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Abstract

Abstract Semantics for Software Security Analysis

by

Zhijie Chen

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dawn Song, Chair

Program analysis and formal methods have enabled advanced automatic software secu-
rity analysis such as security policy enforcement and vulnerability discovery. However, due
to the complexity of the modern software, recent applications of such techniques exhibit
serious usability and scalability problems. In this thesis, we address these problems using
automatically or semi-automatically constructed abstract program semantics. Specifically,
we study two typical scenarios where the power of formal techniques is limited by the prob-
lems above, and develop novel techniques that address these issues. First, we propose a new
algorithm to construct event-based program abstraction, and check contextual security poli-
cies under this abstraction. Our approach addresses the usability and scalability problems
in the model-checking of security policies in event-driven programs. Second, we propose a
synthesis-based algorithm to learn and check web server logic without having access to the
server-side source code. The key insight is that the client-side behavior reflects partially the
server-side logic, thus we infer server-side logic by observing the client-side’s execution. We
develop a declarative language to encode our domain specific modeling of common server-side
operations, as well as an efficient algorithm to synthesize a server model in that language. In
summary, we demonstrate that abstract semantics can bridge the gap between the human
and the massive details of the program, and make formal techniques applicable in a large
scale.
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Chapter 1

Introduction

Modern software security analysis leverages program analysis and formal methods to au-
tomatically construct abstractions from programs. The invention of new security analysis
technologies is in large the invention of new abstractions and algorithms that expose the
program properties in concern. In computer science, abstraction is the process of using com-
putational or statistical structures to represent the abstract semantics of the software or the
hardware. By thinking abstractly, we derive general rules and concepts from the tedious
details and reason about the commonalities more efficiently. Depending on the goal, a sys-
tem can have several abstraction layers, exposing different aspects and amounts of details.
Nowadays, mobile and web-based software are becoming increasingly popular. However, due
to the increase of software complexity, recent applications of traditional program analysis
and formal techniques exhibit serious usability and scalability problems. In my thesis, I
will introduce two novel abstractions tailored for mobile and web-based software security
analysis. In the first abstraction, interactions between the user, the mobile applications, and
the operating system are revealed in terms of events and permission uses. In the second
abstraction, protocols between multiple web-services are synthesized from observed execu-
tion behaviors. These abstract semantics enable the analysis of program behaviors that are
beyond the reach of traditional security analysis techniques.

Contextual policy enforcement in Android applications with permission event
graphs: The difference between a malicious and a benign Android application can often
be characterized by context and sequence in which certain permissions and apis are used.
In the first part of my thesis, I will present a new technique for checking temporal properties
of the interaction between an application and the Android event system. The system that
implements this technique, called Pegasus, can automatically detect sensitive operations be-
ing performed without the user’s consent, such as recording audio after the stop button is
pressed, or accessing an address book in the background. The algorithms center around a
new abstraction of Android applications, called a Permission Event Graph, which we con-
struct with static analysis, and query using model checking. Pegasus has been evaluated for
checking application-independent properties on 152 malicious and 117 benign applications,
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and application-specific properties on 8 benign and 9 malicious applications. In both cases,
Pegasus can detect, or prove the absence of malicious behavior beyond the reach of existing
techniques.

Iterative security analysis of web protocols using synthesized models: How to per-
form a systematic security analysis of web applications is a challenging and open question.
Lack of visibility into server-side code makes white-box static/symbolic analysis inapplica-
ble, while approaches based on formal verification are impeded due to the lack of application
specifications. To address this challenge, we develop an approach and a system called Web-
Syn, that enables analysts to find security vulnerabilities in the implementations of web
applications. The key novelty of our approach is the use of 1). a domain specific language
(dsl) to provide a set of high-level building blocks that are common in web protocol models,
and 2). program synthesis techniques to automatically model and verify web applications in
a highly-customized and efficient search space. WebSyn first uses program synthesis to con-
struct models of protocols, in terms of the dsl, from executions of web applications. Next,
WebSyn uses the Alloy analyzer to discover potential vulnerabilities in the synthesized
model. Based on the analysis results, the analysts can refine the verification by providing
more example executions, or suggesting or removing possible attacks. In 3 proof-of-concept
case studies, WebSyn demonstrates the discovery of complex vulnerabilities in implemen-
tations of real world web applications. WebSyn is a step towards leveraging the benefits of
program synthesis and domain specific languages for enhancing application security.
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Chapter 2

Pegasus: Contextual Policy Enforcement
in Android Applications with Permission
Event Graphs

2.1 Introduction
Users of smartphones download and install software from application markets. According to
the Google I/O keynote in 2012, by June 2012, the official market for Android applications,
Google Play, hosted over 600,000 applications, which had been installed over 20 billion times.
Despite recent advances in mobile security, there are examples of malware that cannot be
detected by existing techniques.

