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Abstract

Information disclosure is the process of transactions for delivering or revealing information
from one party to other parties. The transaction happens between two ends, the first being
the disclosing party, usually considered the owner of the information (or owner of the rights
of the information). The second end of the transaction is the receiving party. In many cases,
the receiving party of the transaction may include entities that are untrusted by the disclosing
party (adversaries). In many cases, there is asymmetry in the knowledge between the intended
recipient of the information and the adversarial entities, where the intended recipient of the
information has more certain knowledge than the adversary about the sender of the information.
This asymmetry can be exploited by the disclosing party to protect its privacy. In this report
we present a framework of information disclosure under the assumption that adversaries exist
in the receiving party such that asymmetry in knowledge between the intended recipient and
the adversarial entities exist giving advantage to the intended recipient. We propose a way to
disclose the information such that it can have as little utility as possible to these adversarial
entities in a classification and inference settings.

This work was supported in part by TRUST, Team for Research in Ubiquitous Secure Technology, which
receives support from the National Science Foundation (NSF award number CCF-0424422).

This publication was made possible by Grant Number HHS 90TR0003/01. The views expressed in this
paper are solely the responsibility of the authors and do not necessarily represent the official views of the HHS.



Chapter 1

The Setting
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1.1 Introduction

The act of revealing private information is a sensitive transaction that involves the disclosure
of information of value to the disclosing party. The utility of the information is a function
of many factors, including the entities that will get access to the information. For example,
trade secrets have high utility long as they are secretly kept among the relevant trusted parties.
However, if this information gets disclosed to an untrusted party (e.g. competitor), the utility
of this information is drastically reduced. Therefore, information owners prefer to keep the
information shared only among trusted parties in order to maintain its utility. However, in
many settings, the containment of the data sharing (that is, ensuring the information only
reaches trustworthy parties) is hard to ensure.

For example, in vehicle-to-vehicle communication of autonomous (or semi-autonomous) cars,
cars may want disclose their GPS location by wireless communication to cars in their neighbor-
hood. The fact that this information is being disclosed such that other cars in the neighborhood
can understand it makes it accessible to untrusted entities (thereafter: adversaries) as well (by
listening on the communication the same way cars would). The disclosing party of this informa-
tion may consider this information private and of negative utility if grabbed by the adversary.
For instance, an adversary could passively listen to all communication coming from all vehicles
and track them continuously (by listening in on the communication without physically follow-
ing the tracked cars). The question then becomes, how can you disclose information in such a
setting, under the assumption of broadcasting, such that it only can be interpreted by cars in
the same neighborhood (the ones this information was intended to be understood by).

It is important to note, that in this setting, there is asymmetry between the knowledge
known to the intended recipients of the information and the unintended recipients described
above. Namely, the neighborhood of the disclosing party is known to cars around it even before
receiving its GPS location, but not to someone globally listening to the communication.

One can exploit such asymmetry in knowledge to protect the disclosure of information
better from a privacy point of view. For example, one option is to set fixed (and globally
known) reference points in the world, one reference point per neighborhood, and only disclose
the relative position to the reference point of the neighborhood the car is in (instead of the
global position). First, the information can still be interpreted by cars in the same vicinity as
the disclosing party since they share the same neighborhood and therefore know the reference
point. However, someone who is globally listening in on the communication will not as easily
retrieve the global position since he/she doesn’t know what reference was used to disclose that
information. Furthermore, the reference points can be picked in such a way that maximize the
ambiguity of the global position (or the neighborhood from which this information was sent)
to someone who doesn’t know the neighborhood of where the data was sent.

More generally, knowledge asymmetry between the information provider (disclosing party)
and information recipient versus the adversary can be exploited to provide a more private
transaction of information disclosure. A clear example of such asymmetry in knowledge is
shared-key encryption in computer security, where the adversaries don’t share the knowledge
of the keys with the sending and receiving parties [1].

