
Model-Based Embedded Software

Jose Oyola Cabello
Kevin Albers
Robert Bui
Naren Vasanad

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-120
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-120.html

May 15, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

Acknowledgement

Professor Edward A. Lee
Professor Sanjit Seshia

University of California, Berkeley College of Engineering

MASTER OF ENGINEERING ­ SPRING 2015

Electrical Engineering & Computer Sciences

Robotics & Embedded Software

Model­Based Embedded Software

José Raúl Oyola Cabello

This ​Masters Project Paper​ fulfills the Master of Engineering degree
requirement.

Approved by:

1. Capstone Project Advisor:

Signature: __________________________ Date ____________

Print Name/Department: Edward A. Lee / EECS

2. Faculty Committee Member #2:

Signature: __________________________ Date ____________

Print Name/Department: Sanjit Seshia / EECS

Model-Based Embedded Software
Final Capstone Report

José R. Oyola Cabello, Kevin Albers, Robert Bui, Naren Vasanad
May 15, 2015

Model-Based Embedded Software Final Capstone Report

Table of Contents

I. Problem Statement
II. Industry/Market/Trends

A. Introduction
B. Market Trends
C. Competitors
D. Customers
E. Suppliers
F. New Entrants
G. Substitutes
H. Critique and conclusion to Five forces
I. Marketing and Productization
J. Conclusion

III. IP Strategy
A. Introduction
B. Open Source Licenses
C. Advantages of Open Source Licenses
D. Concluding Remarks on IP

IV. Technical Contributions
V. Concluding Reflections
References

1

Model-Based Embedded Software Final Capstone Report

I. Problem Statement

The Internet of Things (IoT) encompasses all small scale embedded systems which are

interconnected wirelessly through the internet and are continuously transmitting data. Currently,

programming embedded systems requires knowledge of intricate details of the platform being

used and the software is typically written using traditional programming languages such as C and

C++. In addition, embedded software for complex systems becomes very long and difficult to

understand as it grows. Our project involves the creation of an environment to make designing

applications for IoT easier through the use of model-based embedded software techniques. The

product abstracts all the finer details of implementation and exposes the features that the

designer is concerned with. Today, designers widely use embedded computing devices such as

Arduino and mbed™ , from ARM®, for prototyping embedded applications, because they are 1 2

open-source and low power. They are also inexpensive and have a large community of

developers. The design environment we are developing will specifically target these types of

embedded platforms.

Hardware and software of a cyber-physical system can be complex and difficult to

implement. “Cyber-physical systems” refers to embedded computer systems that interact and are

affected by physical elements (Mueller et al. 2012:219). A technique for designing a

cyber-physical system is model-based design, which applies mathematical modeling for designing

and verifying systems (Jensen et al. 2011:1666). Our project focuses on the creation of a

model-based design environment for programming embedded platforms. In particular, our

project targets applications aligned with the Internet of Things.

1 ​“Arduino is an open-source electronics platform based on easy-to-use hardware and software. It's intended for
anyone making interactive projects.” <arduino.cc>
2 mbed is an ARM based microcontroller that can be used to develop applications for the internet of things.
<https://mbed.org/>

2

Model-Based Embedded Software Final Capstone Report

Over the course of the project, we created a model-based design environment and

demonstrated its use with an embedded platform application. In order to test and determine the

effectiveness of the application, the project included designing an example system. The

application used to demonstrate the model-based design environment’s capabilities was an

interactive LED cube that could be controlled with hand gestures. The application was initially

developed using regular coding techniques by writing C and C++, and later developed using the

model-based design environment for comparison. The models for the components of this

application were included in the final application.

Code generation is one of the primary aspects of the model-based design approach. As

described by Jensen et al. (2011:1666), the model-based design methodology involves the use of

a code synthesizer to produce code that executes the desired models of computation. Typically,

designers will write C code that can be programmed on an embedded platform to perform some

task. However, model-based design techniques allows a developer to build graphical models that

represent their application. This project involves the creation of an environment using Ptolemy II

to allow designers to represent their application as graphical models. Based on the model 3

created in the design environment, code can be automatically generated for an embedded

platform.

Due to the nature of model-based design and specifically code generation, designers can

spend less time writing and debugging code. Rather, designers can focus on the design of their

application and verify its expected behavior. The use of a model-based design environment

allows designers to represent how they expect their application to perform and allow the

software environment to produce reliable code. The modularity of graphical models allows

designers to easily reuse models in different applications and change aspects of their design, and

3 “ ​Ptolemy II is an open-source software framework supporting experimentation with actor-oriented design.”
<http://ptolemy.eecs.berkeley.edu/ptolemyII/>

3

Model-Based Embedded Software Final Capstone Report

the graphical interface allows a user to easily view concurrent processes and how distinct units of

a program interact with each other.

II. Industry/Market/Trends

A. Introduction

Open source embedded platforms have become popular for rapid prototyping. The

market for embedded platforms has been growing as the number of connected devices continues

to increase. Our capstone project aims to contribute to the community of embedded developers

by solving the challenges of efficient code generation using the approach of model-based design.

The motivation for this project was twofold. First, a model-based design environment

specifically for mbed devices does not currently exist. There are a few competitors, as described

further in this section, that provide a graphical interface, but they do not offer a design

environment focused on model-based design. Secondly, our project targets an emerging market

and offers an opportunity for us to differentiate from our competitors. Embedded platforms have

become very popular with hobbyists and the maker community, but there are not many tools

such as ours that directly contribute to helping design for applications involved with the IoT. ​The

stakeholders for this project include three segments: end users, sponsors, and customers. End

users include hobbyists who work on IoT projects. Since these users will be working on fast

prototyping of solutions and also have basic knowledge about building products, this would be

the ideal market to target. These users could potentially give feedback of our product to improve

and focus it towards being viable to a larger audience. Once the software gains traction amongst

hobbyists it will be easier to reach a broader market like students, major companies, and

universities. ​Our sponsors include the EECS Department, Embedded Systems Lab, TerraSwarm

Research Center, Professor Edward Lee, Professor Sanjit Seshia, and the project team members

4

Model-Based Embedded Software Final Capstone Report

(Kevin Albers, Robert Bui, José Oyola, Naren Vasanad). Our customers will be discussed in detail

in the Customers sub-section.

In this section, we use Porter’s five forces model to analyze the five major forces in our

embedded software market in order to create a go-to-market strategy: competitors, customers,

suppliers, new entrants, and substitutes (Porter, 2008). In his article “How Competitive Forces

Shape Strategy”, Michael Porter (1979) discussed how the “ ​strength of these forces determines

the ultimate profit potential of an industry” ​. We describe each of the forces and its effect on

our strategy in the sections ahead and provide a strong or weak label. A force that is labeled as

strong means that it could have a strong effect on our competitive strategy, whereas a weak force

is an area that our strategy could take advantage of. Porter’s five forces was important to use

because it offers a unique analysis to determine the strength of our product’s position, potential

to make a profit, and create a strategy to move the balance of power to our favor.

B. Market Trends

Our target industry includes anything which encompasses IoT. Gartner (2014) published

a study indicating that the IoT is on the peak of the hype cycle. It is expected that IoT will reach

the plateau of productivity, the point where the technology is stabilized, in the next five to ten

years. Furthermore, Clarice Technologies (2014) talks about how there will be close to 50 billion

devices connected to the internet by 2020. Based on these studies, the IoT industry has the

potential to grow immensely in the near future.

Most of these IoT devices will be small scale devices which sense the environment and

connect over the internet to communicate with other more complex devices. A Markets and

Markets (2014) report expects that by 2019, the IoT market will be close to $500 Billion. IoT has

the potential to create waves in many industries worldwide, spanning from medical and wearable

5

Model-Based Embedded Software Final Capstone Report

devices to transportation and automation, as well as improve social connectivity between people

everywhere (Hulkower 2014; Ma et al. 2011).

