
High Speed Analog Circuit for Solving Optimization
Problems

Kristel Deems

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-133
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-133.html

May 15, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

	

	

	

	

High Speed Analog Circuit for Solving Optimization Problems

By

Kristel Marie Deems

A thesis submitted in partial satisfaction of the

requirements for the degree of

Master of Science

in

Engineering - Electrical Engineering and Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Elad Alon, Chair
Professor Francesco Borrelli

Professor Vladimir Stojanovic

Spring 2015

	

	

Table of Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Previous Work on Analog Optimization . 2

2 Proposed Analog Optimization Circuit 4

2.1 Equality Constraint . 4

2.2 Inequality Constraint . 5

2.3 Implementing Multiple Constraints . 6

2.4 Cost Function . 7

2.5 Redundant Constraints . 9

2.6 Constructing the Proposed Circuit . 11

3 Implementation Considerations 13

3.1 Fully Differential Equality Constraint . 13

3.2 Fully Differential Inequality Constraint . 15

4 Design Methodology 17

4.1 System Level Design . 17

4.1.1 Parasitic Capacitance . 17

4.1.2 Size of Capacitors and Switches . 18

4.2 OTA Design . 18

4.2.1 Topology . 18

4.2.2 Methodology . 20

4.3 Comparator Topology . 23

4.4 Simulation and Results . 24

5 Conclusion 28

Bibliography 29

i

List of Figures

1.1 Performance of digital optimization implementations 1

2.1 Conceptual circuit diagram for equality constraint 4

2.2 General equality constraint circuit . 5

2.3 General inequality constraint circuit . 6

2.4 Implementation of optimization problem with multiple constraints 7

2.5 Transformation of redundant inequality between two variables 10

3.1 Fully differential equality constraint . 13

3.2 Fully differential equality constraint with capacitor values 14

3.3 Inequality enforcing Vx ≤ 0 . 15

4.1 Equality constraint including parasitic capacitance and compensation 18

4.2 Amplifier with common mode feedback . 19

4.3 Lumped capacitances for feedback factor . 20

4.4 Strong-arm latch . 24

4.5 Layout of 3 variable QP . 25

4.6 SImulated transient response after extraction 27

4.7 Transient response with swept inputs . 27

ii

Chapter 1

Introduction

1.1 Motivation

Advances in algorithms and coding have made the convergence time of a convex optimiza-

tion problem reasonable for real-time optimization applications. However, solving convex

optimization problems within a microsecond is still challenging, especially for larger sized

problems. In addition, due to Moore’s Law slowing down, the speed of modern processors

is not improving at a significant rate. Many applications use parallelization in an effort

to continue solving problems faster. However, this method is not effective for all convex

optimization problems as it may require iterations to reach a solution, effectively increasing

latency.

Fig. 1.1 shows existing real-time optimization implementations [5, 6, 8–10, 14]. Here we

can see the trend of the speed of the optimizers as a function of the number of optimization

variables. With the challenges now associated with improving latency of digital implemen-

tations, we propose an analog implementation as a competitive alternative, particularly for

moderately sized problems as it may not be limited by the same trend in Fig. 1.1.

Figure 1.1: Digital optimization implementations plotted on a log scale according to latency

and number of optimization variables.

1

Using an analog circuit to solve convex optimization problems not only improves the solu-

tion time compared to digital approaches, but could potentially have less power consumption

and area as well. With the ability to solve larger problems faster, more applications become

available to convex optimization, primarily real-time applications which require fast itera-

tions. Such applications include signal and image processing, communication, and optimal

control. Analog optimizers have been considered in the past and we propose a new method

that can be fast and simple.

In our proposed analog circuit the steady state voltages act as the optimization solution

and switched-capacitor configurations enforce the constraints. In particular, the coefficients

of the constraints are set by normalized capacitance values. Using the fact that a solution to

Karush–Kuhn–Tucker (KKT) conditions will in turn be the solution to the associated convex

optimization problem [1], we prove that our circuit solves the desired convex optimization

problem of the form:

min
1

2
V TQV (1.1)

st.AeqV = beq

AineqV ≤ bineq

V is a vector of optimization variables, Aeq and Aineq are matrices of constraint coeffi-

cients, Q is a matrix definining the coefficients of the cost function, and beq and bineq are

vectors.

1.2 Previous Work on Analog Optimization

Solving quadratic problems (QP) and linear problems (LP) in real-time with an analog

circuit was first proposed by Dennis in 1959 [3]. His circuit consisted of voltage sources,

current sources, diodes, transformers, and resistors. In this implementation, both voltages

and currents act as optimization variables and the coefficients of equality and inequality

constraints are set by the number of wires connected to a single node. This limits the

coefficient values to small integers and reduces the range of solvable problems.

Chua [2] proposed a different analog circuit to solve non-linear optimization problems

which was later expanded by both Chua [7] and Hopfield [12]. A non-linear optimization

problem does not include equality constraints and thus has the form:

min
x

f(x)

s.t. gj(x) ≤ 0, j = 1 . . .m (1.2)

These circuits directly implement KKT conditions in order to solve an optimization

problem. Rather than enforcing the cost function, Chua and Hopfield use the Lagrangian

of the optimization problem. Diodes and nonlinear function building blocks [11] are used to

2

implement the function in (1.3).

