
Model-Based Embedded Software

Robert Bui
Kevin Albers
Jose Oyola Cabello
Naren Vasanad

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-117
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-117.html

May 15, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

We'd like to thank our advisors Professor Edward Lee, Professor Sanjit
Seshia, and Christopher Brooks for their guidance and encouragement
during our project work.

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING - SPRING 2015

Electrical Engineering & Computer Sciences

Robotics & Embedded Software

Model-Based Embedded Software

Robert Truong Bui

This ​Masters Project Paper​ fulfills the Master of Engineering degree
requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: Edward A. Lee / EECS

2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: Sanjit Seshia / EECS

Model-Based Embedded Software Final Capstone Report

Abstract

Model-Based Embedded Software

by

Robert Truong Bui

Master of Engineering in Electrical Engineering and Computer Sciences

Professor Edward A. Lee and Professor Sanjit Seshia

Embedded software is typically developed using traditional programming languages like C

and C++. However, these traditional types of programming languages are not well suited

for embedded systems development. The model-based embedded software project extends

the code-generating capabilities of Ptolemy II to help users develop software using

model-based design techniques for ARM mbed devices. In particular, this project primarily

focuses on automatically generating C/C++ code in Ptolemy II for Synchronous Data Flow

(SDF) and Finite State Machine (FSM) models. This makes it easier to design and debug,

leading to faster and more robust software development.

1

Model-Based Embedded Software Final Capstone Report

Table of Contents

I. Problem Statement​ (Kevin Albers, Robert Bui, José Oyola, Naren Vasanad)
II. Industry/Market/Trends​ ​(Kevin Albers, Robert Bui, José Oyola, Naren Vasanad)

A. Introduction
B. Market Trends
C. Competitors
D. Customers
E. Suppliers
F. New Entrants
G. Substitutes
H. Critique and conclusion to Five forces
I. Marketing and Productization
J. Conclusion

III. IP Strategy​ (Kevin Albers, Robert Bui, José Oyola, Naren Vasanad)
A. Introduction
B. Open Source Licenses
C. Advantages of Open Source Licenses
D. Concluding Remarks on IP

IV. Technical Contributions​ (Robert Bui)
A. Project Overview
B. Relevant Work
C. Methods and Materials
D. Results and Discussion

V. Concluding Reflections​ (Robert Bui)
References

2

Model-Based Embedded Software Final Capstone Report

I. Problem Statement

The Internet of Things (IoT) encompasses all small scale embedded systems which are

interconnected wirelessly through the internet and are continuously transmitting data. Currently,

programming embedded systems requires knowledge of intricate details of the platform being

used and the software is typically written using traditional programming languages such as C and

C++. In addition, embedded software for complex systems becomes very long and difficult to

understand as it grows. Our project involves the creation of an environment to make designing

applications for IoT easier through the use of model-based embedded software techniques. The

product abstracts all the finer details of implementation and exposes the features that the

designer is concerned with. Today, designers widely use embedded computing devices such as

Arduino and mbed™ , from ARM®, for prototyping embedded applications, because they are 1 2

open-source and low power. They are also inexpensive and have a large community of

developers. The design environment we are developing will specifically target these types of

embedded platforms.

Hardware and software of a cyber-physical system can be complex and difficult to

implement. “Cyber-physical systems” refers to embedded computer systems that interact and are

affected by physical elements (Mueller et al. 2012:219). A technique for designing a

cyber-physical system is model-based design, which applies mathematical modeling for designing

and verifying systems (Jensen et al. 2011:1666). Our project focuses on the creation of a

model-based design environment for programming embedded platforms. In particular, our

project targets applications aligned with the Internet of Things.

1 ​“Arduino is an open-source electronics platform based on easy-to-use hardware and software. It's intended for
anyone making interactive projects.” <arduino.cc>
2 mbed is an ARM based microcontroller that can be used to develop applications for the internet of things.
<https://mbed.org/>

3

Model-Based Embedded Software Final Capstone Report

Over the course of the project, we created a model-based design environment and

demonstrated its use with an embedded platform application. In order to test and determine the

effectiveness of the application, the project included designing an example system. The

application used to demonstrate the model-based design environment’s capabilities was an

interactive LED cube that could be controlled with hand gestures. The application was initially

developed using regular coding techniques by writing C and C++, and later developed using the

model-based design environment for comparison. The models for the components of this

application were included in the final application.

Code generation is one of the primary aspects of the model-based design approach. As

described by Jensen et al. (2011:1666), the model-based design methodology involves the use of

a code synthesizer to produce code that executes the desired models of computation. Typically,

designers will write C code that can be programmed on an embedded platform to perform some

task. However, model-based design techniques allows a developer to build graphical models that

represent their application. This project involves the creation of an environment using Ptolemy II

to allow designers to represent their application as graphical models. Based on the model 3

created in the design environment, code can be automatically generated for an embedded

platform.

Due to the nature of model-based design and specifically code generation, designers can

spend less time writing and debugging code. Rather, designers can focus on the design of their

application and verify its expected behavior. The use of a model-based design environment

allows designers to represent how they expect their application to perform and allow the

software environment to produce reliable code. The modularity of graphical models allows

designers to easily reuse models in different applications and change aspects of their design, and

3 “​Ptolemy II is an open-source software framework supporting experimentation with actor-oriented design.”
<http://ptolemy.eecs.berkeley.edu/ptolemyII/>

4

Model-Based Embedded Software Final Capstone Report

the graphical interface allows a user to easily view concurrent processes and how distinct units of

a program interact with each other.

II. Industry/Market/Trends

A. Introduction

Open source embedded platforms have become popular for rapid prototyping. The

market for embedded platforms has been growing as the number of connected devices continues

to increase. Our capstone project aims to contribute to the community of embedded developers

by solving the challenges of efficient code generation using the approach of model-based design.

The motivation for this project was twofold. First, a model-based design environment

specifically for mbed devices does not currently exist. There are a few competitors, as described

further in this section, that provide a graphical interface, but they do not offer a design

environment focused on model-based design. Secondly, our project targets an emerging market

and offers an opportunity for us to differentiate from our competitors. Embedded platforms have

become very popular with hobbyists and the maker community, but there are not many tools

such as ours that directly contribute to helping design for applications involved with the IoT. ​The

stakeholders for this project include three segments: end users, sponsors, and customers. End

users include hobbyists who work on IoT projects. Since these users will be working on fast

prototyping of solutions and also have basic knowledge about building products, this would be

the ideal market to target. These users could potentially give feedback of our product to improve

and focus it towards being viable to a larger audience. Once the software gains traction amongst

hobbyists it will be easier to reach a broader market like students, major companies, and

universities. ​Our sponsors include the EECS Department, Embedded Systems Lab, TerraSwarm

Research Center, Professor Edward Lee, Professor Sanjit Seshia, and the project team members

5

Model-Based Embedded Software Final Capstone Report

(Kevin Albers, Robert Bui, José Oyola, Naren Vasanad). Our customers will be discussed in detail

in the Customers sub-section.

