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Abstract

Leveraging Similar Regions to Improve Genome Data Processing

by

Kristal Lyn Curtis

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor David A. Patterson, Chair

Though DNA sequencing has improved dramatically over the past decade, variant calling,
which is the process of reconstructing a patient’s genome from the reads that the sequencers
produce, remains a difficult problem, largely due to the genome’s redundant structure. In
this thesis, we describe SiRen, our algorithm for characterizing the genome’s structure in a
way that makes sense from the perspective of the reads themselves. We use the term similar
regions to refer to the areas of redundancy that we have identified. We then confirm that the
similar regions are characterized by low variant calling accuracy. We show that the structure
of the similar regions provides a platform for repairing alignment errors, thus leading to
significantly improved variant calling accuracy.
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Chapter 1

Introduction

1.1 The Promise of Genomics

Since the completion of the Human Genome Project in 2003, there has been a tremendous
surge of excitement and momentum in genomics. As the technology to sequence a genome
has improved dramatically in the last decade or so, an immense amount of energy has been
devoted to discovering and developing new ways to utilize genomic information in fields
ranging from medicine to crop breeding. A diverse group of researchers and practitioners is
now working to leverage the knowledge gained by mapping the human genome, as well as
other genomes, to make advances that were previously impossible.

Medicine is an area in which genomics has the potential to make significant changes.
For example, the Obama administration recently announced its plans to increase research
funding via its “Precision Medicine Initiative” [9]. The idea of precision medicine is that
rather than applying the same standard of care to everyone, a patient’s care should be
targeted to his or her particular genetic makeup, or genotype. The goal of customized care
is to improve patient outcomes while lessening detrimental side effects from inappropriate
treatments. The University of California system has launched a similar effort to enhance
patient care, diagnosis, and treatment by integrating clinical, genomic, environmental, and
other types of data [131, 64].

One of the main areas where researchers and clinicians are excited about using genomics
and precision medicine is in oncology, i.e., the diagnosis and treatment of cancer [101].
Cancer is considered a particularly good target for applying genomics since cancer is a
molecular disease, i.e., it is caused by mutations in a person’s cells [40]. For example,
normal cells go through a life cycle that culminates in their death; however, cancer cells
mutate such that the cell death mechanisms are disabled. Because cancer involves genetic
mutations, sequencing is becoming important to understanding its development. First, it is
often desirable to sequence both a patient’s normal and cancer cells in order to enumerate
the mutations that have occurred between them. It is also important to sequence a tumor
over time, since mutations continue to accumulate as the cancer grows [11].



CHAPTER 1. INTRODUCTION 2

A convincing use of personalized oncology is the case of Dr. Lukas Wartman, a genomics
researcher at Washington University [61]. After he was diagnosed with leukemia, his col-
leagues sequenced his genome to learn more about how his cancer was progressing. They
learned that his cancer was fueled by a rogue gene that was producing too much of a par-
ticular protein. Fortunately, the gene could be inhibited by a drug that was developed for
another purpose (treating kidney cancer), and he went into remission.

Though cancer is a compelling application area for genomics, genomics can also help
with diagnosing other types of illnesses. For example, genomics was used to save the life of
Joshua Osborn, a 14-year-old boy suffering from a long illness that had culminated in a coma
[144, 135]. The doctors treating him at the University of Wisconsin School of Medicine tried
guessing at the cause of his illness, doing separate tests to rule out each potential cause and
wasting precious time along the way. Desperate, they reached out to their colleagues at the
University of California, San Francisco, who had developed an experimental procedure to use
DNA sequencing to identify pathogens. The researchers sequenced the fluid accumulating in
Osborn’s brain, and in less than two hours, after discarding the human DNA, they identified
a bacteria called Leptospira that could be treated effectively with penicillin. Soon after
receiving the antibiotic, the boy recovered.

Another exciting application of genomics is the development of targeted therapies, as
some of the energy in pharmaceuticals shifts from universally applied drugs to drugs that
are targeted at patients with particular biomarkers [93]. In the case of cancer, these targeted
therapies have the potential not only to be more effective than general drugs but also to be
much easier for patients to tolerate than traditional chemotherapy, which has notorious
side effects such as nausea and hair loss. For example, Gleevec was developed to target
chronic myeloid leukemia by blocking an enzyme that exists only in cancer cells, thus causing
the cancer cells to die and leaving healthy cells unaffected. Another targeted therapy is
Herceptin, which targets HER2-positive (HER2+) breast cancer. HER2 is a protein that,
when overproduced, causes cells to reproduce uncontrollably; Herceptin inhibits this action
in cells that are HER2+. Exciting developments like these have stimulated many efforts to
develop additional targeted therapies, and patients are sure to benefit as their use expands.

1.2 Obstacles

The main problem at the center of all these efforts is deducing the relationship between a
person’s genotype (i.e., content of their genome) and their phenotype (i.e., physical charac-
teristics such as drug response). This inference is difficult, since other factors besides the
genotype can influence the phenotype. The most basic precondition for learning this rela-
tionship, of course, is to accurately determine the person’s genotype. In order to gather
information about a patient’s genotype, we begin by sequencing a sample of their DNA.

Though DNA sequencers have made mighty strides in the past decade, dramatically
improving their throughput and reducing their cost, sequencers are far from capable of
reading a patient’s genome in a single, long pass. Instead, sequencers read a genome in
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short segments called reads. After reads have been produced, we must tackle the challenging
computational problem of reconstructing the patient’s genome from the short reads. The
reconstruction process is called variant calling (VC), because its goal is to determine the
differences (or variants) between the patient’s genome and a representative human genome
called the reference genome. Because humans are 99.9% identical, the number of variants
is small relative to the size of the genome; the size of the human genome is approximately
three billion bases, so we expect to identify about three million variants when sequencing a
new genome.

To make decisions about a person’s medical care based on their variant calls, it is crucial
that tools used to produce those variant calls be both efficient and accurate. However, VC
is a challenging process. Due to its computational cost, variant calling incurs high monetary
costs. A more fundamental issue is that because of the genome’s innate structural features,
variant calling is susceptible to errors.

A crucial step usually involved in VC is called alignment, which is the problem of deter-
mining where in the genome a read likely originated. Once all reads have been aligned, for
each location, variant calling tools use the information presented in the reads overlapping
that location to infer whether or not the sample differs from the reference. If the genome
were a random string of three billion characters, variant calling would be straightforward,
since it would be highly unlikely for a read to align to multiple locations. However, in real-
ity, the genome is characterized by both near and exact duplication. Therefore, ambiguity
arises as to where many reads should be aligned, and the resulting uncertainty propagates
throughout the analysis pipeline to cause difficulties for variant calling as well.

1.3 Challenges and Contributions

In this thesis, we tackle the complexities presented by the genome’s redundancy. In partic-
ular, we have sought to characterize the redundancy from a perspective driven by the short
read data. We use the term similar regions to refer to duplicated areas of the genome that
we have identified as having a significant impact on variant calling.

The goal of this thesis is to identify similar regions that not only correspond to difficult
areas for variant calling but can also be used to improve VC accuracy. In our efforts, we
have encountered several challenges. This thesis presents our contributions addressing the
following:

Identifying the similar regions: It is well known that the genome has duplicated se-
quence. As we discuss in Chapter 3, there are several existing approaches to characterizing
the genome’s redundancy. However, these approaches are unsuitable to our problem for
various reasons, including their unstructured output or large size. Thus, one of the primary
challenges we address in this thesis is devising an approach that identifies a manageable
amount of the genome as being redundant. It is also crucial for the approach to scale to the
large problem size; computing on the genome is expensive due to the N2 possible similarity
relationships.
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Validating the similar regions: One way to find duplication in the genome is the method
favored by Repbase,1 a popular database of repetitive sequence in the genome, which in-
volves manual curation, whereby researchers contribute repeats that they have identified.
However, manual curation is unwieldy, due to the size of the genome. Our approach relies
on automatically identifying duplication. While more convenient and consistent than man-
ual curation, an automatic approach must be validated to ensure that its output is correct.
Thus, one challenge is how to validate our output to ensure that the regions our algorithm
identifies correspond to those in which alignment errors occur. We also wanted to confirm
that alignment errors lead to variant calling errors.

Alignment errors: After we have identified the proper similar regions and verified that the
similar regions indeed correspond to poor VC accuracy, a remaining challenge is to develop
a strategy for improving the VC accuracy. One method for improving VC accuracy would
involve developing a new VC algorithm. Another approach is to target alignment errors,
which contribute to difficulties with variant calling; any new VC algorithm would also have
to contend with alignment errors. It may also be necessary to identify which factors that
contribute to alignment errors can be targeted with the similar regions. The goal for an
approach that corrects alignment errors would be to see variant calling errors decline as well.

In this thesis, we addressed these challenges [25]. First, we constrained the problem of
locating the similar regions using the paradigm of short reads. As we describe in Chapter
2, genomic data is produced in short segments called reads, which processing algorithms
must reconstruct to recover the sample genome. In order to devise a simple algorithm, we
used the fact that we knew our similar regions would be used for read processing. We also
designed our algorithm to be distributed, which enabled us to shrink our development cycle
and achieve an implementation that facilitates exploration for parameter selection. Our
algorithm is called SiRen, because we use it to locate the similar regions.

The SiRen algorithm is unsupervised (i.e., it does not rely on labeled input data); thus,
we had to develop a method for verifying that its output actually located interesting areas
of redundancy. We therefore devised and executed a validation strategy to confirm that
the similar regions we located are highly correlated with difficulties for both alignment and
variant calling. In order to do so, we had to create a metric for identifying difficult alignments
by considering multiple aligners and then assessing the level of agreement between them.
After we demonstrated that difficult alignments were overwhelmingly in similar regions, we
had to assess whether the problematic alignments in similar regions propagated to result in
VC errors. We performed an end-to-end analysis that shows that indeed, VC in the similar
regions is much more difficult than in the unique regions.

Confirming that the similar regions that we have identified coincide with alignment and
VC errors is necessary but not sufficient to achieve our goal of ensuring that the similar
regions can be used to improve VC accuracy. We also sought to develop a strategy for re-
pairing alignment errors in the similar regions, making use of the properties of the similar
regions themselves. In order to do so, we extended the SiRen algorithm to identify relation-

1http://www.girinst.org/repbase/
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ships among the similar regions, so that we obtain a structure that indicates which regions
are similar to which other regions. We also devised a realignment strategy to repair known
alignment errors, using the structure that the extended SiRen algorithm identifies. Given
our realignment techniques, we validated that they substantially improve the VC accuracy
in the similar regions.

We may therefore summarize the contributions of this thesis as follows:

• We present the SiRen algorithm that defines and locates the similar regions.

• We provide evidence that our similar regions correspond to difficulties in alignment
and variant calling.

• We develop a strategy for leveraging the structure in our similar regions to repair
known alignment errors, thereby improving VC accuracy in the similar regions.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we define key genomics terms that form the
background for the material we present. We also give a short history of DNA sequencing, from
the original technology, called Sanger sequencing, through the current dominant technology,
called second-generation sequencing. We also preview long-read technology, an emerging area
with the potential to disrupt second-generation sequencing. Once DNA has been sequenced,
a processing pipeline transforms the raw output of the sequencer to variant calls, which
express the difference between the sample genome and a reference genome. The bulk of the
chapter presents the key stages of the pipeline, most notably alignment and variant calling.

We continue in Chapter 3 by describing near and exact duplication in the genome as well
as discussing the challenges that duplication poses to processing sequencing data. We then
present the SiRen algorithm for locating similar regions in the genome, from the perspective
of the short reads themselves. The chapter ends with a description of SiRen’s distributed
implementation.

In Chapter 4, we present our validation of the similar regions. We begin by giving
basic metrics of the SiRen output, including the number of clusters we identified as well
as the size of the similar regions. Then, we provide a more application-driven evaluation.
First, we show how the similar regions affect alignment. We devise a measure to quantify
alignment difficulty and then show that difficult alignments occur overwhelmingly in the
similar regions. Then, we perform an end-to-end analysis showing how alignment errors
propagate through the pipeline to present challenges to variant calling as well. We provide
evidence that variant calling in the similar regions is much less accurate than in the unique
regions. Finally, we perform a quantitative comparison between the similar regions and
other “blacklists” (i.e., lists of sequence to be ignored due to the difficulty of processing the
sequence) that practitioners use. We discovered that the similar regions are similar in size
to one other blacklist, GEM [28].
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In order to distinguish our similar regions from other blacklists, we continue in Chapter
5 by showing the value of the structure in our similar regions. This structure is in contrast
to blacklists like GEM that are simple binary indicators of whether or not a region is similar
to another genome sequence. We begin the chapter by describing how we go beyond treat-
ing the similar regions like a binary list by constructing relationships between the similar
regions. Then, we motivate the importance of repairing alignment errors in the similar re-
gions by showing that modulo structural variants, correcting alignment errors in the similar
regions yields comparable VC accuracy between the similar and unique regions. We then
demonstrate that we can use relationships between the similar regions, which we call similar
region families, to repair known alignment errors. We complete the chapter by discussing
our perspectives about how to recognize alignment errors automatically to fully automate
the realignment process.

We end the thesis in Chapter 6 by presenting our conclusions and ideas for future work.
After reflecting on what we have accomplished, we outline how to build on our work to
create an alignment repair pipeline stage as a preprocessing step to variant calling that will
enhance VC accuracy in the similar regions. We also present our ideas about how to use the
pipeline stage to enable new biological analyses.



7

Chapter 2

Working with Genomic Data

2.1 Introduction

The field of genomics has undergone dramatic changes during the recent past. In just over a
decade since the Human Genome Project was completed, the interest in and capability for
working with genomic data for both research and clinical purposes has exploded. While it
initially cost billions of dollars to map the human genome, current machines can sequence
a genome for $1000. This tremendous accomplishment has the potential to enable new
scientific studies and integrate genomics into routine medical care.

In this work, we consider the genome primarily from a computational perspective. How-
ever, some key terms are needed to understand this thesis. Thus, we will begin the chapter
in Section 2.2 by reviewing the relevant biology foundation before launching into the rest of
the content so readers from a computer science audience will be prepared to grasp the ideas
we present.

Once a sample of DNA has been provided, the first step in working with genomic data is
to perform DNA sequencing, the wet-lab process by which a sequencer produces a human-
and machine-readable version of the sample’s genomic information. Since DNA sequencing
was first developed, its speed and cost have improved dramatically. We begin Section 2.3
by discussing the original version of this technology, which is called Sanger sequencing.
This approach was used for mapping the first human genome by the various research teams
involved with the Human Genome Project. The second generation, short-read sequencing,
has made DNA sequencing much more practical for widespread use. Finally, we will also
review developments with a third generation of sequencing technology called single-molecule
sequencing, which can produce much longer reads than current tools.

Since no current technology can read the entire genome at once, sequencers produce a set
of reads, each of which is a short segment of DNA. Then, data processing must take place in
order to reconstruct the sample’s genome from the read set. We will provide an overview of
some of the most important steps in the data processing pipeline in Section 2.4. The product
of this phase is a set of variant calls, which express how the sample’s genome differs from a
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reference, or the species’ representative genome. In this work, we are primarily concerned
with the human genome.

Many steps are required to translate the output of sequencing machines to data that is
useful for downstream analysis, such as an oncologist discovering that a patient has HER2+
breast cancer. First, the sequencer output must be translated from raw output to base calls,
i.e., the letters of DNA, which are A, C, G, and T (Section 2.5). Then, reads are typically
aligned to a reference genome. Alignment (Section 2.6) is an important concept in this
thesis, so we will discuss it at some length. Another major concept in this thesis is variant
calling (Section 2.7), which is the process of identifying where the sample genome differs
from the reference. We will consider the types of variants that can be encountered as well
as techniques used to locate each type.

If the genome were a random string of three billion bases, the process of reconstructing
the short reads would be relatively simple, since random short reads would be unlikely
to match in multiple locations. However, it actually has both exact and near duplication
throughout, which significantly complicate the data analysis phase. This thesis is primarily
focused on characterizing the genome’s structure (Chapter 3) and quantifying the difficulties
that structure presents for variant calling, largely due to making alignment more problematic
(Chapter 4). This work also provides a foundation for developing techniques to make variant
calling more resilient to the genome’s challenging structure (Chapter 5). Therefore, the goal
of this chapter is to provide the necessary background for readers to understand the rest of
the thesis.

2.2 Genomics 101

In this section, we will outline a basic foundation in biological concepts that are relevant to
this work. We will refer to the terms presented here throughout this thesis. The following
information is largely based on [35].

Deoxyribonucleic acid (DNA) was discovered in 1952 by Watson and Crick. Shaped
like a double helix, DNA is the molecule that stores and transmits our genetic code. It is
made up of four nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). It is
characterized by the principle of complentarity, which means that A can only bind with T,
and C can only bind with G. Each pair of complementary nucleotides is called a base pair.
Each of DNA’s two strands is the complement of the other. We say that one strand is in the
forward direction, while the other strand is in the reverse direction.

Complementarity is the foundation of DNA replication. First, a splitting enzyme shears
the double helix into two strands. Then, a clipping enzyme binds a complementary free
nucleotide to each position on each of the two strands. For example, if the double helix
begins with the sequence AC on the forward strand, after the helix is split, free nucleotides
G and T will be bound to the now single forward strand, in that order. The clipping enzyme
is called DNA polymerase and is important to our discussion of DNA sequencing in Section
2.3.
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Maternal Paternal 

Same on both strands  
=> Homozygous 

Different on each strand 
=> Heterozygous 

Figure 2.1: A pair of chromosomes showing both homozygosity and heterozygosity.

The human genome consists of approximately three billion base pairs. Our genome is
not one long strand of DNA; rather, it consists of 23 pairs of chromosomes, for a total of 46.
One set of chromosomes comes from each parent. Since we have two sets of chromosomes,
we are diploid organisms; a cell with only one set of chromosomes, like a sperm or egg cell,
is called haploid.

Our chromosomes consist of genes, which are defined as the units of heredity. Humans
have between 20,000 and 25,000 genes. For example, a gene might govern one’s hair color or
eye color. To produce different outcomes, such as brown or blue eyes, genes come in different
variants, or alleles. If each chromosome in a pair has the same allele at a given location, the
person is homozygous at that location; otherwise, the person is heterozygous. We illustrate
zygosity in Figure 2.1. A person’s genotype is the set of alleles, i.e., the particular DNA
sequence, that makes up their genome. A person’s phenotype is the set of their observable
traits, e.g., tall with brown hair, and is governed by their genotype.

This thesis is concerned with whole-genome sequencing, where the person’s entire genome
is sequenced. However, it is worth noting that due to the cost and complexity involved with
whole-genome sequencing, much recent activity in genomics has focused on the exome, which
is the set of all the exons. Exons are the segments of genes that code for protein synthesis.
The remaining non-coding regions of the genes are called introns and are involved with
regulating gene expression. The exome makes up approximately 1% of the human genome
[97]; thus, the vast majority of the genome lies in the introns. As there is mounting evidence
surrounding the importance of introns (e.g., [106]), as well as the increasing affordability of
whole-genome sequencing, we have chosen to focus our work on whole-genome analysis.

2.3 Sequencing

We will begin our discussion of working with genomic data with a high-level explanation of
DNA sequencing. DNA sequencing is the process of starting with a DNA sample, e.g., from
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a patient’s saliva or tumor, and reading the three billion bases that make up the patient’s
(or tumor’s) genome. Unfortunately, currect technology is incapable of reading the entire
genome at once. Therefore, all DNA sequencers produce short segments of the genome called
reads. This process could be compared to starting with a picture and producing a set of
puzzle pieces corresponding to that picture. In Section 2.4, we will discuss what to do with
the resulting puzzle pieces, i.e., reads.

DNA sequencing has been in development over several decades. The first major se-
quencing technology is called Sanger sequencing and is an accurate but expensive and slow
approach to producing long reads of up to one thousand base pairs. The second generation,
most notably from Illumina,1 is called short-read sequencing and produces a much higher
quantity of reads for a significantly lower price. The advantage in price, however, comes
with drawbacks including an increased error rate and shorter read length of only 100-250
base pairs. The third and most recent type of sequencing, called long-read sequencing, is an
emerging area that has the potential to greatly simplify working with genomic data. As the
name implies, the reads produced by these sequencers are at least an order of magnitude
longer than those produced by second-generation sequencers; nevertheless, the throughput
is still too low and the error rate too high for these techniques to be widely used for variant
calling. However, they have already started to enable assembly to be more accurate and
complete [123, 102].

In this thesis, we will focus primarily on second-generation sequencing, and particularly
on the technology developed by Illumina. We made this decision because we foresee that
Illumina will maintain its dominance in the near- to medium-term future as scientists tackle
the still considerable hurdles to third-generation sequencing. The vast majority of genomes
presently being sequenced for research and clinical purposes are being sequenced by Illumina
machines. Also, most of the currently-available bioinformatics software, which we will review
in Sections 2.5 – 2.7, was designed for the particular characteristics of short reads (and often
for Illumina specifically). Therefore, we will focus our discussion in this section and the rest
of this thesis on second-generation sequencing from Illumina. We will still briefly explain
Sanger and long-read sequencing in order to provide additional context, both historical and
future, respectively.

Sanger Sequencing

Sanger sequencing was the original sequencing technology and was used for the Human
Genome Project [50]. The output of the Human Genome Project, a composite produced
from the genomes of several volunteers, is called the reference genome, and we will refer to
it often. Since all humans share about 99.9% of our genome, the map produced is repre-
sentative of all human genomes. The Human Genome Project was a collaboration among
20 laboratories around the world, together constituting the International Human Genome
Sequencing Consortium. The project was in progress from 1990 to 2003, finishing two years

1http://www.illumina.com/
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ahead of schedule, and cost $2.7 billion, below its budget of $3 billion. The first draft of the
genome was published in 2000, with about 90% of the genome sequenced [65]. The effort
was considered complete in 2003, although a small amount of the genome is inaccessible with
today’s sequencing technology. As the technology continues to improve, our map, i.e., the
reference genome, is periodically updated.

Sanger sequencing is based on processing the input sample DNA to produce redundant,
single-stranded segments of different lengths [111, 115]. For example, the first segment might
be CTGGAAG, while another is CTGGAAGC, and the next is CTGGAAGT; note that each successive
segment is one base longer than the previous one. A fluorescent label is attached to the
terminal end of each segment, where the color of the label is determined by the final base.
In our example, the first segment ends with G, so it might get a yellow label, while the next
segment ends with C, so it gets a blue label. Then, the segments are sorted according to
their lengths, and the sequencer reads the labels in order to reproduce the sequence.

Sanger sequencing can produce reads of several hundred to one thousand bases, and it
does so with error rates of less than 0.1% [128]. The process is expensive and slow, however,
with limited throughput. To provide a sense of the cost, when the Human Genome Project
transitioned in 2007 from Sanger to second-generation technology, its teams were paying
over $100 per megabase of sequence, while the current cost of second-generation reads is less
than $0.10 per megabase [134]. Sanger sequencing is therefore impractical for widespread use,
and second-generation approaches, which we discuss in the following section, have supplanted
Sanger sequencing for most common applications. Nevertheless, due to its high accuracy,
Sanger sequencing is sometimes still used for selectively validating small subsets of sequence.

Second-Generation Sequencing

The dominant technology for second-generation sequencing is called sequencing by synthesis
(SBS) and is provided by Illumina [8]. In what follows, we will focus on Illumina’s technology
since it is the most widely utilized. Other companies providing second-generation sequencing
via different approaches include Ion Torrent and SOLiD from Life Technologies2 and 454 from
Roche.3

In Figure 2.2, we give a high-level illustration of how sequencing works. The sequencing
process begins with a sample of DNA. The original sample is replicated and then divided
into short segments, called fragments. A common size for fragments is about 700 bp. The
fragments are bound to adaptors on the flowcell, which is the surface of the sequencer, and
each fragment is amplified to create a cluster of many identical copies [49]. Many such
clusters form on the flowcell, and each cluster is read independently by the image sensor.

The sequencer reads a fragment one base at a time. Recall from Section 2.2 that each
base has a complementary base: A and T are complements, and so are C and G. During each
cycle, reagents are added to the flowcell, and the reagents compete to bind to the strand.

2http://www.lifetechnologies.com/
3http://www.454.com/
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Figure 2.2: Second generation sequencing. To read a DNA fragment, polymerase binds the
complementary base to the fragment. The sequencer can infer which base was attached
based on the color of the light emitted.

