
Error analysis of the s-step Lanczos method in finite

precision

Erin Carson
James Demmel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2014-55

http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-55.html

May 6, 2014

Copyright © 2014, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

Research is supported by DOE grants DE-SC0004938, DE-SC0005136,
DE-SC0003959, DE-SC0008700, DE-FC02-06-ER25786, and AC02-
05CH11231, DARPA grant HR0011-12-2-0016, as well as contributions
from Intel, Oracle, and MathWorks.

ERROR ANALYSIS OF THE S-STEP LANCZOS METHOD IN
FINITE PRECISION

ERIN CARSON AND JAMES DEMMEL

Abstract. The s-step Lanczos method is an attractive alternative to the classical Lanczos
method as it enables an O(s) reduction in data movement over a fixed number of iterations. This
can significantly improve performance on modern computers. In order for s-step methods to be widely
adopted, it is important to better understand their error properties. Although the s-step Lanczos
method is equivalent to the classical Lanczos method in exact arithmetic, empirical observations
demonstrate that it can behave quite differently in finite precision. In the s-step Lanczos method,
the computed Lanczos vectors can lose orthogonality at a much quicker rate than the classical method,
a property which seems to worsen with increasing s.

In this paper, we present, for the first time, a complete rounding error analysis of the s-step
Lanczos method. Our methodology is analogous to Paige’s rounding error analysis for the classical
Lanczos method [IMA J. Appl. Math., 18(3):341–349, 1976]. Our analysis gives upper bounds on the
loss of normality of and orthogonality between the computed Lanczos vectors, as well as a recurrence
for the loss of orthogonality. The derived bounds are very similar to those of Paige for classical
Lanczos, but with the addition of an amplification term which depends on the condition number
of the Krylov bases computed every s-steps. Our results confirm theoretically what is well-known
empirically: the conditioning of the Krylov bases plays a large role in determining finite precision
behavior.

Key words. Krylov subspace methods, error analysis, finite precision, roundoff, Lanczos, avoid-
ing communication, orthogonal bases

AMS subject classifications. 65G50, 65F10, 65F15, 65N15, 65N12

1. Introduction. Given an n-by-n symmetric matrix A and a starting vector v0
with unit 2-norm, m steps of the Lanczos method [21] theoretically produces the or-
thonormal matrix Vm = [v0, . . . , vm] and the (m+1)-by-(m+1) symmetric tridiagonal
matrix Tm such that

AVm = VmTm + βm+1vm+1e
T
m+1. (1.1)

When m = n − 1, the eigenvalues Tn−1 are the eigenvalues of A. In practice, the
eigenvalues of T are still good approximations to the eigenvalues of A when m� n−1,
which makes the Lanczos method attractive as an iterative procedure. Many Krylov
subspace methods (KSMs), including those for solving linear systems and least squares
problems, are based on the Lanczos method. In turn, these various Lanczos-based
methods are the core components in numerous scientific applications.

Classical implementations of Krylov methods, the Lanczos method included, re-
quire one or more sparse matrix-vector multiplications (SpMVs) and one or more
inner product operations in each iteration. These computational kernels are both
communication-bound on modern computer architectures. To perform an SpMV,
each processor must communicate entries of the source vector it owns to other pro-
cessors in the parallel algorithm, and in the sequential algorithm the matrix A must
be read from slow memory. Inner products involve a global reduction in the paral-
lel algorithm, and a number of reads and writes to slow memory in the sequential
algorithm (depending on the size of the vectors and the size of the fast memory).

Thus, many efforts have focused on communication-avoiding Krylov subspace
methods (CA-KSMs), or s-step Krylov methods, which can perform s iterations with
O(s) less communication than classical KSMs; see, e.g., [4, 5, 7, 9, 10, 16, 17, 8, 33, 35].
In practice, this can translate into significant speedups for many problems [24].

1

2 ERIN CARSON AND JAMES DEMMEL

Equally important to the performance of each iteration is the convergence rate of
the method, i.e., the total number of iterations required until the desired convergence
criterion is met. Although theoretically the Lanczos process described by (1.1) pro-
duces an orthogonal basis and a tridiagonal matrix similar to A after n steps, these
properties need not hold in finite precision. The effects of roundoff error on the ideal
Lanczos process were known to Lanczos when he published his algorithm in 1950.
Since then, much research has been devoted to better understanding this behavior,
and to devise more robust and stable algorithms.

Although s-step Krylov methods are mathematically equivalent to their classical
counterparts in exact arithmetic, it perhaps comes as no surprise that their finite
precision behavior may differ significantly, and that the theories developed for classical
methods in finite precision do not hold for the s-step case. It has been empirically
observed that the behavior of s-step Krylov methods deviates further from that of
the classical method as s increases, and that the severity of this deviation is heavily
influenced by the polynomials used for the s-step Krylov bases (see, e.g., [1, 4, 17, 18]).

Arguably the most revolutionary work in the finite precision analysis of classical
Lanczos was a series of papers published by Paige [25, 26, 27, 28]. Paige’s analysis
succinctly describes how rounding errors propagate through the algorithm to impede
orthogonality. These results were developed to give theorems which link the loss of
orthogonality to convergence of the computed eigenvalues [28]. No analogous theory
currently exists for the s-step Lanczos method.

In this paper, we present, for the first time, a complete rounding error analysis
of the s-step Lanczos method. Our analysis here for s-step Lanczos closely follows
Paige’s rounding error analysis for orthogonality in classical Lanczos [27].

We present upper bounds on the normality of and orthogonality between the
computed Lanczos vectors, as well as a recurrence for the loss of orthogonality. The
derived bounds are very similar to those of Paige for classical Lanczos, but with
the addition of an amplification term which depends on the condition number of
the Krylov bases computed every s steps. Our results confirm theoretically what
is well-known empirically: the conditioning of the Krylov bases plays a large role in
determining finite precision behavior. In particular, if one can guarantee that the basis
condition number is not too large throughout the iteration, the loss of orthogonality
in the s-step Lanczos method should not be too much worse than in classical Lanczos.
As Paige’s subsequent groundbreaking convergence analysis [28] was based largely on
the results in [27], our analysis here similarly serves as a stepping stone to further
understanding of the s-step Lanczos method.

The remainder of this paper is outlined as follows. In Section 2, we present
related work in s-step Krylov methods and the analysis of finite precision Lanczos. In
Section 3, we review a variant of the Lanczos method and derive the corresponding
s-step Lanczos method, as well as provide a numerical example that will help motivate
our analysis. In Section 4, we first state our main result in Theorem 4.2 and comment
on its interpretation; the rest of the section is devoted to its proof. In Section 5,
we recall our numerical example from Section 3 in order to demonstrate the bounds
proved in Section 4. Section 6 concludes with a discussion of future work.

2. Related work. We briefly review related work in s-step Krylov methods as
well as work related to the analysis of classical Krylov methods in finite precision.

2.1. s-step Krylov subspace methods. The term ‘s-step Krylov method’,
first used by Chronopoulos and Gear [6], describes variants of Krylov methods where
the iteration loop is split into blocks of s iterations. Since the Krylov subspaces

ERROR ANALYSIS OF S-STEP LANCZOS 3

required to perform s iterations of updates are known, bases for these subspaces can
be computed upfront, inner products between basis vectors can be computed with one
block inner product, and then s iterations are performed by updating the coordinates
in the generated Krylov bases (see Section 3 for details). Many formulations and
variations have been derived over the past few decades with various motivations,
namely increasing parallelism (e.g., [6, 35, 36]) and avoiding data movement, both
between levels of the memory hierarchy in sequential methods and between processors
in parallel methods. A thorough treatment of related work can be found in [17].

Many empirical studies of s-step Krylov methods found that convergence often
deteriorated using s > 5 due to the inherent instability of the monomial basis. This
motivated research into the use of better-conditioned bases (e.g., Newton or Cheby-
shev polynomials) for the Krylov subspace, which allowed convergence for higher s
values (see, e.g., [1, 16, 18, 31]). Hoemmen has used a novel matrix equilibration and
balancing approach to achieve similar effects [17].

The term ‘communication-avoiding Krylov methods’ refers to s-step Krylov meth-
ods and implementations which aim to improve performance by asymptotically de-
creasing communication costs, possibly both in computing inner products and comput-
ing the s-step bases, for both sequential and parallel algorithms; see [9, 17]. Hoemmen
et al. [17, 24] derived communication-avoiding variants of Lanczos, Arnoldi, Conjugate
Gradient (CG) and the Generalized Minimum Residual Method (GMRES). Details of
nonsymmetric Lanczos-based CA-KSMs, including communication-avoiding versions
of Biconjugate Gradient (BICG) and Stabilized Biconjugate Gradient (BICGSTAB)
can be found in [4]. Although potential performance improvement is our primary
motivation for studying these methods, we use the general term ‘s-step methods’ here
as our error analysis is independent of performance.

Many efforts have been devoted specifically to the s-step Lanczos method. The
first s-step Lanczos methods known in the literature are due to Kim and Chronopou-
los, who derived a three-term symmetric s-step Lanczos method [19] as well as a
three-term nonsymmetric s-step Lanczos method [20]. Hoemmen derived a three-term
communication-avoiding Lanczos method, CA-Lanczos [17]. Although the three-term
variants require less memory, their numerical accuracy can be worse than implemen-
tations which use two coupled two-term recurrences [15]. A two-term communication-
avoiding nonsymmetric Lanczos method (called CA-BIOC, based on the ‘BIOC’ ver-
sion of nonsymmetric Lanczos of Gutknecht [14]) can be found in [2]. This work
includes the derivation of a new version of the s-step Lanczos method, equivalent in
exact arithmetic to the variant used by Paige [27]. It uses a two-term recurrence like
BIOC, but is restricted to the symmetric case and uses a different starting vector.

For s-step KSMs that solve linear systems, increased roundoff error in finite pre-
cision can decrease the maximum attainable accuracy of the solution, resulting in a
less accurate solution than found by the classical method. A quantitative analysis of
roundoff error in CA-CG and CA-BICG can be found in [3]. Based on the work of [34]
for conventional KSMs, we have also explored implicit residual replacement strategies
for CA-CG and CA-BICG as a method to limit the deviation of true and computed
residuals when high accuracy is required (see [3]).

2.2. Error analysis of the Lanczos method. Lanczos and others recognized
early on that rounding errors could cause the Lanczos method to deviate from its
ideal theoretical behavior. Since then, various efforts have been devoted to analyzing,
and explaining, and improving the finite precision Lanczos method.

Widely considered to be the most significant development was the series of pa-

4 ERIN CARSON AND JAMES DEMMEL

pers by Paige discussed in Section 1. Another important development was due to
Greenbaum and Strakoš, who performed a backward-like error analysis which showed
that finite precision Lanczos and CG behave very similarly to the exact algorithms
applied to any of a certain class of larger matrices [12]. Paige has recently shown
a similar type of augmented stability for the Lanczos process [29]. There are many
other analyses of the behavior of various KSMs in finite precision, including some
more recent results due to Wülling [37] and Zemke [38]; for a thorough overview of
the literature, see [22, 23].

