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ABSTRACT

Security is an extremely important feature in modern com-
puter systems. The fundamental basis of many security
problems, most notably authentication, is a secure hash-
ing algorithm. These algorithms take a message, return a
fixed size hash for the message, and require the following
important properties: ease of hash computation, inability of
generating the message from the hash, inability to change
the message and not the hash, and inability to have the same
hash for two different messages.

A family of these algorithms has been standardized by NIST
and given the name Secure Hashing Algorithm (SHA). The
newest of this family is SHA3, formerly known as Keccak,
and thus contains the most opportunity for design space
exploration. Since this hashing function will be frequently
used, requires many operations per input and is generally
inefficient on a general purpose CPU, it is an ideal function
to be implemented with a hardware accelerator to improve
performance (hashes/sec) and energy use (hashes/Watt). In
order to facilitate choosing a hashing accelerator for a partic-
ular project, a parameterized implementation is developed
and explored using automated tools.

General Terms
SHA3, Keccak, Chisel, Design Space Exploration, Accelera-
tor, RISCV

1. INTRODUCTION

Security is an extremely important feature in modern com-
puter systems. As more and more users push their infor-
mation to the cloud, cloud providers need to protect this
growing amount of data. The fundamental basis of many
security problems, most notably authentication, is a secure
hashing algorithm. These algorithms take a message, and
return a fixed size hash for the message and require the
following important properties: ease of hash computation,
inability of generating the message from the hash, inability
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to change the message and not the hash, and inability to
have the same hash for two different messages. Fortunately,
a family of these algorithms has been standardized by NIST
and given the name Secure Hashing Algorithm (SHA)I5].
The newest of this family, and thus containing the most op-
portunity for design space exploration, is SHA3, formerly
known as Keccak. Since this hashing function will be fre-
quently used and requires many operations per input, it is
an ideal function to be implemented with a hardware ac-
celerator to improve performance (hashes/sec) and energy
use(hashes/watt).

The accelerator is implemented as a co-processor adhering to
the ROCC interface for integration with the Rocket RISC-V
processor. The functionality contract between the acceler-
ator and the programmer is designed to be as simple as
possible. The programmer provides pointers to the message
and the location to store the resulting hash, as well as the
length of the message, using two ROCC instructions. This
follows the standard ¢ implementation, and allows for a sim-
ple change to use the accelerator rather than a library. The
role of the processor is to set up and drive the hashing com-
putations, including any intermediary computations done to
find the next message to hash or to validate the hashed re-
sults. To actually perform the hash calculation, the scalar
processor will only need to ensure the message is in memory
and gives its length to the accelerator.

Given this programming model the system designer will de-
cide based on their projects criteria whether or not they
should include an accelerator. To help establish this deci-
sion the accelerator has been implemented in a parameter-
ized fashion that allows it to trade off performance, area, and
energy. These parameters include the number and arrange-
ment of execution resources, and the amount of execution
contexts to support simultaneous hashing of multiple mes-
sages. All instantiations of the accelerator provide the same
interface, but vary in their performance, energy efficiency,
and size.

The design space for this project is large, and the best design
will depend heavily on the typical use case in the environ-
ment for which it is deployed. Tools are used to explore this
design space and given a specific weight for each metric, per-
formance, energy, area, a decision can be made about which
accelerator to include (if any). Several typical applications
hashing requirements are also given to establish reasonable
bounds.



In addition to the hardware implementations from the fully
explored design space the SHA3 algorithm, written in C,
will be run on the Rocket RISC-V core to compare as a
software baseline. This will serve as a simple naive baseline
that should be easy to beat in both energy and performance.
Because this is such a common problem, there are many
papers which discuss the results of SHA algorithms running
on a variety of different platforms. All of these designs are
surpassed in either performance, energy, or both, by some
parameterization of the accelerator.

