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Abstract
A superoptimizer searches for an optimal implementation for a
given input program in a target instruction set architecture (ISA).
Despite its ability to generate optimal code, a superoptimizer is not
commonly implemented for further optimizing code generated by a
compiler. This is because building a superoptimizer for a new ISA
requires a large amount of effort, and finding optimal code can be
extremely slow if the search technique is inefficient.

We propose GREENTHUMB, an extensible framework for build-
ing superoptimizers. All that is required to extend GREENTHUMB
to a new ISA is the implementation of an emulator for the new
ISA. GREENTHUMB provides an efficient hybrid search technique
that combines existing superoptimizer search techniques: symbolic
search and mutation-based search. Additionally, we design a new
correctness cost function (or fitness function), which is used in the
mutation-based search, that leads to a more efficient search.

To illustrate the flexibility of the framework, we instantiate
GREENTHUMB to two very different ISAs: ARM and GreenAr-
rays. We evaluate the performance of the new hybrid search com-
pared to the existing approaches in terms of speed and consistency
of finding optimal solutions on a number of ARM and GreenAr-
rays programs. We find that the hybrid search is the only search
technique that finds an optimal program for all GreenArrays bench-
marks, and the new cost function increases the number of runs
in which the superoptimizer finds an optimal program by 20% on
ARM benchmarks.

1. Introduction
Code optimization is more important today than ever before. A per-
formance improvement of even a few percent can lead to signifi-
cant cost saving for warehouse-scale data centers [26]. Optimizing
always-running kernels can tremendously reduce energy consump-
tion, which is crucial for battery-operated portable devices [17].
Code optimizers may reduce cost of devices by enabling develop-
ers to select lower-power computing resources and smaller memory
[7].

Developing a code optimizer still remains a challenging prob-
lem. For example, although there exists a single ARM instruction
that implements program p25 [13], gcc -O3 produces a program
with 11 instructions (see § 8.2). The task of implementing a code
optimizer is further exacerbated by the development of different
instruction set architectures (ISAs) for different types of devices
and processors. For example, ARM alone has over 30 variants of
ISAs [36], and new architectures are constantly being developed
[9, 10, 12, 21, 25, 33, 37].

A superoptimizer, first introduced by Massalin [20], generates
an optimal implementation of a given input program in a target in-
struction set. Instead of relying on rewrite-based optimizations, su-
peroptimizers search for a program that is correct and optimal given
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Figure 1. r0=(˜r0&˜r1)ˆr2 implemented in (a) ARM and
(b) GreenArrays.

an optimality criterion. The superoptimization problem subsumes
instruction selection, instruction scheduling, and local register al-
location problems.

Implementing a superoptimizer for a new ISA is laborious. One
must implement (i) a checker that verifies the equivalence of the
target program and the source program; and (ii) a search strategy
for finding a program that is optimal and correct on the test in-
puts. The equivalence checker is usually constructed using bounded
verification, which requires translating programs into logical for-
mulas. This effort requires debugging potentially complex logical
formulas. Apart from the issues related to correctness and devel-
opers’ effort, it is equally, if not more difficult to develop a search
technique that scales to large programs. Our goal is to synthesize
not merely a few instructions but multiple tens to hundreds of in-
structions. Therefore, the search strategy must be able to identify
a correct program quickly in the huge space of all bounded-size
programs expressible in the target ISA. As a result, we cannot sim-
ply enumerate all possible programs in the search space but need a
more scalable approach.

In this paper, we present GREENTHUMB, an extensible frame-
work for constructing scalable superoptimizers. Unlike existing su-
peroptimizers, GREENTHUMB is designed to be easily extended
to a new target ISA. Specifically, extending GREENTHUMB to a
new ISA involves merely writing an ISA emulator. We illustrate
GREENTHUMB’s ability to support diverse ISAs by instantiating
the framework to two very different ISAs: ARM [3] and GreenAr-
rays 144 (GA) [12]. Figure 1 shows the output programs equivalent
to program r0=(˜r0&˜r1)ˆr2 , in ARM and GA. Note that GA
is a stack-based architecture, so one instruction consists of an op-
code without operands.

In addition to the retargetability of the framework, we also
developed hybrid-search technique that helps GREENTHUMB scale
to larger programs. Hybrid search employs multiple parallel search
instances that collaborate in finding the optimal program. Each
individual search instance implements either (i) symbolic search
or (ii) mutation-based search. Symbolic search, based on symbolic
program synthesis [13, 31], translates a specification given by the
input program into a logical formula, and uses a constraint solver
to find the optimal program. Mutation-based search [27], however,
starts from an initial guess and uses mutation rules to search for the
optimal program. Mutation-based search has been shown to handle
larger programs compared to symbolic search, but it comes with



the trade-off of losing the optimality guarantee. However, finding
more optimal programs that might not be most optimal is better
than finding nothing.

Hybrid search is effective because it allows for communication
among different search instances that exchange information about
the best program they have discovered so far. This communica-
tion enables hybrid search to exploit the best characteristics of both
types of search techniques. Symbolic search has the ability to rea-
son backward and make decisions using conflict clauses. Mutation-
based search works with concrete candidate programs and uses a
cost function to guide the search.

Apart from combining search techniques, we are also interested
in improving the performance of each individual search technique.
In this work, we focused on mutation-based search. We developed
a new correctness cost function for mutation-based search that tries
to capture how many mutations it would take to transform the
current candidate program to a correct implementation of the given
input program. In other words, the new correctness cost function
captures how correctable the candidate program is, in contrast with
prior correctness cost functions that only capture how correct the
output of the candidate program is. The key insight behind the new
cost function is to take into account values of intermediate variables
and not solely those of the output variables.