A number of strategies for maintaining the orthogonality among the Lanczos
vectors were inspired by the analysis of Paige, such as selective reorthogonalization [30]
and partial reorthogonalization [32]. Recently, Gustafsson et al. have extended such
reorthogonalization strategies for classical Lanczos to the s-step case [13].

3. The s-step Lanczos method. The classical Lanczos method is shown in
Algorithm 1. We use the same variant of Lanczos as used by Paige in his error
analysis for classical Lanczos [27] to allow easy comparison of results. This is the
first instance of an s-step version of this particular Lanczos variant; other existing
s-step Lanczos variants are described in Section 2.1. Note that as in [27] our analysis
will assume no breakdown occurs and thus breakdown conditions are not discussed
here. We now give a derivation of s-step Lanczos, obtained from classical Lanczos in
Algorithm 1.

Algorithm 1 Lanczos

Require: n-by-n real symmetric matrix A and length-n starting vector v0 such that
‖v0‖2 = 1

1: u0 = Av0
2: for m = 0, 1, . . . until convergence do
3: αm = vTmum
4: wm = um − αmvm
5: βm+1 = ‖wm‖2
6: vm+1 = wm/βm+1

7: um+1 = Avm+1 − βm+1vm
8: end for

Suppose we are beginning iteration m = sk where k ∈ N and 0 < s ∈ N. By
induction on lines 6 and 7 of Algorithm 1, we can write

vsk+j , usk+j ∈ Ks+1(A, vsk) +Ks+1(A, usk) (3.1)

for j ∈ {0, . . . , s}, where Ki(A, x) = span{x,Ax, . . . , Ai−1x} denotes the Krylov sub-
space of dimension i of matrix A with respect to vector x. Note that since u0 = Av0,
if k = 0 we have

vj , uj ∈ Ks+2(A, v0).

for j ∈ {0, . . . , s}.
For k > 0, we then define ‘basis matrix’ Yk = [Vk,Uk], where Vk and Uk are size

n-by-(s + 1) matrices whose columns form bases for Ks+1(A, vsk) and Ks+1(A, usk),
respectively. For k = 0, we define Y0 to be a size n-by-(s+ 2) matrix whose columns
form a basis for Ks+2(A, v0). Then by (3.1), we can represent vsk+j and usk+j , for
j ∈ {0, . . . , s}, by their coordinates (denoted with primes) in Yk, i.e.,

vsk+j = Ykv′k,j , usk+j = Yku′k,j . (3.2)

ERROR ANALYSIS OF S-STEP LANCZOS 5

Note that for k = 0, the coordinate vectors are length s + 2 and for k > 0, the
coordinate vectors are length 2s + 2. We can write a similar equation for auxiliary
vector wsk+j , i.e., wsk+j = Ykw′k,j for j ∈ {0, . . . , s − 1}. We define also the Gram

matrix Gk = YTk Yk, which is size (s+ 2)-by-(s+ 2) for k = 0 and (2s+ 2)-by-(2s+ 2)
for k > 0. Using this matrix, the inner products in lines 3 and 5 can be written

αsk+j = vTsk+jusk+j = v′Tk,jYTk Yku′k,j = v′Tk,jGku
′
k,j and (3.3)

βsk+j+1 = (wTsk+jwsk+j)
1/2 = (w′Tk,jYTk Ykw′k,j)1/2 = (w′Tk,jGkw

′
k,j)

1/2. (3.4)

We assume that the bases are generated via polynomial recurrences represented by
the matrix Bk, which is in general upper Hessenberg but often tridiagonal in practice.
The recurrence can thus be written in matrix form as

AŶk = ŶkBk

where Bk is size (s + 2)-by-(s + 2) for k = 0 and size (2s + 2)-by-(2s + 2) for k > 0,
and Ŷk =

[
V̂k[Is, 0s,1]T , 0n,1, Ûk[Is, 0s,1]T , 0n,1

]
. Therefore, for j ∈ {0, . . . , s− 1},

Avsk+j+1 = AYkv′k,j+1 = AŶkv
′
k,j+1 = YkBkv′k,j+1. (3.5)

Thus, to compute iterations sk + 1 through sk + s in s-step Lanczos, we first
generate basis matrix Yk such that (3.5) holds, and we compute the Gram matrix
Gk from the resulting basis matrix. Then updates to the length-n vectors can be
performed by updating instead the length-(2s + 2) coordinates for those vectors in
Yk. Inner products and multiplications with A become smaller operations which
can be performed locally, as in (3.3), (3.4), and (3.5). The complete s-step Lanczos
algorithm is presented in Algorithm 2. Note that in Algorithm 2 we show the length-
n vector updates in each inner iteration (lines 16 and 18) for clarity, although these
vectors play no part in the inner loop iteration updates. In practice, the basis change
operation (3.2) can be performed on a block of coordinate vectors at the end of each
outer loop to recover vsk+i and usk+i, for i ∈ {1, . . . , s}.

3.1. A numerical example. We give a brief example to demonstrate the behav-
ior of s-step Lanczos in finite precision and to motivate our theoretical analysis. We
run s-step Lanczos (Algorithm 2) on a 2D Poisson matrix with n = 256, ‖A‖2 = 7.93,
using a random starting vector. The same starting vector is used in all tests, which
were run using double precision. Results for classical Lanczos run on the same prob-
lem are shown in Figure 3.1 for comparison. In Figure 3.2, we show s-step Lanczos
results for s = 2 (left), s = 4 (middle), and s = 8 (right), using monomial (top), New-
ton (middle), and Chebyshev (top) polynomials for computing the bases in line 3.
The plots show the number of eigenvalue estimates (Ritz values) that have converged,
within some relative tolerance, to a true eigenvalue over the iterations. Note that we
do not count duplicates, i.e., multiple Ritz values that have converged to the same
eigenvalue of A. The solid black line y = x represents the upper bound.

From Figure 3.2 we see that for s = 2, s-step Lanczos with the monomial, Newton,
and Chebyshev bases all well-replicate the convergence behavior of classical Lanczos;
for the Chebyshev basis the plots look almost identical. However, as s increases,
we see that both convergence rate and accuracy to which we can find approximate
eigenvalues within n iterations decreases for all bases. This is clearly the most drastic
for the monomial basis case; e.g., for the Chebyshev and Newton bases with s = 8,

6 ERIN CARSON AND JAMES DEMMEL

Algorithm 2 s-step Lanczos

Require: n-by-n real symmetric matrix A and length-n starting vector v0 such that
‖v0‖2 = 1

1: u0 = Av0
2: for k = 0, 1, . . . until convergence do
3: Compute Yk with change of basis matrix Bk
4: Compute Gk = YTk Yk
5: v′k,0 = e1
6: if k = 0 then
7: u′0,0 = Bke1
8: else
9: u′k,0 = es+2

10: end if
11: for j = 0, 1, . . . , s− 1 do
12: αsk+j = v′Tk,jGku

′
k,j

13: w′k,j = u′k,j − αsk+jv′k,j
14: βsk+j+1 = (w′Tk,jGkw

′
k,j)

1/2

15: v′k,j+1 = w′k,j/βsk+j+1

16: vsk+j+1 = Ykv′k,j+1

17: u′k,j+1 = Bkv′k,j+1 − βsk+j+1v
′
k,j

18: usk+j+1 = Yku′k,j+1

19: end for
20: end for

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, classical Lanczos

tol=10−14

tol=10−12

tol=10−8

tol=10−4

Fig. 3.1. Number of converged Ritz values versus iteration number for classical Lanczos.

we can at least still find eigenvalues to within relative accuracy
√
ε at the same rate

as the classical case.
It is clear that the choice of basis used to generate Krylov subspaces affects the

behavior of the method in finite precision. Although this is well-studied empirically
in the literature, many theoretical questions remain open about exactly how, where,
and to what extent the properties of the bases affect the method’s behavior. Our
analysis is a significant step toward addressing these questions.

4. The s-step Lanczos method in finite precision. Throughout our analy-
sis, we use a standard model of floating point arithmetic where we assume the compu-
tations are carried out on a machine with relative precision ε (see [11]). Throughout
the analysis we ignore ε terms of order > 1, which have negligible effect on our results.
We also ignore underflow and overflow. Following Paige [27], we use the ε symbol to
represent the relative precision as well as terms whose absolute values are bounded

ERROR ANALYSIS OF S-STEP LANCZOS 7

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=2,monomial basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=4,monomial basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=8,monomial basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=2, Newton basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=4, Newton basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=8, Newton basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=2, Chebyshev basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=4, Chebyshev basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

0 50 100 150 200 250
0

50

100

150

200

250

N
um

be
r

of
 c

om
pu

te
d

ei
ge

nv
al

ue
s

co
nv

er
ge

d
 to

 w
ith

in
 to

l *
 ||

A
||

2 o
f t

ru
e

ei
ge

nv
al

ue

Iteration

Eigenvalue convergence, s=8, Chebyshev basis

tol=10−14

tol=10−12

tol=10−8

tol=10−4

Fig. 3.2. Number of converged Ritz values versus iteration number for s-step Lanczos using
monomial (top), Newton (middle), and Chebyshev (bottom) bases for s = 2 (left), s = 4 (middle),
and s = 8 (right).

by the relative precision.

We will model floating point computation using the following standard conven-
tions (see, e.g., [11]): for vectors u, v ∈ Rn, matrices A ∈ Rn×m and G ∈ Rn×n, and
scalar α,

fl(u− αv) =u− αv − δw, |δw| ≤ (|u|+ 2|αv|)ε,
f l(vTu) =(v + δv)Tu, |δv| ≤ nε|v|,
f l(Au) =(A+ δA)u, |δA| ≤ mε|A|,

f l(ATA) =ATA+ δE, |δE| ≤ nε|AT ||A|, and

fl(uT (Gv)) =(u+ δu)T (G+ δG)v, |δu| ≤ nε|u|, |δG| ≤ nε|G|.

where fl() represents the evaluation of the given expression in floating point arithmetic
and terms with δ denote error terms. We decorate quantities computed in finite
precision arithmetic with hats, e.g., if we are to compute the expression α = vTu in
finite precision, we get α̂ = fl(vTu).

We first prove the following lemma, which will be useful in our analysis.

Lemma 4.1. Assume we have rank-r matrix Y ∈ Rn×r, where n ≥ r. Let Y +

denote the pseudoinverse of Y , i.e., Y + = (Y TY)−1Y T . Then for any vector x ∈ Rr,

8 ERIN CARSON AND JAMES DEMMEL

we can bound

‖|Y | |x|‖2 ≤ ‖|Y |‖2‖x‖2 ≤ Γ‖Y x‖2.

where Γ =
∥∥Y +

∥∥
2

∥∥ |Y |∥∥
2
≤
√
r
∥∥Y +

∥∥
2

∥∥Y ∥∥
2
.