In this section, we use Porter’s five forces model to analyze the five major forces in our

embedded software market in order to create a go-to-market strategy: competitors, customers,

suppliers, new entrants, and substitutes (Porter, 2008). In his article “How Competitive Forces

Shape Strategy”, Michael Porter (1979) discussed how the “​strength of these forces determines

the ultimate profit potential of an industry”​. We describe each of the forces and its effect on

our strategy in the sections ahead and provide a strong or weak label. A force that is labeled as

strong means that it could have a strong effect on our competitive strategy, whereas a weak force

is an area that our strategy could take advantage of. Porter’s five forces was important to use

because it offers a unique analysis to determine the strength of our product’s position, potential

to make a profit, and create a strategy to move the balance of power to our favor.

B. Market Trends

Our target industry includes anything which encompasses IoT. Gartner (2014) published

a study indicating that the IoT is on the peak of the hype cycle. It is expected that IoT will reach

the plateau of productivity, the point where the technology is stabilized, in the next five to ten

years. Furthermore, Clarice Technologies (2014) talks about how there will be close to 50 billion

devices connected to the internet by 2020. Based on these studies, the IoT industry has the

potential to grow immensely in the near future.

Most of these IoT devices will be small scale devices which sense the environment and

connect over the internet to communicate with other more complex devices. A Markets and

Markets (2014) report expects that by 2019, the IoT market will be close to $500 Billion. IoT has

the potential to create waves in many industries worldwide, spanning from medical and wearable

6

Model-Based Embedded Software Final Capstone Report

devices to transportation and automation, as well as improve social connectivity between people

everywhere (Hulkower 2014; Ma et al. 2011).

C. Competitors

There are three main competitors that offer model-based programming with a graphical

interface. These include MATLAB's Simulink® , National Instrument's LabVIEW , and an open 4 5

source project named PyLab_Works . 6

Mathworks' product, MATLAB, is one of the world’s best super calculators that runs on a

computer. It uses a scripting language to solve complex computations, often by using calculus.

Simulink is an environment within MATLAB that allows programs to be built using graphical

blocks. Mathworks has provided an interface, called Simulink Coder, a Simulink extension that

allows user to generate and execute code from stateflow models.. This allows people to use

Simulink to build model-based programs, then use the interface to and from the Arduino to

provide Simulink with the inputs and outputs. However, Simulink must be installed on a

computer to run, so the embedded device must be connected to a computer in order to work.

National Instruments improves upon Simulink's flaws with LabVIEW. LabVIEW is similar

to Simulink, but it switches the focus from computations with calculus to data analysis and

program logic. The best advantage that LabVIEW has over Simulink is the downloadable model. It

allows code generated by the model to be downloaded to the embedded platform and run

without the help of a computer. While LabVIEW offers substantial advantages for embedded

devices compared to Simulink, our solution offers further improvements with the use of

model-based approaches.

4 “Simulink® is a block diagram environment for multidomain simulation and ​Model-Based Design​.”
<http://www.mathworks.com/products/simulink/>
5 “L​abVIEW is a graphical programming platform that helps engineers scale from design to test and from small to large
systems.​” <http://www.ni.com/labview/>
6 “​PyLab_Works is a free and open source replacement for LabView + MatLab, written in pure Python.​”
<https://code.google.com/p/pylab-works/>

7

http://www.mathworks.com/model-based-design/

Model-Based Embedded Software Final Capstone Report

In the open source community, PyLab_Works offers an open source solution that attempts

to accomplish model-based embedded programming. It offers a block graphical interface similar

to LabVIEW, but it does not have much support. Each block must have written code in Python,

meaning it is not completely model-based software.

Our solution differs from our competitors since it’s open source and open platform,

whereas MATLAB and LabVIEW require a license to use them. A MATLAB license for personal use

costs $149 for non-students, and the basic LabVIEW license costs $999 (MathWorks n.d.; National

Instruments n.d.). This license cost is prohibitively expensive to many potential users of these

systems. In contrast, our solution is open source and freely available. In addition, our solution is

open platform. MATLAB and LabVIEW are closed to specific platforms that the developers have

chosen to support. If a user wishes to use one of these software tools with a different platform

that is not supported, then there is little he or she can do. By making our solution available to the

open source community, it is able to expand and grow the amount of supported platforms.

Overall, the threat of rivals is weak, though with a change in strategy, it is possible that these

competitors could enter the hobbyist space.

Open source software has been known to disrupt markets dominated by proprietary

software in the past. According to IBISWorld, “open-source software (OSS) has been growing as a

share of the global software market” (Kahn 2014:31). OSS (such as the Linux operating system) is

a threat to some proprietary software, but will also promote interoperability and new software

developments (Kahn 2014:31). Since our software is associated with open source software, we

anticipate that we can leverage on the OSS structure and increase traction on our product.

The success of our application can be measured with market adoption. A study has shown

that the number of updates to open source software created by members of open source

communities has increased exponentially in the recent past (​Deshpande et al, 2008:205​). This

8

Model-Based Embedded Software Final Capstone Report

further supports our claim that acquiring more users would lead to more development of our

project. Handling a community is not a straight-forward task. Øyvind et al. says that it may be

beneficial to release the product as executables in the beginning to increase usage and

decentralize the control of power with specific tasks having ownerships also that as the product

grows (Øyvind et al. 2009:71-72).

Another factor that affects market adoption is the availability of modules. Our application

will have a library of modules that are specific to IoT. These modules include sensors, actuator

and communication. Making these modules specific to IoT will help differentiate ourselves from

competitors who may not have such libraries. These standard libraries will help to create trust in

the open source community and hence will help in building traction amongst hobbyists (Øyvind

et al. 2010:114).

D. Customers

Our project would make it easier to communicate with development platforms and also to

integrate sensors and actuators into a system. Since the technology is still nascent, it gives the

project the right opportunity to grow with an emerging market and adapt to changes from

customer needs.

Our main target customers are hobbyists and do it yourself (DIY) enthusiasts. These

customers have a large variety of products to build their projects with, as well as a competitive

market with low prices for embedded platforms. In addition, there are various tools that they can

use to develop on their chosen platform as described in the competitors subsection. The most

important factor is our reliance on market adoption to promote our product. We need to create a

community that develops libraries and examples that are easily accessible to new users.

However, open source software adds additional barriers for customer adoption. It can be harder

for customers to trust open source software as much as the paid closed source alternatives

9

Model-Based Embedded Software Final Capstone Report

created by established companies (Bianco et al. 2009). For these reasons, the customer market

force is strong.

E. Suppliers

Since our project is built using the Ptolemy II, the affiliated Ptolemy II research group at

UC Berkeley is our main supplier. Ptolemy II group relies on donations from research grants and

businesses that use the software. Our success will help extend the successful functionality of the

Ptolemy II project, making it beneficial for us to succeed. This makes our supplier a collaborator

rather than a potential threat to our success.