Overall, GREENTHUMB is an enabling technology in the fol-
lowing three ways. First, it enables a rapid development of super-
optimizers for different architectures. Second, it enables reuse of
the same search technique across different architectures. Third, it
enables development of correct search techniques; for example, in
the new hybrid search, the formula generator (used by symbolic
search) and the emulator (used by mutation-based search) are con-
sistent with each other, because they are generated automatically
from the same architecture description. In summary, this paper
makes the following contributions:

• The design of a framework for constructing superoptimizers
that is parametrized on the target architecture (§ 2 and § 3).
• A hybrid search technique (§ 5) that combines mutation-based

and symbolic searches (§ 4).
• A new cost function for mutation-based search that considers

intermediate values (§ 6).
• An evaluation of the new search technique and the new cost

function on ARM, and GA architectures (§ 7 and § 8). Hybrid
search was the only one returning optimal solutions for all GA
benchmarks in all of its runs. The new cost function increased
the number of runs that the superoptimizer found an optimal
program by 20% on ARM benchmarks.

2. Framework Overview
GREENTHUMB is designed to be extensible to different architec-
tures. In this section, we describe the framework from the point of
view of the following three roles:

1. User: a person who wants to use GREENTHUMB to optimize
code for a particular architecture.

2. Builder: a person who wants to extend GREENTHUMB to a new
architecture.

3. Researcher: a person who wants to extend GREENTHUMB with
a new search strategy.

Given a sequence of instructions Pg and live-out information L
by a user and a target architecture, GREENTHUMB returns a more
optimal sequence of instructions Po that is equivalent to Pg with
respect to L. Live-out information specifies the program locations
that contain live values after executing the given instruction se-

Figure 2. Framework Infrastructure.

quence. Such live-out information typically contains locations of
the outputs and the values that the program should not modify.

To extend GREENTHUMB to a new ISA, builders must write
an emulator for the target ISA. Optionally, they can provide an
architecture-specific performance model, which specifies the op-
timality criteria. Builders can then reuse existing search strategies
implemented in GREENTHUMB, and they can additionally provide
ISA-specific knowledge to help guide the search.

GREENTHUMB provides an interface by which a researcher can
easily implement a new search strategy. The framework currently
supports symbolic and mutation-based searches as the core tech-
niques. We developed a new hybrid search, which runs multiple
search instances of both symbolic and mutation-based search in
parallel that communicate with each other. With this innovation,
GREENTHUMB provides a convenient platform for evaluating dif-
ferent search strategies.

Framework Infrastructure Figure 2 depicts the overview of
GREENTHUMB. The framework consists of ISA-emulator compo-
nents and search-strategy components. We utilized inheritance to
support retargetability of the framework.

We implemented each component as a class—shown as a box
with single lines in Fig. 2—or an interface—shown as a box with
double lines in Fig. 2. Solid edges represent dependency between
components. For example, the solid edge from search technique to
emulator components indicates that the search technique depends
on those components. Dotted edges represent implement or extend
relations. For example, the dotted edge from ARM instruction
semantics to semantics indicates that ARM instruction semantics
implements the semantics interface, and the dotted edge from ARM
instruction to instruction indicates that ARM instruction extends
instruction class.

The white components are provided by the framework, which
includes the hybrid search engine. A builder constructs a superopti-
mizer for a new ISA by adding the yellow components to the frame-
work, which extend some classes and implement the required inter-
faces. A researcher can experiment with new search techniques by
adding more blue components, which implement search technique
interface.

3. Extending GREENTHUMB to a New ISA
To extend GREENTHUMB to build a new superoptimizer, a builder
must implement an emulator of the target ISA. Writing an ISA em-
ulator in our framework involves three components: (i) describing
the syntax of the instructions, which is done by defining an instruc-
tion class, (ii) defining a program state (§ 3.1), and (iii) defining
the instruction semantics (§ 3.2). The builder then bridges the gap
between the ISA emulator and search strategy by providing con-



version functions (§ 3.3). Optionally, the builder can extend the in-
struction class to customize her own instruction representation and
extend the mutation-based search to add new mutations (§ 3.4).

3.1 Program State
Program state is a user-defined data structure that represents the
processor state. For example, a program state may include registers,
stack memory, heap memory, and conditional flags. This data struc-
ture is used for representing input and output states corresponding
to the processor state before and after program execution, respec-
tively. It is also used for storing the liveness information of the
values in the processor state. We allow the superoptimizer builder
to define her own state representation because processor states of
different architectures can vary drastically.

3.2 Instruction Semantics
The builder has to define the semantics of each instruction by writ-
ing an interpreter that, given an instruction and an input program
state, returns the corresponding output program state. The emula-
tor is built using Rosette, a solver-aided language [34] that is built
on top of Racket.

The emulator can be used to interpret a sequence of instructions
on a set of concrete inputs. This concrete emulation is required for
mutation-based search (§ 4.2). Furthermore, because the emulator
is written in Rosette, the builder obtains the following for free:
(i) routines for proving the equivalence of two programs and finding
a counterexample showing if the two programs are not equivalent,
and (ii) an implementation of symbolic search (§ 4.1).

3.3 Interface Between ISA Emulator and Search Strategy
In order to make the functions in the search strategy components
reason about different program states, we implement the functions
in a way that can reason about any common state representation
(CSR). A CSR S is defined as:

S := T | (S, S) | list of S | vector of S

T := number | boolean | string
The superoptimizer builder needs to bridge the gap between the
custom program state and the CSR by implementing a (i) serial-
ize function that converts a program state into a CSR, and (ii) de-
serialize function that converts a CSR into a program state. Be-
cause the equivalence-checking, correctness-cost calculation, and
liveness-analysis functions are implemented to work with any CSR,
different ISAs can reuse these common functions.

3.4 Instruction and Mutation-Based Search Extension
The framework provides a basic instruction structure that contains
opcode and operands fields, and a mutation-based search that ap-
plies different mutation rules based on the default instruction struc-
ture. For instance, one mutation transforms only the operand in the
instruction. To restrict the search to valid instructions, the search
has to know the valid ranges of operands for the particular opcode
in the instruction. Therefore, we require the builder to provide a
function that returns the valid range of operands given an opcode.
The framework also allows the builder to specify a set of legal mu-
tations for a specific instruction. The superoptimizer builder can
also extend the instruction structure to include more fields and ex-
tend the mutation-based search to introduce new mutation rules or
disable existing mutation rules. This extensibility is required if one
wants to implement an efficient and robust superoptimizer for dif-
ferent types of architectures, as described in § 7.