2. BACKGROUND
2.1 SHA3

Secure hashing algorithms represent a class of hashing func-
tions that provide four attributes: ease of hash computation,
inability to generate the message from the hash, inability to
change the message and not the hash, and inability to have
the same hash for two different messages. The National In-
stitute of Standards and Technology (NIST) recently held a
competition for a new algorithm to be added to its set of Se-
cure Hashing Algorithms (SHA)[5]. In 2012 the winner was
determined to be the Keccak hashing function and a rough
specification for SHA3 was established[1]. The algorithm op-
erates on variable length messages with a sponge function,
and thus alternates between absorbing chunks of the mes-
sage into a set of state bits and permuting the state. The
absorbing is a simple bitwise XOR while the permutation
is a more complex function composed of several operations,
X, 0, p, m, t, that all perform various bitwise operations, in-
cluding rotations, parity calculations, XORs, etc. The Kec-
cak hashing function is parameterized for different sizes of
state and message chunks but this design only supports the
Keccak-256 variant with 1600 bits of state and 1088 message
chunks.

2.2 Chisel

The accelerator was designed and implemented in a param-
eterized fashion using the new hardware construction lan-
guage (HCL) Chisel, being developed at UC Berkeley. Chisel
has several features that were used extensively during the
design, verification, and evaluation of this project. The ma-
jor feature used during the design of this accelerator was
Chisel’s ability to use the full power of its Scala hosting lan-
guage during the creation of the circuits. This allows for
much more expressive composition of modules and control
logic.

Chisel also provides multiple backend targets for generation,
including C+4 and Verilog, allowing the accelerator to be
verified functionally in a fast C++ simulator before evalua-
tion using Verilog and synthesis tools.

3. RELATED WORK

There have been many hashing hardware accelerators in
the past including those for previous standardizations of
SHA[2][3] that have focused on optimizing the algorithm for
implementation in silicon. These projects have been able to
build upon a large foundation of previous research into the
algorithm, uncovering small optimizations throughout the
process. This allows previous papers to synthesize many of
these ideas together to build an entire system that is better

than any previous versions. Our SHA3 accelerator, by con-
trast, uses the same architecture and algorithm as previous
versions, but provides parameterization at the microarchi-
tecture level ito understand its inherent tradeoffs.

The simple SHA3 hardware implementations that exist [4]
are based on an exploration of all SHA3 candidates and of-
ten ignore control and interface issues to actually instanti-
ate and use the hardware. These implementations were able
to provide one optimization of combining two of the per-
mutation functions, into one block. This also provides the
possibility of future work to explore if further combination
would be beneficial in addition to other various algorithmic
transformations similar to those found eventually in SHA2.

Other work focuses on efficient accelerators designs such as
[3], despite being focused on FPGA implementation, still
provide interesting approaches for saving space and energy.
The modular approach taken in [3] allows for different por-
tions of the algorithm to be reimplemented with different
blocks that may have different performance characteristics.
In addition to strong support for the module approach, a
strong focus on evaluation including comparisons to other
previous implementations was a useful approach to take in
the development of an accelerator. Pushing the modular
design forward our design uses parameters to codify and ex-
pand the design space, as well as using automated tools to
help validate and evaluate this space.

4. PROJECT OBJECTIVES

One goal of this project is to design a highly parameterized
SHA3 hardware accelerator where different parameteriza-
tions result in different levels of performance, energy effi-
ciency and size. Ideally this creates a design space that is
very large and is incapable of being explored exhaustively.
Such a large design space leads to the second and third goals
of the project: to develop an automated system to intelli-
gently explore the design space to first validate the points
and then evaluate them using a VLSI toolflow. The au-
tomated tool will facilitate the creation of pareto optimal
graphs showing which design points are most valuable. Fi-
nally, from a systems design perspective this project should
enlighten a designer as to which accelerator parameters they
should choose, or whether to include an accelerator.