Furthermore, the fact that this is a research project under one of the most reputed

universities in its field helps us differentiate from other competitors. Even if there are

competitors in the open source community, the backing of the Ptolemy II project will help gain

trust from potential users and hence increase the conversion rate of adoption in our favor.

F. New Entrants

According to Hoover’s industry analysis of Computer Aided Design (CAD) software, the

DIY movement “has sparked interest in CAD/CAM software among hobbyists and tinkerers”

(2015). Our software falls into this category as a form of CAD. This industry opportunity shows

that not only will this space be attractive to existing players, who can easily enter the market to

compete with their products, but also startups that could use our open source code to build their

own similar products to compete with our own. This shows that the threat of new entrants is

strong.

G. Substitutes

Hobbyists have the option to continue using tools that they know, which makes

programming in languages such as C a substitute to our product. Since it might be too time

10

Model-Based Embedded Software Final Capstone Report

consuming to learn a new programming method such as using a graphical design environment,

many hobbyists might decide it is not worth their time to switch from their current programming

methods. We designed our tool to reduce development time when the user has learned how to

use it, but over a short period of time this is less obvious to the user and they may become

frustrated and return to a familiar tool. In addition, the current communities, such as the Arduino

community, have large libraries of tools and project guides, which pose a strong threat to our

product adoption. This makes the threat of substitution a strong threat.

H. Critique and conclusion to Five forces

Given the fact that our project is open source and the current trends in the open source

community, we are in an interesting position when it comes to our strategy. After evaluating the

five forces, it seems that some of these forces may actually end up working in our favor. First, our

main supplier, the Ptolemy II project, is actually more of a collaborator. The project participants

frequently and on a daily basis increase the capabilities of Ptolemy II and add to the already large

codebase. As will be discussed in the section on Intellectual Property, our success is linked with

the Ptolemy II project, which was mentioned in the suppliers sub-section. ​This further

incentivizes the Ptolemy II project stakeholders to continue to pursue the project and ensure its

success.

In addition, the customers for our project are hobbyists and the open source community.

The open source community is known for expanding projects and making the projects suit their

needs (Deshpande et al. 2008:198). Therefore, our open source customers can actually become

collaborators and help expand the codebase of Ptolemy, adding support for other platforms, and

creating sample applications for others to use and learn from.

The open source nature of the project also has the effect that new entrants can end up

helping us succeed. Any new open source alternatives to our Ptolemy project will have to

11

Model-Based Embedded Software Final Capstone Report

compete with Ptolemy’s 20-year-long history and codebase, which spans over 3 million lines of

code. However, open source projects have another option: to join our community and enhance its

reach and capabilities. For instance, a new entrant seeking to create an open source model-based

environment for the Raspberry Pi can take advantage of Ptolemy’s already existing infrastructure

and simply add support for their platform instead of building everything from scratch.

Overall, the five forces in our market are moderate, with the strongest force being the

customers. This means that without addressing these forces appropriately, the profit in this

industry will not be huge, even if successful. The open source business model adds an additional

challenge to profitability. We can mitigate the strong forces with the right positioning.

To bring our product to market, our marketing strategy will be focused on the 4 ‘P’s:

product, place, price, and promotion. As mentioned in the subsection on Customers, our target

customers and users are hobbyists and makers. By making our product initially open-source, it

will be very appealing to this customer segment as they are very willing to try new products

especially those that are at no cost to them. We plan to market it differently as well since we are

targeting the open source community instead of industry professionals like our competitors.

From our marketing study conducted early in the project, we learned that many of these types of

users learn about the latest technology through websites and complementary technologies to our

product such as embedded platforms like Arduino. Therefore, our strategy will be to ensure our

product is easily accessible online by hobbyists.

I. Marketing and Productization

Based on the success of providing our product as an open source solution, there are four

ways in which we could begin to monetize our project. The first way would be to to offer

technical support for those that are interested in advanced applications. Users could pay to

receive help from our technical support staff in using and extending our product for their own

12

Model-Based Embedded Software Final Capstone Report

needs. This option would be the first one that we would try since it has been successful for other

products in the past. In his article, Fitzgerald calls this a value-added service-enabling model

which has been very successful for Red Hat, an open source Linux provider (Fitzgerald 2006).

Another alternative would be the use of advertisements. Similar to how desktop and

mobile applications are designed, we could incorporate advertisements in our design

environment and users would pay a fee in order to use a version without advertisements.

Furthermore, we could offer a professional version of our open source project that would

be targeted to advanced users and industry professionals. This version would use a subscription

model where customers pay a monthly or annual fee. The professional version would include

application specific content and strong technical support and documentation for the most

cutting-edge advancements in embedded systems. Fitzgerald also mentions in his article that this

would be considered a loss-leader/market-creating model since our first product would be open

sourced but a product with more features would be used for monetization (Fitzgerald 2006).

A final option for monetizing our product would be to partner with an embedded

platform company and offer our product as part of a bundle. The company would provide the

target embedded platform hardware and our software product would complement their device

with a custom design environment. An example of this approach would be the mbed

collaboration between ARM and several semiconductor companies. In this industry with

established competitors, this would be an appealing approach to obtaining market share and

brand recognition.

J. Conclusion

Based on our project’s unique features and target market, our project has potential to

make an impact in the embedded software industry. The IoT era has brought a need for better

software design tools and our product helps solves the challenges that designers face. By

13

Model-Based Embedded Software Final Capstone Report

targeting hobbyists and the maker community, our product enters a space where it can receive

market adoption and not directly compete with well-known embedded software competitors.

“Open source style software development has the capacity to compete successfully, and perhaps

in many cases displace, traditional commercial development methods” (Mockus et al. 2002).

Based on our evaluation of Porter’s five forces in this industry, our business strategy should allow

our product to make a strong impression in an industry with primarily commercial development

methods (Porter 2008).

III. IP Strategy

A. Introduction

Since the Model-Based Embedded Software project is built upon Ptolemy II, it is

important to understand the intellectual property surrounding the project before deciding how it

should be advanced for commercialization. The concepts and ideas that form the basis of this

capstone project are not novel, nor is the particular application that this project seeks to build. In

particular, the project is an open source implementation, rather than invention, of the previously

existing branch of computer programming known as model-based code generation. Several

software solutions already exist that produce code using similar techniques, and they are

mentioned later in this section. This makes it highly unlikely that any aspect of the project is

patentable. However, this does not mean that the concepts of intellectual property do not apply

to this project. This section discusses the intellectual property aspects of the Model-based

Embedded Software project and the strategy that can be used to ensure proper use and

attribution of our work, as well as the risks associated with infringement of previously existing

IP.