Additionally, GREENTHUMB provides a default performance
model, which is the length of the instruction sequence. The builder
can define a more accurate performance model that captures the
specific property that the superoptimizer users want to optimize by
extending the performance cost function of the emulator.

4. Existing Search Techniques
This section provides an overview of existing search techniques
that we have implemented in GREENTHUMB. For each search
procedure, we will first describe the general rules (or mechanisms)
used and then describe the specific policies that govern how these
rules are applied in practice.

We use P, ` 
 Pc, I to denote the current state of a search
instance. The specific goal of the search procedure is written to
the left of 
. In particular, the search procedure is trying to find
a program that is equivalent to P and whose length is less than `.
To simplify the discussion, we assume that the search is trying to
minimize the length of the program. In practice, the performance
model might include other factors that model running time, power,
etc. The current state of the search procedure is shown on the
right of 
. Pc is the current program that the search procedure is
considering, and I is a set of inputs for P .

4.1 Symbolic Search
The symbolic search uses a constraint solver to find either a pro-
gram Pc that satisfies the partial specification I or an input I for
which the behavior of P and Pc differs. The SYMINIT, INDUCT,
COUNTEREX, and DONE rules in Fig. 3 implement the counter-
example guided inductive synthesis (CEGIS) approach [31].

Given P and `, the SYMINIT rule initializes the search by start-
ing with an invalid program (⊥) and an initial set of input-output
behavior I. The INDUCT rule synthesizes a program P ′c that satis-
fies the partial specification I , regardless of the current candidate
program (Pc); for each I ∈ I, P ′c(I) = P (I). Furthermore, P ′c is
of length less than `. The COUNTEREX rule applies if there exists
an input I such that Pc(I) 6= P (I). This rule then adds I to the
set I. The DONE rule applies when Pc ≡ P and len(Pc) < `. In
other words, the DONE rule indicates that the search has success-
fully found a program that is equivalent to P and whose length is
less than the given optimality criteria `. Note that the DONE rule
updates the optimality criteria from ` to len(Pc).

The CEGIS process is performed iteratively until an optimal
program is found. In our implementation, we use Rosette to gen-
erate the required queries to the solver. The efficiency of the sym-
bolic approach, thus, depends on the efficiency of the solver, as
well as having a good estimate of the value of `; a smaller value of
` reduces the search space that the solver needs to explore. This ob-
servation motivated the way search instances communicate in our
hybrid search (§ 5).

4.2 Mutation-based Search
We employ a stochastic superoptimization strategy [27] to imple-
ment the mutation-based search (MB). The mutation-based search
is described by the INITRAND, INITCORRECT, COUNTEREX, and
DONE rules in Fig. 3. Starting from a candidate program Pc, the
mutation-based search applies rewrite rules (or mutations) to Pc to
traverse the search space of programs. The search is guided by a
cost function, cost(Pc, P, I). In synthesis mode, cost(Pc, P, I) =
eq(Pc, P, I). In optimize mode, cost(Pc, P, I) = eq(Pc, P, I) +
perf(Pc). eq(Pc, P, I) indicates how close the behavior of Pc is
to the given program P with respect to the set of inputs I. The
higher the value of eq(Pc, P, I), the more the behavior of Pc dif-
fers from P . perf(Pc) is the performance cost of Pc, which is
equal to len(Pc) in our simplified explanation.

The INITRAND rule initializes the mutation-based search using
a random program Pr; we use MB〈R〉 to denote such a mutation-
based search. The INITCORRECT rule initializes the mutation-
based search using a correct program Pc; we use MB〈C〉 to de-
note such a mutation-based search. MB〈R〉 and MB〈C〉 run in syn-
thesis and optimize mode, respectively. The MUTATE rule takes
the search from the current program Pc to the program P ′c. P ′c is



P, ` 
 ⊥, I
SYMINIT

P, ` 
 Pc, I for each I ∈ I, P ′c(I) = P (I) len(P ′c) < `

P, ` 
 P ′c, I
INDUCT

Pr is a random program with length `
P, ` 
 Pr, I

INITRAND
P, ` 
 P, I

INITCORRECT

P, ` 
 Pc, I m is a mutation P ′c = mutate(Pc,m) rand() < min

(
1, exp

(
−β ·

cost(P ′c, P, I)
cost(Pc, P, I)

))
P, ` 
 P ′c, I

MUTATE

P, ` 
 Pc, I P (I) 6= Pc(I)

P, ` 
 Pc, I ∪ {I}
COUNTEREX

P, ` 
 Pc, I P ≡ Pc len(Pc) < `

P, len(Pc) 
 Pc, I
DONE

Figure 3. Rules for symbolic and mutation-based search. Symbolic search employs SYMINIT, INDUCT, COUNTEREX, and DONE rules.
Mutation-based search employs INITRAND, INITCORRECT, COUNTEREX, and DONE rules.

P, `1 
 Pc1, I1 P, `2 
 Pc2, I2 `2 < `1

P, `2 
 Pc1, I1 P, `2 
 Pc2, I2
COMMLEN

P, `1 
 Pc1, I1
P, `2 
 Pc2, I2 P ≡ Pc2 len(Pc2) ≤ `1

P, `1 
 Pc2, I1 P, `1 
 Pc2, I2
COMMSOL

Figure 4. Communication among different search instances.

generated from Pc using a mutation rule mutate(Pc,m), where
m represents a program mutation. The search accepts P ′c with the
probability equal to the Metropolis ratio. If the search has found
a program Pc with a cost zero with respect to I, then the COUN-
TEREX rule searches for an input I on which P and Pc differ, and
adds the input I to the set I.

