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Abstract

From the Telegraph to Twitter Group Chats
by
James Alexander Cook
Doctor of Philosophy in Computer Science
University of California, Berkeley
Professor Satish Rao, Chair

Communication now is easier than ever before. One consequence of this is the emergence of
virtual communities, unconstrained by physical proximity. We perform two investigations
into changing social trends. We study a corpus of 100 years of newspaper articles to see
if we can find evidence to support the popular intuition that as news cycles have sped up,
the public’s attention span has gotten shorter. We find no such evidence: to the contrary,
we find that the typical length of time that a person’s name stays in the news has not
changed over time, and celebrities now stay in the news for longer than ever before. We also
investigate a new kind of community on Twitter called a group chat, where members have
regular meetings to discuss a broad range of topics, from medical conditions to hobbies. We
find that the phenomenon is growing over time, and paint a broad picture of the topics which
one could find a group chat to discuss. With a view to helping connect new participants to
group chats they may not have been able to find or might not have been aware of, we design
an algorithm to rank group chats in the context of a topic given as a query.
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Chapter 1

Introduction

Beginning in the 19th century, long-distance communication transitioned from foot to tele-
graph on land, and from sail to steam to cable by sea. Each new form of technology began
with a limited number of dedicated routes, then expanded to reach a large fraction of the
population, eventually resulting in near-complete deployment of digital electronic commu-
nication. Each transition represented an opportunity for news to travel faster, break more
uniformly, and reach a broad audience closer to its time of inception.

Meanwhile, a change has been taking place in the way that people form communities.
The term “community” has classically been associated with local physical meetings of groups
of people such as the Lions Club and Rotary Club. Participation in these groups is primarily
for social capital: for example, mutual support, cooperation, trust, good will, fellowship and
sympathy. Over time, many of these physical communities have dissipated due to factors
such as urban sprawl, families with two working parents, and time pressures [55]. In contrast,
the term virtual community was first coined in 1993 by Howard Rheingold [58] who described
them as “social aggregations that emerge from the Net when enough people carry on public
discussions long enough, with sufficient human feeling to form webs of personal relationships
in cyberspace”. Virtual communities include forums, chat rooms, discussion boards, Usenet
groups and Yahoo groups [4].

We perform two studies related to these changing communication media and shifting
forms of community. In Parts I and II, we investigate a popular and growing phenomenon
called a Twitter group chat, and develop an algorithm to search for group chats relevant to
a user’s interests. In Part III, we investigate the phenomenon of fame in newspaper articles
from 1895 to 2010, inspired by popular intuition that the public’s attention span is getting
shorter as news cycles get faster.

1.1 Group Chats on Twitter (Parts I and II)

We report on a new kind of community that meets on Twitter: periodic, synchronized
conversations focused on specific topics, called group chats. The chats cover a broad range of
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topics: for example, there are support groups for post-partum depression and mood disorders,
and groups of hobbyists meet to discuss skiing, photography, wine, and food. Members of
a group conversation communicate using an agreed upon hashtag (a short string preceded
by a ‘#” sign). For example, in a group of passionate movie-goers, members agree to include
#mtos in every tweet. In addition to a hashtag, members also agree on a day and time: for
example, every Sunday evening at 20:00 GMT, hence the name “Movie Talk on Sunday”.
Many of these groups are moderated! to ensure that each meeting has a focused subject:
for example, suspense movies. Both active participants who tweet and passive users who
follow the conversation benefit from the excitement of live communication. The topics of
these chats span many categories, from health support groups to arts and entertainment.

In Part I, we present an algorithm based on a new quantitative definition to determine
what group chats exist on Twitter, and examine the topics they cover and the growth of the
group chat phenomenon over time. Note that group chats are not explicitly registered with
Twitter; if they were, our task of listing all group chats would be much easier. While we
did find a crowdsourced list [64], it was incomplete and contained some things that are not
group chats.

Upon extensive observation, it is clear that people derive immense value from Twitter
group chats. Like other kinds of community, group chats serve as a place to exchange
knowledge, to share experiences, to provide empathy and to be included. For example,
people living with diabetes have a means to share their difficulties with glucose monitoring.
Caregivers of Alzheimer’s patients have an opportunity to benefit from the knowledge and
experiences of other Alzheimer’s caregivers. People coping with addiction find a way to
discuss their daily battles resisting addiction. People with shared hobbies also meet to
discuss their passion for wine in #winechat, for skiing in #skichat and for photography in
#photog. Without these Internet discussions, it is unclear whether these people, often in
geographically spread out locations, would have another way to communicate in real-time.

Even though these groups are known to their participants, there are far more people not
in the discussion that we believe would benefit from listening and participating. In order to
help the next person in need of a community, we are motivated in Part II to develop a search
engine that can rank groups: given a search query, we seek to find an ordering of groups
where the topic of the query is best discussed.

The problem would be easier if the subjects of the groups were disjoint, but there is topic
overlap. For example, irrigation strategies are discussed in landscape, gardening and ground
care groups. In fact, for some topics we found sister groups with identical subjects (watch
movies in real-time via a shared link), where we do not know if one group is aware of the other.
Note that our intent is to connect new users to groups of their interest. We are aware that
if a group grows too large, people may depart due to message overload [11, 38]. Historically,
groups have found ways of coping with an increased number of users, e.g, splitting into

'The moderator cannot stop people from sending messages to the group by tweeting using the group
hashtag. Instead, the moderator takes an active role in suggesting topics for discussion and repeating
interesting tweets.
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smaller groups by subtopic or by geography.

There are many other kinds of online group to which we can compare Twitter group chats.
Online forums provide a place for communities to form around particular subjects, but lack
the real-time nature of Twitter group chats. Chat rooms allow real-time conversation, but
do not usually have regular scheduled meetings: instead, participants drop in and out at will.
Another key difference is that group chats are implicit and therefore not easily discoverable.
In contrast, the list of Yahoo! groups or the rooms on an IRC (Internet Relay Chat) server can
be searched and browsed. The website Reddit often features “IAmA” conversations featuring
an interesting person — often a celebrity or an expert in some area — who answers questions
from other users of Reddit. This could be compared to the appearance of guest stars that
often happens in Twitter group chat meetings.

That Twitter is used to organize such discussions is perhaps surprising. The 140 character
limit imposes a succinctness that seems unsuitable for group discussions. But the already
large-scale adoption of Twitter, together with its real-time nature, has enabled these group
conversations to grow to a massive scale. Also surprising are support group chats. It is hard
to imagine how support can be given or received in 140 characters. But people have found
a way!

While the existence of group chats is certainly known to members who participate in
these chats, we have not seen any work in the published literature reporting the number and
variety of these groups. Our work is focused on algorithms for automatically finding groups
at scale.

1.1.1 Contributions — Part I (Group Chats on Twitter)

We begin by presenting a definition for a group chat, based on key properties of groups
abstracted from the sociology literature. The key components of the definition are regular
bounded-length meetings and cohesion among active group members. We found meetings
with a fixed period and duration, such as “every Wednesday at 2-3pm PST”, to be quite
common among groups on Twitter. A predictable, agreed-upon meeting time may help
people plan their schedule and focus for a bounded time on a particular subject. However, we
found that defining a group chat to be any group with periodic bounded-duration meetings
was not enough. For example, hashtags associated with weekly television shows, such as
#dwts for “Dancing With the Stars”, can show increased activity when the show is on the
air. This behaviour shows extremely periodic, fixed duration meetings, but these are not
group conversations: users broadcast their thoughts on the show, but are not participating
in a single conversation. The last part of our definition addresses this: group chats must have
cohesion, which we measure by looking at communication among active group members.
Next, we propose an algorithm for finding group chats. We begin with a large collection
of candidate groups and repeatedly remove those that do not satisfy our definition. Every
hashtag is an initial candidate. In the first step, the algorithm removes candidates that do
not have routine meetings. To identify these, for each candidate, the time series of exchanged
messages is computed and a method based on the Fourier transform is applied to the time
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series to identify periodic candidates. At this point, the candidates may contain those
that “meet” all day: for example, the hashtag #ff stands for “Follow Friday” and is used
throughout the day to recommend Twitter accounts worth following. In order to eliminate
these, we restrict ourselves to groups where at least 20% of the messages are exchanged
within a short span of time. At this point, the remaining candidates may still include those
that meet but never really engage in a conversation, so in the final step we remove candidates
that are not cohesive. What remain are the group chats.

We prove that hashtags that have certain properties of group chats are accepted by
our algorithm, and that non-group chat hashtags, under certain natural models of how
tweets with such hashtags could be generated, are rejected. Specifically, if a group meets
sufficiently many times, group meetings are well-separated, and a reasonable number of
tweets are exchanged per meeting, then we prove that our algorithm will accept the hashtag,
under certain assumptions. On the other hand, if a hashtag is generated randomly from a
daily activity cycle that is not concentrated in time, or is generated in meetings that happen
at uniformly random times, or the hashtag does not have cohesion, then our algorithm will
reject the hashtag.

Finally, we run our algorithm over two years of Twitter data. We find 1.4 thousand groups
involving 2.3 million users. To provide a glimpse into these groups, we show the distribution
of the periods of these groups. Most groups meet weekly. To check the quality of the
groups discovered, we randomly sample 10% of the groups and report on the categories of
groups represented in the sample, finding that most are interest-driven groups such as music
enthusiasts, sports lovers, and foodie communities. We also find many support and self-help
groups. Finally, we compute the times of birth and death of each group in order to find
the cumulative number of living groups over time. The data suggest that group chats are a
growing phenomenon. We hope that this discovery inspires others to study group chats on
Twitter.

1.1.2 Contributions — Part IT (Ranking Discussion Groups)

In Part II, we begin by broadening the set of chats we consider, from the notion of a group
chat to a more general notion we call a discussion group, or a chat in the context of Twitter.
The definition of a group chat is conservative, since our goal in Part I is to count and
categorize them, whereas this more general definition of a discussion group will give users of
a search engine the ability to search over a larger collection of groups.

We describe a new model for ranking groups called the group preference model: for a
given search query, a hypothetical user starts with a group where the topic is discussed and
repeatedly finds an authoritative user in the group and walks to a random group according to
what the authoritative user prefers. The algorithm to solve this problem involves computing
the stationary distribution of a matrix. Since the stationary distribution is unstable in the
sense that small changes to a matrix can alter the final ordering, we analytically show that
a variety of natural changes to the underlying data still yield the expected ranking. For
example, if one group is universally preferred to another according to a dataset and we add
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a new user to the dataset who holds the same preference, then our algorithm will also retain
the preference. In a similar vein, if one group is preferred to another and a particular user
agrees with this preference, then increasing their preference or authority in a new dataset will
also retain this preference. The goal of this analysis is to build confidence that the algorithm
will not wildly change the ranking under reasonable changes to the underlying data.

Naive solutions, such as ordering groups by how often the query appears in the discussion,
also turn out to satisfy the properties that we consider. Thus, we describe a scenario (based
on what we observed in practice) and analytically show that our group preference model will
succeed where naive solutions fail. These findings are also borne out in our experiments. For
example, when it became known a former prime minister suffered from dementia, a large
number of tweets were generated in news-related discussion groups about dementia. These
news-related groups are not a good place to discuss dementia. On the other hand, we prove
(and experimentally show) that if we order groups according to our model that a group
where dementia is actively discussed will be ranked higher than a news-related group.

We conduct an experiment on one year of tweets. We identify a collection of 27K dis-
cussion groups (hashtags) from this data. We create a set of group queries based on queries
posed to Yahoo groups and a ground truth ranking of hashtags for these queries. We compare
the performance of our algorithm with the performance of several natural baseline algorithms
in terms of precision, recall and mean average precision and show that our algorithm out-
performs the baseline on all of these metrics.

1.2 Fame in News (Part III)

The increasing speed of the news cycle is a common theme in discussions of the societal
implications of technology. Stories break sooner, and news sources cover them in less detail
before quickly moving on to other topics. Online and cable outlets aggressively search for
novelty in order to keep eyeballs glued to screens. Popular non-fiction dedicates significant
coverage to this trend, which by 2007 prompted The Onion, a satirical website, to offer the
following commentary on cable news provider CNN’s offerings: “CNN is widely credited with
initiating the acceleration of the modern news cycle with the fall 2006 debut of its spin-off
channel CNN:24, which provides a breaking news story, an update on that story, and a news
recap all within 24 seconds.”

With this speed-up of the news cycle comes an associated concern that, whether or not
causality is at play, attention spans are shorter, and consumers are only able to focus for
progressively briefer periods on any one news subject. Stories that might previously have
occupied several days of popular attention might emerge, run their course, and vanish in a
single day. This popular theory is consistent with a suggestion by Herbert Simon [61] that
as the world grows rich in information, the attention necessary to process that information
becomes a scarce and valuable resource.

The speed of the news cycle is a difficult concept to pin down. We focus our study on the
most common object of news: the individual. An individual’s fame on a particular day might
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be thought of as the probability with which a reader picking up a news article at random
would see their name. From this idea we develop two notions of the duration of the interval
when an individual is in the news. The first is based on falloff from a peak, and intends
to capture the spike around a concrete, narrowly-defined news story. The second looks for
a period of sustained public interest in an individual, from the first time the public notices
that person’s existence until the public loses interest and the name stops appearing in the
news. We study the interaction of these two notions of “duration of fame” with the radical
shifts in the news cycle we outline above. For this purpose, we employ Google’s public news
archive corpus, which contains over sixty million pages covering 250 years, and we perform
what we believe to be the first study of the dynamics of fame over such a time period.

Data within the archive is heterogeneous in nature, ranging from directly captured digital
content to optical character recognition employed against microfilm representations of old
newspapers. The crawl is not complete, and we do not have full information about which
items are missing. Rather than attempt topic detection and tracking in this error-prone
environment, we instead directly employ a recognizer for person names to all content within
the corpus; this approach is more robust, and more aligned with our goal of studying fame
of individuals.

Based on these different notions of periods of reference to a particular person, we develop
at each point in time a distribution over the duration of fame of different individuals.

Our expectation upon undertaking this study was that in early periods, improvements to
communication would cause the distribution of duration of coverage of a particular person to
shrink over time. We hypothesized that, through the 20th century, the continued deployment
of technology, and the changes to modern journalism resulting from competition to offer more
news faster, would result in a continuous shrinking of fame durations, over the course of the
century into the present day.

1.2.1 Summary of Findings

We did indeed observe fame durations shortening in the early 20th century, in line with our
hypothesis about accelerating communications. However, from 1940 to 2010, we saw quite
a different picture. Over the course of 70 years, through a world war, a global depression,
a two order of magnitude growth in (available) media volume, and a technological curve
moving from party-line telephones to satellites and Twitter, both of our fame duration
metrics showed that neither the typical person in the news, i.e. the median fame duration,
nor the most famous, i.e. high-volume or long-duration outliers, experienced any statistically
significant decrease in fame durations.

As a matter of fact, the bulk of the distribution, as characterized by median fame dura-
tions, stayed constant throughout the entire century-long span of the news study and was
also the same through the decade of Blogger posts on which we ran the same experiments.
As another heuristic characterization of the bulk of the distribution, both news and Blogger
data produced roughly comparable parameters when fitted to a power law: an exponent of
around -2.5, although with substantial error bars, suggesting that the fits were mediocre.
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Furthermore, when we focused our attention on the very famous, by various definitions,
all signs pointed to a slow but observable growth in fame durations. From 1940 onward, on
the scale of 40-year intervals, we found statistically significant fame duration growth for the
“very famous”, defined as either:

e people whose fame lasts exceptionally long: 90th and 99th percentiles of fame duration
distributions; or

e exceptionally highly-discussed people: using distributions among just the top 1000
people or the top 0.1% of people by number of mentions within each year.

In the case of taking the 1000 most-often-mentioned names in each year, the increasing
could be explained as follows: as the corpus increases in volume toward later years, a larger
number of names appear, representing more draws from the same underlying distribution of
fame durations. The quantiles of the distribution of duration for the top 1000 elements will
therefore grow over time as the corpus volume increases. On the other hand, our experiments
that took the top 0.1% most-often-mentioned names, or the top quantiles of duration, still
showed in increasing trend. We therefore conclude that the increasing trend is not completely
caused by an increase in corpus volume.

To summarize, we find that the most famous figures in today’s news stay in the limelight
for longer than their counterparts did in the past. At the same time, however, the average
newsworthy person remains in the limelight for essentially the same amount of time today
as in the past.



Chapter 2

Related Work

2.1 Group Chats on Twitter (Parts I and II)

2.1.1 Twitter group chats.

In the published literature, we found very little discussion of Twitter group chats. There
are articles discussing the benefits of a single education group chat called #edchat [18, 30],
and Budak and Agrawal [10] investigate characteristics of education group chats that lead to
continued individual participation, but we found nothing reporting the number and variety
of group chats overall.

Our aim in this work is to develop an algorithm for automatically discovering group
chats. While we did find a crowdsourced spreadsheet [64] of group chats, we found many
chats listed in the spreadsheet that are now defunct, many chats that are missing (possibly
because the moderator of the group chat was not aware of the spreadsheet), some that do not
have predictable meetings, and others that are not truly group conversations, e.g, one-time
chats.

2.1.2 Definition of groups.

Many different definitions of groups have been proposed in the sociology literature. For
example, a group is: “a collection of individuals who have relations to one another” [12];
“a bounded set of patterned relations among members” [2]; or “two or more individuals
who are connected by and within social relationships” [28]. In the context of online groups,
virtual communities have been defined as “social aggregations that emerge from the Net
when enough people carry on public discussions long enough, with sufficient human feeling
to form webs of personal relationships in cyberspace” [58]. An overview of more definitions
of online communities that have arisen in various disciplines is presented in the survey by
Iriberri and Leroy [33]. A common theme among the definitions is that groups are driven
by, and exist because of, their members. We provide a definition of a group which is geared
toward deciding when a set of people and their interactions constitute a group. Whereas
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the previous definitions are qualitative, our definition is quantitative and is useful for finding
groups whose existence is not known of in advance.

2.1.3 Nature and formation of groups.

There is extensive literature on the formation of groups, the nature and purpose of groups
that exist, and the causes of their success or failure. Forsyth [21] provides a comprehensive
treatment of group dynamics. We have already mentioned the work of Iriberri and Leroy [33].
Besides its main focus on the life-cycles of online communities and factors that contribute to
their success, their work also discusses the “importance and benefits” of online communities,
and the types of communities that exist, both of which we study in the more narrow context
of Twitter. Backstrom et al [3] study group formation using LiveJournal and DBLP data.
Backstrom et al [4] examine the nature of the communities that exist in Yahoo! groups,
and explore factors influencing whether a user will stay with a group. Bateman et al. [6]
also study the factors that motivate participants to stay. An early paper by McGrath and
Kravitz [49] gives a survey of group research in psychology from 1950 to 1982. Of particular
relevance to our work is the discussion of communication or “patterning of interaction” in
group settings.

Surveys of the public studying how many people participate in online groups and for
what purpose are instructive: for example, a 2001 study found that 84% of Internet users
participated in online groups, and a survey conducted in 2010 found that 23% of Internet
users living with a chronic ailment have looked for support online, and people with rare
conditions are even more likely to do so [22, 31, 36]. Much work has also been done studying
why animals form groups and of what size; for example, see [51]. In contrast to this line of
work, our focus is on algorithmically identifying groups in Twitter. Investigating the nature
and formation of Twitter groups is a promising direction for future work.