Proof. We have

‖|Y ||x|‖2 ≤ ‖|Y |‖2‖x‖2 ≤‖|Y |‖2‖Y +Y x‖2 ≤ ‖|Y |‖2‖Y +‖2‖Y x‖2 ≤ Γ‖Y x‖2.

We note that the term Γ can be thought of as a type of condition number for
the matrix Y . In the analysis, we will apply the above lemma to the computed
‘basis matrix’ Ŷk. We assume throughout that the generated bases Ûk and V̂k are
numerically full rank. That is, all singular values of Ûk and V̂k are greater than
εn · 2blog2 σ1c where σ1 is the largest singular value of A. The results of this section
are summarized in the following theorem:

Theorem 4.2. Assume that Algorithm 2 is implemented in floating point with
relative precision ε and applied for sk+j steps to the n-by-n real symmetric matrix A,
starting with vector v0 with ‖v0‖2 = 1. Let σ = ‖|A|‖2/‖A‖2 and τk = ‖|Bk|‖2/‖A‖2,
where Bk is defined in (3.5), and let

Γ̄k = max
i∈{0,...,k}

‖Ŷ+
i ‖2‖|Ŷi|‖2 ≥ 1 and τ̄k = max

i∈{0,...,k}
τi.

Then α̂sk+j, β̂sk+j+1, and v̂sk+j+1 will be computed such that

AV̂sk+j = V̂sk+j T̂sk+j + β̂sk+j+1v̂sk+j+1e
T
sk+j+1 − δV̂sk+j ,

with

V̂sk+j = [v̂0, v̂1, . . . , v̂sk+j]

δV̂sk+j = [δv̂0, δv̂1, . . . , δv̂sk+j]

T̂sk+j =

α̂0 β̂1

β̂1
. . .

. . .

. . .
. . . β̂sk+j
β̂sk+j α̂sk+j

and

‖δv̂sk+j‖2 ≤ ε
(
(n+2s+5)σ + (4s+9)τ̄k + (10s+16)

)
Γ̄k‖A‖2, (4.1)

β̂sk+j+1|v̂Tsk+j v̂sk+j+1| ≤ 2ε(n+11s+15)‖A‖2Γ̄2
k, (4.2)

|v̂Tsk+j+1v̂sk+j+1 − 1| ≤ ε(n+8s+12)Γ̄2
k, and (4.3)

∣∣∣β̂2
sk+j+1 + α̂2

sk+j + β̂2
sk+j − ‖Av̂sk+j‖22

∣∣∣ ≤
4ε(sk+j+2)

(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k‖A‖22. (4.4)

Furthermore, if Rsk+j is the strictly upper triangular matrix such that

V̂ Tsk+j V̂sk+j = RTsk+j + diag(V̂ Tsk+j V̂sk+j) +Rsk+j ,

ERROR ANALYSIS OF S-STEP LANCZOS 9

then

T̂sk+jRsk+j −Rsk+j T̂sk+j = β̂sk+j+1V̂
T
sk+j v̂sk+j+1e

T
sk+j+1 +Hsk+j , (4.5)

where Hsk+j is upper triangular with elements η such that

|η1,1| ≤2ε(n+11s+15)‖A‖2Γ̄2
k, and for i ∈ {2, . . . , sk+j+1},

|ηi,i| ≤4ε(n+11s+15)‖A‖2Γ̄2
k,

|ηi−1,i| ≤2ε
(
(n+2s+5)σ+(4s+9)τ̄k + n+18s+28

)
Γ̄2
k‖A‖2, and

|η`,i| ≤2ε
(
(n+2s+5)σ+(4s+9)τ̄k+(10s+16)

)
Γ̄2
k‖A‖2, for ` ∈ {1, . . . , i−2}.

(4.6)

Remarks. This generalizes Paige [27] as follows. The bounds in Theorem 4.2 give
insight into how orthogonality is lost in the finite precision s-step Lanczos algorithm.
Equation (4.1) bounds the error in the columns of the resulting perturbed Lanczos
recurrence. How far the Lanczos vectors can deviate from unit 2-norm is given in (4.3),
and (4.2) bounds how far adjacent vectors are from being orthogonal. The bound
in (4.4) describes how close the columns of AV̂sk+j and T̂sk+j are in size. Finally, (4.5)
can be thought of as a recurrence for the loss of orthogonality between Lanczos vectors,
and shows how errors propagate through the iterations.

One thing to notice about the bounds in Theorem 4.2 is that they depend heavily
on the term Γ̄k, which is a measure of the conditioning of the computed s-step Krylov
bases. This indicates that if Γ̄k is controlled in some way to be near constant, i.e.,
Γ̄k = O(1), the bounds in Theorem 4.2 will be on the same order as Paige’s analogous
bounds for classical Lanczos [27], and thus we can expect orthogonality to be lost at
a similar rate. The bounds also suggest that for the s-step variant to have any use,
we must have Γ̄k = o(ε−1/2). Otherwise there can be no expectation of orthogonality.
Note that ‖|Bk|‖2 should be . ‖|A|‖2 for many practical basis choices.

Comparing to Paige’s result, we can think of sk + j steps of classical Lanczos as
the case where s = 1, with Y0 = In,n (and then vsk+j = v′k,j , Bk = A). In this case

Γ̄k = 1 and τ̄k = σ and our bounds reduce (modulo constants) to those of Paige [27].

4.1. Proof of Theorem 4.2. The remainder of this section is dedicated to the
proof of Theorem 4.2. We first proceed toward proving (4.3).

In finite precision, the Gram matrix construction in line 4 of Algorithm 2 becomes

Ĝk = fl(ŶTk Ŷk) = ŶTk Ŷk + δGk, where |δGk| ≤ εn|ŶTk ||Ŷk|, (4.7)

and line 14 of Algorithm 2, becomes β̂sk+j+1 = fl
(
fl(ŵ′Tk,jĜkŵ

′
k,j)

1/2
)
. Let

d = fl(ŵ′Tk,jĜkŵ
′
k,j) = (ŵ′Tk,j + δŵ′Tk,j)(Ĝk + δĜk,wj

)ŵ′k,j

= ŵ′Tk,jŶTk Ŷkŵ′k,j + ŵ′Tk,jδGkŵ
′
k,j + ŵ′Tk,jδĜk,wj

ŵ′k,j + δŵ′Tk,jĜkŵ
′
k,j ,

where

|δŵ′k,j | ≤ ε(2s+2)|ŵ′k,j | and (4.8)

|δĜk,wj
| ≤ ε(2s+2)|Ĝk|. (4.9)

Remember that in the above equation we have ignored all ε2 terms. Now, we let
c = ŵ′Tk,jδGkŵ

′
k,j + ŵ′Tk,jδĜk,wj

ŵ′k,j + δŵ′Tk,jĜkŵ
′
k,j , where

|c| ≤ ε(n+4s+4)Γ2
k‖Ŷkŵ′k,j‖22. (4.10)

10 ERIN CARSON AND JAMES DEMMEL

We can then write

d =
∥∥Ŷkŵ′k,j∥∥22 + c =

∥∥Ŷkŵ′k,j∥∥22 + c ·
∥∥Ŷkŵ′k,j∥∥22∥∥Ŷkŵ′k,j∥∥22 =

∥∥Ŷkŵ′k,j∥∥22
(

1 +
c∥∥Ŷkŵ′k,j∥∥22

)
,

and the computation of β̂sk+j+1 becomes

β̂sk+j+1 =fl(
√
d) =
√
d+ δβsk+j+1 = ‖Ŷkŵ′k,j‖2

(
1+

c

2‖Ŷkŵ′k,j‖22

)
+δβsk+j+1, (4.11)

where

|δβsk+j+1| ≤ ε
√
d = ε‖Ŷkŵ′k,j‖2. (4.12)

The coordinate vector v̂′k,j+1 is computed as

v̂′k,j+1 = fl(ŵ′k,j/β̂sk+j+1) = (ŵ′k,j + δw̃′k,j)/β̂sk+j+1, (4.13)

where

|δw̃′k,j | ≤ ε|ŵ′k,j |. (4.14)

The corresponding Lanczos vector v̂sk+j+1 (as well as ûsk+j+1) are recovered by
a change of basis: in finite precision, we have

v̂sk+j+1 = fl(Ŷkv̂′k,j+1) =
(
Ŷk + δŶk,vj+1

)
v̂′k,j+1, |δŶk,vj+1

| ≤ ε(2s+2)|Ŷk|, (4.15)

and

ûsk+j+1 = fl(Ŷkû′k,j+1) =
(
Ŷk+δŶk,uj+1

)
û′k,j+1, |δŶk,uj+1

| ≤ ε(2s+2)|Ŷk|. (4.16)

We can now prove (4.3) in Theorem 4.2. Using (4.11), (4.13), and (4.15),

v̂Tsk+j+1v̂sk+j+1 = v̂′Tk,j+1(Ŷk + δŶk,vj+1
)T (Ŷk + δŶk,vj+1

)v̂′k,j+1

=

(
ŵ′k,j + δw̃′k,j

β̂sk+j+1

)T
(ŶTk Ŷk + 2δŶTk,vj+1

Ŷk)

(
ŵ′k,j + δw̃′k,j

β̂sk+j+1

)

=
‖Ŷkŵ′k,j‖22 + 2ŵ′Tk,jδŶTk,vj+1

Ŷkŵ′k,j + 2δw̃′Tk,jŶTk Ŷkŵ′k,j
β̂2
sk+j+1

=
‖Ŷkŵ′k,j‖22 + 2ŵ′Tk,jδŶTk,vj+1

Ŷkŵ′k,j + 2δw̃′Tk,jŶTk Ŷkŵ′k,j
‖Ŷkŵ′k,j‖22 + (c+ 2‖Ŷkŵ′k,j‖2 · δβsk+j+1)

=
‖Ŷkŵ′k,j‖42
‖Ŷkŵ′k,j‖42

−
‖Ŷkŵ′k,j‖22(c+ 2‖Ŷkŵ′k,j‖2 · δβsk+j+1)

‖Ŷkŵ′k,j‖42

+
2‖Ŷkŵ′k,j‖22(ŵ′Tk,jδŶTk,vj+1

Ŷkŵ′k,j + δw̃′Tk,jŶTk Ŷkŵ′k,j)

‖Ŷkŵ′k,j‖42

= 1−
c+ 2‖Ŷkŵ′k,j‖2 · δβsk+j+1

‖Ŷkŵ′k,j‖22

+
2(ŵ′Tk,jδŶTk,vj+1

Ŷkŵ′k,j + δw̃′Tk,jŶTk Ŷkŵ′k,j)

‖Ŷkŵ′k,j‖22

ERROR ANALYSIS OF S-STEP LANCZOS 11

Now, using bounds in (4.7), (4.8), (4.9), (4.10), (4.15), (4.16), and Lemma 4.1, we
obtain

|v̂Tsk+j+1v̂sk+j+1 − 1| ≤ε(n+4s+4)Γ2
k + 2ε+ 2ε(2s+2)Γk + 2εΓk

≤ε(n+4s+4)Γ2
k + ε(4s+6)Γk + 2ε

≤ε(n+8s+12)Γ2
k.