In the mutation-based search, a constraint solver is used to find
the counterexample in COUNTEREX and to prove program equiv-
alence in DONE, similar to the case in symbolic search. However,
the core search procedure involves computing the cost function and
applying mutations to traverse the search space. Consequently, the
efficiency of the mutation-based search is contingent on the cost
function used to guide the search, and the nature of the mutations
that are used in the rewrite rules. § 6 describes the cost function
we developed, and § 7 describes the mutations we used. However,
the mutation-based search can still get stuck at a local minima. In
practice, we find that the mutation-based search finds an almost-
optimal program quickly, but it is often unable to reach the opti-
mal program. This observation motivated the way search instances
communicate in our hybrid search (§ 5).

5. Hybrid Search
In this section, we describe the key insights behind our new hybrid
search.

5.1 Communication between Search Instances
Figure 4 lists the two ways in which search instances communicate
information. The current states of the two search instances are
P, `1 
 Pc1, I1 and P, `2 
 Pc2, I2. In the COMMLEN rule,
the first search instance updates its optimality criteria from `1 to
`2. This occurs when the second search instance discovered an
equivalent program of length `2. Merely communicating this new
length `2 to the first search instance reduces the search space that
the first search instance has to explore. In the COMMSOL rule, the

second search instance communicates the actual program that it has
found to the first search instance.

5.2 Symbolic and Mutation-Based: Better Together
In practice, the mutation-based search scales to larger programs
compared to the symbolic search. For example, for ARM ISA, the
symbolic search takes from 15 minutes to an hour to synthesize
three instructions. In contrast, the mutation-based search takes less
than a minute for the same example. This result would imply
that given, for instance, a 32-core machine, we should run the
mutation-based search on all 32 cores. However, we found that
running a mix of mutation-based and symbolic search procedures is
significantly better than running only instances of mutation-based
search procedure.

Our hybrid search employs multiple parallel mutation-based
and symbolic search instances. The search instances aid each other
by exchanging information. MB〈R〉 instances reduce their search
space by applying the COMMLEN rule. MB〈C〉 instances restart
the search from a better program by applying the COMMSOL rule.

A mutation-based search instance can get stuck in a local min-
ima. Often, a small sequence of mutations could be applied to this
local minima to get to the optimal program. However, mutation-
based search may reject such a series of mutations because the in-
termediate mutations may increase the cost of the program above
the accepting threshold. When such a situation arises, the COMM-
SOL rule (Fig. 4) becomes extremely useful. Using the COMM-
SOL rule, a symbolic search instance receives this near-optimal
solution, decomposes it into smaller programs, and optimizes the
smaller programs individually. The symbolic search is consider-
ably fast when synthesizing very short sequences of instructions.
§ 5.3 describes the two types of program decompositions, and § 5.4
describes the specific mix of symbolic and mutation-based search
instances we use in practice.

5.3 Decomposition
Figure 5 lists the two types of decompositions that are applied
during the search when the length of the program P is greater
than a given threshold L. We use [P1, P2, . . . , Pk] to denote the
concatenation of the program P1, P2, . . . , and Pk.

The random-window decomposition, RANDWINDOW, picks a
random window P2 of length less than L. In particular, P is ran-
domly partitioned into P1, P2, and P3, where the length of P2 is
less than L. It would be correct to optimize P2 separately as in
Chlorophyll [24]. However, optimizing P2 in the context of the
prefix program P1 and postfix program P3 leads to a more optimal
program. For instance, the superoptimizer can make use of certain



P, ` 
 Pc, I len(P ) > L [P1, P2, P3] = Pc len(P2) ≤ L [P1, P2, P3], ` 
 Pc2, I1
P, ` 
 [P1, Pc2, P3], I

RANDWINDOW

P, ` 
 Pc, I len(P ) > L [P1, P2, . . . , Pk] = P len(Pi) ≤ L, 1 ≤ i ≤ k
[P1, P2, . . . , Pk], ` 
 (Pc1, I1) [Pc1, P2, . . . , Pk], ` 
 Pc2, I2 . . . [Pc1, Pc2, . . . , Pk], ` 
 Pck, Ik

P, ` 
 [Pc1, Pc2, . . . , Pck], I
SEQWINDOW

Figure 5. The two types of program decompositions applied during search.

preconditions set up by the prefix P1 when optimizing P2. We use
[P1, P2, P3], ` 
 Pc2, I1 to denote the fact that we are optimizing
P2, which is underlined, in the context of P1 and P3.

The sequential-window decomposition, SEQWINDOW, parti-
tions the program P into programs P1, P2, . . . Pk, where the length
of each Pi is less than L. [P1, P2, . . . , Pk], ` 
 (Pc1, I1) de-
notes that P1 is optimized to program Pc1 in the context of the
postfix [P2, . . . , Pk]. This optimized program Pc1 is used as the
prefix when optimizing P2, as denoted by [Pc1, P2, . . . , Pk], ` 

Pc2, I2. In general, the optimized versions of the programs
P1, P2, . . . , Pi−1 are used as the prefix when optimizing program
Pi where 2 ≤ i ≤ k. In practice, we implement two variations of
SEQWINDOW decomposition: fixed window, and sliding window,
which was introduced by Chlorophyll [24].

The SEQWINDOW decomposition is more systematic, and
might result in more optimal code. However, it could take a long
time to get to optimizing the code towards the end of program P . In
contrast, because RANDWINDOW decomposition optimizes a ran-
dom subprogram, it is more likely to optimize parts of the code that
occur towards the end of the program P .

5.4 Practical Configuration of Search Instances
The hybrid search consists of a single symbolic search instance
using sliding-window decomposition, two symbolic search in-
stances using random-window decomposition, three mutation-
based MB〈C〉 instances, All remaining resources run mutation-
based MB〈R〉 instances. Mutation-based search uses fixed-window
decomposition. The decomposition threshold L of symbolic search
is small, while that of mutation-based search is much larger.

We assign many threads to MB〈R〉 because mutation-based
search is more sensitive to randomness than symbolic search. Thus,
having more threads increases the chance of finding an optimal pro-
gram. We do not need many MB〈C〉 instances, because there is a
high chance that a search starting from a correct program will dis-
cover another correct program. The intuition is that some equiva-
lent programs are far away from each other, but some are very close
to each other in the search space, requiring fewer mutations to go
from one to another.