A malicious application can compromise a user’s security in several ways. Examples
include leaking phone identifiers, exfiltrating the contents of an address book, or audio and
video eavesdropping. Consult recent surveys for more examples of malicious behavior [23,
25, 30].

In this chapter, we focus on detecting malicious behavior that can be characterized by
the temporal order in which an application uses apis and permissions. Consider a malicious
audio application which eavesdrops on the user by recording audio after the stop-button
has been pressed, and a benign one. Both applications use the same permissions, and start
and stop recording in response to button clicks. Malware detection based on syntactic or
statistical patterns of control flow or permission requests cannot distinguish between these
two applications [25, 24, 31]. The difference between the two applications is semantic and
requires semantics-based analysis.

The intuition behind our work is that user expectations and malicious intent can be
expressed by the context in which apis and permissions are used at runtime. A user expects
that clicking a start or stop button, will respectively, start or stop recording, and further,
that this is only way an audio application records. This expectation can be encoded by two
api usage policies. The api to start recording audio should be called if and only if the event
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handler for the start button was previously called. The api to stop recording should be
called if and only if the event handler for the stop button was previously called. Policies
requiring that sensitive resources are not accessed by background tasks or in response to
timer events can also aid in distinguishing benign from malicious behavior.

We present Pegasus, a system for specifying and automatically enforcing policies con-
cerning api and permission use. Pegasus combines static analysis, model checking, and run-
time monitoring. We anticipate several applications of such technology. One is automatic,
semantics-based screening for malware. Another is as a diagnostic tool that security analysts
can use to dissect potentially malicious applications. A third is to provide fine-grained in-
formation about permission use to enable users to make an informed decision about whether
to install an application.

Our system can be attacked by malware writers who obfuscate their applications to
avoid static detection. However, such obfuscation will trigger our runtime checks and lead
to convoluted code structures. Thus an attempt to evade our system and may only result in
drawing greater scrutiny to the application.

Problem and Approach

We now describe the challenges behind policy specification and checking in greater detail,
and the insights behind our solution.

Problem Definition We consider three closely related problems. The first problem is
to design a language for specifying the event-driven behavior of an Android application.
The second problem is to construct an abstraction of the interaction between an Android
application and the Android event system. The third problem is to check whether this
abstraction satisfies a given policy. A solution to these problems would allow us to specify
security policies and detect (or prove the absence of) certain malicious behavior.

Challenges Property specification mechanisms typically focus on an application. Execut-
ing a task in the background, or calling an api after a button is clicked, are properties of
the Android event system, not the application. Specifying policies governing event-driven
api use requires a language that can describe properties of an application as well as of the
operating system. For example, specifying that audio should not be recorded after a stop
button is clicked, requires us to describe an application artefact, such as a button, a system
artefact, such as a recording api, and the interaction between the two.

Checking policies of the form above is a greater challenge. Software model checking is a
powerful technique for checking temporal properties of programs. Software model checkers
construct abstractions of a program and then check properties using flow-sensitive analysis.
The execution of an Android application is the result of intricate interplay between the ap-
plication code and the Android system orchestrated by callbacks and listeners. Constructing
an abstraction of such behavior is difficult because control flow to event handlers is invisible
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in the code. Moreover, static analysis of event-driven programs has received little attention,
and was recently shown to be expspace-hard [45]. The first analysis challenge is to model
control flow between the event system and application.

The second analysis challenge is to design and compute an abstraction that can repre-
sent event-driven behavior, but is small compared to the Android system. Most existing
techniques abstract data values in a program, but our focus on the Android event system
mandates a new abstraction. The challenge in computing an abstraction lies in modelling the
Android event system, and dealing with complex heap manipulation in Android programs,
and their use of reflection, and apis from the Java and Android sdk.

Insights We overcome the aforementioned challenges using the insights described next.
Our first insight is that though the Android system is a large, complicated object, it changes
the state of the application using a fixed set of event handlers. It suffices for a policy language
to express event handlers, apis, and certain arguments to apis to specify the context in which
an application uses permissions.

Even a restricted analysis of the Android event system or event handlers defined in an
application is not feasible due to the size of the code and the state-space explosion problem.
Our second insight is to use a graph to make the interaction between an application and the
system explicit. We introduce Permission Event Graphs (pegs), a new representation that
abstracts the interplay between the Android event system, and permissions and apis in an
application, but excludes low-level constructs.

Our third insight is that a peg can be viewed as a predicate abstraction of an An-
droid application and the Android system, where predicates describe which events can fire
next. Standard predicate abstraction engines use theorem provers to compute how program
statements transform predicates over data. We implement a new, Android specific, event
semantics engine, which can compute how api calls transform predicates over the Android
event queue.