C. Competitors

There are three main competitors that offer model-based programming with a graphical

interface. These include MATLAB's Simulink® , National Instrument's LabVIEW , and an open 4 5

source project named PyLab_Works . 6

Mathworks' product, MATLAB, is one of the world’s best super calculators that runs on a

computer. It uses a scripting language to solve complex computations, often by using calculus.

Simulink is an environment within MATLAB that allows programs to be built using graphical

blocks. Mathworks has provided an interface, called Simulink Coder, a Simulink extension that

allows user to generate and execute code from stateflow models.. This allows people to use

Simulink to build model-based programs, then use the interface to and from the Arduino to

provide Simulink with the inputs and outputs. However, Simulink must be installed on a

computer to run, so the embedded device must be connected to a computer in order to work.

National Instruments improves upon Simulink's flaws with LabVIEW. LabVIEW is similar

to Simulink, but it switches the focus from computations with calculus to data analysis and

program logic. The best advantage that LabVIEW has over Simulink is the downloadable model. It

allows code generated by the model to be downloaded to the embedded platform and run

without the help of a computer. While LabVIEW offers substantial advantages for embedded

devices compared to Simulink, our solution offers further improvements with the use of

model-based approaches.

4 “Simulink® is a block diagram environment for multidomain simulation and ​Model-Based Design ​.”
<http://www.mathworks.com/products/simulink/>
5 “L​abVIEW is a graphical programming platform that helps engineers scale from design to test and from small to large
systems. ​” <http://www.ni.com/labview/>
6 “ ​PyLab_Works is a free and open source replacement for LabView + MatLab, written in pure Python. ​”
<https://code.google.com/p/pylab-works/>

6

http://www.mathworks.com/model-based-design/

Model-Based Embedded Software Final Capstone Report

In the open source community, PyLab_Works offers an open source solution that attempts

to accomplish model-based embedded programming. It offers a block graphical interface similar

to LabVIEW, but it does not have much support. Each block must have written code in Python,

meaning it is not completely model-based software.

Our solution differs from our competitors since it’s open source and open platform,

whereas MATLAB and LabVIEW require a license to use them. A MATLAB license for personal use

costs $149 for non-students, and the basic LabVIEW license costs $999 (MathWorks n.d.; National

Instruments n.d.). This license cost is prohibitively expensive to many potential users of these

systems. In contrast, our solution is open source and freely available. In addition, our solution is

open platform. MATLAB and LabVIEW are closed to specific platforms that the developers have

chosen to support. If a user wishes to use one of these software tools with a different platform

that is not supported, then there is little he or she can do. By making our solution available to the

open source community, it is able to expand and grow the amount of supported platforms.

Overall, the threat of rivals is weak, though with a change in strategy, it is possible that these

competitors could enter the hobbyist space.

Open source software has been known to disrupt markets dominated by proprietary

software in the past. According to IBISWorld, “open-source software (OSS) has been growing as a

share of the global software market” (Kahn 2014:31). OSS (such as the Linux operating system) is

a threat to some proprietary software, but will also promote interoperability and new software

developments (Kahn 2014:31). Since our software is associated with open source software, we

anticipate that we can leverage on the OSS structure and increase traction on our product.

The success of our application can be measured with market adoption. A study has shown

that the number of updates to open source software created by members of open source

communities has increased exponentially in the recent past (​Deshpande et al, 2008:205​). This

7

Model-Based Embedded Software Final Capstone Report

further supports our claim that acquiring more users would lead to more development of our

project. Handling a community is not a straight-forward task. Øyvind et al. says that it may be

beneficial to release the product as executables in the beginning to increase usage and

decentralize the control of power with specific tasks having ownerships also that as the product

grows (Øyvind et al. 2009:71-72).

Another factor that affects market adoption is the availability of modules. Our application

will have a library of modules that are specific to IoT. These modules include sensors, actuator

and communication. Making these modules specific to IoT will help differentiate ourselves from

competitors who may not have such libraries. These standard libraries will help to create trust in

the open source community and hence will help in building traction amongst hobbyists (Øyvind

et al. 2010:114).

D. Customers

Our project would make it easier to communicate with development platforms and also to

integrate sensors and actuators into a system. Since the technology is still nascent, it gives the

project the right opportunity to grow with an emerging market and adapt to changes from

customer needs.

Our main target customers are hobbyists and do it yourself (DIY) enthusiasts. These

customers have a large variety of products to build their projects with, as well as a competitive

market with low prices for embedded platforms. In addition, there are various tools that they can

use to develop on their chosen platform as described in the competitors subsection. The most

important factor is our reliance on market adoption to promote our product. We need to create a

community that develops libraries and examples that are easily accessible to new users.

However, open source software adds additional barriers for customer adoption. It can be harder

for customers to trust open source software as much as the paid closed source alternatives

8

Model-Based Embedded Software Final Capstone Report

created by established companies (Bianco et al. 2009). For these reasons, the customer market

force is strong.

E. Suppliers

Since our project is built using the Ptolemy II, the affiliated Ptolemy II research group at

UC Berkeley is our main supplier. Ptolemy II group relies on donations from research grants and

businesses that use the software. Our success will help extend the successful functionality of the

Ptolemy II project, making it beneficial for us to succeed. This makes our supplier a collaborator

rather than a potential threat to our success.

Furthermore, the fact that this is a research project under one of the most reputed

universities in its field helps us differentiate from other competitors. Even if there are

competitors in the open source community, the backing of the Ptolemy II project will help gain

trust from potential users and hence increase the conversion rate of adoption in our favor.

F. New Entrants

According to Hoover’s industry analysis of Computer Aided Design (CAD) software, the

DIY movement “has sparked interest in CAD/CAM software among hobbyists and tinkerers”

(2015). Our software falls into this category as a form of CAD. This industry opportunity shows

that not only will this space be attractive to existing players, who can easily enter the market to

compete with their products, but also startups that could use our open source code to build their

own similar products to compete with our own. This shows that the threat of new entrants is

strong.

G. Substitutes

Hobbyists have the option to continue using tools that they know, which makes

programming in languages such as C a substitute to our product. Since it might be too time

9

Model-Based Embedded Software Final Capstone Report

consuming to learn a new programming method such as using a graphical design environment,

many hobbyists might decide it is not worth their time to switch from their current programming

methods. We designed our tool to reduce development time when the user has learned how to

use it, but over a short period of time this is less obvious to the user and they may become

frustrated and return to a familiar tool. In addition, the current communities, such as the Arduino

community, have large libraries of tools and project guides, which pose a strong threat to our

product adoption. This makes the threat of substitution a strong threat.

H. Critique and conclusion to Five forces

Given the fact that our project is open source and the current trends in the open source

community, we are in an interesting position when it comes to our strategy. After evaluating the

five forces, it seems that some of these forces may actually end up working in our favor. First, our

main supplier, the Ptolemy II project, is actually more of a collaborator. The project participants

frequently and on a daily basis increase the capabilities of Ptolemy II and add to the already large

codebase. As will be discussed in the section on Intellectual Property, our success is linked with

the Ptolemy II project, which was mentioned in the suppliers sub-section. ​This further

incentivizes the Ptolemy II project stakeholders to continue to pursue the project and ensure its

success.

In addition, the customers for our project are hobbyists and the open source community.

The open source community is known for expanding projects and making the projects suit their

needs (Deshpande et al. 2008:198). Therefore, our open source customers can actually become

collaborators and help expand the codebase of Ptolemy, adding support for other platforms, and

creating sample applications for others to use and learn from.

The open source nature of the project also has the effect that new entrants can end up

helping us succeed. Any new open source alternatives to our Ptolemy project will have to

10

Model-Based Embedded Software Final Capstone Report

compete with Ptolemy’s 20-year-long history and codebase, which spans over 3 million lines of

code. However, open source projects have another option: to join our community and enhance its

reach and capabilities. For instance, a new entrant seeking to create an open source model-based

environment for the Raspberry Pi can take advantage of Ptolemy’s already existing infrastructure

and simply add support for their platform instead of building everything from scratch.