∂xi
∂t

= −

[
∂f(x)

∂xi
+

m∑
j=1

Ij
∂gj(x)

∂xi

]
, (1.3)

Here, ∂xi
∂t

is the current charging a capacitor. Therefore, when the circuit reaches a

steady state, the capacitor charge is constant (∂xi
∂t

= 0) and the equation (1.3) becomes

the derivative of the Lagrangian of the intended optimization problem. However, from the

results of a PCB implementation [7], equilibrium is met in tens of milliseconds with a ±2.5%

error in the solution.

This work is an extension of the work done by Vichik [13] in which the steady state

voltages are variables and their weights are set by resistors. Vichik implemented the same

simple problem performed by Chua and Hopfield using this method and reached the solution

with a convergence time of 6 µs.

3

Chapter 2

Proposed Analog Optimization

Circuit

2.1 Equality Constraint

For our proposed circuit, the optimization variables (V) will be node voltages and the co-

efficients of the constraints (Aeq and Aineq) will be set by capacitance ratios. Consider Fig.

2.1, in which a simple equality constraint C1V1 +C2V2 = 0 is implemented. To more directly

compare this result with the format of an optimization problem as introduced before, the

equation can be rewritten as C2

C1
V2 = −V1. Then Aeq = C2

C1
, V = V2, and beq = −V1.

Figure 2.1: Circuit diagram demonstrating the concept behind implementing an equality

constraint. This particular circuit implements C1V1 + C2V2 = 0.

The equation which the voltages of this circuit satisfy is determined by charge distribution

at the summing node Vsum. Assuming that there are switches configured such that the

capacitors are shorted in the first phase and the second phase is as seen in Fig. 2.1, the

value of V2 will be a function of V1 and Vsum as shown in the equation (2.1). To eliminate

this dependency on Vsum, we add a block that applies a negative voltage across Csum. We

see that if we’re applying −Vsum across Csum, Csum must be equal to C1 +C2 for our desired

equation to hold.

4

C1(Vsum − V1) + C2(Vsum − V2) + Csum(Vsum − 2Vsum) = 0 (2.1)

C1V1 + C2V2 = (C1 + C2 − Csum)Vsum

C1V1 + C2V2 = 0

In the general case for an equality constraint there can be multiple optimization variables,

each with their own capacitive weight connecting them to the summing node. This concept

is shown in Fig. 2.2. These voltages can be externally applied, thus contributing to the beq
term, or they can have load capacitances that determine the voltage value the node settles

to, making the node voltage a variable. In either case, the equation derived from charge

distribution at the summing node will enforce the equality constraint when Csum =
n∑
i=1

Ci.

Figure 2.2: General equality constraint implementing
n∑
i=1

CiVi = 0.

n∑
i=1

Ci(Vsum − Vi) + Csum(Vsum − 2Vsum) = 0 (2.2)

(
n∑
i=1

Ci − Csum)Vsum −
n∑
i=1

CiVi = 0

n∑
i=1

CiVi = 0

Note that the optimization variables V2, ..., Vn still have the freedom to change values

depending on the capacitors connected at the voltage node, but the circuit has been config-

ured such that the equality constraint is still enforced. As shown in Section 2.5, the load

capacitances are determined from the desired cost function as they influence the cost func-

tion the circuit implements. Otherwise, we can choose the load capacitances to maximize

the dynamic range of the variables. Smaller load capacitors decrease the value of Vsum and

improve the dynamic range of the variables given a maximum swing constraint for Vsum.

2.2 Inequality Constraint

The circuit for a single inequality constraint is similar to that of an equality constraint, but

with an added diode at the summing node as seen in Fig. 2.3. When Vsum > V ′sum, the diode

5

is closed and the circuit behaves as an equality constraint with Vsum = V ′sum. With the diode

closed we can rewrite the function the circuit enforces in the form

n∑
i=1

CiVi = qineq + Vsum

n∑
i=1

Ci = qineq + V ′sum

n∑
i=1

Ci = 0 (2.3)

qineq = −V ′sumCsum (2.4)

Figure 2.3: General inequality constraint implementing
n∑
i=1

CiVi ≤ 0.

When Vsum < V ′sum, the diode is open and the optimization variables will be set by other

subcircuits. In this case, the node voltages will have some dependency on Vsum, but they

must still satisfy any other constraint circuits they are connected to. In this way, the diode

always enforces Vsum ≤ V ′sum. Using this inequality, we can rewrite (2.3) as (2.5). Then the

circuit implements an inequality constraint which is only a function of the variable nodes

and capacitances.

n∑
i=1

CiVi = qineq + Vsum

n∑
i=1

Ci ≤ qineq + V ′sum

n∑
i=1

Ci = 0 (2.5)

n∑
i=1

CiVi ≤ 0 (2.6)

The diode itself should enforce the equations (2.7). These will be used in Section 2.4 to

characterize the circuit.

qineq ≥ 0 (2.7a)

qineq(Vsum − V ′sum) = 0 (2.7b)

2.3 Implementing Multiple Constraints

For a problem with multiple equality and inequality constraints the constraint blocks are

connected at the variable nodes as seen in Fig. 2.4. The figure only shows equality constraints

but inequality constraints would be connected in the same way. We can see that there are m

summing nodes, meaning m different constraints are enforced on n variables. Refering back

to the form of a convex optimization problem, we are implementing the constraint matrix A

6

where Aij = Cij. Therefore, A will have m rows and n columns, where each row consists of

the capacitors from a single constraint. Note that any variable can be driven by a voltage

source and every constraint does not need to include all n variables. For example, if A11 = 0

then C11 = 0 and V1 is not connected to the first constraint block.

