access the data in secondary storage when you
need it. The previously mentioned systems are row-stores
with a focus on high-throughput transactional workloads,
and the point in the design space they have chosen for these
components reflects that.

In contrast, our design focuses on column stores like Hana
[17], and on enterprise workloads generated by systems like
SAP ERP, which require a different approach. For instance,
for our targeted workloads it is essential to be able to move
data at a fine-grained level (e.g., attributes), a concern that
has driven a number of our design decisions. At the same
time, fine-grained tracking has more overhead; we require
new secondary data structures used to manage cold data that
do not occupy so much main memory they outweigh their
benefits. For this reason, tracking the usage at the attribute
level is nontrivial.

In this paper, we propose Methuselah, a column store pro-
viding fine-grained management over in-memory data. This
is achieved by maintaining attribute-level access statistics
over data in hot storage and by moving data to cold stor-
age in batches based on those statistics. Our system can
also leverage semantic knowledge about an application, mak-
ing it easy to take advantage of application-specific access
patterns.

Specifically this paper makes the following contributions:

e Statistics Management & Compression - We pre-
sent low-overhead/low-footprint techniques for main-
taining attribute level access statistics. These character-
ize the data access patterns of the running application
and identify which data should be kept in hot storage,
and good candidates for moving to cold storage.

e Run-Time - We identify and describe the necessary
changes in the execution engine of a in-memory column
store to cope with aged data. Our techniques are sur-
prisingly non-intrusive and therefore integrate easily
with existing column-store run-times.

e Application Knowledge - We present a method to
easily integrate application specific information regard-
ing column access patterns during aging, and show how
this can improve performance.

e End-to-End Analysis and Evaluation - Methuse-
lah is a full system. We consider how choices made at



one level of the system effect other related components,
as well as measuring and tuning these parameters. We
evaluate our techniques using three benchmarks, one
we have created, derived from real enterprise query
workloads, and two industry standard ones.

The remainder of this paper is structured as follows. §2
describes a typical workload and our proposed architecture.
§3 describes how we track hotness at the attribute level using
statistics. §4 explains the use of those statistics to actually
move data to cold storage. §5 looks at how we leverage
our batch oriented approach to build filters over the cold
data. Finally §6 covers our analysis of the performance of
Methuselah as a whole.

2. TARGET WORKLOAD AND ARCHITEC-
TURE

To motivate our design decisions, we first present a bench-
mark we have developed in an attempt to model more typical
ERP workloads and walk through the execution of an exam-
ple query in the system. We then describe the components
in the system that are involved.

2.1 ERPBench

ERPBench is a benchmark we developed after analyzing
the usage of various customers using SAP’s Enterprise Re-
source Planning (ERP) software.! The benchmark aims to
reflect typical ERP workloads by modeling both reporting
and business transaction patterns, and using more realistic
distributions for modeling how the users accesses items in
the system.

ERPBench models a company with customers, suppliers
and an available list of products. A simplified schema is
shown in Figure 1, which shows all essential columns. How-
ever, ERP applications typically contain significantly more
attributes per table. In fact, for ERP applications often “only
10% of the attributes of a single table are typically used” [17].
An example of how we reflect this is that our benchmark-
ing schema has 40 columns in the Supplier table, although
only 4 are actually used. Similarly, our OrderT table has 50
columns, but we only use 5 of them.

Supplier

+s_id: BIGINT

+s_name: VARCHAR(255)
+s_address: VARCHAR(255)
+s_postalcode: CHAR(5)
+(unused columns)

Customer

+c_id: BIGINT

+c_name: VARCHAR(255)
+c_address: VARCHAR(255)
+c_postalcode: INT

n n

<>

OrderT 1
+o_id: BIGINT Part

+o_date: TIME 1 1
+o_quant: INT — +p_id: BIGINT
+o_open: TINYINT +p_name: VARCHAR(255)

+o_paid: TINYINT +p_price: NUMERIC
+(unused columns)

n

Figure 1: ERPBench Schema

ISAP generously provided us with anonymized log-records

We found that ERP queries are roughly divided into two
access patterns: navigational/transactional queries and re-
porting queries. The former are fairly simple queries model-
ing typical business interactions, such us reading information
about entities as would occur as a user moves around the
company dashboard, as well as inserting new orders, cus-
tomers, suppliers etc. For these queries we looked at user
data to determine how much of the total data to model as
“active” at any given time.

The second set of queries model reports that might be
generated in a typical ERP system. Currently, ERPBench
has two report queries: one that generates a yearly report of
total sales, the best customer and best supplier and a report
that lists all customers that currently have un-paid orders
and the amount owed (a “dunning run”) The query run for
this report is:

SELECT c_name, c_address,
(SELECT SUM(p_price*o_quant) as total from OrderT,
Part WHERE o_paid=0 AND o_cust = C.c_id AND
part = p_id) AS owed
FROM Customer as C
GROUP BY c_id, c_name, c_address ORDER BY owed DESC

2.2 Architecture

To support the above mentioned workload, we base our
work on a Hana-like column-store architecture [17], which
we extended with three new components (see Figure 2):
The Statistics Manager (SM) receives, compresses and
stores statistics generated during query execution. The Ag-
ing Manager is responsible for taking statistics gathered
during normal operation and applying a policy to generate
the list of data items that should be moved to cold storage.
The File Access Module uses filters to attempt to avoid
going to cold storage, but can also read cold data when ab-
solutely needed. Finally, we modify the Query Executor
(QE) to talk to the File Access Module and report statistics
to the SM. We discuss each of these components in detail in
the following sections.