In this preliminary technical report, we propose a framework for information disclosure that
takes advantage of asymmetry in knowledge between the intended recipients of information
versus the adversary about the senders of information. This asymmetry is used to encode
the data in a way that maximally hides the original information from an adversary. In this
chapter, we present the setting of information disclosure in general, and our setting of differential
disclosure of information which will include functions that map the original information into
what we call differential information. In Chapter 2, we discuss the solution to finding the
“best” mapping functions that satisfy this condition, and in Chapter 3 we present examples
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that demonstrate the proposed framework for information disclosure.

1.2 Problem Setting

1.2.1 Definitions

Definition 1.2.1. An information space I is a set, such that for each element x ∈ I, there is
a semantic value attached to x. Subsequently, we call x ∈ I a piece of information from the
information space I.

For example, let the set I = {(x1, x2) ∈ R2|xi ≥ 0} such that x1 encodes mass (kg) and x2

encodes height (m). Then I is an information space representing all possible combinations of
masses and heights of people.

Definition 1.2.2. An information providers set S over an information space I is a set, such
that each element s ∈ S represents one and only one information provider that supplies infor-
mation from the information space I. Subsequently, we call s ∈ S an information provider.

For example, the set of patients with heart-failure of a hospital who provide the hospi-
tal information regarding their mass and height (from the information space I), defines an
information providers set over the information space I.

Definition 1.2.3. A provider class space over an information providers set S is a set Σ and
a function C : S → Σ where for each information provider s ∈ S, C(s) ∈ Σ encodes the
class membership of the information provider s. Subsequently, we will call C the provider-class
membership function.

Remark. For a provider class space (Σ, C(·)) we will use the shorthand notation Σ and we will
refer to the provider-class membership function C(·) as CΣ(·) in case of ambiguity.

In some cases, there may be uncertainty regarding the provider-class membership function,
for that we extend a probabilistic analogy to Definition 1.2.3.

Let C be a random variable representing the class, and S be a random variable representing
the information provider.

Definition 1.2.4. A provider class belief space over an information providers set S is a set
Σ and a conditional probability mass function p(C = σ|S = s) that encodes the likelihood (or
belief) of the membership of information provider s ∈ S to class σ ∈ Σ. Subsequently, we will
call P the provider-class belief function.

Remark. For a provider class belief space (Σ, p) we will use the shorthand notation Σ and we
will refer to the provider-class belief function p as pΣ in case of ambiguity.

For example, for the information providers set S, let Σ be the set Σ = {σ1, σ2} where
σ1 = “Patients with body mass index1 less than 25” and σ2 = “Patients with body mass
index of at least 25”. The hospital can define a provider class space over S if it possesses the
mass and height information about the information providers in S by using the provider-class
membership function. However, an adversary who doesn’t possess such information can only
define a provider class belief space over S.

Remark. Every provider class space (Σ, C) defines a trivial provider class belief space (Σ, p)
such that p(C = σ|S = s) = I(C(s) = σ) where I(·) is the indicator function. Therefore, unless
there is a need to stress the fact that some Σ is a provider class space, we will always refer to
Σ as a provider class belief space regardless of whether it is a provider class space or a provider
class belief space.

1Body mass index (BMI) is defined as BMI , mass(kg)

(height(m))2
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Remark. Note that if a provider class belief space Σ over information provider set S is trivially
defined by a provider class space, then it satisfies HΣ(C|S = s) = 0 for all s ∈ S where HΣ

denotes the Shannon Entropy of C given S = s using the distribution PΣ.2

Definition 1.2.5. Let S be an information provider set and let Σ+ and Σ− be two provider
class belief spaces over S. If for each s ∈ S it is the case that HΣ+(C|S = s) ≤ HΣ−(C|S = s),
we will say that Σ+ dominates Σ− in provider classification knowledge. If the inequality is
strict, we say that Σ+ strongly dominates Σ− in provider classification knowledge. Shortly,
we say Σ+ (strongly) dominates Σ−. Symbolically, we use Σ+ � Σ− for weak domination and
Σ+ � Σ− for strong domination.

1.2.2 Problem Definition

Consider an information providers set S, an information space I and two provider class belief
spaces Σintended and Σadversary, the provider class belief spaces of the intended recipient of the
information and the adversarial party, respectively.

Assumption 1.2.1 (Certain Knowledge). The provider class belief space of the intended re-
cipient, Σintended is derived from a provider class space. Equivalently, HΣ+(C|S = s) ≡ 0.