Figure 2.4: General optimization problem which implements m equality constraints with n

total variables. A capacitor Cij acts as a weight for the variable Vi in the jth constraint

block.

2.4 Cost Function

There is no specific subcircuit that implements the cost function. Rather, the final circuit

with multiple equality and inequality constraints will inherently solve a cost function which

is controlled by introducing additional constraints. We can determine the implemented cost

function using KKT conditions and equations from our circuit. As mentioned previously,

every optimization problem can be rewritten in the form of KKT conditions. Then the

solution to the KKT conditions is also the solution of the optimization problem. In this

section, we show that a circuit of equality and inequality constraints satisfies KKT conditions

for optimization, and therefore solves a cost function which we derive to be (2.8) [13]. Note

that V is a vector that includes both constants and variables. The constants are simply

the variable nodes in the circuit which are driven by voltage sources. Therefore, the cost

7

function can include both quadratic and linear terms.

min
1

2
V TQAV (2.8)

QA = diag(1TA)− ATdiag(1TAT)−1A

A =

[
Aeq
Aineq

]
For the following derivations, let U = Vsum, where Vsum is a vector of the Vsum’s for each

equality and inequality constraint. Then we can characterize the circuit with the equations

(2.9). The equations (2.9a) and (2.9b) are derived from the charge at each summing node.

Equation (2.9c) is derived from the charge at each variable node. The equations (2.9d) are

the imlemented equality and inequality constraints, and the equations (2.9e) are enforced by

the diodes in the iequality circuits. These derivations can be seen in more detail in Vichik’s

work [13].

AeqV = diag
(
1TATeq

)
Ueq + qeq (2.9a)

AineqV = diag
(
1TATineq

)
Uineq + qineq (2.9b)

ATeqUeq + ATineqUineq = diag
(
1TA

)
V (2.9c)

AeqV = beq, AineqV ≤ bineq (2.9d)

[AineqV − bineq]i [qineq]i = 0,∀i ∈ I, qineq ≥ 0 (2.9e)

The KKT conditions [1] we need to satisfy are (2.10). The free variables from these

conditions are V ?, µ?, and λ?. Likewise, Q is an unknown constant and we can solve for its

value such that the conditions are satisfied.

ATeqµ
? + ATineqλ

? +QV ? = 0 (2.10a)

AeqV
? = beq (2.10b)

AineqV
? ≤ bineq (2.10c)

λ? ≥ 0 (2.10d)

(AineqV
? − bineq)iλ?i = 0, i ∈ I, (2.10e)

We choose Q, U?
eq, U

?
ineq, q

?
eq and q?ineq as described by the following equations. Note

that these are functions of the free variables mentioned before. Then equations (2.11) are

combined with (2.10) to obtain (2.12), which are of the same form as (2.9).

Q = diag
(
1TA

)
− ATeq diag

(
1TATeq

)−1
Aeq

− ATineq diag
(
1TATineq

)−1
Aineq (2.11a)

q?eq = diag
(
1TATeq

)
µ? (2.11b)

U?
eq = diag

(
1TATeq

)−1
AeqV

? − µ? (2.11c)

q?ineq = diag
(
1TATineq

)
λ? (2.11d)

U?
ineq = diag

(
1TATineq

)−1
AineqV

? − λ?. (2.11e)

8

In particular, substitution of (2.11b) into (2.11c) and of (2.11d) into (2.11e) yields

equations (2.12a) and (2.12b) respectively; substitution of (2.11a), (2.11b) and (2.11d)

into (2.10a) yields (2.12c); substitution of (2.11d) into (2.10d) and into (2.10e) yields (2.12f)

and (2.12g) respectively.

AeqV
? = diag

(
1TATeq

)
U?
eq + q?eq (2.12a)

AineqV
? = diag

(
1TATineq

)
U?
ineq + q?ineq (2.12b)

ATeqU
?
eq + ATineqU

?
ineq = diag

(
1TA

)
V ? (2.12c)

AeqV
? = beq (2.12d)

AineqV
? ≤ bineq (2.12e)

q?ineq ≥ 0 (2.12f)

(AineqV
? − bineq)iqineq?i = 0, i ∈ I. (2.12g)

In conclusion, we have shown that the equations (2.12) satisfy KKT conditions and are

equivalent to equations (2.9) for the Q defined in (2.11a). Therefore, the circuit enforces

a cost function defined by the matrix Q which is derived from the given set of constraint

matrices Aeq and Aineq from the circuit.

2.5 Redundant Constraints

In order to implement the desired cost function without changing the equality and inequality

constraints the circuit enforces, we add redundant constraints. Redundant constraints can

either be equality constraints that are linearly dependent on existing equalities or they can

be inequality constraints that are less than or equal to infinity. Say we’re implementing a

single constraint x+ 2y = 100. Then (2.13) shows some examples of redundant constraints.

x̄+ 2ȳ = −100 (2.13a)

x+ x̄ = 0 (2.13b)

x ≤ ∞ (2.13c)

x+ y ≤ ∞ (2.13d)

Because the equation (2.13d) is enforcing less than infinity, the inequality constraint

diode is always open. As such, we can represent this constraint as a capacitance between

two variable nodes as shown in Fig. 2.5. This is essentially two capacitors in series where

the middle node would be the summing node. On the other hand, the redundant equality

constraints such as (2.13a) and (2.13b) each require their own amplifier, so in the interest

of saving power and area it’s better for us to use redundant inequality constraints. The

example (2.13c) is implemented in the same way as an inequality between two variables, but

this time the second variable is ground.