6. A New Correctness Cost Function for
Mutation-Based Search

Since the cost function is used for guiding mutation-based search,
it is critical to the performance of search. Our new correctness cost
function is a modification of the one used in the STOKE stochastic
superoptimizer [27]. As in STOKE, we measure the correctness
cost function of Pc with respect to the P using a set of inputs or
test cases I. Specifically, if eq(Pc, P, I) is the correctness cost on
one test input I ∈ I, then the correctness cost of Pc with respect to
P on a set of test inputs I is

∑
I∈I eq(Pc, P, I). In the rest of the

section, we will focus on the definition of the eq(·) function.

6.1 Problems with Existing Correctness Cost Function
The correctness cost function eqold(Pc, P, I), used in STOKE,
is defined as the number of non-matching bits between the live
outputs of Pc and P , given I as the input. This correctness cost
function captures how close the output of the candidate program
Pc is to the output of the input program P ; that is, it measures
how correct the output of Pc is on the input I . However, eqold
does not capture how many mutations it would take to rewrite Pc

to some correct implementation of P ; that is, it does not measure
how correctable the program Pc is on the input I .

Consider the following assembly programs in which spec is P
that we want to optimize, and r0 is the only live register. f1 and
f2 are two candidate programs.

spec: // r0 = (˜r0 & ˜r1) ˆ r2
not r3, r0
not r4, r1
and r3, r3, r4
xor r0, r3, r2

f1: // r0 = r2; r3 = ˜(r0 | r1)
or r3, r0, r1
not r3, r3
mov r0, r2

f2: // r0 = r2
mov r0, r2

Assume 8-bit registers. Let the test input I ′ be {r0=0x33,
r1=0x10, r2=0x63}. The output r0 for spec is 0xaf,
while the output r0 for both f1 and f2 is 0x63. Consequently,
eqnew(f1,spec, I

′) = eqnew(f2,spec, I
′) = 4. With this cost

function, f1 and f2 have the same correctness cost.
The program f1 implements ¬(r0|r1) = (¬r0 & ¬r1);

Thus, inserting the instruction xor r0, r3, r2 at the end of
f1 makes it equivalent to spec. In contrast, it would require many
more mutations to tranform f2 into a correct implementation of
spec. Thus, the eqold cost function fails to capture the fact that f1
is more easily correctable compared to f2.

6.2 Proposed Correctness Cost Function
The new correctness cost, eqnew, is designed to capture how cor-
rectable the candidate program Pc is with respect to the input
program P . In particular, f1 can be corrected with fewer mu-
tations compared to f2, and, hence, we define eqnew so that
eqnew(f1,spec, I

′) < eqnew(f2,spec, I
′).

The key insight behind our new cost function is to compare in-
termediate values computed by the Pc and P , and not just the out-
put values. In particular, we say that Pc that produces similar inter-
mediate values as that of P is more correctable than Pc that does
not. Intuitively, the fact that Pc shares some common intermediate
values implies that it is likely that some subprogram of Pc behaves
in a similar fashion to some subprogram of P . Consequently, it is
more likely that a fewer number of mutations are needed to trans-
form Pc to a correct implementation of P .



test input =
{r0=0x33, r1=0x10, r2=0x63}

instruction intermediate
or r3, r0, r1 0x33
not r3, r3 0xcc
mov r0, r2 0x63

intermediate value sets = {0x33, 0xcc, 0x63}

(a) Computation DAG
of r0 in spec

(b) Intermediate value set of f1

Figure 6. Example of computation tree and intermediate value set.
(Left) Intermediate values are nodes with solid line. Input values
are nodes with dotted line. Highlighted nodes are intermediate
values that are covered by the program on the right.

Our new correctness cost function, eqnew(·) is defined as:

eqnew(Pc, P, I) =
(1 + w(Pc, P, I))

2
× eqold(Pc, P, I)

w(Pc, P, I) is the fraction of the total number of intermediate val-
ues of P that are not covered by any intermediate value of Pc. We
define an intermediate value as a result computed from an execution
of an instruction. To compute w(·), we first obtain the computation
tree of P on test input I . Figure 6 (a) shows the computation tree
of spec on the example test input I ′. We then compute a set of
intermediate values produced by the candidate rewrite Pc. The set
of intermediate values of f1 is shown in Fig. 6 (b).

We define that an intermediate value v of P is covered if
(1) v appears in the intermediate value set of Pc, or (2) v is
reachable from any covered node v′ in the computation tree. In
the high level, if none of intermediate values of Pc matches in-
termediate values of P on test input I , w(Pc, P, I) = 1, and
eqnew(Pc, P, I) = eqold(Pc, P, I). If intermediate values of P are
all covered, eqnew(Pc, P, I) =

1
2
eqold(Pc, P, I). We designed the

weighting function in this way to prevent the search from discover-
ing the exact same program as the input program P .

The highlighted nodes in Fig. 6 (a) are the intermediate values of
P that are covered. Nodes with value 0xcc are covered because of
condition (1), and the node with value 0xef is covered because of
condition (2). Therefore, w(f1,spec,I ′) = 1/4, one intermediate
value out of four is not covered. Note that the nodes with dotted
lines are input values, and not intermediate values. As a result, the
weighing function scales the correctness cost of f1 down to 2.5,
while the correctness cost of f2 stays the same.

To enable the new cost function, currently the superoptimizer
builder has to modify the emulator to return computation trees and
an intermediate value set along with the normal output program
state. However, the framework can be modified to construct trees
and intermediate value sets automatically using the shadow execu-
tion concept by overloading necessary functions [23, 28, 29].

7. GREENTHUMB Instantiations
In this section, we describe instantiations of our GREENTHUMB su-
peroptimizer framework for two very different architectures: ARM
and GreenArrays. For each instantiation, we briefly describe the
particular ISA, and list a few extensions to the mutation-based
search that are specific to the ISA.

7.1 ARM
ARM is a RISC architecture that is widely used in many devices.
We implemented a superoptimizer for ARMv7-A specifically, and

modelled the performance cost function based on ARM Cortex-A9
[3]. The program state of ARM includes 32-bit registers, memory,
and condition flags.