Assumption 1.2.2 (Adversarial Uncertainty). Σintended � Σadversary.

Assumption 1.2.1 states that the intended recipient’s knowledge regarding the provider
classification is certain. That is, it possesses the provider-class membership function C(·).

Assumption 1.2.2 states that the adversary has strictly higher level of uncertainty regard-
ing the provider classification than the intended receiver. Specifically, it does not possess
the provider-class membership function C(·). Moreover, this assumption asserts that there is
asymmetry in the knowledge of the intended recipient of the information versus the adversary
about the information providers, giving potential advantage to the intended recipient of the
information.

Information provider s ∈ S wants to send out a piece of information (data) x ∈ I under
the assumption that it can be intercepted by an adversarial party.

Note that Assumption 1.2.2 doesn’t mean that the adversary can’t statistically infer the
class of an information provider based on the information that is provided by it. Statistical
classification can still be performed. For example, using the information space I, the informa-
tion providers set S and the classes set Σ used as examples in Section 1.2.1, an adversary can
infer the class of an information provider by the information disclosed by simply calculating
the BMI from the disclosed information and figure out the class of the information provider.

Therefore, it is desired to devise an information disclosure process D that would allow
information providers to encode the data x into z ∈ I in such a way that would satisfy the
following set of conditions.

Condition (HC). D should disclose as little information as possible to an adversary about the
class to which the subject s belongs to, C(s).

Condition (HX). D should hide the original information x as much as possible from an ad-
versary.

Condition (DECODING). D should allow the intended recipient to decode the data z back to
x.

2The Shannon Entropy of X given Y is defined as H(X|Y = y) , E [− log p(X|Y = y)] where E[·] is the
expected value operator.
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For that, we introduce the notion of differential disclosure of information in the following
definition.

Definition 1.2.6 (DDI). Let I be an information space, S be an information providers set
and Σ be a provider class space over S. Let R : Σ → II (where II is the set of all injective
functions I � I) be a differential information mapping function. If D is an information
disclosure process such that

Sending The transaction of disclosing a piece of information x ∈ I by an information provider
s ∈ S is performed by applying the following transformation z ← [R(CΣ(s))] (x) and
revealing z. Moreover, we will call z the piece of differential information.

Receiving The transaction of decoding a piece of information z ∈ I sent by an information
provider s ∈ S is performed by applying x ← [R(CΣ(s))]l (x). Where [R(CΣ(s))]l (·) is a
left inverse of [R(CΣ(s))] (·).3

Then D is called a process of differential disclosure of information using the differential infor-
mation mapping R.

Note that the Definition 1.2.6 (DDI) takes care of the Condition (DECODING), which
requires the process D to allow the intended recipient to decode the data. This is because the
range of the differential information mapping function R is injective functions. Therefore, for
any s ∈ S, we know that [R(s)] (·) has a left inverse which is used to decode z ∈ I by using
the knowledge about the provider’s class, CΣ(s).

The two other conditions are still to be satisfied. Namely, we need the differential informa-
tion mapping function R to hide the original information x ∈ I as much as possible from an
adversary (Condition (HX)); and to make the adversary inference of CΣ(s) for a provider s ∈ S
based on z ← [R(CΣ(s))] (x) as hard as possible (Condition (HC)). These two requirements
will be discussed in more details in Chapter 2.

Bibliography

[1] Hans Delfs and Helmut Knebl. Symmetric-key encryption. In Introduction to Cryptography,
pages 11–31. Springer, 2007.

3Let f : X � Y be an injective function. A function g : Y → X that satisfies g(f(x)) = x for all x ∈ X is
called a left inverse of function f .
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Chapter 2

Solution
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2.1 Introduction

In Chapter 1, the differential disclosure of information setting was introduced. In this setting,
the key component is the differential information mapping function R. Such mapping needs to
be defined in a way that satisfies the so-far qualitative Conditions (HC) and (HX). In order to
approach this problem, we need to provide quantitative measures for these conditions. In this
chapter, we walk through this process in Section 2.2 and provide the solution in Section 2.3.