The final challenge, once an abstraction has been constructed is to check that it satisfies
a given policy. We use standard model checking algorithms for this purpose. Detecting
sequences or repeating patterns in an application can be implemented using basic graph-
theoretic algorithms for reachability and loop detection.

Our experience suggests that pegs reside in a sweet-spot in the precision-efficiency spec-
trum. Our analysis based on pegs is more precise than existing syntactic analyzes and is
more expensive to construct. However, we gain efficiency because a single peg can be queried
to check several policies pertaining to a single application.

Content and Contributions

In this chapter, we study the problem of detecting malicious behavior that manifests via
patterns of interaction between an application and the Android system. We design a new
abstraction of the context in which event handlers fire, and present a system for specifying,
computing and checking properties of this abstraction. We make the following contributions:
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1. Permission Event Graphs: A novel abstraction of the context in which events fire, and
event-driven manner in which an Android application uses permissions.

2. Encoding user and malicious intent: We encode user expectations and malicious be-
havior as temporal properties of pegs.

3. peg construction: We devise a static analysis algorithm to construct pegs. The algo-
rithm computes a fixed point involving transformers, generated by the program, the
event mechanism, and apis. Our event model supports 63 different event handling
methods in 21 Android sdk classes.

4. peg analysis: We implement Pegasus, an automated analysis tool that takes as input
a property, and checks if the application satisfies that property.

5. Experiments: We check 6 application-independent properties of 269 applications, and
check application-specific properties of 17 applications. Pegasus can automatically
identify malicious behavior, which was previously discovered by manual analysis.

The chapter is organized as follows: We summarize background on Android and introduce
our running example in Section 2.2. pegs are formally defined in Section 2.3 and can
be constructed using the algorithm in Section 2.4. The details of our system appear in
Section 2.5, followed by our evaluation in Section 2.6.

2.2 Background and Overview
In this section, we give an overview of the Android platform as relevant for this chapter and
illustrate pegs with a running example.

Android

Android is a computing platform for mobile devices. It includes a multi-user operating
system based on Linux, middleware, and a set of core applications. Users install third-party
applications acquired from application markets. An Android package is an archive (.apk file)
containing application code, data, and resource information.

Applications are typically written in Java but may also include native code. Applications
compile into a custom Dalvik executable format (.dex), which is executed by the Dalvik
virtual machine.

Permissions A permission allows an application to access apis, code and data on a phone.
Permissions are required to access the user’s contacts, sms messages, the sd card, camera,
microphone, Bluetooth, and other parts of the phone. All permissions required by an appli-
cation must be granted by a user at install time.

The Manifest Every application has a manifest file (AndroidManifest.xml) describing the
application’s requirements and constituents. The manifest contains component information,
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the permissions required, and Android api version requirements. The component information
lists the components in an application and names the classes implementing these components.

Components The building blocks of Android applications are components. A compo-
nent is one of four types: activity, service, content provider, and broadcast receiver, each
implemented as a subclass of Activity, Service, ContentProvider, and BroadcastReceiver,
respectively. An activity is a user-oriented task (such as a user interface), a service runs in
the background. a content provider encapsulates application data, and a broadcast receiver
responds to broadcasts from the Android system. Components (consequently, applications)
interact using typed messages called intents.

Lifecycles A lifecycle is a pre-defined pattern governing the order in which the Android
system calls certain methods. An application can define callbacks and listeners that con-
tribute to the lifecycle.

An activity is started using the startActivity or startActivityForResult api calls. Dur-
ing execution, an activity may be running, meaning it is visible and has focus, paused, if it is
visible but not in focus, or stopped if it is not visible. Application execution usually begins
in an activity. A service may be started or bound. A service is started if a component calls
startService, following which the service runs indefinitely, even if the component invoking
it dies. The bindService call allows components to bind to a service. A bound service is
destroyed when all components bound to it terminate.

Events and apis Events and apis are the two ways an Android application interacts with
the system. We define an event as a situation in which the Android system calls application
code. Examples of events are finger taps, swipes, sms notifications, and lifecycle events. The
code that is called when an event occurs is called an event handler. We define an api to
be a system defined function, which applications can call. In this chapter, we are concerned
with event and permission apis. An event api is one that changes how events are han-
dled, such as registering a Button.onClick listener, or making a button invisible. A permis-
sion api is one requires a permission, such as the LocationManager.requestLocationUpdates
api, which requests the location information about the phone, and requires either the
ACCESS_FINE_LOCATION or ACCESS_COARSE_LOCATION permissions, depending on the arguments.
We obtain permission information from permission maps [3, 31].