To handle optional condition code suffixes and shift operands
found in ARM instructions, we added two new mutations to the
mutation-based search. The first feature is the condition code suffix
of an instruction, which indicates that the instructions will be exe-
cuted if the condition is met. The second feature is the second flex-
ible operand, which can either be a constant or a register with op-
tional shift. One approach to handle these particular features would
have been to treat an opcode with different condition-code suffixes
and optional shifts as distinct opcodes. This approach would have
resulted in a huge number of opcodes. Instead, we chose to ex-
tend the instruction class to include a condition-code field and an
optional-shift field. Representing the instruction this way made it
easier to implement the emulator. Because the instruction class was
extended with additional fields, we extended the mutation-based
search by adding two new mutation rules: (1) mutating condition
code, and (2) mutating optional shift. The first mutation is only
applicable for opcodes that have condition-code suffixes, and the
second mutation is only applicable for opcodes with optional shift.
Because the framework allows the builder to specify a set of le-
gal mutations for a specific opcode, the mutation-based search only
performs meaningful mutations.

We also implemented a superoptimizer for NEON, 128-bit
SIMD architecture extension for the ARM. NEON has 64-bit regis-
ters, which are aliased with 128-bit registers. Currently, ARM and
NEON superoptimizers run independently, but they could be com-
bined to optimize ARM and NEON code together.

7.2 GreenArrays
The GreenArrays GA144 is a low-power processor, composed of
many small identical cores [12]. It is a stack-based 18-bit processor.
Each core has two registers, two small stacks, and memory. Each
core can communicate with its neighbors using read and write in-
structions. The program state for GA144 includes registers, stacks,
memory, and a communication channel. This representation is sim-
ilar to the one used in the superoptimizer implemented in Chloro-
phyll [24]. A communication channel is an ordered list of (data,
neighbor port, read/write) tuples representing the data that the core
receives and sends. For two programs to be equivalent, their com-
munication channels have to contain exactly the same values.

Being a stack-base instruction set, most GA instructions only
consist of an opcode with no operand. The only exception is fetch-
immediate instruction that has an operand specifying the immediate
constant value. We extended the mutation-based search to ensure
that the search mutates an operand only for the fetch-immediate
opcode.

During the development process, we noticed that sometimes the
mutation-based search for GreenArrays finds a candidate program
that is very close to being correct. Furthermore, the candidate
program can be corrected by deleting an instruction in the middle
of the program and inserting one more instruction at the end.
However, the search can never find the correct program. To deal
with this situation, we introduced a new type of mutation rule for
GreenArrays, which we call rotate mutation, that picks a random
instruction in the candidate program and moves it to the end. Using
this new mutation rule, the search reaches the optimal solution
more often.

The rotate mutation was not required for mutation-based search
for ARM. Note that the effect of this new mutation rule can be sim-
ulated by the first replacing a random instruction by a nop, which
effectively deletes that instruction, and then iteratively swapping
the nop with an instruction that comes after as long as the seman-
tics of the program is not affected. Because GreenArrays is a stack-



based architecture, the nop can only be swapped with the next in-
struction. In contrast, in a register-based architecture such as ARM,
the nop instruction could be swapped with an instruction further
away. Consequently, it would take significantly fewer steps to sim-
ulate the rotate mutation for a register-based architecture compared
to a stack-based architecture.

8. Experimental Evaluation
In this section, we present an experimental evaluation of the
GREENTHUMB framework instantiated for the ARM and GreenAr-
ray architectures.

8.1 Comparing Search Strategies
The experiments in this section are designed to evaluate the effec-
tiveness of (i) the hybrid search (§ 5) and (ii) the new correctness
cost function (§ 6).

8.1.1 Methodology
We evaluate the following five versions of superoptimizers imple-
menting different search strategies:

1. mutation-based starting from random programs (MB〈R〉)
2. mutation-based starting from the original program (MB〈C〉)
3. symbolic (S)

4. hybrid (H)

5. hybrid with old cost function (H ′)

In all versions, search instances communicate with each other as
described in § 4. All superoptimizers, except H ′, use the new cor-
rectness cost function. S consists of two instances running sliding-
window decomposition, and the rest running random-window de-
composition. To evaluate the consistency of different search tech-
niques, we ran each superoptimizer three times for each bench-
mark.

ARM Hacker’s Delight Benchmarks consist of 16 of the 25
programs identified by [13] drawn from Hacker’s Delight [35].
We excluded the first nine programs from our set of bench-
marks because they are very small, and all five superoptimiz-
ers, except for symbolic, usually take less than 30 seconds to
find the optimal programs. We used code produced by gcc -O0
-march=armv7-a as the input programs to the superoptimizers.
The sizes of the input programs in this set range from 16 to 60 in-
structions. On this set of benchmarks, we ran all versions of super-
optimizers using 32 search instances on a 16-core hyper-threaded
machine. The timeout was set to one hour.

GA Benchmarks consist of frequently executed basic blocks
from MD5 hash, SHA-256, FIR, sine, and cosine functions. We
used code generated by Chlorophyll compiler before the superop-
timization phase, and expert-written code as input programs to the
superoptimizers. The sizes of the input programs in this benchmark
suite range from 10 to 28 instructions. For these benchmarks, we
executed 16 search instances on a 16-core Amazon EC2 machine.
The timeout was set to 20 minutes.

8.1.2 Results
Figure 7 shows the performance costs of the best correct programs
found in each of three runs of the two sets of benchmarks. The
reported costs of each benchmarks are normalized by the cost of the
known optimal program of that particular benchmark. An optimal
program is a correct program with the lowest performance cost
according to the defined performance model.