In this chapter we use the notation x for the pieces of information, z for the pieces of
differential information, s for the information provider and σ for the provider’s class. Similarly,
we use the uppercase letters X for the random variable representing the pieces of information,
Z for the random variable representing the pieces of differential information, S for the random
variable representing the information provider and C for random variable representing the class.
Also, for probability density/mass functions, we use the lowercase letter p (to distinguish from
uppercase letter P that is notation for probability distribution functions).

2.2 Approach

In this section, we provide quantitative counterparts for Conditions (HC) and (HX) presented
in Chapter 1. This quantification will serve us in finding a differential information mapping
function with desirable qualities, better protecting the privacy of information providers.

First, let us examine Condition (HC). The statistical interpretation for the provider-class
membership classification is p(C|S = s), which is provided by the provider class belief space
Σadversary. Using this, the condition becomes “making pΣadversary

(C|S,Z) as close to pΣadversary
(C|S)

as possible”, making the disclosure of the differential information Z = z of as little value as pos-
sible to the classification problem. To see this, think about the ideal case where pΣadversary

(C|S,Z) =
pΣadversary

(C|S), in this case, the disclosure of Z = z would be useless to provide any better
classifications of the provider’s class for the adversary than his prior belief described in his
provider-class belief function pΣadversary

(C|S).
As for Condition (HX), the inference of X = x from Z = z and S = s can be described

as pΣadversary
(X = x|Z = z, S = s). Similar to the approach we took to make z as least useful

as possible to the classification for the adversary, we can achieve “hiding x by disclosing z” by
making pΣadversary

(X = x|Z = z, S = s) as close to pΣadversary
(X = x|S = s) as possible. In the

ideal case that pΣadversary
(X = x|Z = z, S = s) is exactly equal to pΣadversary

(X = x|S = s) for
all z ∈ I and s ∈ S, Z becomes useless to an adversary in inferring X given S.

Now let us think about the information disclosure setting as presented in Chapter 1 as a
whole. We will construct a graphical model to represent the setting of the process of differential
disclosure of information. There will be a node for each random variable in our setting. Namely,
S,C,X and Z. To figure out the direct dependencies, we will start with an information provider
s ∈ S, the class membership σ of provider s is directly dependent on s, therefore, creating a
directed edge from node S to C. Let us now examine the direct dependence of the original
information X. The explicit semantic relationship between the class and information provider
from the provider class space implicitly defines a direct dependence between C and X. That is,
once a class is observed, this relationship defines the statistical distribution of the information
X. Moreover, generally each information provider (even inside the same class) has a different
distribution of the information X, adding an extra direct dependence between S and X. From
that, two directed edges go into the node X, one from C and another one from S. Finally, Z
is intuitively directly dependent on the original information X and the class of the provider
C (the relationship provided by the differential information mapping function R). That adds
two directed edges entering the node Z from X and from C. To summarize, the relationships
described here can be described using the graphical model in Figure 2.2.1.
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Figure 2.2.1: The graphical model describing the general process of differential disclosure of
information.

To reiterate, for the model in Figure 2.2.1, the following conditional probabilities are needed.
p(S), the distribution of the information providers. p(C|S), the provider-class belief function.
p(X|S,C), the distribution of the original information per provider and class. Lastly, p(Z|X,C),
the distribution of the differential information conditioned by the actual data and the class that
the data comes from.

p(Z|X,C) is actually trivially defined by the differential information mapping function R
as follows.

∀σ ∈ Σ, x ∈ I, z ∈ I : p(Z = z|X = x,C = σ) , δ([R(σ)] (x)− z) (2.1)

where δ(·) is the Dirac delta function (or the Kronecker delta function for the discrete case of
information).

As mentioned above, p(C|S) is provided by the provider class belief space. This is where
the asymmetry of knowledge lies between the intended recipient of the information versus the
adversary.

Finally, p(S), the distribution of information providers, and p(X|S,C), the model of the
information distribution per provider and class can be learned from data, or modeled based on
our knowledge about the adversary and his/her model of the world.