2.3 Example Execution

To provide an overview of how Methuselah executes queries,
we step through the execution of the example query shown
below. The details of the filters are described in § 5, but
for now simply consider them something we can probe to
determine if a value exists on cold storage. The query we
consider is one of our simple dashboard queries, this shows
the number of orders today for customers near me (useful
for a summary screen in the dashboard)

SELECT COUNT(*) FROM Customer,OrderT
WHERE c_postalcode = $codearg AND OrderT.for = c_id
AND o_date = CURRENT_DATE;

As a first step we push down the where conditions to the
columns where possible and scan the memory to retrieve all
relevant hot-data rows (step 1 in Figure 2). While scanning,
statistics are also recorded. We then need to check if it is
necessary to query cold storage. For instance, in generating
the list of row ids from the OrderT relation, we will probe
the filters for the current date, and if it is not contained in
the filter, we can avoid going to cold storage for the OrderT
relation. Likewise, we check the filters for the specified postal-
code, to possibly avoid reading cold storage (step 2 in Figure
2). If, on the other hand, the filters indicate there might be



Hot Storage: Memory
reorga-
nization
) Statistics
Aging Manager mininininininln
=
3
2 |- }
e ||z
\ £ Statistics
o
o Manager
Nz w
'Asynchr.
) © Messages
Q s
/ 8 L @ — —
¢ L
>‘/ o [«=>{ Query Executer — - -
E E‘) Data -
5 |1|° i
le] Temporary/
Files Access ‘6 Intermediate results
Module Disk Bloom Filter /N
D —
1®

y

Cold Storage: Archival

Figure 2: System Architecture

Stored Statistics
Statistics Gathering produces
> o Compressed
e Asynchronous
) o Identifies accessed data
a5
‘y L
Data To Age
. . produces
Aging Policy > e Ordered list of items to
move to slow storage

‘&L

Data Reorganization

Figure 3: Aged Data Generation

cold data to read, we simply put a place holder in the buffer
and read the data lazily when it is actually needed, in the
hope that some other part of the query will narrow down
the needed rows (step 3 in Figure 2). This generated data is
placed in a temporary buffer associated with the query.

We now need to perform the join. Using an estimate of
the cardinality we would generate the list of customer ids to
check for by either reading the OrderT or Customer table.
If either can generate the list without reading cold data, it
is used. We then join against the other relation by scanning
for matching ids. Here again our filters can be very useful.
They can tell us, for instance, that none of the orders we
are interested in have data in cold storage, meaning the join
does not need to scan any cold data.

If the filters indicate that there might be data in cold
storage we need to read, the File Access Module scans for
the required data and places it in a temporary buffer with
the other partial results. Finally the number of matching

rows is counted, returned the user, the and the temporary
buffer is reclaimed.

2.4 Aging Process

An overview of the aging process is shown in Figure 3. Dur-
ing query execution we gather statistics about what hot data
is being accessed (§3) and store these statistics, compress-
ing them significantly to reduce overhead (§3.3). Using the
statistics, an aging policy decides which set of data should
be aged (§4). Finally, the selected to be aged data items are
moved to cold storage. During this process we also generate
filters over the cold data (§5), to minimize the impact of
aging on the run-time.

3. STATISTICS

The first step in selecting data to age is having methods
to characterize attribute-level access patterns via statistics.
Item (attribute) level patterns are required for two reasons.
First, typical enterprise systems have many columns [12], and
access frequencies can vary greatly on both column and row
dimensions. Second, as [9] notes, if hot items and cold items
are bound together, either by row or page, the hot items can
force the cold ones to remain needlessly in memory.

To maintain performance in the active system these col-
lection methods must impose a low overhead during query
execution, not consume a large amount of storage, and must
characterize access patterns without a need to query the ac-
tive system. In this section we describe methods for gather-
ing, storing, and compressing statistics consistent with these
requirements, and why we have opted for these methods over
possible alternatives. We show the memory overhead of our
techniques in §6.6.2, grouped with our other experimental
results.

3.1 One Bit Statistics

We have designed Methuselah’s statistics subsystem to
provide efficient performance, sufficient characterization of
data access patterns, and to place minimal load on the active
system.

To minimize overhead during query execution we decouple
access of an item from the recording of that access. When the
Query Executor access an item it sends an asynchronous mes-
sage to the Statistics Manager (SM). This “fire-and-forget”
model means the Query Executor does not need to wait for
the SM to actually record anything, and can run queries at
full speed (note, that for large scans, we can further minimize
the required number of messages as explained later.)

When the message is received in the SM we store only
a single bit per item accessed. If the bit is set for an item
it indicates that since the last aging run, that particular
item was accessed. This approach has two major benefits.
Firstly, we reduce the amount of memory needed to store
the statistics by storing only one bit (§6.6.2 quantifies this
benefit). Secondly, for any item accessed more than once,
subsequent messages generate only a read in the SM (as the
bit does not need to be re-set), making the component more
efficient. To further reduce the size of the stored statistics we
have developed a number of logical compression techniques,
detailed below.

The downside of our single-bit approach is that we poten-
tially mark too much data as “hot” between aging runs, and
that we have no way to reason about the relative hotness
(i.e., we only know if the data was accessed or not). Surpris-



ingly, as shown by our evaluation, for many scenarios this
simple statistic is sufficient, if used together with sampling
and intelligent aging ordering as described in the following
sections.

Another method would be to simply log every query exe-
cuted, and no statistics about items at all as done by Siberia
[13]. This approach is efficient at query execution time, re-
quiring only a single log entry per query, however, during an
aging run, the system would need to re-execute every query
to determine which data items were accessed and which were
not. While a technical possibility, this places a large overhead
on the active system during aging time and would only be
feasible if the active system were mostly underutilized.

3.2 Statistics Sampling

One downside to storing a single bit per attribute is that a
query that touches almost all data can mask which items are
more frequently accessed and which where only touched once
or twice by a large scan. We use a simple sampling strategy
to overcome this effect. Unfortunately, sampling also has the
effect of not recording many items that are only accessed a
few times in a period, which we study in more detail in the
experiment section §6.6.

Sampling the messages also justifies the “fire and forget”
model in the Query Executor for statistics messages. Because
we actually want to drop some number of messages, we need
not be concerned about the reliability of the messaging chan-
nel.

3.3 Statistics Compression

Keeping a statistic per attribute access can lead to very
high storage requirement for the statistics, and we have there-
fore developed techniques for reducing the overhead of storing
statistics. The idea is to store logical information about what
items were accessed, rather than information about every
item. In the following sections we describe a logical compres-
sion scheme which significantly reduces the overhead of the
SM. An empirical study of the effectiveness of this logical
compression is shown in §6.6.2.

In contrast to the query logging alternative discussed pre-
viously (actually an extreme form of logical compression),
this approach can determine if an item was accessed without
needing to invoke the runtime system. All required informa-
tion is in the SM, keeping the overhead minimal.

3.3.1 Simple Logical Compression

The simplest logical compression technique is for storing
access information for a query such as:

SELECT AVG(salary) FROM Users

where there is no where condition, and we must clearly access
the entire salary column. In this case the Query Builder
sends just a single “scan” message to the SM indicating that
the entire salary column was accessed in this period. This
column will then be marked as “scanned” in the SM for age
set determination. (See § 4.2 for how this is used during
aging).