This thus proves (4.3), and we now proceed toward proving (4.2). Using (4.9), line 12
in Algorithm 2 is computed in finite precision as

α̂sk+j = fl(v̂′Tk,jĜkû
′
k,j) = (v̂′Tk,j + δv̂′Tk,j)(Ĝk + δĜk,uj

)û′k,j ,

where |δv̂′k,j | ≤ ε(2s+2)|v̂′k,j | and |δĜk,uj | ≤ ε(2s + 2)|Ĝk|. Expanding the above
equation using (4.7), and (4.15), we obtain

α̂sk+j =v̂′Tk,jĜkû
′
k,j + v̂′Tk,jδĜk,uj

û′k,j + δv̂′Tk,jĜkû
′
k,j

=v̂′Tk,j(ŶTk Ŷk + δGk)û′k,j + v̂′Tk,jδĜk,uj
û′k,j + δv̂′Tk,jĜkû

′
k,j

=v̂′Tk,jŶTk Ŷkû′k,j + v̂′Tk,jδGkû
′
k,j + v̂′Tk,jδĜk,uj

û′k,j + δv̂′Tk,jĜkû
′
k,j

=(v̂sk+j − δŶk,vj v̂′k,j)T (ûsk+j − δŶk,uj
û′k,j) + v̂′Tk,jδGkû

′
k,j + v̂′Tk,jδĜk,uj

û′k,j

+ δv̂′Tk,jĜkû
′
k,j

=v̂Tsk+j ûsk+j + δα̂sk+j , (4.17)

with δα̂sk+j = δv̂′Tk,jĜkû
′
k,j + v̂′Tk,j(δGk + δĜk,uj

− ŶTk δŶk,uj
− δŶTk,vj Ŷk)û′k,j .

Using bounds in (4.3), (4.7), (4.8), (4.9), (4.15), and (4.16), as well as Lemma 4.1,
we can write (again, ignoring ε2 terms),

|δα̂sk+j | ≤ε(n+8s+8)|v̂′Tk,j ||ŶTk ||Ŷk||û′k,j |

≤ε(n+8s+8) ‖|Ŷk||v̂′k,j |‖2 ‖|Ŷk||û′k,j |‖2
≤ε(n+8s+8)(Γk‖v̂sk+j‖2)(Γk‖ûsk+j‖2)

≤ε(n+8s+8)
(
Γk(1 + (ε/2)(n+8s+12)Γ2

k)
)
(Γk‖ûsk+j‖2)

≤ε(n+8s+8)Γk(Γk‖ûsk+j‖2)

≤ε(n+8s+8)Γ2
k

∥∥ûsk+j∥∥2. (4.18)

Taking the norm of (4.17), and using the bounds in (4.18) and (4.3), we obtain the
bound

|α̂sk+j | ≤‖v̂Tsk+j‖2‖ûsk+j‖2 + |δα̂sk+j |
≤
(
1 + (ε/2)(n+8s+12)Γ2

k

)
‖ûsk+j‖2 + ε(n+8s+8)Γ2

k‖ûsk+j‖2

≤
(

1 + ε
(
(3/2)n+12s+14

)
Γ2
k

)
‖ûsk+j‖2. (4.19)

In finite precision, line 13 of Algorithm 2 is computed as

ŵ′k,j = û′k,j − α̂sk+j v̂′k,j − δw′k,j , where |δw′k,j | ≤ ε(|û′k,j |+ 2|α̂sk+j v̂′k,j |). (4.20)

Multiplying both sides of (4.20) by Ŷk gives

Ŷkŵ′k,j = Ŷkû′k,j − α̂sk+jŶkv̂′k,j − Ŷkδw′k,j ,

12 ERIN CARSON AND JAMES DEMMEL

and multiplying each side by its own transpose, we get

ŵ′Tk,jŶTk Ŷkŵ′k,j = (Ŷkû′k,j−α̂sk+jŶkv̂′k,j−Ŷkδw′k,j)T (Ŷkû′k,j−α̂sk+jŶkv̂′k,j−Ŷkδw′k,j)

= û′Tk,jŶTk Ŷkû′k,j − 2α̂sk+j û
′T
k,jŶTk Ŷkv̂′k,j + α̂2

sk+j v̂
′T
k,jŶTk Ŷkv̂′k,j

− δw′Tk,jŶTk (Ŷkû′k,j−α̂sk+jŶkv̂′k,j)−(Ŷkû′k,j−α̂sk+jŶkv̂′k,j)T Ŷkδw′k,j .

Using (4.15) and (4.16), we can write

ŵ′Tk,jŶTk Ŷkŵ′k,j = (ûsk+j − δŶk,uj û
′
k,j)

T (ûsk+j − δŶk,uj û
′
k,j)

− 2α̂sk+j(ûsk+j − δŶk,uj û
′
k,j)

T (v̂sk+j − δŶk,vj v̂′k,j)

+ α̂2
sk+j(v̂sk+j − δŶk,vj v̂′k,j)T (v̂sk+j − δŶk,vj v̂′k,j)

− 2δw′Tk,jŶTk (Ŷkû′k,j − α̂sk+jŶkv̂′k,j)

= ûTsk+j ûsk+j − 2ûTsk+jδŶk,uj
û′k,j − 2α̂sk+j û

T
sk+j v̂sk+j

+ 2α̂sk+j û
T
sk+jδŶk,vj v̂′k,j + 2α̂sk+j û

′T
k,jδŶTk,uj

v̂sk+j

+ α̂2
sk+j v̂

T
sk+j v̂sk+j − 2α̂2

sk+j v̂
T
sk+jδŶk,vj v̂′k,j

− 2δw′Tk,jŶTk (Ŷkû′k,j − α̂sk+jŶkv̂′k,j)
= ûTsk+j ûsk+j − 2α̂sk+j û

T
sk+j v̂sk+j + α̂2

sk+j v̂
T
sk+j v̂sk+j

− 2(δŶk,uj
û′k,j − α̂sk+jδŶk,vj v̂′k,j)T (ûsk+j − α̂sk+j v̂sk+j)

− 2δw′Tk,jŶTk (Ŷkû′k,j − α̂sk+jŶkv̂′k,j).

This can be written

‖Ŷkŵ′k,j‖22 = ‖ûsk+j‖22 − 2α̂sk+j û
T
sk+j v̂sk+j + α̂2

sk+j‖v̂sk+j‖22
− 2(δŶk,uj

û′k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j)T (ûsk+j − α̂sk+j v̂sk+j),

where we have used Ŷkû′k,j − α̂sk+jŶkv̂′k,j = ûsk+j − α̂sk+j v̂sk+j + O(ε). Now, us-
ing (4.17),

‖Ŷkŵ′k,j‖22 = ‖ûsk+j‖22 − 2α̂sk+j(α̂sk+j − δα̂sk+j) + α̂2
sk+j‖v̂sk+j‖22

− 2(δŶk,uj û
′
k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j)T (ûsk+j − α̂sk+j v̂sk+j)

= ‖ûsk+j‖22 + α̂2
sk+j(‖v̂sk+j‖22 − 2) + 2α̂sk+jδα̂sk+j

− 2(δŶk,uj
û′k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j)T (ûsk+j − α̂sk+j v̂sk+j).

Now, we rearrange the above equation to obtain

‖Ŷkŵ′k,j‖22 + α̂2
sk+j − ‖ûsk+j‖22 = α̂2

sk+j(‖v̂sk+j‖22 − 1) + 2α̂sk+jδα̂sk+j

− 2(δŶk,uj
û′k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j)T (ûsk+j − α̂sk+j v̂sk+j).

Using Lemma 4.1 and bounds in (4.3), (4.15), (4.16), (4.18), (4.19), and (4.20),

ERROR ANALYSIS OF S-STEP LANCZOS 13

we can then write

‖Ŷkŵ′k,j‖22+α̂2
sk+j−‖ûsk+j‖22 ≤

(
1+ε

(
(3/2)n+12s+14

)
Γ2
k

)2
· ε(n+8s+12)Γ2

k‖ûsk+j‖22

+ 2
(
1+ε

(
(3/2)n+12s+14

)
Γ2
k

)
· ε(n+8s+8)Γ2

k‖ûsk+j‖22
+ 2ε

(
(2s+2) + (2s+2) + 3

)
Γk‖ûsk+j‖2 · 2‖ûsk+j‖2

≤ ε(n+8s+12)Γ2
k‖ûsk+j‖22 + 2ε(n+8s+8)Γ2

k‖ûsk+j‖22
+ ε(16s+28)Γk‖ûsk+j‖22,

where, again, we have ignored ε2 terms. Using Γk ≤ Γ2
k, this gives the bound

‖Ŷkŵ′k,j‖22 + α̂2
sk+j − ‖ûsk+j‖22 ≤ ε(3n+40s+56)Γ2

k‖ûsk+j‖22. (4.21)

Given the above, we can also write the bound

‖Ŷkŵ′k,j‖22 ≤ ‖Ŷkŵ′k,j‖22 + α̂2
sk+j ≤

(
1 + ε(3n+40s+56)Γ2

k

)
‖ûsk+j‖22, (4.22)

and using (4.10), (4.11), and (4.12),

|β̂sk+j+1| ≤ ‖Ŷkŵ′k,j‖2

(
1 + ε+

c

2‖Ŷkŵ′k,j‖22

)

≤
(
1 + (1/2)ε(3n+40s+56)Γ2

k

)
‖ûsk+j‖2

(
1 + ε+

c

2‖Ŷkŵ′k,j‖22

)
≤
(
1 + ε+ (1/2)ε(n+4s+4)Γ2

k + (1/2)ε(3n+40s+56)Γ2
k

)
‖ûsk+j‖2.

Combining terms and using 1 ≤ Γ2
k, the above can be written

|β̂sk+j+1| ≤
(
1 + ε(2n+22s+31)Γ2

k

)∥∥ûsk+j∥∥2. (4.23)

Now, rearranging (4.13), we can write

β̂sk+j+1v̂
′
k,j+1 = ŵ′k,j + δw̃′k,j ,

and premultiplying by Ŷk, we obtain

β̂sk+j+1Ŷkv̂′k,j+1 = Ŷkŵ′k,j + Ŷkδw̃′k,j .

Using (4.15), this can be written

β̂sk+j+1(v̂sk+j+1 − δŶk,vj+1
v̂′k,j+1) = Ŷkŵ′k,j + Ŷkδw̃′k,j .