S. TECHNICAL APPROACH

The accelerator is designed around three sub-systems, an
interface with the processor, an interface with memory, and
the actual hashing computation system (Figure 1). The in-
terface with the processor is designed using the ROCC in-
terface for coprocessors integrating with the RISC-V Rocket
processor. It includes the ability to transfer two 64 bit
words to the co-processor, the request for a return value,
and a small field for the function requested. The accelerator
receives these requests using a ready/valid interface. The
ROCC instruction is parsed and the needed information is
stored into one of the T execution contexts, only if there is
one available. These execution contexts contain the memory
address of the message being hashed, the memory address
to store the resulting hash in, the length of the message, and
several other control fields.

Once the execution context is valid the memory subsystem
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Figure 1: Microarchitecture of the parameterizable SHA-3 design

then begins to fetch chunks of the message. The mem-
ory subsystem is fully decoupled from the other subsystems
and maintains either T or 4 memory buffers, whichever is
smaller. The accelerators memory interface can provide a
maximum of one 64 bit word per cycle which corresponds
to 17 requests needed to fill a buffer (the size is dictated by
the SHA3 algorithm). Memory requests to fill these buffers
are sent out as rapidly as the memory interface can handle,
with a tag field set to allow the different memory buffers
requests to be distinguished, as they may be returned out of
order. Once the memory subsystem has filled a buffer the
control unit absorbs the buffer into the appropriate execu-
tion context, at which point the execution context is free to
begin permutation, and the memory buffer is free to send
more memory requests.

After the buffer is absorbed, the hashing computation sub-
system begins the permutation operations. Because the
hashing subsystem has a parameterized number of execu-
tion units in parallel, D, as well as a parameterized number
of round execution units, N, it requires a dynamic scheduler
to determine which execution context are ready to run and
on which available execution unit they should be run. Once
the message is fully hashed, the hash is written to memory
with a simple state machine.

The complexity of this design, including its many parame-
ters, necessitates a system to validate the correctness of each
design point and then evaluate them to further drive the de-
sign space exploration. In order to do this efficiently for this
project, a system was designed to integrate well with Chisel,
called Jackhammer. This tool allows for the definition of a
set of parameters in the Chisel source which are expanded
into a design space during the runtime construction of the
design. This space can then be pruned and validated or
evaluated. The designer is additionally given the option of
which portions of the VLSI design flow to run (e.g. synthesis,
place-and-route, or post place-and-route power simulations),
and therefore can use a simple RTL simulation to validate
their designs are functionally correct or a sequences of VLSI

tool runs to generate accurate power and area evaluations.
All of this is conveniently automated and frees the designer
from painful manual evaluation and testing.

6. RESULTS

Before evaluating the performance of the accelerator it is
useful to understand what the overhead of using a more
expressive HCL, compared to a language like Verilog, has
on the quality of results generated by the VLSI synthesis
tools. The previous highest performing implementation [4]
has made their Verilog datapath source code available online
providing an interesting point of comparison (labeled HPI).
Figure 2 represents the results of comparing the accelera-
tor’s datapath with parameters that make it most similar to
the HPI implementation and using the same synthesis and
place and route commands. The area of the accelerator is
slightly smaller than the HPI version and consumes signif-
icantly less power. This comparison suggests that there is
no overhead to adding parameters to the design in Chisel,
and that using Chisel over pure Verilog actually provides
additional performance benefits.

Each of the design points were evaluated using a simple mi-
crobenchmark in which 8 identical hashes, each 8KBs long,
were fed to the accelerator in sequence. This benchmark
allows accelerators with more resources to use the memory-
level parallelism (MLP) inherent in hashing different mes-
sages and additional execution resources to improve perfor-
mance. Each accelerator’s performance (product of cycles to
complete and the clock period), area and power spent were
measured during this benchmark.

In addition, Figure 3 was created by running this bench-
mark on the C4++ simulator and counting the total number
of memory requests. This figure shows that the accelera-
tor is able to take advantage of the increased MLP from
an increased number of execution contexts, or threads. In
addition, increasing the number of execution resources also
increases memory utilization because the accelerator finishes
the permutations faster and empties more memory buffers.
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Figure 2: We compare our 1-1-1 parameterized design writ-
ten in Chisel with the SHA3 design released by [4]. After
pushing both designs through place-and-route with equiv-
alent tool constraints, our design has comparable area yet
significantly less power is consumed.