To determine what capacitors to add given a desired cost function, we use a MATLAB-

based convex optimizer called CVX [4]. The code is shown below. The format of the function

9

Figure 2.5: Transformation of redundant inequality between two variables

is to first list the optimization variables, then the cost function followed by the constraints

the cost function is subject to. Looking at the code, H is the desired cost function matrix

and must be positive definite and strictly diagonally dominant for this problem to be feasible.

Q A is the inherent cost function matrix and M = [I − I]T is the transformation matrix

from x and x̄ such that x = M [xT x̄T]T . The matrix Alph is a nxn matrix that represents

all possible redundant constraint capacitors and dQ represents the effect of these possible

redundant constraints on the cost matrix.

1 M = [eye(n/2) ; -eye(n/2)];

2 cvx begin

3 variable k

4 variable Alph(n,n) symmetric

5 variable dQ(n,n) symmetric

6 expression DeltaQ(n,n)

7 minimize (norm(Alph(:),1))

8 subject to:

9 k >= 0 ;

10 Alph >= 0;

11

12 for i=1:n

13 for j=i:n

14 DeltaQ = DeltaQ + DeltaQmat(i,j,n)*Alph(i,j);

15 end

16 end

17 DeltaQ == dQ;

18 k*M' * H * M == M' * (Q A + dQ) * M;

19 cvx end

The MATLAB optimizer will minimize the amount of additional capacitance required

to implement cost matrix H. This minimization occurs subject to the constraint which

equates the resulting cost function matrix Q A + dQ with a positive factor of the desired

cost function matrix H. Then the solution dQ contains the normalized capacitor values

needed to implement the cost function. The optimization problem this code implements is

10

shown below.

min
αi,j , 1<i,j<n

n∑
i=1

n∑
j=1

|αi,j| (2.14)

s.t. kMTHM = MT (QA +
n∑
i=1

n∑
j=1

∆Qi,jαi,j)M

k ≥ 0

αi,j ≥ 0, 1 < i, j < n

A single capacitor added between two optimization variable nodes Vi and Vj has a normal-

ized value of αij and will implement the redundant inequality constraint 2αijVi+2αijVj ≤ ∞.

Solving for the new cost matrix, the redundant inequality constraint adds two diagonal terms

of value αij and two off diagonal terms of value −αij. The locations of these terms are shown

in the DeltaQmat function below.

1 function D = DeltaQmat(i,j,n)

2

3 D = zeros(n);

4 if (i~=j)
5 D(i,j) = -1;

6 D(j,i) = -1;

7 D(i,i) = 1;

8 D(j,j) = 1;

9 end

2.6 Constructing the Proposed Circuit

To summarize, we can implement the general optimization problem (2.15), where the vector

V represents the n variable nodes of the circuit, some of which can be driven by voltage

sources.

min
1

2
V TQV (2.15)

st. AeqV = 0

AineqV ≤ 0

To construct the proposed circuit, we would first create all the equality and inequality

subcircuits using the coefficients from the constraint matrices Aeq and Aineq to determine

the capacitor values. First we choose a unit capacitance which all other capacitors will be

normalized against. Then these normalized values should be equal to the coefficients in Aeq
and Aineq. From here, we know all the capacitor values to implement our constraints. The

11

equality and inequality subcircuits are then connected at the voltage nodes as described in

Section 2.3.

The next step is to calculate the cost functionQA = diag(1TA)−ATdiag(1TAT)−1A which

is implemented by these subcircuits. The calculated cost matrix QA and the desired matrix

Q are called from the MATLAB function introduced in Section 2.5, which will output an nxn

matrix of normalized capacitor values. These values indicate the capacitors to place between

variable nodes in order to implement the required cost matrix Q. After the redundant

constraint capacitors are inserted into the circuit, the proposed circuit is complete and will

solve the optimization problem (2.15).

12

Chapter 3

Implementation Considerations

3.1 Fully Differential Equality Constraint

We chose to implement a fully differential circuit due to advantages such as high output

swing and reduced noise. We use a fully differential amplifier to effectively apply a negative

voltage across Cf2 as seen in Fig. 3.1. Charge flow from the positive feedback enforces

the function V +
O = −Cf1

Cf2
V +
sum. Then the negative feedback applies a negative voltage of

Vsum(1− Cf1

Cf2
) across Cf2 resulting in the charge analysis equation (3.1).

Figure 3.1: Fully differential equality constraint. For simplicity, only half of the circuit is

shown.

n∑
i=1

Ci(Vsum − Vi) + Cf1Vsum + Cf3(Vsum −
Cf1
Cf2

Vsum) = 0

n∑
i=1

Ci + Cf1 + Cf3(1−
Cf1
Cf2

)Vsum −
n∑
i=1

CiVi = 0 (3.1)

13

There is freedom in choosing the feedback capacitors as long as they satisfy the equation

(3.2) which insures the equality constraint is implemented. The ratio between Cf1 and

Cf2 determines the amount of voltage applied across Cf3. A smaller ratio would decrease

the output and increase the dynamic range of the system but also requires a larger Cf3
capacitance. For simplicity, we chose a ratio of 2 and Cf3 = 2Csum.

n∑
i=1

Ci + Cf1 + Cf3 =
Cf1
Cf2

Cf3 (3.2)

n∑
i=1

Ci + Csum + 2Csum = 4Csum

Csum =
n∑
i=1

Ci

n∑
i=1

CiVi = 0

With these choices, the complete fully differential equality constraint is shown in Fig.