Queries in real applications tend to not be so simple how-
ever. Moving up one level of complexity we examine the
following query:

SELECT AVG(salary) FROM Users WHERE salary > 15000

We can tell statically in the Query Builder what items
will logically be accessed, and send a single message with

the column and the WHERE condition, which will be stored
in the SM. When running aging, we can tell if an item was
accessed by checking if any of the stored where conditions
match the item, and, since the conditions are stored in the
SM, we do not need to actually execute any queries.

3.3.2 Advanced Logical Compression

The above techniques give some reduction in statistics size,
but provide no benefit in the face of more complex queries,
for instance those with joins or projections. In this section
we describe techniques to reduce statistics size in the face
of joins, by modeling them as WHERE clauses. We also
compress statistics on selected columns without WHERE
predicates, by remembering which other columns in the query
did have a predicate applied.

To understand these techniques, consider the following
query, which selects all employees in Germany, and the name
of their departments. In addition each department is respon-
sible for a number of products and we select the average price
of the products that department is responsible for.

SELECT Emp.name, Dept.name, AVG(Prod.price)
FROM Emp, Dept, Prod

WHERE Emp.region=’de’ AND Emp.dept_id=Dept.id
AND Dept.id=Prod.dept_id

GROUP BY Emp.name, Dept.name

Using only what we have described so far, in this case,
we will compress the access to Emp.region, but we will not
compress access to any of the other columns involved in the
query, and each item accessed will be stored as a new statis-
tic. To improve this situation we need two new compression
techniques:

1. Join—+>Where Compression
Since each department could be responsible for a large num-
ber of products, the join condition above will result in lots
of statistics being recorded, one for each product that an
employee in Germany might be responsible for.

If we rather think of the join as the application of a number
of WHERE conditions against the Prod.dept_id column, we
can compress all those accesses and rather record a single
where statistic for each department considered.

This form of compression is only beneficial if we are per-
forming a 1—many join, as in Dept.id = Prod.dept_id ab-
ove. Figure 4 shows the various join cases and when this
technique can be used.

1-to-1

[tablel . forsign_key]—)[tablsﬂ .primary ke;

Enmp.dept_id
Emp.dept_id
Emp.dept_id

e We do not use Join—Where Compression in this case

o This would result in sending and storing the same number
of statistics as without compression

many-to-1 A

e We do not use Join—Where Compression in this case

o Using the technique here would be worse than not using
it, as we would send a where statistic for every item on
the left, instead of only one for the item on the right

]
s
1
3
i
l
popuedxo

1-to-many

Y

Prod.dept_id| |

Prod. dept 1d
Prod.dept_id|}
A

e We do use Join—Where Compression in this case

o Instead of one access statistic for each item on the right,
we send only one where statistic, as an equi-join where
with the value of the column on the left.

® Stored statistic will be the same statistic as if we had run

SELECT dept_id FROM Prod WHERE dept_id=[Dept.id
from join]

Figure 4: Use of Join—+>Where Compression



2. Selected Column Where Compression (SCWC)
In the above query we access a number of columns that have
no WHERE condition applied to them, but with column access
nevertheless depends on the result of a WHERE condition being
applied to a different column. This means, for example, a
statistics bit will need to be stored for the Emp.name column
for every employee in Germany.

To compress this access, we note during query planning the
columns accessed that are dependent on the WHERE conditions
applied to other columns, and record that as a single statistic.
This can lead to a significant reduction in total statistics as
filtering on one column and projecting another is a very
common operation.

Figure 5 shows the relationship between the column that
has a WHERE condition and statistic we will store. The solid
line is used during query execution and at aging time, to
determine which rows to access and which rows were accessed
respectively. The dashed line shows the data that is stored
in the SM, namely that Emp.name was accessed with a WHERE
condition on Emp.region. We store this once, rather than for
each matching item in Emp.name

Currently for the above query we would compress the ac-
cesses to Emp.name and Emp.dept_id, but not to Dept.name
or Prod.price. Figure 6 illustrates the re-computation work
that would need to be done in order to store a compressed
statistic. While this is technically possible, it places an undue
burden on the active system during aging. The gray arrow
indicates the compressed statistic that we could store, but
actually do not.

WHERE region=’de’

. SA
Emp.name Emp.region
{ ]By RowID ]

Figure 5: Same Table SCWC

WHERE region=’de’

WHERE region=’de’

1-to-1
Dept .name 4—‘ Dept.id 4—‘ Emp.dept_id 4—‘ Emp.region
By RowlID l Join ]BV RowID l

Figure 6: Joined Table SCWC

Note that, for both of these techniques, we have all the
information needed to reconstruct access in the SM, and have
no need to burden the Query Executor to determine aging
candidates.

4. AGING POLICY

Following Figure 3, we now use the statistics from the
previous section to determine which data to actually age
(the “age set”), and when to age it. In this section we develop
a number of heuristics to rank in-memory data, to choose
exactly which data to move to cold storage, and for when to
trigger an aging run.

The policy described here makes a number of choices, each
of which has various parameters that can be tuned. We ex-
plore a number of possible parameters settings and present
the results in §6.

4.1 Free Memory Target (FMT)

When aging, Methuselah must choose how much free mem-
ory will be available at the end of the run. This choice effects
not only how well the aging approach will be able to avoid
going to cold storage in the future, but also how often aging
will need to be run.

If Methuselah tries to free too much memory, then fre-
quently used items will be moved into the age set, leading to
poor performance. On the other hand, if too little memory
is freed, then aging will need to be run frequently.

Overly frequent aging can also cause the statistics to pro-
vide a poor characterization of the actual access patterns. If
aging is too frequent, the actual working set of the system
might not be captured, and items that should not be aged out
will be. This effect is seen in the AuctionMark benchmark,
and is analyzed in §6.

The optimal value for the free memory target is highly
dependent on workload. The lower the insert rate, the less
free memory will be needed after a run. Methuselah uses a
heuristic to move the target between some limits, which we
have found to produce the best performance.

We currently use an upper limit of 30% of memory to be
free after aging. We have found that more than this poor
performance on all workloads we have tested. Furthermore,
if the workload is such that 30% of memory is being filled in
a single day, then an in-memory system is probably not well
suited to the use-case.

We use 5% as a lower limit. Any lower risks leading to
overly frequent aging runs in the face of a slight increase in
insert rate.