14

Model-Based Embedded Software Final Capstone Report

B. Open Source Licenses

There are many different open source licenses that are available to protect the work of

the open source community. The most widely used open source license, the GNU General Public

License (GPL), is an example of what is known as a “copyleft” license, which requires that any

work built upon GPL-licensed software must also be distributed under the same license

(Lindman et al. 2010:239). This ensures that any GPL-licensed work will forever be freely

available for all to use. However, other open source licenses such as the Berkeley Software

Distribution (BSD) and MIT open source license are different. These open source licenses, both of

which come from academic institutions, allow software covered under the license to be used in

any way, including in commercialized software for profit, with no restrictions (Lindman et al.

2010:239). The idea behind this method of licensing is that successful projects coming from these

institutions, if available freely for use in successful software, can benefit the institution from

where it came by enticing others to provide funding to the institution for further development of

the software. An example of successful commercial software built upon BSD-licensed software is

Apple’s Mac OS X and iOS, both of which are built upon BSD Unix (Engelfriet 2010:49). These

open source licenses provide many benefits to those wishing to build upon them, such as

software startups, since it does not require the resulting software to have the same license. This

means that any other protection can be used for the software, including copyright protection, or

even a different open-source license, which would ensure that the software would continue to be

available as open source, if that is the goal of the software developer, as is often the case for the

open source community (Engelfriet 2010:49).

Since our work is part of a large software collaboration, Ptolemy II, it will be bounded by

the same rights of use, the BSD license ​(“Ptolemy II F.A.Q” 2014)​. “Ptolemy II is ​an open-source

software framework supporting experimentation with actor-oriented design” and is a part of the

15

Model-Based Embedded Software Final Capstone Report

Ptolemy project at UC Berkeley, which is an initiative dedicated to studying models and

simulations of embedded systems (“Ptolemy II” n.d.) ​. The Ptolemy project is well-funded and

has many industrial sponsors involved (“Sponsors of the Ptolemy Project” n.d.). The BSD license

allows software designed with Ptolemy II to be used for free commercially. Thus, if we decided to

extend the software in the future as a separate entity, we would not have any issues

commercializing it.

C. Advantages of Open Source Licenses

Furthermore, there are many other advantages for distributing our software through

open-source channels. As mentioned in the Industry/Market/Trends section, many large

competitors already exist in the embedded software industry. Open-source software offers a way

to create market adoption by allowing customers to try a new product for free in order to build a

community supporting the software. This is one way that open source software can penetrate a

market with large competitors. According to Hoover (2015), “open-source software, which poses

a competitive threat to the industry's traditional license-based business model, has grown in

popularity in the last decade.” There are many examples of immensely popular open source

successes in the past, such as Linux and Apache, and PostgreSQL, which have formulated a threat

to proprietary software (Kahn 2014:31; ​Deshpande et al, 2008:197​).

Although open source software can pose a threat to proprietary software, its open nature

can also be a disadvantage. Since many of the existing large players have a research and

development unit, the entrance of a new player could mean that existing players can simply use

the new open source software to improve their solution directly (​Engelfriet 2010:49​). This is not

an issue for copyleft licenses, since they require that any software built on it must also use the

same license, but this requirement doesn’t exist for permissive licenses such as BSD (​Engelfriet

16

Model-Based Embedded Software Final Capstone Report

2010:49)​. Because permissive open source licenses allow for this to happen, it is very difficult for

open source developers to protect themselves.

Currently, two of the largest competitors in the embedded software industry are

Mathworks and National Instruments. Their respective products that are similar to our software

tool are Simulink and LabVIEW. Each of these products offers a graphical design environment

that can generate code for embedded system. Both of these companies have many patents

registered involving the design environment, model types, and methods for code generation. In

particular, National Instruments has a patent titled “​Statechart development environment with

embedded graphical data flow code editor​”, US patent ​number 8387002 (​Dellas et. al​. 2008:1).

The patent describes a graphical design environment that uses a model that LabVIEW called

statecharts, “a diagram that visually indicates a plurality of states and transitions between the

states”, to represent an application (​Dellas et. al​. 2008:35). Furthermore, in the patent, LabVIEW

claims the rights to the invention of code generation for statecharts and specifically the

transitions linking the states of a model (​Dellas et. al​. 2008:35). Although this patent seems

similar to our product, it is quite different since it involves statechart models which are not used

in Ptolemy II. Rather, our software generated code based on the specific model of computation

selected instead of solely transitions and states as done in LabVIEW. Based on the limits of the

patent to statechart models, the patent should not overlap with our idea.

D. Concluding Remarks on IP

Ptolemy II has existed for almost 20 years as an open source project and many

commercial products have been created from Ptolemy such as Agilent’s Advanced Development

Systems (“Links” 2014). Our capstone project extends the functionality of Ptolemy II by offering

code generation for models currently supported in Ptolemy II. Since there are currently no novel

17

Model-Based Embedded Software Final Capstone Report

aspects of our projects that could be patented, open source would be the best alternative

approach for the current state of our project.

IV. Technical Contributions

A. Project Overview

Embedded software is typically written using imperative languages such as C.

However, these traditional types of programming languages are not best suited for

embedded systems development. Lee and Neuendorffer (2004) define embedded systems

as the combination of software and hardware in a system where the software reacts to

sensor data and issues commands to actuators. Unlike general software, software for

embedded systems can have complex timing requirements and are typically held to a

higher reliability standard due to their applications directly involving human lives (“Design

Challenges” 2008). Therefore, developing embedded software can be time consuming and

difficult for developers, especially those creating embedded software for the first time. Our

capstone project aims to demonstrate how formal methods, particularly formal modeling,

can be used to efficiently design embedded systems applications. In particular, we explored

the model-based design of embedded software for open source embedded platforms and

created a graphical design environment using Ptolemy II that automatically generates code

for an embedded platform.

 The scope of the project involved choosing an embedded platform and using it to

create an application in order to understand how embedded system applications are

traditionally developed. We explored the challenges of developing embedded software for

18

Model-Based Embedded Software Final Capstone Report

an ARM mbed platform. Furthermore, we assessed the tradeoffs and risks associated with

code generation through our graphical design environment using Ptolemy II. Since Ptolemy

II has an existing code generator for C code, we became familiar with how the generator

works and modified it in order to generate code from models for our target embedded

platform based on our example application. We compared the generated code with code

written for our embedded platform to determine opportunities for optimization and

efficiency.

The timeline of this project was for one academic year. In the first semester, the

primary focus was on understanding the model-based design process and creating an

application to become familiar with embedded system tools. We chose an application

inspired by the Internet of Things which involved the construction of an interactive LED

cube that could be controlled by sensors in a data glove over the internet. My work during

this semester involved creating models to represent our application and developing the

application code to interface the LEDs with the embedded platform based on information

received from the sensors. It was important for my work to be carefully developed in order

to give our team a foundation for code generation in the second semester of the project

which is discussed further in the Methods and Materials section.