Overall, the five forces in our market are moderate, with the strongest force being the

customers. This means that without addressing these forces appropriately, the profit in this

industry will not be huge, even if successful. The open source business model adds an additional

challenge to profitability. We can mitigate the strong forces with the right positioning.

To bring our product to market, our marketing strategy will be focused on the 4 ‘P’s:

product, place, price, and promotion. As mentioned in the subsection on Customers, our target

customers and users are hobbyists and makers. By making our product initially open-source, it

will be very appealing to this customer segment as they are very willing to try new products

especially those that are at no cost to them. We plan to market it differently as well since we are

targeting the open source community instead of industry professionals like our competitors.

From our marketing study conducted early in the project, we learned that many of these types of

users learn about the latest technology through websites and complementary technologies to our

product such as embedded platforms like Arduino. Therefore, our strategy will be to ensure our

product is easily accessible online by hobbyists.

I. Marketing and Productization

Based on the success of providing our product as an open source solution, there are four

ways in which we could begin to monetize our project. The first way would be to to offer

technical support for those that are interested in advanced applications. Users could pay to

receive help from our technical support staff in using and extending our product for their own

11

Model-Based Embedded Software Final Capstone Report

needs. This option would be the first one that we would try since it has been successful for other

products in the past. In his article, Fitzgerald calls this a value-added service-enabling model

which has been very successful for Red Hat, an open source Linux provider (Fitzgerald 2006).

Another alternative would be the use of advertisements. Similar to how desktop and

mobile applications are designed, we could incorporate advertisements in our design

environment and users would pay a fee in order to use a version without advertisements.

Furthermore, we could offer a professional version of our open source project that would

be targeted to advanced users and industry professionals. This version would use a subscription

model where customers pay a monthly or annual fee. The professional version would include

application specific content and strong technical support and documentation for the most

cutting-edge advancements in embedded systems. Fitzgerald also mentions in his article that this

would be considered a loss-leader/market-creating model since our first product would be open

sourced but a product with more features would be used for monetization (Fitzgerald 2006).

A final option for monetizing our product would be to partner with an embedded

platform company and offer our product as part of a bundle. The company would provide the

target embedded platform hardware and our software product would complement their device

with a custom design environment. An example of this approach would be the mbed

collaboration between ARM and several semiconductor companies. In this industry with

established competitors, this would be an appealing approach to obtaining market share and

brand recognition.

J. Conclusion

Based on our project’s unique features and target market, our project has potential to

make an impact in the embedded software industry. The IoT era has brought a need for better

software design tools and our product helps solves the challenges that designers face. By

12

Model-Based Embedded Software Final Capstone Report

targeting hobbyists and the maker community, our product enters a space where it can receive

market adoption and not directly compete with well-known embedded software competitors.

“Open source style software development has the capacity to compete successfully, and perhaps

in many cases displace, traditional commercial development methods” (Mockus et al. 2002).

Based on our evaluation of Porter’s five forces in this industry, our business strategy should allow

our product to make a strong impression in an industry with primarily commercial development

methods (Porter 2008).

III. IP Strategy

A. Introduction

Since the Model-Based Embedded Software project is built upon Ptolemy II, it is

important to understand the intellectual property surrounding the project before deciding how it

should be advanced for commercialization. The concepts and ideas that form the basis of this

capstone project are not novel, nor is the particular application that this project seeks to build. In

particular, the project is an open source implementation, rather than invention, of the previously

existing branch of computer programming known as model-based code generation. Several

software solutions already exist that produce code using similar techniques, and they are

mentioned later in this section. This makes it highly unlikely that any aspect of the project is

patentable. However, this does not mean that the concepts of intellectual property do not apply

to this project. This section discusses the intellectual property aspects of the Model-based

Embedded Software project and the strategy that can be used to ensure proper use and

attribution of our work, as well as the risks associated with infringement of previously existing

IP.

13

Model-Based Embedded Software Final Capstone Report

B. Open Source Licenses

There are many different open source licenses that are available to protect the work of

the open source community. The most widely used open source license, the GNU General Public

License (GPL), is an example of what is known as a “copyleft” license, which requires that any

work built upon GPL-licensed software must also be distributed under the same license

(Lindman et al. 2010:239). This ensures that any GPL-licensed work will forever be freely

available for all to use. However, other open source licenses such as the Berkeley Software

Distribution (BSD) and MIT open source license are different. These open source licenses, both of

which come from academic institutions, allow software covered under the license to be used in

any way, including in commercialized software for profit, with no restrictions (Lindman et al.

2010:239). The idea behind this method of licensing is that successful projects coming from these

institutions, if available freely for use in successful software, can benefit the institution from

where it came by enticing others to provide funding to the institution for further development of

the software. An example of successful commercial software built upon BSD-licensed software is

Apple’s Mac OS X and iOS, both of which are built upon BSD Unix (Engelfriet 2010:49). These

open source licenses provide many benefits to those wishing to build upon them, such as

software startups, since it does not require the resulting software to have the same license. This

means that any other protection can be used for the software, including copyright protection, or

even a different open-source license, which would ensure that the software would continue to be

available as open source, if that is the goal of the software developer, as is often the case for the

open source community (Engelfriet 2010:49).

Since our work is part of a large software collaboration, Ptolemy II, it will be bounded by

the same rights of use, the BSD license ​(“Ptolemy II F.A.Q” 2014)​. “Ptolemy II is ​an open-source

software framework supporting experimentation with actor-oriented design” and is a part of the

14

Model-Based Embedded Software Final Capstone Report

Ptolemy project at UC Berkeley, which is an initiative dedicated to studying models and

simulations of embedded systems (“Ptolemy II” n.d.) ​. The Ptolemy project is well-funded and

has many industrial sponsors involved (“Sponsors of the Ptolemy Project” n.d.). The BSD license

allows software designed with Ptolemy II to be used for free commercially. Thus, if we decided to

extend the software in the future as a separate entity, we would not have any issues

commercializing it.

C. Advantages of Open Source Licenses

Furthermore, there are many other advantages for distributing our software through

open-source channels. As mentioned in the Industry/Market/Trends section, many large

competitors already exist in the embedded software industry. Open-source software offers a way

to create market adoption by allowing customers to try a new product for free in order to build a

community supporting the software. This is one way that open source software can penetrate a

market with large competitors. According to Hoover (2015), “open-source software, which poses

a competitive threat to the industry's traditional license-based business model, has grown in

popularity in the last decade.” There are many examples of immensely popular open source

successes in the past, such as Linux and Apache, and PostgreSQL, which have formulated a threat

to proprietary software (Kahn 2014:31; ​Deshpande et al, 2008:197​).

Although open source software can pose a threat to proprietary software, its open nature

can also be a disadvantage. Since many of the existing large players have a research and

development unit, the entrance of a new player could mean that existing players can simply use

the new open source software to improve their solution directly (​Engelfriet 2010:49​). This is not

an issue for copyleft licenses, since they require that any software built on it must also use the

same license, but this requirement doesn’t exist for permissive licenses such as BSD (​Engelfriet

15

Model-Based Embedded Software Final Capstone Report

2010:49)​. Because permissive open source licenses allow for this to happen, it is very difficult for

open source developers to protect themselves.

Currently, two of the largest competitors in the embedded software industry are

Mathworks and National Instruments. Their respective products that are similar to our software

tool are Simulink and LabVIEW. Each of these products offers a graphical design environment

that can generate code for embedded system. Both of these companies have many patents

registered involving the design environment, model types, and methods for code generation. In

particular, National Instruments has a patent titled “ ​Statechart development environment with

embedded graphical data flow code editor​”, US patent ​number 8387002 (​Dellas et. al ​. 2008:1).