Only a complementary base can attach at the current position on the strand; in Figure 2.2,
the current base is an A, so only a T can attach to it. In the figure, an orange fluorescent
label is connected to each T. When DNA polymerase joins the T to the strand, the label is
released, and the image sensor can detect its color. Thus, the sequencer determines that a T

was attached, and it infers that the base just read is an A.
Though for simplicity the figure depicts a single fragment being read, each cluster’s many

identical fragments are all read in a synchronous fashion. That is, if the current base is an
A, free T reagents will bind to the current position on each fragment. At some point, the
synchrony degrades, so the sequencer’s read length is bounded. Currently, Illumina reads
are limited to between 100-250 bp.

Compared to Sanger sequencing, second-generation sequencing costs less and has higher
throughput. However, the error rate is higher; it was initially around 2% but is now less
than 1% [128]. That is, fewer than 1% of bases will be sequenced incorrectly. An additional
drawback is the reduced read length. An important feature of these reads that somewhat
compensates for their shorter length is that they are usually read in pairs. That is, since due
to synchronization breakdown the sequencer cannot read the entire fragment, the sequencer
reads both ends of the fragment to produce what are called paired-end reads.

In part (a) of Figure 2.3, we show how the sequencer produces a pair of reads [48]. The
DNA fragment, shown in blue, has an adapter attached to each end. The reading takes
place in phases. First, the fragment attaches to the flowcell via one of the adapters; in
this example, the green adapter attaches first. The sequencer reads the fragment up to
its maximum read length in the forward direction via the process illustrated in Figure 2.2.
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Next, the sequencing product is washed away, and the fragment binds to the flowcell via
its other adapter as well, creating a bridge. The first adapter releases, leaving the fragment
attached by only its second adapter; in this example, the orange adapter attaches second.
Then, the sequencer reads the fragment in the reverse direction, again up until its maximum
read length.

Figure 2.3(b) shows the product of paired-end sequencing. The image depicts the two
reads, each of which is much shorter than the fragment. Typical values for the read length
and fragment length are 100 bp and 700 bp, respectively. The remaining DNA in the center
of the fragment that the sequencer could not read is called the insert ; given our values of
read length and fragment length, the length of the remainder, called the insert size, would be
500 bp. Note that the fragment length is not fixed for a sample; rather, the length can vary
between fragments. Thus, we can only estimate the insert size. Nevertheless, this partial
knowledge is quite useful. Since the reads in a pair were produced from a single fragment,
we know approximately how far apart they are located in the sample DNA. This helps to
resolve some ambiguity when it comes to reconstructing the sample genome. Even with
the valuable information provided by paired-end reads, however, some ambiguity persists.
This uncertainty is in fact the subject of this thesis, and we will discuss it at length in later
chapters.

An interesting concept related to paired-end reads is mate-pair sequencing. The goal of
mate-pair sequencing is to produce a pair of reads that is separated by much more than the
typical fragment length, e.g., with a separation of several thousand bases. Very long DNA
segments are achieved through a process called DNA circularization, which is outside the
scope of this thesis. Though mate-pair sequencing is more expensive than typical paired-end
sequencing, the benefit is that it can help resolve some, but not all, of the ambiguity that
persists with typical fragment sizes. Mate-pair libraries are widely used for de novo genome
assembly (described in Section 2.7) but are not commonly used for variant detection due to
their high cost.

Long-Read Technology

Long-read technology is an emerging area. Instead of pairs of reads that are around 100-200
bp, long-read sequencers can produce single reads that are between 1,000 and 10,000 bp.
Though we do not focus on this approach in this thesis, since it is not yet the dominant
technology, we include a high-level description of long-read technology for completeness in
our discussion of sequencing, as well as because we will refer to it in Section 3.2.

Two main companies have emerged as the leaders in this space. In what follows, we
will briefly introduce the technology employed by each of these companies. Both are single-
molecule technologies; instead of jointly sequencing many identical fragments per cluster as
Illumina does, each unit of sequencing is a single molecule of DNA. Like Illumina, many
units are sequenced in parallel. Long-read sequencers are able to achieve much greater read
lengths since they do not rely on synchronous reading, which gets out of phase after 100-250
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Figure 2.3: Paired-end sequencing. The sequencer reads both ends of a fragment to produce
a pair of reads.

bases. We will conclude the section by enumerating the advantages and disadvantages of
this space.

Pacific Biosciences,4 commonly known as PacBio, provides one approach to long-read
technology [112]. In their approach, each individual molecule of DNA is denatured to be
single-stranded and then isolated into a small hole called a zero-mode waveguide (ZMW).
Like Illumina, the sequencers rely on an image sensor that detects colored fluorescent labels
attached to reagents. Each ZMW is initialized with its own molecule of DNA polymerase,
i.e., the enzyme that constructs DNA, which we discussed in Section 2.2. The reading cycle
begins when reagents are added to the ZMW. As the DNA polymerase binds a complemen-
tary base to the current base on the strand, the new base’s label is detected by the image
sensor. For example, if the current base on the strand is a G, the DNA polymerase will attach

4http://www.pacificbiosciences.com/



CHAPTER 2. WORKING WITH GENOMIC DATA 15

a C to the strand. If the C is characterized by blue labels, the image sensor will register a
blue light and infer that the base just read was a G.

Rather than using a light-based approach like Illumina and PacBio, Oxford Nanopore’s
technique is based on detecting fluctuations in electic current [6]. They create a substrate
with very high resistance and then insert nanopores, each of which is only a few nanometers
wide, into its surface. Then, a voltage is applied to the substrate. Since the substrate has high
resistance, current can only flow through the nanopores. An electrode is attached to each
nanopore to measure the current flowing through it. If anything flows through the nanopore,
it will cause a disruption in the current; measuring that disruption gives information about
what passed through the nanopore.

During sequencing, DNA molecules are brought near the substrate. An enzyme cor-
responding to each DNA molecule helps it attach to a nanopore and guides the molecule
through the nanopore, one base at a time. The enzyme also unzips the DNA molecule so
it can flow through the nanopore as a single strand. Then, as each base flows through
the nanopore, it alters the nanopore’s baseline current in a characteristic way, allowing the
nanopore’s electrode to detect the current base [95].

Long-read technology, with its greater read lengths, has the potential to make reconstruct-
ing reads to obtain the sample’s complete genome much easier than with second-generation
technology. Another advantage of long-read technology is the ease of sample preparation;
since these are single-molecule technologies, no sample amplification is necessary, which is
advantageous because amplification can introduce biases that complicate downstream anal-
ysis.

Despite its appeal, however, long-read technology currently suffers from some disadvan-
tages. First, the throughput is low, so the sequencers cannot produce reads of sufficiently
high coverage and low cost for this technology to be truly market-ready. Second, the reads
produced have much higher error rates than second-generation reads. Much of the existing
bioinformatics software is designed with many assumptions about second-generation reads,
especially their very low error rates. Therefore, new software must be designed to cope with
the specific characteristics of long reads, should they eventually become economically viable.

2.4 Data Processing Overview

Now that we have covered how sequencing works, we will discuss what comes next, i.e., how
we recover a sample’s full genome from the output of a sequencer. Since second-generation
sequencing technology, and Illumina in particular, is by far the most popular technology
dominating the market today, we will focus on algorithms and software that are specifically
designed for the unique characteristics and error types of Illumina sequencer output.

The process of reconstructing the genome from sequencer output is called variant calling.
It is so named because its aim is to find variants between the sample genome and the reference
genome, or representative human genome. Since humans share 99.9% of our DNA, only one
in 1,000 bases is expected to be a variant, or about three million bases total.
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Figure 2.4: End-to-end pipeline, from DNA to variant calls. Used with permission from
Ameet Talwalkar.

In Figure 2.4, we illustrate the steps involved in variant calling. The top line of the
figure shows the sample genome, with its variants in red. Next, the figure depicts the reads
produced by the sequencer; some of the reads contain the variants, while others contain
sequencer errors. The reads are shown in a bag because they are entirely unordered when they
are submitted to the variant calling pipeline; thus, part of the problem of processing them is
determining where in the genome they likely originated. Most variant calling pipelines start
with alignment, which is the problem of choosing the location in the genome against which
the read matches best. Once all reads have been aligned, and some preprocessing has been
applied, variant calling tools infer the sample genome from the reads.

A subtle point occurs near the bottom of the figure, in the “Reference Genome + Align-
ment” band. Note the box labeled “Alignment Errors.” If we compare this box to the reads
in the “Sequenced Genome” band, we can see that the second read, which has both a red
variant and a light blue sequencing error, is shifted to the right; it should be in line with
the read above it. Alignment errors like this one are one of the main factors that complicate
variant calling; in fact, we will discuss this extensively in Chapters 4 and 5.

Several file formats are involved in this pipeline, which we summarize in Figure 2.5. The
reads produced by the sequencer start out as raw intensity images; the process of base calling
converts them to text, containing both read sequence and quality scores, which is stored in
the FASTQ format. FASTQ reads are aligned and output as SAM/BAM files, which are
preprocessed for variant calling. These analysis-ready SAM/BAM files are then fed into
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Figure 2.5: File format flowchart, from raw images from the sequencer to analysis-ready
variants.

variant calling, which sometimes involves a sequence assembly component. After variants
are produced, they can be analyzed for myriad interesting medical and scientific applications.

In the remainder of this chapter, we will discuss each of the steps in this pipeline, with
a level of detail proportionate to each step’s relevance to this thesis. In Section 2.5, we will
briefly define base calling. Then, in Section 2.6, we will more thoroughly discuss alignment,
as it emerges throughout this thesis as an important problem. Finally, we will provide some
background on variant calling in Section 2.7, including the intermediate steps that precede
it, as well as its occasional reliance on assembly.

2.5 Base Calling

Base calling is the process of converting images produced by the sequencer of the fluorescent
labels attached to reagents to letters representing the four DNA bases. When it comes off
the sequencer, each read is initially a series of intensity images produced by the sequencer’s
image sensors. Base calling converts these intensity images from the sequencer to the FASTQ
file format. In the FASTQ format, each read is represented by an ID, the read sequence,
and a quality string whose length is the same as the length of the read. There is one
quality character per base in the read sequence; these are called base quality scores, and they
represent the base caller’s confidence in its assessment. Figure 2.5 shows how base calling
fits into the analysis pipeline.

An excellent review paper [68] provides illustrations of common problematic phenomena
that take place in Illumina sequencers that make base calling more difficult. For example,
crosstalk occurs because there is some overlap in the intensity signature of the fluorescent
labels associated with each of the four bases. Ideally, the intensities would be nicely separated
so they could be distinguished easily; however, in practice, their slight overlap generates
confusion for base calling.

Base calling algorithms aim to make correct inferences despite these sources of ambiguity.
To do so, they leverage machine learning algorithms of varying sophistication, from linear
classifiers like support vector machines (SVMs) to unsupervised models with many parame-
ters. These models incorporate sequencer-specific knowledge, so they explicitly account for
the various sources of uncertainty. Example base calling algorithms are BayesCall [56], Ibis
[59], and All Your Base [91].
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2.6 Alignment

We begin by providing an overview of the short-read alignment problem and some general
information about how alignment algorithms, or aligners, work. Then, we briefly discuss
each of the three categories into which these algorithms fall, namely, algorithms that hash
the reads, algorithms that hash the reference genome, and algorithms based on the Burrows-
Wheeler transform (BWT). The reason we present alignment in detail is twofold: first, this
work was born out of our experiences gained by developing an alignment algorithm; and
second, this work is largely focused on the difficulties presented during the alignment stage
by the redundant structure of the genome and our efforts to ameliorate this issue.

Overview

Starting with a read, alignment is the problem of determining where in the genome it most
likely originated. Alignment uses the reference genome, which we defined in our description
of Sanger sequencing in Section 2.3. Many reads will match the reference exactly, while
others will differ by up to a few bases, due to either sequencing errors or true variants. Some
reads will differ quite a bit more due to larger genomic changes, which we discuss further in
Section 2.7.

As Figure 2.5 shows, the input to the alignment step is reads, stored in FASTQ files,
and the reference genome, stored in a FASTA file. The results of alignment are written in
the text-based Sequence Alignment/Map (SAM) format, or in the binary BAM format once
compressed [37]. The SAM format consists of a header and one entry per read, where each
entry consists of the read’s ID, its mapped location, the read itself, as well as a few other
quantities of interest by which the aligner may give extra information, e.g., the number of
edits between the read and the reference.

Recall from the discussion of second-generation sequencing in Section 2.3, and especially
Figure 2.3, that reads come in pairs. Tools may align each read individually (single-end
alignment), or they may align the pair jointly (paired-end alignment). Paired-end alignment
is almost always preferable due to the extra information it provides, which can be extremely
useful for dealing with ambiguity. For example, say the first read in a pair maps to many
different locations equally well, while the second read maps to only one location. Even
though the first read cannot be unambiguously aligned on its own, using the information
from its paired read, it can be mapped uniquely, i.e., to the candidate near the second read’s
single location. Thus, while most aligners provide both single-end and paired-end alignment
modes, paired-end is almost always used.

The problem of alignment has been well-studied for several years, and many tools have
been developed. The tools tend to use algorithms that fall into three categories, each of
which we discuss below.



CHAPTER 2. WORKING WITH GENOMIC DATA 19

Hashing the Reads

Many aligners utilize hashing in order to find candidate locations against which a read may
match. After a candidate is found, the aligner compares the read to the reference genome
at the location to compute how well it matches. These algorithms are often called seed-and-
extend algorithms, where seed refers to using a substring, or seed, of the read to find possible
matches, and extend refers to comparing the full read to the reference genome. Many hash-
based aligners use an algorithm such as Smith-Waterman to efficiently execute the extend
phase [121].

One group of hash-based aligners relies on hashing the reads and then scanning the
reference genome. As each substring of the reference genome is scanned, the aligner consults
the index for reads that match against the current substring. Instead of hashing the entire
read, only a portion of the read is hashed; that portion is called a seed. A portion is hashed,
rather than the whole, in order to allow a read to align against the reference even if it
differs due to a sequencing error or true variant. In the case of such a read, if it has a
seed that matches the reference exactly, candidate locations may still be suggested by the
aligner. Aligners that take this approach, ordered by date of publication, include ELAND
[24], RMAP [120], MAQ [75], ZOOM [83, 143], SeqMap [54], CloudBurst [113], and SHRiMP
[110, 26].

Few modern aligners use the technique of hashing the reads. The advantage of this
approach is that the memory footprint is adjustable. The algorithm designer and the user,
if adequate parameters are provided, can decide how many seeds should be hashed. If fewer
seeds are chosen, less memory is required, at the cost of more hash misses and potential
reductions in the number of reads that can be aligned. For example, a read that mismatches
the reference in all seeds that are hashed but matches the reference in a location that was
skipped will be unmappable with the low-memory hashing approach, whereas if the memory
were increased, the read could be mapped. Similarly, if more seeds are selected, the hash
will require more memory but will result in a higher fraction of the reads being mapped.
This approach quickly becomes unwieldy when attempting to support more mismatches.

Hashing the Reference

A second category of aligners hash the reference instead of the reads. Like aligners that
hash the reads, these aligners employ the “seed-and-extend” approach of generating a list
of candidate locations and then comparing the read against some or all of the candidates
to find the matching location. Aligners in this category create an index of the genome and
look up seeds from the read to get candidate locations for where reads could align. Many
different aligners of this type exist, including, by date of publication, BLAST [5], BLAT [57],
SOAP [79], PASS [16], MOM [29], ProbeMatch [58], NovoAlign [100], PerM [18], BFAST
[45], mrFAST [4], mrsFAST [39], SNAP [139], Stampy [84], Isaac [104], BWA-MEM [72],
and Mosaik [69].
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Seed Positions 

AAAA 0, 8, 28 

ACCT 4, 16, 24 

GTGA 12, 20 

… … 

AAAAACCTAAAAGTGAACCTGTGAACCTAAAA 

ACCTATAA 

4 16 24 

Figure 2.6: Aligners that hash the reference leverage an index of short seeds and their
positions in the genome.

We illustrate this approach in Figure 2.6, where we attempt to align the read ACCTATAA.
We begin by looking up the seed ACCT in the index, which we precomputed by hashing each
seed from the reference along with a list of positions at which that seed occurs. The index
indicates that the seed appears in the reference at positions 4, 16, and 24. Then, we compare
the full read against the reference, anchored by the seed at each of these positions, to find
the best match. In this case, the read matches positions 4 and 24 equally well, with one
mismatch.

One advantage of hashing the reference instead of hashing the reads is that the index must
only be recomputed whenever the reference genome changes, which is infrequent (i.e., once
every few years). In contrast, when the reads are hashed, this must be done for each new
dataset, since each dataset is unique. Another advantage of hashing the reference is that
only one index is necessary per seed size, regardless of how many mismatches the aligner’s
developers wish to support. These aligners are often quite fast as well, especially SNAP and
BWA-MEM. A disadvantage of hashing the reference is that it requires a lot of memory. For
example, the SNAP aligner’s index of the full human reference genome hg19 is about 32 GB.
However, as memory prices are declining rapidly, this is not a significant obstacle.

Burrows-Wheeler Transform

An alternate approach to alignment relies on the Burrows-Wheeler transform (BWT) [14].
Some aligners use a related index based on the BWT, which is called the FM index [31].
The basic idea of the BWT, which is a fairly complicated transformation, is to compress a
group of substrings using a trie structure [60] so that similar substrings are stored together.
Aligners in this category perform the BWT on all substrings of the reference genome. Then,
in order to match a read against the reference, the aligner traverses the trie, backtracking
whenever a mismatch is encountered. The most well-known and widely-used of the BWT-
based aligners is BWA [74], but others include SOAP2 [80], Bowtie [67], Bowtie2 [66], and
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GEM [88].
The main advantage of the BWT-based aligners is their low memory footprint, due to

the compressed nature of their method of storing the reference. However, the tradeoff is that
as more mismatches are supported, more backtracking will result, so speed will suffer.

2.7 Variant Calling

Variant calling is the problem of deducing a sample’s variants with respect to the reference
genome based on a set of reads that have been aligned to the reference. As Figure 2.5
shows, the input to variant calling is a SAM or BAM file containing the aligned and possibly
preprocessed reads, and the output is a variant call format (VCF) file [127]. A VCF file
contains a header as well as one entry per variant, each of which contains the position and
genotype of the variant (including its zygosity, defined in Section 2.2) and other information
from the caller such as a variant quality score.

We begin by discussing several intermediate steps that are often performed before at-
tempting variant calling on aligned reads. Then, we describe variant calling techniques and
tools, first for SNPs and indels and then for structural variants. Although this section fo-
cuses on alignment-based variant calling, assembly is sometimes involved in variant calling
in addition to or instead of alignment. Thus, we end the section by defining assembly and
explaining how it can be used as a part of variant calling.

Intermediate Steps

Before aligned reads can be analyzed, some intermediate steps are necessary. One reason
is the occurrence of sequencer-specific systematic errors; some have been described for the
Illumina sequencer [92]. They can occur due to factors like uneven amplification, leading
some segments to be overrepresented in the sample. Another contributing factor is the
presence of certain motifs like high GC composition that can make the sequencers more
likely to read the sequence incorrectly. Errors like these, as well as others, can complicate
downstream processing. Therefore, the following intermediate steps are often employed
before performing variant calling on aligned reads in order to improve accuracy.

First, reads must be sorted by the position in the reference to which they aligned. Usu-
ally, when an aligner produces an alignment, it outputs the reads in the order in which it
encountered them, which in turn corresponds to the (random) order in which they were
sequenced. However, many downstream tools prefer to operate on reads by their location;
therefore, sorting is necessary.

Duplicate removal is the process of marking reads that are likely duplicates due to biases
in the library preparation phase. As the authors report in [99], duplicate reads are identified
when all reads in a group are aligned to the same position with the same orientation (i.e., all
forward or all reverse-complement). To avoid biasing downstream tools, e.g., by erroneously
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inflating the coverage at the aligned position, all but one member of the group of duplicates
are discarded; the read with the highest quality is retained.

Another step is local realignment, which targets reads that have been misaligned due to
indels. For example, if there has been a small insertion, reads occurring near the insertion
may have been aligned slightly incorrectly, posing difficulties for variant calling. In local re-
alignment, the algorithm identifies where realignment may be necessary and then improves
the alignment of reads in the vicinity, e.g., by generating alternative sequences to represent
the reference with the possible indel embedded in them. The GATK paper [27] has a com-
pelling illustration showing how local realignment can greatly improve the consistency of the
reads around an indel.

Another important prerequisite for variant calling is base quality score recalibration
(BQSR). Recall that base calls are associated with a quality score representing the con-
fidence that the base call is correct. After the reads’ alignments have been adjusted, if
necessary, the goal of this phase is to check, for each quality score, whether the number of
mismatches corresponds to the error probability associated with that quality score. If not,
the tool will adjust the quality score so the error probability is more consistent with the
data.

Frameworks like the GATK [27], which we will discuss in more detail when we introduce
variant calling, and ADAM [99] provide implementations of these four steps. The GATK’s
implementation is available via the Picard5 suite. In addition, the SNAP aligner [139] in-
cludes sorting and duplicate removal.

Calling SNPs and Indels

The simplest variants are SNPs and indels. A single nucleotide polymorphism, or SNP, is
a single-base difference between the sample and reference obtained via substitution of one
base for another.

Figure 2.7 illustrates a SNP; we obtained the image using IGV [109, 129]. The band at
the top of the figure consisting of consecutive vertical bars represents the coverage, or number
of reads, overlapping each position. Gray bars indicate that the reads match the reference,
while the blue bar near the middle of the band indicates that all the reads overlapping the
reference at that position differ from the reference. The horizontal bars making up the rest
of the figure represent reads that have been aligned to this section of the reference. Gray
reads are aligned in the forward direction, while white reads represent reads whose reverse
complement has been aligned. Where the reads are solid gray or white, they match the
reference. However, underneath the blue bar in the top band, we see that all the reads
indicate that the sample has a C, while the reference has a different base. This C is a SNP,
since the sample differs from the reference in one base via a substitution.

Indel is the shorthand we use to refer to an insertion or deletion between the sample and
the reference. In this section, we use indel for short insertions or deletions that are 50 bases

5http://broadinstitute.github.io/picard/
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Figure 2.7: Reads showing a single nucleotide polymorphism (SNP) in the sample DNA.

or fewer. Longer indels fall under the category of structural variants, which we will define
later in this section. For example, if the reference in a given location is ACTG, a one-base
insertion of C between the sample and the reference would result in the sample genome being
ACCTG at the corresponding location. Likewise, a one-base deletion of T would yield ACG for
the sample genome.

Early variant calling algorithms used simple rules to call variants [98]. One rule that was
used was an 80/20 rule, where if 20-80% of the reads indicated one allele and the remaining
reads indicated another, the tool would call a heterozygous SNP at that location. Otherwise,
the caller would consider the location to be homozygous, either for the reference base or for
the base indicated by the reads.

For example, say at one location the reference is C, and there are 10 overlapping reads,
with 3 of the reads indicating an A, while the remaining 7 reads indicate a C. The tool
would call the location as a heterozygous SNP, with the sample having both A and C at that
location. Another sample might also have 10 reads overlapping this location; however, in
the second sample, one read implies a G, while the other nine imply a C. The caller would
infer that the second sample is homozygous at this location, matching the reference. The
one read that indicates a G may be misaligned, or it may contain a sequencing error.

Modern, state-of-the-art variant callers employ a probabilistic framework rather than
simple rules in order to incorporate uncertainty from the reads [98]. Assuming that the
genotype likelihood P (X|G) (i.e., the probability of the data given the genotype) can be
computed, these tools use Bayes’ Rule to obtain the posterior P (G|X), where X is the data
and G is the sample genotype. Then, they select the genotype that maximizes the posterior.

Variant calling has been studied for several years, resulting in a wide range of solutions
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of varying complexity and effectiveness. Early, simple tools for variant calling include MAQ
[75], mpileup [71], and SOAPsnp [78]. By far the most widely-used variant caller, though, is
the Genome Analysis Toolkit (GATK) [27], which also has functionality for improving data
quality (discussed above). The GATK is a sophisticated and computationally expensive
tool that aims to reduce false positive calls by incorporating prior knowledge from variant
databases about probable locations for SNPs and discounting any calls that lie outside these
likely locations. That is, from a Bayesian perspective, GATK incorporates an informative
prior p(G).