2.1.4 Participation in Groups

There is a substantial body of work in understanding why people join and remain in online
communities. The size of a group is known to affect whether a user joins a group. Too many
messages drive people away [11, 38|, while having too few inhibits community responsive-
ness [48]. The level of moderation also plays a role [57]. The more friends a user has in
a group, the more likely they are to join [43], and this likelihood increases if their friends
are in turn connected [3]. First impressions are important [37, 4, 39, 45]. If a user receives
a response to their first message to a community, it increases the likelihood that they will
subsequently interact with the community [4, 39]. A first response is also known to increase
the speed at which a second message is posted [45]. Linguistic complexity reduces the chance
of a response [67], and linguistic discrepancy can signal a user’s departure from a group [17].
Brandtzaeg and Heim study the causes of group attrition in the context of online commu-
nities [8]. In Part II, we solve a different but related problem: connect a user to a group
that was previously unknown to them. We seek to rank the best groups for discussing a
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particular topic. The only information we use is a search query, akin to web search. Richer
contextual clues (friends in the group, linguistic coherence, etc.) could lead to better and
more personalized rankings.

2.1.5 Determining periodicity.

Our algorithm for detecting group chats begins by determining which hashtags have regular
meetings. We considered an algorithm by Kleinberg [41] for detecting bursts of activity.
Many different approaches have been proposed for periodicity detection in time-series data:
for example, using Fourier analysis [65] and Wavelet transforms [53]. In the end, we adapted
the autoperiod method proposed in [65] as described in Section 4.1.

2.1.6 Other applications of Fourier analysis to group dynamics.

Gottman [26] applied Fourier analysis to conversations, but whereas we seek to understand
the timing of the meetings themselves, Gottman looked for cyclic structure within individual
sessions. Gottman also examined cross-correlations between time series to understand inter-
action between participants in a conversation. He applied this work to the study of marital
conflict, as referred to by later work with Krokoff [27]. Dabbs [16] used Fourier analysis to
understand the rhythm of conversations, and was able to distinguish “low cognitive load”
conversations, where people were asked to talk about themselves, from “high cognitive load”
conversations, where people were asked to discuss current events.

2.1.7 Ranking Models

While we are not aware of previous work on ranking groups, much work has been devoted
to other ranking problems.

Given a search query, our group preference model describes a user (the seeker) who starts
with a random group where the query is discussed, then repeatedly finds an authoritative
participant in that group and then a group where that person discusses the query. The model
is related to the random surfer model [9] where a random walk repeatedly follows outgoing
links on a directed graph. Our model differs in that we are bouncing back and forth between
two kinds of node (groups and authoritative participants). Also, the transition probabilities
depend on the query, and are computed by measuring social interactions instead of links
between documents. In both models, the stationary distribution of the walk is used to rank
nodes. Also, in both models, with some probability a user teleports to a completely random
node. Our model is more similar to personalized PageRank [34] in that the probability of
teleporting to a group can depend on features such as how often the query is discussed in
the group. Some of the mathematics developed for PageRank regarding how small changes
to a graph affect the stationary distribution [14] are useful in our work (Section 10.1).

The group preference model is also related to HITS [42] which assigns hub and authority
values to each node on a graph. The hub and authority scores complement each other in much
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the same way that the group preference seeker will spend more time on participants who have
authority in highly ranked discussion groups, and groups that are preferred by highly-ranked
participants. One important difference is that the HITS algorithm computes each new hub
or authority score as a sum of neighbouring values, whereas our model, since it follows a
random walk, averages the values. Averaging has the advantage that a discussion group
marginally related to a query with a very large community of participants can be ranked
lower than a collection of groups very related to a query that comes from a community of
groups and participants who reinforce each other with evidence of preference and authority
(Section 10.2). Another difference is that we allow the group preference seeker, when jumping
from a person to a group, to use the previous group visited to inform the decision. For
example, it is within the scope of our model for the seeker to only jump to groups that the
person prefers to the previous group.

The random shopper model [32] was developed in the context of online shopping and is
also related. Each feature is represented as a directed graph over products with an edge from
one product to another if it is better according to that feature. For example, if the feature
is “lower price”, then the user will walk to a cheaper product. The process of selecting a
product starts at a random product, and then repeatedly selects a feature according to its
importance and walks to a better product according to that feature. The principle goal is
to learn the relative importance of each feature. One can view the features as authoritative
participants and the walk within a feature as selecting a group according to how important
the group is for the participants. The random choice of which feature to select is independent
of which product the random shopper has reached. In our work, the group that the seeker
walks to intentionally depends on which authoritative participant was selected. In our work,
the technical emphasis is in demonstrating that under reasonable changes to the underlying
data, the ranking will remain unchanged, while in that work the emphasis was on showing
how the ordering can and should flip [63] depending on which other products are shown.

2.1.8 Recommending Hashtags and Experts

The general problem of recommending hashtags has been previously studied where given a
tweet, the goal is to find a relevant hashtag. In one approach, the text of the tweet is used to
identify similar tweets, and then a hashtag is recommended based on those found in similar
tweets [44]. In other methods, the users who tweet about the subject may be used to find
a relevant hashtag [25]. Note that arbitrary hashtags may never meet again. Indeed, prior
work shows that 86% of hashtags have been used less than five times [72]. Such hashtags
are not relevant to our problem of helping a new user find a future conversation. Further,
since prior techniques are applied to arbitrary hashtags, the work does not take advantage
of the fact that some of these hashtags are discussion groups — whose richer structure can
be exploited to deduce higher quality rankings. We are motivated by applications where
a new user seeks a future conversation. The hashtag prediction problem — given a user,
predict which hashtags they will use in the future — has also been studied [71]. Many
interesting characteristics of a chat are identified as useful for effective prediction, such as
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the prestige of a hashtag. These characteristics could also be used to create richer models of
group preference. Expert finding is another problem that is related to our work. Different
issues arise in expert finding since it is also important to find an expert willing to answer
your question [20]. Our method of finding authoritative users draws upon insights from prior
work, e.g, the importance of network as well as textual signals [20, 35, 40, 56].

2.2 Fame in News (Part III)

Michel et al. [50] study a massive corpus of digitized books in an attempt to study cultural
trends. In particular, they study the rate at which famous names appear in books over time.
Where our study focuses on periods of fame on the scale of news coverage — usually on the
scale of weeks — their work measures long-term fame in years and decades. The corpus they
study is even larger than ours in volume and in temporal extension.

Leetaru [46] presents evidence that sentiment analysis of news articles from the past
decade could have been used to predict the revolutions in Tunisia, Egypt and Libya.

Our spike method for identifying periods of fame is motivated in part by the work of
Yang and Leskovec [70] on identifying patterns of temporal variation on the web. Szabo
and Huberman [62] also consider temporal patterns, in their case regarding consumption of
particular content items. Kleinberg studies other approaches to identification of bursts [41].

Numerous works have studied the propagation of topics through online media. Leskovec
et al. [47] develop techniques for tracking short “memes” as they propagate through online
media, as a means to understanding the news cycle. Adar and Adamic [1], and Gruhl et
al. [29] consider propagation of information across blogs.

Finally, a range of tools and systems provide access to personalized news information;
see Gabrilovich et al [23] and the references therein for pointers.
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Part 1

Group Chats on Twitter

In which we study the phenomenon of group chats on Twitter; develop an algorithm
to find group chats with some mathematical justification; run the algorithm on a Twitter
dataset; and study the set of group chats found.

This part includes material from Group Chats on Twitter, co-authored with Nina Mishra
and Krishnaram Kenthapadi, and appearing in the proceedings of the 2013 International
Word Wide Web Conference (ACM). Work done while I was an intern at Microsoft Research.
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Chapter 3

Preliminaries

In this section, we work towards a definition of a group chat. We are not aware of any
quantitative definitions of a group in the sociology literature. Instead, there are many
qualitative definitions with no convergence towards a single definition [21]. We begin by
describing three key properties of a group chat. Group chats are:

1. REGULAR: In a group, people who share an interest meet on a regular basis over a
prolonged period of time.

2. SYNCHRONIZED: In a group, meetings occur for a fixed duration at a specified time.

3. COHESIVE: The members of a group communicate with each other over the course of
many meetings.

These properties can be instantiated in many ways. In this paper, we interpret them in
one way that leads to our definition of a group chat.

Definition 3.1. A set of people form a group chat if every ™ days some subset of them
meet for a duration of at most [ hours where at least a v fraction of pairs of people exchange
messages during each meeting. | and v are parameters of the definition, and ™ may be
different for different groups.

Observe that this definition captures all of the key properties that we outlined above.
Meetings are regular because they occur every 7 days. They are synchronized because they
last [ hours and they are cohesive because at least a v fraction of pairs communicate.

To motivate each component of the definition in the specific context of Twitter, we de-
scribe a few crucial examples that steered our thinking. We started with every hashtag on
Twitter as a candidate group, whose members are all users who have tweeted with the hash-
tag. The first component of our definition requires a group chat to have periodic meetings.
The justification for this property is that in order for group connections to form, members
must meet predictably over the course of many meetings. (See Bateman et al. [5] for a
study of the reasons people repeatedly return to groups.) We observed this property in the
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group chat hashtags that we discovered such as Movie Talk on Sunday, which meets every
Sunday (right side of Figure 3.1). Offline meetings of local support groups also often occur
on a weekly or monthly basis. Note that in order to satisfy Property 1, meetings need not
necessarily occur every 7 days, but periodic meetings are the focus of the present work.

Requiring periodic meetings is not enough: there are hashtags such as #monday that surge
once a week but are not group conversations (left side of Figure 3.1). Users simply append
#monday to their tweets on Mondays. A key difference between such hashtags and group
conversations is that #monday surges all day Monday, while group meetings surge for only a
short time (Figure 3.2). This is how we arrived at the second component of our definition:
the group must meet for at most some maximum duration /. Offline meetings also follow
such a time-bounded pattern.

Even these two requirements are not enough, since there are hashtags tied to TV shows,
such as #dwts for Dancing with the Stars, which surge for one hour every week when the
TV show airs. Users are not communicating with each other, but are tweeting with the
goal of seeing their message broadcast on live television. This motivates the third aspect of
our definition: cohesion. The difference between Dancing with the Stars and a real group
conversation is that users communicate with each other during a group conversation. In the
context of Twitter, we observe this behaviour via @-mentions between group members.

We note that our definition of a group could be improved in a number of ways. For
example, there may be groups that meet regularly but are not periodic: for example, they
might schedule each meeting at the end of the previous meeting. We miss such groups since
they do not have a periodic structure. Other groups may meet, but not use a hashtag.
Again, our work misses such groups. We leave the question of alternate group definitions as
a subject for future work.

3.1 Notation

Let H denote the set of distinct hashtags contained in the text of all tweets. For a hashtag
h € H, let t;, denote the timeline for h: the multiset consisting of the time of every tweet
that contains h. Denote by «y = |t,| the total number of tweets containing h. Denote the
period of a periodic hashtag h by 7,. Denote the number of meetings associated with a
periodic and synchronized hashtag h by mj;. We omit the subscript when the hashtag is
clear from the context. Denote the maximum allowed duration of a meeting by [. While
our definition of a group refers to the period in days and the meeting duration in hours, we
henceforth assume that 7 and [ are in the same units.
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Figure 3.1: Number of tweets per hour for the hashtags #mtos (left) and #monday (right) over
a three month timeframe (November 2011 to January 2013). Both hashtags are periodic,
but #monday is not a group conversation.
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Figure 3.2: Number of tweets per hour for the hashtags #mtos (left) and #monday (right)
over a one week timeframe (last week of January, 2013). #monday is active all day, while
#mtos is active for one hour.
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Chapter 4

Finding Group Chats on Twitter

Our method for determining the set of group chats on Twitter is outlined in Algorithm 1.
We first identify the set of periodic hashtags on Twitter. Next, for each periodic hashtag,
we check whether meetings using the hashtag occur at a predefined time during each period.
If such meetings exist, we compute the meeting time, and otherwise, we exclude the hashtag
from further consideration. We then check if there is sufficient communication among the
top users of the hashtag, and if not, exclude the hashtag. Finally, we eliminate hashtags
with a very small number of meetings. The remaining hashtags are considered to be group
chats.

4.1 Regular

The main technical component of our approach is to determine whether a hashtag is periodic
(Property 1). We first motivate the design of the algorithm through an example.

The left side of Figure 3.1 shows part of the timeline for the hashtag #mtos. The group
corresponding to this hashtag meets at a predefined time every week. We observe that
the hashtag is mentioned frequently during the weekly meetings and infrequently between
sessions, resulting in a timeline that is visually periodic. However, the number of occurrences
of the hashtag varies widely across meetings. Further, some meetings may not occur (for
example, around Christmas) and there may be some occurrences of the hashtag between
meetings, (for example, generating awareness about upcoming meetings). Our algorithm for
detecting periodicity begins by taking a Fourier transform, which is robust to these factors.

Given a timeline ¢;, and a frequency &, the Fourier transform produces a Fourier coefficient
F(tn)(&) € C. The Fourier transform satisfies the following property: If t, is periodic
over a large interval with period T = 1/, then the magnitude of the corresponding Fourier
coefficient, |F(tn)(§)|, is large. This property is robust to variations in the intensity of f
from cycle to cycle and addition of a small amount of noise. Hence, a first attempt would
be to check whether the largest Fourier coefficient is comparable in magnitude to the total
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Algorithm 1 Find Twitter group chats.

Parameters: Periodicity threshold § < % (§4.1); maximum meeting duration [ and synchro-
nization threshold v (§4.3); number of top users k& and minimum density v for cohesion
(§4.4); minimum number of meetings p.

Input: The author and timestamp of every tweet in a certain range of time, together the
set of hashtags and @-mentioned users in each of those tweets.

Output: The set of hashtags that are group chats, and the meeting time and time between

meetings for each one.

: Identify the set H of distinct hashtags contained in text of all tweets.

: for every hashtag h € H do
Determine the timeline 5, consisting of the timestamps of all tweets containing h.
(REGULAR) Determine whether ¢, is a periodic timeline, and if so, its period 7. If ¢,

is not periodic, stop processing h. (§4.1)
5: Using the determined period 7, determine whether at least © meetings have occurred,
and if not, stop processing h.

6: (SYNCHRONIZED) Check whether meetings in the timeline ¢, occur at a predefined
time during each period. If yes, compute the meeting time, and otherwise, stop processing
h. (§4.3)

7: (COHESIVE) Determine if there is sufficient communication among the top users of

hashtag h. If not, stop processing h. (§4.4)

8: return the set of hashtags that passed all four tests, along with the meeting time and
time between meetings (period) for each one.

Algorithm 2 Find periodic hashtags.

Parameter: Periodicity threshold § < %
Input: A timeline (multiset of timestamps) ¢p,.
Output: Whether the hashtag is periodic, and if so, the period 7.
1: Compute the Fourier coefficients F(t,)(&) for a large set of frequencies {&;}. (§4.1.1)

2: Compute the autocorrelations A(t,)(7) for a large set of periods {74}. (§4.1.2)

[F(tn) () [An) (7

IF(tn)O)  |A(tr)(0)
1 < k < r. Here, & is the closest computed frequency to 1/T} and 7 is the closest
computed period to Tj. (§4.1.3)

4: Determine the candidate period T} with the largest periodicity score, that is, T} :=

arg max; <<, S(71%), and output 7 = T}, if S(7},) > 6. (§4.1.3)

3: Define the periodicity score for each period Ty as S(Ty) = )||, for
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number of tweets containing a hashtag and if so, declare the hashtag to be periodic with the
corresponding period.

However, the converse of the above property is not true: in particular, |F(t,)(£')| may
also be large when ¢ = k¢ is an integer multiple of £. For example, a group chat that
occurs at noon every alternate Monday would have a strong Fourier coefficient at the once-
per-two-week frequency, but also at a frequency of once per week and even once per day.
To distinguish the base frequency ¢ from multiples k&, we measure the autocorrelation of
a hashtag’s timeline. Given a function f, the autocorrelation A(t;)(7) is a measure of the
similarity between ¢, and the same timeline ¢, shifted by 7.

The autocorrelation satisfies a property similar to that of the Fourier transform: if t;, is
periodic over a large interval with period T, then A(ty)(T) is large. Intuitively, a periodic
function shifted by its period (or integer multiples of period) aligns well with the original
function, resulting in a large autocorrelation comparable to the autocorrelation at t = 0 (the
function with itself). In other words, the autocorrelation is large for integer multiples k7 of
the base period, rather than periods 1/(k§) = 7/k associated with integer multiples of the
frequency & as is the case with the Fourier transform. The only periods that have both large
Fourier coefficients and autocorrelations should be close to the true period .

Algorithm 2 formalizes the above intuition. Given the timeline of a hashtag, we compute
its Fourier transform for a large set of frequencies as well as autocorrelation for a large set of
periods. The periodicity score for each candidate period is computed as the product of two
ratios: the ratio of the corresponding Fourier coefficient to the total number of tweets and
the ratio of the autocorrelation for this period to the autocorrelation of the function with
itself. The algorithm checks if the largest periodicity score exceeds a given threshold, and if
so, outputs the period that achieves that score. See Sections 4.1.1-4.1.3 for details.

The idea of combining the Fourier transform with autocorrelation was explored by Vla-
chos et al. [65] in their work on detecting periodicity. Our method differs in two respects.
First, while they use the discrete Fourier transform (DFT), we obtain samples from the con-
tinuous Fourier transform. At the cost of requiring more computation, this choice allows us
to measure Fourier coefficients for all frequencies of interest to us, for the whole data set at
once. The DFT only produces frequencies which are multiples of the inverse total window
length: for example, when examining six weeks of data, the DFT could measure frequencies
of once every 0.75 weeks, once every 1.5 weeks or once every 3 weeks, but not once per week
or once per two weeks. Second, they distinguish between ‘hills” and ‘valleys’ of the autocorre-
lation, likely to compensate for the lack of precision in their choice of Fourier coefficients. In
our implementation, we simply multiply Fourier coefficients and autocorrelations to produce
a score for each candidate period.

To detect periodic hashtags, we also tried using Kleinberg’s burst detection algorithm [41],
which detects periods of high activity using a generative model that switches between a low-
activity state and a high-activity “bursty” state. However, we chose the Fourier analysis
based method instead, for two reasons. First, Kleinberg’s model has a parameter that
determines how easily the underlying model switches to a bursty state, and we had trouble
finding a value which worked for all group chats. Second, Kleinberg’s method does not detect
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whether or not the bursts are of a periodic nature, nor does it produce the period. Both of
these are natural outputs of the Fourier analysis based method. Naive attempts to measure
the period as an average time between bursts produced by Kleinberg’s method are thwarted
by missing meetings or short bursts that occur between meetings, although it is possible that
some adaptation of Kleinberg’s algorithm could overcome these limitations.

4.1.1 The Fourier Transform

Given a function f : R — C, the Fourier transform F(f) : R — C applied to a frequency
¢ € R is defined as:

F()(E) = / " (et (4.1)

th ={th1,...,tha,} is a multiset of timestamps rather than a function, but we can consider
it to be a measure with a point mass for each timestamp. The Fourier transform then

becomes:
ap

Fta)(§) =) e ?meini, (4.2)

j=1

The largest-magnitude Fourier coefficient is achieved at & = 0 and equals the number of
tweets in t;: that is, V&, |F(tr)(§)]| < F(tn)(0) = aup.