The patent describes a graphical design environment that uses a model that LabVIEW called

statecharts, “a diagram that visually indicates a plurality of states and transitions between the

states”, to represent an application (​Dellas et. al ​. 2008:35). Furthermore, in the patent, LabVIEW

claims the rights to the invention of code generation for statecharts and specifically the

transitions linking the states of a model (​Dellas et. al ​. 2008:35). Although this patent seems

similar to our product, it is quite different since it involves statechart models which are not used

in Ptolemy II. Rather, our software generated code based on the specific model of computation

selected instead of solely transitions and states as done in LabVIEW. Based on the limits of the

patent to statechart models, the patent should not overlap with our idea.

D. Concluding Remarks on IP

Ptolemy II has existed for almost 20 years as an open source project and many

commercial products have been created from Ptolemy such as Agilent’s Advanced Development

Systems (“Links” 2014). Our capstone project extends the functionality of Ptolemy II by offering

code generation for models currently supported in Ptolemy II. Since there are currently no novel

16

Model-Based Embedded Software Final Capstone Report

aspects of our projects that could be patented, open source would be the best alternative

approach for the current state of our project.

IV. Technical Contributions

A. Overview

Throughout the past year, the team worked to complete the goal that was set for the

project: to build a graphical interface for automatically generating code for the mbed platform. 7

In order to confirm the effectiveness of the final product, an application was designed such that it

could be built manually first and later code-generated, to compare the quality and efficiency of

the generated code. As such, the tasks for the year were divided into two main phases: first,

building the application with traditional programming, and later automatically generating code

for the application. Each of these main phases had many subtasks, some of which were divided

amongst the team members, and others that were worked on by more than one team member at

a time in cases where the tasks were complex or time-sensitive. The tasks that were done

individually were divided based on the strengths of the individual team members, as well as their

experience with previous related tasks.

During the first semester, the focus was on designing and building the application. The

application that was chosen was an interactive LED cube that could be controlled and

manipulated wirelessly with a data glove. There are a few reasons for this choice of application,

and they are discussed in the Methods and Materials section of this paper. Each of the

components of the application (the LED cube, the data glove, the wireless communication and the

microprocessor) had its own set of tasks. In addition, the application needed to be built such that

the data flowed from one component to the next following a Synchronous Data Flow model,

7 ARM’s mbed is an embedded platform that can be used for Rapid Prototyping. More information on this
platform can be accessed at its homepage: https://mbed.org/

17

Model-Based Embedded Software Final Capstone Report

discussed in the Methods and Materials section, in order to ensure its compatibility with code

generation in the second semester. My work was mostly centered around the LED cube

component of the application. This component is central to the application because it provides

the visual feedback to the user who is interacting with it. The initial tasks for the LED cube

included designing how the cube would be modeled, as well as designing the algorithms that

would produce the desired changes to the cube based on the user’s input from the data glove. The

next set of tasks dealt with the hardware and software implementations of the cube, testing, and

finally integrating the cube into the final application.

During the second semester, the focus was on extending the code generation capability in

Ptolemy II. Although the capability already existed, it had a number of issues that needed to be

solved. A large portion of the work done in the second semester was dedicated to solving these

issues, as well as working with the specific Makefiles for the mbed platform, which are files that

help build the software from its source files. Another main portion of the work in the semester

was dedicated to building and testing the blocks, or actors, in Ptolemy II that were designed in

the first semester in order to generate code for them. We also focused on integrating the actors

and code-generating them into the final application. This final code was then tested and

compared against the previous semester’s code and application to verify functionality, efficiency

and responsiveness. Furthermore, a very important aspect of our work throughout the year was

documentation. Each step that was taken was documented, including any issues that arose and

how they were fixed. This is vital information for future users of the Ptolemy II project and its

code generation capability. Part of my work in the second semester was centered around the

preliminary building and testing of actors. This was a very important contribution to the project

because it led to the finding of many bugs and issues with the code generator as well as the

Makefiles. In addition, this preliminary code generation of actors brought to light a significant

18

Model-Based Embedded Software Final Capstone Report

issue with code generation, code size, which I will talk about in the Methods and Materials section

of this paper. The rest of my work for the semester centered around the building and testing of

the final actors. My contributions in the second semester allowed the team to be able to complete

the code generation of the application and perform a comparison of this new version and the

previous, manually built version.

B. Relevant Work

Our work builds upon many others under the Ptolemy II project. A number of previous

projects laid the foundation for the code generation capabilities in Ptolemy II (​Pino, Parks, and

Lee 1994​; Tsay 2000; Zhou, ​Leung ​, and Lee 2007). Pino, Parks, and Lee introduced code

generation for heterogeneous multiprocessor systems in the original version of Ptolemy, now

known as Ptolemy Classic (1994). In Ptolemy II, Tsay’s implementation transforms the Java code

in each actor into a more simplified, integrated version, then translates it to C using a generic

Java-to-C converter (2000). The next implementation builds upon that one by introducing a

“helper” concept, a file that serves as a template for the generated code (Zhou, Leung, and Lee

2007). This last implementation is included in Ptolemy II as of version 6.0.1, and the current code

generator works in this same way. Our work improves upon this implementation by locating

bugs in the code generator and finding solutions to them. The Methods and Materials section

below discusses some of these issues and how they were resolved. Our project also leverages the

work of B. Lee and E. Lee on integrating the FSM domain with the SDF domain (1998). This

allows for the code generation of hierarchical models that include both models of computation.

Another related project by S. Lee, ​Yoo, and Choi deals with the scheduling of such SDF-FSM

hierarchical models (2002). ​Our project uses this feature in one of the main blocks of our

application, which is modeled as a Finite State Machine (FSM), while the application as a whole

19

Model-Based Embedded Software Final Capstone Report

runs under an SDF model of computation. I discuss this in more detail in the next section of this

paper.

A relevant project by Kim et al. deals with performing code generation for different

platform targets (2013). Although our work is not directly related to this one, it is somewhat

parallel to our work in the sense that our code generation is also platform-dependent. The

Ptolemy II code generator used in this project allows a user to set which target to generate code

for. The strength of our method when compared to this one is that if a platform-specific target is

not implemented in Ptolemy II, then the code generator will use the next higher-up level target

instead, whereas in Kim et al. there must be platform-specific code snippets for each target

platform (2013). Another relevant project by ​Manione seeks to develop a model-based

framework for Internet of Things (IoT) development (2014). Our work improves upon this idea

by providing a framework for IoT and embedded devices that also provides code generation for

such platforms. In addition, our project allows for incorporating the tools and features already

available in Ptolemy II into the models and applications a user wishes to build.

One of the main issues with the project, which I discuss later in more detail, is the code

size of the generated code. A related project discusses ​the difficult trade-off in code generation

between the modularity of the code and the code size (Lublinerman, Szegedy, and Tripakis 2008).

Further, a different paper by two of the same authors discusses another tradeoff in code

generation: modularity vs. reusability (Lublinerman and Tripakis 2008). They go on to discuss

methods that can be used to maintain modularity without sacrificing the code size significantly.

However, modifying the code generator in this way falls outside the scope of our Capstone

project, and as a result these methods will not be applied to Ptolemy II.

C. Methods and Materials

20

Model-Based Embedded Software Final Capstone Report

Fall Semester

As mentioned in the Overview section of this paper, an important aspect of our work in

the project was designing an application that would allow us to show off the ability of code

generation to develop interesting embedded applications. Many different options existed, but for

various reasons, the application that was selected was an LED cube that can be controlled

wirelessly using a data glove. First, it is centered around the IoT, which is the main focus of our

capstone project. As mentioned in previous parts of this report, the target market for the project

is the hobbyist and open source community, which is currently highly engaged in IoT

applications. A second reason for the choice of the application is that it could be designed to be

modular. This is an important fact, because each of these modules can then be converted to a

block, or actor, that can be modeled and code-generated in Ptolemy II. The final reason for this

choice of application is that it is an interesting, interactive application with enough complexity to

demonstrate the strength and flexibility of code generation. A simpler application could have

been selected instead, but the extent of the usefulness of the code generator would not have been

shown. The advantage of using a code generator is that it allows a user to design, model and test

large and complex applications and automatically develop the code for them. This application

shows how easily that can be done with the code generation capability in Ptolemy II.