Other more recent variant callers include FreeBayes [32], SOAPindel [81], and ISAAC
[104]. However, these tools have yet to displace GATK as the state-of-the-art. Practitioners
are hesitant to make changes to their pipelines, since the pipelines often require regulatory
approval if they are used in a clinical setting. Therefore, while research prototypes may
embody useful ideas, they have a great deal of difficulty gaining adoption.

In this work, we use mpileup and GATK. We chose these tools because we wanted to
explore how both simple and sophisticated tools would succeed or stumble in the similar
regions, and both mpileup and GATK are well-known in their respective categories. We will
discuss our usage of these tools in Chapters 4 and 5.

Detecting Structural Variation

We continue our description of variant calling by defining structural variants and briefly
discussing detection techniques. Structural variants are an important type of variation, so
part of our motivation for including this discussion is for completeness in our presentation
of variation and its calling. Structural variants are also relevant to our demonstration that
the similar regions can be used to improve variant calling in Chapter 5. However, we mostly
focus on how the similar regions impact SNP and indel calling, so this discussion will be
brief compared to that one.

A structural variant (SV), compared to SNPs and indels, is a large change between the
reference and the sample. Figure 2.8 illustrates several types of structural variants. We begin
with deletions and insertions, which of course are the same type of variant as indels. The
difference is that in order to be classified as a structural variant, the insertion/deletion must
be over 50 bases long. Another type is a duplication, in which a segment of the reference is
repeated in another location. The repeat could appear adjacent to the original sequence or
elsewhere. Copy number variation (CNV) is related to duplication, as a CNV refers to when a
sequence is repeated one or more times. Another type of SV is inversion, in which a segment
of the reference is flipped and then re-inserted into the sample genome. For example, given
a reference sequence of ACG, the inverted version would be GCA. A final type of structural
variant is called a translocation, where two segments of the reference are swapped; in some
diseases, portions of one chromosome are swapped with portions of another chromosome.

Structural variant discovery is widely considered to be much more difficult than calling
SNPs and short indels; consequently, the error rates are often significantly higher. Some
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Figure 2.8: Types of structural variants.

well-known tools for SV detection, described in [3], include Variation Hunter [46, 47], Pindel
[138], and BreakDancer [17].

One way to detect structural variants is to consider reads that align improperly, given the
expectation for how paired reads normally align. For intuition, consider that a large deletion
has occurred in the sample. As Figure 2.8 shows, the flanking sequence in the reference
will be adjacent in the sample. Thus, if a fragment is sequenced from the newly connected
flanks, the reads will map further apart than expected in the reference, since they will be
on either side of the deleted sequence that the reference retains. Similarly, in the case of a
translocation, reads in a pair could map to different chromosomes. For example, if there has
been a translocation between chromosomes 5 and 10, a read pair spanning the newly spliced
segments of chromosomes 5 and 10 would map to different chromosomes, even though the
reads belong to a single pair.

Assembly

Assembly is the problem of joining short reads together into longer contiguous sequences,
or contigs, and is usually done by focusing on the reads themselves instead of leveraging a
reference genome to help. A review paper covering the different approaches to assembly and
many of the assemblers in use is available [94]. In this thesis, we focus on alignment-based
approaches to variant calling, some of which use local assembly.

Like alignment, assembly is complicated by the presence of near and exact duplication in
the genome. Though assemblers rely on the assumption that similar reads originated from
the same area of the genome and should therefore be considered jointly, this assumption
often fails because of the presence of repetitive sequence. As a result, the assembler may
incorrectly try to stitch reads together that belong in different regions.

Three main approaches to assembly exist [94]. The first and most primitive is a greedy
approach that makes the best decision as each new read is added, rather than considering
multiple reads to optimize the assembly. This approach was used for the earliest assemblers,
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but it has fallen out of favor since it makes mostly local decisions and cannot take advantage
of longer-range information from paired and mate-pair reads.

The second and slightly more popular approach is based on creating overlap graphs out of
the reads, where a node corresponds to each read, and an edge connects any two reads that
overlap; e.g., the reads ACTT and TTAG would be connected by an edge because they share
the sequence TT. Unlike greedy assemblers, overlap graph assemblers can exploit information
from paired and mate-pair reads due to the graph structure. Though this approach is not
widely used due to the computational expense of constructing the graph, SGA [118] is an
example of an overlap graph assembler.

The third and most popular approach to assembly is based on the de Bruijn graph [13].
In a de Bruijn graph, the edges represent k-mers, and edges connect any nodes whose k-mers
overlap by k−1 bases. Note that k is less than the read length. Then, reads are represented
as paths through the graph. For example, consider the read ACTTGGA. If k = 5, we would
create three nodes from this read, namely ACTTG, CTTGG, and TTGGA. An edge would connect
the first and second nodes, and another edge would connect the second and third nodes.
Then, our read would consist of the path through the three nodes. The disadvantage of this
approach is that it relies on exact overlap among k-mers, so error correction is an important
prerequisite.

In de novo assembly, a reference genome is not used; rather, assemblers leverage infor-
mation solely from the reads to put them together. De novo assembly is the only option for
analyzing a genome that has not yet been mapped; since no reference is available, alignment
is impossible. Small genomes can also be assembled. However, though recent assemblers per-
form better than their predecessors, de novo assembly is generally considered too expensive to
be practically applicable for routinely processing large genomes such as the human genome.
De novo assemblers, in order by publication date, include Velvet [142, 141], ALLPATHS
[15], ABySS [119], SOAPdenovo [77], ALLPATHS-LG [34], SOAPdenovo2 [85], Cortex [52],
Discovar [133], and FermiKit [73].

In contrast, local or targeted assembly relies on aligning reads to the reference genome
first, putting the reads together only in certain regions of interest. Targeted assemblers
include GATK’s HaplotypeCaller [27], Telescoper [12], Platypus [105], and Scalpel [96]. Tar-
geted assembly is used to augment alignment-based variant calling in some situations. Tele-
scoper is used to assemble reads in the telomeres, which are very challenging for variant
calling due to their repeat structure. In addition, the GATK’s HaplotypeCaller utilizes local
assembly to achieve higher accuracy in variant-dense regions.

Another reason to use local assembly is for genotyping structural variants [94]. Suppose
there has been a large, novel insertion of hundreds of bases, i.e., well over a read length,
in a sample genome. The reads near the edges of the insertion may partially map to the
reference, but the reads from the insertion itself will fail to map. Therefore, the only way to
recover the sequence of the insertion is to assemble the reads and then use the pairs of reads
that map to the insertion’s flank to anchor the insertion.
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2.8 Conclusion

Genomics has broad potential to transform research and medicine. In this chapter, we
provided more detail about the specifics of working with full-genome data. From the time
that a patient provides a sample, the sample must be sequenced, and then the sequencer
output must be analyzed via a data processing pipeline until a set of variant calls is produced.
Variants are where a sample differs from the species’ representative genome, describing how
the sample is unique. The variant calls can then be used, for example, to reason about a
patient’s disease in order to recommend the most suitable treatments.

We started by defining some important genomics terms and by discussing the technologies
used to sequence a DNA sample. In the time since DNA sequencing entered the scene, it has
changed dramatically; therefore, we covered the historical techniques as well as current and
future ones in order to provide a context as well as give a sense for the technology’s trajectory.
The first technology, Sanger sequencing, was used for the Human Genome Project and is
still used to provide validation data in certain targeted settings. In response to its high cost
and low throughput, second-generation, short-read sequencers were developed, with the most
prominent sequencers being made by Illumina. In the future, single-molecule technologies
may take over, with their much longer reads potentially further simplifying data analysis.

In this chapter, we focused on second-generation technology and the algorithms required
to transform the raw sequencer output into variant calls. The process starts with base calling,
where reads of the letters A, C, T, and G are produced from the sequencers’ image output.
Then, reads are aligned to the reference genome, or matched up against the subsequence
to which they most likely correspond. After some intermediate steps to improve accuracy,
variant calling algorithms use the information in all the reads covering a particular location
to infer the sample’s genome at that point, including whether or not the sample differs from
the reference.

Despite much work on all aspects of this pipeline, challenges to accuracy remain due to
the complicated structure of the genome. In Chapter 3, we will discuss the nature of that
structure and the difficulties it presents to data processing. In particular, we will focus on
the uncertainty faced during alignment. We will also present our algorithm for characterizing
the structure and locating the similar regions. In Chapter 4, we validate the similar regions
by quantifying how much alignment and variant calling struggle in those regions as compared
to how they perform in the unique regions. In Chapter 5, we present a case study detailing
how the structure inherent in the similar regions we identify may be used to improve variant
calling accuracy in those regions.
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Chapter 3

The Problem of Similarity

3.1 Introduction

Advances in DNA sequencing technologies have the potential to change the landscape of
biological research [114]. Over a decade ago, the Human Genome Project [65] sequenced the
human genome on a $3 billion budget. However, as a result of massively parallel sequencing
machines, which produce short reads, or DNA segments of around 100 characters, sequencing
costs are decreasing at a rate faster than Moore’s Law and have recently broken the $1000
per genome barrier. This technology has the potential for widespread clinical usage in the
near future, pending the development of short-read analysis pipelines of sufficient accuracy
and efficiency.

Prior to semantic analysis, such as whether a person is likely to get cancer, short reads
must be converted to variant calls. Variant calling, which is largely a statistical inference
problem, is the process of constructing a sample genome from the noisy short-read data. It
relies on a reference genome, which is a composite of the genomes of a few donors and was
produced using sequencing technology that is far more expensive and accurate than short-
read technology. The name of this process comes from its goal, which is to find variants
between the sample and the reference; since humans share 99.9% of their DNA, the set of
variants is small relative to the genome size.

Most variant calling algorithms rely on reference-based alignment, which is the problem
of determining for each short read the genome location from which that read likely was
generated. Then, for each location in the genome, variant calling algorithms use all the
reads that aligned near the location to determine whether or not a variant exists. Therefore,
in order to obtain high-accuracy variant calls, it is crucial to perform alignment with as few
errors as possible. Any errors that are made during the alignment stage can lead to variant
calling errors as well, since a read that is placed in the wrong location may give erroneous
information about the presence of variants there. It could lead to true variants being missed,
if the incorrect read matches the reference, or false variants being called, if the incorrect read
differs from the reference. Thus, in order to optimize our variant calling accuracy, we were
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motivated to identify factors that make alignment difficult and then ameliorate them.
We participated in developing the SNAP alignment algorithm [139], which gave us valu-

able insights into the complexities of alignment. Our main finding was that the structure of
the genome itself is an obstacle to accurate alignment because of the presence of near and
exact duplication, or repeats. Repeats make alignment difficult because if a read comes from
a repeat region, there may be multiple, or even many, potential locations where the read
could align. However, as alignment is a computationally expensive stage of the short-read
processing pipeline, in order to reduce their runtime, most aligners are designed to mini-
mize the work they do for any particular read. Thus, most aligners use heuristics by which
they skip some potential alignment locations, e.g., if the aligner detects that part or all of a
location’s sequence appears too often by its standards. Skipping alignment candidates can
cause the aligner to miss the correct alignment location. Therefore, repeats contribute to
alignment errors.

One important observation is that although aligners can be configured to skip reads that
have many potential alignments, this strategy is problematic when the alignment is used
for variant calling. If the aligner avoids placing multi-mapping reads, many repeat regions
will have very few aligned reads, and variant calling in these regions will be difficult or
impossible. The lack of variant calls in repeat regions is undesirable since we usually want
to call variants in the entire genome to facilitate a broad range of studies. In addition, since
there is not only exact duplication but also near duplication, there is often an unambiguous
best alignment for multi-mapping reads, so it is necessary to try to align these reads. For
many reads, given sufficient time and after performing a sufficient number of comparisons,
the correct location may be found.

It is well known that the genome is characterized by repeats; a commonly stated figure
for the human genome is that 50% of the sequence is repetitive. We will discuss this in more
detail in Section 3.2. The genome’s repeats exhibit incredible variation in characteristics like
scale, number of times the sequence is repeated, degree of similarity between repeats, and
more. Following from the repeats’ heterogeneity, some of the repeats cause more trouble for
the aligners than others. Most aligners get accuracy figures over 90%, so clearly, aligners do
not struggle with all 50% of the genome that is repetitive. For example, some of the repeats
are shorter than a read length, so aligners can distinguish between potential alignment
locations based on the unique sequence that the read contains. Other repeats are longer
than a read but shorter than a fragment, so aligners can use paired-end information to
disambiguate; i.e., if one read lies in the repeat while the other one is in a unique region,
the aligner will know to place the ambiguous read near its uniquely-mapping pair.

In order to improve alignment accuracy, rather than considering half of the genome,
which would be unwieldy and unnecessary, we endeavor to identify and focus on the subset
of the repeats that make alignment hard. Therefore, we take a different approach to finding
the repeats that is driven by the perspective of the short reads, in which we seek to identify
the parts of the genome to which it is difficult to align reads. Furthermore, rather than a
binary indicator of whether or not a region is in a repeat, we compute the genome’s similarity
structure, so we know which regions are a given repeat’s neighbors. As we will discuss in
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Chapter 5, knowing the similarity structure provides insight into how to fix alignments since
we know where incorrectly aligned reads were likely to originate, which in turn helps to
improve variant calling accuracy.

In this chapter, we begin in Section 3.2 by providing concrete information about the
repeats in the genome. Then, based on our practical experiences working on an alignment
algorithm, we argue that in many cases, unambiguous alignments are possible, even in the
similar regions; thus, it is worth striving to improve these alignments’ accuracy rather than
just throwing up our hands. In Section 3.3, we describe our initial approach to locating
the similar regions. While this approach was ultimately unsuccessful, due both to the com-
plexity of the algorithm and to some practical infrastructure issues, it is instructive since it
inspired our ultimate approach and because it illustrates the difficulty of computing on the
genome. Section 3.4 introduces the final SiRen algorithm, named for its focus on locating
similar regions. We begin by presenting the basic algorithm and continue by discussing both
algorithmic and implementation optimizations that were necessary to achieve a working tool.
We also discuss the computational setting in which we deployed SiRen. We conclude the
chapter in Section 3.5 with a discussion of the relevant literature.

3.2 Similarity in the Reference Genome

As we discuss in Chapter 2, variant calling pipelines rely heavily on an underlying reference
genome, particularly in the alignment step. In this section, we begin by discussing the
complex structure of the human reference genome, namely, the presence of near and exact
duplication, from a biological perspective. We then illustrate how this structure leads to both
computational and statistical problems in alignment and therefore variant calling. Finally,
we provide some of our experiences working on short-read alignment that relate to similar
regions in the genome.

Biological Perspective

A recent review paper by Treangen and Salzberg [130] provides an excellent discussion of the
origins and characteristics of repeats in the human reference genome. They discuss repeats
in the genomes of other species as well; however, we primarily focus on the human genome in
this work, so we will not refer to their observations about other species here. As mentioned
above, approximately half of the human genome is made up of repeated sequence. Repeat
regions can vary along many degrees of freedom, including semantics, degree of identity,
length, spacing, and copy number. Regarding semantics, some of the repeated sequence in
the genome is thought to be non-functional, while other portions seem to have played a role
in our evolution. Repeat sequences can be either exact or near duplicates; near duplicates
present more computational challenges, as we will discuss in the next section. Repeats can
also vary tremendously in length; they can be as short as two base pairs, or as long as millions
of base pairs. The spacing between repeats can vary from none, in the case of repeats that
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are adjacent to each other and are called tandem repeats, to long distances, in the case
of interspersed repeats. Finally, repeats can come in pairs, or they can have many similar
sequences.

We reproduce Figure 3.1 from [130] with author permission. Part (a) of the figure provides
a summary of the different classes of repeats in the human genome, along with many of their
characteristics, including type, number, genome coverage, and length, in base pairs (bp).
Microsatellites, minisatellites, and satellites are short tandem repeats from 2-100 bp. An
example of a microsatellite would be ATATATAT...; the sequence “AT” appears several times,
with each repeat next to the previous one. Short interspersed nuclear elements (SINEs) are
longer, ranging from 100-300 bp, and are spaced throughout the genome. An example of a
SINE is an Alu repeat, which is a well-known and abundant type of transposable element
in the human genome. DNA transposons, 200-2,000 bp in length, are sequences that can
move from one location in the genome to another. Retrotransposons are DNA elements that
can modify DNA by first modifying the RNA after it has been transcribed from the DNA,
and then modifying the DNA through reverse transcription. Long terminal repeat (LTR)
retrotransposons have long repeats, ranging from 200-5,000 bp in length, on each end. A long
interspersed nuclear element (LINE) is 500-8,000 bp in length and, like a SINE, is scattered
throughout the genome. The ribosome is the cell location where protein synthesis occurs;
ribosomal DNA (rDNA) consists of the tracts listed in parentheses in Figure 3.1 and is quite
long with a range from 2,000-43,000 bp. Finally, other large variants such as segmental
duplications range from 1,000-100,000 bp.

Clearly, the repeats in the human genome vary widely in terms of their length and
characteristics. They also vary in terms of their impact on short-read data processing, which
is of course our main concern. We are principally concerned with repeats that are at least as
long as a short read, which is about 100 bp in length. Shorter repeats are not too concerning,
since the read is long enough to contain some unique sequence around the repeat that helps
to distinguish between potential alignment locations. However, longer repeats can present
difficulties when we attempt to align reads to them, since there may be multiple locations
at which the reads coming from those genome locations can align well. In what follows, we
will discuss in more detail how genome repeats impact short-read processing, particularly
alignment and variant calling.

Computational Perspective

If the human reference genome was generated uniformly at random, then processing short
reads of 100 bases would be straightforward, since identical 100-base substrings within the
reference would occur with extremely low probability. However, as we explained in the previ-
ous section, the repeats in the genome can be divided into two categories: exact duplication
and near duplication. Exact duplication is easy to address. First, regions of exact dupli-
cation of a certain size can be located using a simple hash table, with the key being the
substring of the indicated length, and the value defined as a list of locations in the reference
where the substring appears. Second, during alignment itself, when a read aligns to any
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Interspersed repeats
Identical or nearly identical 
DNA sequences that are 
separated by hundreds, 
thousands or even millions of 
nucleotides in the source 
genome. Repeats can be 
spread out through the 
genome by mechanisms such 
as transposition.

Tandem repeats
DNA repeats (≥2bp in length) 
that are adjacent to each other 
and can involve as few as two 
copies or many thousands  
of copies. Centromeres and 
telomeres are largely 
comprised of tandem repeats. 

Short interspersed nuclear 
elements
(SINEs). Repetitive DNA 
elements that are typically 
100–300 bp in length and 
spread throughout the genome 
(such as Alu repeats).

Long interspersed nuclear 
elements
(LINEs). Repetitive DNA 
elements that are typically 
>300 bp in length and spread 
throughout the genome (such 
as L1 repeats).

duplications, such as those found on some human chro-
mosomes30 and even whole-genome duplication, such 
as the duplication of the Arabidopsis thaliana genome31. 
High levels of repetitiveness are found across all king-
doms of life, and plant genomes contain particularly 
high proportions of repeats: for example, transposable 
elements cover >80% of the maize genome32. A recent 
study reported that the short-lived fish Nothobranchius 
furzeri has 21% of its genome occupied by tandem 
repeats, suggesting a possible role for tandem repeats 
in the ageing process33. Even bacterial genomes can 
exhibit repeat content up to 40%, as demonstrated by 
Orientia tsutsugamushi 34. 

From a computational perspective, repeats create 
ambiguities in alignment and in genome assembly, 
which, in turn, can produce errors when interpreting 
results. Repeats that are sufficiently divergent do not 
present problems, so for the remaining discussion in 

this Review, we define a repeat as a sequence that is at 
least 100 bp in length, that occurs two or more times in 
the genome and that exhibits >97% identity to at least 
one other copy of itself. This definition excludes many 
repetitive sequences, but it includes those that present 
the principal computational challenges.

In this Review, we consider the challenges that are 
posed by repeats for genome resequencing projects, de 
novo genome assembly and RNA-seq analysis. We focus 
on two classes of computational tools: software for the 
alignment of NGS reads and software for the assembly of 
genomes and transcriptomes. Some of the more widely 
used programs in both categories are shown in TABLES 

1,2, which illustrates the breadth of tools available. 
Rather than describing the algorithmic details of these 
programs, we will discuss their shared strategies for solv-
ing repeat-induced analysis problems in each situation 
and address some of their limitations.

Box 1 | Repetitive DNA in the human genome 

Approximately 50% of the human genome is comprised of repeats. The table in panel a shows various named classes of 

repeat in the human genome, along with their pattern of occurrence (shown as ‘repeat type’ in the table; this is taken 

from the RepeatMasker annotation). The number of repeats for each class found in the human genome, along with the 

percentage of the genome that is covered by the repeat class (Cvg) and the approximate upper and lower bounds on 

the repeat length (bp). The graph in panel b shows the percentage of each chromosome, based on release hg19 of the 

genome, covered by repetitive DNA as reported by RepeatMasker. The colours of the graph in panel b correspond to 

the colours of the repeat class in the table in panel a. Microsatellites constitute a class of repetitive DNA comprising 

tandem repeats that are 2–10 bp in length, whereas minisatellites are 10–60 bp in length, and satellites are up to 100 bp 

in length and are often associated with centromeric or pericentromeric regions of the genome. DNA transposons are 

full-length autonomous elements that encode a protein, transposase, by which an element can be removed from one 

position and inserted at another. Transposons typically have short inverted repeats at each end. Long terminal repeat 

(LTR) elements (which are often referred to as retrovirus-like elements) are characterized by the LTRs (200–5000 bp) 

that are harboured at each end of the retrotransposon. LINE, long interspersed nuclear element; rDNA, ribosomal 

DNA; SINE, short interspersed nuclear element.
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Figure 3.1: Treangen and Salzberg’s summary of repeats in the reference genome [130]. (a)
Types of repeats and their characteristics. (b) Per-chromosome repeat prevalence.

region of exact duplication, it can be marked as ambiguous since it is impossible to locate it
uniquely.

At this point, it is natural to ask how much of the genome is characterized by exact
duplication. The simple hashing strategy just mentioned works well for a single chromosome,
but it fails on the genome due to inordinate memory requirements. Therefore, we employ
the strategy we outline in Section 3.4, and in Figure 3.5 in particular, setting the merge
distance h to 0. We thereby determine that exact duplication makes up 5.2% of the genome.

Unfortunately, even in theory, near duplication is a drastically more challenging problem
to tackle. First, locating near-duplicate regions is much more difficult, requiring unsupervised
approaches like clustering that are quite expensive given the scale of the genome. Many
approaches exist for finding repeats; however, they do not meet our needs for several reasons,
which we will discuss in detail, both in Section 3.5 and in Chapter 5. Moreover, even if
suitable regions of near duplication are identified, analyzing reads that align against them
is complicated. Since these are regions of near duplication, there is often an unambiguous
best answer to where a given read originated. However, to find this location, an alignment
algorithm must compare the read to all locations associated with a region of near duplication.
Performing these comparisons can be quite expensive, and the common practice of using
heuristics to prune the search space introduces errors.

Recall that alignment is an intermediate step in short-read processing, and our ultimate
goal is to call variants. Nonetheless, alignment errors resulting from near-duplicate regions



CHAPTER 3. THE PROBLEM OF SIMILARITY 33

!"#$%&'()#*$'+$,-*-).&-/0$

1$

Heterozygous? Missed Variant 

Figure 3.2: Alignment errors lead to difficulty during variant calling.

can also cause variant calling errors, as we illustrate in Figure 3.2. In the figure, the top
line represents the sample genome, and the two cyan regions indicate locations in the sample
genome that correspond to regions of near duplication in the reference genome. While most
of the short reads are correctly aligned to the underlying sample genome, a few of the reads,
which are marked in red, are aligned incorrectly. As the figure shows, these alignment errors
can introduce errors in variant calling. First, consider the region on the left which has two
variants, denoted in pink. However, due to the incorrectly aligned read, we may miss the
second variant. Second, if we look at the region on the right, we see that the sample has a
single variant in that region. However, since we have some misaligned reads, we end up with
a conflicting story for whether a variant is present; half of the reads say yes, and half say no.
This split might lead us to assume that a systematic sequencing error is the culprit for this
situation. We also might assert that the sample is heterozygous, i.e., its two corresponding
chromosomes differ at this location.