2.3 Solution

Using the reasoning introduced in Section 2.2, we will discuss the final steps towards achieving
a solution to finding a differential information mapping function R, satisfying Conditions (HC)
and (HX). A key notion in our approach is making some distribution “as close as possible” to
another distribution. One measure of distance between distributions is the Kullback-Leibler
(KL) divergence1, and minimizing it is what we desire.

Remark. In this section, we will be referring to pΣadversary
when we talk about probability dis-

tributions, therefore, we will omit the subscript Σadversary.

It is important to note that we have a collection of distributions that we would like to fit to
each others. For instance, in order to satisfy Condition (HC), we need to make p(C|Z = z, S =
s) as close to p(C|S = s) as possible for all z ∈ I and s ∈ S (minimizing multiple KL divergence
measures, one for each combination of z and s). In the case of a continuous information space I,
there are infinite possible values for z and therefore infinite number of distributions to fit. We
also note that, depending on the distribution of the information providers S, the information X
and subsequently the differential information Z, some information might be more likely to be
disclosed than others. For that, in the cases where an exact match between p(C|Z = z, S = s)

1Note that the Kullback-Leiber divergence is not a distance metric since it does not satisfy the symmetry
condition of distance metrics.
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and p(C|S = s) cannot be achieved for all z ∈ I and s ∈ S, we would like to put more
importance in making these distributions close for the more likely pieces of information that
are disclosed. One natural choice to achieve this importance weighting is to take the expected
value of the KL divergence (expected with respect to to Z and S) and minimize that. That is,
we would like to minimize E [DKL (p(C|Z, S)||p(C|S))]. The minimization of the expected KL
divergence also takes care of the multiple optimization objectives and makes our optimization
with a single objective.

Intuitively, since the class σ of the provider s constitutes the key component by which the
information x can be decoded from z, making z of the least use to infer σ, also makes it of little
use to retrieve x for an adversary. Therefore, we will make it our objective to directly satisfy
Condition (HC) and by that “hide x by z” too.

The expectation of the KL diveregence is over the joint probability of Z and S, namely
p(Z = z, S = s). We calculate this joint probability based on the model in Figure 2.2.1. For a
given z ∈ I and s ∈ S

p(Z = z, S = s) =
∑
σ

∫
x

p(X = x, S = s, C = σ, Z = z)dx =

∑
σ

∫
x

p(S = s) · p(C = σ|S = s) · p(X = x|C = σ, S = s) · p(Z = z|X = x,C = σ)dx =

p(S = s) ·
∑
σ

[
p(C = σ|S = s) ·

∫
x

p(X = x|C = σ, S = s) · p(Z = z|X = x,C = σ)dx

]
(†)

Also, we want to calculate p(C|Z, S) in terms of the conditional probabilities provided for
the model in Figure 2.2.1. For a given s ∈ S, z ∈ I and σ ∈ Σ

p(C = σ|Z = z, S = s) =
p(Z = z|C = σ, S = s) · p(C = σ|S = s)

p(Z = z|S = s)
∝∫

x

[p(Z = z,X = x|C = σ, S = s)] dx · p(C = σ|S = s) =∫
x

[p(Z = z|X = x,C = σ, S = s) · p(X = x|C = σ, S = s)] dx · p(C = σ|S = s) =∫
x

[p(Z = z|X = x,C = σ) · p(X = x|C = σ, S = s)] dx · p(C = σ|S = s)

where the last step is due to the fact that the model in Figure 2.2.1 implies that Z is condi-
tionally independent of S given X and C.

We normalize to get the conditional probability mass function

p(C = σ|Z = z, S = s) =∫
x

[p(Z = z|X = x,C = σ) · p(X = x|C = σ, S = s)] dx · p(C = σ|S = s)∑
σ̄

∫
x

[p(Z = z|X = x,C = σ̄) · p(X = x|C = σ̄, S = s)] dx · p(C = σ̄|S = s)
(‡)

Recall that the optimization search space is, ideally, the whole space of functions R =(
Σ→ II

)
. In addition to that, our optimization problem is non-convex. These challenges

make our problem computationally intractable. Therefore, we will choose to only search a
subspace of R that is a parametric family of differential information mapping functions. Let
ID ⊂ II be a parametric family of injective information mapping functions, then our new
optimization search space becomes RD , (Σ→ ID). This parameterization depends on the
problem in hand. For example, one subspace for information spaces of N dimensions (over the
field R) can be defined using