According to Fig. 7(b), on GA benchmarks, the hybrid super-
optimizer was the only one that returned an optimal solution for all

Benchmarks MB〈R〉 MB〈C〉 S H H′

p10 - - - - -
p11 - - - - -
p12 - - 1941 - -
p13 6 6 141 7 7
p14 18 - 290 15* 181
p15 31 - 171 11* 154
p16 21 8 151 7* 8
p17 - 334 176 126* 270
p18 652 418 - 376* 717
p19 1662 85 - 560 542*
p20 - - - - -
p21 2465 122 - 436* -
p22 - - - 2451* -
p23 - - - - -
p24 - - - - -
p25 - - - 229* 599

(a) ARM Hacker’s Delight Benchmarks

Benchmarks MB〈R〉 MB〈C〉 S H H′

complexA 269 127 - 48* 187
complexB 19 - 234 17* 113
complexC - - 10 25 17*

fir 18 - 222 58* 131
interp - - 109 560 479*
rrotate - - - 118* 281

iii 616 - - 393* 679
md5f - - 439 212 67*
md5g - - - 852 471*
md5h - - 28 38 35*
md5i - - - 492* -
sha1 83 - - 38 18*
sha2 - - - 281* 604

(b) GA Benchmarks

Figure 8. Median time in seconds to reach optimal programs. ”-”
indicates that the superoptimizer version did not find an optimal so-
lution in one or more runs. Numbers in bold denote the fastest time
to find an optimal program between different search techniques,
while * denotes the fastest time between different cost functions.

benchmarks in all of its runs. The second best was the symbolic
superoptimizer, which found an optimal solution in at least one run
for all benchmarks except for sha2.

ARM benchmarks are more difficult than GA benchmarks as
seen in Fig. 7(a). None of the superoptimizers succeeded in finding
optimal solutions for all benchmarks. However, the hybrid superop-
timizer still performed the best; it failed to find optimal programs
on only two benchmarks (i.e. p23 and p24). In comparison, S and
MB〈C〉 failed to find optimal programs on more than 5 benchmarks,
and MB〈R〉 could not find any better program on 7 benchmarks.

The hybrid superoptimizer is not only better at finding optimal
solutions but also faster at finding optimal solutions. Figure 8 re-
ports the median time to find optimal solutions for the various su-
peroptimizers. If a superoptimizer did not find an optimal solution
on one or more runs on a benchmark, the table excludes that corre-
sponding entry. It shows that most of the time, the hybrid superop-
timizer was the fastest one to find an optimal solution.

The new cost function makes the hybrid superoptimizer more
reliable and faster at finding optimal programs. Out of total 48
runs on ARM benchmarks, H found optimal solutions on 36 runs,
while H ′ found optimal solutions on 30 runs; the new cost function
increases the number of runs in which the superoptimizer found
optimal solutions by 20%. By marking the best time between H
and H ′ in Fig. 8, we can see that on the benchmarks on which H
and H ′ consistently found optimal programs, H was faster than
H ′ on seven ARM benchmarks, but H ′ was faster than H on only



(a) ARM Hacker’s Delight Benchmarks

(b) GA Benchmarks

Figure 7. Normalized performance costs of the best program found by the different superoptimizers. A dash represents the cost of the best
program found in one run. A dash may represent more than one run if the best programs found in different runs have the same cost. If one or
two runs did not find any correct program that is better than the input program, the vertical line is extended past the chart. If none of the runs
found a correct program that is better than the input program, a rectangle is placed at the top of of the chart. Timeout for ARM benchmarks
was 60 minutes, and timeout of GA benchmarks was 20 minutes.

two ARM benchmarks. The new cost function provided 14-times
speed up in the best case on p15, while it slowed down the search
by 3-times in the worst case on md5f. On GA benchmarks, the
cost function did not seem to help much, but it did not hurt the
performance much either.

8.1.3 Detailed Explanations
Let take a closer look at why H is better than MB〈R〉, MB〈C〉,
and S alone. Since H is a combination of MB〈R〉, MB〈C〉, and S,
it has the strengths of both mutation-based and symbolic search.
H is not just the best of MB〈R〉, MB〈C〉, and S. Because of the
communication among different search instances, H can reliably
find optimal solutions when none of the other techniques can.

Consider program md5i, which is one of the frequently exe-
cuted routines in MD5 hash function. H was the only superopti-
mizer that consistently found an optimal solution in all runs. The
success of H is due to the collaboration between different search
strategies. The following lists the sequence of communications
among search instances during a run of the hybrid search on md5i:

1. A symbolic search instance with sliding-window decomposi-
tion optimized the input program from 23 instructions to 15 in-
structions in half a minute.

2. An MB〈R〉 instance learned from the symbolic search that an
optimal solution likely consists of fewer than 15 instructions,
so it reduced the search space by only searching for programs

that have no more than 15 instructions. Four minutes later, this
search instance found a better program with 11 instructions.

3. Finally, a symbolic instance with random-window decomposi-
tion received this new best program from the MB〈R〉 instance,
decomposed, optimized a portion of the program, and found an
optimal program of length nine within three minutes.

On p22, a counting parity program, H was again the only su-
peroptimizer that consistently found an optimal program in all runs.
Within H , symbolic-search instances and an MB〈C〉 instances al-
ternatively found new best programs over time. The two-way com-
munication between them led to finding optimal solutions reliably.

8.2 Improvement Over gcc -O3

In this section, we demonstrate that H , our hybrid search can dis-
cover faster programs in comparison to gcc -O3 (called gcc
-O3 programs for abbreviation). We measure the execution time
on ARM Cortex-A9. From the experiment in § 8.1, H found faster
programs than gcc -O3 on five benchmarks. On p23, H found
programs that are slower than the gcc -O3 program. For the rest
of the benchmarks, H found programs that have similar perfor-
mance as gcc -O3 programs. Thus, we ran H again on p23 pro-
gram generated using -O3, and a faster program was found.

Additionally, H could find more optimal programs than gcc
-O3 programs on not only the Hacker Delight’s programs, but also
code inside libraries and kernels that are used in many applications.