We observed this issue in our dealings with real data from the Venter genome, which
we obtained via the SMaSH data and benchmarking suite [125]; see Figure 3.3 for details.
The data is from two regions in chromosome 22 that are similar to each other. The top
track is the true variants, and the lower tracks are the reads that aligned to each region.
The visualization is from IGV, which is described in [109] and [129]. Some reads aligned
correctly, and others aligned incorrectly; this is indicated by the “Correct” and “Errors”
labels. The correct reads aligned to region 1 indicate the presence of a homozygous variant
at the emphasized location, which is true, while the errors do not. In region 2, we see the
reads that should have aligned to region 1 indicating a variant where one does not exist.
Hence, near-duplicate regions in the genome can cause problems not only in the alignment
step, but throughout the entire variant processing pipeline.

A natural question is whether alignment difficulties can be ameliorated through the use
of paired-end data, which we discussed in Chapter 2. The answer depends on the length
of the repeats in question. Certainly if a repeat is longer than a read but shorter than
a fragment, paired-end data can be very useful, since even if one read in the pair aligns
to the repeat region, the other read may align to unique sequence nearby. The read that
aligns to unique sequence near one instance of the repeated sequence can help the aligner
disambiguate between multiple potential alignment locations. If the repeat is longer than
the fragment length, however, paired-end data will be of limited use for choosing among
multiple good alignments, since the entire pair may align equally well to each instance of
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Figure 3.3: Alignment errors in real data from the Venter genome.

the repeat. Looking ahead, in Figure 4.8, we provide information about the lengths of the
similar regions we identify. Many similar regions are shorter than a fragment; however, they
still present difficulties for alignment due to the fact that regions are often close together.

One way to increase the set of repeats the aligner can align to uniquely is to use multiple
libraries, each with a different insert size, as discussed in [12]. For example, a common insert
size used to prepare short reads is around 500 bp. Therefore, if a repeat is longer than about
700 bp, it will be difficult to align reads generated from that sequence. If another library is
used, say with a long insert size of several thousand base pairs, read pairs from this library,
often called “mate pairs,” will be able to align uniquely even in the presence of much longer
repeats of a few thousand bases. Therefore, by adding another library, we can confidently
align reads to more repeat regions. However, as Figure 3.1 indicates, even with a mate pair
library, some long repeats will continue to cause confusion.

An exciting recent development, which we discuss in Chapter 2, Section 2.3, is long reads
made available via third-generation sequencing technology, from companies such as Oxford
Nanopore1 and Pacific Biosciences, or PacBio2. Rather than generating paired reads of
about 100 bp each, these new sequencers produce single reads that are one to two orders
or magnitude longer, i.e., from 1k-10k bp. Like long-insert libraries, these reads enable
unique alignment to repeats that would make confident alignment of short reads impossible.
However, we face the same difficulty as with mate-pair libraries, which is that some repeats
are longer than these reads, so we still cannot align uniquely to those repeats. For example,
an analysis of mappability of 1k bp reads shows that some biologically important regions

1https://www.nanoporetech.com/
2http://www.pacificbiosciences.com/



CHAPTER 3. THE PROBLEM OF SIMILARITY 35

remain unmappable with these reads [82].
In what follows, we will discuss some of our practical experience gained from working on

an alignment algorithm. While the details of the alignment algorithm itself are outside the
scope of this work, by participating in its development, we gained valuable insights into the
difficulties in aligning short reads that are caused by repeat regions.

Experiences Working on Alignment

We participated in the development of the SNAP alignment algorithm [139]. SNAP is a
seed-based aligner which first builds an index of the reference genome, where the key is a
seed, which is a short genome substring around 20 bases long, and the value is a list of
positions at which the seed occurs. SNAP puts all overlapping seeds into the index rather
than only disjoint seeds. To align reads, SNAP selects multiple seeds from the read and looks
them up in the index to get candidate alignment locations. It then performs an edit distance
calculation between the read and the candidate location in the genome to determine whether
the location is a good match. SNAP indexes the seeds rather than read-length substrings to
allow for some mismatches between reads and the genome, which could be caused either by
sequencing errors or true variation between the individual being sequenced and the reference
genome. Even if the read has some mismatches, a few of its seeds will likely match the genome
exactly, allowing SNAP to find some good candidates for alignment. Of course, SNAP uses
many clever optimizations to reduce the runtime, such as only comparing against genome
locations that are indicated by multiple seeds from the read; however, we will not discuss
those in detail.

We performed a parameter sweep to determine which of SNAP’s parameters affect its
performance. The metrics of interest were the error rate, the fraction of the reads that SNAP
could confidently align, and the speed. By “confidently align,” we mean that SNAP is sure
about the position it chose because the next-best position is worse in terms of edit distance
by at least one edit. We discovered that the only parameter that has a significant impact on
these metrics is m, or “max hits,” which is the cutoff for seed popularity. Normally, SNAP
chooses a seed from the read and looks it up in the index, and the index provides a list of
positions at which that seed occurs. Then, it compares the read against the sequence at those
positions. However, if the number of positions at which the seed occurs is greater than m,
SNAP will not compare the read against any of the positions indicated by the overly popular
seed. The reason for this parameter is to reduce the number of comparisons performed and
therefore increase the speed. This strategy is helpful in the case of degenerate seeds that
occur many thousands of times in the genome. However, the cost is that we may miss the
correct alignment location.

In Figure 3.4, we provide a quantitative demonstration of this phenomenon. In part (a)
of the figure, the graph shows the error rate and the fraction of the reads that SNAP aligned
confidently as m increases. As m increases, SNAP is able to align more reads, since it explores
more potential alignments. Another benefit is that the error rate substantially decreases.
This decrease can be attributed to the fact that SNAP performs more comparisons, so it
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Figure 3.4: Effect of the “max hits” parameter on (a) error rate and fraction of reads aligned
and (b) speed for the SNAP aligner.

is less likely to choose the wrong location. Clearly, some frequently-occurring seeds can
provide valuable information about where a read should be aligned; this suggests that there
is unique sequence around the popular seeds that allows SNAP to unambiguously align the
reads. However, in part (b) of the figure, we see that the cost of exploring more genome
locations is significantly reduced speed, which is obviously undesirable.

Based on these observations, we were motivated to learn more about similar regions in
the genome. Clearly, during alignment, the similar regions cause a lot of difficulties. It is
predictable that large values of m would cause a reduction in speed; however, it is somewhat
surprising that increasing m allows SNAP to align reads more confidently and accurately.
This improvement means that the repeats that are represented by these popular seeds are
not just exact duplicates, but are more likely near duplicates. If they were exact duplicates,
comparing against more locations would actually decrease the number of reads you could
confidently align, since for many reads, you would discover that there are multiple locations
at which a given read aligns equally well. However, since in many cases we are able to find
the correct location by doing more comparisons, we are likely hitting similar regions. Though
there may be many locations at which a given read aligns well, in many cases, there is an
unambiguous best alignment for the read. Finding the correct alignment location is crucial
since it will impact variant calling later in the processing pipeline. Therefore, based on our
experiences with alignment, we decided to locate the similar regions, in hopes of eventually
using them to improve alignment accuracy in those regions. In what follows, we will discuss
our initial strategy for locating the similar regions and what we learned from attempting to
implement it.
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3.3 Initial Approach to Locating Similar Regions

Instead of looking for similar regions of arbitrary length with widely varying characteristics,
as they do in some of the previous work, we constrain our search to regions whose character-
istics are more closely related to the short reads themselves. This framing of the problem is
possible since our goal is to improve the accuracy of short-read processing pipelines, rather
than to learn general information about repeat regions in the genome. Therefore, we restrict
our attention to substrings whose length is the same as that of the short reads.

A natural way to find the similar regions is to create a similarity graph that represents
the genome, with a node for each substring and an edge between any pair of substrings that
are similar. The question, then, is how to find the edges. The näıve strategy would be to
do all N × N comparisons, i.e., to compute the Hamming Distance between each pair of
substrings. However, this is intractable since N is approximately 3.1 billion. Therefore, we
must find a way to execute fewer comparisons. Note that while this step is a precomputation,
so the performance does not have to be extremely fast, we still must create a solution that
runs within the resource constraints of our available hardware. It must also complete in a
reasonable amount of time, to enable debugging and parameter selection. In addition, we
may want to rerun our computation when read lengths increase or the reference genome is
updated.

Our initial strategy, which we describe in this section, uses multiple hashes so that simi-
lar substrings co-occur more often than unrelated substrings. This strategy failed, however,
largely due to infrastructure limitations. In Section 3.4, we discuss an alternate, and ulti-
mately successful, strategy for reducing the number of comparisons we had to perform.

Algorithm Sketch

Our initial approach to locating the similar regions was inspired by our observations about
locating regions of exact duplication, i.e., that you can do so easily by hashing each over-
lapping substring of a given length, say the length of a read, or R. The key is the substring,
and the value is a list of positions at which that substring occurs. Then, each (key, value)
pair with two or more entries in the value corresponds to an instance of exact duplication.

If two substrings are similar to each other, they would hash to different locations in the
map, and we would not receive any indication that they are related. Therefore, we cannot use
a standard hash map to recognize near duplication. Instead of hashing on the entire substring
of length R, like we do in the case of exact duplication, to locate the similar regions, we hash
on a subset of the substring. Rather than choosing a contiguous subset of the substring on
which to hash, we instead choose C random columns of the substring, i.e., positions in the
substring. With this hashing input, the probability that two unrelated substrings will hash
jointly is 1/4C since there are four possible values for each column (the four DNA bases A,
C, T, and G), which will be a very small value for most choices of C. However, the situation
is somewhat different for two related substrings. Two substrings with a fraction P of their
bases in common will be much more likely to hash together; the probability is PC , where



CHAPTER 3. THE PROBLEM OF SIMILARITY 38

p(same bucket) Expression Value for C = 16 and P = 0.9
Two random substrings 1/4C 2.33e−10

Two P -similar substrings PC 0.19

Table 3.1: Hashing probabilities for random vs. similar substrings.

P is much larger than 1/4. In Table 3.1, we provide the values of the probabilities that
unrelated and related strings will jointly hash given example parameters.

Given our choices of P and C, the probability that two similar substrings will co-occur
is still quite low at 0.19. We would like to increase our chances of finding similar substrings
without at the same time generating lots of false positives, i.e., strings that are not actually
similar hashing together. Thus, we add another step to our approach. Instead of hashing the
substrings once, under a particular set of C columns, we hash the substrings many times with
H independent hash functions. The independent hash functions are obtained by different
selections of C random columns. Then, similar substrings will hash together much more
often than random substrings.

The expected number of buckets B in which two substrings will jointly hash is given by
B = p(same bucket) ∗ H. Since we have H hash functions, each of which leads to a set of
buckets, we have H sets of buckets. If two substrings are colocated in at least B buckets, we
say they are similar. For our choices of P and C, and setting H = 100, we obtain B = 19
for similar substrings, while still only obtaining B = 2.3e− 8 for random substrings.

This algorithm has three stages. First, we must produce H sets of buckets via independent
hash functions. Our second task is to determine which substrings are similar to at least one
other substring. To do so, for each pair, we must count the number of buckets in which they
co-occur. Then, we say that any pair that co-occurs at least B times is similar. Third, to
find groups of similar substrings, we must find the connected components of the graph.

Implementation Issues

Our implementation strategy was primarily to use Spark [139] to execute what we expected to
be a large computational load in a distributed manner. The first stage of our computation
involves computing the H independent hashes. This strategy proceeded smoothly when
we tried running it on a single chromosome; however, we encountered many issues when
attempting to apply it to the full genome. This complication was mostly due to our choice
to run our jobs on Amazon EC23, a cloud-based distributed computing platform where users
can deploy their virtual machines on Amazon hardware. Though the hashing jobs often
completed successfully, some of our jobs failed due to being unable to publish their data
to S34, Amazon’s cloud storage service. This difficulty was due to transient errors with S3.

3aws.amazon.com/ec2
4aws.amazon.com/s3
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Thus, we had to rerun many of our hashing jobs, incurring extra monetary costs and delaying
our research.

For the pair counting task, we used a MapReduce-style computation. For each hash, we
iterate over the buckets; for each bucket, we enumerate the pairs. During the Map step of
the computation, we emit a tuple of the form (pair, 1), where the one indicates that the
pair co-occurs in one bucket. The Reduce step involves counting how many times each pair
co-occurs by grouping tuples by their key, i.e., pair, and summing the values. Again, we
encountered problems trying to read the hashes from S3 and then publish pair counts back
to S3. It is possible that in the time since we attempted this, S3 has improved such that
this task could be run successfully. However, at implementation time, this proved to be an
intractable obstacle, and we could not wait for S3 to fix these issues. We also generated
several terabytes of intermediate data since we had to retain all H = 100 hashes, and our
storage costs were significant. Even with generous support from Amazon, we exhausted our
budget through many attempts to complete our jobs. Therefore, we made the decision to
abandon this approach.

We would like to note that selection of optimal values of the parameters of this algorithm,
i.e., C, P , and H, was impossible due to the difficulties in running our implementation. We
chose reasonable initial values based on our experience with alignment. If further work along
these lines were to be attempted, a parameter sweep would be appropriate.

In the following section, we will describe what proved to be a successful, tractable ap-
proach to identifying the similar regions in the genome. It also involves the paradigm of a
similarity graph of the genome. However, the subsequent techniques we employed to build
and process the similarity graph proved to be more amenable to our computational setting.

3.4 SiRen

In this section, we will discuss the SiRen algorithm. It was inspired by our difficulties with
our initial approach, which we describe above. We streamlined our approach; and even with
a more straightforward algorithm, we had to perform many algorithmic optimizations and
implementation tricks to render it tractable. We take a much more constrained approach to
finding similar regions than most of the previous work, which we discuss in Section 3.5; this
also helps us simplify our problem. We begin by presenting the core of the SiRen algorithm,
which is based on applying the well-known union-find algorithm to a similarity graph that
represents the genome. Then, we discuss some significant optimizations that we had to make
in order to actually run this basic algorithm; they involved leveraging an index to reduce
the number of comparisons we had to perform and partitioning the graph so that we could
parallelize our approach. We also describe some of the implementation choices that we made.
Finally, we explain how we deployed our SiRen tool.
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Detecting Similar Regions with SiRen

We have developed the SiRen algorithm for detecting similar regions in the reference genome.
We begin by creating a similarity graph to represent the genome. In our graph, there is a
node for each overlapping substring of length R, where R is the length of the short reads
of interest; we have approximately three billion nodes. There is an edge between any two
nodes for which the Hamming distance between the two substrings is less than or equal to a
given threshold h. We illustrate this in Figure 3.5(a). In the figure, the substring length R
is ten, and the Hamming threshold h is one. Since the Hamming distance between the top
node and right node is one, an edge connects them; however, since the Hamming distance
between the top node and left node is seven, no edge connects them. We then locate the
connected components of this graph and discard any singletons, which we show in Figure
3.5(b). We will further discuss this part of the algorithm below.

Next, we transform our connected components to a set of similar regions. We first map
the substrings corresponding to nodes that belong to connected components back to the
reference. If one or more of these substrings are found to overlap, we merge them. We refer
to the longer substring that results from merging two or more length-R substrings as a similar
region; for clarity, we call a genome substring that does not contain any similar regions a
unique region. In Figure 3.5(c), the top line is the reference genome, and the blue, orange,
and green line segments are length-R substrings that belong to connected components of
the corresponding color, from part (b) of the figure. In the first and fourth group of line
segments, the segments overlap, so each set of segments is merged to create a similar region.
The red segments in the reference genome represent the similar regions; the intervening blue
segments are the unique regions. The second and third similar regions come from a single
segment each since no other segments overlap them.

We further describe this process in Algorithm 1. For simplicity’s sake, the algorithm
states that the similar substrings are stored in a set SS; however, we actually maintain
information about the similarity structure of the genome rather than collapsing all the similar
substrings into a single set. In what follows, we will provide more concrete information about
how we not only determine the edges but also locate the connected components of the genome
similarity graph with a variation of the basic union-find algorithm. While the algorithm itself
is simple, näıve implementations are intractable due to computation and storage costs. Thus,
we will also discuss optimizations based on indexing and parallelization that are necessary
to handle the scale of this problem.

Index-Augmented Union-Find Algorithm

Given the nature of our problem, we identified the union-find algorithm as a promising
approach. Union-find is a simple, well-known algorithm for finding the connected components
in a graph [23]. Initially, each node is assigned to its own component, or cluster. Given a
list of all the edges in the graph, we traverse each edge, and if the nodes connected by a
given edge are not in the same cluster, we merge them. The basic algorithm is depicted in
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Figure 3.5: Schematic of SiRen algorithm. (a) Graph representation. (b) Locating the
connected components. (c) Merging substrings to create the similar regions.

Algorithm 1 SiRen algorithm

R = read length, h = Hamming distance threshold
Initialize the set of similar substrings SS = ∅
Initialize the set of similar regions SR = ∅
for all substrings s of length R do

if mins′ Hamming (s, s′) ≤ h then
SS = SS ∪ {s}

end if
end for
Partition SS into disjoint subsets S ′, where the members of S ′ are overlapping
for all subsets S ′ do

Merge the contents of S ′ to create a similar region sr
SR = SR ∪ {sr}

end for
return SR
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Figure 3.6: (a) Basic union-find. (b) Applying union-find to genome substrings.

Figure 3.6(a). To find the clusters in the graph, we traverse the edges, and whenever two
nodes are connected by an edge, we merge them to be in the same cluster, updating the
“Cluster ID” data structure as we go. After the algorithm terminates, the “Cluster ID”
data structure reflects the set of connected components. In our example, nodes 1, 3, and
6 are in one component, colored purple in the “Cluster ID” array, and nodes 2, 4, and 5
are in another component, colored blue in the array. To apply union-find to our problem
of clustering similar substrings, we represent each substring of length R as a node. We say
there is an edge between any two substrings whose Hamming distance is less than or equal
to a given threshold. Figure 3.6(b) illustrates this process.

Of course, we must first identify the edges in our graph before applying the union-
find algorithm. A näıve approach is to compare each substring to each of the other three
billion substrings. This comparison would be prohibitively expensive, however. Shrinking
the runtime of this process is important to simplify development, manage computational
costs, facilitate parameter selection, and find new similar regions whenever read lengths
change or the reference is updated. Furthermore, even if it were computationally feasible,
we would perform many unnecessary comparisons since the adjacency matrix is likely to be
sparse.

To avoid this wasted work, we build an index of the reference genome, where the key is
a seed of length 20 bases, and the value is a list of locations in the reference at which that
seed occurs. The seed length must be shorter than a read so that even if the read contains
mismatches from the reference, we will still have one or more seeds that match the reference
exactly. We set the seed length equal to 20 because according to empirical observation, it
achieves a good tradeoff in the space of seed length versus number of hits; shorter seeds lead
to excessive hits, while longer seeds lead to too few hits [139].

After building the index, we then scan over the substrings. For each substring s, we
look up its non-overlapping seeds of length 20 in the index; since our read length is 100, we
have five seeds. Each seed gives us a list of positions in the genome whose corresponding
substrings may be similar to s. After looking up each of s’s five seeds in the index, we



CHAPTER 3. THE PROBLEM OF SIMILARITY 43

obtain a list of all potential neighbors of s. The list length is orders of magnitude less than
three billion, which is the number of comparisons we would have to perform under a näıve
approach. Algorithm 2 describes this process.

Algorithm 2 Union-find with index optimization

R = read length, h = merge threshold, N = number of substrings in genome
Input: an index I, where the key is a 20-base seed, and the value is a list of all positions
at which the seed occurs
Initialize: parent, an array of length N , where parent(i) = i = cluster ID of the ith
substring
for all genome substrings s of length R do

for all seeds s′ in s do
hits = I(s′)
for all sh ∈ hits do

if Hamming(sh, s) ≤ h then
Update parent(sh) = parent(s)

end if
end for

end for
end for
return parent

In Figure 3.7, we illustrate how we execute the union-find algorithm with the index
optimization. The long string at the top of the figure represents the reference genome. We
build an index of the reference genome, which we show on the figure’s left. Given a query
string “ACCTAAAA” from the reference, we look up its seeds in the index to produce a
list of candidate matches; here, the possible neighbors are at positions 4, 16, and 24. For
each candidate neighbor, we compute the Hamming distance, which we illustrate at the top
of the figure, and update the adjacency matrix, which appears on the figure’s right. If the
Hamming distance is sufficiently low, we consider those two substrings to be similar. The
green boxes illustrate comparisons with a low Hamming distance, while the red box shows
a high Hamming distance between the substring and the reference. For each pair of similar
substrings, we update the “Cluster ID” data structure, shown at the bottom of the figure,
by merging the substrings’ clusters. Therefore, at the end of this round of comparisons,
substrings 4 and 24 belong to the same cluster, while we do not update substring 16’s cluster
membership.

Our approach for edge identification is a parametric one, where the parameter is the
merge distance h. Moreover, since we require exact matches via seed lookups, our index-
based algorithm may miss some potential edges if our merge threshold is greater than or
equal to the number of seeds. In practice, we observe that a merge distance of 1 performed
best in our experiments, and thus we avoid the issue of missed edges. We will address the
parameter selection in detail in Chapter 4.
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Figure 3.7: Index optimization to SiRen algorithm.

Parallelism Strategy

Despite the dramatic reduction in comparisons, our index-based algorithm remains quite
expensive given the scale of our data. Our goal was therefore to develop a parallel imple-
mentation of our approach. To facilitate parallelization, we use Spark, a MapReduce-like
framework for distributed computing [140]. Moreover, we divide our index-based approach
into subproblems, each of which solves an index-based union-find problem on a partition of
the complete dataset, and merge the results of the subproblems on-the-fly as they complete.

The first step of our parallel, distributed algorithm involves partitioning the adjacency
matrix so that each task is allocated one section. In our study, we use grid partitioning
based on exploratory analysis with various partitioning schemes. For example, we also tried
what we called stripe partitioning, where each partition had only a portion of the rows but
all the columns. However, we abandoned this approach because its memory requirements
were so high that we could not run a per-partition task to completion.

In our grid partitioning scheme, each cell has two ranges: one for the rows and one for
the columns. The row range determines which positions should be included in the index as
seeds. The column range determines which positions should be scanned as substrings. We
scan each substring in the column range, and whenever we locate an edge, i.e., we find that
two substrings are similar, we merge the two substrings’ clusters. Therefore, we are able to
combine the edge location and merging into a single pass, avoiding the need to store the
edges. This one-pass approach is important since this is already a memory-intensive process.
We also use the standard union-find optimizations of union by rank and path compression;
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we will discuss these further in our presentation of implementation details.
The cluster results from each partition are merged on the master node. Once a worker

node returns the clusters for a given partition to the master node, we must update the
global cluster definitions for the entire genome that are stored on the master node. Initially,
the master node stores each substring as its own cluster. Once a worker node computes
the clusters for a single partition, the master updates the global clusters for the genome
by merging any clusters whose points appear together in the partition’s clusters. Since
each partition is independent, our approach is embarrassingly parallel and therefore exhibits
strong scaling, since adding more machines to a fixed-size problem shrinks the runtime. See
Algorithm 3 for a formal description of this process.

Algorithm 3 Parallelization of union-find

Initialize: parent(i) = i, where length(parent) = N
Partition the adjacency matrix according to a grid scheme, with dimension G
for all grid cells g with row range r and column range c do

Initialize: parentg(i) = i, where length(parent) = |r|+ |c|
Create a seed index I with the portion of the genome indicated by r
for all genome substrings s beginning with positions in c do

Find the neighbors of s using index I
Update parentg

end for
return parentg

end for
if task corresponding to grid cell g completes then

for all pairs (s1, s2) s.t. parentg(s1) = parentg(s2) do
if parent(s1) 6= parent(s2) then

Update parent(s1) = parent(s2)
end if

end for
end if

We illustrate how we can find genome-wide clusters even with a partitioning scheme in
Figure 3.8. In the global clusters, the red and purple points are initially in their own clusters;
this appears in part (a) of the figure. We partition the genome in a grid fashion, and worker
tasks process different partitions in parallel, identifying the clusters within each partition.
The green partition shown in part (b) of the figure yields three clusters, with the red and
purple points grouped together. Part (c) of the figure shows that the master updates the
global state so that the red and purple points are in the same cluster. For each such pair of
points in a partition cluster, the master merges their corresponding global clusters.
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Figure 3.8: Parallelization of union-find. (a) Cluster initialization. (b) Grid partitioning.
(c) Updates to the global state based on the results of clustering on one partition.