Rearranging and using (4.13),

β̂sk+j+1v̂sk+j+1 = Ŷkŵ′k,j + Ŷkδw̃′k,j + β̂sk+j+1δŶk,vj+1
v̂′k,j+1

= Ŷkŵ′k,j + Ŷkδw̃′k,j + δŶk,vj+1
(ŵ′k,j + δw̃′k,j)

= Ŷkŵ′k,j + Ŷkδw̃′k,j + δŶk,vj+1
ŵ′k,j

≡ Ŷkŵ′k,j + δwsk+j , (4.24)

14 ERIN CARSON AND JAMES DEMMEL

where δwsk+j = Ŷkδw̃′k,j + δŶk,vj+1
ŵ′k,j . Using Lemma 4.1 and bounds in (4.14),

(4.15), and (4.22),

‖δwsk+j‖2 ≤ ε‖|Ŷk||ŵ′k,j |‖2 + ε(2s+2)‖|Ŷk||ŵ′k,j |‖2
≤ ε(2s+3)Γk‖Ŷkŵ′k,j‖2
≤ ε(2s+3)Γk‖ûsk+j‖2. (4.25)

We premultiply (4.24) by v̂Tsk+j and use (4.15), (4.16), (4.17), and (4.20) to obtain

β̂sk+j+1v̂
T
sk+j v̂sk+j+1 = v̂Tsk+j(Ŷkŵ′k,j + δwsk+j)

= v̂Tsk+j(Ŷkû′k,j − α̂sk+jŶkv̂′k,j − Ŷkδŵ′k,j) + v̂Tsk+jδwsk+j

= v̂Tsk+j
(
Ŷkû′k,j − α̂sk+jŶkv̂′k,j

)
− v̂Tsk+j

(
Ŷkδw′k,j − δwsk+j

)
= v̂Tsk+j

(
(ûsk+j − δŶk,uj û

′
k,j)− α̂sk+j(v̂sk+j − δŶk,vj v̂′k,j)

)
− v̂Tsk+j(Ŷkδw′k,j − δwsk+j)

= v̂Tsk+j ûsk+j − α̂sk+j v̂Tsk+j v̂sk+j
− v̂Tsk+j(δŶk,uj

û′k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j − δwsk+j)
= (α̂sk+j − δα̂sk+j)− α̂sk+j‖v̂sk+j‖22
− v̂Tsk+j(δŶk,uj û

′
k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j − δwsk+j)

= −δα̂sk+j − α̂sk+j(‖v̂sk+j‖22 − 1)

− v̂Tsk+j(δŶk,uj
û′k,j − α̂sk+jδŶk,vj v̂′k,j + Ŷkδw′k,j − δwsk+j),

and using Lemma 4.1 and bounds in (4.3), (4.13), (4.15), (4.16), (4.18), (4.19), (4.20),
and (4.25), we can write the bound∣∣∣β̂sk+j+1 · v̂Tsk+j v̂sk+j+1

∣∣∣ ≤ |δα̂sk+j |+ |α̂sk+j ||v̂Tsk+j v̂sk+j − 1|

+ ‖v̂sk+j‖2
(
‖|δŶk,uj

||û′k,j |‖2 + |α̂sk+j |‖|δŶk,vj ||v̂′k,j |‖2
)

+ ‖v̂sk+j‖2
(
‖|Ŷk||δw′k,j |‖2 + ‖δwsk+j‖2

)
≤ 2ε(n+11s+15)Γ2

k‖ûsk+j‖2. (4.26)

This is a start toward proving (4.2). We will return to the above bound once we
later prove a bound on ‖ûsk+j‖2. Our next step is to analyze the error in each column
of the finite precision s-step Lanczos recurrence. First, we note that we can write the
error in computing the s-step bases (line 3 in Algorithm 2) by

AŶk = ŶkBk + δEk (4.27)

where Ŷk =
[
V̂k[Is, 0s,1]T , 0n,1, Ûk[Is, 0s,1]T , 0n,1

]
. It can be shown (see, e.g., [3]) that

if the basis is computed in the usual way by repeated SpMVs,

|δEk| ≤ ε
(
(3+n)|A||Ŷk|+ 4|Ŷk||Bk|

)
. (4.28)

In finite precision, line 17 in Algorithm 2 is computed as

û′k,j =Bkv̂′k,j−β̂sk+j v̂′k,j−1+δu′k,j , |δu′k,j | ≤ ε
(
(2s+3)|Bk||v̂′k,j |+2|β̂sk+j v̂′k,j−1|

)
, (4.29)

ERROR ANALYSIS OF S-STEP LANCZOS 15

and then, with Lemma 4.1, (4.15), (4.16), (4.27), and (4.29), we can write

ûsk+j = (Ŷk + δŶk,uj
)û′k,j

= (Ŷk + δŶk,uj)(Bkv̂′k,j − β̂sk+j v̂′k,j−1 + δu′k,j)

= ŶkBkv̂′k,j − β̂sk+jŶkv̂′k,j−1 + Ŷkδu′k,j + δŶk,uj
Bkv̂′k,j − β̂sk+jδŶk,uj

v̂′k,j−1

= (AŶk − δEk)v̂′k,j − β̂sk+j(v̂sk+j−1 − δŶk,vj−1 v̂
′
k,j−1) + Ŷkδu′k,j

+ δŶk,uj
Bkv̂′k,j − β̂sk+jδŶk,uj

v̂′k,j−1

= AŶkv̂
′
k,j − δEkv̂′k,j − β̂sk+j v̂sk+j−1 + β̂sk+jδŶk,vj−1

v̂′k,j−1 + Ŷkδu′k,j
+ δŶk,ujBkv̂′k,j − β̂sk+jδŶk,uj v̂

′
k,j−1

= A(v̂sk+j − δŶk,vj v̂′k,j)− δEkv̂′k,j − β̂sk+j v̂sk+j−1 + β̂sk+jδŶk,vj−1
v̂′k,j−1

+ Ŷkδu′k,j + δŶk,ujBkv̂′k,j − β̂sk+jδŶk,uj v̂
′
k,j−1

= Av̂sk+j −AδŶk,vj v̂′k,j − δEkv̂′k,j − β̂sk+j v̂sk+j−1 + β̂sk+jδŶk,vj−1
v̂′k,j−1

+ Ŷkδu′k,j + δŶk,uj
Bkv̂′k,j − β̂sk+jδŶk,uj

v̂′k,j−1

≡ Av̂sk+j − β̂sk+j v̂sk+j−1 + δusk+j , (4.30)

where

δusk+j = Ŷkδu′k,j − (AδŶk,vj − δŶk,ujBk + δEk)v̂′k,j + β̂sk+j(δŶk,vj−1 − δŶk,uj
)v̂′k,j−1.

Using the bounds in (4.15), (4.16), (4.23), (4.28), and (4.29) we can write

|δusk+j | ≤ ε
(
(2s+3)|Ŷk||Bk||v̂′k,j |+ 2|β̂sk+j ||Ŷk||v̂′k,j−1|

)
+ ε(2s+2)|A||Ŷk||v̂′k,j |+ ε(2s+2)|Ŷk||Bk||v̂′k,j |

+ ε
(
(3+n)|A||Ŷk||v̂′k,j |+ 4|Ŷk||Bk||v̂′k,j |

)
+ 2ε(2s+2)|β̂sk+j ||Ŷk||v̂′k,j−1|

≤ ε(n+2s+5)|A||Ŷk||v̂′k,j |+ ε(4s+9)|Ŷk||Bk||v̂′k,j |

+ ε(4s+6)
(
1 + ε(2n+22s+31)Γ2

k

)
‖ûsk+j−1‖2 · |Ŷk||v̂′k,j−1|.

and from this we obtain

‖δusk+j‖2 ≤ ε(n+2s+5) ‖|A|‖2 ‖|Ŷk|‖2 ‖v̂′k,j‖2 + ε(4s+9) ‖|Ŷk|‖2 ‖|Bk|‖2 ‖v̂′k,j‖2
+ ε(4s+6) ‖|Ŷk|‖2 ‖v̂′k,j−1‖2 ‖ûsk+j−1‖2
≤ ε(n+2s+5) ‖|A|‖2 Γk + ε(4s+9) ‖|Bk|‖2 Γk + ε(4s+6) ‖ûsk+j−1‖2 Γk.

We will now introduce and make use of the quantities σ ≡ ‖|A|‖2/‖A‖2 and τk ≡
‖|Bk|‖2/‖A‖2. Note that the quantity ‖|Bk|‖2 is controlled by the user, and for many
popular basis choices, such as monomial, Newton, or Chebyshev bases, it should be
the case that ‖|Bk|‖2 . ‖|A|‖2. Using these quantities, the bound above can be
written∥∥δusk+j∥∥2 ≤ ε(((n+2s+5)σ + (4s+9)τk

)
‖A‖2 + (4s+6)‖ûsk+j−1‖2

)
Γk. (4.31)

16 ERIN CARSON AND JAMES DEMMEL

Manipulating (4.24), and using (4.15), (4.16), and (4.20), we have

β̂sk+j+1v̂sk+j+1 = Ŷkŵ′k,j + δwsk+j

= Ŷkû′k,j − α̂sk+jŶkv̂′k,j − Ŷkδw′k,j + δwsk+j

= (ûsk+j−δŶk,uj
û′k,j)−α̂sk+j(v̂sk+j−δŶk,vj v̂′k,j)−Ŷkδw′k,j+δwsk+j

= ûsk+j−α̂sk+j v̂sk+j−δŶk,uj û
′
k,j+α̂sk+jδŶk,vj v̂′k,j−Ŷkδw′k,j

+ δwsk+j ,

and substituting in the expression for ûsk+j in (4.30) on the right, we obtain

β̂sk+j+1v̂sk+j+1 ≡ Av̂sk+j − α̂sk+j v̂sk+j − β̂sk+j v̂sk+j−1 + δv̂sk+j , (4.32)

where

δv̂sk+j = δusk+j − δŶk,uj û
′
k,j + α̂sk+jδŶk,vj v̂′k,j − Ŷkδw′k,j + δwsk+j .

From this we can write the componentwise bound

|δv̂sk+j | ≤ |δusk+j |+ |δŶk,uj | |û′k,j |+ |α̂sk+j | |δŶk,vj | |v̂′k,j |+ |Ŷk| |δw′k,j |+ |δwsk+j |,

and using Lemma 4.1, (4.14), (4.15), (4.16), (4.19), (4.20), and (4.25) we obtain

‖δv̂sk+j‖2 ≤ ‖δusk+j‖2 + ε(2s+2)‖|Ŷk||û′k,j |‖2
+
(
1 + ε((3/2)n+12s+14)Γ2

k

)
‖ûsk+j‖2 · ε(2s+2)‖|Ŷk||v̂′k,j |‖2

+ ε‖|Ŷk||û′k,j |‖2 + 2ε
(
1 + ε((3/2)n+12s+14)Γ2

k

)
‖ûsk+j‖2‖|Ŷk||v̂′k,j |‖2

+ ε(2s+3)Γk‖ûsk+j‖2
≤ ‖δusk+j‖2 + ε(2s+2)Γk‖ûsk+j‖2 + ε(2s+2)Γk‖ûsk+j‖2

+ εΓk‖ûsk+j‖2 + 2εΓk‖ûsk+j‖2 + ε(2s+3)Γk‖ûsk+j‖2
≤ ‖δusk+j‖2 + ε(6s+10)Γk‖ûsk+j‖2.