In the second semester, the team’s main focus was on generating C code based on

the code we had written for our application. This involved learning about the code

generator architecture in Ptolemy II and extending it to generate code and build the source

files for our target mbed platform, the Freescale FRDM-KL25Z. Furthermore, we learned

how to model our application in Ptolemy II and solved issues to create a usable design

19

Model-Based Embedded Software Final Capstone Report

environment. An integral aspect of our project was to document our process in order for

future users to extend the code generator for their own applications in the future. My work

during this semester involved understanding the existing Ptolemy II code generator and

building models to test our application. During this process, I helped find and solve issues

related to the code generator and create models that successfully code generate. The

outcome of my work helped the team have models for testing their aspects of the project

and move further in creating a code generator for more complex models.

B. Relevant Work

 Although there are many different formal techniques for designing an embedded

system, the focus of this project will be on model-based design. This approach emphasizes

the use of mathematical modeling for designing and verifying dynamical systems (Jensen

2010). Model-based design allows a designer to check that their model performs and meets

their requirements through a formal process. Models are used to represent the design of a

system and help predict the characteristics of a design (Karsai et al. 2003). In his paper, Jeff

Jensen (2010) formalizes the model-based design workflow for designing embedded

systems in ten distinct steps. The steps involve characterizing the physical process in a

model, selecting a model of computation, using a simulation tool that supports the model of

computation to simulate and synthesize the software, and testing the application. Since

results at different steps can influence the design, the model-based design process is

iterative. For our capstone project, we used the model-based design approach to develop a

target application. Our capstone project focuses mainly on the software synthesis step of

20

Model-Based Embedded Software Final Capstone Report

the model-based design process since it involves generating code from a graphical model

representing the application using Ptolemy II.

 Developed at UC Berkeley, Ptolemy II is a software framework that allows a user to

model and simulate embedded systems. Ptolemy II offers a graphical user interface called

Vergil that allows a user to create graphical models using various actors and directors, and

view the results of simulations. Actors represent components of a system in a model such

as mathematical components and are governed by directors, which define the semantics of

the model (Ptolemaeus 2014). The semantics of a model, or “collection of rules that define

how components in a design should interact”, is known as the model of computation

(Ptolemaeus 2014).

Ptolemy II is different than many other software environments because it allows a

user to choose the model of computation for an application. Based on their application, a

user can choose from models of computation such as synchronous data flow, discrete

event, continuous, or process networks. Actors in a synchronous data flow model consume

and produce a number of tokens each time they are fired. In order to fire, each actor

requires a certain a number of tokens to perform their process and produce tokens (B. Lee

1998). The models of computation we are interested in working with are synchronous

dataflow and finite state machines. Finite state machines involve a set of inputs, outputs,

states and transitions. For each transition in a finite state machine, guards are used as

conditions for a transition to occur. Each transition may also have an action that executes

when the conditions from the guard are fulfilled (“Finite State Machines” 2009).

21

Model-Based Embedded Software Final Capstone Report

In embedded systems modeling, it is often of interest to use hierarchy to allow for

the use of multiple models of computation and reduce the number of transitions for a finite

state machine (Girault 1999). Hierarchy is a key concept for structuring complex systems

as the use of sub-models allow for characterizing the architecture and behavior of a

system’s design. For our capstone project, we are particular interested in using finite state

machines inside a synchronous dataflow model (Alur 2003). In Ptolemy II, finite state

machines are described in synchronous data flow models using a modal model actor. The

modal model actor is governed by the rules of synchronous data flow, but its refinement is

a finite state machine.

Unlike Ptolemy II, which allows for different models of computation, other code

generation environments have a fixed model of computation. In these types of

environments, the user is constrained to modeling their application based on the model of

computation that the software is built upon. For example, MATLAB’s Simulink environment

uses a continuous time model of computation and National Instrument’s LabVIEW uses a

model of computation similar to synchronous data flow (Ptolomaeus 2014). The existing C

code generation environment in Ptolemy II has the capabilities of generating code for

synchronous dataflow and finite state machine models (Tsay 2000). We extended the

capabilities of the existing code generator for embedded devices based on the supported

models of computation in Ptolemy II.

C. Methods and Materials

 In the beginning of our project, the first goal was to narrow the scope. As previously

mentioned, the goal of our project was to create an example application using an embedded

22

Model-Based Embedded Software Final Capstone Report

platform that we could later generate code for using a graphical design environment. Since

there are many open source embedded platforms and applications that we could pursue,

we needed to choose one platform to design with. There are currently two dominant open

source platforms used by the majority of developers: Arduino and Raspberry Pi. Both of

these platforms are popular with users because they are easy to use and inexpensive.

However, they are very different devices. The Raspberry Pi is essentially a small computer

that can run an operating system and the Arduino is a simpler device that is slower than

Raspberry Pi but is intended for hardware applications.

Another up-and-coming open source embedded platform are boards with

processors using the ARM architecture. These development platforms are called ARM mbed

platforms and are created from a collection of industry partners such as Freescale, NXP,

and STMicro. There are over 30 mbed devices. The mbed platforms are intended for use in

developing devices in the Internet of Things realm. Since mbed devices are more advanced

than Arduino devices, our team was interested in using the mbed platform, the Freescale

FRDM-KL25Z (referred to as mbed for the remaining paper). As shown in Table 1, the

mbed has more speed, memory, and less power than the Arduino Uno. From previous

work, code generated files typically have a significant amount of overhead. The mbed offers

a platform that would help us ensure we would have enough memory to test our generated

code. It also includes an accelerometer, touch sensor, and Arduino-style headers which

offer the opportunity to test more supported sensors and Arduino shields. Based on the

specifications of the mbed and backing of industry partners, we decided to create our

project around the mbed.

Table 1: Arduino Uno vs. Freescale FRDM-KL25Z Specifications

23

Model-Based Embedded Software Final Capstone Report

 Arduino Uno Freescale FRDM-KL25Z
Microcontroller Atmega328 MKL25Z128VLK4

Operating Voltage 5 V 5 V
Flash Memory 32 KB 128 KB

SRAM 2 KB 16 KB
Clock Speed 16 MHz 48 MHz

Accelerometer X
Capacitive Touch Sensor X

Integrated Design Environment (IDE) Arduino IDE mbed online IDE
After choosing an embedded platform, we wanted to understand the embedded

software design process by developing an example application using mbed. Since the end

goal was to be able to code generate for the example application, we needed to create an

application with a variety of modules and components. Based on the prevalence of the

Internet of Things, we decided to create an application involving an interactive

light-emitting diode (LED) cube using NeoPixel LEDs that can be controlled by a user using

a data glove. The application consists of many areas of embedded systems development

that we could code generate for. The data glove, a Virtual Realities DG5, consists of three

different sensors: an accelerometer, a gyroscope, and finger bend sensors. A photo from the

demo of the application is shown in Figure 1.