4.1.2 Autocorrelation

The autocorrelation of a function f: R — C with respect to a period 7 is defined as:
AN = [ e+ miFea

The magnitude of the autocorrelation |A(7)| is always highest at 7 = 0. The autocorrelation
can also be expressed in terms of the Fourier transform as:

AN = [ IFOE@Pe T (4.3
In the same spirit, we can define the autocorrelation of a timeline or multiset ¢, 1, ..., th.q,

as the number of pairs of tweets that are separated by a duration of 7:
A(tn)(1) = {0 ) ltns — thi = T} (4.4)

Unfortunately, this leads to a problem. If the resolution of timestamps is sufficiently granular
(say, seconds), then it is very likely that the f, shifted by its period will not align with itself:
for example, if a tweet is emitted three seconds after 10am in the first meeting, but the
closest tweets in the next meeting are at 9:59:55 and 10:00:11, then the 10:00:03 tweet will
contribute nothing to the autocorrelation.
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To address this, we appeal to (4.3) and approximate the autocorrelation using a set of
computed Fourier coeflicients F(t,)(&;), 7 =1,...,r:

Atn)(m) = 3 IF ()& Pe2mom.

If we bound the sampled frequencies &; so that the maximum frequency is at most two
cycles per day, then the approximate autocorrelations A(t;)(-), loosely speaking, can only
see the approximate time at which a tweet happened, to within half a day or so. Computing
the autocorrelation in terms of the Fourier transform may also be faster, since the runtime
depends on the number of Fourier coefficients and not on the number of tweets.

4.1.3 The Periodicity Score

Given the timeline ¢;, for a hashtag, we first compute the Fourier coefficients F(¢;)(¢;) for
Np equally spaced frequencies ¢; in a fixed range [—1/7p, 1/7p] using (4.2). (Np stands for
Number of Fourier coefficients. In our implementation, 7= was twelve hours.) Then, we use
the computed Fourier coefficients to compute the approximate autocorrelation fl(th)(m) for
a large but fixed set of periods 7.

Now, define the periodicity score for a candidate period T as:

_FE)E) A ()]
O F)O) A (0)]

where £* and 7 are the closest available frequency and period to 1/7" and T' in the sets
{¢;} and {7}, respectively. Note that S(7) is always between 0 and 1. Then, we determine
the period 7 with the largest periodicity score out of a set of candidate periods. If S(7)
exceeds the periodicity threshold 9, the algorithm returns 7 as the period, and otherwise the
algorithm declares the timeline not to be periodic.

S(7)

4.1.4 Incremental Updates

As more tweets arrive, it is possible to recompute the periodicity scores and the estimated
period of a hashtag in time proportional to the number of new tweets. Suppose ti! =
o1 U ¢1ev where 9! includes all the tweets up to time 7, and U3 includes only tweets
after time 7. If we have already computed a Fourier coefficients F(¢3'4)(¢), the updated
Fourier coefficient F(#21)(€) can be computed as:

‘F(tzll)(g) _ Z e—27ri£t _ Z 6—27ri§t + Z 6—27ri£t

11 1d new
tet? tets tety

=F(HE) + Y e

tetpew
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The remaining steps of recomputing the autocorrelation and finding the highest-scoring
period have a running time that depends on the number of candidate periods (r) but not
the total number of tweets.

4.2 Minimum Number of Meetings

The final step of our algorithm is to remove from consideration hashtags with a very small
number of meetings. The minimum number of meetings p is a parameter of the algorithm.
This helps to ensure that the periodic behaviour of the hashtag is intentional. For example,
any hashtag with two short bursts of cohesive activity would be considered by the other
steps of the algorithm to be a group chat, with period equal to the time between the two
bursts. A chat that did not intend to meet at a regular time might still chance to have three
meetings that are exactly nine days apart.

4.3 Synchronized

Algorithm 3 Detect synchronized meetings.

Parameters: Maximum meeting duration [; synchronization threshold .

Input: A timeline (multiset of timestamps) ¢, and its period 7.

Output: Whether h has synchronized meetings, and if so, the Meeting start time .

1: Given a potential meeting offset ¢, we evaluate the hypothesis that each meeting starts
t after the start of its period: so every meeting lies in [t,t +[|U [T+ ¢, 7+t + 1 U[2T +
t,27 +t +1],.... Define the score 3(t) as the fraction of tweets that lie in this set:

2: B(t) :=L|{s €ty : s €[jT+¢ 7 +t+]1] for some integer j}|.

3: Determine the candidate meeting start time ¢ with the largest score: that is, ¢ :=
arg maxep,-) 3(t). If B(f) exceeds the threshold v, then output ¢.

As described in Chapter 3, hashtags like #monday have a periodic timeline, but do not
have an agreed-upon time of day when users meet to have a conversation. Algorithm 3
eliminates these hashtags from consideration by noticing that there is no short window of
time each week within which a substantial fraction of the tweets are emitted. The underlying
intuition is that most people simply do not have the time to participate and listen to others
for very long, so synchronized meetings cannot last for more than a few hours.

Given the timeline ¢, and period 7 of a periodic hashtag, Algorithm 3 looks for a window
with duration [ that repeats every period, such that at least a v fraction of the tweets lie in
that window. Note that this requires the period 7 to exactly match the true period of the
hashtag: if one meeting falls in the window [¢,¢+1], Algorithm 3 expects every other meeting
will fall within [j7 + ¢, j7 4+t 4 {] for some integer multiple j7 of the period. Unfortunately,
the period computed by Algorithm 2 may deviate slightly from the true period. We make use
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of the fact that group chats on Twitter have routine meetings whose period is in multiple of
days, and address this issue by rounding the period computed by Algorithm 2 to the nearest
day.

4.4 Cohesive

In the final step, our algorithm excludes hashtags that are not cohesive. To measure this
quantity, we estimate the communication among the £ most active members who use the
hashtag h during regular, synchronized meetings. Our intuition is that members of a healthy
group will look forward to communicating with one another during each meeting. Let V' be
the set of k users who participated in the most meetings of the hashtag. For 1 <1 < m,
let E; capture the directed communication edges among users in V during the i** meeting.
For example, if user u € V' @-mentions two other top users v and w during the i meeting,
we include the two directed edges (u,v) and (u,w) in E;. We define the cohesion score
of a hashtag by the average number of edges across all meetings: that is, cohesion(h) :=
L 3" |Ei|, where m is the number of meetings for hashtag h. The larger this average
interaction, the more cohesive the group. We exclude hashtags with cohesion score less than
a given threshold 1.
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Chapter 5

Theoretical Analysis of Algorithm 1

In this section, we prove that group chats that are sufficiently “well-behaved” are accepted by
our algorithm and hashtags that are far from being group chats are rejected. Specifically, if a
group meets sufficiently many times, if group meetings are well-separated, and if a reasonable
number of messages are exchanged per meeting, then we prove that our algorithm will accept
the hashtag, under certain assumptions (§5.1). On the flip side, we prove that our algorithm
will reject hashtags that are not cohesive, or are generated from models of not-regular or
not-synchronized hashtags (§5.2).

5.1 Algorithm 1 accepts group chats

We next define the notion of a well-behaved group chat and show that our algorithm will
accept a well-behaved group chat under certain assumptions. The following definition is
motivated by our qualitative observations of a group chats: see for example the timeline of
#mtos in Figure 3.1.

Definition 5.1. A set of tweets forms a well-behaved group chat if all of the following are
true.

e There are m meetings of duration | separated by a period T, for some m, l and 7. (The
Jth meeting interval is [jT,j7 +].)

e During each of the meeting intervals, at least v pairs of the top k group members
exchange messages'.

o Tweets are sent at a higher rate within meetings than outside of meetings. That is:
at least 77-n_ tweets are sent during every meeting, where v > /7 is the threshold
of Algorithm 3 and n_ is the average number of tweets sent between two adjacent
meetings. No lweets are sent before the first meeting or after the last. We denote by

'Here, ¥ and k are the parameters of the cohesion algorithm.
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n; the number of tweets in the j-th meeting, and by Nyin and Nmax the smallest and
largest values n;.

Theorem 5.2 (Completeness of Algorithm 1). Consider any well-behaved group chat that
also satisfies the following properties:

o (Technical conditions.) There are at least max{3, u} meetings, where u is the minimum
number of meetings parameter of Algorithm 1. The period T is not shorter or longer
than the range of periods considered by Algorithm 2 (periodicity). The duration [ is
shorter than half the shortest period considered by Algorithm 2, and also no longer than
the duration | of Algorithm 3 (synchronization).

o (Quantifying well-behavedness.) The following inequality holds, where 1 = Nyax/Mmin,
p="n_/Nmin and 6 < % is the threshold used by Algorithm 2.

2l 2 —1
>max{5, 5p, 2L (1 +GM)} (5.1)
T p+1

e (*) The timeline behaves like a step function, in the following way: each tweet happens
at the beginning of a second,; the number of tweets at each second of the j-th meeting is
A; = n;/l; and the number of tweets at any second which is between meetings is exactly

Ao=n_/(Tt—=1).

Consider a modified (**) version of Algorithm 2 which computes autocorrelations exactly
(using Equation (4.4), §4.1.2). Call this Algorithm 2°, and the resulting group chats algorithm
Algorithm 1°. Then, Algorithm 17 will accept this chat as a group chat. It will also return
the correct meeting start time to within [, and will report the correct period T with error of at
most | + €, where € is the largest difference between two adjacent periods considered by either
the Fourier or autocorrelation parts of Algorithm 2.

Note 1. The parts marked (*) and (**) are added to simplify the proof. We believe a version
could be proved which does not have the step function condition (*) and applies to the true
Algorithm 1 (**). (§5.3.1 contains the only results that depend on (*) and (**).) Although
modifying the algorithm to compute autocorrelation exactly makes the proof simpler, it also
forces us to impose a strong condition on the timeline of tweet rates for the given hashtag. As
noted in Section 4.1.3, the timeline of a typical chat will have an exact autocorrelation which
1s very close to zero, because the tweets in adjacent meetings will rarely be emitted exactly
one pertod apart. This is why we are forced to assume the timeline follows an unnaturally
rigid structure. The approximate autocorrelations computed by Algorithm 2 do not suffer
from this problem, because they are computed using Fourier coefficients only for frequencies
of at most twice per day, and are therefore insensitive to variations on the order of half a
day or less.
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Note 2. To interpret (5.1), note that that for a very strongly-structured group chat, we can
expect 1 to be close to 1 (meaning all meetings have similar attendance), p close to 0 (the
group’s hashtag is rarely used outside meetings), and l/T to be quite small (meetings are short
compared to the time between). Therefore the left side of the equation will be about 1/2, and
the right side will be about max{d, 1/4}.

We defer the proof to Section 5.3.

5.2 Algorithm 1 rejects non-group chats

We next show that, with high probability, our algorithm will reject hashtags that are not
cohesive, or are obtained from generative models representing non-synchronized or non-
regular hashtags. As our algorithm explicitly rejects non-cohesive hashtags, we focus on the
two generative models.

5.2.1 Non-Synchronized Hashtags

We begin by describing a random process that captures the rhythm of a typical non-
synchronized hashtag. Our observations suggest that a typical hashtag has a daily cycle
where its usage increases during waking hours and declines during sleeping hours. Such a
hashtag has no short (3 hour) time window where a large fraction of weekly messages are ex-
changed — for example, see the charts of average Twitter activity compiled by Pingdom [54].
We call the timeline of such a hashtag diffuse:

Definition 5.3 ((v,()-diffuse). We say a probability distribution p over an interval [a,b] is
(7, 1)-diffuse if there is no length-l sub-interval I = [t,t + ] such that Pr, ,jx € I| >~. A
function u : R — R2% is (v,1)-diffuse over an interval [a,b] if the normalized distribution
w/ <fab,u(t)dt) is. Similarly, we say a timeline t, ..., t, € la,b] is (7,1)-diffuse if at most

ym messages lie in any length-l subinterval [t,t + .

For example, when the period 7 is longer than the time between the first and last tweets,
Algorithm 3 accepts exactly those timelines that are not (v, [)-diffuse.

Definition 5.4. In the non-synchronized model, messages are generated according to a
Poisson process with a varying rate \(t). We assume that A(t) is periodic over an interval
[0,T] with a period of one day, and is (v*,1*)-diffuse over every 1-day-long subinterval of
0,77, for any v* < /2 and I* > .

5.2.2 Non-Regular Hashtags

The next random process captures non-regular hashtags that do not have periodic meetings
but have a fixed rate of meetings on average.
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Definition 5.5. In the non-regular model, meeting times p,. .., pm € [0,T] are sampled
according to a Poisson process with a fived rate . Within the j-th meeting, N messages are
emitted in the range [p;, u; +1] (the exact times are allowed to be arbitrary and non-random,).

5.2.3 Theorem Statement
We state the theorem below and defer the proof to Section 5.4.

Theorem 5.6 (Soundness of Algorithm 1). Suppose a set of messages for a hashtag is
generated from the non-synchronized model (Definition 5.4), from the non-regular model
(Definition 5.5), or does not satisfy cohesion (§4.4). Then Algorithm 1 will reject it with
probability approaching 1 as T — 00, so long as the smallest candidate period T, s at least
one half day and the duration [ is less than YT /3.

5.3 Proof of Theorem 5.2 (Completeness of
Algorithm 1)

Notice that Definition 5.1 requires immediately that the any well-behaved group chat pass
the cohesion test, and the theorem statement requires that the number of meetings is at
least the minimum of p required by Algorithm 1. Further, any well-behaved group chat
will pass the test for being synchronized: Algorithm 3 will accept the chat because 5(0) >
MNin/ (MNpin + (M —1)n_) > 7. The only real difficulty is in showing that (the modification
of) Algorithm 2 will accept the timeline of tweets. Lemma 5.7 completes this last step, and
the remainder of this section is devoted to its statement and proof.

Lemma 5.7 (Correctness of Algorithm 2). Let t, be a timeline satisfying the hypotheses of
Theorem 5.2. Then the periodicity score of the correct period is at least

S(t) > (20711 — 27l/T — 2p) (5.2)

and for any period T > for which |T" — 7| > 1, the periodicity score is at most

2rl n? n+p—1
N < L I ,
S(T)_max{?)p, - + 1 <1+6 P (5.3)

Proof. The periodicity score of a period S(7) is the product of two terms, which we analyze
in Sections 5.3.2 (Fourier) and 5.3.1 (autocorrelation). The lower bound (5.2) on the true
period’s score follows from Lemmas 5.8 and 5.13. The bound (5.3) on the scores of other
periods 7’ is proved in cases. For 7 € [I,7 — ] U [T + [,27 — [], Lemma 5.9 gives S(7') <
A (7)I/A(t)(0)] < 3p.

The remaining case is that 7/ > 27—[. We begin by approximating the term s = 2| sin 77|
from the statement of Lemma 5.14, where £ = 1/7'. By the concavity of the sine function
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on [0, ], we have sin g > ¢ for ¢ € [0,2]. So for 7/ > 27 —1 > 37/2, we have s > 2r /7', If
7' > m7, then by Lemma 5.10 the periodicity score is zero. Otherwise,

m—7/T\ | m—7/T\ T _m
ALV I I S A B
m - m 2r — 8
since the middle quantity takes its maximum value at 7 = (m/2)7. So by Lemmas 5.10 and
5.14,

Ft) WAL 20l |, (m=7)r\ (2570 3 nip—1
F)ONA )] 7 *”( m )(m MRS )
2ml of(1 3 n+p-—1

1 (zﬁaﬁ)-

5.3.1 Lemmas about Autocorrelation

Here we state results which say that the autocorrelation of the true period is high, and that
the autocorrelations of certain other periods are low. We assume t;, satisfies the hypotheses
of Theorem 5.2. Recall that Theorem 5.2 assumes the autocorrelation is computed using
Equation (4.4) of Section 4.1.2.

Lemma 5.8.

Proof. Note that
[A(t)(0)] < MmN o + (m = 1)(7 = DAL

and

[A(tn)(T)] = (m = 1IN, + (m = 2)(1 — 1)AZ,
and that both (m — 1)IA2, /miIN2, and (m — 2)(7 — )A% /(m — 2)(7 — [)A\? are at most
1/2n%. 0

Lemma 5.9. Let 7/ > 0 and assume that if we shift the timeline t;, by 7', then no meeting
in the unshifted ty, will overlap any meeting in the shifted ty,. Then

AW 2mp
A (0)] = m—

Proof.

S 2ngn_(1+n_/n))
T—1

Z 2ANA_ 4 (m —1)(1 — 2)A\% <
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but
je1 n3(1+n_/n;)

7 —1

Atr)(0) =D 1IN+ (m—1)(7 = 1)A\2 > (mn: 1) 2

[ACtR) ()] 2 (m=1'/T
Lemma 5.10. For any 7" > 0, m < max{(),n <T> }

Proof. The intuition here is that only a (m — 7'/7)/m fraction of meetings can overlap
between the timeline ¢, and the same timeline shifted by 7'.

Let t,Tl/ =th1+7, ..., tha, +7 be the timeline ¢, shifted by 7/. Express 7’ as 7/ = k7 +¢,
where k is an integer and —7/2 < e < 7/2.

Note that the first k£ meetings in ¢, do not overlap t;/ at all, and that when a meeting
in t, overlaps a meeting in ¢] , they overlap for a duration of max{0,! — |e|}. Let t_ be a
timeline with exactly A\_ tweets at the start of each second from 0 to (m — 1)7 + [: then we
can decompose t, = t_ + (t, — t_), where ¢, — t_ has tweets at the rate of \; — A_ during
the j-th meeting and no tweets between meetings. The autocorrelation of ¢, is

Altn)(T) = A (7)) + Aty —t ) () + Cltp —t_,t ) () + Ct_, tn — t_)(7'),

where C(a,b)(7') is the correlation between a shifted by 7/ and b. Then it can be shown
separately that each of the four terms is less than or equal to max{0,n*(m—7'/7)/m}, which
completes the proof. O

5.3.2 Lemmas about Fourier Coefficients

Here we state analogous results to those in Section 5.3.1, but about Fourier coefficients. We
assume t;, satisfies the hypotheses of Theorem 5.22.

Given two timelines s; and sy, define their sum s; 4+ so to be the timeline consisting of
all tweets in both timelines. (If the timelines are disjoint sets, then their sum is simply their
union. If s; has three tweets and sy has four tweets all at the exact same time ¢, then s; + s
has seven tweets at time t.) Note that for any timeline s, F(s)(0) is the total number of
tweets in s.

Proposition 5.11 (Effect of noise). Suppose a timeline s is the union of two timelines s =
s++s—. Then, for any frequency &, we have | F(s)(§) = F(s4)(§)] < [F(s-)(§)] < [F(s-)(0)].

Lemma 5.12 (Effect of timing within meetings). Consider a timeline s consisting of «
tweets at times So, ..., S, and a distorted version s’ with tweets at times s, ..., s., where
Vjls; —sj| <. Note that F(s)(0) = F(s')(0). (Think of s with tweets at starts of meetings,
and s" with tweets throughout meetings.) Then, for any frequency &, |F(s)(§) — F(s')(§)| <

2mléa.
2Just within this section, we need not assume the hypothesis (*) that the timeline t; looks like a step

function: the n; tweets within the j-th meeting may be distributed through the duration-/ interval in any
way, and the tweets between meetings may be distributed in any fashion as long as there are n_ of them.
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Proof. Changing the time of a single tweet from s to s’ changes its contribution to the Fourier
coefficient F(s)(€) from =275 to e~2™5'¢ an absolute difference of at most 27|s — &'|¢. The
total difference is at most the number of tweets « times this. O

Combining Proposition 5.11 with Lemma 5.12, we have:

Lemma 5.13 (The correct Fourier coefficient).
|F(tp)(1/7)| > (1 = 27l/T — 2p)a
where a is the number of tweets.