3.2. We can also view this circuit as implementing two seperate equality constraints with the

added condition that V +
j = −V −j for all variables. This gives the same result as observing the

implementation differentially with voltages Vj = V +
j − V −j . Therefore, the fully differential

implementation has the advantage of inherently including the complement of each variable

without requiring additional circuitry. This is useful when adding redundant constraints

to the circuit. For example, adding an inequality constraint between x and x̄ is an option

and has the same effect on the cost function as adding capacitors from x and x̄ to ground.

Conversely, the effect on the feedback factor and amplifier load capacitance will be different

for each case.

Figure 3.2: Fully differential equality constraint with capacitor values

14

3.2 Fully Differential Inequality Constraint

Until now we have described the inequality constraint as an equality constraint with an ideal

diode. However, in reality this diode is a transmission gate with gate inputs driven by a fully

differential comparator. Since we can’t compare two differential signals and we don’t want to

implement a floating voltage source, we can adjust our constraints such that the inequality is

enforced on a single differential variable in comparison with zero. This comparison is shown

in Fig. 3.3.

Figure 3.3: Inequality enforcing Vx ≤ 0. The comparator includes an SR latch to hold the

outputs constant during the comparator reset phase.

The figure above enforces the inequality Vx ≤ 0. However, say we want to solve a problem

with nonzero inequality constraints such as (3.3). In this case, we adjust the constraint with

a new variable while ensuring that we still solve the same problem. Note that there are

additional constraints that would be needed to implement the shown cost function, but we

can ignore them for now.

min x2 + y2 (3.3)

x+ 2y + z = 0

z = −100

y ≤ b

The new variable we create is y′ = y−b where b is a constant implemented with a voltage

source. Then substituting for y we need the circuit to implement the optimization problem.

min x2 + y′2 + 2by′ + b2

x+ 2y′ + z + 2b = 0

z = −100

y′ ≤ 0

15

We can adjust the redundant constraints as described in Section 2.5 to implement the

new cost function. In this case, it’s simple as the only additional term is 2by′. A capacitor

between two variables adds their cross term to the cost function; therefore, our new function

now has the form shown in (3.4) but will still have the same solution as (3.3). If we wanted

to directly solve for y rather than relying on y′ for the solution, we can simply add the

constraint y′ + 0.5w − y = 0. Note that this will require an additional amplifier as well as

additional redundant constraints to readjust the cost function.

min x2 + y′2 + wy′ (3.4)

x+ 2y′ + z + w = 0

z = −100

y′ ≤ 0

w = 2b

y + w ≤ ∞

16

Chapter 4

Design Methodology

4.1 System Level Design

4.1.1 Parasitic Capacitance

Because the ability to implement the correct optimization problem depends completely on

charge transfer, the accuracy of the solution is highly sensitive to parasitic capacitance. As

such, all routing to capacitances has ground shielding and the capacitors are sized to be

large enough such that any unaccounted parasitic capacitance won’t affect accuracy. Then

the only parasitics we are concerned with are the capacitances to the substrate from routing

and coupling capacitance to the shielding. These parasitics add extra load capacitance from

the variable nodes to ground as well as a large capacitance from the summing node to

ground as shown in Fig. 4.1. The summing node capacitance Cerr is the most problematic

parasitic because then the cancelation this circuit is meant to implement is no longer perfect.

However, it is simple to account for this with an added capacitance Ccomp in parallel with the

feedback capacitor. The value of Ccomp is equal to Cerr in order to correctly compensate for

it. Practically, this compensation capacitor would be implemented with a bank of switched-

capacitors to allow for tunability. Then as long as the capacitance from the summing node

to ground is the only significant parasitic capacitance, the compensation will correct for the

error and the circuit will be accurate for multiple input values.

The added load capacitances on variable nodes will change the cost function that the

circuit implements. Therefore, they need to be accounted for when determining redundant

constraints to implement the cost function. On the other hand, Cerr will not affect the cost

function. It effectively adds a new variable to the constraint which needs to be corrected

with Ccomp. However, because this variable is ground, any cross terms in the cost function

created by Cerr would be multiplied by zero.

17

Figure 4.1: Diagram showing addition of compensation capacitor Ccomp to correct for error

due to summing node parasitic capacitance Cerr.

Both Cerr and the added variable load capacitances significantly affect the OTA perfor-

mance as they will change the feedback factor and effective amplifier load capacitance. As

such the OTA design may require additional design iterations after layout when parasitics

are better known.

4.1.2 Size of Capacitors and Switches

The feedback capacitors need to be large enough such that any unaccounted parasitics will

not change the function of the constraint block. They should also be small enough such that

the RC time constant from the switches will not be larger than the speed of the amplifier.

Likewise, the switches should be small enough such that their drain and source capacitances

don’t affect the result of the circuit and large enough that the on resistance results in a small

enough RC time constant.

4.2 OTA Design

4.2.1 Topology

The OTA used in all the constraint blocks is a fully differential two stage telescopic cascode

amplifier as shown in Fig. 4.2. Since both accuracy and speed of the system are important,

we needed an architecture with high gain. To be able to handle a wider variety of constraints

and therefore dynamic range ratios, we also want high output swing. This allows for more

freedom when choosing capacitance values and redundant constraints.