Methuselah currently self-adjusts between these limits to
have aging run about once a day?. If aging is triggered too
early, the FMT is increased by an amount proportional to
how early aging happened, and likewise the FMT is reduced if
aging occurs after more than a day. We found this provides a
good trade-off between performance and frequency of aging.

4.2 Ranking

Based on the gathered statistics hot data is ordered by a
series of criteria. Items are initially separated into five sets:

1. Untouched - Items that have been neither accessed
nor scanned in the most recent period

2. Scanned - Items that were only scanned, but not ac-
cessed (accessed meaning they never became part of
the result set of the query)

3. Accessed - Items that became part of the result query
4. Updated - Items that have been updated

Untouched items are the best candidates for aging, as they
did not participate in any queries. At first blush, it might
seem that scanned items are not a good choice, but the filters
we describe in §5 will likely prevent us from having to read
these items from cold storage in the future. Finally, updating
items in cold storage is expensive and so updated items are
ranked last.

Each set is sorted by item size and then, considered in
the order given above, items are added to the age set. Once
enough items have been added to hit the free memory target,
aging is run.

2in our benchmarks we define a “queries per day” amount to
simulate this



4.3 Application Specific Knowledge

When choosing the set of data to age we can also leverage
application specific knowledge to make better decisions. By
using knowledge of the inner workings of an application,
developers can provide better recommendations than the
statistics regarding which data should be aged. We have
made an effort to ease the integration, as many applications
already have a large corpus of such knowledge.

Methuselah supports three types of application specific
knowledge: A list of columns that should not be aged, queries
that select items that should be aged, and finally columns
for which the ordering is an indication of the suitability of
aging.

No-age columns: No-age columns can be useful if a de-
veloper knows a column is frequently accessed, but also that
the pattern is such that the statistics will not provide a good
indication of what to age, or where developers have a specific
query in mind that must always be fast, and therefore want
to enforce that the query always remain in memory.

For example, in ERPBench the modeled dashboard has the
ability to query parts by a user supplied name, and based
on the data we looked at, there is little to no pattern in the
searched parts. We therefore mark Part.Name as a no-age
column to ensure this query is always fast.

Aging queries: A more flexible type of application knowl-
edge is a set of queries that can be applied at aging time to
identify data that should be added to the age set before data
that would be selected by the heuristics above. For example,
an application might know that rows in the order table for
which the status is ’closed” will almost never be accessed.
Methuselah can therefore move that data out eagerly.

We require that the queries specified for aging not perform
any joins. This is so it can be determined if a data item
matches the query without placing a burden on the query
execution engine. For the same reason the aging queries
cannot perform aggregates or group bys.

Aging order: The final kind of application knowledge
supported is a method to indicate that a columns ordering
provides a hint regarding suitability for aging. For example,
an app developer might know that recent items are always
accessed more than older items for a particular table. In this
case, the date column could be specified as an age-ordering
column, and the order would be applied along with the or-
dering constraints given in the previous section.

Applying aging order gives rise to a number of subtle prob-
lems. For instance, when should the developer specified aging
order take priority over the statistics order. For now we imple-
ment only a simple form of aging order where the developer
always wins, and consider more advanced cases as future
work.

4.3.1 ERPBench

ERPBench (§2.1) takes advantage of the ease with which
Methuselah can integrate application specific knowledge. Specif-
ically we provide the following specification:

e Part.name is a no-age column
e Order.date is given as an aging order column

e SELECT * FROM Order
WHERE Order.closed=1 AND Order.paid=1
An aging query that specifies that paid and closed or-
ders (which are rarely queried), are good candidates
for aging.

Table 1 shows that we keep about 12% more queries in mem-
ory thanks to this specification.

S. FILTERS

Due to the fact that we move data to archival storage
in large batches, we have an opportunity to build compact
filters over the data, reducing the times we need to access
the data in the future. This section describes the filters we
build. The memory overhead we incur to store them and the
performance benefits from the filters is show in §6.5.

5.1 Bloom Filters

When a query requires some data that isn’t in hot storage,
data should only read from cold storage if it is actually there.
Normally one would need to scan the data to find a requested
item, but since the system knows exactly which data is being
moved to cold storage, a compact bloom filter [3] can be built
to allow aborting early if the data is definitely not in cold
storage.

5.1.1 Sizing The Filters

In order to keep our bloom filters small, we use a heuristic
algorithm to size them. Initially the filter is limited to only
use 1Kb, and as long as we don’t see any false positives from
the filter, it will remain small. As soon as we get a false
positive however, two things happen. First, a hash table is
built to avoid ever reading that item again, and secondly, a
false positive counter is incremented. If the counter gets too
high (over 100 in our experiments), a re-build of the filter is
triggered in the background.

This scheme works well for two reasons. Firstly, we have
found that the cardinality of the sets of false positive items is
quite low, and therefore the hash table never grows very large.
Secondly, there are many columns that themselves have low
cardinality, and therefore can be well represented by a very
small bloom filter.

To determine the optimal number of hash functions the
technique described in [6] is used.

Using the above techniques our bloom filters never take
up more than 4% of Methuselah’s total memory. The exact
fractions are shown in Figure 8.

5.2 Data Characteristics

In addition to the bloom filters, min, max, sum and count
values for the aged data are maintained. These values allow
the answering of aggregate queries more efficiently, and also
avoid scanning on range predicates, if the desired range falls
outside the range of the aged data.

We are aware that these “grouped” values are simplistic,
and that there is a significant amount of work on materialized
view maintenance that could benefit our approach here. We
see this as an exciting direction for future work.

6. EXPERIMENTS

This section shows our end-to-end evaluation of our Methuse-
lah system using three different benchmarks, TPC-W, Auc-
tionMark and our own ERP benchmark (ERPBench).

In the remainder, we first describe how we evaluated the
system and the benchmarks. We then present the overall
performance results (§ 6.3), study the effects of our filter
implementation (§ 6.5), and finally examine in detail the
effects of the various parameters of the SM component (§
6.6).



6.1 What To Measure

In a system with data in cold storage, average query perfor-
mance will be dominated by any queries that need to touch
cold data. Similar to a CDF, Figure 7 (note the log scale)
shows the average performance by including fractions of the
queries pre-sorted by their response time.

For queries that remain in memory, very little time is spent
reading data, but as soon as a query needs to read from
archival storage, the runtime balloons enormously. The knee
in the graph at 87% is because we keep that fraction of
queries in memory for this benchmark. Since the difference
is so great, mean query performance (the upper dotted line)
is completely dominated by the cold queries.