Proof. Let ), consist of just the tweets during meetings, and ¢;_ the tweets between meet-
ings. Now, construct a new timeline ¢}, as follows. Start with ¢, and move each tweet to
the start of its meeting: if a tweet happened at time j7+ ¢, where 0 < € < [, move it to time
J7 instead. Then |F(t},,)(1/7)| is the number of tweets that occurred during meetings. Call
this number mn,. By Lemma 5.12, |F(tpy)(1/7)| > mny — 27ing /7 = (1 = 27l/T)mn..
By Proposition 5.11, |F(tz)(1/7)| > (1 —2nl/7)mn, —mn_. Note that mn, > a/(1+p) >
a(l —p) and mn_ < pa. O

Finally, we show:

Lemma 5.14 (The wrong Fourier coefficients). Let £ be any frequency, and let s = 2| sin w7€|.
Then,
| F(t0)(6)] < Nanin (27LEM + 257) + m(Nnax — Nanin) + (M — 1)n_.

In particular, if m > 3, then

|7 (tr) (6]

F(in)0) <2mlE+2smT +3(n+p—1)/2(p+1).

Proof. We will replace t;, by a simpler version tzimple. This version will have no tweets between

meetings. Every meeting will have the same number of tweets nyi,, and all every tweets will

happen at the start of its meeting. The Fourier coefficients of ts,fmple behave well, and we can

relate tijmple to t;, using Proposition 5.11 and Lemma 5.12.
Like in the proof of Lemma 5.13, let ¢, consist of tweets during meetings and t¢j_
the other tweets. Now, change ¢, to have ny, tweets in every meeting, by arbitrarily

removing tweets from meetings that have more. Call the resulting timeline ¢;_, and let

tP® =ty — th,. Notice |F(t55)(0)| < m(nmax — Mmin). Now, let tzimple consist of N

tweets at the start of each of the m meetings. By Lemma 5.12, |F(t5,)(€) — F(£™)(€)]
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< 2mlémmy,;,. Fourier coefficients of tijmple are geometric series:
. m m
|.F(ti;mple>(§)| — Z nmine—Qm(kT)E — Ny Z(e—erg)k
k=1 k=1
= [(e=?mm)mt — 1] 2Nmin _ 2Nmin
=Mmin ‘67271'1'7'5 — 1’ - ‘67271'1'7'& _ 1’ - s

Then |F (¢, )(§)] < nmin(27l&m + 2571). By Proposition 5.11, |F(t5)(§)| < nmin(27lEm +
2571) + m(Nmax — Nmin) + (M — 1)n_. O

5.4 Proof of Theorem 5.6 (Soundness of Algorithm 1)

Algorithm 1 explicitly rejects hashtags that do not satisfy the coherence property. What
remains is to show is that the algorithm rejects with high probability a set of messages
generated from the non-synchronized model or from the or non-regular model. The following
lemma is key. For a rate function A(t), let [A|; = [75_ A(¢)dt.

Lemma 5.15. Suppose A(t) is (71, 11)-diffuse on an interval [0,T], and v2 > v and ly < .
If a set of events {t1,...,ty} is sampled with a Poisson process of varying rate \(t), then
the set is (o, l2)-diffuse with probability 1 — O(1)2= M) (The coefficients in the O and
depend on 1, Yo, l1/T and l5/T.)

We will first prove the theorem from the lemma, and then prove the lemma.

5.4.1 Proof of Theorem 5.6 given Lemma 5.15

We wish to show that Algorithm 1 will reject with high probability any chat generated
from the non-synchronized or non-regular model. It is enough to show that Algorithm 3,
which checks for synchronized meetings, rejects such chats. Once Algorithm 2 has decided
on a period 7" > T, we will think of Algorithm 3 as having two parts. First, a hashtag’s
timeline is compressed with period 7’: each message time t; is replaced with a message time
0 <t < 7' by subtracting an integer multiple of the period 7’. Second, the algorithm checks
whether the resulting timeline (¢}) is (v, 1)-diffuse, and if so, classifies the hashtag as a non-
group chat. We begin with a lemma quantifying the effect of this compression step on the
diffuseness of a timeline.

Lemma 5.16. Let tq,...,t, be a timeline which is (v/[T/7"|,1)-diffuse over the interval
[0,T]. Given a period 7', consider the compressed timeline which replaces t; € [0,T] by
t. € [0,7'), so that t; — t; is a multiple of 7. Then the compressed timeline t|, ... t. is
(7, )-diffuse.
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Proof. Given any length-/ interval I in [0, 7'], any tweet that lands in I after the compression
step must have come from an interval equal to I shifted by an integer multiple of 7/. There
are at most [7'/7'] such intervals which overlap [0,7], and each such interval contains at
most v/[T/7"|a tweets. O

Non-synchronized model To see that Algorithm 3 rejects chats generated from the non-
synchronized model, first notice that the rate function A(¢) is (v*/[s], {*)-diffuse where s is
the number of days that the interval [0, 7] overlaps. Then apply Lemma 5.15 to see that
with high probability, the timeline sampled from A(t) is (v**/|s],)-diffuse, taking +** to
be some value strictly between v/2 and +*. Then by Lemma 5.16, for large enough 7" the
timeline is (v, [)-diffuse after the compression step, since the period 7" used by the algorithm
is at least one half day. Therefore Algorithm 3 rejects the timeline.

Non-regular model To see that Algorithm 3 rejects chats generated from the non-regular
model, notice that if a set of meeting start times is (v, 2[)-diffuse, then the set of tweets in
the meetings themselves must be (v, [)-diffuse. This is because any tweet that falls in an
interval [a,a + [] must come from a meeting that started in the interval [a — I, a + {]. Since
the constant function is ((2{ 4 €) /T, 21 + ¢)-diffuse on [0, T] (take € = 0.1), Lemma 5.15 gives
us that with high probability, the meeting start times are ((2/+ 2¢)/T, 2)-diffuse, and so the
tweets themselves are ((21 + 2¢) /T, )-diffuse. Since by assumption 7 > /37, Lemma 5.16
gives that for large enough 7" the compressed timeline is (7, [)-diffuse, so Algorithm 3 rejects
the timeline.

5.4.2 Background for proving Lemma 5.15

Proposition 5.17. Consider a non-homogeneous Poisson process with rate parameter A(t).
Let I C [0,T] be an interval. Let Ny be the number of events that occur in I and Ny the
number that land in [0, T|\ I. Then Ny and Ny are independent Poisson-distributed random
variables, of rates [, X and f[O’T]\I X, respectively.

Proof. For example, Ross [59] states that a non-homogeneous Poisson process has an inde-
pendent number of events in disjoint intervals, and that the number of events in an interval
(a, b] is a Poisson-distributed random variable with rate fab A(t)dt O

Lemma 5.18. Let Ny and N5 be independent Poisson-distributed random variables of rate
A1 and Ay, respectively. Let N = Ny + Ny and A\ = Ay + Ao. Take any ¢ > 0. Then
Pr[Ni/N > M\ /A + € < e N+ (2/e)V2.

Proof. Consider the following random process. First, sample a random variable N from
the Poisson distribution with rate A. Then, flip a biased coin N times: each time, with
probability A;/A, the coin says “type 1”7, and otherwise (probability As/A) it says “type
2”7, Let N; be the number of type-1s, and Ny be the number of type-2s: in other words,
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Ny ~ Binom(N, A\ /A) and N = N — N;. As argued in [24, Section 2.3.1], the resulting
N; and N, are independent Poisson random variables with rate A\; and Ay, which is exactly
what we assumed in the hypothesis of the lemma: so henceforth we will assume N; and N,
were generated through this process.

Now, conditioned on any particular value N = n, we can apply a Chernoff bound:
Pr[Ny/n > M /A + €[N = n] < 2", This implies Pr[N1/N > A\ /A +€|N > \/2] < e,
To complete the proof, note that Pr[N < A/2] < (2/e)*/?) [69, Other Properties|. O

5.4.3 Proof of Lemma 5.15

The proof is in three steps

1. Given any length-/; interval I C [0, 7], we show that with high probability the fraction
of events that land in I is less than ;.

2. We define a sequence of overlapping intervals Iy, ..., I; C [0,T], each of length /;. By
a union bound, the fraction of events in any of these intervals is less than v, with high
probability.

3. Every possible length-l5 subinterval of [0, 7] is contained in one of the intervals [;, and
thus contains less than a 7, fraction of events.

Step 1 Given a length-/; interval I C [0,7], let J = [0,7]\ [ and A\; = [; XA and \; =
J; A =|A1—Ar. By Lemma 5.17, the number of events that land in I and .J are independent
Poisson-distributed random variables with rates A; and A, respectively. Since A(t) is (71, {1)-
diffuse, A;/|A|1 < 1. Apply Lemma 5.18, taking € = 5 —: then with probability 27%(1),

the fraction of all tweets that land in [ is less than A;/|A|; + € < 7s.

Step 2 Let d =10 —ly and n = [T/6]. For i =0,...,n, let [; = [id,id + [1]. By a union
bound, with probability O(1)27*(A1) no interval gets more than a v, fraction of all tweets
(if we allow the constants in the O(-) and the (+) to depend on I, /T and l5/T.

Step 3 Now, given any length-ly interval I = [a,a + lo] C [0,T], let i* = [a/d]. Notice
that interval I;« begins before a but after a — §. Since [+ is longer than I by ¢, it follows
that I C I;=. Thus in the (high probability) event that every interval I; gets less than a 7,
fraction of tweets, we see that every length-l, interval gets less than a 7, fraction of tweets,
so the sampled timeline is (79, lo)-diffuse. O
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Chapter 6

Qualitative Observations

In the course of our study, we read the transcripts of many meetings of various group chats.
Here are some things we learned.

6.1 Progression of a Group Chat

Many group chats on Twitter have a common structure. Every meeting has a moderator
who keeps the discussion on track. The nature of Twitter does not allow the moderator
to stop people from posting messages, as is the case in some other contexts. Instead, the
moderator plays an active role in the conversation. They will often ask questions at regular
intervals through the chat, to keep the conversation moving and on topic — the moderator’s
first question begins “ql: ...” and participants answer with “al: ...”. Some of the more
successful moderators are able to attract guest tweeters, who are typically celebrities in the
group’s area of interest. For example, a wine chat meeting featuring the celebrity Rodney
Strong was well attended. Some chats have web pages announcing the topic of the next
meeting, together with archives of previous chats. Moderators also remind frequent members
of each meeting before it starts, remind participants to add the group’s hashtag to each tweet,
and close by thanking everyone for a successful chat and announcing the subject of the next
chat.

6.2 Support Groups

We found the existence of support groups quite surprising. One typically associates support
groups with a small number of people sitting around a circle, announcing their name and
telling their story. It is hard to imagine giving or receiving support in 140 characters!
But, with the same people meeting week after week, getting to know each other better, the
platform has proven to be a place for support. Paraphrasing from a mental health chat, users
state that social media enables them to access a support network, both those they know in
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real life, as well as online contacts. They add that having a child with autism spectrum
disorder is very isolating.

Support groups are successful for a variety of reasons. Empathy is the driving force,
with users stating that “there is a family of us out there”. In contrast to offline groups, the
success of some online support groups can be attributed to the pseudo-anonymous online
communication that is more comfortable than physical group meetings. For example, people
say that they find group sessions hard, and that they hate opening up in front of others.
In our experience as observers, we often felt that we had accidentally walked into a room
full of people sharing personal experiences, but no one seemed bothered by the fact that
anyone could hear what they were saying. In some cases finding others who are in a similar
situation is challenging. For example, one user knew no one else in the same state who was
transgendered, but was able to find a community online.

6.3 Hobbies

Passion-related groups are also quite fascinating. In Movie Talk on Sunday, a moderator
pre-selects a theme — for example, suspense movies — and posts 10 questions ahead of time
on a website. The moderator tweets a question every ten minutes, and participants tweet
answers to the questions. The moderator and members retweet the answers they like. In
this group, participants derive value from the discussion. For example, we found evidence of
a user who decided to give the movie Cabin in the Woods a second try because so many in
the group felt it was the best movie of the summer of 2012. We also found evidence of two
users now dating after meeting in a group chat.
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Chapter 7

Experiments

We present the results of running our algorithm on more than two years of Twitter data.
We begin with a description of our data set and pre-processing (§7.1). We then describe
the parameters we chose for the group chats algorithm (§§7.2,7.3). In the following sections,
we present our experimental results. We study how often groups typically meet and how
many members attend each meeting, and to understand the topics of discussion, we sample a
subset of group chats and report on the distribution of categories using a popular taxonomy
(8§7.4). We observe that the number of living group chats has grown over time (§7.5). We
conclude with some limitations of our method (§7.6).

7.1 Experimental Setup

Our experiments are based on more than 28 months of English-language tweets starting in
September of 2010. To work with data at this scale (several petabytes) we implemented our
algorithm in the SCOPE language [13] and used a large distributed computing cluster. We
first obtained the set of all distinct hashtags used in this timeframe, and the timeline of tweets
associated with each hashtag. We removed hashtags which were used in less than 20 tweets
or by less than 10 users over the duration of the experiment. Then we used Algorithm 1 to
determine which hashtags were group chats, as described in the next sections.

7.2 Determining the Periodicity Threshold

Algorithm 2 (§4.1) produces a period and periodicity score for every hashtag, and drops the
hashtag from further consideration if the score is below a threshold d. In order to determine
this threshold, we manually labelled several hashtags as periodic and non-periodic by looking
at the timeline of tweets for each one. A uniformly random sample of hashtags would favour
hashtags with scores between 0 and 0.1, because most hashtags are not periodic. We therefore
drew a stratified sample with five hashtags with score in between 0 and 0.1, five with scores
between 0.1 and 0.2, and so on. The result of this manual tagging is shown in Figure 7.1
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where the binary label of the hashtag is shown on the z-axis (1 denotes periodic) and the
periodicity score is shown on the y-axis. There is a good separation between the periodic and
not periodic hashtags when the score is set to }L. We also computed the F-measure (harmonic
mean of precision and recall) for different choices of the threshold, and confirmed that the
maximum is achieved at § = %. We then kept all hashtags with a periodicity score > 4—11.
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Figure 7.1: Result of manually labelling a stratified sample of hashtags: 1 denotes periodic
and 0 not periodic.

7.3 Finding Group Chats

Next we describe how we found the group chats.

We selected all hashtags with periodicity threshold at least }p as justified above, and
removed those that met less that ¢ = 5 times. For each remaining hashtag, we checked
whether there were meetings which took place at a consistent time (§4.3). We set the
maximum allowed duration of a meeting [ to be two hours and the synchronization threshold
v to be 0.2. These choices require a sizable fraction of tweets to appear within two hours of
the meeting start time.

Finally, we eliminated hashtags without cohesion (§4.4). For each candidate hashtag,
we found the k£ = 5 users who participated in the most meetings, and determined whether
the average number of pairs among those k£ users who interacted in a meeting was at least
1 = k — 1. This structure is realized by, for example, a moderator that routinely converses
with £—1 other members. Note that ¢» > k—1 does not guarantee connectivity, but v < k—1
guarantees disconnectivity — for example, it could reflect a group that is just forming or
dissolving or simply not cohesive.
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After running Algorithm 1, we were left with 1.4K groups involving 2.3M users (counting
each user multiple times if they participated in multiple group chats). These are the subject
of our study.

7.4 Group Chat Analysis

We show the distribution of periods for group chats in Figure 7.2. About 80% of the group
chat hashtags had a period of one week. However, there are some that meet every day (e.g,
those tied to daily radio shows) and some that meet biweekly. For the rest of this section,
we restrict our attention to group chats with a period of one week.
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Figure 7.2: Distribution of periods of hashtags with periodicity score at least }1.

Next we show the average number of users per meeting in Figure 7.3. For each group,
we computed the average meeting attendance over the course of our data collection. The
histogram shows the number of groups that have an average number of users in the range 10-
20 users, 20-30 users, etc. Interestingly, we find that most groups have less than 30 members
per meeting. Generally speaking, when a group grows too large, the real-time chat becomes
more difficult to follow. This is not to say that large groups do not exist. There are cohesive
group conversations tied to TV shows that have a very large number of users.

To understand the types of groups we found, we randomly sampled 10% of the recent
group chat hashtags and manually categorized the hashtags into the top-level of the Open
Directory Project (ODP) taxonomy. We were able to find categories for 95% of the group
chats based on recent tweets. Table 7.1 shows the fraction of group chats that we assigned
to each category. A large fraction of the groups are Arts related, including groups tied
to weekly TV shows, radio shows, book clubs, craft clubs, and so on. Science is the next
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Figure 7.3: Meeting size: Average number of users per meeting. Most group meetings have
a small number of participants.

largest category, with education chats dominating the category. In these chats, teachers
discuss ways to be more effective educators. There is also a large number of Health-related
groups including support groups for coping with addiction and borderline personality disor-
der. There are group chats in the Business category discussing ways to prevent fraud (for
example, against seniors) and how to be a digital leader. A small number of groups conversed
in languages other than English; this was one way to end up in our Don’t Know category.
(We restricted to English tweets only, but some groups communicate in multiple languages).
In the remaining categories, there are sports enthusiasts and foodie groups. Finally, there
are contest-driven chats where the goal is to give away a prize to the person who can answer
the most trivia questions.

7.5 The Number of Group Chats over Time

Finally, we ask whether group chats are a growing or shrinking phenomenon on Twitter. To
answer, for each weekly group, we computed the birth date of the group by finding the first
weekly meeting during which at least 10 members tweeted, and similarly the death death
of the group by the last weekly meeting where at least 10 members tweeted. We computed
the cumulative number of births and deaths over time, and considered the difference to be
the number of living groups. The chart is shown in Figure 7.4. We found that the rates of
births and deaths have both increased over time, and that the net number of living groups
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Category % Groups | Examples

Arts 47% TV /Radio, Writing, Music, Crafts
Science 12% Education, Agricultural

Health 10% Addiction, Self-help, Mood Disorder
Business 9% Preventing Fraud, Digital Leaders
Don’t Know | 5%

World 5% Foreign

Sports 3% Basketball, Soccer

Society 3% Better blogger, Rights activist
Recreation | 3% Foodie

Games 2% Prize-driven

40

Table 7.1: Category distribution of 10% random sample of Twitter weekly group chats.

has grown. We do not understand what causes a group to grow or to die, but it is a good
subject for future work.

Since our data is restricted to a time window, we could not accurately find the birth date
of a group that was born before the window, and if a group was born later and did not have
five meetings before the end of the window, we did not find the group. To account for this,
we threw out the first and last few months of our computed timelines of births, deaths, and
net living groups.
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Figure 7.4: The top curve shows the number of weekly group chats born over time, the
bottom curve shows the number that died over time, and the middle curve shows the number
of weekly living groups over time.
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7.6 Limitations

While our methods do indeed find group chats, we know that there are some group chats
that we miss. For example, groups that meet the first Monday of the month are not found
by our method because the separation between meetings could be either four or five weeks.
If a group misses many meetings, it may be difficult for our method to find. For example,
ski chats are typically on hiatus over the summer. Other group chats that we miss have
irregularly spaced meetings: for example, users might agree on each meeting time at the
end of the previous meeting. Also, since our algorithm ignores tweets without the candidate
group chat hashtag, we overlook conversations that happen between users outside the context
of the group chat. Finally, analyzing an ambiguous group chat hashtag such as #tchat would
require teasing out the group chat uses from alternate uses of the hashtag.
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Part 11

Ranking Discussion Groups

In which we develop a search algorithm to rank discussion groups relevant to a query
topic, based on a model of a user browsing a set of related discussion groups; and in which
we evaluate the performance of this algorithm both theoretically and experimentally. We
hope this algorithm will help users interested in discussing a topic find discussion groups,
such as Twitter chats, of which they might not have been aware.