The maximum utilization peaks at approximately 93% be-
cause the data must reside completely in the memory buffer
before it can be absorbed. This detail of our system causes
a one cycle gap in memory requests every 17 cycles.

With such a large set of design points and three different,
yet all valuable, metrics, it is difficult to determine which
designs are the most important to consider when architect-
ing a system. Figure 4 shows different pareto optimal curves
for performance, energy, and area. In each graph the origin
is the most optimal point, implying that any pareto optimal
point is one where no other point is better in both axes. In
the performance vs power and area vs performance graphs
there are two pareto optimal points, colored green and red.
The green circle is the accelerator parameterized at D=1,
N=1, T=1 and the red square is parameterized at D=2,
N=2, T=2. The measured throughput for these two points
is 41.9 Gbits/sec and 85.6Gbits/sec respectively, making it
the fastest SHA3 hardware accelerator published to date.
These design points represent an optimal allocation of re-
sources given the memory bandwidth, but neither is strictly
better than the other unless the only consideration is area
and power in which case the smaller, simpler D=1, N=1,
T=1 parameterization is the only pareto optimal point.

In addition to the performance, these design points also
present extremely high energy efficiency compared to the
Rocket core executing an efficient C implementation. While
the rocket core has an energy efficiency of .587 Gbps/W
the most efficent design point D=1, N=1, T=1 has an en-
ergy efficiency of 8080 Gbps/W. The higher performing de-
sign point (D=2, N=2, T=2) still has an impressive 6160
Gbps/W. This massive improvement in energy efficiency
illustrates the power of hardware acceleration and design
space exploration, particularly when applied to problems
that a traditional scalar processor struggle with, such as
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Figure 3: Memory Utilization. As more resources are added,
the memory bandwidth is saturated at approximately 93%

bit manipulation.

Figure 5 and Figure 6 show the post place and route layout
of the two pareto optimal designs. The total area breakdown
for both designs is approximately 20% control logic and 80%
datapath. The VLSI tools spread the permutation blocks
ThetaModule, RhoPiModule, etc. among the datapath to
move the computation nearer to the state elements storing
the result. The control logic rests on the edges of the chip
determining when to allow the state to be permuted, as well
as interfacing with the exterior interfaces of the accelerator:
the memory system and the ROCC interface. The increase
in area by doubling all parameters is more than a factor of
two due to the significant increase in control logic needed to
manage multiple parallel execution units in the datapath.

Determining exactly when to use either of the pareto optimal
accelerators is difficult to do without the exact specifications
of a particular project, but an approximate method is shown
in Table 1. In this characterization each column represents
a different set of weights placed on each of the three met-
rics: performance, area, and power. Each row shows the
result of the calculation for a set percentage of computation
time spent hashing. Several common uses of hashing can
be placed along this spectrum; for example, SSL is approx-
imately 3-5% hashing, while a more intensive application
such as a Merkle tree computation would be upwards for
80-90% hashing. This type of table allows a systems de-
signer to know for a Merkle tree, if performance or power
are the most important metrics, that including an accelera-
tor parameterized at D=1, N=1, T=1 is the optimal system.

2The best design is defined as the smallest sum of the
weighted zscores of each metric, where the titled column
had a weight of 20

21-1-1 is the design point where D=1, N=1, and T=1 (see
Section 5), while Rocket is the workload running on a gen-
eral purpose CPU with no accelerator
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Table 1: Optimal design per workload'?