The application consists of four physical components: a data glove, a WiFi module, an LED

cube, and an embedded microcontroller. The first choice we had to make was which board to

support. There are many different boards to choose from, with varying amounts of memory, flash

and processing power, as well as differing sizes and form factors. Robert Bui discusses the

different board options for the project. The mbed FRDM-KL25Z was chosen because its

processing power to price ratio is higher than many of the other popular embedded boards and

21

Model-Based Embedded Software Final Capstone Report

because it was readily available for us to use. The amount of memory, 16KB, would be enough to

run our application when manually programmed in C/C++.

Selecting the data glove was a more difficult decision to make. Many different data gloves

exist, but are usually very costly. The application required a data glove with sensors in each

finger to detect how bent the fingers are (bend sensors), and an accelerometer and gyroscope

sensor. In addition, the data glove should be able to communicate wirelessly with the mbed

board, which could be accomplished with Bluetooth or WiFi. Because our application is focused

around the IoT, WiFi communication was preferred. The glove would take measurements from all

its sensors and send the data over WiFi to the embedded board, which would then interpret the

data and use it to update the LED cube based on what gesture the user was performing. The DG5

Data Glove from VirtualRealities was selected. This glove contains electronic sensors for

detecting finger bending, hand rotations and accelerations. It is also WiFi-enabled, which fits the

selected application perfectly. In his paper, Kevin Albers and Naren Vasanad discuss more details

about the data glove and how it was used in the application. The next component is the WiFi

module. Because the mbed board does not include a WiFi module, a separate module was

required. This module would serve the purpose of receiving data packets from the data glove and

passing them to the mbed board. The CC3000, a WiFi Module that can be used with the board,

was selected. In their papers, Naren Vasanad and Kevin Albers discuss the CC3000 in detail and

how it was integrated into the application.

The fourth and final physical component of the application was the LED cube. The concept

was to have a three-dimensional lighted cube that moved around inside a larger LED cube. Its

size, color, and position would be changed based on hand gestures from the user, wearing the

data glove. Many different LED cubes have been built in the past, mostly from discrete LEDs built

up in a complex three-dimensional structure, which requires a large amount of time to build.

22

Model-Based Embedded Software Final Capstone Report

Another option was to build only the sides of the cube, and instead model the inner lighted cube

by modulating the brightness of the LEDs. The LED cube would be built such that only the sides

are visible, with no LEDs on the inside. The inner cube would then be shown at full brightness if it

was touching the side, and at a lower brightness as it moved “inside” the cube and away from the

sides, as shown in Figure 1. The figure shows the lighted cube attached to one side panel at full

brightness, but at lower brightness on the other two panels, since it is “farther away” from them.

This version of the cube would be significantly easier to build and would be more aesthetically

pleasing. It was decided that only three sides of the cube would be built, such that all three sides

could be viewed from the front. To model the inner cube, the only three pieces of information

required to fully describe it would be the location of one of its corners as an (x,y,z) coordinate

(with the origin located at the bottom left corner of the first panel, as shown in Figure 2), the

length of its sides, and its color. This is the only data that would be saved regarding the inner

cube, since with this data we could “build up” the inner cube and “draw” it inside the LED cube.

Figure 1: LED Cube showing brightness modulation

23

Model-Based Embedded Software Final Capstone Report

Figure 2 : LED Cube showing panel numbers and coordinate axes 8

The cube was built using NeoPixel LEDs, individually-addressable LEDs that are packaged

in continuous strips. These LEDs require only three connections: Vcc, Ground, and a data input,

which provides a serial interface through which all LEDs can be individually controlled. The LEDs

were cut into 10 strips of 10 LEDs for panel 3 at the top of the cube and 10 strips of 20 LEDs

which bent in the middle to form panels 1 and 2 of the cube, as shown in Figure 2. The two sets of

strips were daisy-chained using hookup wire, such that only two data pins were required to

control all 300 LEDs. This is important because of the limited availability of GPIO pins in the

FRDM-KL25Z, taking into account all the components that needed to be connected for this

application. The power to the LEDs was provided through an external power adapter to ensure

that the maximum power requirements would be met (the case when all 300 LEDs are at full

brightness). On the software side, it was of vital importance to design the system to be as

8 This figure was created by the Model-Based Embedded Software team: Kevin Albers, Robert Bui, José Oyola
and Naren Vasanad.

24

Model-Based Embedded Software Final Capstone Report

modular as possible, to ensure that it could then be modeled in Ptolemy II. The first step was to

find a library for NeoPixel LED strips for mbed. Although a few libraries exist, only one is able to

control over 120 LEDs from a single pin: the ​Multi_WS2811 library by Richard Thompson . This 9

means that with this library, only two GPIO pins would be required to control all 300 LEDs: one

for the 10 strips of 20 LEDs for the side panels and one for the 10 strips of 10 LEDs for the top

panel. This library provides a high-level interface with which to interact with the LEDs. In

particular, it abstracts away the need to save the current state of the LEDs, and instead allows a

user to simply update individual LEDs, as needed. On the other hand, this library is inefficient,

saving arrays with static values into memory instead of flash. The LED cube block was built to

follow the Synchronous Data Flow (SDF) model of computation, whereby each block “fires”, or

runs, only when it has all its required inputs, and then produces all its outputs. Robert Bui

discusses this model of computation in detail in his paper. Figure 3 shows the overall SDF model

for the application. The LED cube block requires three inputs: change in position, the desired

color, and the change in size. Structs were used to transfer data from one block to another. In this

way, the LED cube block receives input from the Gesture Recognition block and updates the LED

cube accordingly.

Figure 3 : Synchronous Data Flow model of application 10

9 ​The Multi_WS2811 library can be accessed at:
https://developer.mbed.org/users/Tomo2k/code/Multi_WS2811/
10 ​This figure was created by the Model-Based Embedded Software team: Kevin Albers, Robert Bui, José Oyola
and Naren Vasanad.

25

Model-Based Embedded Software Final Capstone Report

The LED cube uses algorithms to update the cube, based on the desired changes in

position and size. The color of the inner cube can always be changed regardless of its position,

because it is based on a desired hue, selected linearly based on a gesture from the glove.

However, the LED cube models a space of 10x10x10 LEDs, which constrains the possible the sizes

and positions of the inner cube. The algorithm determines whether the size of the cube can be

increased or not, depending on its current size, and also updates the corner location in the case

that the cube increases its size, causing the corner to change location. The algorithm is as follows:

1. If the desired size is greater than 0 and less than or equal to the maximum size of the cube, continue.
Otherwise, exit.

2. If the position of the corner of the cube, added to the new cube size, is within the bounds of the LED
cube, then update the size of the cube and return. Otherwise, continue.

3. If the X-position of the corner of the cube, plus the new cube size, is outside of the bounds of the LED
cube, then decrease the X-position by the difference.

4. Repeat step 3 for the Y-position.
5. Repeat step 3 for the Z-position.
6. Update the size of the cube and return.

In addition, there is an algorithm to determine which LED corresponds to a coordinate position

(x,y), given which panel the LED is on. The algorithm is as follows:

1. If the given panel is panel 1, continue. Otherwise, skip to step 4.
2. If the y-coordinate is even, return ​20 * y + x ​ and exit.
3. Otherwise, return ​20 * y + 10 + (9 ­ x) ​ and exit.
4. If the given panel is panel 2, continue. Otherwise, skip to step 7.
5. If the y-coordinate is even, return ​20 * y + 10 + x ​ and exit.
6. Otherwise, return ​20 * y + (9 ­ x) ​ and exit.
7. If the given panel is panel 3, continue. Otherwise exit.
8. If the y-coordinate is even, return ​10 * y + x ​ and exit.
9. Otherwise, return ​10 * y + (9 ­ x) ​ and exit.