This part includes material from Ranking Discussion Groups, co-authored with Abhi-
manyu Das, Krishnaram Kenthapadi and Nina Mishra, and submitted to the 2014 SIGKDD
conference.
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Chapter 8

Problem Formulation

Consider any setting where there are many groups g1, ..., g, which meet often to discuss
various topics. Our goal is to help a user with a topic of interest (the query) to find a relevant
discussion group in which to participate. It is our hope that such an algorithm will help
people to find others with similar interests, and give them a place to ask questions and share
stories.

8.1 Discussion Groups

We begin be describing the kind of group we seek. Since we wish to find a place for our
user to have discussions, we restrict our attention to groups that have proved themselves by
holding meetings in the past:

Definition 8.1 (Discussion group). A meeting is a span of time at most w hours long during
which at least a ~y fraction of all of the group’s interactions in a specified time period happen.
A collection of meetings constitutes a candidate discussion group if there have been at at
least m different meetings.

In other words, a discussion group should have many discussions that last for some short
period of time, typically one or two hours.

8.2 Problem Statement

Given a query topic ¢ that a user is interested in, we have two closely related goals. First,
to understand which discussion group the user would choose to attend after spending some
time on their own exploring groups related to topic ¢q. Second, to develop an algorithm to
predict these preferences, in order to save time or to suggest discussion groups to a user who
would not otherwise embark on such an exploration.
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Problem 8.2. Given a query topic q, we wish to find a set of discussion groups gi,..., g,
relevant to q, together with a ranking on those groups: we say g; >4 g; if our algorithm
determines that group g; is preferable to g; in the context of topic q.

We also seek to understand what characteristics influence a user’s decision to prefer one
discussion group over another. To this end, we will investigate a variety of characteristics.

8.3 Twitter Interpretation

To interpret Definition 8.1 in the context of Twitter, we say that a meeting is a w-hour
window of time that contains at least a v fraction of all tweets sent during that week, and
a set of tweets forms a chat if there are at least m weeks that contain a meeting. We make
the simplifying assumption that every chat has a hashtag that is not used by any other chat
— this is usually the case in our experience. In this work, we set out to solve Problem 8.2,
taking Twitter chats as our set of discussion groups.
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Chapter 9
Model

To solve Problem 8.2, we propose a model called the group preference model for the process a
user (the seeker) interested in a topic ¢ might follow to choose among the relevant discussion
groups. The seeker begins by finding an arbitrary relevant group go. They then find a
participant py who holds some degree of authority in the group go. By looking at py’s profile
page, they look at the other discussion groups that py participates in, and choose a group ¢,
that py shows a preference for. The seeker continues alternating between discussion groups
and people go, po, 91, P1, - .. and eventually stops on one of the discussion groups.

An important feature of this model is that it makes use of social signals. This allows a
community of discussion groups and people around a topic to be boosted upward through
a feedback effect (§10.2). The model also satisfies several desirable properties described in
Section 10.1. See Section 2.1.7 for a comparison to some similar ranking models.

We begin our precise description of the model by describing in more detail the steps of
jumping from a discussion group to a participant and jumping from a participant to a group.

9.1 Authority Score A, ,(p)

After the seeker arrives at a discussion group g, they choose a participant to jump to ac-
cording to their authority score. The authority of different participants p within a group g¢
is quantified with authority scores A, ,(p) which form a probability distribution. The scores
could be determined in many different ways. As a first example, we could assign equal weight
to every person who has participated in g. Alternatively, we could assign weight proportional
to the number of followers, or the number of @-mentions received by the person.

9.2 Preference Score P, , ,(g)

After the seeker arrives at a participant p, they look at other discussion groups that person
has participated in and jump to one according to its preference score. For a query ¢ and
person p, the preference scores P, ,(g) of person p for different groups ¢ form a probability
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distribution. One straightforward way to determine P, ,(g) is to make it proportional to
the number of meetings of group g that p took the time to attend. We may also wish the
preference score to depend on the last group ¢’ that the seeker visited, in which case we add
¢’ as a subscript to the notation P, ,(g). For example, in Section 11.2 we describe our final
implementation, where the seeker never jumps to a group g if p is less active in ¢ than ¢'.
However preference scores are determined, it should be the case that }° P, (g) = 1 for
every p and ¢'.

9.3 Teleport Distribution D,

After each step, with some probability A € (0,1) the seeker will decide to cut short their
current exploration, and choose a new random discussion group to start from. For example,
in the context of Twitter, the seeker might use T'witter’s search feature to find a new potential
group. This is analogous to the teleportation step of PageRank, where the surfer sometimes
jumps to a uniformly random web page. The probability distribution the seeker uses to
jump to a new discussion group is a parameter of our model, called the teleport distribution
D,, and is generally a probability distribution over discussion groups relevant to the topic
q. D, plays the same role as the preference vector in personalized PageRank [52, 34]. As
with PageRank, one simple choice is to set D,(g) = % for every relevant group g, where n
is the number of such groups. Alternatively, we may wish to capture the notion that the
seeker is more likely to start at discussion groups which are more strongly relevant to the
topic ¢. In the context of Twitter, we could set the teleport probability D,(c) of a chat ¢
to be proportional to the number of tweets in chat ¢ where ¢ is mentioned divided by the
total number of tweets in chat c. However D, is determined, it should be normalized so that
the sum of probabilities is one. We require D,(g) > 0 for every relevant group g in order to
ensure that the model gives a well-defined solution, in a sense that will become clear when

we describe our algorithm in Chapter 10.

9.4 The Group Preference Model

Given a query ¢, the seeker follows this process, which is parameterized by a teleportation
parameter A € (0,1).

1. Choose an arbitrary starting group g.
2. Select a participant p at random using the probability distribution A, ,(p).
3. Select a group ¢’ at random using the probability distribution P, , ,(g’).

4. With probability A, sample a discussion group g from the teleport distribution D,, and
go to step 2.
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The Seeker Authority Scores in #sprocketChat
#sprocketChat“ » @alice

#talkSprockets @bob

#sprockz Qcarol

@bob’s Preference Scores

#sprocketChat Q@alice

#talkSprockets @bob

#sprockz Qcarol

Figure 9.1: The first steps of the group preference model in the context of Twitter. Starting
from a random chat (#sprocketChat), the seeker jumps to a random user according to
authority scores in that chat, and then to a random chat according to that user’s preferences.
Whether or not real users follow this process, we find it useful for ranking chats.

5. Otherwise, go to step 2 using ¢’ as the new g.

Eventually, the seeker stops and chooses the discussion group that they most recently jumped
to. Figure 9.1 illustrates the first three steps of the process in the context of Twitter. We
do not know whether real users follow this process, but we find the model useful as a basis
for our algorithm.



48

Chapter 10

Algorithm and Analysis

We now describe our algorithm for solving Problem 8.2 using the group preference model.
The key observation is that even though the seeker visits both discussion groups and partic-
ipants, the model can be represented by the following Markov process over just the groups
with transition probabilities M(q)g, 4, computed as follows:

M(q)gy,9, = ADqg(g2) + (1 = A) Z Agg0 (D) Py p.gi (92) (10.1)

peU

where n is the number of relevant groups and U is the set of people who participate in any
such group. Each transition probability M(q),, 4, in (10.1) is then equal to the probability
that the seeker lands on g, given that the last group they landed on was ¢g;. To understand
why this is true, note that the seeker can land on g, either by (a) landing on a participant with
a positive preference for g, or (b) teleporting directly. Case (b) happens with probability
AD,(g2), where D,(g2) is the teleport distribution parameter of the model. To compute
the probability of (a), note that the probability of arriving at g, through a participant p is
(1—=X)Ay g (P)Pypgi (g2), and sum over all participants p. Notice that every query ¢ gives rise
to a different Markov process, and that M(q) is regular so long as A > 0. (If we generalize
to an arbitrary teleport distribution D,, this is why we require (§9.3) that every probability
is positive.)

Given a query ¢, our algorithm (see Algorithm 4) is then to compute the stationary
distribution of M (gq) and rank the discussion groups by their stationary probabilities.

10.1 Properties of Algorithm 4

At first glance, it is not obvious that Algorithm 4 will behave in a reasonable way. The
stationary distribution of a Markov process can change in unintuitive ways as a result of
changes to the transition probabilities — for example, increasing a transition probability to
a state s can increase the stationary probabilities of many other states, and when ) is close
to 0, it is possible for a small change to have a large effect. In this section, we show that our
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Algorithm 4 Rank discussion groups for a query topic gq.

Parameters: Teleport parameter A € (0,1); authority and preference score functions
Aq g, Pypg; teleport distribution D,,.

Input: A set of candidate discussion groups (Def. 8.1); a dataset of group interactions; a

query g.
Output: A ranking of groups relevant to topic gq.
1: Find all groups g1, ..., g, where the topic ¢ is mentioned in some group interaction.
2: Compute the authority and preference scores and teleport probabilities A, 4(p), P, .4 (9),
D,(g) for every g, ¢, p.
3: Compute the stationary distribution 7 of the Markov process M (q) defined in (10.1).
4: return The groups ranked so g1 >, g2 iff 7(g1) > 7(g2).

algorithm has several simple properties desirable of any ranking algorithm: for example, if a
participant shows an increased preference for a discussion group g, then ¢’s ranking will not
be negatively affected (Theorem 10.5). We omit some proofs because of space constraints.

Our first property describes what happens when every participants prefers one group ¢,
over another go. The property holds when the teleport distribution is uniform, or at least
doesn’t favour g, over g;.

Theorem 10.1. If for topic q, every participant always assigns a higher preference score to
group g than gz, and go doesn’t have a higher teleport probability, then g1 >4 ga.

Proof. The proof is guided by the intuition that whenever the seeker is at a participant, the
next group they jump to is more likely to be g; than g,. Looking at (10.1), we see that for
every group g, M(q)gq > M(q)yg,- It follows that after one step of the Markov process,
the seeker is more likely to end up at group ¢; than go — in particular, taking 7 to be the
stationary distribution, we have (7M(q))(¢g1) > (M (q))(g2). Since m = wM(q), we have
7(g1) > 7(ga), so the algorithm will rank g; >, go. O

Instead of comparing two groups, we can describe what happens when every user’s pref-
erence for a single group ¢, is high. This property holds when the teleport distribution is
uniform.

Theorem 10.2. Suppose that for topic q, every participant has a preference of at least «
for group g1, regardless of the previous group ¢'. If the teleport distribution D, is uniform,
then no more than 1/« — 1 other groups will be ranked higher than g.

Proof. First, notice that the stationary probability of ¢, is at least v = )\% + (1 — A)a. This
is true because, looking at (10.1), M(q),.4, > 7 for every group g. It is not possible for more
than 1/a groups to have a stationary probability as high as v: otherwise, the sum of all
stationary probabilities would be more than nA: + (1/a)(1 — Ao = 1. O
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The remaining properties restrict how the algorithm’s ranking can change if the input
data changes. In each case, we will consider two datasets T° and T” of discussion group
interactions. We will assume the preference or authority scores which result from these
datasets (§§9.1,9.2) differ in some small way. Notationally, we will add T" as a parameter to
the authority and preference scores Ar,,(p) and Pr g, o (g); the teleport distribution Dy g;
the transition matrix M (T, q),, 4,; and the resulting judgments ¢ >g go.

Next, we show that the if we add to the dataset a new participant who shares a preference
with all the existing participants, that preference will continue to be reflected in the new
ranking. Also, if we add a participant with a preference of o for a group ¢g; to a dataset
where all existing participants have such a preference, then g; will continue to be ranked in
the top a.

Corollary 10.3. Suppose that in T, every participant always assigns a higher preference
score to g1 than go and go doesn’t have a higher teleport probability. If the only change from
T to T' is the addition of a new person p, who also prefers g, to go (teleport probabilities,
and preference and authority scores not involving p., are unchanged) then g >§/ ga.

Similarly, suppose that in T, every participant assigns a preference of at least o to gy,
and the teleport distribution is uniform. If the only change from T to T' is the addition of a
new person who also has a preference of at least a for ¢v, then g1 will be ranked in the top
1/ groups.

This follows because the hypotheses of Theorem 10.1 or Theorem 10.2 are still true in
dataset T".

Our next two theorems will make use of a result by Chien et al. [14] about Markov pro-
cesses, that increasing the transition probability to a state at the expense of other states
cannot negatively affect that state’s ranking. We re-formulate their result to be more imme-
diately applicable to our setting.

Theorem 10.4 (Chien et al. [14, Theorem 2.9]). Fiz some state s;. Consider two reqular
Markov chains M and M’', and suppose that transition probabilities to states other than s;
are not increased. That is, for every sy # s1 and s3, M;_ . < Mg, 4, (and since rows sum to
one, Mg, g, > Mg, g,).

Let w and 7' be the stationary distributions of M and M’'. Then for any state sy, if
T, > T, then m, > m, .

Proof. For ©+ = 0,...,n, let P; be the transition matrix whose first ¢ rows are taken from
M(T',q) and whose remaining rows are taken from M (T, q). Let m; be the stationary dis-
tribution of P;, so mp is the stationary distribution of M (T, q) and 7, is that of M(T",q).
All of these matrices form regular Markov chains because of the positive term /\% in (10.1).
The matrix P41 can be obtained from P; by increasing the entry at (i, ;) and decreasing
the others — so by Theorem 10.4, if m; assigns a higher probability to g; then g4, then so
does m;; 1. Since this property is true of my, by induction, it is true for 7,. m
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Theorem 10.4 allows us to understand the consequences of various changes by studying
their effects on the transition matrix M (q). Our next two properties say that the algorithm
is monotonic in ways that one would expect: the rank of a discussion group g must not
decrease when a participant’s demonstrated preference for it increases (for example, because
they attended more meetings) or when an avid fan of the group gains authority.

Theorem 10.5. Suppose the only change from T to T’ is that participant p; shows an
increased preference for a discussion group g, and a decreased preference for other groups for
a given query q. That is: Priqp, g(91) 2 Prp.q(91) for all ¢'; Prrgp,g(9) < Prop..q(9) for
all g # g1 and all g'; and all other authority and preference scores and teleport probabilities
are unchanged. Then for any discussion group ¢o, if g1 >qT go, then gy >qu go.

Proof. Since the authority scores and teleport probabilities are unchanged, the Markov tran-
sition matrix (10.1) changes as Vhy, ho,

M(T/7 q>h1,h2 - M(T7 q)hl,hQ
=(1 =M Argn, (9)(Pr g (ha) = Prgpn (h2)).
peU

Now, Prs g pn, (ha) — Prgpn, (he) = 0 whenever p # py, so

M(TI7 q)hl,hQ - M(T7 q)hl,hz
:(1 - )‘)AT#]JH (pl)(PT’7q7p17h1 (hQ) - PT#Lphhl(h?))'

This quantity is nonnegative when hy = g; and nonpositive otherwise. So by Theorem 10.4,
if g >qT g2, then ¢; >z;/ go. ]

Finally, increasing the authority of group’s fan cannot negatively impact the group’s
ranking.

Theorem 10.6. Suppose participant p; has an exclusive preference for discussion group gi:
Prgpg(g1) =1 for all g. Assume the only change from T to T' is that py gains authority.
That is: Aqr q4(p1) > Arge(p1) for every group c; for every group g and participant p # p,
At 44(p) < Arq4(p); and all other authority and preference scores and teleport probabilities
are unchanged. Then for any group gs, if g1 >g g2, then g1 >Z’ go.

Proof. Notice that for any groups g and ¢’ where ¢’ # g1, and any participant p,
A1 46(P) Prgp(9') < Atg,4(P) Prgp(9)-

(For user py, this is true because p;’s preference for ¢’ is zero.) It follows that M (71”7, q), 4 <

M(T,q)g.q- So by Theorem 10.4, if ¢; >qT g, then g; > T",4. O

There are simpler algorithms than Algorithm 4 which also satisfy the properties in this
section. For example, the naive algorithm that ranks chats by the number of tweets con-
taining the query ¢ works. However, in Section 10.2, we describe a scenario showing an
advantage of Algorithm 4 over the naive algorithm. In Chapter 11, we evaluate the algo-
rithm experimentally.
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10.2 Comparing to the Naive Approach

Instead of using Algorithm 4, one could rank the discussion groups relevant to a topic ¢ based
simply on the number of people who attend meetings, the number of interactions in the
groups, or some similar metric. One problem with such naive rankings is that very popular
groups which are not about topic ¢, but where topic ¢ arises incidentally, can dominate
smaller groups whose main focus is ¢. For example, if ¢ is a disease and a celebrity is
diagnosed with it, then a Twitter chat about celebrities might see a surge of messages about
q that is much greater in volume then any discussion on the Twitter chats that are focused
on topic q.

To understand the advantage of Algorithm 4, consider the following scenario, illustrated
in Figure 10.1:

Scenario 10.7. There is a set of discussion groups Gpep, which we imagine as being not
relevant the topic q. However, the set includes some extremely popular groups. There is a
group g. & Gpop which is relevant to topic q, and supported by participants who are interested
in q. There is a very large set F' of participants who we think of as fans of groups in Gpep
and uninterested in q. We assume the following two properties:

o [Lwery non-fan p ¢ F who mentions topic q assigns small preference scores to Gpop:
vy, deG Pupg(g) <e.

e On the other hand, fans p € F do not have a strong interest in q, so they have small
authority scores in the groups that are focused on the topic: Vg & Gpop, Y per Agg(p) <
€.

Theorem 10.8. In Scenario 10.7 let Dyop = 3 e, Dq(g) be the total teleport probability
of the non-relevant groups. Suppose that every non-fan p ¢ F has a preference of at least
%(ﬁ + ﬁDpop)/(l — [3) for the group g., where B = Dy, + % Then if € < % and \ < 1,
then Algorithm 4 will rank group go above every group in Gyop. (This holds true even if there
are many more fans than non-fans and the groups in Gpop have many more tweets than the
other groups.)

pop

Proof. Let m be the stationary distribution of M(q). For a group g, let 7, denote its proba-
bility under distribution , and for a set of groups G let 7¢ = >~ ., 7(g). We will first show
that 7¢,,, is small and then show that 7 , is big.

For any g1 € Gpop and g2 € Gpop,

M(q)gy.g SADy(g2) + (1= N (D Agg(p) + > Agglple)

peEF pgF
S)\Dq(gg) + (1 — )\)26.

It follows that for any d, (dM(q))c,., < ADpop+ (1 —A)(da,,, +2€(1 —dg

pop — pop

the total stationary probability of G, satisfies
ﬂ-Gpop - (T‘—M(q))Gpop < A‘Dpop + (1 - A)(ﬂ-Gpop + 26(]‘ - 7.‘—G‘pop))

bop))- 1N particular,



CHAPTER 10. ALGORITHM AND ANALYSIS 53

S0 7T—Gpop(l - (]' - A)(l - 26)) S )\Dpop + (]- - )\)267 and SO

TGpop < Dpop — 26152 = 8 — 2e. (10.2)

Now, let’s show that the stationary probability of g, is high. For any discussion group
g & Gpop, We have

M(q)g.g. ZAqg Pypg(9s)
pEF
ADp, \)
2%(1_)‘B+ pp/l ZAqg
pEF

(Recall that »_ op Agge(p) > 1—€> L)

>(1 _ )\),8+AD§,CLPB/(1—)\)

and so for any distribution d,

B\ Dpop /(1)

(@M (q))y. = (1= N(1 — dg,,) 2 0eee!