Program gcc -O3 Output Search Speedup
length length time (s)

p11* 4 4 1729 1.22
p18* 7 4 383 2.11
p21* 6 5 436 1.81
p23 18 16 3 1.48

p24* 7 4 2200 2.75
p25* 11 1 229 17.76

wi-txrate5a 9 8 6 1.31
wi-txrate5b 8 7 136 1.29

mi-bitarray-1 10 6 1540 1.28
mi-bitarray-2 14 9 1453 1.05
mi-bitcnt-2-0 27 21 595 1.21
mi-susan-391 30 24 3225 1.15

Figure 9. Speedup over gcc -O3 programs. * indicates programs
that are optimized from gcc -O0 taken the results from § 8.1.2.
The rest are optimized from gcc -O3.

We compiled WiBench [38] (a kernel suite for benchmarking wire-
less systems) and MiBench [14] (an embedded benchmark suite)
using gcc -O3. We then extracted basic blocks from the com-
piled assembly. We selected 13 basic blocks that contain more than
seven instructions, contain only instructions supported by our su-
peroptimizer, and have more data processing instructions than load
and store instructions. For six out of these 13 ARM assembly pro-
grams, GREENTHUMB found faster programs compared to those
generated by gcc -O3.

Figure 9 summarizes the characteristics of the faster pro-
grams found by GREENTHUMB and the speedup over gcc -O3.
GREENTHUMB offers from 20% to 17-times speedup on some
Hacker’s Delight programs, and from 5% to 31% on some WiBench
and MiBench code over gcc -O3.

8.3 Scaling to Large Programs
In this last experiment, we optimized very long sequences of in-
structions to evaluate the effectiveness of our program decompo-
sition technique. We obtained p23 and p24 programs written in
GA by using Chlorophyll compiler without superoptimization. The
input p23 program has 48 instructions, and p24 program has 91
instructions. The length of both these programs is larger than the
decomposition threshold L for GA mutation-based search, which
is 40. The cost of the programs found by H with decomposition
done by mutation-based instances is 22% and 10% lower than the
cost of the programs found by H without the decomposition on
p23 and p24, respectively.

8.4 Developer’s Effort
We use lines-of-code as a proxy to indicate the effort of building
a superoptimizer. We compare two versions of a symbolic-search
superoptimizer: one used in Chlorophyll [24] and one built with
our framework. The former has 1,652 lines of Racket code; the
latter has 579 lines of Racket code while being more advanced
(with parallel execution feature).

9. Future Work
We plan to improve the efficiency of the mutation-based search
by using symmetry-reduction techniques, which have been suc-
cessfully used to speed up constraint solvers and model checkers
[8, 22]. We plan to improve the efficiency of symbolic search by
using a better encoding of synthesis queries to constraint formula
that was described by [13].

We also plan to implement a new type of search strategy that
uses offline exhaustive enumeration and online program stitching
with equivalence class pruning. This particular technique has been
shown to work extremely well for synthesizing functional programs

in the ICFP competition [1]. The programs in the ICFP competi-
tions take a single input and return a single output, which make pro-
gram stitching very simple. However, we believe that this technique
can be extended to programs with multiple inputs and outputs. Ex-
haustive enumeration alone has been used in many superoptimzers
[4, 5, 11, 20, 35], but it does not scale by itself.

10. Related Work
We have already discussed most of the existing superoptimizers
throughout the paper. Another well-known superoptimizer that we
have not described elsewhere is Denali [16], which uses goal-
directed search that employs the combination of enumeration for
generating candidate rewrites and symbolic search to find the op-
timal program. All generated candidate programs are equivalent
to the original program by construction since Denali enumerates
programs by rewriting the original program according to algebraic
identity. We do not include this approach as one of our search tech-
niques because it is difficult to gather all possible algebraic identity
rewrite rules when there are many complex instructions. As a result,
the superoptimizer may miss an optimal solution.

There are several program synthesis tools besides Rosette that
we could use for building our framework. First, Sketch [30] allows
programmers to write complex programs while leaving fragments,
called holes, of the code unspecified. We could implement the em-
ulators using Sketch, and obtain symbolic search for free. Sketch
does not provide an explicit functionality to do verification as does
Rosette, but verification can be imitated by using its synthesis func-
tionality. Second, Syntax-Guided Synthesis (SyGus) [2] introduces
a standard program synthesis formula similar to SMT. SyGus cur-
rently supports three different synthesis engines: 1) enumerative, 2)
mutation-based, and 3) symbolic. Two of the synthesis engines are
the same as ours. We could have written a compiler that translates
the implementation of an emulator to SyGus formula, and used
the provided search techniques. However, SyGus search techniques
currently do not support arrays or bitvectors that are larger 64 bits
which are necessary for solving superoptimization problems. Apart
from this limitation, if we built GREENTHUMB on top of SyGus,
it would be harder for a superoptimizer builder to add new types
of mutations. To do so, the builder would have to understand the
back-end search engine and the SyGus AST, which is far different
from normal representations of instructions.

Apart from the MCMC sampling technique used in our
mutation-based search, there are many more search techniques that
use mutations for finding an optimal solution with respect to a given
cost function. The well-known classical techniques are simulated
annealing, hill climbing, genetic algorithm, etc. In fact, genetic al-
gorithms have already been used to automatically construct pro-
grams as known as genetic programming [18, 19, 32]. For example,
PushGP is genetic programming for the Push programming lan-
guage [32]. The correctness cost function used in PushGP is simply
counting the number of incorrect outputs.

Our parallel hybrid search is similar to portfolio-based parallel
SAT solvers such as Plingeling [6] ManySAT [15]. Understanding
what techniques are effective in parallel SAT solvers may help us
improve our hybrid search technique further.

11. Conclusion
We introduced GREENTHUMB, an extensible framework for build-
ing superoptimizers for diverse ISAs, implementing a variety of
search techniques. Since only having an easy way to define an ar-
chitecture would not be useful if we did not also have a scalable
search technique, we developed a new hybrid-search technique that
combines symbolic and mutation-based search. We showed that
this hybrid search is better than either technique alone. Further-



more, GREENTHUMB also provides an interface to easily add new
search techniques because we believe that with more search tech-
niques, hybrid search might perform even better. In summary, we
believe that GREENTHUMB represents an important step towards
building usable, robust, and efficient superoptimizers.
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