:

T T T
Average

£
S

g

i
o
T
1

e
o
T
1

e
o
=
T

1

Milliseconds spent reading data
-
T
L

J
o.001 | ! 4/ g
vedan

00001 __— R

1805 1 I 1 I 1 1 I 1 I
0 10 20 30 40 50 60 70 a0 90 100

% Queries Considered

Figure 7: Reading data in AuctionMark

We therefore argue that it makes sense to consider in-
memory queries separately from archival queries and that
the fraction of queries that remain completely in memory is
the appropriate figure of merit in this setting.

Furthermore, the performance gap means that any extra
information that can prevent an access to cold storage is a
huge win for the system. Our batch oriented aging approach
means we can build a summary of the data, and efficiently
answer certain aggregate queries, as well as filter queries that
would have otherwise had to touch cold storage. §6 quantifies
the benefits of this approach.

6.1.1 Baselines

In order to compare our aging strategy, we also imple-
mented LRU and LRU2 [11] caches in Methuselah. When
running in these modes Methuselah moves data in and out
of cold storage on demand at the page level, and records the
fraction of queries that incur a cache miss as the fraction of
cold queries.

In addition, we have implemented a similar algorithm used
for “Anti-Caching” [9]. In this case, we maintain an LRU
chain for whole rows as they are accessed, and move rows to
cold storage when we cross a memory threshold.

As would be done in a normal system, for the caching
modes we build an index over key columns and any other
columns that specify an index in the schema. These indexes
occupy main memory space, but also are used to prevent
cold reads when possible.

We report the fractions of queries that remain in memory
in these modes in Table 2.

6.1.2 Query Replay

To ensure we compare each configuration on exactly the
same workload, we have built a replay mechanism into the
system, so we can replicate the exact query execution for
each configuration to test. There is a mode that dumps every
query received via JDBC to a text file. A “reference” run is
created by executing in this dump-to-file mode. We then run
our tests of the various configurations of interest by reading
and executing the queries from the reference file.

6.2 The Benchmarks

We use two industry standard benchmarks, and ERPBench,
a benchmark of our own design. We described the details of
ERPBench in section §2.1. For ERPBench we used a ratio of
1:10 of hot to cold storage. That is, the system has to keep
10 times more data in cold storage than in-memory.

In addition to ERPBench, we also used variants of Auc-
tionMark and TPC-W.

6.2.1 AuctionMark

The AuctionMark benchmark[1] models an OLTP system
similar to a well-known auction site. It involves 13 tables
and 14 specific procedures that give a good representation of
the site’s core transactions. We use the default transaction
mix of AuctionMark, with a time target of one hour. For this
benchmark we used again a 1:10 hot to cold ratio.

6.2.2 TPC-W

The TPC-W benchmark[14] simulates a transactional e-
commerce website. It involves a number of interactions that
model a business oriented transactional web server We have
implemented a TPC-W like workload the runs all the queries
from all the TPC-W interactions. The reference run is cre-
ated by running 300,000 interactions. We run transitions
according to the “Ordering Mix”. This mix is the most write
and insert-heavy workload and therefore the best stress-test
of our aging algorithms. For this benchmark we used a 1:8
hot to cold ratio as a smaller ratio (e.g., 1:10) turned out to
force almost every query to disk.

6.3 Results

For evaluating our system we tested the following settings:

e Full Aging - This is our full solution. Dynamic FMT,
cold columns, and in the case of ERPBench, application
specific knowledge. This represents the best Methuse-
lah currently performs for these benchmarks.

e Statistics Dynamic FMT (Stats Dyn) - This uses
all the statistics tricks, but neither marks cold columns,
nor uses application specific knowledge.

e Statistics 10% FMT - Fixed FMT of 10%
e Statistics 20% FMT - Fixed FMT of 20%

e Statistics All Eligible (All Elig) - Simply age out
all data that was not accessed in the last aging period.

e Statistics No Filters (No Filter) - This method
does not use any filters to reduce cold access

e LRU2/LRU - Traditional caching models as described
in §6.1.1

e Whole Row LRU - Similar to [9], we track LRU rows,
and move data at the row level.



Table 1: Hot Queries: Technique Comparison

Benchmark | Full Aging | Stats Dyn 10% FMT 20% FMT All Elig No Filter
ERPBench 92% 80% 79% 5% 68% 63%
AuctionMark 87% 79% 1% 76% 70% 37%
TPC-W 93% 91% 90% 87% 85% 53%
Table 2: Hot Queries: Caching Comparison

Benchmark | Full Aging | LRU2 LRU Whole Row LRU

ERPBench 92% 65%  70% 58%

AuctionMark 87% 1%  66% 61%

TPC-W 93% 84%  80% 74%

For all benchmarks, we measure the fraction of queries
that stay entirely in memory, referred to as “hot queries”.
Hot queries are the number of queries that touch only hot
storage, and are an indication of the overall “speed” of the
system, because of the significant speed difference between
hot and cold storage. If not stated otherwise, all results use
a sample rate of 80%, as we found it to achieve the best
trade-off between overhead and precision throughout all the
benchmarks.

The results for the different settings of Methuselah are
shown in Table 1, whereas Table 2 shows the hot queries
numbers of Methuselah’s best case performance against the
various caching strategies.

6.4 Analysis

6.4.1 Overall Result

The results show clearly that our full aging solution signifi-
cantly outperforms the various caching techniques in keeping
a high percentage of queries purely in hot memory. Our full
aging approach helps to keep 9% to 22% more queries entirely
in hot storage without ever touching cold data.

Even more striking is the difference when whole rows need
to be moved out together. While this is not as critical for
AuctionMark and TPCW, in ERPBench, which has the typ-
ical wide rows seen in an ERP system, it causes a 12% drop
from attribute level LRU, and a whopping 34% in hot queries
from our approach.

Our solution performs better for different reasons for each
benchmark. For ERPBench, the reporting queries cause the
caching modes to evict needed data, leading to lots of cold
reads, but our statistics see this data as only scanned, mean-
ing it is a better candidate for aging. This means the more
frequently accessed hot data remains always in memory. In
AuctionMark and TPCW it is the filters that produce better
performance, as there are a lot of point queries, going to cold
storage can often be avoided. In addition cold columns help
a lot in the AuctionMark benchmark for reasons outlined
below.