A third algorithm controls the brightness with which to display an LED. Because there are

no LEDs inside the LED cube, any LED location that exists inside the cube is modeled by using the

LEDs on the sides of the cube, but lowering the brightness of the LEDs following the inverse

square law of lighting, simulating the light being further away. The algorithm takes as input the

26

Model-Based Embedded Software Final Capstone Report

size of the cube and the position of the corner, and changes the brightness of each LED by

multiplying the LED color by a “brightness factor”, which is calculated based on panel, as follows:

1. For panel 1, the brightness factor is ​1.0 / ((y + 1) * (y + 1)) ​.
2. For panel 2, the brightness factor is ​1.0 / ((9 ­ x ­ (size­1) + 1) * (9 ­ x ­

(size­1) + 1)) ​.
3. For panel 3, the brightness factor is ​1.0 / ((9 ­ z ­ (size­1) + 1) * (9 ­ z ­

(size­1) + 1)) ​.

Spring Semester

In the second semester, the focus shifted to the code generation phase of the project. A

previous similar project for Arduino had been developed in Spring 2014, with limited success.

However, that work served as an initial starting point for our own. After building an mbed

directory in the Ptolemy II structure modeled based on the Arduino directory, we began to

manually fix the main differences between the projects. This was the quickest way to get the

mbed project going because manually creating the folder structure and the required files would

have taken a significantly longer time, and much of the file structure could be reused. In addition

to working on understanding Ptolemy II and the process of code generation, a higher priority was

given to documentation. The project’s wiki page within the larger EECS CHESS (Center for 11

Hybrid and Embedded Software Systems) wiki was used from the beginning of the Spring

semester to document the learning process, with particular focus on issues and solutions. The

wiki page also serves as a how-to guide for future users of the project.

As mentioned in the overview section, my work in the Spring semester was focused

around the building of actors in Ptolemy II for code generation. The Arduino project modified a

Display actor in Ptolemy II, usually used for printing data to the console, to turn the Arduino’s

on-board LED on and off depending on the boolean (true or false) input to the actor. An

equivalent modification was made to the Display actor on the mbed project. After generating

11 ​The project’s wiki page can be accessed at: http://chess.eecs.berkeley.edu/ptexternal/wiki/Main/Mbed

27

Model-Based Embedded Software Final Capstone Report

code for the simplest of applications, the main bugs of the code generator and Makefiles began to

appear. In his paper, Kevin Albers discusses the issues with the existing code generator and how

they were resolved. In addition, Naren Vasanad discusses how the Makefiles for mbed were

developed. He also discusses the offline compiler, ​gcc4mbed​, which serves as a more streamlined

compiler than the mbed online compiler, because it can be integrated into Ptolemy II so that

when code is generated, it is also built and compiled.

The EmbeddedCodeActor is an existing actor within Ptolemy II that allows a user to set

input and output ports and enter their own C code that reads those inputs and sets those outputs.

The actor, when fired, runs the code that the user wrote. It contains in it a series of blocks where

the user writes the code. Of note there is the “PreInit” block, where the user can write code that

will lie at the top of the resulting C file (such as ​#include and ​#define directives, or global

variables), the “Init” block, which is fired at the beginning, and the “Fire” block, which runs each

time the actor fires and is where the main C code is placed. This makes the EmbeddedCodeActor

an excellent tool for prototyping an idea before making a custom actor from scratch. This actor

was used for much of the preliminary code generation tasks because of its flexibility. A first test

of the EmbeddedCodeActor was to configure it to flash the LEDs when given a boolean input,

mirroring what the Display actors for mbed and Arduino do. This first test resulted in some

errors before actually functioning. The main error was that the code generator produces C files,

but any files that use mbed-specific code needs to be a C++ file. There was an additional error

regarding a multiply-defined struct. The quick solution to the problem was to remove the second

definition of the struct, but the underlying problem remained: the code generator multiply

defines structs each time there is a composite actor (an actor which encapsulates a model within

it, such as the EmbeddedCodeActor) in the model (​Ptolemaeus 2014)​. This problem was later

solved after finding it to be a hierarchy problem within the code generator.

28

Model-Based Embedded Software Final Capstone Report

Incremental models were built to add functionality. The EmbeddedCodeActor was used to

create an initial NeoPixel actor, which takes as input an index of which LED to modify, and three

inputs for the color to set (red, green and blue). Code generating this application revealed a very

important drawback: code and memory size. In the Relevant Work section, I discuss a relevant

paper regarding the tradeoff in code generation between modularity and code size. The overhead

associated with code generation, when combined with the size of the NeoPixel library that was

used for the mbed FRDM-KL25Z resulted in 88% of memory being used, and the application

would not run on this board. A decision was made to instead switch to the FRDM-K64F board,

which has 256KB of memory. A different library was required for this board, however, which is

more efficient in its use of memory: the ​WS2812 library by Brian Daniels. I created a C++ class to

encapsulate this library and give it the same interface that was used previously to create the

original application on the FRDM-KL25Z. The NeoPixel actor was successful in preliminary tests,

and was instrumental in showing that there was another significant problem with the code

generator: memory leaks. This problem was noted when applications set to run continuously

would only run for a short period of time, one or two minutes at most, and then stop, likely

because the memory had been entirely used and there was none left. Memory leaks can be

detected by using one of various programs such as ​Valgrind or ​Electric Fence to find where the 12 13

bug lies. Using ​Valgrind​, the leaks were traced and corrected, with the main set of leaks being due

to the creation of “tokens”, or data that gets transferred between blocks, but never deleted. This

main issue was corrected by using creating a macro, ​$getAndFree ​, for users to use in the C

adapter files. This macro gets replaced with a function that returns the token’s payload in the

payload’s type and frees the token. In their papers, Robert Bui and Naren Vasanad discuss the

memory leaks in more detail.

12 ​The home page for ​Valgrind​ can be accessed at: http://valgrind.org/
13 ​The home page for ​Electric Fence ​ can be accessed at: http://elinux.org/Electric_Fence

29

Model-Based Embedded Software Final Capstone Report

After solving the rest of the memory leak issues, EmbeddedCodeActors were built for

each of the blocks in Figure 3. Of note is the Correction block, shown in detail in Figure 4, which

was originally designed as an FSM model. Ptolemy II and its code generator support including

FSM models of computation within an actor that can be included in a larger SDF model. There is a

caveat, however, in that not every FSM actor is an SDF actor. In his paper, Robert Bui discusses

this in more detail. One problem that was not able to be solved was that FSMs seem to run for

only a limited period of time, and then stop. The issue behaves as a memory leak, but Valgrind

shows no more errors, making it difficult to trace the source of the problem. Instead, the

Correction block was implemented as an SDF actor, with C code that behaves like a state machine.

Figure 4 : Correction block in detail 14

The blocks were created starting with the LED cube actor and moving backwards until the

CC3000 WiFi actor was built. As each block was created, it was connected to the previously

created blocks and sequence actors were used as inputs to the system. This allowed the team to

analyze the corresponding outputs, in this case, behaviors in the LED cube. The LED cube itself

served as a debugging tool, as in a few instances it was used by the team to investigate where the

generated code was failing. After all the blocks were included in the same model simultaneously,

the final application was successfully code-generated and placed onto the mbed platform.

14 ​This figure was created by the Model-Based Embedded Software team: Kevin Albers, Robert Bui, José Oyola
and Naren Vasanad.

30

Model-Based Embedded Software Final Capstone Report

Afterwards, the EmbeddedCodeActors were converted into Ptolemy II custom actors and placed

in a folder accessible from Vergil. The entire process explained was well-documented in the

project’s wiki page.