Using (4.31), this gives the bound

‖δv̂sk+j‖2 ≤

ε
((

(n+2s+5)σ+(4s+9)τk
)
‖A‖2+(6s+10)‖ûsk+j‖2+(4s+6)‖ûsk+j−1‖2

)
Γk. (4.33)

We now have everything we need to write the finite-precision s-step Lanczos
recurrence in its familiar matrix form. Let

T̂sk+j =

α̂0 β̂1

β̂1
. . .

. . .

. . .
. . . β̂sk+j

β̂sk+j α̂sk+j

 ,

and let V̂sk+j = [v̂0, v̂1, . . . , v̂sk+j] and δV̂sk+j = [δv̂0, δv̂1, . . . , δv̂sk+j]. Note that

T̂sk+j has dimension (sk+j+1)-by-(sk+j+1), and V̂sk+j and δV̂sk+j have dimension
n-by-(sk + j + 1). Then (4.32) in matrix form gives

AV̂sk+j = V̂sk+j T̂sk+j + β̂sk+j+1v̂sk+j+1e
T
sk+j+1 − δV̂sk+j . (4.34)

ERROR ANALYSIS OF S-STEP LANCZOS 17

Thus (4.33) gives a bound on the error in the columns of the finite precision s-step
Lanczos recurrence. Again, we will return to (4.33) to prove (4.1) once we bound
‖ûsk+j‖2.

Now, we examine the possible loss of orthogonality in the vectors v̂0, . . . , v̂sk+j+1.
We define the strictly upper triangular matrix Rsk+j of dimension (sk + j + 1)-by-
(sk + j + 1) with elements ρi,j , for i, j ∈ {1, . . . , sk + j + 1}, such that

V̂ Tsk+j V̂sk+j = RTsk+j + diag(V̂ Tsk+j V̂sk+j) +Rsk+j .

For notational purposes, we also define ρsk+j+1,sk+j+2 ≡ v̂Tsk+j v̂sk+j+1. (Note that
ρsk+j+1,sk+j+2 is not an element in Rsk+j , but would be an element in Rsk+j+1).

Multiplying (4.34) on the left by V̂ Tsk+j , we get

V̂ Tsk+jAV̂sk+j = V̂ Tsk+j V̂sk+j T̂sk+j + β̂sk+j+1V̂
T
sk+j v̂sk+j+1e

T
sk+j+1 − V̂ Tsk+jδV̂sk+j .

Since the above is symmetric, we can equate the right hand side by its own transpose
to obtain

T̂sk+j(R
T
sk+j +Rsk+j)− (RTsk+j +Rsk+j)T̂sk+j =

β̂sk+j+1(V̂ Tsk+j v̂sk+j+1e
T
sk+j+1 − esk+j+1v̂

T
sk+j+1V̂sk+j)

+ V̂ Tsk+jδV̂sk+j−δV̂ Tsk+j V̂sk+j +diag(V̂ Tsk+j V̂sk+j) · T̂sk+j− T̂sk+j ·diag(V̂ Tsk+j V̂sk+j).

Now, let Msk+j ≡ T̂sk+jRsk+j − Rsk+j T̂sk+j , which is upper triangular and has
dimension (sk+ j + 1)-by-(sk+ j + 1). Then the left-hand side above can be written
as Msk+j −MT

sk+j , and we can equate the strictly upper triangular part of Msk+j

with the strictly upper triangular part of the right-hand side above. The diagonal
elements can be obtained from the definition Msk+j ≡ T̂sk+jRsk+j−Rsk+j T̂sk+j , i.e.,

m1,1 =− β̂1ρ1,2, msk+j+1,sk+j+1 = β̂sk+jρsk+j,sk+j+1, and

mi,i =β̂i−1ρi−1,i − β̂iρi,i+1, for i ∈ {2, . . . , sk + j}.

Therefore, we can write

Msk+j = T̂sk+jRsk+j −Rsk+j T̂sk+j = β̂sk+j+1V̂
T
sk+j v̂sk+j+1e

T
sk+j+1 +Hsk+j ,

where Hsk+j has elements satisfying

η1,1 =− β̂1ρ1,2,

ηi,i =β̂i−1ρi−1,i − β̂iρi,i+1, for i ∈ {2, . . . , sk+j+1},

ηi−1,i =v̂Ti−2δv̂i−1 − δv̂Ti−2v̂i−1 + β̂i−1(v̂Ti−2v̂i−2 − v̂Ti−1v̂i−1), and

η`,i =v̂T`−1δv̂i−1 − δv̂T`−1v̂i−1, for ` ∈ {1, . . . , i− 2}.

(4.35)

To simplify notation, we introduce the quantities

ūsk+j = max
i∈{0,...,sk+j}

‖ûi‖2, Γ̄k = max
i∈{0,...,k}

Γi, and τ̄k = max
i∈{0,...,k}

τi.

18 ERIN CARSON AND JAMES DEMMEL

Using this notation and (4.3), (4.23), (4.26), and (4.33), the quantities in (4.35) can
be bounded by

|η1,1| ≤ 2ε(n+11s+15)Γ̄2
k ūsk+j , and, for i ∈ {2, . . . , sk+j+1},

|ηi,i| ≤ 4ε(n+11s+15)Γ̄2
k ūsk+j ,

|ηi−1,i| ≤ 2ε
((

(n+2s+5)σ + (4s+9)τ̄k
)
‖A‖2 + (n+18s+28)ūsk+j

)
Γ̄2
k, and

|η`,i| ≤ 2ε
((

(n+2s+5)σ+(4s+9)τ̄k
)
‖A‖2+(10s+16)ūsk+j

)
Γ̄2
k,

(4.36)

for ` ∈ {1, . . . , i−2}.
The above is a start toward proving (4.6). We return to this bound later, and

now shift our focus towards proving a bound on ‖ûsk+j‖2. To proceed, we must first
find a bound for |v̂Tsk+j v̂sk+j−2|. From the definition of Msk+j , we know the (1, 2)
element of Msk+j is

α̂0ρ1,2 − α̂1ρ1,2 − β̂2ρ1,3 = η1,2,

and for i > 2, the (i−1, i) element is

β̂i−2ρi−2,i + (α̂i−2 − α̂i−1)ρi−1,i − β̂iρi−1,i+1 = ηi−1,i.

Then, defining

ξi ≡ (α̂i−2 − α̂i−1)β̂i−1ρi−1,i − β̂i−1ηi−1,i

for i ∈ {2, . . . , sk+j}, we have

β̂i−1β̂iρi−1,i+1 = β̂i−2β̂i−1ρi−2,i + ξi = ξi + ξi−1 + . . .+ ξ2.

This, along with (4.19), (4.23), (4.26), and (4.36) gives

β̂sk+j−1β̂sk+j |ρsk+j−1,sk+j+1| = β̂sk+j−1β̂sk+j |v̂Tsk+j−2v̂sk+j |

≤
sk+j∑
i=2

|ξi| ≤
sk+j∑
i=2

(|α̂i−2|+ |α̂i−1|)|β̂i−1ρi−1,i|+ |β̂i−1||ηi−1,i|

≤2ε

sk+j∑
i=2

((
(n+2s+5)σ+(4s+9)τ̄k

)
‖A‖2 +(3n+40s+58)ūsk+j

)
Γ̄2
kūsk+j

≤2ε(sk+j−1)
((

(n+2s+5)σ+(4s+9)τ̄k
)
‖A‖2 +(3n+40s+58)ūsk+j

)
Γ̄2
kūsk+j .

(4.37)

Rearranging (4.30) gives

ûsk+j − δusk+j = Av̂sk+j − β̂sk+j v̂sk+j−1,

and multiplying each side by its own transpose (ignoring ε2 terms), we obtain

ûTsk+j ûsk+j − 2ûTsk+jδusk+j = ‖Av̂sk+j‖22+β̂2
sk+j‖v̂sk+j−1‖22−2β̂sk+j v̂

T
sk+jAv̂sk+j−1.

(4.38)
Rearranging (4.32) gives

Av̂sk+j−1 = β̂sk+j v̂sk+j + α̂sk+j−1v̂sk+j−1 + β̂sk+j−1v̂sk+j−2 − δv̂sk+j−1,

ERROR ANALYSIS OF S-STEP LANCZOS 19

and premultiplying this expression by β̂sk+j v̂
T
sk+j , we get

β̂sk+j v̂
T
sk+jAv̂sk+j−1

=β̂sk+j v̂
T
sk+j

(
β̂sk+j v̂sk+j + α̂sk+j−1v̂sk+j−1 + β̂sk+j−1v̂sk+j−2 − δv̂sk+j−1

)
=β̂2

sk+j‖v̂sk+j‖22 + α̂sk+j−1(β̂sk+j v̂
T
sk+j v̂sk+j−1) + β̂sk+j β̂sk+j−1v̂

T
sk+j v̂sk+j−2

− β̂sk+j v̂Tsk+jδv̂sk+j−1
≡β̂2

sk+j + δβ̂sk+j , (4.39)

where, using bounds in (4.3), (4.19), (4.23), (4.26), (4.33), and (4.37),

|δβ̂sk+j | ≤ ε
((

(n+2s+5)σ + (4s+9)τ̄k
)
‖A‖2 + (3n+40s+58)ūsk+j

)
Γ̄2
kūsk+j (4.40)

+2ε(sk+j−1)
((

(n+2s+5)σ+(4s+9)τ̄k
)
‖A‖2+(3n+40s+58)ūsk+j

)
Γ̄2
kūsk+j .

Adding 2ûTsk+jδusk+j to both sides of (4.38) and using (4.39), we obtain

‖ûsk+j‖22 = ‖Av̂sk+j‖22 + β̂2
sk+j

(
‖v̂sk+j−1‖22 − 2

)
− 2δβ̂sk+j + 2ûTsk+jδusk+j

≡ ‖Av̂sk+j‖22 + β̂2
sk+j

(
‖v̂sk+j−1‖22 − 2

)
+ δβ̃sk+j , (4.41)

where δβ̃sk+j = −2δβ̂sk+j+2ûTsk+jδusk+j , and, using the bounds in (4.31) and (4.40),

|δβ̃sk+j |≤ 2|δβ̂sk+j |+ 2‖ûTsk+j‖2‖δusk+j‖2

≤ 4ε(sk+j)
((

(n+2s+5)σ+(4s+9)τ̄k
)
‖A‖2 + (3n+40s+58)ūsk+j

)
Γ̄2
kūsk+j

+ 2ε
((

(n+2s+5)σ+(4s+9)τ̄k
)
‖A‖2 + (4s+6)ūsk+j

)
Γ̄2
kūsk+j

≤ 4ε(sk+j+1)
((

(n+2s+5)σ+(4s+9)τ̄k
)
‖A‖2+(3n+40s+58)ūsk+j

)
Γ̄2
kūsk+j .