Figure 1: LED Cube Demo with Data Glove

24

Model-Based Embedded Software Final Capstone Report

For communication between the major components of the system, our application

consisted of a real time network using the TCP/IP socket communication protocol where

packets of data were transmitted over Wi-Fi from data glove to a laptop. The laptop routes

the data to the mbed device. The mbed receives the packets of data from the laptop through

a connected device called the CC3000 using socket communication. The mbed updates the

lights on the LED cube based on the information received from the packets. The flow of

communication for the application is shown in Figure 2. For our application, only three

sides of a cube are used. The LEDs were lighted up to create the image of a three-sided

cube, which can be moved and modified based on the gestures recorded from the data

glove. José Oyola discusses the creation of the cube further in his paper.

Figure 2 : LED Cube Application Communication Flow Diagram

Overall, the application was modeled as a synchronous dataflow model as shown in

Figure 3. This model of computation was chosen because components of our system

require data from other components before they can be used and send information to

25

Model-Based Embedded Software Final Capstone Report

another component. Each packet of data is represented as a token and the numbers in

Figure 3 labels the token requirements of each block.

Figure 3: Synchronous Dataflow Model of LED Cube Application​1

 After completing the example application, we began exploring the C code generator

in Ptolemy II to begin work on code generation for mbed. First, we looked at the previous

work for generating code using Ptolemy II for the Arduino Yun. The goal of the previous

work was to be able to blink an LED on an Arduino Yun based on a simple model (shown in

Figure 4) created in Ptolemy II. The model consisted of a sequence actor connected to a

display actor using the synchronous data flow model of computation. The sequence actor

sends true and false alternately to the display actor. Based on the Boolean value received,

the display actor sets the LED on or off. Since the display actor is typically used for

displaying values to a console, it was modified to execute Arduino code based on the value

received at its input. The right side of the Figure 4 shows the code that corresponds to the

display actor and used by Ptolemy II in code generation.

26

Model-Based Embedded Software Final Capstone Report

Figure 4: Blink LED Model for Arduino Code Generation and Display Actor Code

 We found that in Ptolemy II each actor used for code generation must have a

corresponding C and Java helper file. These files are looked for when the model is parsed to

determine how each actor is related and the code structures it represents. Ptolemy II uses

these files to create an abstract syntax tree representation of the code. For synchronous

data flow models, during the process of code generation, a schedule of the actors is also

created to show the order that each actor should be fired. The schedule is created based on

the ordering of the actors in the model. After code generation is complete, many C files are

created for the model. A C file is created for each actor in the system based on the code

written inside their respective C helper file and the connections to their input and output

ports. Another C file contains the firing schedule based on synchronous data flow. A main

file is created for running and executing the model based on the parameters set in the

director. The code generation process is illustrated in Figure 5.

27

Model-Based Embedded Software Final Capstone Report

Figure 5: Code Generation Process for a Simple Model

 Similar to the Arduino project, our first goal was to get an LED blinking on the mbed.

We started by modifying the C helper file for the display actor with the code required to

blink an LED on the mbed. After trying to generate code for the mbed for the first time and

running it on the online compiler, we learned that there was many changes that needed be

made in order to properly compile and run the code. We first made changes to the code in

the online compiler to determine what was needed to compile the code. The main issues

that we faced were the labelling of files and content of the files. Since the Ptolemy II code

generator produces C code, and the mbed online compiler uses a C++ compiler, there are

subtle differences that needed to be fixed. We tracked down the changes that needed to be

made in Ptolemy II which were in the C Code Generator files. In order to compile the

generated code directly from Ptolemy II, we also needed to create a makefile that utilizes a

desktop mbed compiler. Naren Vasanad and Kevin Albers talk in more detail about

makefiles and the GNU for ARM toolchain.

After successfully getting an LED to blink on the mbed, the next step was to use

other actors and a finite state machine. Figure 6 shows an example of a finite state machine

28

Model-Based Embedded Software Final Capstone Report

model used to change the color of the LED on the mbed. In Ptolemy II, finite state machine

models are refined in a modal model actor. In this example, the input to the modal model is

a sequence actor, which repeatedly fires true. The finite state machine contains three

states, each representing a color of the LED, and transitions each time it receives true and a

counter is equivalent to a certain number. When the counter is not equivalent to a certain

number, the counter is incremented. The counter is reset each time the finite state machine

enters a new state. The modal model fires a token based on the actions of each transition.

The actions correspond to the color of the LED that should be set. The embedded code

actor uses its input to change the color of the LED based on the code within it. It is treated

by the code generator similarly to the display actor as it has a unique C helper file, but it

uses the code written by the user within the actor.

Figure 6: Synchronous Dataflow and Finite State Machine Model of LED

29

Model-Based Embedded Software Final Capstone Report

Using the above models, we found that there are flaws in the generated code and

memory leaks occur when running the software on our embedded platforms. In particular,

the blinking LED model in Figure 4 would only run for about 100 iterations before stalling,

and the finite state machine model in Figure 6 would not even run on the mbed. Since our

generated code already takes up a large portion of the memory on the mbed, we decided to

test our code on a platform with larger memory to verify whether it could be a code size or

memory leak issue. Using the Freescale FRDM-K64F, the finite state machine model in

Figure 6 was able to run for a few iterations. Thus, we suspected a memory leak was

occurring somewhere in the generated code.

In order to help determine the cause of the memory leak issue, we used Valgrind to

analyze our generated code. Valgrind is a suite of software tools for analyzing programs in

detail (Valgrind). In particular, when given an executable file, Valgrind’s memory error

detector can be used to determine how memory is being allocated and if data is being lost.

Our first goal was to determine how to get an LED on the mbed board to blink infinitely.

Using the blink LED model in Figure 4, we generated code based on 100 firings of the

sequence actor and created an executable to be analyzed by Valgrind. Based on the output

produced by Valgrind as shown in Figure 7, 1,600 bytes of data were definitely lost (16

bytes for each firing). Figure 8 shows the offending files and line numbers in the program

where Valgrind found the memory errors.

Figure 7: Valgrind Memory Analysis Summary of Blink LED Model

30

Model-Based Embedded Software Final Capstone Report

Figure 8: Files Involved with Memory Leak for Blink LED Code Generation

From analyzing the offending files, we found that tokens received from the Display

actor are not being freed. As mentioned during the code generator structure, the $get

macro is used to obtain the value of the token at the input of the actor when it is received.

However, the macro is only getting the token, but it does not free it after it is consumed.

Thus, we have currently fixed the problem by adding code to the actor to create a token and

free it after it has been used. The code shown in Figure 9 is used in the Display.c actor to

received boolean tokens for the Blink LED model of Figure 4 and results in no memory

leaks.