We have:

T, = (AM(g))g. 2(1 = N)(1 = 7, ) EFARgen/ 1)

>(1 = A)(1 — B) 22 Ppeef 1=
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People interested in ¢ don’t prefer popular but irrel-
evant groups, and fans of popular groups don’t have
authority in relevant groups.

Popular Fans of
Irrelevant | Popular
Groups | Groups
o o | o
v ‘ /’

e R g e
Relevant e [ )
Groups RN
/ * Relevant
G .&-\ People
e e
o e

People interested in ¢ support the best group g., and
have high authority scores in the relevant groups.

Figure 10.1: An illustration of Scenario 10.7. There is a set of popular but irrelevant groups
with many fans. Although the most relevant group ¢, has fewer supporters, the whole
community of relevant groups gives authority to those supporters. Under the right conditions,
g« will be ranked at the top (Theorem 10.8).
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Chapter 11

Experiments

We present the results of running our algorithm on one year of tweets. We begin with the
experimental setup and data description, and then explain our evaluation methodology. We
show empirically that our algorithm performs significantly better than the baseline with
respect to different performance measures. We also present qualitative results.

11.1 Experimental Setup

We gathered one year of tweets and extracted noun phrases (using a part-of-speech tagger)
to capture potential queries that a tweet may contain. Underutilized hashtags were removed
(present in 60 tweets or used by less than 10 people), as were underutilized queries (less than
100 tweets).

11.1.1 Identifying Twitter chat hashtags

The set of Twitter chats was determined as per Chapter 8. We consider the activity for the
hashtag during each week, and analyze the fraction of the activity occurring during every
possible duration of a short window of time each. In our implementation, we used w = 2
hours as the window length, and considered discrete time windows starting at every hour
and half hour (since users are likely to agree to meet at a round time such as 3:30 or 4:00).
We then check if there is significant activity in the window with the largest activity during
the week. We denote the window with the largest activity during the week as a “meeting” if
at least v = 20% of the activity for the hashtag in that week occurred during this window.
We only consider the window with the largest activity during the week under the reasonable
assumption that a large group of people are unlikely to have time to participate in multiple
meetings in the same week. For a hashtag to be considered a chat, there should have been
at least m = 10 weeks containing valid meetings. We obtained a total of 27K chats using
the above process.
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11.1.2 Selecting candidate queries for ranking

Since our algorithm is query-specific, we need to identify a set of representative queries
against which to perform our evaluation. The union of all the noun phrases in the tweets
gave us a set of 27 million potential queries, but a large fraction of them were phrases that
were unrealistic as real queries (for example, phrases such as “someone”, “next week” or
“great day”). We sought a list of queries that capture how users queries for groups, and
queries posed to Yahoo Groups provided such a collection. We collected queries posed to
Yahoo Groups based on five months of browsing behaviour. After intersecting these queries
with the set that we gathered from tweets, we were left with 2K queries.

11.1.3 Ground Truth Creation

To evaluate the performance of our algorithm, we next need to obtain a ground truth ranked
hashtag list for each query. However, given the number of candidate hashtags, this is clearly
impossible to create manually — even for a few of the 2K candidate queries. Instead, we rely
on a novel approach to obtain a (noisy) list of ground truth hashtags for each of a small set
of queries, and then manually clean the list. For each candidate query, we identify a list of
Twitter users or “experts” by selecting users who mention the query phrase in their Twitter
profile. We believe that given the limited space allowed for a user’s Twitter profile, users
who explicitly mention the query (for example, “camera” or “diabetes”) in their Twitter
profile, are more likely to be a “subject-matter expert” (a photographer or a patient) than
a random user who has merely used the query in a few tweets. For each query, we then
rank hashtags based on their popularity among the tweets of the experts corresponding to
the query. More specifically, we obtain a ranked list of hashtags for each query, where the
ranking is based on the number of experts that have written tweets containing the query
and the hashtag.

From among the 2K candidate queries, we were able to obtain this “experts-based rank-
ing” for only around 600 queries (for the remaining queries, we could not find enough experts
who mentioned the query in their user profiles). Note that this coverage issue is a critical
shortcoming of this method, and is the main reason why this cannot be a candidate algorithm
for the discussion group ranking problem, even though it is used in creating the ground truth
and (as seen later) has very good performance on the queries for which it returns an answer.

A manual evaluation of the expert based ranking revealed that while the ranking had
good precision for most queries, it had two shortcomings: firstly, it did not have sufficient
recall and failed to report hashtags that we manually found to be very relevant to the query
(e.g. #photographychat for the query, “camera” and #t1_chat for the query “travel”, both
of which are highly relevant Twitter chats) and secondly, there were some queries on which
its precision was quite poor.

To resolve these issues, we resorted to a pooling methodology in information retrieval [66]
and manually created the final ground truth as follows: for each query, we pooled together the
top 10 hashtags output by the above experts-based ranking, the baselines, and our algorithm.
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We then asked a human assessor to consider each of these candidate hashtags in the pool, and
manually annotate the hashtag (by scanning through the set of tweets corresponding to the
hashtag, and performing a web search for information related to the hashtag) on a four-point
graded relevance scale (with 3-being most relevant to the query, and 0 being irrelevant). Note
that the human assessor did not have access to any information about which algorithm(s)
generated the candidate hashtag in the pool. Since this process is extremely labour-intensive,
we restricted the set of queries for which we generated ground-truth rankings by sampling
50 queries from among the 600 candidate queries.

11.2 Implementation choices

Next we list the various implementation choices related to our model.

11.2.1 Authority Score

We consider four different methods for assigning users an authority score to capture how
authoritative they are with respect to the chat and the query. (1) Noun-Frequency based
Authority (NOUNFREQWEIGHTS): For each query and hashtag, we compute the authority
score of a user according to how many tweets of the user contained both the query and the
hashtag. A user that tweets a lot about the query in the context of that hashtag is consid-
ered more authoritative than a user with only a few tweets containing the (query, hashtag)
pair. (2) @-mention Authority (Q-MENTIONWEIGHTS): For each query and hashtag, we
compute a user’s authority score according to the number of times the user is @-mentioned
in the context of the query and the hashtag. A user that is @-messaged frequently in tweets
containing the (query, hashtag) pair is considered more authoritative. (3) Follower Author-
ity (FOLLOWERWEIGHTS): We compute a user’s authority score according to how many
followers a user has in Twitter. For this, we used a snapshot of the complete Twitter fol-
lower group to obtain the follower count of each user in our data set. (4) Equal Authority
(EQUALWEIGHTS): For each query and hashtag, we give equal weights to users.

We report the performance of our algorithm with respect to each of these authority scores.

11.2.2 Teleport Distribution

As described in Chapter 9, the teleport distribution for the random jumps in our group
preference model can be either unweighted, or weighted according to the hashtag to which we
are teleporting. We experiment with both options. For the unweighted case, the probability
is divided among all hashtags equally. For the weighted case, we divide this probability
among hashtags based on the fraction of tweets of this hashtag that contain the specific
query. That is, the teleportation process is biased towards hashtags in which the query
occurs more frequently. The intuition behind weighing the teleportation process is that if
the input graph for the PageRank computation contains a few disjoint connected components,
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then ranking the hashtags across these two clusters would normally (in the unweighted case)
depend only on the relative sizes of the components. By weighing the teleport distribution,
we can factor in the query-specific popularity of hashtags when comparing hashtags from
different connected components. As we will observe in the experimental results, weighting
the teleport process significantly improves the quality of our rankings.

11.2.3 Preference Score

As described in our model, a key component of our GROUPPREFERENCE algorithm is the
computation of the transition probability matrix for a (query, user) pair. We next describe
our approach for obtaining the transition edge probabilities for each user, query and pair of
hashtags (say, hl and h2). For computing the user’s preference between hl and h2, we wish
to only use Twitter data corresponding to the time when the user was “aware” of both the
hashtags. We define the user’s awareness-time for a hashtag as the first time when the user
tweeted with that hashtag. Using this definition, we then restrict the tweets of the user to
the time-period starting from the greater of the user’s awareness time for hl and h2. For
this time-period, we compute the number of meetings of hl and h2 attended by the user for
the given query (i.e. the number of two-hour windows within which the user has written
at least one tweet containing the hashtag and query). We define a transition probability of
1 from hl to h2 (resp. h2 to hl), if the user has attended “significantly more” (we use a
relative difference threshold of 0.1 for estimating significance) meetings of h2 compared to
hl (resp. hl compared to h2).

11.3 Baseline Algorithms

We compared our ChatPreference algorithm against the following baselines, all of which
correspond to various intuitive notions of the popularity of a chat on Twitter with respect
to a given query.

User Frequency-based Ranking Algorithm (UFA): For each query, we assign a
score to each hashtag based on the number of distinct users that have posted tweets con-
taining the given hashtag and query.

Tweet Frequency-based Ranking Algorithm (TFA): For each query, we assign a
score to each hashtag based on the total number of tweets containing the given hashtag and
query.

Tweet Ratio-based Ranking Algorithm (TRA): For each query, we assign a score
to each hashtag based on the ratio of the number of tweets containing that hashtag divided
by the number of tweets containing both the hashtag and the query. Note that this is
reminiscent of the tf-idf metric in information retrieval: the numerator corresponds to a
notion of term-frequency and the denominator acts as a discounting factor.

In addition to the above three baselines, we also compare our algorithm against the
experts-based ranking (EXPERTSPREFERENCE) algorithm mentioned previously, that was
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used for creating the ground truth. As mentioned previously, while this is not a practical
algorithm due to its extremely low coverage of queries, we still use it as an upper bound
for a practical ranking algorithm and compare our algorithms against the performance of
EXPERTSPREFERENCE.

11.4 Evaluation Metrics

For our evaluation, we compute metrics for each algorithm by comparing it with the ground
truth ranking. For a given query, let A and G be the ranked list of chats identified by an
algorithm and by the ground truth respectively, with Afi] (resp. G[i]) being the i chat. For
every chat p, let R(p) € [0,3] be the ground truth relevance rating provided by the human
assessor. We define the following metrics [60]:

Weighted Precision: The WeightedPrecision QK of the algorithm at the top K rank

Tis BAD 1]
3K :
Weighted Recall: The WeightedRecall QK of the algorithm at the top K rank is

>t R(A[i])
ZpeG R(p)

Weighted Mean Average Precision: The WeightedMAP of the algorithm is % .

18

ZpG(Gﬂ A) WeightedPrecision @ry, o, where 7, 4 is the rank of chat p in A.

In addition, we also compute the unweighted versions of the above metrics corresponding
to precision (Precision @QK), recall (Recall @K) and Mean Average Precision (MAP).

For the unweighted metrics, the relevance rating of a chat is rounded to 1 if R(p) > 2
and 0 otherwise. We set K = 5.

11.5 Results of Implementation Choices

11.5.1 Teleport Distribution

We first study the effect of varying the teleport probability from 0 to 1, with NOUNFRE-
QWEIGHTS as the authority score. From Table 11.1, we first observe the significant benefit
of having a non-zero teleport probability. This observation can be explained by the pres-
ence of several disjoint connected components of varying sizes in the graph formed over
hashtags. For example, the graph over hashtags for the query “photography” consists of
two large connected components: the first component consists of highly relevant chats such
as #photographytips, #phototips, #photog and #photochat, while the second compo-
nent consists of several less relevant hashtags such as #northeasthour, #yorkshirehour,
#bathhour and #devonhour. In the absence of the option to teleport, the surfer may get
stuck in the less relevant component. Even with a small teleport probability, the surfer is
able to explore components containing relevant hashtags, and consequently, our algorithm is
able to rank such hashtags higher.
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As teleport probability is increased, the performance improves initially, maximizing at
0.25, and then drops because the surfer teleports too often instead of moving towards better
hashtags. Hence, we chose 0.25 as the teleport probability for further analysis. We next
validate the benefit of having a biased teleport distribution (Table 11.2), confirming that
it is desirable to factor in the query-specific popularity of hashtags instead of teleporting
uniformly.

Teleport Precision | Recall | MAP | Weighted | Weighted | Weighted
Probability Precision | Recall MAP
0.00 0.091 0.110 | 0.083 | 0.092 0.117 0.068
0.15 0.395 0.486 | 0.425 | 0.347 0.437 0.303
0.25 0.395 0.491 | 0.437 | 0.350 0.447 0.309
0.50 0.382 0.463 | 0.423 | 0.332 0.412 0.297
0.75 0.364 0.451 | 0.414 | 0.323 0.408 0.288
1.00 0.350 0.440 | 0.391 | 0.306 0.395 0.271
Table 11.1: Effect of Varying Teleport Probability
Teleport | Precision | Recall | MAP | Weighted | Weighted | Weighted
Bias Precision | Recall MAP
Uniform 0.177 0.224 | 0.169 | 0.171 0.211 0.131
Biased 0.395 0.491 | 0.437 | 0.350 0.447 0.309

Table 11.2: Benefit of Non-uniform Teleport Distribution

11.5.2 Authority Score

We present a comparison of different authority scores in Table 11.3. We were at first surprised
to observe similar performance across different authority scores, since these scores correspond
to orthogonal signals. In fact, giving equal weight to all users performed slightly better than
the other three authority scores. A possible explanation is that for a given query, the signal
to discriminate highly relevant hashtags from highly irrelevant hashtags are spread across
many users, and the aggregate preference captures this signal irrespective of the weights
given to the users. The users may differ in their finer preferences over relevant hashtags
(e.g. between #rosechat and #gardenchat for the query “garden”), and hence, while the
authority scores can influence the final relative ordering of two highly relevant hashtags,
our metrics are unaffected if the positions of two such chats are swapped. Even though the
authority scores did not significantly influence the performance measures at the aggregate
level, we did observe relatively large variance in performance at the level of individual queries.
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Authority Score Precision | Recall | MAP | Weighted | Weighted | Weighted
Precision | Recall MAP
NOUNFREQWEIGHTS 0.395 0.491 | 0.437 | 0.350 0.447 0.309
FOLLOWERWEIGHTS 0.377 0.467 | 0.461 | 0.345 0.433 0.330
@-MENTIONWEIGHTS 0.382 0.467 | 0.467 | 0.341 0.423 0.332
EQUALWEIGHTS 0.400 0.485 | 0.479 | 0.359 0.446 0.340

Table 11.3: Empirical Analysis of Different Authority Scores

11.6 Performance Results

We next compare the performance of our algorithm (with NOUNFREQWEIGHTS as the
authority score) with the three baselines, and the experts-based ranking in Table 11.4. We
observe that our algorithm significantly outperforms the best baseline, TFA along all six
metrics. Our algorithm improves TFA by 30% with respect to mean average precision (0.437
vs 0.336), and about 25% with respect to weighted mean average precision (0.309 vs 0.246).
With respect to these two metrics, our algorithm achieves about 70% of the performance of
EXPERTSPREFERENCE, which, as noted earlier, is not a practical algorithm but can serve
as an upper bound.

Algorithm Precision | Recall | MAP | Weighted | Weighted | Weighted
Precision | Recall MAP

UFA 0.236 0.280 | 0.232 | 0.212 0.277 0.168

TRA 0.273 0.377 | 0.313 | 0.245 0.348 0.217

TFA 0.309 0.362 | 0.336 | 0.288 0.366 0.246

GROUPPREFERENCE 0.395 0.491 | 0.437 | 0.350 0.447 0.309

EXPERTSPREFERENCE 0.532 0.706 | 0.611 | 0.480 0.636 0.446

Table 11.4: Performance of Different Algorithms

11.6.1 Qualitative Evaluation of Chat Rankings

To provide qualitative insights into the ranking algorithms, we next highlight the top-3 Twit-
ter hashtags retrieved by the algorithm /baselines for 6 representative queries, in Table 11.5.
(Due to lack of space, we omitted the poorest performing baseline of UFA). A quick scan
on Twitter of the tweets related to the retrieved hashtags will reveal that for most of these
queries, the GROUPPREFERENCE algorithm clearly retrieves more relevant chats compared
to the baselines, and performs almost as well as EXPERTSPREFERENCE. For example, for
the query “garden”, both GROUPPREFERENCE and EXPERTSPREFERENCE retrieve a weekly
Twitter chat about gardening enthusiasts (#gardenchat) as the top hashtag (though EX-
PERTSPREFERENCE also retrieves another related Twitter chat related to roses (#rosechat).
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On the other hand, the baselines results are not very relevant. Indeed, TFA returns a hash-
tag related to Justin Bieber’s “Believe Tour” at Madison Square Garden, simply due to the
sheer number of tweets containing both "#believetour” and ”"garden”. Similarly, for the
query "resume”’, GROUPPREFERENCE returns three relevant weekly-Twitter chats about
jobs and hiring (#omcchat, #animalchat and #hfchat), and outperforms all the other algo-
rithms that return at least one chat that is not a discussion group (for example, #jobfair or
#forbesgreatesthits). For the query “hotels”, both GROUPPREFERENCE and EXPERT-
SPREFERENCE return a travel-related weekly Twitter chat as the top-ranked hashtag(#tni
and #ttot respectively), whereas the baselines’ top hashtag is not as relevant (#dimiami is
a Miami specific travel hashtag).

’ Query \ TFA \ TRA \ GroupPreference \ ExpertsPreference ‘
diabetes #dsma #ozdoc | #dsma #ozdoc | #dsma #ozdoc | #dsma #gbdoc
#herecomeshoneybooboo| #tipkes #gbdoc #ozdoc
garden #believetour #fuego #joedirt | #gardenchat #gardenchat
#beastmode #knicks #count #fuego #joedirt #growyourown
#rosechat
hotels #dimiami #united | #dimiami #tl_chat #ttot
#ttot #tunehotelquiz #traveltuesday #traveltuesday
#dolcehotels #tni #barcelona
nurse #upgradedrappernames | #nursejackie #wenurses #wenurses
#spon #michigan #rnfmradio #nursejackie #nurseshift
#nurseshift #rnfmradio #nttwitchat
photogra- | #photog #togchat | #photographychat| #photographychat | #photog #scotland
phers #phototips #togchat #phototips #sbs
#thegridlive #togchat
resume #forbesgreatesthits #momken #omcchat #hfchat
#hfchat #sctopl0 #resuchat #animalchat #jobhuntchat
#hfchat #hfchat #jobfair

Table 11.5: Sample Chat Rankings using Different Algorithms
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Part 111

Your Two Weeks of Fame and Your
Grandmother’s

In which, inspired by common intuition that the public’s attention span has been getting
shorter as communication technology improves and news cycles speed up, we perform a study
of the phenomenon of personal fame across a century of news articles.

This part includes material from Your Two Weeks of Fame and Your Grandmother’s,
co-authored with Atish Das-Sarma, Alex Fabrikant and Andrew Tomkins, and appearing in
the proceedings of the 2012 International Word Wide Web Conference (ACM). Work done

while I was an intern at Google.
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Chapter 12

Working with the news corpus

We perform our main study on a collection of the more than 60 million news articles in
the Google archive that are both (1) in English, and (2) searchable and readable by Google
News users at no cost. In Chapter 15, we cross-validate our observations against the corpus
of public blog posts on Blogger, which is described there.

The articles of the news corpus span a wide range of time, with the relative daily volume
of articles over the range of the corpus shown in Figure 12.1. There are a handful of articles
from the late 18th century onward, and the article coverage grows rapidly over the course of
the 19th century. From the last decade of the 19th century through the end of the corpus
(March 2011), there is consistently a very substantial volume of articles per day, as well as
a wide diversity of publications. For the sake of statistical significance, our study focuses on
the years 1895-2011.