Implementation Details

In this section, we will describe some of the details involved in implementing our approach.
Beyond the optimizations we describe above, we needed several implementation tricks in
order to make this approach actually scale to our huge genome-sized application. We began
by implementing the union-find algorithm in Scala. Besides its inherent desirable properties
such as being concise and functional, Scala is a good choice for using with Spark. The
important data structures include the parent array and the rank array; each array has one
entry per substring. The parent array, which corresponds to the “Cluster ID” array that
we mentioned above, indicates cluster membership; parent(i) is the cluster to which the ith
element belongs. We call it the parent because clusters can be thought of as trees. The two
main functions that give the algorithm its name are the union and find functions. Calling
find(i) returns the parent of the ith element, while union(i, j) merges the clusters to which
the ith and jth elements belong.

We illustrate union-find in Figure 3.9. In part (a) of the figure, we depict a tree corre-
sponding to a cluster. Node 1 is the root of the cluster and is therefore its main parent.
However, parent(5) could point to either node 1 or node 2. We do not want the find function
to return 2, since that is an internal cluster node; rather, we want it to return 1. Therefore,
the find function is recursive; it will continue calling find on the internal nodes until it reaches
the root of the tree. The find function also implements the path compression optimization, in
which we update the parent data structure with the intermediate results obtained by calling
find. We can think of this as flattening the cluster’s tree, since more nodes are connected
directly to the root. Say that parent(5) = 2 before we call find(5). The find function will
not only return 1 through its recursion; it will also update the parent data structure so that
parent(5) = 1. Then, subsequent calls to parent(5) will execute faster. Part (b) of the figure
shows the updated tree.

The other main component of the algorithm is the union function. Suppose we call union
on two elements, i and j. First, we call find(i) and find(j) to determine the cluster to
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Figure 3.9: Details of implementing the union-find algorithm. (a) is before and (b) is after
path compression; (c) is before and (d) is after union by rank.

which each belongs. Then, we merge those clusters so that i and j, as well as all the other
nodes in their respective clusters, belong to the same cluster. While doing so, we perform
the union by rank optimization; when we merge two clusters, i.e., trees, we want to attach
the smaller one to the larger one. We use the rank data structure, mentioned above, to
keep track of which cluster is larger. We can think of rank(i) as the depth of the cluster of
which i is the root; however, when the path compression optimization is used, it may not be
strictly true, as the tree will get flattened without reducing the rank value. In Figure 3.9(c),
we show two trees, of which 1 and 7 are the roots. Assuming no path compression has taken
place, rank(1) = 3, while rank(7) = 2. Therefore, upon calling union(1, 7), we attach the
tree with root 7 to the tree with root 1. To do so, we update parent(7) to be 1 instead of 7
as it was initially. Note that we would get the same result if we called union on any pair of
vertices where one vertex in the pair belongs to the tree with root 1 and the other belongs
to the tree with root 7. We show the updated tree in part (d) of the figure. Note that both
the path compression and union by rank optimizations are well-known components of the
union-find algorithm.

As we mentioned earlier in this section, in order to run the algorithm, we had to paral-
lelize our implementation. Thus, we had to modify our implementation to support our grid
partitioning scheme as well as to run in a master-slave configuration via Spark. We created
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val clusterSize = Array.fill(numBases)(0)

var firstMember = Array.fill(numBases)(0)

var nonTrivialClusters = List[Int]()

var nonTrivialMembers = scala.collection.mutable.Map[Long, LongArrayList]()

Figure 3.10: Data structures that we use to locate the clusters in a union-find object.

a version of our union-find implementation for grid cells on the diagonal and another version
for grid cells that are off-diagonal. The version for the diagonal is simpler because we only
have to keep track of one range, since we index and scan the same range for diagonal cells;
therefore, we need the parent and rank data structures to keep track of just the positions in
the given range. When we call find or union on a position, we convert it from an absolute
position in the genome to a within-range relative position by subtracting the range’s initial
position. For the off-diagonal partitions, the parent and rank arrays must keep track of two
ranges, one for indexing and one for scanning. In this case, in order to convert from absolute
to relative coordinates, we must first determine the range to which a given position belongs;
then, we can subtract the proper range’s initial position to obtain the range-relative position.

We had to do some extra work to coordinate the per-partition union-find tasks. We
used Spark’s parallelize method to create one task per grid cell, and we indicated which grid
cell each task represented by passing in the index and scan range initial positions and the
range length, which is the same for both ranges, to the task. Within each task, we either
create a UnionFindGrid task or a UnionFindGridDiagonal task, depending on whether or
not the task’s grid cell lies on the diagonal, which we can tell based on whether the index
and scan ranges are equal. We then execute our union-find algorithm on the grid cell to
locate the clusters for that grid cell. To report the results back to the master task, we use
Spark accumulators [122]. The benefit of this approach is that instead of keeping all the
intermediate results in memory for job’s duration, which would cause us to quickly exceed
our memory limits, we can incrementally update the master clusters with a task’s results via
the accumulator and then discard those results.

After we finish executing the union-find algorithm, we obtain the parent array indicating
the cluster to which each point belongs. However, we want to be able to go the other way,
from a cluster identifier to the members of that cluster. Therefore, we must process the
parent array to find the clusters. Note that most clusters are singletons; in locating the
clusters in the parent array, we want to ignore the singleton clusters. Therefore, we are only
looking for clusters that have at least two members.

We have several data structures that are involved in locating the clusters, and we list
these data structures in Figure 3.10. To locate the clusters, we begin by iterating over the
parent array. For a given position p, the parent array indicates the cluster to which p belongs,
which we will call c; then, we increment the corresponding location in the clusterSize array, or
clusterSize(c). Based on the value of clusterSize(c), we will determine whether we should
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promote the cluster to being non-trivial. If clusterSize(c) = 1, i.e., the current position is
the first member of this cluster that we have encountered, then we store the current position
in our firstMember array; that is, we set firstMember(c) = p. If clusterSize(c) = 2, we
have just discovered a new non-trivial cluster. We therefore add c to the nonTrivialClusters
list. We also create a new list to store the members of c, to which we will add both the
current position p as well as the cluster’s first member, which is stored in firstMember(c).
We then add a tuple to the nonTrivialMembers map, where the key is the current cluster c
and the value is the list that we just created. If the cluster size is greater than 2, we have
already recognized that c is non-trivial; therefore, to update c, we just add p to its list of
members. Note that we perform the cluster identification step at the end of each grid cell
task as well as after the job finishes.

Deployment

We deployed the SiRen tool on our lab cluster. Each node in our cluster has a dual-socket
Intel E5-2670 2.6 GHz processor with 16 cores and 128 GB of DDR3-1600 MHz RAM. We had
to run multiple SiRen jobs so that we could explore how to set its parameter, the threshold
on the Hamming Distance between two substrings, which we call h. We ran each job on a
single node in our cluster, with 16 threads to take advantage of each node’s 16 cores. This
facilitates Spark deployment a great deal, since we do not have to configure several nodes.
At the time we performed these experiments, Spark deployment was mostly through Mesos,
a cluster manager [41]; the Spark developers had only recently started developing a Spark
standalone deployment option. Since deployment through Mesos was rather inconvenient,
and since we had the option of waiting for our results, running each job on a single node
achieved the right tradeoff for us between extra hassle deploying the jobs and reducing the
runtime. However, it is important to note that if results are desired with less latency, it
is possible to run a SiRen job on multiple nodes, especially now that Spark standalone
deployment is much more mature.

As we have mentioned throughout this section, our SiRen algorithm is memory-intensive.
SiRen’s memory requirements are largely attributable to having to maintain in memory the
object that keeps track of the genome’s global clusters. We found that we needed to allocate
100 GB of memory to our job in order to get it to run. We used the same memory allocation
for each job, regardless of the value of h.

In this section, we stated that the SiRen algorithm is computationally expensive, thus
inspiring us to optimize it. When we set h = 4, the SiRen job took 126 hours; since it was
running on 16 cores, this translates to 2016 CPU hours. We could have run our jobs on
AWS instead, in order to achieve isolation and get more reliable timing information. The
r3.4xlarge instance type5, which has 122 GB of memory and 16 cores, costs $1.40 per hour,
so the total to run SiRen on a single instance of this type for h = 4 would be $176.40. Now

5http://aws.amazon.com/ec2/instance-types/
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that we have finished developing SiRen, the cost to run it on AWS is quite reasonable, should
any further runs of SiRen be necessary or desirable.

3.5 Related Work

The problem of finding repeats in the human genome has been well-studied; e.g., see [2, 63,
132, 7, 103, 126]. Their goal is often to understand the evolutionary biology of the genome;
thus, they have a broad scope, seeking repeats of heterogeneous scales and complexities.
Some also allow strings of different lengths or with widely varying degrees of similarity to
belong to a single cluster. Because the problem statement is so open-ended, their approaches
are complicated and therefore computationally expensive. In addition, the figure that is
usually stated for the portion of the genome comprised of repeats is 50%; recall that we
discuss this in detail in Section 3.2 and especially Figure 3.1. As we will discuss in Chapter
4, we identify a much smaller fraction of the genome as belonging to similar regions, and we
empirically verify that aligners struggle with these regions.

The approach for finding duplication in the genome that is most closely related to our
approach is the GEM suite [28]. It also focuses on finding near duplication in the reference
genome. They define a quantity called mappability, which is related to the inverse of how
often a given substring appears in the reference, up to a certain number of mismatches that
can be provided as a parameter. They compute the mappability for each position in the
genome so that for any position, one may assess how feasible it will be to align reads at
that position. The output of the SiRen algorithm, i.e., the list of similar regions, is related
to a mappability score, in that for any given position in the reference genome, we can say
whether or not it belongs to a similar region, and we can also say how many substrings
to which it is similar. Being similar to many other substrings corresponds to having a
low mappability score. In Chapter 4, we provide a quantitative comparison of the similar
regions and the GEM mappability scores. However, our work goes beyond mappability, since
we compute the full similarity structure of the genome. That is, while GEM can say whether
a given substring has many neighbors, it cannot identify those neighbors, and we can. This
information will become crucial when we discuss our work on leveraging our knowledge of
the similarity structure to improve the accuracy of downstream data processing in Chapter
5.

The problem of finding the similar regions in the genome can naturally be viewed as a
clustering problem over a massive dataset, i.e., three billion data points with dimensionality
equal to the read length, with an unknown number of clusters. Though we do not know the
number of clusters in advance, we expect it to be large; therefore, K-means does not apply
since we do not know K, and determining the right K will be intractable. More sophisticated
clustering approaches, e.g., spectral clustering [116] and non-parametric Bayesian clustering
techniques [42], do not naturally scale to our problem size, due to their computational
complexity and/or inability to parallelize. Locality-sensitive hashing (LSH) [33] also appears
to be a natural fit to our problem. With LSH, a family of hash functions is chosen such that
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similar objects hash together while unrelated items hash to different buckets. In fact, we
initially experimented with an approach like LSH, as we described in Section 3.3. However,
the communication and storage requirements made this technique infeasible.

A natural question, given our use of Spark, would be why we did not also use GraphX [36],
the graph processing framework built on top of Spark, to locate the connected components
in our similarity graph. The primary reason is that at the time this work was completed,
which was from 2011-2012, GraphX was not yet available. Another issue is that had we
used GraphX to find the connected components, we would still have needed to produce the
edge set E of our similarity graph. Doing so is non-trivial, as we discussed in Section 3.4; we
required an index-based optimization to reduce the number of comparisons we performed. We
still would have needed this optimization to use GraphX, and we also would have incurred a
substantial storage cost, since we would have needed to save the edges to be input to GraphX.
Therefore, while GraphX would have expedited our search for the connected components,
the preprocessing needed to produce the genome similarity graph would still have been
computationally expensive.

Another literature that pertains to clustering DNA sequences is metagenomics, which
tackles the following problem: given a collection of short reads, identify the different species
present in the sample. An interesting application of metagenomics is to sequence the human
microbiome, which is the collection of the various species of microbes that live on or in the
human body, to determine which species of microbes are present. One tool used to do this is
UCLUST [30]. Since its goal is to come up with a clustering where each cluster corresponds
to a single species, it does not focus on ensuring that all the strings within a cluster are
similar to each other. Therefore, since its goal is different from ours, which is to find clusters
with a high degree of intra-cluster similarity, the clusters that this algorithm produces are
not useful for our purposes.

The use of MapReduce or Spark in bioinformatics algorithms and tools is still relatively
new; we will discuss a few interesting examples here. ADAM is an open-source, special-
purpose genomics processing engine built on top of Spark with an accompanying specialized
file format for storing short-read data [89, 99]. As an example of its capabilities and features,
it reimplements many commonly-used tools and pipeline stages from suites like PicardTools6

and the GATK [27] in a distributed setting to improve throughput and scalability. Another
project that uses Spark is eXpress, which is an EM algorithm for computing relative abun-
dances of target sequences for applications using RNAseq, chromatin immunoprecipitation
sequencing (ChIP-Seq), and metagenomic data [108, 107].

An example of a tool that uses MapReduce is CloudBurst [113], which is a short-read
aligner that can report not only the unambiguous best alignment but also all alignment
locations for a given read, without restricting the number of differences from the reference
genome allowed. The use of Hadoop MapReduce7 is crucial for providing this functionality
without incurring so much latency that the tool becomes unusable. Another tool of interest

6http://broadinstitute.github.io/picard/
7http://hadoop.apache.org/
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is Crossbow [38], which performs short-read alignment and variant calling. Crossbow lever-
ages existing tools, relying on Bowtie [67] to align reads and SOAPsnp [78] to call variants;
it achieves scalability by using Hadoop to distribute these tasks. Clearly, the bioinformat-
ics community is recognizing the value of MapReduce-style frameworks to achieve greater
performance for their data processing tasks.

3.6 Conclusion

As the price of short-read sequencing continues to drop, the need to efficiently and accurately
process the resulting genome data becomes ever greater. In order to produce accurate variant
calls, it is crucial to align short reads without making errors. As part of our efforts working on
the SNAP alignment algorithm [139], we gained valuable insight into what makes alignment
difficult, and we learned that the main factor is the repetitive structure of the genome.

In this chapter, we presented detailed information about the repeats in the genome,
which comprise about 50% of the genome’s sequence. They can be microsatellites of just
a few bases, or they can be large structural variants ranging up to hundreds of thousands
of bases. They can occur right after each other, and they can be spread throughout the
genome. Therefore, it is unsurprising that they would present different degrees of difficulty
for alignment algorithms.

In order to improve alignment accuracy, we focus on the subset of repeats that make
alignment difficult by taking the perspective of the short reads in order to locate repeats in
the genome. We represent the genome as a graph, where each node is a substring of the
same length as the reads and an edge connects each pair of similar substrings, and our goal
was to find the connected components of this similarity graph. Due to the large size of the
graph, our initial approach based on hashing proved unwieldy.

We therefore developed the SiRen algorithm, which is based on the well-known union-find
algorithm. In order to apply the union-find algorithm to our problem, we had to augment
the algorithm with two important optimizations: leveraging an index to reduce the number
of comparisons we had to perform to locate the graph’s edges, and partitioning the graph so
we could parallelize the execution. We also had to employ several implementation tricks to
reduce the runtime and memory usage, such as using Spark accumulators to incrementally
update the global clusters with per-partition results. Ultimately, we were able to develop a
tool that locates the similar regions in a practical amount of time and can be deployed in a
variety of computational settings.
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Chapter 4

Validating the Similar Regions

4.1 Introduction

In Chapter 3, we presented our method for locating the similar regions. Since our technique
is completely unsupervised, it is important to evaluate the quality of the clustering. One
approach is to consider cluster metrics such as similarity within clusters and separation
between clusters. We begin this chapter, in Section 4.2, by presenting some basic cluster
metrics. We also computed more sophisticated values that are not included in Section 4.2.
However, just by looking at the metrics, it is difficult to know whether the clustering is really
capturing an interesting signal in the data.

Since we obtain little insight from the metrics of Section 4.2, we use a more application-
oriented strategy for judging the quality of the clustering. Recall that our main argument
in the previous chapter, detailed in Section 3.2 when we discussed our experiences working
with alignment algorithms, is that the similar regions make alignment difficult. This in turn
leads to alignment errors, which then cause variant calling errors. We reasoned, therefore,
that a clustering validation that demonstrates this chain of events, from alignment to variant
calling, would provide better insight into the clustering “signal” than cluster metrics alone.

The first goal of our validation is to show that the similar regions make alignment difficult.
Thus, we begin the discussion of our validation in Section 4.3 by exploring whether alignment
errors are primarily located in similar regions. As part of these experiments, we develop
a quantitative notion of alignments being easy or hard based on consensus among four
alignment algorithms. We show that the vast majority of hard alignments are in similar
regions: over 90% of such alignments from simulated data and over 80% of such alignments
from real data.

Ultimately, though, we only care about alignment errors if they cause mistakes in variant
calling. That is, if variant calling tools managed to produce the correct results despite
the presence of alignment errors, the faulty alignments would not be a cause for concern.
Therefore, we also designed a set of experiments leveraging the SMaSH benchmarking suite
[125] to show that variant calling is more error-prone in the similar regions than in the unique
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regions. We use three datasets, including two human datasets and one mouse dataset, which
comprise both simulated and real data.

Section 4.4 presents the variant calling experiments. We consider both precision and
recall for two popular variant callers, mpileup and GATK, with calls separated into SNPs
and indels. We find that both tools performed significantly worse in the similar regions,
particularly regarding the recall, where the accuracy in the similar regions is typically at
least twenty percentage points lower than in the unique regions. This discrepancy in accuracy
not only confirms our hypothesis that the similar regions complicate variant calling; since it
persists in both the human and mouse genome experiments, it also suggests that our findings
will hold in non-human genomes as well.

We can also leverage our validation in order to choose our algorithm’s parameter, the
merge distance h. Looking at the results from both the alignment and variant calling portions
of our validation, as well as the fraction of the genome in similar regions at each merge
distance, helps us choose the merge distance. Our criteria include minimizing the amount
of the genome in similar regions while maximizing the amount of alignment and variant
calling errors that they can explain. To put it another way, we want to achieve a strong
correlation between the similar regions and the regions that make alignment and variant
calling difficult, so the similar regions are not bloated with easy regions. The two criteria are
related, because smaller similar regions will likely correlate better with the hard regions, but
having small similar regions does not necessarily imply that they are hard. Thus, we conclude
our discussion of the validation with comments about our selection of h. In Section 4.5, as
a segue to Chapter 5, we also argue that the similar regions are amenable to specialized
techniques for improving variant calling accuracy.

We conclude the chapter in Section 4.6 with related work. In the previous chapter, we
mentioned some existing efforts to locate redundancy in the genome. The output of these
efforts is often called a blacklist, since the regions identified as redundant are often excluded
from genome analyses. In this chapter, we perform a quantitative comparison between the
similar regions and some of the other blacklists. SiRen and GEM have the most significant
overlap since they are closest in size, but no existing blacklist finds the same regions that we
do. SiRen also is unique, to the best of our knowledge, in that it provides structure rather
than just a binary indicator for each position about whether or not it is on the blacklist. As
we will discuss in the next chapter, this information is critical when it comes to improving
variant calling accuracy in these regions.

4.2 Basic Cluster Metrics

Before we begin our discussion of the metrics, Figure 4.1 describes our output format. The file
begins with a one-line header that provides the number of substrings clustered, the number
of clusters found (excluding singletons), the substring length, and the merge distance. Of
course, the number of substrings is equal to N − R, where N is the size of the genome and
R is the read length, which we use for the substring length. Since R� N , there are roughly



CHAPTER 4. VALIDATING THE SIMILAR REGIONS 55

numSubstrings numClusters substringLength mergeDistance

clusterSize clusterMember1 clusterMember2 ...

Figure 4.1: SiRen output format.

N substrings, or about 3.1 billion. Following the header, there is one line per cluster. Each
cluster’s line begins with the number of substrings in the cluster, followed by each member
of the cluster. We refer to cluster members by their initial position. For example, if a
substring’s endpoints are p and p + R, we would refer to the substring as p in the file. We
sort the clusters from largest to smallest.

Recall that we refer to the merge distance, or Hamming distance threshold, as h. Since
it is an important element of the following discussion, we will provide more intuition about
what the Hamming distance represents. Because it is Hamming distance, which allows
only substitutions, rather than full edit distance, which also allows insertions and deletions
(indels), it is somewhat like a SNP between two substrings. (See Chapter 2 for an explanation
of SNPs and indels.) This characterization is imperfect, however, in that a SNP is a difference
between the reference and the sample DNA, whereas when we measure the Hamming distance
between two substrings, we are comparing portions of the reference with other portions of
itself. However, despite being inexact, the mental model of a SNP is useful for thinking
about the Hamming distance. For example, h = 2 is akin to allowing two SNPs between the
two substrings being considered.

Based on our experiences with alignment, which we describe in Section 3.2 of the previous
chapter, we chose to let h vary between one and ten. Recall that we want to find regions
that are similar to each other from the perspective of an aligner, since we are targeting
alignment-based read processing pipelines. Based on our experience with SNAP, the vast
majority of reads are aligned with less than five edits from the reference genome. To provide
sufficient flexibility, we chose ten as a generous upper bound for h. In Section 4.4, we provide
empirical evidence of the appropriateness of this decision.

Figure 4.2 shows the file size of the output of SiRen for different merge distances between
one and ten. The file size increases with the merge distance, starting with 1.6 GB for h = 1
and ranging up to 4.7 GB for h = 10. We are aware that a difference of a few gigabytes
in file size may not seem like a compelling matter to report. However, the reason this is
interesting will become clear when we compare this with the pattern of increase for the
number of clusters given each merge distance.

Figure 4.3 gives us insight into why the file sizes differ as h increases. When h = 1, the
number of clusters is approximately 33 million, and the number of clusters increases with h,
ultimately reaching 43 million for h = 10. This trend is due to the fact that when h is large,
more points get merged together, so more clusters are created. Thus, the file size increases
with h.

An interesting observation from Figures 4.2 and 4.3 concerns the pattern of the increase
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Figure 4.2: File sizes for the output of SiRen, by merge distance. Larger merge distances
yield larger files.
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Figure 4.3: Number of clusters by merge distance. Larger merge distances yield more clusters.

in file size and number of clusters, respectively, with h. Figure 4.2 shows that the file size
increases in a fairly linear manner with h, while Figure 4.3 shows that the number of clusters
increases more with smaller values of h and then tapers off when h gets large. For large
values of h, while an incremental increase in h has little impact on the number of clusters,
it does cause more substrings to join those clusters, thus resulting in larger file sizes overall.
We therefore infer that when we increase the merge distance to very large values, we stop
creating new clusters, while the existing clusters become more bloated as we add on only
slightly-related substrings. This outcome is undesirable since we end up with some large,
diffuse clusters. Therefore, we can tell from this figure that we definitely should not increase
h beyond 10, and in fact, we should prefer a small value of h to avoid cluster bloat.

In Figure 4.4, we provide a histogram of the cluster sizes obtained when h = 1. In Sections
4.3 and 4.4, we will discuss our reasons for selecting one as the merge distance. Note that
the y-axis is on a log scale. The histogram shows that the vast majority of the clusters are
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Figure 4.4: Histogram of cluster sizes for merge distance 1. Many clusters are small, while
there is a long tail of large clusters.

small; in fact, many clusters are of size two. We will take advantage of this property of the
clustering when we work to leverage the similar regions, which we will discuss in Chapter 5.

The figure also shows that there is a long tail, since there is a small number of large
clusters. It would be possible to break up the large clusters by representing each cluster as
a graph (in fact, it is a connected component of the original genome-wide similarity graph)
and performing graph partitioning on the cluster’s graph. We did not do this because, as we
explain in Chapter 5, we primarily focus on small clusters, since they are the vast majority
of clusters that we identify. However, graph partitioning would be an interesting direction
to explore in the future.

We also examined some more sophisticated cluster metrics such as cluster diameter and
inter-cluster distance. We gained little insight into the quality of the clustering from these
metrics, however. In fact, the challenge inherent in using clustering, an unsupervised machine
learning technique, is that by just using cluster metrics like these, it is very difficult to
gauge whether or not the clusters identified truly correspond to important patterns in the
underlying dataset.