ID ,
{
f : I � I|f(x) = A · x− b, A ∈ RN×N : det(A) 6= 0, b ∈ RN

}
9



which is the set of all injective affine functions in RN .
Given a parameterized optimization search subspaceRD (or equivalently ID), the differential

information mapping function R becomes a parametric function too, so we use the notation
R(·; Θ) to indicate that the function is parametric with parameter Θ.2

Now we formulate our complete optimization problem as follows

Listing 2.3.1: Finding R(·; Θ) based on the model in Figure 2.2.1 by satisfying Condition (HC)

Input : I : In format ion space
Input : S : In format ion prov ide r s s e t

Input : Σ , Σintendend : Provider c l a s s space
Input : ID ⊂ II : Parametric search subspace
Input : p(C|S), p(X|C, S), p(S) : Model o f the adversary
Output : R : Σ→ ID
minimize Ep(Z,S) [DKL (p(C|Z, S)||p(C|S))] (Θ)
w. r . t Θ
s . t . R(·; Θ) ∈ (Σ→ ID)

∀σ ∈ Σ, x ∈ I, z ∈ I : p(Z = z|X = x,C = σ) = δ([R(σ; Θ)] (x)− z)

p(C|Z, S) =
∫
x[p(Z=z|X=x,C=σ)·p(X=x|C=σ,S=s)]dx·p(C=σ|S=s)∑
σ̄

∫
x[p(Z=z|X=x,C=σ̄)·p(X=x|C=σ̄,S=s)]dx·p(C=σ̄|S=s)

p(Z = z, S = s) = (†)

Note that by using Equations (†) and (‡) to calculate p(Z, S) and p(C|Z, S), we impose our
modeling structure from the model in Figure 2.2.1.

2Note that the optimization problem remains non-convex in general even when using a parametric subspace
RD for our optimization, but it, at least, becomes tractable for sensible definitions of RD.
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Chapter 3

Examples
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3.1 Introduction

In this chapter, we present a series of examples of differential disclosure of information. For
simplicity, in all of the examples we use p(C|S) that is uniform, and p(S) that is uniform (no
special knowledge about the information providers by the adversary). Also, to simplify the
visualization of the examples, we use models p(X|C, S) = p(X|C). In all examples, we first
generate the distribution of the information X given the class C (using different distributions
in each example). Then we solve the optimization described in Listing 2.3.1 and present the
results. In all examples we assume that the adversary has the ground truth model of p(X|C)
as the one we used to generate the information.

We arranged the examples in sections according to the type of the distribution p(X|C). In
Section 3.2, the information is generated using a uniform distribution in each class. Afterwards,
in Section 3.3 we present examples where the information is generated using a normal distri-
bution in each class. In Section 3.4 we present one example where the information is sampled
from a combination of partially overlapping uniform distributions in each class, resulting in a
differently shaped distribution of information in the different classes. In Sections 3.2-3.4 all
information spaces are one dimensional. Finally, in Section 3.5, we present an example with
information that is two dimensional, which was generated using a two-dimensional uniform
distribution in each class.

3.2 Uniform Information Per Class (One Dimensional)

In this section, we will present two examples of differential disclosure of information using
information distributions that are uniform in each class. In both examples of this section, we
will use the notation I for the information space.

First, we present an example where all the variances of the information distributions for
all classes are equal. This is depicted in Figure 3.2.1a, which shows p(X|C). The data was
sampled, for each class from a uniform distribution with the same variance (same width of
support). Clearly, if X was disclosed directly, the classification for anyone (including the
adversary) would be very simple by just applying the following classification function

C(x) =

{
1 x ≤ 1

2 otherwise
(3.1)

We learn the differential information mapping function R by solving the optimization prob-
lem in Listing 2.3.1 over the space of differential information mapping functions {1, 2} → AF
where AF is

AF , {f : I � I|∃a 6= 0, b ∈ R : ∀x ∈ I, f(x) = a · x− b} (3.2)

the set of injective affine functions from and to I.
After optimization, R is found to be

R(c) =

{
f(x) = x c = 1

f(x) = 0.98 · x− 0.86 c = 2
(3.3)

and as a result the conditional distribution of differential information Z given the class C is
depicted in Figure 3.2.1b. Note that this is what the intended recipient sees when data is being
received since it knows the class of the sender.