A general trend we have found is that the most frequently
run queries are not the queries that tend to run slowly. The
reason is twofold. Firstly, in real systems it is often the case
that queries that run a lot are simplified to run quickly,
meaning they don’t touch a large amount of data. Secondly,
as these queries run often our aging algorithm doesn’t pick

the columns to be aged, and therefore the whole column
tends to stay in memory.

The queries that tend to go slowly are rather those that
are run a medium amount and that access quite a lot of data.
Queries like, get all this customer’s information, or, get all
this users comments, fall into this category. The data these
queries hit is not as hot as for high frequency queries, so
some items they might access (but were not in a particular
aging period) are aged out, and then when they are needed,
quite a lot of data has to be read from slow storage.

Surprisingly, for all benchmarks, the the effect of the dy-
namic threshold compared to the fixed ones only helps to im-
prove the hot queries by 3-4 percent. However, cold columns
has a huge impact of up to 12 percent for hot queries. This
leads us to believe, that it is actually more important to de-
termine the right order of what is aged, instead of how much
to age per aging run.

Looking at the impact of the different optimizations, it
can be noted that not every optimization helps with every
benchmark. For example, adding filters (i.e., No Filter to All
Elig) improve the hot queries percentage for AuctionMark
and TPC-W significantly, but are less important for ERP-
Bench. Below, we break down some of the reasons for these
differences.

6.4.2 ERPBench

For ERPBench the majority of the slow queries are from
generating the required reports. These queries need to scan
over a large portion of the data space, but are not run ex-
tremely frequently, and therefore tend to hit cold items. Im-
portant to this benchmark, however, is the the queries pass
over the same items more than once in generating the reports,
so LRU2 provides the worst performance, with 4% fewer hot
queries than LRU. Whole Row LRU performs very poorly
here, as this benchmark has some very wide, as is common in
ERP schema. This causes a significant amount of cold data
to need to remain in memory, hurting performance.

The active set of data for the dashboard queries means
they can be kept mostly in hot storage. We see that the
ordering techniques provide about 10% more hot queries
in the aging case, as the items not actually accessed (i.e.
old orders) are aged first. The reporting queries disrupt the
caching algorithms however, causing them to throw out most
of the data needed for these queries and thereby leading to
poor performance for a time after the reports are generated.



These queries can effect the aging results, however, we
leverage our app specific knowledge to influence aging order
via date columns. This means that even if, say, the major-
ity of orders in hot storage have been accessed, the system
will still favor aging older orders, leading to better perfor-
mance in the aging case. This is possible due to the batch
oriented approach taken, and can’t be taken advantage of in
the caching modes. If we run our aging solution without our
app knowledge, only 73% of queries are kept in hot storage.

The filters play a lesser role in this benchmark as most of
the queries scan for items and do not perform direct access.

6.4.3 AuctionMark

The AuctionMark benchmark is split into various “transac-
tions”. We run the standard mix specified by the benchmark.
There are two transaction types that account for the bulk of
the slow queries in this benchmark.

The “Getltem” transaction is run 45% of the time and
illustrates the importance of getting the FMT correct. By
dynamically adjusting we are able to keep 8% more queries in
hot storage. This transaction is run only on “open” auctions
(those auctions which have not yet ended), meaning old items
are not touched. There is therefore a working set of active
items, those in open auctions, at any given time. If the FMT
is too low aging is run before the majority of working set is
accessed, and end up aging out some still active items. This
leads to more slow queries and reads.

The other transaction that represents the remaining bulk
of cold queries is “GetUserInfo”. This transaction retrieves a
substantial amount of data about a given user, and since the
user it is run on is random, it is more likely that aged/un-
cached data is touched. These queries plus the “Getltem”
queries make up about 75% of all slow access.

The “GetUserInfo” queries also explain why AuctionMark
doesn’t perform as well as TPC-W and why we get the 31%
bump in hot queries from our filters. The extra data read
by this transaction both brings down the percentage of in-
memory queries, and increases the number of aged reads.
That being said, many of the accesses can be filtered out,
in the case that say, a user has not made any comments on
an item. Without our filters we always have to check cold
storage for this data.

The approximately 10% increase in hot queries (SAE to
the FMT/SDF modes) comes from our ordering techniques.
The “GetUserInfo” queries touch only a subset of all columns,
which are marked as Accessed and Scanned appropriately.
These columns are then lower in the order generated during
aging, and more of their data remains in hot storage, keeping
many of the “GetUserInfo” queries fast.

It should be noted that the picking of a random user is
probably somewhat unrealistic for a true auction system. One
would expect that some users are more active than others,
and that their “GetUserInfo” queries would be run more often.
In this case Methuselah would perform even better as those
users would not be moved to slow storage.

The reason that cold columns provide an 8% increase in
hot queries in this case is two fold. By reducing the amount
of aging runs necessary, the system gets more of the “auction
working set” benefit described above. Also, more frequently
accessed data can be kept in memory, as there are a number
of fairly large columns in this benchmark which are never
accessed.

6.44 TPC-W

The TPC-W benchmark has three main interactions that
cause slow queries. These are, the Product Detail Web In-
teraction, the Buy Request Web Interaction, and the Search
Result Web Interaction. This is unsurprising as they are the
most likely interactions that access any significant data in
the mix we run for TPC-W.

There are a number of unused columns in the benchmark.
For example, author.a_bio and author.a_mname are both
rather large columns that are never accessed. As new data
comes into the system, having these columns be cold columns
gives us 2% more hot queries, as more relevant data can be
kept in memory.

These unused columns also explain why the Whole Row
LRU strategy performs poorly. The effect is not as dramatic
as in the ERPBench case, as there is not as much unused
data in this benchmark.

Both the Product Detail and Buy Request interactions
select a significant amount of data with a random predicate.
For Product Detail, the product retrieved is random, and
for Buy Request the user making the request is. This means
there is a higher chance some of the relevant data has been
moved to slow storage. Again, this is somewhat unrealistic
for a real system, and we would expect somewhat better
performance on a non-synthetic workload, and again these
queries are where the filters provide us 30% more hot queries.

It might be expected that the Admin Confirm Interaction
would generate a lot of slow reads, as it potentially touches a
lot of data, and indeed it does contribute some slow reads and
scans to the final count. However, these queries are issued
relatively rarely they do not contribute a significant amount
compared to overall data volume.