Therefore, we decided to turn to a more application-oriented methodology to judge our
clustering, as this is the recommended approach when metrics fail to provide sufficient insight
[87]. Recalling our original argument that the similar regions are the reason for difficulties
with alignment and therefore variant calling, our goal is to show this chain of events empir-
ically. In Section 4.3, we discuss how we devised a microbenchmark based on alignment to
evaluate whether our clusters correspond to the parts of the genome that complicate align-
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ment. Since our main interest is variant calling, we present in Section 4.4 an end-to-end
evaluation of variant calling accuracy in the similar regions vs. the unique regions, with the
goal of demonstrating that variant calling is much more challenging in the similar regions.

4.3 Impact on Alignment

We begin by focusing on alignment, which is the first step of most variant calling pipelines.
Our goal is to use alignment to evaluate the similar regions that we find via SiRen. To do so,
we devised a method of generating labels for aligned data whereby we categorize each read
on a spectrum from easy to hard. Our method is based on consensus across four alignment
algorithms, or aligners, and yields labels with four gradations of easier or harder to align;
i.e., if all four aligners agree on a read’s alignment location, we count it as easy, while if
no aligners agree on a read’s alignment location, we count it as hard. The other labels are
obtained when two or three aligners agree. We selected this ensemble-style approach of label
generation to avoid overfitting to any particular aligner; we picked these aligners because
together, they are a good representation of the accuracy and efficiency spectrum.

Given a labeling scheme, we can now evaluate whether the regions we have obtained
can explain our labeled data. We will judge the similar regions to be correlated with read
difficulty if a high fraction of hard reads align to similar regions, while a low fraction of easy
reads align to similar regions.

In what follows, we will show the correlation between aligner agreement and similar
regions for both simulated and real data. The simulated data consists of 5 million pairs of
reads generated from hg19 by the Mason simulator v.1.3.1 [44].1 The real data consists of
2 million pairs of reads sampled from the Illumina Platinum Genome Project’s NA12878
genome.2 The length of both the simulated and real reads is 100 bases. We aligned each
dataset with four aligners: Bowtie2 v.2.1.0 [66], BWA v.0.7.4 [74], NovoAlign v.3.0.33, and
SNAP v.0.16alpha.6 [139]. We ran the aligners on EC2, using cc2.8xlarge instances, which
have 16 cores and 60.5 GB of memory, and ami-c136bca8, which runs the CentOS distribution
of Linux.

We first describe how we evaluated the aligners on the simulated data. After aligning the
reads with all four aligners, we assigned a label to each read based on the number of aligners
that agreed on its location, where we determine agreement within a tolerance of 100 bases.
As this is a full read length, this is a rather generous measure of agreement, which fits our
goal of avoiding unnecessarily calling reads hard if aligners differ by only a few bases. We
then segmented the reads according to their labels, and then for each label, we assessed how
many of the reads hit similar regions.

1Downloaded from http://www.seqan.de/projects/mason/ and run with command line
mason illumina -hn 2 -sq -mp -ll 375 -le 100 -n 100 -N 5000000 -o out.fq -s 0 hg19.fa

2http://www.ebi.ac.uk/ena/data/view/ERP001229
3http://www.novocraft.com/products/novoalign/
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Figure 4.5(a) shows the results. We observe that almost all the hard reads are in similar
regions, while very few of the easy reads are in similar regions; therefore, we have achieved
a close correlation between our labeled data and our similar regions (recall that the labels
are defined above). We provide these results for two merge distances, 1 and 10. We also
obtained results for 2, 4, 6, and 8; as they follow the same pattern, we omit them here.
Since more of the genome is contained in similar regions when the merge distance is large
(see Figure 4.6), it is logical that more reads of each label would fall in clusters with a larger
merge distance. However, since we still obtain a high fraction of the harder reads in clusters
using 1 for the merge distance, while including much less of the genome in similar regions,
we prefer 1. We provide further discussion of selecting the merge distance in Section 4.4.

We carried out an equivalent analysis for the real data, to avoid overfitting to simulated
data. The results, which are shown in Figure 4.5(b), are comparable to the results for
simulated data. Again, reads that are hard to align are overwhelmingly in similar regions,
while easy reads are not. We also observe the same trends regarding the merge distance.

These results demonstrate that one of the main reasons for alignment difficulty is the
similar regions. We have shown that this holds for different aligners and for both simulated
and real data, so it is unlikely to be an artifact of overfitting.

4.4 End-to-End Analysis: Variant Calling

We have shown that alignment, which is a key stage in the genomic processing pipeline, is
strongly affected by the similar regions. However, this is an intermediate stage; ultimately,
we care about variant calling, so in this section, we explore the impact of similar regions
on variant calling accuracy. Our hypothesis is that due to alignment errors, variant calling
will be more difficult in the similar regions than in the unique regions. In what follows, we
validate this hypothesis using both simulated and real data.

Experimental Data

For this analysis, we used the SMaSH benchmarking suite [124]. SMaSH provides read
datasets for both synthetic and real data, as well as labeled variants obtained from orthogonal
sequencing technologies. Leveraging this labeled data, SMaSH also offers an evaluation tool
to determine the accuracy, measured in both precision and recall, for each dataset’s variant
calls. For both datasets, we consider both single nucleotide polymorphisms (SNPs) and short
indels.

The synthetic human data from SMaSH is based on the variants detected in the Venter
dataset [70]. These variants are inserted into the human reference genome hg19, and then
simulated reads of length 100 bases with a coverage of 30× are produced via the simNGS
tool [90]. Since all the variants are known, a comprehensive evaluation is possible; i.e., we
can report both precision and recall for the variant calls on this dataset.
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Figure 4.5: Aligner agreement, correlated with cluster membership. For both (a) simulated
and (b) real data, hard reads overwhelmingly coincide with similar regions, while easy reads
fall in unique regions.
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The real human data from SMaSH is 64× coverage reads for the NA12878 sample4. The
reads are 101 bases long. Since this is real data, we do not know the types or locations
of the true variants. However, SMaSH provides labeled variants from two SNP chips for
this dataset. Note, however, that these labeled variants are not comprehensive; they are
available only for the sections of the genome that the SNP chips were designed to interrogate.
Therefore, we cannot determine the precision of variant calls, since precision depends on
knowing the number of true positives. Hence, we report only recall for this dataset.

Experimental Setup

Our procedure for both datasets is as follows. Again using EC2, we begin by aligning each
set of reads with BWA v. 0.6.1. We chose BWA due to its popularity among practitioners.
Then, given the aligned reads, we produced variant calls with both mpileup, from SAMtools
v.0.1.19 [76, 71], and GATK v.2.6 [27]. We chose these tools because mpileup is known to be
a very simple variant caller, while GATK, considered the state-of-the-art, is widely used. We
wanted to see how both a simple and a sophisticated tool would handle the similar regions.

Once we had obtained variant calls from both tools, we used bedtools,5 a popular tool
suite for executing set operations on the genome, to segment all three variant call format
(VCF) files for each dataset (one for the true variants, from SMaSH; one from mpileup; and
one from GATK) according to which variants appeared in similar regions and which appeared
in unique regions. Then, we used SMaSH’s evaluation tool to determine the accuracy of the
called variants both in and out of the similar regions.

Results

We display the results separately for the synthetic and real datasets. We computed the
precision and recall for each tool in the similar regions, the unique regions (the complement
of the similar regions), and overall, i.e., for the entire genome. Table 4.1 shows the results for
the Venter dataset. For this dataset, which is synthetic, both mpileup and GATK perform
worse in the similar regions than in the unique regions; this is more dramatic for the recall.
Table 4.2 gives the results for the NA12878 dataset, which is the real dataset. For the
real dataset, the difference in recall between the similar regions and the unique regions is
much more pronounced. One likely cause that the accuracy suffers in the simiar regions is
alignment errors, leading to reads being aligned to the wrong similar region, as we illustrated
in the previous chapter, in Figure 3.2.

Therefore, these results validate our hypothesis that variant calling is much harder in the
similar regions than in the unique regions. Though the overall precision and recall are high,
we see that there is still a lot of work to do to achieve satisfactory accuracy in the similar
regions. We suggest that developers of new variant callers concentrate on the similar regions
rather than the unique regions, as the similar regions are clearly where the challenges lie.

4Available from http://smash.cs.berkeley.edu/datasets.html.
5http://bedtools.readthedocs.org/en/latest/



CHAPTER 4. VALIDATING THE SIMILAR REGIONS 62

Tool Variant
Merge Precision Recall Runtime

Distance Similar Unique Overall Similar Unique Overall (h)

m
p

il
eu

p SNPs
1 93.8 99.0

98.7
78.6 98.5

97.0

2
10 96.4 99.5 91.6 99.0

Indels
1 83.8 88.7

88.5
54.2 73.9

73.1
10 86.8 89.4 64.1 78.6

G
A

T
K SNPs

1 97.9 99.3
99.3

55.7 94.6
91.7

57
10 98.4 99.5 80.0 96.0

Indels
1 86.1 91.6

91.5
67.5 90.5

89.5
10 90.0 92.1 85.9 91.6

Table 4.1: Variant calling accuracy (precision and recall) for simulated data from the Venter
genome. Note that the precision and especially the recall are worse in the similar regions
than in the unique regions. This effect is more evident when the merge distance is 1.

Tool Variant
Merge Recall Runtime

Distance Similar Unique Overall (h)

m
p

il
eu

p

SNPs
1 22.5 99.1

98.8 5
10 82.8 99.3

G
A

T
K

SNPs
1 22.9 99.2

98.8 86
10 83.0 99.4

Table 4.2: Variant calling accuracy for real data from the NA12878 genome. Precision cannot
be reported because the dataset is sampled, and indels are omitted because SMaSH lacks
indel validation data for this dataset. As with the simulated dataset, the recall is much
worse in the similar regions than in the unique regions, and even more so when the merge
distance is 1.
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Figure 4.6: Percent of the genome in similar regions for different values of the merge distance.
As we increase the merge distance, a greater fraction of the genome lies in similar regions.

Tables 4.1 and 4.2 also give us insight into how to choose the merge distance. The table
presents results for merge distances 1 and 10; we obtained results for merge distances 2,
4, 6, and 8 as well, but we omitted them for the sake of brevity. We observe that when
we increase the merge distance from 1 to 10, the accuracy in the similar regions increases
substantially, while the accuracy in the unique regions is barely impacted. The reason for
this is that when you increase the merge distance and therefore also increase the fraction of
the genome that lies in similar regions, you include some easier regions. Likewise, when you
restrict the merge distance, you achieve a tighter correspondence between the hard regions
and the similar regions. Therefore, we prefer a smaller merge distance, in this case 1, since
we greatly reduce the size of the similar regions—from 22% at merge distance 10 to 7% at
distance 1 (see Figure 4.6)—without significantly impacting the performance of the variant
calling algorithms in the unique regions. We will further discuss the desirability of limiting
the size of the similar regions in Section 4.5.

Figure 4.7 illustrates a more subtle point. This figure compares, for our selected merge
distance of 1, the fraction of variants (true, called by mpileup, and called by GATK) in
similar regions. We observe that while Venter’s true variants are distributed fairly evenly,
NA12878 has few true variants in the similar regions. Since the Venter validation data is
comprehensive while the NA12878 data is partial, we conjecture that the SNP chips used to
obtain the NA12878 variants are biased against the similar regions, potentially because this
data is more difficult to gather. Since SNP chips provide few variants in these regions, variant
databases, which are largely based on SNP chips, likely also have relatively few variants in
these regions.

Tables 4.1 and 4.2 make more sense in light of the distribution of SNPs in the two
datasets. GATK is a very sophisticated tool that incorporates prior knowledge about where
variants are probable based on databases of previously-detected variants such as dbSNP6,

6http://www.ncbi.nlm.nih.gov/SNP/
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Figure 4.7: Fraction of SNPs in similar regions, for merge distance 1. For Venter, GATK
vastly under-calls variants in similar regions. For NA12878, the true variants are underrep-
resented in similar regions.

while mpileup is relatively simple, relying only on the reads at hand. In the first table, we
encounter the surprising result that with respect to recall, GATK underperforms mpileup on
the Venter dataset. However, in the second table, we see that, in line with our expectations,
GATK matches or exceeds mpileup’s performance on the NA12878 dataset. Given that the
similar regions are underrepresented in our validation data, and likely in other sources of
variant data as well, GATK may be discounting SNPs that it identifies in these regions.
This approach adversely impacts its accuracy in the comprehensive Venter dataset, while
in the partial NA12878 dataset, its relatively few predictions are in line with the available
validation data.

Variant Calling on Mouse Data

Since the SMaSH benchmark [124] also contains mouse data, we investigated whether our
techniques would apply beyond human data. The mouse data has an attractive property in
that it provides access to real short-read data along with a comprehensive set of validated
variants. Thus, we are able to state accuracy in both precision and recall.

To repeat the variant calling experiment with mouse data, we had to run the similar
region detection tool on the mouse reference genome. As with the human data, we tried a
variety of merge distances to identify similar regions, aligned the mouse reads with BWA,
and ran mpileup and GATK on the aligned reads. We then segmented the true, mpileup,
and GATK VCF files according to the similar regions.

Table 4.3 shows the results for merge distance 1. The results for the other merge distances,
as in the case of the human data, showed improved performance in the similar regions without
significant change in the unique regions. However, as this improved performance comes at
the cost of increasing the percentage of the genome in similar regions, we again identify 1
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Tool Variant
Precision Recall Runtime

Similar Unique Overall Similar Unique Overall (h)

mpileup
SNPs 87.8 98.5 98.4 61.4 87.4 87.3

6
Indels 60.4 83.2 83.1 39.3 81.3 81.1

GATK
SNPs 80.9 98.0 97.8 67.7 95.2 94.9

107
Indels 41.2 86.3 86.0 49.7 93.8 93.6

Table 4.3: Variant calling accuracy (in both precision and recall) for mouse dataset, with
merge distance 1.

as the optimal merge distance. Given our choice of merge distance, we observe that both
GATK and mpileup perform worse, in both precision and recall, in the similar regions than
in the unique regions. Therefore, we conjecture that our techniques apply not only to the
human genome but to other genomes as well.

4.5 Discussion

Recall that our overall goal is not only to locate the similar regions but also to improve the
accuracy of variant calling in those regions. To do so, we must deploy specialized techniques
to run on the similar regions; we will discuss this in great detail in Chapter 5. In this section,
we reflect on how the similar regions we identified facilitate this goal.

A good approach to partitioning the genome into similar and unique regions will have two
characteristics. First, we should identify a small portion of the genome as similar, and second,
the similar regions should contain many short segments, so that we can launch parallel tasks,
where no task is prohibitively expensive. Regarding the first characteristic, consider that if
we identify a large portion of the genome as similar, and we run the specialized algorithm
on all the similar regions, we will not achieve much savings over running it on the entire
genome. The second characteristic is important because consider that if we identify just a
few, long similar regions, it will limit the degree of parallelism that we can achieve.

Let us consider whether a partitioning scheme based on the similar regions achieves our
two criteria. First, regarding the fraction of the genome in similar regions, we see in Figure
4.6 that with merge distance 1, which is our selected merge distance, only 7% of the genome
lies in similar regions. Thus, we could potentially achieve an order of magnitude savings over
running a specialized technique on the whole genome.

Second, regarding the size and number of the partitions, consider Figure 4.8. We observe
that for our desired merge distance of 1, even at the 99th percentile, the similar regions are
only a few thousand bases long. In addition, Figure 4.9 shows that at merge distance 1,
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Figure 4.8: Quantiles of interest for lengths of similar regions, for different merge distances.

there are approximately 600,000 of these partitions. Since we have identified many short
partitions, we can obtain a high degree of parallelism.
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Figure 4.9: The number of similar regions, for different merge distances.

Therefore, we determine that the similar regions we have identified are amenable to our
goal of developing parallelizable techniques for specialized processing to improve the accuracy
of the similar regions. In the next chapter, we will build on this analysis to describe our
techniques and demonstrate their efficacy.

4.6 Related Work

In this section, we describe three categories of related efforts to divide the genome into easy
and hard regions, which often result in the “blacklisting” of a particular genome subset.
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The partitioning could be based either on the genome itself or on the short reads from each
sample. Moreover, we provide a quantitative comparison between various published genome
blacklists and our proposed similar regions in Table 4.4. We also illustrate the relative sizes
of the blacklists as well as the sizes of their overlaps in Figure 4.10.

The first class of efforts is based on the study of repeats in the human genome, often with
the goal of understanding the evolutionary biology of the genome [2, 63, 132, 7, 103]. One
of the most well-known repeat databases is Repbase [55], an inclusive set of repeats with
sequences that span a broad range of lengths and allow a significant degree of divergence
among members of the same family. Since Repbase7 comprises 47% of the genome (see Table
4.4), however, it is ill-suited for the application of a specialized variant calling approach.

The second class of algorithms focuses on the task of identifying regions of the genome
that are particularly challenging for variant calling. However, these approaches all employ
an orthogonal strategy of relying on the short reads themselves to identify these difficult
regions. Many of these strategies are complementary to our approach, identifying regions
enriched with sequencing errors, e.g., GC-rich regions, and/or sample-specific variation that
could lead to low variant calling quality.

For instance, the accessible genome [1] aims to identify “accessible” regions for variant
calling by aligning reads from many samples and developing heuristics primarily based on
coverage to identify anomalous regions. The blacklist developed by the Pritchard Lab at
Stanford8 leverages a similar strategy to identify collapsed repeats that may hinder vari-
ant calling accuracy. The sizes of the inaccessible genome (!Accessible Genome) and the
Pritchard blacklist (Pritchard) are given in Table 4.4.

The GEM suite [28] falls into the third class of methods and is the most closely related
to our similar regions. GEM assesses the mappability of short reads by identifying how often
each substring of length k occurs in the reference genome with up to m mismatches, and
defining mappability as the inverse of this count. Hence, as in our work, GEM relies on the
reference itself to determine the mappability of various regions, and the size of the GEM
blacklist is comparable to the similar regions, as noted in Table 4.4.9

We build upon the preliminary studies in the GEM work, providing a thorough inves-
tigation of the impact of similar regions on variant calling and clearly demonstrating the
need for alternative variant calling algorithms in these regions. Moreover, we provide more
information than mere counts of a substring’s neighbors; we provide the full set of connected
components in the genome. Indeed, as we will discuss in Chapter 5, information about the
structure of similar region families is crucial in order to disentangle the reads stemming from
similar regions.

A notion of read quality scores, relevant to the alignment microbenchmark, was intro-
duced in [75]; the authors named their metric mapping quality, or MAPQ. The MAPQ score,
assigned to reads during the alignment phase, is meant to express the probability that the

7We used the version of Repbase distributed via RepeatMasker open-3.3.0 - RepeatLibrary 20120124,
available from http://www.repeatmasker.org/.

8http://eqtl.uchicago.edu/Masking/readme
9We used k = 100, m = 1, and disabled the approximation.
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Blacklist Overlap Size (% of Genome) Total Size (% of Genome)

Repbase 169 million (5.4%) 1.48 billion (47.3%)

!Accessible Genome 156 million (5.0%) 472 million (15.1%)

GEM Mappability 190 million (6.1%) 266 million (8.5%)

Pritchard 1.46 million (0.046%) 6.47 million (0.21%)

Table 4.4: Overlap between the similar regions and various blacklists, listed in descending
order of size. Shown is both the size of the overlap and the size of the blacklist, in bp and
as a fraction of the genome.
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Figure 4.10: Venn diagrams comparing the similar regions to various other blacklists.

alignment is correct. Thus, a high score indicates that the aligner is confident about its
placement of the read, and a low score indicates that it is not. MAPQ is a useful way for
the aligner to propagate its uncertainty to downstream stages of the pipeline. Since it is
a probability, though, some high MAPQ reads will be errors, while some low MAPQ reads
will be correct. Thus, any downstream stages that attempt to leverage MAPQ as a signal of
alignment correctness need to treat it as a probability rather than as an absolute threshold.
However, this probability is potentially noisy since MAPQ is often poorly calibrated; i.e., the
probability expressed by the MAPQ that the alignment will be correct does not necessarily
correspond to the actual percentage of correct reads with that MAPQ. Many practitioners,
therefore, do not fully trust it.

Low MAPQ could be considered a proxy for hard reads; however, it is not as useful as
the similar regions. First, low MAPQ values could result from other reasons besides a read
mapping to multiple locations in the reference; they could also result from sequencing errors
that lower the quality of the read itself. Furthermore, MAPQ is on a per-read basis, whereas
our similar regions give insight about the genome itself. Therefore, we only need to compute
them once rather than for each sample.

Other work in the literature pertains to our proposed strategy of developing specialized
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techniques for variant calling in the similar regions. The GATK [27] has also introduced a
notion of treating different regions of the genome in different ways. They do this with their
ReduceReads module.10 The idea is to compress the BAM file, which is the file containing
the reads and their aligned locations, in areas that are redundant and keep only information
necessary for variant calling. This approach is mostly focused on reducing storage needs
rather than computational costs. In addition, it is sample-specific, i.e., it must be redone for
each processed genome, whereas our similar regions are functions only of the reference and
can therefore be computed once and for all before processing any samples. This compression
technique is orthogonal and complementary to our work, in that we may also benefit from
compressing the reads, which can take a few hundred gigabytes to store.

Another project in the same spirit as GATK’s ReduceReads is CAGe, which stands for
Changepoint Analysis of Genomes [10]. They also process the aligned read set rather than
the reference genome; hence, like ReduceReads, CAGe is sample-specific, so it must be re-run
on each new sample genome. This approach goes beyond ReduceReads, however, in that
it not only aims to reduce storage costs but also to reduce the runtime of variant calling.
Their key idea is to use changepoint detection to recognize regions in the genome that are
variant-dense and therefore more complicated for variant calling. Then, they deploy a simple
variant caller in the regions with few variants, while reserving a more accurate and therefore
more computationally expensive variant caller for the regions with many variants.

While CAGe designates a small portion of the genome as variant-dense, the speedups are
quite modest. For example, in one single-chromosome experiment, while they designated 4%
of the genome as variant-dense, therefore requiring the sophisticated caller, they achieved
only a 1.4× speedup over running the tool on the whole chromosome. Therefore, more
work is necessary to realize the project’s potential for runtime reduction. Should this be
accomplished, this approach would be complementary to ours; an efficient system combining
SiRen and CAGe would first use SiRen’s similar regions to partition the genome into similar
and unique regions. Then, we would deploy CAGe on the unique regions, while using special
techniques on the similar regions.

4.7 Conclusion

In Chapter 3, we discussed our efforts to identify the similar regions. Of course, since we
employed an unsupervised algorithm, a natural question is whether the similar regions that
we found are actually interesting. Our motivation was to find similar regions that correspond
to difficult alignments and therefore cause variant calling errors. We developed an algorithm
and build a tool to find the similar regions, so now we want to know if they meet our goal.

The two approaches that are usually used to validate a clustering result are computing
metrics of the clustering itself or considering an application that leverages the clustering.

10http://www.broadinstitute.org/gatk/gatkdocs/org

broadinstitute sting gatk walkers compression

reducereads ReduceReads.html



CHAPTER 4. VALIDATING THE SIMILAR REGIONS 70

Looking at metrics alone was somewhat interesting, but it did not yield much insight re-
garding our motivation. Therefore, we decided to turn to an application-oriented validation
that directly answers the questions we had in mind.

First, we designed a set of experiments to determine whether alignment is affected by
the similar regions. We developed a method to label each read as easy or hard to align, and
we found that hard reads are almost always in the similar regions. We also performed a
set of end-to-end experiments to determine whether these alignment difficulties percolated
through the pipeline to cause variant calling errors. We found that, indeed, the two popular
variant calling tools we considered struggled much more in the similar regions than in the
unique regions. We were thus able to quantify the phenomenon that we talked about earlier,
in Chapter 3, where similar regions cause difficulties in processing short reads accurately.
Hence, a contribution of this chapter is that we have provided motivation that future work
on variant calling should be focused on the similar regions, since they present a significant
obstacle to accuracy, and we will build upon this finding in Chapter 5.

We ended the chapter by comparing the similar regions with several existing blacklists.
Unsurprisingly, the similar regions have the most in common with GEM, which has a similar
size. The main advantage of the similar regions over the existing blacklists, though, is that
they capture the structure of which regions are related to which other regions. In the next
chapter, we will discuss our efforts to leverage this structure to improve the accuracy of
variant calling in the similar regions.
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Chapter 5

Leveraging the Similar Regions

5.1 Introduction

This chapter is the culmination of our discussion about the usefulness of our similar regions.
We began by introducing the SiRen algorithm by which we located the similar regions (Chap-
ter 3). Then, we demonstrated that the similar regions are correlated with alignment and
variant calling (VC) errors (Chapter 4). We will now present evidence that the similar regions
not only identify difficult regions but also provide a platform for improving VC accuracy in
these regions.