On the other hand, the adversary doesn’t know the class of the sender and it sees only p(Z)
which is depicted in Figure 3.2.1c. The classification distribution p(C|Z) from the point of view
of the adversary is depicted in Figure 3.2.1d, and looks pretty uniform as expected.
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(a) (b)

(c) (d)

Figure 3.2.1

Next, we present an example with three classes, where the variances of information in the
different classes are different this time. This is depicted in Figure 3.2.2a, which shows p(X|C).
The data was sampled, for each class, from a uniform distribution with the a different variance
(different width of support). Clearly, if X was disclosed directly, the classification for anyone
(including the adversary) would be very simple by just applying the following classification
function

C(x) =


1 x ∈ [0, 1)

2 x ∈ [1, 2)

3 otherwise

(3.4)

We learn the differential information mapping function R by solving the optimization prob-
lem in Listing 2.3.1 over the space of differential information mapping functions {1, 2, 3} → AF
where AF is, again, the set of injective affine functions from and to I.

After optimization, R is found to be

R(c) =


f(x) = x c = 1

f(x) = 1.97 · x− 1.96 c = 2

f(x) = 1.34 · x− 2.92 c = 3

(3.5)

and as a result the conditional distribution of differential information Z given the class C is
depicted in Figure 3.2.2b. Like before, this is what the intended recipient sees when data is
being received since it knows the class of the sender.
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On the other hand, the adversary doesn’t know the class of the sender and it sees only p(Z)
which is depicted in Figure 3.2.2c. The classification distribution p(C|Z) from the point of view
of the adversary is depicted in Figure 3.2.2d, and looks pretty uniform as expected.

(a) (b)

(c) (d)

Figure 3.2.2

3.3 Normally Distributed Information Per Class (One

Dimensional)

In this section, we will present two examples of differential disclosure of information using
information distributions that are normal in each class. In both examples of this section, we
will use the notation I for the information space.

First, we present an example with two classes, where the variances of the normal distribu-
tions in the different classes are equal. This is depicted in Figure 3.3.1a, which shows p(X|C).
The data was sampled, for each class from a normal distribution with the same variance. Clearly,
if X was disclosed directly, the classification for anyone (including the adversary) would be very
simple by just applying the following classification function

C(x) =

{
1 x ≤ 1

2 otherwise
(3.6)
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We learn the differential information mapping function R by solving the optimization prob-
lem in Listing 2.3.1 over the space of differential information mapping functions {1, 2} → AF
where AF is, again, the set of injective affine functions from and to I.

After optimization, R is found to be

R(c) =

{
f(x) = x c = 1

f(x) = 0.98 · x− 1.1 c = 2
(3.7)

and as a result the conditional distribution of differential information Z given the class C is
depicted in Figure 3.3.1b. Like before, this is what the intended recipient sees when data is
being received since it knows the class of the sender.

On the other hand, the adversary doesn’t know the class of the sender and it sees only p(Z)
which is depicted in Figure 3.3.1c. The classification distribution p(C|Z) from the point of view
of the adversary is depicted in Figure 3.3.1d, and looks pretty uniform as expected.

(a) (b)

(c) (d)

Figure 3.3.1

Next, we present an example with two classes, where the variances of the normal distribu-
tions in the different classes are different this time. This is depicted in Figure 3.3.2a, which
shows p(X|C). The data was sampled, for each class from a normal distribution with a differ-
ent variance. Clearly, if X was disclosed directly, the classification for anyone (including the
adversary) would be very simple by just applying the following classification function

C(x) =

{
1 x ≤ 1

2 otherwise
(3.8)
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We learn the differential information mapping function R by solving the optimization prob-
lem in Listing 2.3.1 over the space of differential information mapping functions {1, 2} → AF
where AF is, again, the set of injective affine functions from and to I.