Example Workload % Hashing Performance Power Area
0 Rocket Rocket Rocket
SSL/TLSI8] 10 Rocket Rocket  Rocket
20 Rocket Rocket Rocket
30 Rocket Rocket Rocket
40 Rocket Rocket Rocket
50 Rocket 1-1-1 Rocket
60 Rocket 1-1-1 Rocket
70 Rocket 1-1-1 Rocket
80 1-1-1 1-1-1  Rocket
Merkle Tree[7] 90 1-1-1 1-1-1  Rocket
SHA3[6] 100 1-1-1 1-1-1  Rocket

7. FUTURE WORK

Using Chisel and Jackhammer, this project developed a well
parameterized SHA3 accelerator and conducted a sizable
evaluation. However, many ideas still need exploring. Jack-
hammer is much more tightly coupled with this accelerator
than necessary; a more standalone version should be devel-
oped. In addition, the process of using Jackhammer needs
to be streamlined into the general Chisel experience to allow
users to take full advantage of its autonomous features.

With a more robust Jackhammer there are several more pa-
rameters that would be interesting to explore for the accel-
erator. The biggest detractor from larger and more power-
ful accelerators was the lack of increased performance due
to the memory bandwidth bottleneck. Adding a parameter
to specify the number of words returned within a memory
request, or the number of independent memory channels,
could show that increasing the amount of resources in ad-
dition to memory bandwidth would still be pareto optimal.
Another set of parameters that were left unexplored included
a variety of area and energy parameters. The larger sets
of execution contexts would benefit from being able to use
SRAM for their state blocks rather than flip-flops. Some of
the control logic could be parameterized to be simpler as
well, which would decrease energy use at the cost of power.
For example, the memory subsystem could issue requests
in order and wait for all requests to return before contin-
uing, removing the need to track which requests belong to
which thread. Additionally, if the hashing is also suspended
during this time, a memory buffer is unnecessary. Other op-

timizations include classic tradeoffs in the datapath such as
time multiplexing components to reduce area at the cost of
performance. In general, an increase in the number of pa-
rameters could potentially lead to a more interesting design
space containing more than two pareto optimal points.

Given a larger set of pareto optimal points, a more thorough
systems level evaluation would be more meaningful. To fa-
cilitate such an evaluation, the accelerator would need to be
integrated completely with the Rocket processor. This inte-
gration would allow a full program, such as SSL, to run on
the combination of a Rocket processor and the accelerator
to enable very accurate performance, area, and energy num-
bers. With this type of experimental setup, it would also
be interesting to analyze a parameterized processor. This
additional baseline comparison would allow the designer to
choose to increase the performance of the processor or in-
crease the performance of the accelerator to see at what
point the truly optimal design lies. Finally, a different accel-
erator programmer model, where only chunks of the message
are provided and a streaming interface is supported, could
prove beneficial for certain applications.

8. CONCLUSIONS

Modern computer systems are increasingly concerned with
security and are composed more and more of heterogeneous
components. One computationally significant portion of se-
curity is a secure hashing algorithm. The highly parameter-
ized SHA3 accelerator developed in this paper is designed to
solve both of these issues, by providing a high-performance
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secure hash calculation, and being highly configurable al-
lowing a system on a chip designer to choose the level of
performance, energy efficiency and size of the accelerator.

The accelerator has proven to scale its performance with
the resources allotted and provides comparable if not better
performance than previous implementations. The numerous
designs that can be generated by the parameters have been
validated with a large suite of test cases using the Jack-
hammer automated design space exploration tool in con-
junction with the Chisel HCL. Within its current memory
and processor interfaces, the accelerator’s parameters pro-
vide two pareto optimal design points that should be con-
sidered when building a system with a significant hashing
element. These two parameterization were found through a
large scale automated design space evaluation and represent
the fastest, most energy efficient SHA3 accelerators pub-
lished to date. Determining when to use such an accelerator
in a conventional processor co-processor system is also ex-
plored, showing that for certain workloads, including a small
efficient accelerator is advantageous. Extending the current
parameterization to include more energy-efficient trade-offs
and exploring more holistic evaluation strategies could lead
to even stronger results suggesting the viability of hashing
accelerators in computer systems.
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