Since we’re already using a switched-capacitor configuration with our feedback capaci-

tors, it’s simplest to use a switched-capacitor common mode feedback (CMFB) as well. In

18

F
ig

u
re

4.
2:

F
u
ll
y

d
iff

er
en

ti
al

tw
o

st
ag

e
te

le
sc

op
ic

ca
sc

o
d
e

am
p
li
fi
er

w
it

h
co

m
m

on
m

o
d
e

fe
ed

b
ac

k
.

C
as

co
d
e

b
ia

si
n
g

is
im

p
le

m
en

te
d

w
it

h
w

id
e

sw
in

g
cu

rr
en

t
m

ir
ro

rs
.

19

this configuration, two capacitors sense the common mode of the differential output and feed

it back to the tail of the amplifier. Thus for large common mode signals, the tail current

increases causing the output common mode to decrease. During the reset mode, we set the

initial voltages based off the desired common mode and the desired tail current. For our

amplifier we have two CMFB loops, one for each stage. As a switched-capacitor implemen-

tation the common mode feedback doesn’t add significant poles or zeros and simply shares

the existing differential poles and zeros. Since there is a separate common mode loop for

each stage and each stage has one dominant pole, the circuit should consequently maintain

common mode stability and our only concern will be the loop gain.

4.2.2 Methodology

Given an optimization problem with speed and accuracy specifications, the amplifier for

each implemented constraint can be designed using the same methodology. The first thing

to determine is the unit size (Cunit) for the constraint capacitors. For small capacitance

there will be larger noise contributions and the accuracy of the system is more sensitive to

parasitics. However, larger capacitors will load the amplifier and require more power. In our

case parasitics dominate for the minimum capacitor requirement.

Given the constraint implemented by the amplifier and the effective load capacitances

on the optimization variables, we can lump the capacitors seen by the amplifier as in Fig.

4.3. The capacitor Csum is the sum of the constraint capacitors and Cnet is the effective

capacitance seen looking out from the summing node. Since a constraint can be implemented

with more than one variable being driven by voltage sources, we generalize the equations

assuming there are n optimization variables loaded by an effective capacitance Ci,load and m

optimization variables driven by voltage sources. Then Csum and Cnet can be written in the

form shown in (4.1), where the Ci’s connect the variable nodes to Vsum and the Cs’s connect

the voltage sources to Vsum.

Figure 4.3: Simplified model of constraint capacitances for the purpose of deriving the

feedback factor and effective load capacitance

20

Csum =
n∑
i=1

Ci +
m∑
s=1

Cs (4.1)

Cnet =
n∑
i=1

Ci

1 + Ci

Ci,load

+
m∑
s=1

Cs

With these lumped capacitances, we can solve for the feedback factor and effective load

capacitance at the output of the amplifier. As seen from (4.2), the stability of the system

is dependent on Csum > Cnet. This is a result of the amplifier having both positive and

negative feeback paths and should be a consideration when choosing redundant constraints.

F =
Csum(Csum − Cnet)

Csum(7Csum + 3Cnet) + Cin(6Csum + 2Cnet)
(4.2)

CL,eff =
Csum(4C2

sum + 7CsumCin + 7CsumCnet + 5CinCnet)

7C2
sum + 6CsumCin + 3CsumCnet + 2CinCnet

In (4.3) the equations shown above are expanded to include the effect of the summing

node parasitic capacitance (Cerr) and the compensation capacitance (Ccomp). Then the

stability requirement becomes Csum+Ccomp > Cnet+Cerr. Considering that Ccomp should be

roughly equal to Cerr to maintain solution accuracy, the feedback factor simplifies to (4.4).

Since the numerator is the same as in (4.2), Ccomp will serve to maintain stability as well

as accuracy. However, the amplitude of the feedback factor is still reduced, requiring design

iterations after the values of Cerr and Ccomp are calculated from the layout parasitics.

F =
Csum(Csum + Ccomp − Cnet − Cerr)

Csum(7Csum + 3Cnet + 3Ccomp + 3Cerr) + Cin(6Csum + 2Cnet + 2Ccomp + 2Cerr)
(4.3)

F =
Csum(Csum − Cnet)

Csum(7Csum + 3Cnet + 6Ccomp) + Cin(6Csum + 2Cnet + 4Ccomp)
(4.4)

After calculating F and CL,eff based off an initial guess for Cin, we calculate the capacitive

loading on the first and second stages, CL1 and CL2 respectively. For the first iteration we

assume there is no self-loading from the transistors and make initial guesses for the common

mode capacitors, Ccm1 and Ccm2. In the remaining iterations we obtain these values from the

transistor width. The pc, nc, p2, and n2 labels in (4.5) represent the cascode pmos, cascode

nmos, second stage pmos, and second stage nmos respectively.

CL1 = Ccm1 + cddpc + cddnc + cggp2 (4.5)

CL2 = CL,eff + Ccm2 + cddp2 + cddn2

21

Output swing and gain requirements are used to choose initial V ∗ = 2ID
gm

and transistor

length L values respectively. The required output swing depends on the ratio between

variable capacitances and effective load capacitances whereas the gain requirement is derived

from the static error. As previously mentioned, Cunit is already chosen to be large enough

that the solution is unaffected by coupling capacitance. Therefore, as long as the miller

capacitance (Cc) is large enough to not be a dominant noise source, we can choose its value

to minimize power. For example, a low Cc reduces required power in the first stage but

increases power in the second stage.