(4.42)

Now, using (4.41), and since β̂2
sk+j ≥ 0, we can write

‖ûsk+j‖22≤‖ûsk+j‖22+β̂2
sk+j ≤‖A‖22‖v̂sk+j‖22+β̂2

sk+j

(
‖v̂sk+j−1‖22−1

)
+|δβ̃sk+j |. (4.43)

Let µ ≡ max
{
ūsk+j , ‖A‖2

}
. Then (4.43) along with bounds in (4.3), (4.23), and (4.42)

gives

‖ûsk+j‖22≤‖A‖22+4ε(sk+j+2)
(
(n+2s+5)σ+(4s+9)τ̄k+(3n+40s+58)

)
Γ̄2
kµ

2. (4.44)

We consider the two possible cases for µ. First, if µ = ‖A‖2, then

‖ûsk+j‖22 ≤ ‖A‖22 + 4ε(sk+j+2)
(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k‖A‖22

≤ ‖A‖22
(

1 + 4ε(sk+j+2)
(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k

)
.

Otherwise, we have the case µ = ūsk+j . Since the bound in (4.44) holds for all
‖ûsk+j‖22, it also holds for ū2sk+j = µ2, and thus, ignoring terms of order ε2,

µ2 ≤ ‖A‖22 + 4ε(sk+j+2)
(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
kµ

2

≤ ‖A‖22 + 4ε(sk+j+2)
(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k‖A‖22

≤ ‖A‖22
(

1 + 4ε(sk+j+2)
(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k

)
,

20 ERIN CARSON AND JAMES DEMMEL

and, plugging this in to (4.44), we get

‖ûsk+j‖22≤‖A‖22
(
1+4ε(sk+j+2)

(
(n+2s+5)σ+(4s+9)τ̄k+(3n+40s+58)

)
Γ̄2
k

)
. (4.45)

In either case we obtain the same bound on ‖ûsk+j‖22, so (4.45) holds.
Taking the square root of (4.45), we have

‖ûsk+j‖2 ≤ ‖A‖2
(

1+2ε(sk+j+2)
(
(n+2s+5)σ+(4s+9)τ̄k+(3n+40s+58)

)
Γ̄2
k

)
, (4.46)

and substituting (4.46) into (4.26), (4.33), and (4.36) proves the bounds (4.2), (4.1),
and (4.6) in Theorem 4.2, respectively, assuming that

2ε(sk+j+2)
(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k � 1.

The only remaining inequality to prove is (4.4). To do this, we first multiply both
sides of (4.24) by their own transposes to obtain

β̂2
sk+j+1‖v̂sk+j+1‖22 = ‖Ŷkŵ′k,j‖22 + 2δwTsk+jŶkŵ′k,j .

Adding α̂2
sk+j − ‖ûsk+j‖22 to both sides,

β̂2
sk+j+1‖v̂sk+j+1‖22 + α̂2

sk+j − ‖ûsk+j‖22 = ‖Ŷkŵ′k,j‖22 + α̂2
sk+j − ‖ûsk+j‖22

+ 2δwTsk+jŶkŵ′k,j .

Substituting in (4.41) on the left hand side,

β̂2
sk+j+1‖v̂sk+j+1‖22 + α̂2

sk+j − ‖Av̂sk+j‖22 − β̂2
sk+j(‖v̂sk+j−1‖22 − 2)− δβ̃sk+j =

‖Ŷkŵ′k,j‖22 + α̂2
sk+j − ‖ûsk+j‖22 + 2δwTsk+jŶkŵ′k,j ,

and then subtracting β̂2
sk+j+1 from both sides gives

β̂2
sk+j+1(‖v̂sk+j+1‖22 − 1) + α̂2

sk+j − ‖Av̂sk+j‖22 − β̂2
sk+j(‖v̂sk+j−1‖22 − 2)− δβ̃sk+j =

‖Ŷkŵ′k,j‖22 + α̂2
sk+j − ‖ûsk+j‖22 + 2δwTsk+jŶkŵ′k,j − β̂2

sk+j+1.

This can be rearranged to give

β̂2
sk+j+1 + α̂2

sk+j + β̂2
sk+j − ‖Av̂sk+j‖22 = ‖Ŷkŵ′k,j‖22 + α̂2

sk+j − ‖ûsk+j‖22
+ 2δwTsk+jŶkŵ′k,j + β̂2

sk+j(‖v̂sk+j−1‖22 − 1)

− β̂2
sk+j+1(‖v̂sk+j+1‖22 − 1) + δβ̃sk+j ,

and finally, using (4.3), (4.21), (4.23), (4.25), and (4.42) gives the bound∣∣∣β̂2
sk+j+1 + α̂2

sk+j + β̂2
sk+j − ‖Av̂sk+j‖22

∣∣∣ ≤
4ε(sk+j+2)

(
(n+2s+5)σ + (4s+9)τ̄k + (3n+40s+58)

)
Γ̄2
k‖A‖22.

This proves (4.4) and thus completes the proof of Theorem 4.2.

ERROR ANALYSIS OF S-STEP LANCZOS 21

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Iteration

Normality, classical Lanczos

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Iteration

Orthogonality, classical Lanczos

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Iteration

ColBound, classical Lanczos

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Iteration

Diffbound, classical Lanczos

Fig. 5.1. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for classical Lanczos on 2D Poisson with
n = 256. Upper bounds are taken from [27].

5. Numerical Examples. We give a brief example to illustrate the bounds
in (4.1), (4.2), (4.3), and (4.4). We run s-step Lanczos (Algorithm 2) in double pre-
cision with s = 8 on the same model problem used in Section 3: a 2D Poisson matrix
with n = 256, ‖A‖2 = 7.93, using a random starting vector. For comparison, Fig-
ure 5.1 shows the results for classical Lanczos using the bounds derived by Paige [27].
In the top left, the blue curve gives the measured value of normality, |v̂Ti+1v̂i+1−1|, and
the black curve plots the upper bound, (n+ 4)ε. In the top right, the blue curve gives

the measured value of orthogonality, |β̂i+1v̂
T
i v̂i+1|, and the black curve plots the upper

bound, 2(n+ 4)‖A‖2ε. In the bottom left, the blue curve gives the measured value of
the bound (4.1) for ‖δv̂i‖2, and the black curve plots the upper bound, ε(7+5‖|A|‖2).
In the bottom right, the blue curve gives the measured value of the bound (4.4), and
the black curve plots the upper bound, 4iε(3(n+ 4)‖A‖2 + (7 + 5‖|A|‖2))‖A‖2.

The results for s-step Lanczos are shown in Figures 5.2−5.4. The same tests were
run for three different basis choices: monomial (Figure 5.2), Newton (Figure 5.3), and
Chebyshev (Figure 5.4) (see, e.g., [31]). For each of the four plots in each Figure,
the blue curves give the measured values of the quantities on the left hand sides of
(clockwise from the upper left) (4.3), (4.2), (4.1), and (4.4). The cyan curves give
the maximum of the measured values so far. The red curves give the value of Γ̄2

k as
defined in Theorem 4.2, and the blacks curves give the upper bounds on the right
hand sides of (4.3), (4.2), (4.1), and (4.4).

We see from Figures 5.2−5.4 that the upper bounds given in Theorem 4.2 are
valid. In particular, we can also see that the shape of the curve Γ̄2

k gives a good indica-

tion of the shape of the curves for maxi≤sk+j |v̂Ti+1v̂i+1−1| and maxi≤sk+j |β̂i+1v̂
T
i v̂i+1|.

However, from Figure 5.2 for the monomial basis, we see that if the basis has a high

22 ERIN CARSON AND JAMES DEMMEL

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Normality, s=8,monomial basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Orthogonality, s=8,monomial basis

Iteration

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Colbound, s=8,monomial basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Diffbound, s=8,monomial basis

Iteration

Fig. 5.2. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for s-step Lanczos on 2D Poisson with
n = 256 and s = 8 for monomial basis. Bounds obtained using Γ̄k as defined in Theorem 4.2.

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Normality, s=8,Newton basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Orthogonality, s=8,Newton basis

Iteration

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Colbound, s=8, Newton basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Diffbound, s=8, Newton basis

Iteration

Fig. 5.3. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for s-step Lanczos on 2D Poisson with
n = 256 and s = 8 for Newton basis. Bounds obtained using Γ̄k as defined in Theorem 4.2.

ERROR ANALYSIS OF S-STEP LANCZOS 23

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Normality, s=8,Chebyshev basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Orthogonality, s=8,Chebyshev basis

Iteration

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Colbound, s=8, Chebyshev basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Diffbound, s=8, Chebyshev basis

Iteration

Fig. 5.4. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for s-step Lanczos on 2D Poisson with
n = 256 and s = 8 for Chebyshev basis. Bounds obtained using Γ̄k as defined in Theorem 4.2.

condition number, as does the monomial basis here, the upper bound can be a very
large overestimate quantitatively, leading to bounds that are not useful.

There is an easy way to improve the bounds by using a different definition of Γ̄k
to upper bound quantities in the proof of Theorem 4.2. Note that all quantities which
we have bounded by Γ̄k in Section 4 are of the form ‖|Ŷk||x|‖2/‖Ŷkx‖2. While the use
of Γ̄k as defined in Theorem 4.2 shows how the bounds depend on the conditioning
of the computed Krylov bases, we can obtain tighter and more descriptive bounds
for (4.3) and (4.2) by instead using the definition

Γ̄k,j ≡ max
x∈{ŵ′k,j ,û

′
k,j ,v̂

′
k,j ,v̂

′
k,j−1}

‖|Ŷk||x|‖2
‖Ŷkx‖2

. (5.1)

For the bound in (4.1), we can use the definition

Γ̄k,j ≡ max
{ ‖|Ŷk||Bk||v̂′k,j |‖2
‖|Bk|‖2‖Ŷkv̂′k,j‖2

, max
x∈{ŵ′k,j ,û

′
k,j ,v̂

′
k,j ,v̂

′
k,j−1}

,
‖|Ŷk||x|‖2
‖Ŷkx‖2

}
, (5.2)

and for the bound in (4.4), we can use the definition

Γ̄k,j ≡ max
{

Γ̄k,j−1,
‖|Ŷk||Bk||v̂′k,j |‖2
‖|Bk|‖2‖Ŷkv̂′k,j‖2

, max
x∈{ŵ′k,j ,û

′
k,j ,v̂

′
k,j ,v̂

′
k,j+1}

,
‖|Ŷk||x|‖2
‖Ŷkx‖2

}
. (5.3)

The value in (5.3) is monotonically increasing since the bound in (4.37) is a sum of
bounds from previous iterations.

24 ERIN CARSON AND JAMES DEMMEL

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Normality, s=8,monomial basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Orthogonality, s=8,monomial basis

Iteration

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Colbound, s=8,monomial basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Diffbound, s=8,monomial basis

Iteration

Fig. 5.5. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for monomial basis. Bounds obtained using
Γ̄k as defined in (5.1) for top plots, (5.2) for bottom left plot, and (5.3) for bottom right plot.