In Chapter 4, we treated the similar regions as a binary list, where the only information
the list provides is whether a region is similar to another or unique. Then, we analyzed in
detail how alignment and variant calling suffered in the regions indicated as similar. This
exercise was useful for validating that the results of our unsupervised algorithm captured
the information about alignment difficulty that we expected them to reflect. However, GEM
[28] is also a binary list of similar sequence. Therefore, our goal is to show that we provide
additional value over GEM’s list with our similar regions.

In this chapter, we demonstrate the usefulness of our similar regions’ structure, in addition
to their binary list, through a case study. First, we argue that the difficulties we encounter in
alignment and variant calling in the similar regions are not solely due to those regions having
more complex variants that are more difficult to call. In fact, the prevalence of alignment
errors in the similar regions is a significant cause of the difficulty variant callers face in
those regions. Then, we show that for many alignment errors in the similar regions, the
correct locations can be found elsewhere in the corresponding families. When these errors
are restored to their correct locations, the VC accuracy improves.

We begin the chapter in Section 5.2 by discussing how we form groups of similar regions.
Then, in Section 5.3, we show that, modulo some effects from structural variants, VC in
the similar regions is of comparable difficulty to VC in the unique regions. It is therefore
not true that the poor VC accuracy we saw in Section 4.4 results solely from the similar
regions being inherently more difficult to call; in fact, alignment is a major reason for the
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poor VC accuracy in the similar regions. We continue in Section 5.4, demonstrating that
the similar region families we created in Section 5.2 contain the information needed to repair
many of the alignment errors we encounter in these regions. In Section 5.5, we provide some
initial exploration of how to build a classifier to recognize alignment errors automatically,
so our case study can be extended to create a fully-functioning system. While building a
classifier remains future work, we have identified some intuitive (though so far unsuccessful)
approaches, and we also give our perspectives on promising directions to explore next. We
conclude in Section 5.6 with related work on variant calling in the face of genome redundancy.

This chapter thus completes our argument about the importance of the contribution we
have made by identifying the similar regions. Not only do our similar regions indicate difficult
regions in the genome, but they also have a structure that contains valuable information for
correcting alignment errors. Recall that in Section 4.5, we discussed how the similar regions
are suitable in terms of their number and size for the development of specialized techniques
that apply to these regions. In this chapter, we give a more concrete description of what
those specialized techniques should be. Our similar regions, plus our case study, lay the
groundwork for future efforts to build an end-to-end system that can be inserted into a VC
pipeline.

5.2 Similar Region Families

In this section, we provide more detail about the structure of our similar regions. After briefly
summarizing how the read-length substrings we clustered relate to the similar regions, we
present our algorithm for determining which similar regions should be grouped together. We
also discuss the characteristics of the similar region groups that we identify via our algorithm.

Figure 5.1 illustrates the relationship between substrings and similar regions. Recall that
each similar region is created by merging overlapping substrings. In Figure 5.1(a), we show
the output of the SiRen algorithm, which we presented in Chapter 3. The output is the
connected components of a graph, where each node is represented by a substring whose
length is the same as the reads that we intend to process, and edges connect two substrings
if the Hamming distance between them is below a threshold. Each connected component
receives a unique ID.

Figure 5.1(b) shows how the substrings identified by SiRen relate to the similar regions.
The long blue line represents the reference genome, and the short colored lines that ap-
pear underneath the reference represent the substrings. Note that the substrings all have
the same length. Each substring appears below its original location in the genome, and its
color corresponds to the component to which it belongs, shown in Figure 5.1(a). The similar
regions are the red lines that lie on the reference genome and are created by merging overlap-
ping substrings. The list above each similar region gives the component IDs that represent
its underlying substrings. For example, the first similar region contains one substring from
component 1, one from component 2, and one from component 6.
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Figure 5.1: Similar region families. (a) Each group of substrings has a unique ID. (b) Each
similar region is made up of substrings, which in turn belong to connected components. (c)
Each similar region is represented as a list of its substrings’ component IDs.

As we described in Chapter 3, SiRen tells us which substrings should be clustered, based
on whether they belong to the same connected component of the genome similarity graph.
What is missing, at this point, is knowing which similar regions should be grouped together.
We define a similar region family as a group of similar regions, where for each region in
the family, the family contains at least one other region with a shared substring component
ID. Looking again at Figure 5.1(b), we see that the first similar region contains a dark blue
substring from component 2, as does the third similar region. Thus, by our definition, the
first and third similar regions should belong to a family.

To algorithmically locate the similar region families, we use an approach very similar to
SiRen. We start with a new graph, in which the nodes are similar regions, represented as a list
of the component IDs to which its substrings belong, and the edges connect similar regions
that share at least one component ID. Figure 5.1(c) illustrates our graph representation.
As mentioned above, the first similar region (represented as “Components 1, 2, 6”) and the
third similar region (represented as “Components 2, 4, 5”) are connected by an edge since
they share component 2. The second region (“Components 3, 7”) is not connected to either
of the other two nodes, since it does not share a component ID with either one.

Like in SiRen, our goal is to identify connected components of the graph just described;
each such component will correspond to a similar region family. To identify the components,
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we again employ the union-find algorithm. As a preprocessing step, we convert the output
of SiRen, which we describe in Section 4.2, to similar regions. To do so, we first merge the
overlapping substrings to create similar regions; then, we represent each similar region as a
list of the component IDs corresponding to its substrings. Algorithm 4 describes this step.

Algorithm 4 Merging substrings to create similar regions

R = read length, G = genome size
Initialize: posToComponentID , map from substrings’ initial positions to component ID,
empty
Initialize: genome bitmap g, binary array of length G, all 0
Initialize: similarRegions , list of sets, empty
for all components c do

for all positions p ∈ c do
posToComponentID += (p, c)

end for
end for
for all positions p ∈ G do

if posToComponentID.get(p) then
Set g[p, p + R) to 1

end if
end for
for all b ∈ g, where b is a block of 1s do

similarRegions += {∀p ∈ b : posToComponentID.get(p)}
end for
return similarRegions

Once we have the similar regions in this representation, we again use a Spark-based
implementation of the union-find algorithm, adapted to our new data format and similarity
function. The new similarity function computes the number of components in common
between two similar regions, which is analogous to our use of Hamming distance to compare
two substrings in SiRen.

Initially, each similar region is assigned to its own cluster. As in SiRen, we partition the
genome in a grid fashion. We also maintain one global union-find data structure, which can
keep track of all the clusters in the genome. Via Spark, we execute in parallel on the grid
cells. Algorithm 5 gives details about how we find the clusters within a single grid cell. We
then update the master with each grid cell’s results in the same manner as for clustering
substrings, which we explained in Chapter 3, in Algorithm 3.

For each grid cell, we index the similar regions in its row range. The index is a map from
component IDs to the similar region IDs that contain substrings from those components.
Then, we scan over each similar region in the column range. Given a similar region, for
each of its component IDs, we look up the ID in the index and then merge the current
similar region with any regions that share that ID, if they do not already belong to the same
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numSimilarRegions numFamilies substringLength minIntersectSize

familySize (region1Start,region1End) (region2Start,region2End) ...

Figure 5.2: Output format for similar region families.

cluster. Then, after we finish executing on the grid cell, we use Spark accumulators [122] to
update the master union-find data structure with the cell’s incremental results. When we
have executed a task for each grid cell, the master has the results for the genome.

Algorithm 5 Union-find on similar regions, for a grid cell

Input: grid cell g with row range r and column range c
Initialize: parentg(i) = i = family of the ith similar region, where length(parent) = |r|+|c|
Create index I, from component IDs to similar regions in r that contain those components
for all similar regions SR in r do

for all component IDs j in SR do
hits = I(j)
for all k ∈ hits do

Update parentg(k) = parentg(j)
end for

end for
end for
return parentg

Figure 5.2 describes the format in which we output the similar region families. The
header line gives the number of similar regions that we grouped, the number of families we
created, as well as the substring length and the number of component IDs that we required
in common in order to group two regions. Then, we have a line for each family. First, we
output the family size, and then we give the endpoints of each region in the family. Note
that we must give the regions’ endpoints, rather than only their start positions, since similar
region lengths can vary. We sort the family lines by number of members, from largest to
smallest.

For this case study, we chose to run our union-find algorithm on the similar regions for
a single chromosome, chr22. We made this decision because one chromosome’s family data
is sufficient to demonstrate the points we wanted to make, which we will explain in detail
in the rest of the chapter. Since our implementation is distributed, however, it would be
straightforward to generalize it to the whole genome.

Figure 5.3 is a histogram of the family sizes obtained via this algorithm. We observe a
similar pattern as for the sizes of clusters of substrings, which we presented earlier in Figure
4.4. The vast majority of families are small, and a small number of families are large. We
will exploit this pattern when we discuss our automatic realignment technique in Section
5.4.
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Figure 5.3: Histogram of family sizes. Given our parameter selection, most families are
small.

In our discussion above, we mentioned that we draw an edge between similar regions
having at least one component ID in common. Of course, we could require similar regions
to share more components. However, since even with our simple similarity function, a large
majority of our families were small, we elected not to explore a stricter function.

5.3 Oracle Alignment

The goal of this section is to establish whether alignment errors are the cause of the difficulty
variant callers face in the similar regions, which we detailed in Section 4.4, or whether variant
calling is inherently more difficult in the similar regions than in the unique regions. In
Section 3.2, we presented a hypothesis that alignment errors are the culprit, rather than
inherent difficulty. In what follows, we will present our findings showing that the cause of
difficulty is a combination of the two factors. Since structural variants are more prevalent
in the similar regions, they do make variant calling more difficult there. However, even if
structural variants’ effects are removed, variant calling accuracy is still worse in the similar
regions. If we correct all alignment errors, variant calling accuracy is almost the same in the
similar and unique regions.

In order to test our hypothesis, we chose to work with simulated data, so that we could
identify the alignment errors and locate the true variants. As in our evaluation in Chapter
4, we obtained simulated data, including reads and a true VCF file, for the Venter genome
from the SMaSH benchmarking suite [125]. We used BWA v.0.6.1 [74] to align the reads,
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Region Type Error Rate

Similar 18.3%

Unique 1.2%

Overall 3.7%

Table 5.1: Alignment error rates, in the similar regions, unique regions, and overall.

and we used mpileup [71] from SAMtools v.0.1.19 to perform variant calling. In this section,
we focused solely on SNPs, rather than on both SNPs and indels as in Chapter 4. Thus, we
will use the terms “variant calling” and “SNP calling” interchangeably throughout the rest
of the chapter.

In order to remove the effects of alignment errors, we created a simple tool that we call
the oracle aligner to align the reads. Since we used simulated data, we know the true location
of each read; this information is encoded in each read’s ID. The oracle aligner takes a read
from a FASTQ file as input and outputs a SAM line for the read, where the position is set
to be the read’s true position. Recall that we discussed the FASTQ and SAM file formats
in Section 2.4.

Table 5.1 gives the alignment error rates we encountered in the similar regions, unique
regions, and overall. Note that we only count an alignment as an error if its aligned location
is more than 100 bp away from the simulator’s reported location. We also used this definition
in the alignment section of our evaluation, described in Section 4.3. Since the error rate in
the similar regions is much higher than in the unique regions (and overall), we would expect
a large improvement in SNP calling accuracy when using the oracle aligner.

To evaluate the impact of the oracle alignment on SNP calling accuracy, we used mpileup
to call SNPs on the oracle aligner’s SAM file. Table 5.2 shows the results. For convenience,
the ∆ columns show the difference in accuracy between the similar and unique regions, for
both precision and recall. The line with the alignment type “Original” shows the baseline,
which is obtained using the BWA alignment. As we showed in Section 4.4, the accuracy is
much worse in the similar regions than in the unique regions, with respect to both preci-
sion and recall. The line with the alignment type “Oracle” gives the SNP calling accuracy
obtained using the oracle alignment. While the recall in the similar regions dramatically
improves, from 75.2 to 95.5, the precision improves only modestly, from 81.3 to 84.0. We
also note that even with the oracle alignment, the difference in precision between the similar
and unique regions is substantial: 84.0 vs. 97.3. Therefore, the alignment errors are not the
only cause of the difference in accuracy.

We noticed that many of the erroneous SNP calls that mpileup made in the similar
regions, even with the oracle alignment, were around structural variants (SVs), which we
defined in Section 2.7. Recall that we know the locations of Venter’s structural variants,
since this is simulated data. A natural question is whether SVs affect similar regions more



CHAPTER 5. LEVERAGING THE SIMILAR REGIONS 78

Alignment Type
Precision Recall

Similar Unique ∆ Similar Unique ∆

Original 81.3 97.4 16.1 75.2 95.3 20.1

Original - SVs 89.2 98.5 9.3 76.0 95.4 19.4

Original - (SVs + flank) 93.6 99.0 5.4 80.2 95.9 15.7

Oracle 84.0 97.3 13.3 95.5 96.7 1.2

Oracle - SVs 95.0 98.6 3.6 96.0 96.8 0.8

Oracle - (SVs + flank) 98.1 99.3 1.2 96.9 97.1 0.2

Table 5.2: SNP calling accuracy (precision and recall) in the similar and unique regions,
varying the alignment type. By masking out the SVs and their flanks, the accuracy between
the similar and unique regions converges.

Region Type Overlap Size Region Size Overlap Fraction

Similar 25,800 1,680,000 1.5%

Unique 107,000 49,600,000 0.2%

Table 5.3: SV overlap with similar and unique regions. SVs are more prevalent in similar
regions.

than unique regions. Therefore, we decided to investigate their prevalence in each region
type. Table 5.3 shows our findings. The SVs are indeed more prevalent in the similar regions,
where they account for 1.5% of the sequence, compared with making up only 0.2% of the
sequence in the unique regions. Therefore, it would make sense if the SNP calling accuracy
in the similar regions were adversely effected to a greater extent than in the unique regions.

Based on these findings, we decided to isolate the influence of the structural variants
in order to determine if they were having a disproportionate effect on SNP calling in the
similar regions. To do so, we used bedtools1 (also mentioned in Section 4.4) to mask out the
structural variants from the similar and unique regions. We also created a mask where we
not only excluded the structural variants but also a read-length flank on either side; recall
that in our experiments, the read length is 100 bp. We chose to explore masking the flanking
sequence because of our observations that mpileup called SNPs incorrectly around structural
variants. Then, we analyzed the SNP calling accuracy in the remainder.

Table 5.2 above displays the results. We will comment primarily on the lines where both
the SVs and their flanks are masked; the effects we will explain are also present when only

1http://bedtools.readthedocs.org/
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the SVs are masked, but to a lesser extent. First, we focus on the line where the alignment
type is “Original - (SVs + flank).” Comparing this line to the “Original” alignment type,
we note that the precision has increased from 81.3 to 93.6 in the similar regions, while the
recall has increased from 75.2 to 80.2. This result confirms our intuition that the structural
variants cause trouble for mpileup in the similar regions. However, if we look at the difference
between mpileup’s accuracy on the “Original - (SVs + flank)” line between the similar and
unique regions, given in the ∆ columns, we note that a large difference in accuracy persists
(especially with respect to the recall), even with the SVs and their flanks removed. Therefore,
the difference in accuracy between the similar and unique regions is not solely due to the
presence of SVs.

Next, we focus on the line where the alignment type is “Oracle - (SVs + flank).” Looking
at the ∆ columns, we note that the difference in the SNP calling accuracy between the similar
and unique regions is quite small. Thus, by correcting the alignment errors, we are able to
raise the SNP calling accuracy in the similar regions to the level obtained in the unique
regions.

Thus, both alignment errors and structural variants contribute to making variant call-
ing more difficult in the similar regions. We showed that alignment errors and structural
variants disproportionately affect the similar regions. We also showed that solely repairing
alignment errors, or solely masking out the SVs, cannot yield comparable SNP calling accu-
racy between similar and unique regions. However, recall that what we wanted to repudiate
was the assertion that SNP calling is inherently more difficult in the similar regions. If this
assertion were true, masking out the SVs should have been enough to eliminate the accuracy
differential. We were only able to achieve comparable accuracy by both masking the SVs
and correcting the alignment errors. Therefore, we conclude that modulo SVs, alignment
errors are the culprit for reduced SNP calling accuracy in the similar regions.

5.4 Repairing Alignment Errors

Given that alignment errors in the similar regions result in poor VC accuracy, we will now
explore the advantage that the structure of our similar regions provides over simply having
the similar regions as a binary list, like GEM [28]. In fact, because of the structure that we
have identified, we have developed an algorithm for realigning alignment errors. We show
that this method is successful the majority of the time: we can correct 55% of errors in size-2
families, and in families with at least five variants, we can correct 77% of errors.

As we mentioned in Section 5.2, we restrict our attention to families of two similar
regions, since that focus simplifies the realignment algorithm (discussed below). Table 5.4
provides several quantities of interest for size-2 families in chr22. As we mentioned earlier,
the vast majority (81%) of similar region families are pairs. By number of bases, 32% of
the sequence found in similar regions belongs to size-2 families. As 3.3% of chr22 belongs to
similar regions, 1.0% of the chromosome belongs to size-2 families. If we extrapolate these
rates to the whole genome, given that the similar regions make up about 7% of the genome
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Quantity Fraction

Families that are size-2 81%

Similar regions in size-2 families 32%

Similar regions in chr22 3.3%

Size-2 families in chr22 1.0%

Size-2 families in hg19 2.2%

Table 5.4: Quantities of interest for size-2 families, in chr22 and hg19 (extrapolation).

(see Figure 4.6), and given that 32% of the sequence in similar regions is in size-2 families,
we would expect that 2.2% of the genome overall lies in size-2 families.

Since our simple family creation algorithm described in Section 5.2 yields such a large
majority of families as being size-2, we decided to use it. However, in the future, another
avenue to explore would be to adjust the algorithm’s parameters so that it yields even more
size-2 families. One way to achieve this would be to require similar regions to have more than
one component ID in common before drawing an edge between them. Another approach
would be to use graph decomposition techniques to break up big families. Still another
interesting direction would be generalizing our realignment techniques to size-N families.

Figure 5.4 illustrates our automatic realignment algorithm for repairing alignment errors.
The input to our algorithm, shown in the top band of the figure, is a size-2 family, with the
reads that have been aligned to each region via a standard alignment and classified according
to whether the reads have been correctly aligned. Since we are focusing on whether we can use
the similar region structure to correctly realign alignment errors, we leverage our simulated
data, which gives us the correct alignment location of each read, and therefore rely on an
oracle classifier to recognize errors. In Section 5.5, we discuss our plans to build a classifier
to recognize alignment errors.

The second band of the figure shows the result of the classification; alignment errors in
Region 1 have been marked orange, and alignment errors in Region 2 have been marked
purple. Then, to realign the reads, we assume that all alignment errors can be corrected
by simply aligning the erroneous read to the other region in the family. In the case of the
figure, this means that we would choose to align the purple reads to Region 1 and the orange
reads to Region 2. In order to align to a region, we index the region’s sequence, along with a
read-length flank on each end to account for reads that align at the boundaries of the region.

Table 5.5 gives the results for SNP calling accuracy, using the automatic realignment as
input. Since we only perform our realignment algorithm in the size-2 similar region families,
this table does not include results for the unique regions, which we provided in Table 5.2.
Instead, Figure 5.5 facilitates comparison by displaying the results graphically for the unique
regions and size-2 similar region families, for the case where the SVs and their flanks have
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Figure 5.4: Automatic realignment. Apply a classifier to reads aligned to a size-2 family to
obtain errors (shown in orange and purple). Then, align all purple reads to Region 1 and
all orange reads to Region 2, where the regions are augmented with a read-length flank on
each side.

been masked out. We provide the results in terms of 1−Precision and 1−Recall to better
portray the differences between the approaches; thus, smaller is better.

Figure 5.5(a) provides the results for the baseline and the oracle alignment in the unique
regions. As presented earlier, we note that the oracle alignment yields slightly better accuracy
than the baseline alignment. As we indicated in Table 5.1, the alignment error rate is already
quite small in the unique regions; thus, repairing the alignment errors only slightly improves
the SNP calling accuracy. Figure 5.5(b) shows the accuracy for the size-2 families, with
the baseline alignment, the oracle alignment, and the automatic realignment, which we just
described. The realignment yields much better accuracy according to both of our metrics
(and especially 1−Recall) than the baseline, but the accuracy is worse than that of the oracle
aligner. Note that the realignment (the green bar) does not appear in Figure 5.5(a) since we
only perform realignment in the similar regions.

In order to determine why this difference in accuracy persisted, despite our realignment
technique, we manually examined some of the SNP calling errors. We call errors that our
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Alignment Type Precision Recall

Automatic Realignment 92.3 92.0

Automatic Realignment - SVs 94.6 92.2

Automatic Realignment - (SVs + flank) 96.8 95.1

Table 5.5: SNP calling accuracy (precision and recall) in the size-2 families, using an oracle
classifier with automatic realignment.
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Figure 5.5: SNP calling accuracy (1 − precision, 1 − recall) in the (a) unique regions and
(b) similar regions (size-2 families only), obtained by masking out the SVs and their flanks.

realignment technique targets inter-region errors, because they were aligned to the wrong
region in the family. However, some of the errors have other causes. We call reads that are
aligned to the wrong location in the correct region intra-region errors. Another error type,
which we call extra-family errors, occurs when the correct location is not within the family at
all. Our realignment algorithm applies to neither intra-region errors nor extra-family errors.

Figure 5.6(a) shows the prevalence of each error type for all size-2 families. Again, the
inter-region errors are the error type that our realignment algorithm can repair. We see that
although our algorithm targets the majority of errors, many errors are excluded. We were
surprised that there were so many errors that our algorithm could not correct, given the
dramatic improvement in SNP calling accuracy we presented in Figure 5.5. Figure 5.6(b)
shows why: in families with at least five variants, a much greater percentage of the alignment
errors are targeted by our realignment algorithm, which is likely the reason that we are able
to greatly improve the VC accuracy in size-2 families despite leaving some errors uncorrected.
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Figure 5.6: Breakdown of error types.

As we notice from Figure 5.6(a) and (b), intra-region errors contribute a small fraction of
alignment errors and are therefore likely insignificant when it comes to causing SNP calling
errors. However, particularly in Figure 5.6(a), extra-family errors are more prevalent and
therefore worth addressing. An approach to repair these errors would involve changing how
we construct the families so that more of these errors would become inter-region errors,
i.e., to change the families so that for each extra-family error, the read’s correct location
belongs to the family that contains the read’s aligned location. One way we could achieve
this change is to use a larger merge distance when we run the original SiRen algorithm to
cluster the substrings; this would result in less-related substrings being grouped together
in clusters. Another option would be to not only consider the forward strand but also the
reverse strand when executing SiRen.

The tradeoff to having more inclusive families and therefore reducing the number of
extra-family errors is that more of the genome would be classified as being part of similar
regions. To quantify how much the similar regions would need to grow in order to eliminate
extra-family errors, we computed the length of the sequence in size-2 families when they
were augmented with the true locations of all extra-family errors. We found that the size-2
families are 17% larger when they include the extra-family errors’ correct locations. If we
extrapolate that amount of increase to the similar regions from the whole genome, the similar
regions would grow from 7% of the genome (Figure 4.6) to 8.2%. As we mentioned in Section
4.5, our goal was to identify similar regions that make up less than 10% of the genome. Since
the augmented similar regions could potentially still allow us to meet our goal, we believe
that, as we will discuss in Chapter 6, refining our families to reduce extra-family errors is an
important future direction.
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Figure 5.7: SNP calling accuracy in the size-2 families, with the SVs and their flanks masked
out.

5.5 Perspectives on an Alignment Classifier

In this section, we will discuss our promising but so far unsuccessful efforts to build a
classifier to recognize alignment errors. Our goal is to report on our explorations so that
other researchers attempting a similar effort will avoid pursuing the approaches that we
identified as ill-suited to the task and hopefully find a solution.

We decided to start with a threshold on the MAPQ score (Section 4.6), because MAPQ
is how the aligner informs downstream processing stages about its confidence in where it
chose to align the read. We chose a threshold of 10, which resulted in correctly classifying
67.2% of the reads. Given that the max MAPQ value is 70 and that many practitioners
use 35 as a cutoff for high-quality reads, our choice of 10 is low in order to avoid counting
correctly-aligned reads as incorrect.