Using the initial values for Cc and F , we calculate the transconductance of the first stage

(gm1) from the settling time requirement as in (4.6). The equation for τ originates from the

crossover frequency of the closed loop response and is simplified using an approximation for

the first pole. Since there are now values for gm1 and the V ∗ of the input device, we can

calculate the current and transistor widths for the first stage.

ts = −ln(εdyn)τ

τ =
Cc
Fgm1

(4.6)

We want to place our second pole such that the closed loop response has a phase margin

large enough to limit the ripples in the transient step response. Thus we calculate the gm2

that satisfies (4.7). In general, K = 2 results in a close to optimal transient step response

in terms of settling time. Using the value for gm2, we can calculate the second stage current

and widths.

wp2 =
gm2

CL1CL2

Cc
+ CL1 + CL2

wp2 = Kwc = KF
gm1

Cc
(4.7)

We calculate values for the common mode capacitors from the common mode loop gain

in (4.8). For a large Ccm, we will have a larger gain and a more accurate common mode

output but we will also have large loading which will require more power to meet bandwidth

requirements. For the first stage we require higher accuracy since the output biases the

second stage and therefore we choose a larger loop gain to calculate Ccm1.

Tcm =
4Ccm

2Ccm + Cgs,tail
Adm

V ∗in
V ∗tail

(4.8)

With sizing determined we have values for the intrinsic capacitors and the common mode

feedback capacitors. Therefore, we can recalculate F , CLeff , CL1, and CL2 and reiterate until

these values remain constant between iterations. Furthermore, choosing L allows for a larger

iteration if the amplifier gain is not large enough. To summarize, the bullet points below

show the methodology flow.

22

1. Choose Cunit

2. Calculate initial F , CLeff

3. Guess CL1 and CL2

4. Choose V ∗ and L values

5. Choose Cc

6. Calculate gm1 from settling time

7. Calculate gm2 from phase margin goal

8. Find sizing

9. Calculate Ccm1 and Ccm2

10. Recalculate F , CLeff , CL1, and CL2 - reiterate from 6.

11. Recalculate with new L value if desired - reiterate from 6.

Once the design is finalized, we bias the circuit with current mirrors. In the case of the

cascode devices, we use a wide swing current mirror. We also move the zero created by the

miller capacitor from the right half plane into the left half plane by adding a transistor in

series with the miller capacitor which satisfies gds < gm2 as seen from the equation (4.9).

wz =
1

Cc(
1
gm2
− 1

gds
)

(4.9)

4.3 Comparator Topology

For the comparator we chose a strong-arm latch shown in Fig. 4.4 because it offers a better

output swing than other designs, such as the CML latch. Since the inequality constraint

must be continuously updated, the comparator needs to be clocked at a much faster rate

than the rest of the circuit. One consequence of using a regenerative latch is that the required

reset state will slightly increase the settling time of the solution.

23

Figure 4.4: Strong-arm latch

4.4 Simulation and Results

The example we implemented is a simple 3 variable equality constraint Vx + 2Vy + 0.5Vz =

100mV , the layout for which is shown in Fig. 4.5. We used mom capacitors with a unit

capacitance of 75 fF, so the smallest capacitance is 150 fF. Because the parasitic capacitance

from each variable to ground is significant, we did not implement load capacitances in the

array and simply relied on the coupling capacitance to ground shielding and capacitance from

routing to the substrate. The resulting capacitances after extraction are shown in Table 4.1

below.

24

Figure 4.5: Layout of 3 variable QP implemented in TSMC 65nm. Total size is 240µm x

300µm.

Table 4.1: Absolute and Normalized Capacitor Values
Capacitor Value Ratio to Cs

Cx 298.7 fF 1

Cy 597.5 fF 2

Cz 149.6 fF 0.5

Cs 298.7 fF 1

Cx,load 132.7 fF 0.444

Cy,load 167.2 fF 0.56

Cz,load 87.3 fF 0.292

The table also includes the ratio of the capacitors to Cs in order to normalize their values

and find the implemented optimization problem. The constraints enforced by the circuit are

shown in (4.10), where (4.10a) is the main constraint we’re implementing, (4.10b)-(4.10d)

are redundant inequality constraints set by the load capacitances, and (4.10e) and (4.10f)

are constant values set by voltage sources and ground respectively. It should be noted that

25

the variables in these equations are differential.

CxVx + CyVy + CzVz + CsVs = 0 (4.10a)

2Cx,loadVx + 2Cx,loadr ≤ ∞ (4.10b)

2Cy,loadVy + 2Cy,loadr ≤ ∞ (4.10c)

2Cz,loadVz + 2Cz,loadr ≤ ∞ (4.10d)

Vs = −100mV (4.10e)

r = 0 (4.10f)

The constraint matrix is determined from the normalized capacitance values in the con-

straints as shown below. Then the implemented cost function is determined from calculating

QA as decribed in Section 2.4.