Figure 9: Code for Display.c to Fixed Memory Leaks

Another actor that we were able to temporarily resolve memory leaks for in

Ptolemy II is the EmbeddedCodeActor. The EmbeddedCodeActor is a useful actor because it

allows us to directly write the C code to be generated. Figure 10 shows a model that uses an

EmbeddedCodeActor to light up a NeoPixel LED strip connected to a digital pin on the

mbed platform. In this model, the EmbeddedCodeActor (NeoPixel_LED_Strip), receives a

31

Model-Based Embedded Software Final Capstone Report

sequence of values from IndexSequence and ColorSequence to determine which LED on the

strip to turn on and set its color respectively.

Figure 10: Ptolemy II Model with EmbeddedCodeActor (NeoPixel_LED_Strip)

Figure 11: NeoPixel_LED_Strip EmbeddedCodeActor Code

As shown in Figure 11, similar to the Display Actor in the Blink LED model, we

needed to create and free the token received by the EmbeddedCodeActor. To simplify the

creation of the code in the actor, we created a macro called $getNoPayload that returns the

necessary code as shown in the commented code of Figure 11. Using the code shown above,

we were able to light up of the NeoPixel LED without any memory leaks and have been able

to use multiple EmbeddedCodeActors for other applications involving our LED cube.

32

Model-Based Embedded Software Final Capstone Report

Most of the work for our project was modifying the existing C code generator to

program the mbed and ensure that it was producing robust code. EmbeddedCodeActors

were beneficial for rapidly testing the code we had written for our LED Cube application in

Ptolemy II and ensuring the code generator was producing code that allowed the

application to work as expected. Using the EmbeddedCodeActors, we were able to create a

model to represent our LED Cube application and successfully generate code for the mbed

to replicate the application based on the code we had written on our own. Based on the

EmbeddedCodeActors used for the working LED Cube model, we found out how to create

and add actors to Vergil in Ptolemy II in order for users to easily recreate our application or

extend the actors for their own use. The final model with our created actors is shown in

Figure 12, Figure 13, and Figure 14.

Figure 12: LED Cube Application SDF Model

33

Model-Based Embedded Software Final Capstone Report

Figure 13: Contents of WiFi Composite Actor in LED Cube Application Model

Figure 14: Contents of LED Cube Composite Actor in LED Cube Application Model

D. Results and Discussion

The model-based design process is used to accelerate development time and

improve reliability of embedded software. For our capstone project, we began by using

traditional methods to write C code for an example application, a lighted LED cube

controlled by a data glove. The application was overall successful as a user was able to

control the movement, size, and color of a lighted cube based on different gestures using a

data glove. Using wireless communication via Wi-Fi, the gestures from the data glove were

discerned and the status of individual LEDs were updated. We wrote the embedded

software for our application using objected oriented programming concepts to make it as

modular as possible for use in code generation. Through the experience of using traditional

methods, we learned about the challenges of debugging embedded software and how

model-based design could be useful.

34

Model-Based Embedded Software Final Capstone Report

 By creating a graphical design environment using Ptolemy II for code generation, we

were able to successfully generate code for simple models such as blinking an LED and

toggling input and output pins. The code was able to compile on the online mbed compiler

and then, we were able to create a makefile with an offline compiler in order to directly

generate and compile code from Ptolemy II. Using EmbeddedCodeActors, we were able to

create a model representing our example LED cube application and successfully generate

code to produce a similar functioning application. The use of graphical models has shown

to be much easier to use and quicker than writing the code for the application. However,

further work needs to be done to optimize the code size and enable the use of more

complex models.

V. Concluding Reflections

Although there is still much work that needs to be done in order for code generation

in Ptolemy II to be beneficial and a better alternative to traditional programming for

embedded devices, our capstone project demonstrates that it is possible to offer an

embedded software developer a tool for rapid prototyping using a graphical design

environment to represent their application. With graphical models, users can spend less

time debugging syntax errors from traditional programming languages and more time

developing their applications. By using an mbed device, the Freescale FRDM-K64F, as our

target application for code generation, we showed that the use of a graphical design

environment can be truly beneficial to developers. Based on the major elements of our LED

cube application which used a network of sensors and actuators, we were able to

35

Model-Based Embedded Software Final Capstone Report

demonstrate with our project the ability to generate reliable code using Ptolemy II to

replicate many elements in our cube application such as using the accelerometer and

controlling the lighting of the LEDs.

Besides the development of a graphical design environment for code generation,

another primary deliverable for our project was the documentation of our work and the

creation of a user guide. Since our work focused on one family of embedded devices, the

ultimate goal would be the ability for the code generator in Ptolemy II to be expanded to

other devices. One of the biggest challenges when our group started working on modifying

the code generator in Ptolemy II was the lack of documentation regarding the topics and

files surrounding the code generator. The documentation that we have created should

enable new developers to extend Ptolemy II for their own platforms using the SDF and FSM

models of computation.

Based on the work we have done with our capstone project, there are many areas of

code generation in Ptolemy II that could be recommended for future research. From our

original schedule created through project management, we had expected to explore code

generation for other models of computation such as Discrete Event. However, due to

different issues that arose from SDF and FSM models, we did not have the chance to extend

our work to other models of computation and aspects of model-based design. Future work

could be done to improve the current code generator for other actor types and extend the

code generator for other models of computation. Furthermore, there are opportunities to

explore model-based testing techniques based on the work we have done to ensure

reliability and efficiency of the code generated.

36

Model-Based Embedded Software Final Capstone Report

References

Alur, Rajeev, Thao Dang, Joel Esposito, Yerang Hur, Franjo Ivancic, Vijay Kumar, Insup Lee

Pradyumna Mishra, George Pappas, and Oleg Sokolsky. “Hierarchical Modeling of

Embedded Systems,” Proceedings of the IEEE, Vol. 91, No. 1, Jan. 2003.

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. ​"​Two case studies of open source

software development: Apache and Mozilla.​"​ ​ACM Trans. Softw. Eng. Methodol.​ 11, 3 (July

2002), 309-346, Web. 16 Feb. 2015. <http://dl.acm.org/citation.cfm?id=567795>

 "Buy LabVIEW." - ​National Instruments​. National Instruments, n.d. Web. 25 Nov. 2014.

<http://www.ni.com/labview/buy/>

Clarice Technologies. "Demystifying the Internet of Things." ​Thinking Products: A Weblog by

Clarice Technologies​, Clarice Technologies, 6 Mar. 2014. Web. 16 Feb. 2015.

<http://blog.claricetechnologies.com/2014/03/demystifying-the-internet-of-things/>

Dellas, Christina M., and Hogan, Kevin M. Statechart Development Environment with Embedded

Graphical Data Flow Code Editor. National Instruments Corporation, assignee. Patent US

8,387,002 B2. 26 Feb. 2013. Print.

Deshpande, A. and Riehle, D., ​IFIP International Federation for Information Processing​, Volume

275; ​Open Source Development, Communities and Quality​; Barbara Russo, Ernesto

Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi; Boston: Springer, 2008. pp.

197–209.