However, the main obstacle to correct classification was that many low MAPQ reads were
actually correctly aligned; even with a lower threshold, the results were very similar. To see
how this would affect the VC accuracy, we used the MAPQ classifier to identify alignment
errors, and then we used the realignment process we described in Section 5.4 to attempt to
correct the errors. Then, we ran mpileup on the final edited alignment. The VC precision
was only 43.2%, and the recall was 84.3%.

We then investigated what would happen if we realigned all the low-MAPQ errors. This
approach removes the problem of changing the alignments of the many low-MAPQ reads that
were correctly aligned in the baseline alignment. To do so, we modified the oracle classifier
(Section 5.4) to only mark an alignment as an error if its MAPQ was below a threshold.
As a result of using our modified oracle classifier, we did not realign any errors with higher
MAPQ values or any low-MAPQ reads that were correctly aligned. Then, we ran mpileup on
our edited alignment. The VC accuracy we obtained using a threshold of 10 for our classifier
was 86.2% for the precision and 83.7% for the recall.

Figure 5.7 summarizes the SNP calling results for both the MAPQ threshold classifier and
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the modified oracle classifier. We also include the baseline and the oracle classifier (Section
5.4) and again show the accuracy as 1−Precision and 1−Recall to facilitate comparison,
so that smaller values are better. The MAPQ classifier achieves much worse precision and
only slightly better recall than the baseline. The modified oracle classifier does much better
but still gets worse precision and only slightly better recall than the baseline. Also, both
MAPQ-based results are much worse than the oracle classifier, suggesting that many errors
are going unrecognized.

From these results, we conclude that merely realigning low-MAPQ errors is insufficient
to usefully improve VC accuracy in the size-2 families. This finding was contrary to our
intuition, since the vast majority of errors have low MAPQ. However, upon further explo-
ration of the data, we observed that the high-MAPQ errors were much more likely to overlap
variants than the low-MAPQ errors. Therefore, not every error has the same importance to
variant calling, and missing a small number of important errors, as we do in the case of the
modified oracle classifier, has a large impact on VC accuracy.

In Section 4.6, we mentioned that though MAPQ is a valuable source of information,
many practitioners do not trust it. Based on our experiences reported in this section, we
agree that algorithm developers should use caution when using it as a signal about alignment
results. Though MAPQ can be helpful, the fact that many low-MAPQ reads are correctly
aligned and that some high-MAPQ reads are errors makes it difficult to work with MAPQ.

Another direction we explored was building a classifier using features from several differ-
ent aligners. We varied the classifier type, using Spark’s MLlib [86] to try an SVM, logistic
regression, a decision tree, and a random forest. For features, we recorded for BWA [74],
SNAP [139], and Novoalign2 the region in the size-2 family to which the aligner assigned
the read. We also recorded for each of these aligners the MAPQ value associated with its
alignment. However, none of the combinations of classifier type and features that we tried
made a significant change to the classification accuracy obtained with a MAPQ threshold;
therefore, we obtained similarly bad VC accuracy.

So far, we have examined a single read at a time to come up with features. Going forward,
we believe that it will be necessary to use features obtained by considering multiple reads at
once. We believe that the ability to devise multi-read features is the main advantage of using
the similar regions rather than using the original alignment. For example, Figure 3.3 showed
that by looking at the reads from both regions at once, one can identify the errors in the
second region, since they clearly correspond to a variant in the first region. We anticipate
that multi-read features like this one will be necessary to achieve good classifier accuracy in
order to fully automate this system.

5.6 Related Work

An excellent survey of how various genomic processing algorithms handle repetitive regions
is available in [130]. While it is well known that the genome is comprised of a large number

2http://www.novocraft.com/
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of repeats of many scales, variant calling algorithms such as GATK [27] do not do any special
processing to address this fact.

Sniper [117] is a Bayesian method for SNP calling that accounts for genome redundancy
by allowing reads to map multiple times, to different locations. Rather than forcing a read
to map to a single location, Sniper preserves the aligner’s uncertainty about the read’s
correct location. The main advantage of our work over Sniper, which would replace other
variant callers, is that we have provided a foundation for building a lightweight pipeline stage
that enables practitioners to continue to use their preferred variant caller. As we mentioned
when we introduced variant calling in Section 2.7, practitioners are often hesitant to abandon
GATK in favor of other variant callers.

Coval [62] performs alignment error correction via local realignment. This technique is
related to our efforts to correct alignment errors using the similar region families, which
we discuss in Section 5.4. Coval also discards some low-quality reads, where quality is
determined with respect to the number of mismatches, weighted by base quality scores. We
briefly discussed base quality scores in Section 2.5. The advantage of our work over Coval
is that instead of performing only local error correction, our similar regions provide the
foundation for correcting alignment errors in a more global manner, among the regions in a
family. In addition, we do not discard any reads.

Another relevant effort is dbDNV [43], which provides an annotation of SNPs that indi-
cates that if the SNP is called, it may be because the SNP appears in duplicated sequence,
where reads from one version of the sequence align to the other. This approach is related
to our finding that reads from one similar region often get mistakenly aligned to the other
region in the family. The dbDNV project assumes that if SNPs are called in the duplicated
sequence, they are likely to be false positives, so practitioners would want to filter them out
of their call sets. A limitation of dbDNV’s approach is that it only works on the exome.

Another weakness of dbDNV’s approach is that it only tells practitioners which SNPs
not to trust; it does not make any effort to correct any read alignments in the duplicated
regions. Furthermore, reducing false positives would mostly impact the precision; however,
based on our experiments in Section 4.4, as well as in Sections 5.3 and 5.4, recall is a bigger
problem. An advantage of our work over dbDNV is that we lay a foundation for repairing
alignment errors in size-2 families rather than requiring users to throw out SNPs called
there, which could be true SNPs. However, the dbDNV SNP annotations could still be
useful in combination with our work; one way we could use them is as an additional feature
to recognize alignment errors, which pertains to Section 5.5.

Another related project [51] has to do with variant calling for a gene and its pseudogene,
which is similar in sequence to the gene but is non-functional [137]. The goal of this project is
to reduce false negative calls in the region associated with a gene, which the authors assume
are being caused by reads that should align to the gene actually aligning to the pseudogene. A
gene-pseudogene pair is related to our size-2 families. To avoid false negatives, this approach
starts by aligning all of the reads from both sequences in the gene-pseudogene pair to the
gene and then calls variants on this double-coverage alignment. If any variants are called,
the authors use Sanger sequencing to verify them. The tradeoff to reducing false negatives
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is that false positives are likely to result from including in their consideration of the gene
many reads that should have gone to the pseudogene. Using Sanger verification can blunt
the effects of false positives, though relying on Sanger may become prohibitively costly if too
many false positive calls occur.

Another class of approaches that is related in its goal but not in its technique is that of
using the expectation-maximization (EM) algorithm to capture the uncertainty that results
when reads have multiple possible alignment locations. One example of this is a recent paper
that uses an EM algorithm to allow long reads (Section 2.3) to align multiple times and then
performs SNP calling on the result [53]. Like Sniper, this is a variant caller in itself, so
practitioners must switch from their existing variant calling pipelines.

Another example is eXpress [108, 107], which is targeted at RNA-seq data instead of
DNA and uses the EM algorithm to select the RNA-seq reads’ corresponding transcript. A
transcipt is an intermediate product of protein synthesis that results when DNA is tran-
scribed to RNA and non-coding sequences are spliced out. RNA-seq data is obtained by
sequencing a group of transcripts, some of which may be very similar to each other. A group
of transcripts is analogous to a similar region family, and eXpress’s goal of finding each read’s
transcript is like our goal of finding the region from which a read came. However, due to
various assumptions that eXpress makes, such as preferring to assign reads to the longer
transcript in a group if lengths are unequal, it is not well-suited to our problem.

The idea of a hybrid approach to genomic data processing was also discussed in [136].
The authors had begun experimenting with an easy/hard partitioning scheme, but they had
not yet finalized this crucial aspect of the problem. We therefore extend their work by
establishing a rigorous partitioning scheme based on the similar regions and show that our
scheme is well-suited to the hybrid approach.

5.7 Conclusion

In this chapter, we went beyond our demonstration that the similar regions are associated
with alignment and variant calling errors, in which we treated the similar regions like a
binary indicator of whether or not a region is similar. To do so, we presented a case study
to show that the structure inherent in the similar regions gives us valuable information that
could be used to improve variant calling accuracy in those regions.

First, in Section 5.2, we described our algorithm for going from similar read-length sub-
strings, which we clustered in Chapter 3, to groups of similar regions, which we call families.
Also based on union-find, the algorithm is similar to SiRen, which we developed to cluster
substrings. We also characterized the sizes of the families we identified.

In Section 5.3, we repudiated the possible objection that the similar regions are more
difficult for variant callers solely because they have more difficult variants. While they do
have more SVs than the unique regions, when we mask out the SVs, we observe that VC
errors persist, due to alignment errors. Using an oracle alignment to eliminate these errors,
we can approach the accuracy in the unique regions.
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Then, in Section 5.4, we leverage the structure in our similar regions to reassign erro-
neously aligned reads to their proper alignment locations, thereby improving the VC accuracy
in those regions. We showed that if we used an oracle classifier to recognize alignment errors,
we can correct the majority of the errors using a straightforward realignment technique that
relies on the family structure we identified. Realigning errors led to a dramatic improvement
in VC accuracy compared to the baseline alignment, though not quite as good as with the
oracle alignment. We discussed our thoughts about how to further improve these results by
adjusting the parameters to SiRen and the tradeoffs involved in doing so.

Now that we have laid the foundation for building a complete system for read error cor-
rection, future work is necessary to realize the system. Namely, we must learn to recognize
alignment errors automatically. We presented some initial work towards that end in Section
5.5. Our main finding was that MAPQ is not a good basis for building a classifier. In fact,
even though we explored other per-read features, we were unable to build an accurate classi-
fier. We therefore believe that it is necessary to use features that are developed considering
multiple reads at once, thus exploiting the information we have that aligners do not, as well
as leveraging the reads that aligned elsewhere in the family.

We concluded the chapter in Section 5.6 by discussing other projects that are related to
the idea of what to do with alignment errors that are caused by repetition in the genome.
In the next chapter, we will expand on our thoughts presented in this chapter on necessary
future work to extend the platform we have built to a fully-functioning VC preprocessing
step.
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Chapter 6

Conclusion and Future Work

In this chapter, we present our conclusions on the work we performed (Section 6.1) and
reflect on future directions for further study. In Section 6.2, we describe how, building on
the foundation of the similar regions, we would build an alignment repair pipeline stage.
Then, Section 6.3 outlines a number of analyses that our pipeline stage would facilitate,
focusing on how we could use our system to enable advances in biological knowledge.

6.1 Summary

Variant calling accuracy is crucial for compelling applications such as personalized medicine
and targeted drug development. Because of duplication in the genome, however, alignment
and therefore variant calling are difficult and error-prone. In this thesis, we have developed
the notion of similar regions to describe the genome’s redundant structure. We presented
the SiRen algorithm for locating similar regions, which are important due to their identity
(i.e., which regions are marked similar) and their structure (i.e., which regions are similar
to which other regions). To confirm the value of our similar regions, we performed an
application-oriented validation in which we verified that the similar regions present challenges
to both alignment and variant calling. We also demonstrated that the structure of the regions
SiRen locates is useful as a foundation for improving variant calling accuracy therein. In
what follows, we will summarize each chapter’s contribution to this argument.

The context of the work in this thesis is short-read sequencing and the data processing
pipeline that is used to reconstruct its reads; we described both sequencing and the pipeline
in Chapter 2. Sequencing has greatly improved since the Human Genome Project produced
the first draft of the complete human genome in 2003, yielding reads with a higher throughput
and with dramatically lower cost. However, due to their shorter length, reconstructing the
genome from reads produced by current sequencers is difficult; thus, many steps are involved
in the analysis pipeline. The main steps that are relevant to this thesis are alignment, the
problem of deciding where in the genome a read originated, and variant calling (VC), the
problem of inferring where the sample DNA differs from the reference genome.
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Chapter 3 explained in more detail that alignment and variant calling are hard because
of both exact and near duplication in the genome. In particular, we described the difficulties
that near duplication presents to alignment, since we were inspired to perform the work in
this thesis during our previous efforts working on an alignment algorithm. We then presented
the SiRen algorithm by which we locate the similar regions. SiRen is based on the union-
find algorithm for detecting connected components in a graph; however, in order to produce
an implementation that would scale to the entire genome, we had to modify the algorithm
with several optimizations, including using an index and partitioning the similarity space.
We ended the chapter with details about our distributed implementation and deployment
strategies.

Since the SiRen algorithm is unsupervised, evaluating whether it captures a true pattern
in the genome is complicated. Thus, Chapter 4 employs an application-oriented validation
strategy for demonstrating the usefulness of SiRen’s output. After delving into some high-
level metrics related to SiRen’s output, we evaluated our results in two phases. First, we
identified reads that were hard for alignment algorithms and found that these reads were
highly correlated with the similar regions. More importantly, since we ultimately care about
variant calling accuracy, we showed that variant calling is more difficult in the similar regions,
for both human and mouse data. We also used this evaluation to perform parameter selection
for the SiRen algorithm, which is always a challenge for unsupervised algorithms.

In Chapter 5, we go beyond using the similar regions as a binary list, as previous ap-
proaches have done, and leverage the structure in the similar regions. We begin the chapter
by explaining our algorithm for detecting the relationships among similar regions. We then
determine that the similar regions are challenging for variant calling not only because the
variants are more complex in those regions, but in large part because of alignment errors. We
also show that if we isolate the effects of the structural variants and correct the alignment
errors, we can approach the variant calling accuracy in the unique regions. We continue
by demonstrating that the structure in the similar regions can be used to realign alignment
errors, thereby improving variant calling accuracy. The structure is valuable because in the
similar region families we identify, for the majority of alignment errors in those families, the
correct location belongs to the family. Thus, once we know which reads are errors, we can
repair many alignment errors with a simple realignment algorithm.

More work remains to build a complete system to improve variant calling. In the rest
of this chapter, we outline the efforts that will allow us to complete our system. We also
discuss some potential directions for exploration after the system is built.

6.2 Future Work for Pipeline

In this section, we discuss the work that remains for building the pipeline stage that repairs
alignment errors in the similar regions.
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Relax Assumptions

Our first line of future work would involve relaxing some of the assumptions in Chapter
5 so we can fully automate our pipeline stage. First, the realignment algorithm that we
presented in Section 5.4 only applies to size-2 families. While over 80% of families are pairs,
a large fraction of the sequence making up the similar regions in chr22 lies in larger families.
Therefore, it may be desirable for our realignment algorithm to apply to larger families.
Currently, the algorithm automatically aligns a read that has been erroneously aligned to
one region in the family to the other region. We could generalize the algorithm to size-N
families by aligning the read to each of the other N − 1 regions in the family and then
selecting the region that yields the best alignment.

Currently, we can only realign reads once an oracle classifier has indicated that they are
errors. Another important line of work to enable an automated system would be to build
a classifier to recognize alignment errors. We outlined some initial efforts in this direction
in Section 5.5. So far, the simple, intuitive features that we attempted to use yielded low
classification accuracy. To build a better classifier, it will be necessary to leverage the fact
that the similar regions allow us to consider all the reads from the regions in a family at
once. For example, inconsistencies among reads in a single region, and relationships between
reads across regions, are signals that reads have been incorrectly aligned. We demonstrated
this pattern in Figure 3.3. We expect that it will be crucial to develop more features that
leverage this type of cross-read information.

Refine Similar Region Families

In Section 5.4 and above, we noted that our realignment algorithm only applies to size-2
families of similiar regions. Above, we explained that one of our goals is to generalize the
algorithm to size-N families. Another way to proceed would be modifying our algorithm to
create similar region families, described in Section 5.2, so that we create more size-2 families.
Recall that we merge two regions to create a family if they share at least one component
ID. An approach that would potentially yield more small families would be to require that
two regions share more component IDs; that is, we would require them to be more similar
before merging them. We could also explore using graph decomposition techniques on large
families to break them up into multiple smaller families.

However, achieving the above would impede one of our other important goals, which is to
create families such that for most alignment errors, the read’s correct location is in another
region in the family. That is, we want to shift errors from being extra-family errors to being
inter-region errors. If families are more restrictive, we would have more extra-family errors,
which is detrimental since our realignment algorithm does not target that error type. Thus,
we would expect to make a smaller improvement to variant calling accuracy.

Therefore, an important direction to explore would be to adjust our family creation
algorithm to reduce the number of extra-family errors. We could increase the merge distance
when we run the SiRen algorithm (Section 3.4) that clusters the read-length substrings, so
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more substrings get clustered together. Intuitively, one reason for an extra-family error
is that the read’s true location differed from its aligned location by more than the merge
distance used in running SiRen; hence, the true location would not be in a family with the
aligned location. Increasing the merge distance would ameliorate this issue. We could also
consider the reverse strand in addition to the forward strand when executing SiRen.

As we mentioned in Section 5.4, the best-case scenario of augmenting the size-2 families
by only the extra-family errors’ correct locations (with no additional sequence) results in
a 17% increase to their length. The downside of larger similar regions is that our pipeline
stage would have to be applied more often, leading to a greater computational expense. If
the amount of increase we observed in chr22’s size-2 families holds for the whole genome,
however, the genome-wide similar regions would increase from 7% of the genome to 8.2%,
which would still be a reasonable size. Therefore, we believe that modifying the family
creation algorithm to reduce extra-family errors would be a worthwhile future direction.

From the discussion in this section, it is clear that several different tradeoffs are involved
in choosing the optimal similar region family structure, where the criteria for optimization
include small families (to use our existing realignment algorithm), inclusive families (to
reduce extra-family errors and thereby increase variant calling accuracy), and small similar
regions (to reduce latency). Thus, an important task is exploring how these criteria interact,
potentially leaving it to the user to decide how to set the parameters of SiRen and the
family creation algorithm according to the user’s priorities. Through exploring the criteria’s
interactions, we could provide parameter selection guidance. In addition, since user-selected
parameters would require users to run SiRen and the family creation algorithm themselves,
it is crucial to choose a default setting for our tools that achieves a good balance among our
criteria.

Implementation Issues

An important prerequisite to building a pipeline stage is finding the similar region families
in the whole genome, rather than only one chromosome, by running the tool we described in
Section 5.2. We expect this step to be straightforward since our implementation is already
distributed via Spark [140]. After obtaining families for the genome, we would assess whether
the extrapolation we made in Section 5.4 about size-2 families genome-wide is accurate and
whether the family sizes follow a similar distribution as that of the families in chr22 (see
Figure 5.3).

As we mentioned in Section 4.5, in the future we plan to build a distributed pipeline
stage that can operate on similar region families in parallel. We plan to leverage ADAM
[99], which facilitates the creation of scalable and efficient software to operate on read data,
as a foundation for building our system. Though in this thesis we have mostly focused on VC
accuracy, VC latency is also crucial, especially as genome analysis becomes more integrated
into real-time decision making processes such as patient diagnosis. It is also important to
reduce variant calling cost, which happens as latency decreases. Thus, an important element
of building this pipeline stage would be a focus on efficiency.
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We envision that this system would reside between alignment and variant calling in the
pipeline diagram we presented in Figure 2.5. We would experiment to determine whether
it would be best to position our new tool before or after the intermediate steps (defined in
Section 2.7). We would also explore the interaction between our alignment error repair phase
and the intermediate steps. It is possible that our pipeline stage would help the intermediate
steps such as local realignment; if we repair alignment errors, they might not be near indels
in their new locations. The intermediate steps could also help us identify alignment errors;
e.g., duplicate removal would correct regions of erroneously high coverage, and if coverage
were used as a feature to our algorithm, adjusting coverage before creating our features
would be useful.

6.3 Potential Biological Applications

In this section, we discuss other directions that are possible for us to explore once our pipeline
stage is built. The focus in this section is on biologically relevant problems.

Real Data

Once we have built our pipeline stage, including an accurate classifier that recognizes align-
ment errors, we would apply the system to real data, rather than simulated data, as we did
in Chapter 5. We would then assess whether the patterns that we saw in simulated data hold
for real data; e.g., using realignment, do we see the same amount of increase in VC accuracy
(Section 5.4)? Recall that we can use SMaSH [125] to evaluate VC accuracy of callers like
mpileup and GATK on real data as well as on simulated data, as we did in Section 4.4.

Long Reads

As we mentioned in Section 2.3, efforts are underway to introduce long reads as an alter-
native to second-generation sequencing. As long reads gain adoption, their use will have
implications for the work presented in this thesis. First, we will need to re-run the SiRen
tool to find new similar regions, using the new read length as the length of the substrings
that SiRen clusters. The result may be that the fraction of the genome in similar regions
decreases. Figure 3.1 shows, however, that even at a larger scale, duplication will continue
to present challenges to variant calling. Thus, we expect that our work will continue to be
highly relevant, even with the growing use of long reads.

Existing Databases

Another avenue would be performing further comparisons between the similar regions and
some of the existing biological databases. For example, in Section 5.6, we mentioned Invitae’s
work on improving variant calling accuracy in gene-pseudogene pairs. We could compare
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the similar regions, and especially the size-2 families, to these gene-pseudogene pairs to
determine the amount of overlap. We would also explore whether Invitae’s techniques could
be combined with our pipeline stage to further improve VC accuracy.

In addition, in Section 4.4, we mentioned that in the NA12878 validation data from
SMaSH [125], SNPs are disproportionately rare in the similar regions. We explained our
hypothesis that the similar regions have few SNPs due to capture arrays being biased against
these regions, potentially due to the difficulty of building capture arrays to extract their
sequence. We would further analyze variant databases like dbSNP1 to see if, like in the
NA12878 SMaSH dataset, there are fewer than expected SNPs in the similar regions. We
would also seek to validate our hypothesis about biases in common capture arrays.

Structural Variants

In Section 5.3, we presented our findings that structural variants are over-represented in
the similar regions compared to their presence in the unique regions. Thus, even with a
perfect alignment, SNP calling accuracy in the similar regions was worse than in the unique
regions. A compelling future direction would involve partnering with a SV detection tool,
some of which are listed in Section 2.7, in order to improve SNP calling accuracy in the SV
flanks. Once we have detected SVs, we could design a specialized local realignment algorithm
specifically targeted at the flanks. Of course, this approach would be limited by the fact
that existing SV callers often have poor accuracy. However, any improvement to the VC
accuracy in the flanks that we could make would be useful.

Benchmarking

In Chapters 4 and 5, we utilized the SMaSH benchmarking suite [125]. SMaSH is invaluable
for assessing the performance of variant calling approaches on both simulated and real data.
It also seeks to standardize the metrics and methods used for presenting the results of these
approaches. A compelling addition to SMaSH, which is open source,2 would be a module
that specifically computes the accuracy of variant callers on the similar regions. The goal
of including this module would be encouraging researchers and algorithm developers to be
mindful of the similar regions, ensuring that their algorithms are accurate in those regions
as well as in the unique regions.

Biological Findings

In Section 5.6, we mentioned dbDNV [43], which annotates SNPs that appear in duplicated
regions, often with the goal of encouraging practitioners to throw out the SNPs if they appear
in call sets. We argued that with our pipeline stage and its resulting improvement to VC

1http://www.ncbi.nlm.nih.gov/SNP/
2http://smash.cs.berkeley.edu/
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accuracy, some of these SNPs could potentially be retained. A possible direction would be
to re-assess dbDNV in light of our proposed pipeline stage, determining whether our stage
improves VC accuracy to the extent that some SNPs could be removed from their list. We
would then explore whether the fact that we could now confidently call SNPs that were
previously thrown out enables new analyses that are currently hobbled by having to discard
data. Assuming that some new SNPs could be trusted due to our pipeline stage, it would be
interesting to re-call large datasets from projects like the TCGA [22, 20, 19] and the 1000
Genomes Project [21, 1] to see what new insights could be gained.

6.4 Concluding Remarks

This chapter presents our conclusions regarding the work performed for this thesis as well as
future directions. In particular, we outline the remaining steps to build an alignment repair
system, based on the foundation that the similar regions provide. We also discuss potential
avenues that our system enables for further study in the biological realm. We believe that
a system built upon the platform we have established will enable several interesting new
advances in genomics.
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