A =

[
Aeq
Aineq

]
=



Cx

Cs

Cy

Cs

Cz

Cs
1 0

2
Cx,load

Cs
0 0 0 2

Cx,load

Cs

0 2
Cx,load

Cs
0 0 2

Cx,load

Cs

0 0 2
Cx,load

Cs
0 2

Cx,load

Cs

0 0 0 1 0

0 0 0 0 1


After calculating QA and substituting −100mV into the cost function for Vs, the final

cost function is

1

1125
(2749x2 + 3760y2 + 1657z2 − 2000xy − 500xz − 1000yz + 100000x+ 200000y + 50000z)

As a result, we expect the differential values Vx = 26.93 mV, Vy = 30.38 mV, and

Vz = 24.61 mV. The extracted results without design iterations after layout are shown in

Fig. 4.6. Looking at these results, the variables solve the equality constraint within ±1%

error in 50 ns. This is done with a power consumption of 4.32 mW.

26

Figure 4.6: Extracted results showing settling time of 50 ns for the equality constraint

Vx + 2Vy + 0.5Vz = 100mV with a switching period of 200 ns. The differential values of the

summing node and amplifier input and output are also shown.

Sweeping the input changes the equality constraint and is a good check for unaccounted

errors due to coupling capacitance for example. Fig. 4.7 shows the resulting Vx+2Vy +0.5Vz
waveforms which all settle within ±1% of the input voltage. This indicates that there are

no significant errors apart from the parasitic capacitance at the summing node which is

accounted for by the compensation capacitor.

Figure 4.7: Extracted results showing accuracy for the equality constraint Vx+2Vy+0.5Vz =

Vs for Vs equal to 80 mV (blue), 100 mV (green), 120 mV (purple), and 140 mV (red).

27

Chapter 5

Conclusion

This report presented a new method for solving convex optimization problems with an analog

circuit. We have proven through charge analysis that the proposed circuit imposes equality

constraints. Likewise, we demonstrated that the circuit satisfies KKT conditions and there-

fore implements a cost function. Furthermore, we described how to modify the circuit in

order to implement the desired cost function as well as inequality constraints. Finally, we

reviewed the design methodology used for amplifiers and capacitor sizing in the circuit. The

results from extracted simulations show that we can solve a simple 3 variable QP with 99%

accuracy in 50 ns while consuming 4.32 mW of power. To our knowledge, this is faster than

any other reported results.

Considering that the solution speed should improve with further design iterations after

layout, our results are promising. Additionally, power consumption can potentially improve,

as power conservation methods weren’t explored in this work. Further research on this

proposed circuit can also include implementing more complex problems to determine latency

scaling and fabricating and testing a chip.

28

Bibliography

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[2] L. Chua and Gui-Nian Lin. Nonlinear programming without computation. Circuits and

Systems, IEEE Transactions on, 31(2):182 – 188, feb 1984.

[3] Jack B. Dennis. Mathematical programming and electrical networks. Technology Press

of the Massachusetts Institute of Technology [Cambridge], 1959.

[4] CVX Research Inc. Cvx: Matlab software for disciplined convex programming, March

2015. http://cvxr.com/cvx/.

[5] J.L. Jerez, P.J. Goulart, S. Richter, G.A. Constantinides, E.C. Kerrigan, and M. Morari.

Embedded predictive control on an fpga using the fast gradient method. In Control

Conference (ECC), 2013 European, pages 3614–3620, July 2013.

[6] A. Kelman and F. Borrelli. Parallel nonlinear predictive control. In Communication,

Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pages

71–78, Oct 2012.

[7] M.P. Kennedy and L.O. Chua. Neural networks for nonlinear programming. Circuits

and Systems, IEEE Transactions on, 35(5):554 –562, may 1988.

[8] S. Mariéthoz, U. Mäder, and M. Morari. High-speed fpga implementation of observers

and explicit model predictive controllers. In IEEE IECON, Industrial Electronics Conf.,

Porto, Portugal, November 2009.

[9] J. Mattingley and S. Boyd. Real-time convex optimization in signal processing. Signal

Processing Magazine, IEEE, 27(3):50–61, May 2010.

[10] P. Patrinos and A. Bemporad. An accelerated dual gradient-projection algorithm for

linear model predictive control. In Decision and Control (CDC), 2012 IEEE 51st Annual

Conference on, pages 662–667, Dec 2012.

[11] D. Sheingold. Nonlinear Circuits Handbook. Analog Devices, Inc., 1974.

29

[12] D. Tank and J. Hopfield. Simple ’neural’ optimization networks: An a/d converter,

signal decision circuit, and a linear programming circuit. Circuits and Systems, IEEE

Transactions on, 33(5):533 – 541, may 1986.

[13] Sergey Vichik and Francesco Borrelli. Solving linear and quadratic programs with an

analog circuit. Computers & Chemical Engineering, 70:160–171, 2014.

[14] P. Zometa, Markus Kogel, T. Faulwasser, and R. Findeisen. Implementation aspects

of model predictive control for embedded systems. In American Control Conference

(ACC), 2012, pages 1205–1210, June 2012.

30

	title
	blank
	Thesis.pdf
	Introduction
	Motivation
	Previous Work on Analog Optimization

	Proposed Analog Optimization Circuit
	Equality Constraint
	Inequality Constraint
	Implementing Multiple Constraints
	Cost Function
	Redundant Constraints
	Constructing the Proposed Circuit

	Implementation Considerations
	Fully Differential Equality Constraint
	Fully Differential Inequality Constraint

	Design Methodology
	System Level Design
	Parasitic Capacitance
	Size of Capacitors and Switches

	OTA Design
	Topology
	Methodology

	Comparator Topology
	Simulation and Results

	Conclusion
	Bibliography