Note that the most frequently run queries are not the
queries that have to read cold data. The most run query for
TPC-W grabs the latest cost for a particular item. However,
this query needs only the id and cost columns from the item
table. As these columns are accessed so much these columns
are kept entirely in memory.

6.5 Filters

§ 5 explains how we build filters to minimize the times
we need to access cold data. In this section we vary how
large we allow these filters to grow, and in Figure 8 report
the fraction of hot queries. These numbers are for the ERP-
Bench benchmark, but we saw similar results for the other
benchmarks.

The hash table (see §5.1.1) is clearly a valuable component
of the filter system. It saves us on about 10% of queries.
Additionally, this table remains very small, never exceeding
a fraction of a percent in our tests.

We also observe that limiting the size of the filters is impor-
tant. Letting them grow to more than about 4% of memory
size has a detrimental effect on performance. The fraction
was similar for our other benchmarks.

6.6 Statistics Experiments

We used the AuctionMark benchmark to measure the ef-
fects of sampling, and the memory overhead of the statistics
we store.

6.6.1 Sampling

The effect of our statistics sampling approach is shown
in Table 3. It might seem counter-intuitive that 50% of the



100%

With Hash Table —e—
Without Hash Table

90% |-

Hot Query Fraction

60% [

50%

0% 2% 4% 6% 8% 10% 12% 14% 16%
Percent Memory Occupied by Filters

Figure 8: Effect of Filter Size on Hot Queries

messages sent to the SM could be dropped, and that perfor-
mance could remain so good. The reason behind this is that
a large number of redundant messages are sent. On average,
43,809 unique statistics are maintained, while an average of
5,241,394 messages are sent to the SM. That means, if we got
very lucky, 99% of the messages could be dropped and still
have perfect information. This also illustrates why statistic
compression is so important.

[13] also uses sampling in their approach, and found it
provided an accurate characterization of the hot set of data.

Messages Dropped | In Memory Queries | Slow Reads
%0 86% 0.96%
%10 87% 0.96%
%20 87% 0.97%
%50 88% 1.01%

Table 3: Performance with sampled statistics

6.6.2 Statistic Size Experiment

In order to test the statistics compression techniques we
have developed, we have run a number of experiments on
the size of the statistics needed. For these experiments we
use ERPBench, and also report LRU as a baseline measure.

For all statistics based results a FMT of 20% was used.
For LRU we compute the average size of the LRU list over
the entire run, and assume a 4-byte per entry data size.?

Below we report the percent of total memory needed to
maintain the data structures for statistics and LRU. The
Stats No Comp bar indicates the size of statistics with
no where compression at all. Stats WC only compresses
accesses to columns that have a WHERE condition applied di-
rectly too them. Stats WC+HJC uses both of the previous
techniques, plus Join—+Where Compression. Finally,Stats
WC+HSC is all the above, plus Selected Column Where Com-

pression.

3This is actually rather generous to LRU, since it is normally
implemented as a list plus a hash-table for fast lookup, and
would therefore require more than 4-bytes per item of storage
overhead

15% |- 13.8%

s
X

7.1%
6.1%
6 - 4.2%
I 24%

% Total Memory
o
N

0

X

Stats No Comp Stats WC Stats WC+JC  Stats WC+SC LRU

Figure 9: Percent Memory Used by Statistics/Cache

7. RELATED WORK

We focus our efforts on primarily in-memory column ori-
ented data stores. [4, 5, 17, 18]. Our techniques are not di-
rectly tied to any specific system, however, and could gen-
erally be applied to any system with attribute level access
that would like to avoid traditional caching systems, or has a
workload that tends to have significant quantities of largely
unused data.

Microsoft’s Project Siberia has tackled a similar problem
in the context of the Hekaton in memory OLTP engine [10].
[13] presents a method to identify hot and cold records in
a main-memory database, based on scanning logs of record
access generated during normal operation and [2] presents
Adaptive Range Filters (ARF), a novel filter targeted at
range queries, used where Methuselah uses bloom filters.

[9] presents “Anti-Caching”, another approach to support-
ing moving data to slower storage. The system, however, is
closely tied to the architecture of the underlying system (H-
Store), and also does not consider that data might be on
much slower storage than a local disk.

Both the above approaches are row-stores with a focus on
high-throughput transactional workloads. As such, they have
made different design choices from our system and target
different workloads.

ARF's are something Methuselah could benefit from, how-
ever, as we show in §6.5 it would be important to quantify
the trade-off of filter size vs. the benefit provided.

The Oracle TimesTen database provides a form of data
aging [15]. This can be either LRU based or user-defined,
but for TimesTen, “aged” actually means deleted. That is,
TimesTen does not move aged data to slower storage and
continue to provide access to it. Rather, it simply deletes
items based on the specified policy.

HP AutoRaid[19] moves data automatically between fast
and slow storage based on access patterns. This work is
focused on file-system performance, however, and therefore
cannot leverage semantic information about the data being
stored as we do in building the various filters over our data.

Semantic Caching[8] showed that better cache performance
can be achieved by taking into account the semantics of
the predicates being applied to queried data. Our Where
compression (§3.3) techniques are an application of this idea
in a different context, and at aging time, the stored where
statistics act partly like a semantic cache.

There has been a wealth of work regarding optimal caching
algorithms[7, 11]. Our analysis shows however, that due to
the number of attributes that need to be tracked, they are
not as well suited to our target workloads.

8. FUTURE WORK



We have developed a number of new techniques for man-
aging hot and cold storage for this work. There are many
ways in which we can improve on the techniques described
here.

As noted earlier, most in-memory column stores use com-
pression techniques to increase the amount of data that can
be kept in memory. We would like to model this more care-
fully, as we feel it will be a benefit for our system.

For example, we do not currently model the benefit of
reducing the cardinally of a column due to aging, but if we
can reduce the number of bits needed for the index vector, we
could see significant gains. This will also effect the ordering
chosen when generating the list of data to age, and these
effects will need to be measured.

Certain columns provide an excellent indication of the suit-
ability of a row for aging. Examples would be a date column,
where it is known that anything older than a certain age isn’t
used, or a status flag column, where closed items are never
queried. Currently we rely on special developer annotations
as described in §4.3. However, by detecting these columns
and exploiting their semantics automatically we could au-
tomatically improve the performance without requiring any
manual annotations.

Adaptive Range Filters [2] could be quite easily plugged
into our system, and we would like to analyze their memory
overhead vs. benefit to query performance.