After optimization, R is found to be

R(c) =

{
f(x) = x c = 1

f(x) = 2.33 · x− 2.07 c = 2
(3.9)

and as a result the conditional distribution of differential information Z given the class C is
depicted in Figure 3.3.2b. Like before, this is what the intended recipient sees when data is
being received since it knows the class of the sender.

On the other hand, the adversary doesn’t know the class of the sender and it sees only p(Z)
which is depicted in Figure 3.3.2c. The classification distribution p(C|Z) from the point of view
of the adversary is depicted in Figure 3.3.2d, and looks pretty uniform as expected.

(a) (b)

(c) (d)

Figure 3.3.2

3.4 More General One Dimensional Information

In this section, we present an example where the information X has a shaped distribution per
class. Moreover, the shapes for the distribution of the data are different for different classes.
This example includes three classes and the data distribution per class p(X|C) is shown in

16



Figure 3.4.1a. Note the difference in the shapes of the distributions in the different classes.
Still, clearly, if X was disclosed directly, the classification for anyone (including the adversary)
would be very simple by just applying the following classification function

C(x) =


1 x ∈ [0, 1)

2 x ∈ [1, 2)

3 x ∈ [2, 3)

(3.10)

We learn the differential information mapping function R by solving the optimization prob-
lem in Listing 2.3.1 over the space of differential information mapping functions {1, 2, 3} → AF
where AF is, again, the set of injective affine functions from and to I.

After optimization, R is found to be

R(c) =


f(x) = x c = 1

f(x) = −1.85 · x+ 3.67 c = 2

f(x) = 1.31 · x− 2.71 c = 3

(3.11)

and as a result the conditional distribution of differential information Z given the class C is
depicted in Figure 3.4.1b. Like before, this is what the intended recipient sees when data is
being received since it knows the class of the sender.

On the other hand, the adversary doesn’t know the class of the sender and it sees only p(Z)
which is depicted in Figure 3.4.1c. The classification distribution p(C|Z) from the point of view
of the adversary is depicted in Figure 3.4.1d, and looks pretty uniform as expected.

3.5 Uniform Information Per Class (Two Dimensional)

In this last example of this report, we present an example with an information space that is
two dimensional and a provider class space that has three classes. To keep the example simple,
the information distribution per class is two dimensional uniform with the same support width
for all classes and both dimensions. The distribution of information per class is depicted in
Figure 3.5.1a as a heatmap. On the horizontal axis is the first dimension of the information
space, on the vertical axis is the second dimension of the information space. The colors depict
the likelihood for each point in the information space (dark blue = 0, red = 1).

Again it is clear that if x was to be disclosed directly, the classification becomes trivial. The
following classification function will classify the data perfectly

C(x) =


1 x ∈ [0, 1)× [0, 1)

5 x ∈ [1, 2)× [1, 2)

9 x ∈ [2, 3)× [2, 3)

(3.12)

We learn the differential information mapping function R by solving the optimization prob-
lem in Listing 2.3.1 over the space of differential information mapping functions {1, 2, 3} → TF
where TF is

TF ,
{
f : I � I|∃b ∈ R2 : ∀x ∈ I, f(x) = x− b

}
(3.13)

the set of (injective) functions from and to I that apply translation only.
After optimization, R is found to be

R(c) =



f(x) = x c = 1

f(x) = x−

[
0.99

1

]
c = 5

f(x) = x−

[
2.09

2.1

]
c = 9

(3.14)
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(a) (b)

(c) (d)

Figure 3.4.1

and as a result the conditional distribution of differential information Z given the class C is
depicted in Figure 3.5.1c. Like before, this is what the intended recipient sees when data is
received since it knows the class of the sender.

On the other hand, the adversary doesn’t know the class of the sender and it sees only p(Z)
which is depicted in Figure 3.5.1b. The classification distribution is not viewed here since it
is 4-dimensional (2 dimensions for Z, 1 dimension for C, and 1 dimension for the value of the
likelihood). But from Figure 3.5.1c, it can be seen that the data overlaps almost completely
between the different classes, and therefore the posterior p(C|Z) is pretty uniform as expected.
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(a) (b)

(c)

Figure 3.5.1
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