In Figures 5.5−5.7 we plot bounds for the same problem, bases, and s-values as
Figures 5.2−5.4, but using the new definitions of Γ̄k,j . Comparing Figures 5.5−5.7
to Figures 5.2−5.4, we see that these bounds are better both quantitatively, in that
they are tighter, and qualitatively, in that they better replicate the shape of the
curves for the measured normality and orthogonality values. The exception is for the
plots of bounds in (4.4) (bottom right plots), for which there is not much difference
qualitatively. It is also clear that the new definitions of Γ̄k correlate well with the
size of the measured values (i.e., the shape of the blue curve closely follows the shape
of the red curve). Note that, unlike the definition of Γ̄k in Theorem 4.2, using the
definitions in (5.1)−(5.3) do not require the assumption of linear independence of the
basis vectors.

Although these new bounds can not be computed a priori, the right hand sides
of (5.1), (5.2), and (5.3) can be computed within each inner loop iteration for the
cost of one extra reduction per outer loop. This extra cost comes from the need to
compute |Ŷk|T |Ŷk|, although this could potentially be performed simultaneously with
the computation of Ĝk (line 4 in Algorithm 2). This means that meaningful bounds
could be cheaply estimated during the iterations. Designing a scheme to improve
numerical properties using this information remains future work.

6. Future work. In this paper, we have presented a complete rounding error
analysis of the s-step Lanczos method. The derived bounds are analogous to those of
Paige for classical Lanczos [27], but also depend on a amplification factor Γ̄2

k, which
depends on the condition number of the Krylov bases computed every in each outer
loop. Our analysis confirms the empirical observation that the conditioning of the

ERROR ANALYSIS OF S-STEP LANCZOS 25

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Normality, s=8,Newton basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Orthogonality, s=8,Newton basis

Iteration

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Colbound, s=8, Newton basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Diffbound, s=8, Newton basis

Iteration

Fig. 5.6. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for Newton basis. Bounds obtained using
Γ̄k as defined in (5.1) for top plots, (5.2) for bottom left plot, and (5.3) for bottom right plot.

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Normality, s=8,Chebyshev basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Orthogonality, s=8,Chebyshev basis

Iteration

0 50 100 150 200
10

−17

10
−10

10
0

10
10

10
20

Colbound, s=8, Chebyshev basis

Iteration
0 50 100 150 200

10
−17

10
−10

10
0

10
10

10
20

Diffbound, s=8, Chebyshev basis

Iteration

Fig. 5.7. Normality (top left), orthogonality (top right), recurrence column error (bottom left),
and difference in recurrence column size (bottom right) for Chebyshev basis. Bounds obtained using
Γ̄k as defined in (5.1) for top plots, (5.2) for bottom left plot, and (5.3) for bottom right plot.

26 ERIN CARSON AND JAMES DEMMEL

Krylov bases plays a large role in determining finite precision behavior.

The next step is to extend the analogous subsequent analyses of Paige, in which
he proves properties about Ritz vectors and Ritz values, relates the convergence of
a Ritz pair to loss of orthogonality, and, more recently, proves a type of augmented
backward stability for the classical Lanczos method [28, 29].

Another area of interest is the development of practical techniques for improving
s-step Lanczos based on our results. This could include strategies for reorthogonal-
izing the Lanczos vectors, (re)orthogonalizing the generated Krylov basis vectors, or
controlling the basis conditioning in a number of ways. The bounds could also be used
for guiding the use of extended precision in s-step Krylov methods; for example, if we
want the bounds in Theorem 4.2 for the s-step method with precision ε̃ to be similar
to those for the classical method with precision ε, one must use precision ε̃ ≈ ε/Γ̄2

k.

In this analysis, our upper bounds are likely large overestimates. This is in part
due to our replacing Γk with Γ2

k in order to simplify many of the bounds. If the
analysis in this paper is performed instead keeping both Γk and Γ2

k terms, it can be
shown that increasing the precision in a few computations (involving the construction
and application of the Gram matrix Ĝk) can improve the error bounds in Theorem 4.2
by a factor of Γ̄k. This motivates the development of mixed precision s-step Lanczos
methods, which could potentially trade bandwidth (in extra bits of precision) for
fewer total iterations. As demonstrated in Section 5, it is also possible to use a tighter,
iteratively updated bound for Γ̄k which results in tighter and more descriptive bounds
for the quantities in Theorem 4.2.

Acknowledgements. Research is supported by DOE grants DE-SC0004938,
DE-SC0005136, DE-SC0003959, DE-SC0008700, DE-FC02-06-ER25786, and AC02-
05CH11231, DARPA grant HR0011-12-2-0016, as well as contributions from Intel,
Oracle, and MathWorks.

REFERENCES

[1] Z. Bai, D. Hu, and L. Reichel, A Newton basis GMRES implementation, IMA J. Numer.
Anal., 14 (1994), pp. 563–581.

[2] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz, Commu-
nication lower bounds and optimal algorithms for numerical linear algebra, Acta Numer.
(in press), (2014).

[3] E. Carson and J. Demmel, A residual replacement strategy for improving the maximum
attainable accuracy of s-step Krylov subspace methods, SIAM J. Matrix Anal. Appl., 35
(2014), pp. 22–43.

[4] E. Carson, N. Knight, and J. Demmel, Avoiding communication in nonsymmetric Lanczos-
based Krylov subspace methods, SIAM J. Sci. Comp., 35 (2013).

[5] A. Chronopoulos and C. Gear, On the efficient implementation of preconditioned s-step
conjugate gradient methods on multiprocessors with memory hierarchy, Parallel Comput.,
11 (1989), pp. 37–53.

[6] , s-step iterative methods for symmetric linear systems, J. Comput. Appl. Math, 25
(1989), pp. 153–168.

[7] A. Chronopoulos and C. Swanson, Parallel iterative s-step methods for unsymmetric linear
systems, Parallel Comput., 22 (1996), pp. 623–641.

[8] E. de Sturler, A performance model for Krylov subspace methods on mesh-based parallel
computers, Parallel Comput., 22 (1996), pp. 57–74.

[9] J. Demmel, M. Hoemmen, M. Mohiyuddin, and K. Yelick, Avoiding communication in com-
puting Krylov subspaces, Tech. Report UCB/EECS-2007-123, EECS Dept., U.C. Berkeley,
Oct 2007.

[10] D. Gannon and J. Van Rosendale, On the impact of communication complexity on the design
of parallel numerical algorithms, Trans. Comput., 100 (1984), pp. 1180–1194.

[11] G. Golub and C. Van Loan, Matrix computations, JHU Press, Baltimore, MD, 3 ed., 1996.

ERROR ANALYSIS OF S-STEP LANCZOS 27

[12] A. Greenbaum and Z. Strakoš, Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 121–137.

[13] M. Gustafsson, J. Demmel, and S. Holmgren, Numerical evaluation of the communication-
avoiding Lanczos algorithm, Tech. Report ISSN 1404-3203/2012-001, Department of Infor-
mation Technology, Uppsala University, Feb. 2012.

[14] M. Gutknecht, Lanczos-type solvers for nonsymmetric linear systems of equations, Acta
Numer., 6 (1997), pp. 271–398.

[15] M. Gutknecht and Z. Strakoš, Accuracy of two three-term and three two-term recurrences
for Krylov space solvers, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 213–229.

[16] A. Hindmarsh and H. Walker, Note on a Householder implementation of the GMRES
method, Tech. Report UCID-20899, Lawrence Livermore National Lab., CA., 1986.

[17] M. Hoemmen, Communication-avoiding Krylov subspace methods, PhD thesis, EECS Dept.,
U.C. Berkeley, 2010.

[18] W. Joubert and G. Carey, Parallelizable restarted iterative methods for nonsymmetric linear
systems. Part I: theory, Int. J. Comput. Math., 44 (1992), pp. 243–267.

[19] S. Kim and A. Chronopoulos, A class of Lanczos-like algorithms implemented on parallel
computers, Parallel Comput., 17 (1991), pp. 763–778.

[20] , An efficient nonsymmetric Lanczos method on parallel vector computers, J. Comput.
Appl. Math., 42 (1992), pp. 357–374.

[21] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential
and integral operators1, J. Res. Natn. Bur. Stand., 45 (1950), pp. 255–282.

[22] G. Meurant, The Lanczos and conjugate gradient algorithms: from theory to finite precision
computations, SIAM, 2006.

[23] G. Meurant and Z. Strakoš, The Lanczos and conjugate gradient algorithms in finite pre-
cision arithmetic, Acta Numer., 15 (2006), pp. 471–542.

[24] M. Mohiyuddin, M. Hoemmen, J. Demmel, and K. Yelick, Minimizing communication in
sparse matrix solvers, in Proc. ACM/IEEE Conference on Supercomputing, 2009.

[25] C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices, PhD
thesis, London University, London, UK, 1971.

[26] , Computational variants of the Lanczos method for the eigenproblem, IMA J. Appl.
Math., 10 (1972), pp. 373–381.

[27] , Error analysis of the Lanczos algorithm for tridiagonalizing a symmetric matrix, IMA
J. Appl. Math., 18 (1976), pp. 341–349.

[28] , Accuracy and effectiveness of the Lanczos algorithm for the symmetric eigenproblem,
Linear Algebra Appl., 34 (1980), pp. 235–258.

[29] , An augmented stability result for the Lanczos hermitian matrix tridiagonalization pro-
cess, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 2347–2359.

[30] B. Parlett and D. Scott, The Lanczos algorithm with selective orthogonalization, Math.
Comput., 33 (1979), pp. 217–238.

[31] B. Philippe and L. Reichel, On the generation of Krylov subspace bases, Appl. Numer. Math,
62 (2012), pp. 1171–1186.

[32] H. Simon, The Lanczos algorithm with partial reorthogonalization, Math. Comput., 42 (1984),
pp. 115–142.

[33] S. Toledo, Quantitative performance modeling of scientific computations and creating locality
in numerical algorithms, PhD thesis, MIT, 1995.

[34] H. Van der Vorst and Q. Ye, Residual replacement strategies for Krylov subspace iterative
methods for the convergence of true residuals, SIAM J. Sci. Comput., 22 (1999), pp. 835–
852.

[35] J. Van Rosendale, Minimizing inner product data dependencies in conjugate gradient itera-
tion, Tech. Report 172178, ICASE-NASA, 1983.

[36] H. Walker, Implementation of the GMRES method using Householder transformations, SIAM
J. Sci. Stat. Comput., 9 (1988), pp. 152–163.

[37] W. Wülling, On stabilization and convergence of clustered Ritz values in the Lanczos method,
SIAM J. Matrix Anal. Appl., 27 (2005), pp. 891–908.

[38] J. Zemke, Krylov subspace methods in finite precision: a unified approach, PhD thesis, Tech-
nische Universität Hamburg-Harburg, 2003.