The characteristics stored about aged data are quite mini-
mal. We believe we can leverage much of the work done on
materialized views in order to answer even more queries that
need aggregated information about aged data without going
to cold storage.

For the statistics, rather than store a single bit, a counter
could be stored, indicating how many times an item was
accessed. This would provide a better characterization of
data access, but also increases the size of the statistics. We
tested this approach, and in all the benchmarks the amount
of data swelled to over five times the amount of simulated hot
storage during a single aging period. It would be possible to
have a counter with only a few discreet values (say [one, fewer
than ten, ten or more]) which would not bloat the statistics
size as much, and we plan to investigate this possibility.

9. CONCLUSION

We present Methuselah, a data aging system for in-memory
databases. Our techniques impose minimal overhead on the
running system, and fit well into the current data storage
model used by these systems. Methuselah gathers attribute
level access statistics without overly taxing the query run-
time and uses compression to have minimal space require-
ments for their storage. Our experiments, using three dif-
ferent benchmarks, demonstrate our approach has excellent
performance, keeping a high number of queries all in memory.

In short, we have presented an end-to-end system to man-
age both hot and cold data in an in-memory column store,
covering the full pipeline from identifying cold data, moving
it to cold storage, and then maintaining query performance
in the face of cold data.

10. REFERENCES
[1] AuctionMark: An OLTP Benchmark for
Shared-Nothing Database Management Systems. http:
//hstore.cs.brown.edu/projects/auctionmark.

Accessed: 01/08/2012.

2]

3

[4]

5

[6

[7]

8

9

(10]

(11]

(12]

(13]

(14]

(15]

Karolina Alexiou, Donald Kossmann, and Per-Ake
Larson. Adaptive range filters for cold data: Avoiding
trips to siberia. PVLDB, 6(14):1714-1725, 2013.
Burton H. Bloom. Space/time trade-offs in hash
coding with allowable errors. Commun. ACM,
13(7):422-426, July 1970.

Peter Boncz, Torsten Grust, Maurice van Keulen,
Stefan Manegold, Jan Rittinger, and Jens Teubner.
Monetdb/xquery: a fast xquery processor powered by a
relational engine. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, SIGMOD ’06, pages 479-490, New York, NY,
USA, 2006. ACM.

Peter A. Boncz, Stefan Manegold, and Martin L.
Kersten. Database architecture evolution: Mammals
flourished long before dinosaurs became extinct.
PVLDB, 2(2):1648-1653, 2009.

Andrei Broder and Michael Mitzenmacher. Network
applications of bloom filters: A survey. In Internet
Mathematics, pages 636—646, 2002.

Asit Dan and Don Towsley. An approximate analysis
of the Iru and fifo buffer replacement schemes. In
Proceedings of the 1990 ACM SIGMETRICS
conference on Measurement and modeling of computer
systems, SIGMETRICS 90, pages 143-152, New York,
NY, USA, 1990. ACM.

Shaul Dar, Michael J. Franklin, Bjérn T. Jénsson,
Divesh Srivastava, and Michael Tan. Semantic data
caching and replacement, 1996.

Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael
Stonebraker, and Stan Zdonik. Anti-Caching: A new
approach to database management system architecture.
Proc. VLDB Endow., 6:1942-1953, September 2013.
Cristian Diaconu, Craig Freedman, Erik Ismert,
Per-Ake Larson, Pravin Mittal, Ryan Stonecipher,
Nitin Verma, and Mike Zwilling. Hekaton: Sql server’s
memory-optimized oltp engine. In Proceedings of the
2018 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 1243—-1254,
New York, NY, USA, 2013. ACM.

Theodore Johnson and Dennis Shasha. 2q: A low
overhead high performance buffer management
replacement algorithm. In Proceedings of the 20th
International Conference on Very Large Data Bases,
VLDB ’94, pages 439-450, San Francisco, CA, USA,
1994. Morgan Kaufmann Publishers Inc.

Jens Kriiger, Changkyu Kim, Martin Grund, Nadathur
Satish, David Schwalb, Jatin Chhugani, Hasso
Plattner, Pradeep Dubey, and Alexander Zeier. Fast
updates on read-optimized databases using multi-core
cpus. CoRR, abs/1109.6885, 2011.

Justin J. Levandoski, Per-Ake Larson, and Radu
Stoica. Identifying hot and cold data in main-memory
databases. In Proceedings of the 2013 IEEE 29th
International Conference on Data Engineering, To
appear in ICDE ’13. IEEE Computer Society, 2013.
Daniel A. Menasce. Tpc-w - a benchmark for
e-commerce, 2002.

Oracle. Working with Data in a TimesTen Database:
Implementing aging in your tables.
http://docs.oracle.com/cd/E13085_01/doc/
timesten.1121/e13065/comp . htm#CHDHIJBA.


http://hstore.cs.brown.edu/projects/auctionmark
http://hstore.cs.brown.edu/projects/auctionmark
http://docs.oracle.com/cd/E13085_01/doc/timesten.1121/e13065/comp.htm#CHDHIJBA
http://docs.oracle.com/cd/E13085_01/doc/timesten.1121/e13065/comp.htm#CHDHIJBA

[16]

[17]

18

Accessed: 02/08/2012.

John Ousterhout, Parag Agrawal, David Erickson,
Christos Kozyrakis, Jacob Leverich, David Maaziéres,
Subhasish Mitra, Aravind Narayanan, Diego Ongaro
Guru Parulkar, Mendel Rosenblum, Stephen M.
Rumble, Eric Stratmann, and Ryan Stutsman. The
case for RAMCloud. Commun. ACM, 54(7):121-130,
July 2011.

Hasso Plattner. A common database approach for oltp
and olap using an in-memory column database. In
Proceedings of the 2009 ACM SIGMOD International
Conference on Management of data, SIGMOD ’09,
pages 1-2, New York, NY, USA, 2009. ACM.

Michael Stonebraker, Daniel J. Abadi, Adam Batkin,
Xuedong Chen, Mitch Cherniack, Miguel Ferreira,
Edmond Lau, Amerson Lin, Samuel R. Madden,
Elizabeth J. O’Neil, Patrick E. O’Neil, Alexander
Rasin, Nga Tran, and Stan B. Zdonik. C-store: A
column-oriented dbms. In VLDB, pages 553-564,
Trondheim, Norway, 2005.

John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The hp autoraid hierarchical storage system.
In ACM Transactions on Computer Systems, pages
96-108, 1995.

)