The news corpus contains a mix of modern articles obtained from the publisher in the orig-
inal digital form, as well as historical articles scanned from archival microform and OCRed,
both by Google and by third parties. For scanned articles, per-article metadata such as
titles, issue dates, and boundaries between articles are also derived algorithmically from the
OCRed data, rather than manually curated.

T |
1800 1825 1850 1875 1500 1925 1950 1975 2000

Figure 12.1: The volume of news articles by date.
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Our study design was driven by several features that we discovered in this massive corpus.
We list them here to explain our study design. Also, data mining for high-level behavioural
patterns in a diachronous, heterogeneous, partially-OCRed corpus of this scale is quite new,
precedented on this scale perhaps only by [50] (which brands this new area as “culturomics”).
But, with the rapid digitization of historical data, we expect such work to boom in the near
future. We thus hope that the lessons we have learned about this corpus will also be of
independent interest to others examining this corpus and other similar archive corpora.

12.1 Corpus features, misfeatures, and missteps

12.1.1 News mentions as a unit of attention

Our 116-year study of the news corpus aims to extend the rich literature studying topic
attention in online social media like Twitter, typically over the span of the last 3-5 years.
Needless to say, 100-year-old printed newspapers are an imperfect proxy for the attention
of individuals, which has only recently become directly observable via online behaviour.
Implicit in the heart of our study is the assumption that news articles are published to serve
an audience, and the media makes an effort, even if imperfect, to cater to the audience’s
information appetites. We coarsely approximate a unit of attention as one occurrence in a
Google News archive article, and we leave open a number of natural extensions to this work,
such as weighting articles by historical publication subscriber counts, or by size and position
on the printed page.

Due to the automated OCR process, not every “item” in the corpus can be reasonably
declared a news article. For example, a single photo caption might be extracted as an
independent article, or a sequence of articles on the same page might be misinterpreted as a
single article. Rather than weighting each of these corpus items equally when measuring the
attention paid to a name, we elected to count multiple mentions of a name within an item
separately, so that articles will tend to count more than captions, and there is no harm in
mistakenly grouping multiple articles as one.

We manually examined (A) a uniform sample of 50 articles from the whole corpus (which,
per Fig. 12.1, contains overwhelmingly articles from the last decade), and (B) a uniform
sample of 50 articles from 1900-1925. We classified each sample into:

e News articles: timely content, formatted as a stand-alone “item”, published without

external sponsorship, for the benefit of part of the publication’s audience,

e News-like items: non-article text chunks where a name mention can qualify as that
person being “in the news” — e.g. photo captions or inset quotes,

e Non-news: ads and paid content, sports scores, recipes, news website comments mis-
categorized as news, etc.

The number of items of each type in the two samples are given in the following table.
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‘ full corpus sample ‘ 1900-1925 sample

news articles 31 28
news-like items 3 2
non-news items 16 20

We expect that the similarity in these distributions should result in minimal noise in the
cross-temporal comparisons, and leave to future work the task of automatically distinguishing
real news stories from non-news.

12.1.2 Compensating for coverage

Even once we discard the more sparsely covered 18th and 19th centuries, there is still more
than an order of magnitude difference between article volume in 1895 and 2011. We address
these coverage differences by downsampling the data down to the same number of articles
for each month in this range. We address the nuanced effects of this downsampling on our
methodology in Section 13.3.

12.1.3 Evolution of discourse and media — why names?

We set out originally to understand changes in the public’s attention as measured by news
story topics. There are a myriad heuristics to define a computationally feasible model of a
“single topic” that can be thought to receive and lose the public’s attention. But over the
course of a century, the changes in society, media formatting, subjects of public discourse,
writing styles, and even language itself are substantial enough that neither sophisticated
statistical models trained on plentiful, well-curated training data from modern media nor
simple generic approaches like word co-occurrence in titles are guaranteed to work well. Very
few patterns connect articles from 1910 newspapers’ “social” sections (now all but forgotten)
about tea at Mrs. Smith’s, to 1930 articles about the arrival of a trans-oceanic liner, to 2009
articles about a viral YouTube video.

After trying out general proper noun phrases produced inconclusively noisy results, we
decided to focus on occurrences of personal names, detected in the text by a proprietary
state-of-the-art statistical recognizer. Personal names have a relatively stable presence in
the media: even with high OCR error rates in old microform, over 1/7th of the articles even
in the earliest decades since 1900 contain recognized personal names (see Figure 12.2).

But personal names are not without historical caveats, either. A woman appearing in
2005 stories as “Jane Smith” would be much more likely to be exclusively referenced as
“Mrs. Smith”, or even “Mrs. John Smith”, in 1915. Also, the English-speaking world was
much more Anglo-centric in 1900 than now, with much less diversity of names. An informal
sample suggests that most names with non-trivial news presence 100 years ago referred
overwhelmingly to a single bearer of that name for the duration of a particular news topic,
but many names are not unique when taken across the duration of the whole corpus — for
instance, “John Jacob Astor”, appearing in the news heavily over several decades (Fig. 13.1),
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Figure 12.2: Articles with recognized personal names per decade

in reference to a number of distinct relatives. On account of both of these phenomena, among
others, we aim to focus on name appearance patterns that are most likely to represent a single
news story or contiguous span of public attention involving that person, rather than trying
to model the full media “lifetime” of individuals, as we had considered doing at the start of
this project.

12.1.4 OCR errors in data and metadata

We empirically discovered another downfall of studying long-term “media lifetimes” of indi-
viduals. In an early experiment, we measured, for each personal name, the 10th and 90th
percentiles of the dates of that name’s occurrence in the news. We then looked at the time
interval between 10th and 90th percentiles, postulating that a large enough fraction of names
are unique among newsworthy individuals that the distribution of these inter-quantile gaps
could be a robust measure of media lifetime. After noticing a solid fraction of the dataset
showing inter-quantile gaps on the scale of 10-30 years, we examined a heat map of gap
durations, and discovered a regular pattern of gap durations at exact-integer year offsets,
which, other than for Santa Claus, Guy Fawkes, and a few other clear exceptions, seemed
an improbable phenomenon.

This turned out to be an artifact of OCRed metadata. In particular, the culprit was
single-digit OCR errors in the scanned article year. While year errors are relatively rare,
every long-tail name that occurred in fewer than 10 articles (often within a day or two of
each other), and had a mis-OCRed error for one of those occurrences contributed probability
mass to integral-number-of-years media lifetimes. As extra evidence, the heat map had a
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distinct outlier segment of high probability mass for inter-quantile range of exactly 20 years,
starting in the 1960s and ending in the 1980s — the digits 6 and 8 being particularly easy to
mistake on blurry microfilm. Note that short-term phenomena are relatively safe from OCR
date errors, thanks to the common English convention of written-out month names, and to
the low impact of OCR errors in the day number.

OCR errors in the article text itself are ubiquitous. Conveniently, the edit distance
between two recognizable personal names is rarely very short, so by agreeing to discard any
name that occurs only once in the corpus, we are likely to discard virtually all OCR errors
as well, with no impact on data on substantially newsworthy people. We should note that
OCR errors are noticeably more frequent on older microfilm, but the reasonable availability
of recognizable personal names even in 100-year-old articles, per Fig. 12.2, suggests that this
problem is not dire. A manually-coded sample of 50 articles with recognized names from
the first decade of the 1900s showed only 8 out of 50 articles having incorrectly recognized
names (including both OCR errors and non-names mis-tagged as names).

12.1.5 Simultaneity and publishing cycles

There are also pitfalls with examining short timelines. In the earliest decades we examine,
telegraph was widely available to news publishers, but not fully ubiquitous, with rural papers
often reporting news “from the wire” several days after the event. An informal sample
seems to suggest that most news by 1900 propagated across the world on the scale of a
few days. Also, many publications in the corpus until the last 20 years or so were either
published exclusively weekly or, in the case of Sunday newspaper issues, had substantially
higher volume once a week, resulting in many otherwise obscure names having multiple news
mentions separated by one week — a rather different phenomenon than a person remaining
in the daily news for a full week. On account of both of these, we generally disregard news
patterns that are shorter than a few days in our study design.
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Chapter 13

Measuring Fame

We begin by producing a list of names for each article. To do this, we extract short capitalized
phrases from the body text of each article, and keep phrases recognized by an algorithm to
be personal names.

For every name that appears in the input, we consider that name’s timeline, which is
the multiset of dates at which that name appears, including multiple occurrences within an
article. We intend the timeline to approximate the frequency with which a person browsing
the news at random on a given day would encounter that name. The accuracy of this
approximation will depend on the volume of news articles available. In order to avoid
the possibility that any trends we detect are caused by variations in this accuracy caused
by variations in the volume of the corpus, we randomly choose an approximately equal
number of articles to work with from each month. We describe and analyze this process in
Section 13.3.

In general, our method can be applied to any collection of timelines. In Chapter 15, we
apply it to names extracted from blog posts.

13.1 Finding Periods of Fame

Once we have computed a timeline for each name that appears in the corpus, we select a
time during which we consider that name to have had its period of fame, using one of the
two methods described below. In order to compare the phenomenon of fame at different
points in time, we consider the joint distribution of two variables over the set of names: the
peak date and the duration of the name’s period of fame. We try the following two methods
to compute a peak date and duration for each timeline.

e Spike method. This method intends to capture the spike in public attention sur-
rounding a particular news story. We divide time into one-week intervals and consider
the name’s rate of occurrence in each interval. The week with the highest rate is consid-
ered to be the peak date, and the period extends backward and forward in time as long
as the rate does not drop below one tenth its maximum rate. Yang and Leskovec [70]
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used a similar method in their study of digital media, using a time scale of hours where
we use weeks.

e Continuity method. This method intends to measure the duration of public interest
in a person. We define a name’s period of popularity to be the longest span of time
within which there is no seven-day period during which it is not mentioned. The
peak date falls halfway between the beginning and the end of the period. We find,
in Chapter 14, that durations are short compared to the time span of the study, so
using any choice of peak date between the beginning and end will produce similar
distributions.

To demonstrate the distinction between these two methods, Figure 13.1 shows the occur-
rence timeline for Marilyn Monroe. The “continuity method” picks out the bulk of her fame
— 1952-02-13 (“A”) through 1961-11-15 (“D”), by which point her appearance in the news
was reduced to a fairly low background level. The “spike method” picks out the intense spike
in interest surrounding her death, yielding the range 1962-7-18 (“E”) — 1962-8-29 (“H").

Very often these two methods identify short moments of fame within a much longer
context. For example, in Figure 13.1, we see the timeline for the name “John Jacob Astor”,
normalized by article counts. The spike method identifies as the peak the death of John Jacob
Astor III of the wealthy Astor family, with a duration of 38 days (March 8 to February 15,
1890). The continuity method identifies instead the death of his nephew John Jacob Astor
IV, who died on the Titanic, with a period of five months [68]. The period begins on March
23, 1912, three weeks before the Titanic sank, and ends August 31. Many of the later
occurrences of the name are historical mentions of the sinking of the Titanic.

13.2 Choosing the Set of Names

13.2.1 Basic filtering

In all our experiments, to reduce noise, we discard the names which occurred less than ten
times, or whose fame durations are less than two days. We also remove peaks that end in
2011 or later, since these peaks might extend further if our news corpus extended further in
the future.

13.2.2 Top 1000 by year

For each peak type, we repeat our experiment with the set of names restricted in the following
way. We counted the total number of times each name appeared in each year (counting
repeats within an article). For each year, we produced the set of the 1000 most frequently
mentioned names in that year. We took the union of these sets over all years, and ran our
experiments using only the names in this set. Note that a name’s peak of popularity need
not be the same year in which that name was in the top 1000: so if a name is included in
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Figure 13.1: Timelines for “Marilyn Monroe” (top) and “John Jacob Astor” (bottom).

the top-1000 set because it was popular in a certain year, we may yet consider that name’s
peak date to be a different year.

13.2.3 Top 0.1% by year

We consider that filtering to the top 1000 names in each year might introduce the following
undesirable bias. Suppose names are assigned peak durations according to some universal
distribution, and later years have more names, perhaps because of the increasing volume of
news. If a name’s frequency of occurrence is proportional to its duration, then selecting the
top 1000 names in each year will tend to produce names with longer durations of fame in
years with a greater number of names. With this in mind, we considered one more restriction
on the set of names. In each year y, we considered the total number of distinct names n,
mentioned in that year. We then collected the top n,/1000 names in each year y. We ran our
experiments using only the names in the union of those sets. As with the top-1000 filtering,
a name’s peak date will not necessarily be the same year for which it was in the top 0.1% of



CHAPTER 13. MEASURING FAME 72

names.

13.3 Sampling for Uniform Coverage

The spike and continuity methods for identifying periods of fame may be affected by the
volume of articles available in our corpus. For example, suppose a name’s timeline is gener-
ated stochastically, with every article between February 1 and March 31 containing the name
with a 1% probability. If the corpus contains 10000 articles in every week, then both the
spike and continuity methods will probably decide that the article’s duration is two months.
However, if the corpus contains less than 100 articles in each week, then the durations will
tend to be short, since there will be many weeks during which the name is not mentioned.

We propose a model for this effect. Each name v has a “true” timeline which assigns to
each day ¢ a probability f,(¢) € [0,1] that an article on that day will mention v.! For each
day, there is a total number of articles n;; we have no knowledge of the relation between
ny and v, except that there is some lower bound n; > n.,;, for all ¢ within some reasonable
range of time. Then we suppose the timeline for name v is a sequence of independent random
variables X, ; ~ Binom(f,(t),n;). Our goal is to ensure that any measurements we take are
independent of the values n;.

To accomplish this independence of news volume, we randomly sampled news articles so
that the expected number in each month was n,;,. Let X ,’j,t be the number of sampled articles
containing name v. If we were to randomly sample n,,;, articles without replacement, then
we would have X| , ~ Binom(f,(t), nmin). Notice that the joint distribution of the random
variables X, is unaffected by the article volumes n;. Any further measurement based on
the variables X, , will therefore also be unrelated to the sequence n;. In practice, instead
of sampling exactly ny;, articles without replacement, we flipped a biased coin for each of
the n,; articles at time ¢, including each article with probability 7y, /n:. For a large enough
volume of articles, the resulting measurements will be the same.

We removed all articles published before 1895, since the months before 1895 had less
than our target number n;, of articles. We also removed articles published after the end of
the year 2010, to avoid having a month with news articles at the beginning but not the end
of the month, but with the same number of sampled articles.

As an example of the effect of downsampling, the blue dotted lines in Figure 13.7 show
the 50th, 90th and 99th percentiles of the distribution of fame durations using the continu-
ity method. We see that they increase suddenly in the last ten years, when our coverage
of articles surges with the digital age. The red lines show the same measurement after
downsampling: the surge no longer appears.

! In fact, articles could mention the name multiple times, but in the limit of a large number of articles,
this will not affect our analysis.
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13.4 Graphing the Distributions

We graph the joint distribution of peak dates and durations in two different ways. We
consider the set of names which peak in successive five-year periods. Among each set of
names, we graph the 50th, 90th and 99th percentile durations of fame. These appear as
darker lines in the graphs; for example, the top of Fig. 13.4 shows the distribution for the
spike method. The lighter solid red lines show the same three quantiles for shorter three-
month periods. For comparison, the dashed light blue lines show the same results if the
article sampling described in Sec. 13.3 is not performed (and articles before 1895 and after
2010 are not removed). Fig. 13.7 shows the same set of lines using the continuity method. All
the later figures are produced in the same way, except they do not include the non-sampled
full distributions.

The second type of graph focuses on one five-year period at a time. The bottom of
Fig. 13.4 shows a cumulative plot showing the number of names with duration greater than
that shown on the z-axis. This is plotted for many five-year periods. The graphs of measure-
ments using the spike method look more like step functions because that method measures
durations in seven-day increments, whereas the longest-stretch method can yield any number
of days. (Recall that peaks that last less than two days are removed.)

13.5 Estimating Power Law Exponents

We test the hypothesis that the tail of the distribution of fame durations follows a power
law. For a given five-year period, we collect all names which peak in that period, and
consider 20% of the names with the longest fame durations — that is, we set d;, to be
the 80th percentile of durations, and consider durations d > dp;,. Among those 20%, we
compute a maximum likelihood estimate of the power law exponent &, predicting that the
probability of a duration d > d, is p(d) o< d®. Clauset et al [15] show that the maximum
likelihood estimate & is given by & = 1+ (31, In(d;/dmin)). We include a line on each plot
of cumulative distributions of fame durations, of slope &+ 1 on the log-log graph because we
plot cumulative distributions rather than density functions. The & values we measure are
discussed in the following sections, and summarized in Figure 13.2 for the news corpus and
Figure 13.3 for the blog corpus.