D. Results and Discussion

Fall Semester

By following the design mentioned in the Methods and Materials section, the application

for the project was created. It worked as expected, although with a few changes. The WiFi

communication between the mbed board and the data glove resulted in issues that were resolved

by instead connecting the glove to a computer, which then connected to the mbed. The DG5 Data

Glove was limited in its ability to capture gestures from the user’s hand, because many different

hand and finger positions resulted in very similar measurements that were very difficult to

identify. The possibility of using machine learning to more accurately capture gestures was

considered, but due to a lack of time and resources, it was decided that simple gestures would be

used instead. The Gesture Recognition block was able to capture and correctly identify 10

gestures, six of which correspond to hand rotations (shown on Figure 5) that map to movements

of the lighted cube. The other four gestures, shown in Figure 6, are for decreasing size of the cube

(pointing with the index finger), increasing the size of the cube (pointing with the index and

middle fingers), changing the color of the cube (extending the thumb, and using the index finger,

where color changes in a continuous manner with the magnitude of the index finger’s bending),

and the neutral gesture, which implies no changes. Each of these gestures had a corresponding

manipulation of the LED cube, as described in the above section. The LED cube itself was

successful in responsiveness and accuracy when updated. A number of difficulties arose when

building the cube, mainly due to the solder joints and hookup wire used to connect the LED strips

together. Because the cables were desired to be as flush as possible with the cube, the solder

31

Model-Based Embedded Software Final Capstone Report

joints were under tension, causing some of the joints to break, requiring further soldering even

after the cube had been built. In terms of memory and flash usage, the application used 41.8KB

(44%) of flash and 10.9KB (68%) of memory. Before finding the final library that was used for the

NeoPixel LED strips, it was thought that the memory would not allow for all 300 LEDs to be used

on one mbed board. As mentioned in the previous section, the library does its own memory

management, but does so very inefficiently, using a very large portion of memory for a single

instance of a NeoPixel object. Once the final library was found, however, only two instances were

required, significantly lowering the amount of memory required. Overall, the application was

successful and brought significant attention to the project in the Capstone Expo at the end of the

Fall semester.

Figure 5 : Data glove rotation gestures 15

15 ​This figure was created by the Model-Based Embedded Software team: Kevin Albers, Robert Bui, José Oyola
and Naren Vasanad.

32

Model-Based Embedded Software Final Capstone Report

Figure 6 : Data glove finger gestures 16

Spring Semester

After solving the initial issues with the code generator in Ptolemy II, and being able to

create Makefiles that correctly built the code for the mbed platform, the code generator is now

able to produce code that requires no manual changes in order to make it work with the board.

The offline compiler makes code generation with Ptolemy II a very streamlined process, simply

requiring the user to run the command which generates the code, and the compiler will

automatically build a binary file which can be run on mbed.

The incremental building and testing of the custom actors for the final application was

successful. Creating the LED cube actor before all the others allowed the team to simulate the

behaviors of the glove and analyze the resulting behavior of the LED cube. The code-generated

application actually ran more smoothly than the original, manually coded version from the Fall

semester. However, this may not be completely due to code generation itself, but at least partly

due to the team’s careful inspection of the code while developing the Ptolemy actors, allowing us

to find more efficient ways of performing computations and saving memory, as well as a new

16 ​This figure was created by the Model-Based Embedded Software team: Kevin Albers, Robert Bui, José Oyola
and Naren Vasanad.

33

Model-Based Embedded Software Final Capstone Report

WiFi router that suffered significantly less packet loss. Every actor was created as a custom actor

and placed in a folder accessible from Vergil, making it easy to build the entire application within

minutes. This makes our work on Ptolemy II code generation a successful mechanism for creating

embedded software.

V. Concluding Reflections

The Model-Based Embedded Software project was highly successful in meeting the goals

that were set at the beginning of the year. The original plan was to create a model-based software

development environment for embedded platforms, and the team was able to achieve this goal.

The Ptolemy II project already had a functioning code generator capable of generating C code, but

there were many bugs that caused the generated code to be unusable in an embedded system due

to the limited memory in these devices. As a result, as part of the work required to meet the goal

of the project, the team also took on the task of finding solutions to the problems associated with

Ptolemy II’s code generator, such that the Ptolemy II project has also benefitted greatly from our

work. However, not all of the goals were completed as originally planned. One of the goals was to

have a large library of components pre-built so that a user could build complex models for our

embedded platform and code generate them. However, more time was spent in trying to resolve

the existing problems than originally intended, such that less time was available to pre-build

additional blocks. On the other hand, all of the actors that were built for the LED-cube application

were designed to be general and not application-specific, such that they can be used in a wide

range of models for varying purposes.

The capstone project also brought forth many interesting insights with respect to project

management and working in teams. Although all four team members have similar backgrounds in

Electrical Engineering and Computer Science, it became clear as the year progressed that each

member had areas of expertise that could be leveraged to better complete the goals of the project.

34

Model-Based Embedded Software Final Capstone Report

By using a rolling-wave project management strategy, the team was able to adjust the project

plan as the team members demonstrated technical abilities in completing certain types of tasks,

while a fixed project plan would have not allowed these kind of adjustments to take place.

A very important aspect of our work in the capstone project was documentation. The

Ptolemy II code generator is lacking in documentation, which translates to a very steep learning

curve when someone is first exposed to it. The team made sure to document each step that was

taken throughout the year to make it easier for someone to continue or build upon our work. In

particular, the team’s wiki page was created as a guide, showing step-by-step instructions on 17

code generation in Ptolemy II. There are guides on how to edit makefiles, how to set up the offline

compiler for mbed, and how to create custom actors for code generation, to name a few. This will

make it significantly easier for someone to continue the work that was done this year, and will

allow for addition of some useful features that could be used to enhance the model-based design

experience for embedded platforms. In particular, the code generator for Discrete Event models

is currently not able to generate code at the same quality as the one for Synchronous Data Flow,

which we used in our project. This future work for code-generating Discrete Event models could

open the door for very interesting and useful applications that require or can benefit from

temporal dynamics.

17 ​The project’s wiki page can be accessed at: http://chess.eecs.berkeley.edu/ptexternal/wiki/Main/Mbed

35

Model-Based Embedded Software Final Capstone Report

References

Audris Mockus, Roy T. Fielding, and James D. Herbsleb. ​" ​Two case studies of open source

software development: Apache and Mozilla. ​" ​ ​ACM Trans. Softw. Eng. Methodol. ​ 11, 3 (July

2002), 309-346, Web. 16 Feb. 2015. <http://dl.acm.org/citation.cfm?id=567795>

 "Buy LabVIEW." - ​National Instruments​. National Instruments, n.d. Web. 25 Nov. 2014.

<http://www.ni.com/labview/buy/>

Clarice Technologies. "Demystifying the Internet of Things." ​Thinking Products: A Weblog by

Clarice Technologies​, Clarice Technologies, 6 Mar. 2014. Web. 16 Feb. 2015.

<http://blog.claricetechnologies.com/2014/03/demystifying-the-internet-of-things/>

Dellas, Christina M., and Hogan, Kevin M. Statechart Development Environment with Embedded

Graphical Data Flow Code Editor. National Instruments Corporation, assignee. Patent US

8,387,002 B2. 26 Feb. 2013. Print.

Deshpande, A. and Riehle, D., ​IFIP International Federation for Information Processing ​, Volume

275; ​Open Source Development, Communities and Quality​; Barbara Russo, Ernesto

Damiani, Scott Hissam, Björn Lundell, Giancarlo Succi; Boston: Springer, 2008. pp.

197–209.

Engelfriet, A. "Choosing an Open Source License." IEEE Software 27.1 (2010): 48-49. Print.

"Engineering, Scientific & CAD/CAM Software" Hoover’s Online. 2015. Web. 16 Feb. 2015.

Fitzgerald, Brian. "The Transformation of Open Source Software." MIS Quarterly. Vol. 30, No. 3

(Sep., 2006)​ , pp. 587-598. Web. 16 Feb 2015. ​<​http://www.jstor.org/stable/25148740​>

"Gartner's 2014 Hype Cycle for Emerging Technologies Maps the Journey to Digital Business",

Gartner, ​11 Aug. 2014, Web. Nov. 2014.