Engelfriet, A. "Choosing an Open Source License." IEEE Software 27.1 (2010): 48-49. Print.

"Engineering, Scientific & CAD/CAM Software" Hoover’s Online. 2015. Web. 16 Feb. 2015.

Fitzgerald, Brian. "The Transformation of Open Source Software." MIS Quarterly. Vol. 30, No. 3

(Sep., 2006)​ , pp. 587-598. Web. 16 Feb 2015. ​<​http://www.jstor.org/stable/25148740​>

37

Model-Based Embedded Software Final Capstone Report

"Gartner's 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business",

Gartner, ​11 Aug. 2014, Web. Nov. 2014.

<http://www.gartner.com/newsroom/id/2819918>

Girault, Alain, Bilung Lee, and Edward Lee. “Hierarchical Finite State Machines with

Multiple Models of Currency,” Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, Vol. 18, No. 6, Aug. 6 2002.

Hulkower, Billy. "Living Online - US - May 2014." ​In Mintel​. n.d. Web. 13 Feb. 2015.

<http://academic.mintel.com/display/704619/?highlight>

"Internet of Things Market & M2M Communication", ​Markets and Markets​, Nov. 2014, Web. Nov.

2014.

<http://www.marketsandmarkets.com/Market-Reports/internet-of-things-market-573.h

tml>

Jensen, Jeff. “Elements of Model-Based Design,” Technical Report No. UCB/EECS-2010-19,

EECS Department, University of California, Berkeley, Feb. 19, 2010.

Jensen, J. C., Chang, D. H. and Lee, E.A., 2011, “A model-based design methodology for

cyber-physical systems”,​ Proceedings of the International Wireless Communications and

Mobile Computing Conference​ . IWCMC 2011 . pp. 1666-1671. Print.

Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman, 2011 “Model-Based Testing for

Embedded Systems”, ​CRC Press.​ Boca Raton: Taylor and Francis Group, 2013. Web. 16

Feb. 2015. <http://dx.doi.org/10.1201/b11321-1>

Kahn, Sarah, IBISWorld Industry Report 51121: Software Publishing in the US. Dec. 2014. Web.

13 Feb. 2015.

38

Model-Based Embedded Software Final Capstone Report

Karsai, Gabor, Janos Sztipanovits, Akos Ledeczi, and Ted Bapty. “Model-Integrated

Development of Embedded Systems,” Proceedings of the IEEE, Vol. 91, No. 1, Jan.

2003.

Lee, Bilung, and Edward Lee. “Interaction of Finite State Machines and Concurrency

Models,” Proceeding of Thirty Second Annual Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, California, Nov. 1998.

Lee, Edward, and Stephen Neuendorffer. "Concurrent models of computation for embedded

software," Technical Memorandum No. UCB/ERL M04/26, EECS Department,

University of California, Berkeley, July 22, 2004.

Lee, Edward. "Cyber Physical Systems: Design Challenges," Technical Report No.

UCB/EECS-2008-8, EECS Department, University of California, Berkeley, Jan. 23

2008.

Lee, Edward. “Finite State Machines and Modal Models in Ptolemy II.” Technical Report No.

UCB/EECS-2009-151, EECS Department, University of California, Berkeley, Nov. 1

2009.

Lindman, J.; Paajanen, A.; Rossi, M., "Choosing an Open Source Software License in Commercial

Context: A Managerial Perspective," ​2010 36th EUROMICRO Conference on ​Software

Engineering and Advanced Applications (SEAA)​, 237-44, 1-3 Sept. 2010

“Links.” ​Ptolemy Project​. UC Berkeley, 26 July. 2014. Web.

http://ptolemy.eecs.berkeley.edu/archive/links.htm, accessed February 28, 2015.

Ma, Tao, and Chunhong Zhang. "On the Disruptive Potentials in Internet of Things." ​Proceedings

17th IEEE International Conference on Parallel and Distributed Systems: ICPADS 2011:

39

Model-Based Embedded Software Final Capstone Report

7-9 December 2011, Tainan, Taiwan​. Los Alamitos, Calif: IEEE Computer Society

Conference Publications, 2011. 857-59. Print.

Mueller, W., Becker, M., Elfeky, A., DiPasquale, A., "Virtual prototyping of Cyber-Physical Systems,"

Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific​, 219-26, 30

Jan. 2012-2 Feb. 2012. Print.

Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi, Ketil Sandanger Velle, and Tron André

Skarpenes, “Risks and Risk Mitigation in Open Source Software Adoption: Bridging the

Gap between Literature and Practice” ​Proceedings of 6th International IFIP WG 2.13

Conference on Open Source Systems, Open Source Software: New Horizons, Notre Dame,

IN, USA, May 30 - June 2 2010.​ Springer. 2010.​ ​Web. 16 Feb. 2015.

<​http://link.springer.com/book/10.1007%2F978-3-642-13244-5>

Øyvind Hauge and Sven Ziemer, “Providing Commercial Open Source Software: Lessons Learned”,

Proceedings of 5th IFIP WG 2.13 International Conference on Open Source Systems, Open

Source Ecosystems: Diverse Communities Interacting, Skövde, Sweden, June 3-6, 2009

Springer. 2009. Web. 16 Feb. 2015.

<http://www.springer.com/computer/general+issues/book/978-3-642-02031-5>

Porter, Michael. "How Competitive Forces Shape Strategy." ​Harvard Business Review​, vol. 57, no.

2, 137-45. Mar. 1979. Print.

Porter, Michael. "The Five Competitive Forces That Shape Strategy." ​Harvard Business Review.

Jan. 2008. Print.

"Pricing and Licensing."​ MATLAB and Simulink Overview​. MathWorks, n.d. Web. 25 Nov. 2014.

<http://www.mathworks.com/pricing-licensing/index.html?intendeduse=home>

Ptolemaeus, Claudius. Editor. ​System Design, Modeling, and Simulation Using Ptolemy II​,

Ptolemy.org, 2014.

40

Model-Based Embedded Software Final Capstone Report

"Ptolemy II." ​Ptolemy Project​. UC Berkeley, n.d. Web.

<http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm>

“Ptolemy II Frequently Asked Questions.” ​Ptolemy Project​. UC Berkeley, 18 Dec. 2014. Web.

<http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIfaq.htm#ptolemy%20II%20copyright>

“Sponsors of the Ptolemy II Project.” Ptolemy Project. UC Berkeley. Web.

<http://ptolemy.eecs.berkeley.edu/sponsors.htm, accessed 14 Apr. 2015>

Tsay, Jeff. “A Code Generation Framework for Ptolemy II,” EECS Department, University of

California, Berkeley, ERL Technical Report UCB/ERL No. M00/25, May 19, 2000.

Valgrind​. Web. <http://valgrind.org/>.

Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi, “Quality of Open Source

Software: The QualiPSo Trustworthiness Model”, ​Springer​, 2009, Web. 16 Feb. 2015.

41