13.6 Statistical Measurements

We used bootstrapping to estimate the uncertainty in the four statistics we measured: the
50th, 90th and 99th percentile durations and of the best-fit power law exponents. For
selected five-year periods, we sampled |S| names with replacement from the set S of names
that peaked in that period of time. For each statistic, we repeated this process 25000 times,
and reported the range of numbers within which 99% of our samples fell. The results are
presented in Figures 13.2 (for the news corpus) and 13.3 (for the blog corpus).
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method filtering | period | 50th %ile (days) 90th %ile (days) 99th %ile (days) power law exponent
spike all 19059 7.7 28 (23 .. 28) 91 (78 .. 106)  -2.45 (-2.55 .. -2.21)
spike all 1925-9 7(7..7) 28 (28 .. 28) 65 (63 .. 78)  -2.63 (-2.74 .. -2.33)
spike all 1945-9 7(7..7) 21 (21 .. 28) 56 (49 .. 63)  -2.44 (-2.50 .. -2.38)
spike all 1965-9 7(7..7) 21 (21 .. 28) 63 (56 .. 70)  -2.37 (-2.44 .. -2.31)
spike all 1985-9 7.7 21 (21 .. 28) 70 (63 .. 78) -2.32 (-2.36 .. -2.27)
spike all 2005-9 7(7..7) 28 (28 .. 28) 84 (78 .. 91)  -2.48 (-2.53 .. -2.43)
spike | top 1000 | 19050 | 21 (21 .. 21) 63 (56 .. 70) 155 (133 .. 192) 2.75 (-3.15 .. -2.56)
spike | top 1000 | 1925-9 | 21 (14 .. 21) 49 (46 .. 56) 91 (78 .. 113)  -3.22 (-3.74 .. -2.99)
spike | top 1000 | 1945-9 | 21 (14 .. 21) 49 (42 .. 49) 91 (70 .. 130)  -3.33 (-3.73 .. -2.89)
spike | top 1000 | 1965-9 | 21 (21 .. 21) 56 (49 .. 63) 119 (99 .. 164)  -2.90 (-3.54 .. -2.65)
spike | top 1000 | 1985-9 | 21 (21 .. 28) 63 (56 .. 78) 161 (121 .. 366) -2.85 (-3.19 .. -2.57)
spike | top 1000 | 2005-9 | 35 (28 .. 35) 99 (84 .. 119) 300 (224 .. 439)  -2.64 (-2.96 .. -2.44)
spike | top 0.1% | 19050 | 35 (28 .. 42) 122 (91 .. 155) 289 (161 .. 381) -2.82 (-3.96 .. -2.36)
spike | top 0.1% | 1925-9 | 28 (21 .. 35) 63 (56 .. 82) 145 (91 .. 218)  -3.49 (-4.82 .. -2.92)
spike | top 0.1% | 1945-9 | 21 (21 .. 28) 56 (49 .. 67) 133 (84 .. 161)  -3.35 (-4.32 .. -2.78)
spike | top 0.1% | 1965-9 | 28 (21 .. 35) 70 (63 .. 99) 162 (119 .. 494)  -2.90 (-3.77 .. -2.47)
spike | top 0.1% | 1985-9 | 35 (28 .. 35) 90 (70 .. 113) 327 (140 .. 443)  -2.66 (-3.13 .. -2.35)
spike | top 0.1% | 2005-9 | 35 (35 .. 42) 119 (99 .. 140) 338 (263 .. 557)  -2.76 (-3.10 .. -2.44)
continuity all 10059 AN 20 (10 .. 21) 70 (64 .. 79)  -2.67 (-2.76 .. -2.59)
continuity all 1925-9 7(7..7) 18 (17 .. 19) 64 (56 .. 71)  -2.64 (-2.72 .. -2.53)
continuity all 1945-9 7(7..7) 16 (15 .. 16) 53 (49 .. 58)  -2.74 (-2.82 .. -2.66)
continuity all 1965-9 7(7..7) 17 (16 .. 18) 66 (58 .. 75)  -2.58 (-2.69 .. -2.52)
continuity all 1985-9 7(7 .. 7) 18 (17 .. 18) 77 (71 .. 83)  -2.48 (-2.56 .. -2.44)
continuity all 2005-9 7(7..7) 21 (20 .. 21) 101 (96 .. 108)  -2.43 (-2.46 .. -2.40)
continuity | top 1000 | 19050 | 24 (23 .. 26) 69 (62 .. 76) 166 (136 .. 229) -3.01 (-3.35 .. -2.70)
continuity | top 1000 | 1925-9 | 22 (21 .. 24) 58 (53 .. 66) 176 (131 .. 338)  -3.01 (-3.39 .. -2.67)
continuity | top 1000 | 1945-9 | 27 (25 .. 29) 66 (57 .. 80) 211 (169 .. 332)  -2.92 (-3.32 .. -2.59)
continuity | top 1000 | 1965-9 34 (32 .. 35) 92 (81 .. 104) 262 (203 .. 622) -2.75 (-3.11 .. -2.48)
continuity | top 1000 | 1985-9 52 (49 .. 56) 135 (118 .. 147) 312 (231 .. 739) -3.20 (-3.62 .. -2.83)
continuity | top 1000 | 2005-9 | 87 (80 .. 91) 229 (211 .. 250) 649 (532 .. 752)  -2.97 (-3.32 .. -2.75)
continuity | top 0.1% | 19050 | 66 (50 .. 79) 146 (126 .. 176) 968 (200 .. 4287) -3.29 (-5.20 .. -2.24)
continuity | top 0.1% | 1925-9 | 53 (47 .. 61) 125 (104 .. 161) 476 (258 .. 2498) -2.67 (-3.72 .. -2.20)
continuity | top 0.1% | 1945-9 | 57 (52.. 66) 150 (123 .. 194) 419 (218 .. 1089) -3.19 (-4.26 .. -2.52)
continuity | top 0.1% | 1965-9 | 69 (61 .. 79) 168 (143 .. 214) 713 (261 .. 874)  -3.01 (-4.01 .. -2.45)
continuity | top 0.1% | 1985-9 | 85 (78 .. 94) 187 (158 .. 216) 732 (276 .. 892)  -3.40 (-4.30 .. -2.80)
continuity | top 0.1% | 2005-9 | 113 (107 .. 119) 271 (246 .. 306) 681 (614 .. 874)  -3.16 (-3.59 .. -2.85)

Figure 13.2: Percentiles and best-fit power-law exponents for five-year periods of the news
corpus. Each entry shows the estimate based on the corpus, and the 99% bootstrap interval
in parentheses, as described in Section 13.6. Results discussed in Chapter 14.
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1)

method filtering | period | 50th %ile (days) 90th %ile (days)  99th %ile (days)  power law exponent
spike all 2000-4 T T) 35 (28 .. 35) 123 (84 .. 189)  -2.37 (-2.52 .. -2.23)
spike all 2005-9 7(7..7) 28 (21 .. 28) 75 (63 .. 84) 234 (-2.76 .. -2.27)
spike top 1000 | 2000-4 21 (14 .. 21) 56 (49 .. 63) 265 (148 .. 479) -2.51 (-2.83 .. -2.18)
spike | top 1000 | 2005-9 | 14 (14 .. 21) 49 (42 .. 54) 109 (91 .. 151)  -2.74 (-3.03 .. -2.41)
spike | top 0.1% | 20004 | 39 (28 .. 56) 189 (106 .. 305) 717 (286 .. 840)  -2.26 (-3.05 .. -1.85)
spike | top 0.1% | 2005-9 | 28 (25 .. 35) 88 (74 .. 102) 213 (113 .. 1674)  -3.29 (-5.40 .. -2.23)
continuity all 2000-4 T 22 (20 .. 23) 114 (95 .. 160)  -2.38 (-2.49 .. -2.28)
continuity all 2005-9 6(6..7) 18 (17 .. 19) 80 (66 .. 93) 262 (-2.72 .. -2.53)
continuity | top 1000 | 20004 | 20 (I8 .. 21) 71 (59 .. 83) 387 (237 .. 819)  2.32 (2.54 .. 2.12)
continuity | top 1000 | 2005-9 | 21 (20 .. 22) 59 (53 .. 73) 408 (211 .. 1057) -2.37 (-2.62 .. -2.18)
continuity | top 0.1% | 2000-4 | 102 (89 .. 123) 372 (236 .. 768) 2010 (768 .. 2238) -2.24 (-3.15 .. -1.86)
continuity | top 0.1% | 2005-9 | 83 (70.. 93) 302 (193 .. 617) 2083 (954 .. 2991) -2.12 (-2.75 .. -1.79)

Figure 13.3: Percentiles and best-fit power-law exponents for five-year periods of the blog
corpus. Each entry shows the estimate based on the corpus, and the 99% bootstrap interval
in parentheses, as described in Section 13.6. Results discussed in Chapter 15.
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Figure 13.4: Fame durations measured using the spike method, plotted as the 50th, 90th
and 99th percentiles over time (top) and for specific five-year periods (bottom). The bot-
tom graph also includes a line showing the max-likelihood power law exponent for the years
2005-9. (The slope on the graph is one plus the exponent from Fig. 13.2, since we graph
the cumulative distribution function.) To illustrate the effect of sampling for uniform ar-
ticle volume, the first graph includes measurements taken before sampling; see Sec. 13.3.
Section 13.4 describes the format of the graphs in detail.
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Figure 13.5: Fame durations, restricting to the union of the 1000 most-mentioned names in
every year, using the spike method to identify periods of fame.
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90th and 99th percentiles over time (top), and for specific five-year periods (bottom).

To

illustrate the effect of sampling, the first graph includes measurements taken before sampling;
see Section 13.3. Section 13.4 describes the format of the graphs in detail.
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every year, measured using the continuity method.
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Chapter 14

Results: News Corpus

We measure periods of popularity using the spike and continuity methods described in Chap-
ter 13, and in each case plot the distribution of duration as it changes over time.

Figures 13.4 and 13.7 show the evolution of the distribution of fame durations for the
full set of names in the corpus (after the basic filtering described in Section 13.2) using the
spike and continuity methods, respectively. (Section 13.4 describes the format of the graphs
in detail.)

14.1 Median durations

For the entire period we studied, the median fame duration did not decrease, as we had
expected, but rather remained completely constant at exactly 7 days, for both the spike and
the continuity peak measurement methods. For the spike method alone, this would not have
been surprising. Peaks measured by the spike method are discretized to multiples of weeks, so
a perennial median of 7 days just shows that multi-week durations have never been common.
On the other hand, the continuity method freely admits fame durations in increments of 1
day, with only 1-day-long peaks filtered out. Yet, the median has remained at exactly 7 days
for all the years studied, and, per the full-corpus “50th percentile” measurements, shown in
blue in Figure 13.2, for all decades where we’ve tried bootstrapping, 99% of bootstrapped
samples also matched the 7-day measurement exactly (for the continuity method and, less
surprisingly, for the spike method). This gives strong statistical significance to the claim
that 7 days is indeed a very robust measurement of typical fame duration, which has not
varied in a century.

14.2 The most famous

We next consider specially the fame durations of the most famous names, in two correlated,
but distinct senses of “most famous”:
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e “Duration outliers” — people whose fame lasts much longer than typical, as
measured by the 90th and 99th percentiles of fame durations within each year. These
correspond to the top two lines in the timelines of Figures 13.4 and 13.7, and the
columns “90 %ile” and “99 %ile” of the first and fourth blocks of Figure 13.2.

e “Volume outliers” — the names which appear the most frequently in the news, by
being either in the top 1000 most frequent names in some year, or, separately, names in
the top 0.1%, as per Section 13.2. The graphs for these subsets of names are shown in
Figures 13.5 and 13.6 for the spike method, and Figures 13.8 and 13.9 for the continuity
method, and the statistical measurements appear in blocks 2, 3, 5 and 6 of Figure 13.2.

From the 1900’s to the 1940’s, the fame durations in both categories of outliers do tend
to decrease, with the decreases across that time interval statistically significantly lower-
bounded by 1-2 weeks via 99% bootstrapping intervals. Heuristically, this seems consistent
with our original hypothesis that accelerating communications shorten fame durations: 1-
2 weeks is a reasonable delay to be incurred by sheer communications delay before the
omnipresence of telegraphy and telephony. We note with curiosity that this effect applies
only to the highly-famous outliers rather than the typical fame durations. We posit that this
is perhaps due to median fame durations being typically attributable to people with only
geographically localized fame, which does not get affected by long communication delays.
We leave to further work a more nuanced study to test these hypotheses around locality and
communication delays affecting news spread in the early 20th century.

After the 1940’s, on the other hand, we see no such decrease. On the contrary, the
durations of fame for both the duration outliers and the volume outliers reverse the trend,
and actually begin to slowly increase. Using the bootstrapping method, per Section 13.6, we
get the results marked in red in Figure 13.2: in almost all of the outlier studies!, we see that
the increase in durations is statistically significant over 40-year gaps for both categories of
fame outliers. For example, the median fame duration according to continuity peaks for the
top 1000 names (50th percentile column of row 5) appears as “27 (25 .. 29)” in the period
1945-9 and “52 (49 .. 56)” for the period 1985-9: with 99% confidence, the median duration
was less than 29 days in the former period, but greater than 49 days in the latter.

We also ran experiments for names that have outlier durations within the subset of names
with outlier volumes. The same general trends were seen there as with the above outlier
studies, but, with a far shallower pool of data, the bootstrapping-based error bars were
generally large enough to not paint a convincing, statistically significant picture.

17 out of the 8 outlier studies show statistically significant increases between the 1940’s and the 1980’s,
and between the 1960’s and the 2000’s. The sole exception is the 90th percentile of the spike method. Given
that the bootstrap values in that experiment, discretized to whole weeks, range between 3 and 4 weeks, we
don’t consider it surprising that the increases there were not measured to be significant by 99% bootstrap
intervals.
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14.3 Power law fits

The column titled “power law exponent” in Figure 13.2 shows the maximum likelihood
estimates of the power law exponents for various five-year-long peak periods. We focus on
rows 1 and 4, which show the estimates for the full set of names for the spike method and
the continuity method respectively.

For both peak methods, the fitted power law exponents remain in fairly small ranges —
between -2.77 and -2.45 for continuity peaks, and between -2.63 and -2.32 for spike peaks.
In Figures 13.7 and 13.4 we show the actual distributions, and, for reference, comparisons
with the power-law fit for the 2005-2009 data (a straight line on these log-log plots).

Furthermore, the continuity peaks fits also support the above observation of slowly-
growing long-tail fame durations from 1940 onward. That is, power-law exponents from 1940
onward slowly move toward zero, with statistically significant changes when compared at 40-
year intervals. The fluctuations and the error bars for both methods are rather noticeable,
though, suggesting that power laws make for only a mediocre fit to this data.
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Chapter 15

Results: Blog Posts

We also ran our experiments on a second set of data consisting of public English-language
blog posts from the Blogger service. We began by sampling so that the number of blog posts
in each month in our data set was equal to the number of news articles we sampled in each
month, as per Sec. 13.3. The cumulative graphs of fame duration from six experiments are
shown in Fig. 15.1. We combine the two methods for identifying periods of fame with three
sets of names described in Section 13.2. The respective distributions from the news corpus
are superimposed for comparison.

The graphs of fame duration measured using the continuity method are much smoother
for the blog corpus than for the news corpus. This happens because whereas we only know
which day each news article was written, we know the time of day each blog entry was
posted.

The continuity-method graphs (bottom of Figure 15.1) had a distinctive rounded cap
which surprised us at first. We believe it is caused by the following effect. Peaks with only
two mentions in them are fairly common, and have a simple distinctive distribution that is
the difference between two sample dates conditioned on being less than a week apart. Since
two dates that are longer than one week apart cannot constitute a longest-stretch peak, the
portion of the graph with durations longer than one week does not include any names from
this two-sample distribution, and so it looks different. Our estimates of power-law exponents
only consider the longest 20% of durations, so they ignore this part of the graph.

The estimates we computed for the power-law exponents of the duration distributions
for blog data are shown in Figure 13.3, and can be compared to the figures for news articles
in Figure 13.2.

The medians for both blogs and news for both methods are remarkably the same, with no
statistically significant differences. The power law fits are also quite similar, although they
show enough variation to produce statistically significant differences. Qualitatively, we take
these as evidence that the fame distributions in news and blogs are coarsely similar, and that
it is not unreasonable to consider these results as casting some light on more fundamental
aspects of human attention to and interest in celebrities, rather than just on the quirks of
the news business.
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Figure 15.1: Cumulative duration-of-fame graphs for the blog corpus. The graphs at the
top show the spike method results (for all names, top 1000, and top 0.1%), and those at the
bottom show the continuity method results.

We do leave open the question of accounting for the occasionally significant distinctions
between outlier results for blogs, as compared to news, especially for outlier-volume conti-
nuity peaks.
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Chapter 16

Conclusion

We performed two studies related to changing social trends. We studied the phenomenon
of fame in newspapers, inspired by popular intuition that shorter news cycles are fuelling a
shortening of attention spans, but we found no evidence of this: to the contrary, the typical
length of time for which a person’s name appears in a newspaper has not changed in a
century, and among the most famous names, the duration of news coverage has increased.
We found similar results in a side study of ten years of blog posts, hinting at the existence
of a more general phenomenon.

We also studied a new kind of community on Twitter called a group chat. We developed
an algorithm to generate a list of group chats on Twitter, and provided theoretical arguments
for its effectiveness. Using this algorithm, found that the phenomenon of group chats has
grown over time, and we investigated the typical topics discussed. We developed a second
algorithm which searches a broader set of Twitter “chats” and ranks them for relevance to
a topic given as a query. This algorithm is based on a new model of user browsing relevant
discussion groups and their participants, and we provide mathematical arguments that it
has desirable properties. We found experimentally that our ranking algorithm performs
noticeably better than natural baselines, and provided some theoretical justification for its
We hope that in the future it will prove useful for introducing users to discussion groups
that are relevant to their interests but which they would not otherwise have been aware of.
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Chapter 17
Future Work

17.1 Twitter Group Chats

17.1.1 The Nature of Group Chats

There has been much work devoted to understanding how groups are formed and die (§2.1.3)
and why people participate in them (§2.1.4). It would be good to gain such an understanding
of Twitter group chats. To understand how group chats are created, a good starting point
could be to simply ask the founders and moderators, since they have public personas. Ceren
and Rakesh [10] have done work in understanding participation in group chats related to
education. We believe that users attend group chats for a variety of reasons: for example,
to speak, to listen, to learn, or to be viewed as subject matter experts. Understanding what
drives participation as a function of both the type of group, as well as the role (e.g. leader,
information-seeker, sympathizer) of the user in the group is an interesting direction.

The value that these chats bring to the individuals that participate as well as to the
community as a whole is not well-understood. We believe that the benefit that users derive
cannot be found without the group. For example, the information that users learn from
passion-oriented groups may be hard to find without the group. Similarly, the support that
a user receives from a support group may be hard to find without the group. However, it is
not clear why Twitter, with its 140-character limit on message text, is the chosen platform.

Some of the users who participate in these chats are quite knowledgeable about the
subject matter they are discussing. Understanding and quantifying their level of expertise is
a promising direction for future work. In addition, it is useful to find ways to summarize a
meeting of a group chat [19] in a manner that takes advantage of the structure of a typical
conversation: this could be used to help a new user decide whether to a join a group, or help
an existing user to catch up on a recent missed meeting.

During our analysis of Twitter Group Chats, we attempted to recruit workers on Ama-
zon’s Mechanical Turk (www.mturk.com) to determine whether hashtags were group chats.
We were not able to get useful answers this way, possibly because the workers did not have
appropriate resources at hand, or because the questions were not clear. In the past, clever
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ways of coordinating the work of many workers have produced results far beyond what could
be done by asking a single worker directly to do what is asked. For example, Bernstein et
al. [7] created a text editor enhancement which coordinates workers in order to proofread a
document and suggest ways to make it shorter, if desired. It would be interesting to see if
a more careful approach could allow Mechanical Turk workers to produce useful data about
Twitter group chats.

17.1.2 Ranking

Our goal in ranking groups is to connect a new user who has an interest in a topic to a group
where that topic is regularly discussed. However, group selection is a more complex task.
For example, among two groups that equally discuss a topic, the group that is more open
to outsiders may be more preferable. The age and size of a group may also play a role in
that mature, sizeable groups may be less welcome to newbies than younger, smaller groups.
There are many other potential factors: for example, the quality of the relationships in the
group (both online and offline), whether participant privacy is respected, and how conflict is
handled (netiquette). Such factors are known to influence membership in a group [33]. Our
work implicitly uses these signals by following the trail of participation left by authoritative
users, but explicit use of such signals may lead to better solutions.

Personalized group ranking is another potential direction. For example, the demographic
makeup of a group (race, gender, age) may be used to match a user’s demographic. The lan-
guage/vocabulary of a group is known to impact further participation [21] and consequently
may be used to improve ranking. The nature of groups that a user already participates in
may also be an indication of the kinds of groups the user wishes to join. Richer graph struc-
ture signal such as the number of friends that a person has in the group and how connected
their friends are could also be useful [3].

Finally, different types of query may call for different types of groups. For example, a
user seeking an online health support group may desire a group with a history of exchange,
interaction and sharing of medical experiences [36]; these factors may be less important to
a user looking for help promoting a local business. If the query suggests a user seeking
knowledge or new expertise about a subject, then groups that frequently invite outside
experts to answer questions may be more desirable. Other queries suggest users seeking
groups for humour or entertainment, and this could be yet another factor that improves
ranking.

17.2 Fame in News
We feel that our study of fame in newspapers has barely scratched the surface of what is

possible. For example, instead of personal names, the object of study could be news stories,
clothing fashions or topics in a field of research. Instead of measuring changes in attention
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span across time, it would be interesting to measure changes across age groups, geography
or level of education.

News companies are generally based in particular locations, but we did not use location
data at all in our study. For example, we could ask whether communication across long
distances was a factor behind the duration of news stories. It would be interesting if the
proximity to telegraph lines could be inferred from the delay before a particular news outlet
publishes a story. More generally, more careful analysis and modelling of factors such as
locations and availability of news sources in our corpus might shed more light on the factors
behind our observations.
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