<http://www.gartner.com/newsroom/id/2819918>

36

Model-Based Embedded Software Final Capstone Report

Hulkower, Billy. "Living Online - US - May 2014." ​In Mintel​. n.d. Web. 13 Feb. 2015.

<http://academic.mintel.com/display/704619/?highlight>

"Internet of Things Market & M2M Communication", ​Markets and Markets​, Nov. 2014, Web. Nov.

2014.

<http://www.marketsandmarkets.com/Market-Reports/internet-of-things-market-573.h

tml>

Jensen, J. C., Chang, D. H. and Lee, E.A., 2011, “A model-based design methodology for

cyber-physical systems”, ​ Proceedings of the International Wireless Communications and

Mobile Computing Conference ​ . IWCMC 2011 . pp. 1666-1671. Print.

Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman, 2011 “Model-Based Testing for

Embedded Systems”, ​CRC Press. ​ Boca Raton: Taylor and Francis Group, 2013. Web. 16 Feb.

2015. <http://dx.doi.org/10.1201/b11321-1>

Kahn, Sarah, IBISWorld Industry Report 51121: Software Publishing in the US. Dec. 2014. Web.

13 Feb. 2015.

Kim, BaekGyu, Linh T.X. Phan, Oleg Sokolsky, and Insup Lee. "Platform-Dependent Code

Generation for Embedded Real-Time Software." ​Proceedings of the 2013 International

Conference on Compilers, Architecture, and Synthesis for Embedded Systems CASES '13,

Montreal, Canada, 29.09-04.10.2013 ​. New York (NY): A.C.M., 2013. 1-10. Print.

Lee, Bilung, Edward A. Lee. “Hierarchical Concurrent Finite State Machines in Ptolemy.” In

International Conference on Application of Concurrency to System Design, Fukushima,

Japan, March 1998, Proceedings​. 34-40. Print.

Lee, Sunghyun, Sungjoo Yoo, and Kiyoung Choi. "Reconfigurable SoC Design with Hierarchical

FSM and Synchronous Dataflow Model." ​CODES 2002 Proceedings of the Tenth

37

Model-Based Embedded Software Final Capstone Report

International Symposium on Hardware/Software Codesign: May 6-8, 2002, Estes Park,

Colorado​. New York, NY: Association for Computing Machinery, 2002. 199-204. Print.

Lindman, J.; Paajanen, A.; Rossi, M., "Choosing an Open Source Software License in Commercial

Context: A Managerial Perspective," ​2010 36th EUROMICRO Conference on ​Software

Engineering and Advanced Applications (SEAA)​, 237-44, 1-3 Sept. 2010

“Links.” ​Ptolemy Project ​. UC Berkeley, 26 July. 2014. Web.

http://ptolemy.eecs.berkeley.edu/archive/links.htm, accessed February 28, 2015.

Lublinerman, Roberto, Christian Szegedy, and Stavros Tripakis. "Modular Code Generation from

Synchronous Block Diagrams: Modularity vs. Code Size." ​POPL'09: Proceedings of the 36th

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages:

Savannah, Georgia, USA, January 21-23, 2009 ​. New York, NY: Association for Computing

Machinery, 2008. N. pag. Print.

Lublinerman, Roberto, Stavros Tripakis, "Modularity vs. Reusability: Code Generation from

Synchronous Block Diagrams," ​Design, Automation and Test in Europe, 2008. DATE '08

,1504,1509, 10-14 March 2008

Ma, Tao, and Chunhong Zhang. "On the Disruptive Potentials in Internet of Things." ​Proceedings

17th IEEE International Conference on Parallel and Distributed Systems: ICPADS 2011: 7-9

December 2011, Tainan, Taiwan ​. Los Alamitos, Calif: IEEE Computer Society Conference

Publications, 2011. 857-59. Print.

Manione, Roberto, "Short paper: A model based framework for effective Web of Things

development," ​2014 IEEE World Forum on ​Internet of Things (WF-IoT)​, 191-192, 6-8

March 2014

38

Model-Based Embedded Software Final Capstone Report

Mueller, W., Becker, M., Elfeky, A., DiPasquale, A., "Virtual prototyping of Cyber-Physical Systems,"

Design Automation Conference (ASP-DAC), 2012 17th Asia and South Pacific ​, 219-26, 30

Jan. 2012-2 Feb. 2012. Print.

Øyvind Hauge, Daniela Soares Cruzes, Reidar Conradi, Ketil Sandanger Velle, and Tron André

Skarpenes, “Risks and Risk Mitigation in Open Source Software Adoption: Bridging the

Gap between Literature and Practice” ​Proceedings of 6th International IFIP WG 2.13

Conference on Open Source Systems, Open Source Software: New Horizons, Notre Dame, IN,

USA, May 30 - June 2 2010. ​ Springer. 2010. ​ ​Web. 16 Feb. 2015.

<​http://link.springer.com/book/10.1007%2F978-3-642-13244-5>

Øyvind Hauge and Sven Ziemer, “Providing Commercial Open Source Software: Lessons Learned”,

Proceedings of 5th IFIP WG 2.13 International Conference on Open Source Systems, Open

Source Ecosystems: Diverse Communities Interacting, Skövde, Sweden, June 3-6, 2009

Springer. 2009. Web. 16 Feb. 2015.

<http://www.springer.com/computer/general+issues/book/978-3-642-02031-5>

Pino, J.L, T.M. Parks, E.A. Lee, "Automatic code generation for heterogeneous multiprocessors,"

ICASSP-94., IEEE International Conference on ​Acoustics, Speech, and Signal Processing,

1994 ​, 445-448 vol.2, 19-22 Apr 1994

Porter, Michael. "How Competitive Forces Shape Strategy." ​Harvard Business Review​, vol. 57, no.

2, 137-45. Mar. 1979. Print.

Porter, Michael. "The Five Competitive Forces That Shape Strategy." ​Harvard Business Review. ​ Jan.

2008. Print.

"Pricing and Licensing." ​ MATLAB and Simulink Overview​. MathWorks, n.d. Web. 25 Nov. 2014.

<http://www.mathworks.com/pricing-licensing/index.html?intendeduse=home>

39

Model-Based Embedded Software Final Capstone Report

Ptolemaeus, Claudius, Editor, ​System Design, Modeling, and Simulation Using Ptolemy II ​,

Ptolemy.org, 2014.

"Ptolemy II." ​Ptolemy Project ​. UC Berkeley, n.d. Web.

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm, accessed February 16, 2015.

“Ptolemy II Frequently Asked Questions.” ​Ptolemy Project ​. UC Berkeley, 18 Dec. 2014. Web.

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptIIfaq.htm#ptolemy%20II%20copyright,

accessed February 16, 2015.

“Sponsors of the Ptolemy II Project.” Ptolemy Project. UC Berkeley. Web.

http://ptolemy.eecs.berkeley.edu/sponsors.htm, accessed 14 Apr. 2015

Tsay, Jeff. “A Code Generation Framework for Ptolemy II.” ERL Technical Memorandum UCB/ERL

No. M00/25, Dept. EECS, University of California, Berkeley, CA 94720 (May 19, 2000)

Vieri del Bianco, Luigi Lavazza, Sandro Morasca, and Davide Taibi, “Quality of Open Source

Software: The QualiPSo Trustworthiness Model”, ​Springer ​, 2009, Web. 16 Feb. 2015.

Zhou, Gang, Man-Kit Leung, and Edward A. Lee. "A Code Generation Framework for

Actor-Oriented Models with Partial Evaluation." ​Embedded Software and Systems Third

International Conference, ICESS 2007, Daegu, Korea, May 14-16, 2007, Proceedings​. Berlin:

Springer, 2007. 193-206. Print.

40