Overview and Running Example

We now demonstrate the concepts in this chapter with a running example, as well as how
we envision the system being used. Consider a malicious audio recording application, which
eavesdrops on the user. On startup, the application displays the interface shown in Figure 2.1.
This interface is implemented as a Recorder activity and contains two buttons, REC and
STOP.
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Figure 2.1: User interface for the running
example. The application records audio
in a background service after the user has
clicked the stop button.

Figure 2.2: Permissions requested by the
recording application during installation.

Initially, only REC is clickable. Clicking REC initiates recording, makes STOP clickable,
and disables REC from being clicked. Clicking STOP terminates recording, enables REC, and
disables STOP. When the application is started, it registers a service, which creates a system
timer callback, which is invoked every 15 minutes. The callback function records 3 minutes
of audio and stores it on the sd card. Since services run in the background, this application
will eavesdrop even after the recorder application is closed.

We now consider two problems: How can we precisely define malicious behavior such as
surreptitious recording? How can we automatically detect such behavior?

Defining Malicious Intent Rather than define malicious intent, we focus on defining
user intent, or user expectations. In our example, the details of how recording happens
is determined by the developer, but a user expects to be defining when recording happens.
Moreover, the user expects that clicking REC will start recording, that clicking STOP will stop
recording, and that this is the only situation in which recording occurs. This expectation
contains a logical component and a temporal component, and can be formally expressed by
a temporal logic formula.

(¬Start-Recording U REC.onClick) ∧ (Stop-Recording ⇐⇒ STOP.onClick)

This formula, in English, asserts that the proposition Start-Recording does not become true
until the proposition REC.onClick is true, and that Stop-Recording is true if and only if
STOP.onClick is true. Such a formula is interpreted over an execution trace. REC.onClick
and STOP.onClick are true at the respective instants in a trace when the eponymous buttons
are clicked. The propositions Start-Recording and Stop-Recording are true in the respective
instants when the apis to start and stop recording are called.

A second example of user expectation is that an sms is not sent unless the user performs
an action, such as clicking a button. A third example is that when an sms arrives, the
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user is notified. These properties can be expressed by the two formula below. The second
formula expresses that a broadcast message (such as an sms notification) is not aborted by
the application.

¬Send-SMS U Button.onClick

¬BroadcastAbort

The three formula above fall into two different categories. The sms and broadcast prop-
erties are application independent. They can be checked against all applications, and are
part of a cookbook of generic properties we have developed. The properties about recording
are application specific and have to be written by the analyst.

The set of propositions is defined by our tool, and includes permissions, api calls, certain
event handlers, and constant arguments to api calls. To aid the analyst, we have imple-
mented a tool that extracts from an application’s manifest, the names and types of user
interface entities such as buttons and widgets, and their relevant event handlers.

We express user intent with formula. We say that an application exhibits potentially
malicious intent if it does not satisfy a user intent formula. Our tool Pegasus automatically
checks if an application satisfies a formula. If an application violates a property, Pegasus
provides diagnostic information about why the property fails. The analyst has to decide if
failure to respect user intent is indeed malicious. We discuss this issue in greater detail later.

Detecting Potentially Malicious Intent How can we determine if an Android applica-
tion respects a formula specifying user intent? Figure 2.2 depicts the permissions requested
by the recorder during installation. Techniques that only examine permission requests [3,
31, 32] will only know that the application uses audio and sd card permissions. Since con-
trol flow between the Android system and event handlers is not represented in a call graph,
structural analysis of call graphs [23, 35], will not identify the behaviors discussed above.

The challenge in checking temporal properties is to construct an abstraction satisfying
two requirements: It must be small enough for model checking to be tractable. It must
be large enough to avoid generating a large number of false positives. Permissions used
by an application, call graphs, and control flow graphs can be viewed as abstractions that
can be efficiently analyzed but do not satisfy the second requirement. We now describe
an abstraction that enriches permission sets and call graphs with information about event
contexts.

Permission Event Graphs We have devised a new abstraction called a Permission Event
Graph (peg). In a peg, every vertex represents an event context and edges represent the
event handlers that may fire in that context. Edges also capture the apis and permissions
that are used when an event handler fires. Since permissions such as those for accessing con-
tact lists, are determined by apis calls and the argument values, knowledge of apis does not
subsume permissions. Example information that a peg can represent is that clicking a spe-
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a0 s0

initialization s1

a1

s2 s3

a2

finalization finalization

Recorder
Activity

Recorder
Service

onCreate

onResume
startService

REC.onClick
Start-Recording

STOP.onClick
Stop-Recording

onCreate

onStart
Timer.run

Start-Recording

Timer.run
Stop-Recording

Figure 2.3: Permission Event Graph for the running example. Vertices represent event
contexts and an edge label E

A
represents that when the event handler E fires, an action A is

performed. Dashed edge represent asynchronous tasks.

cific button causes the READ_CONTACTS permission to be used, while the ACCESS_FINE_LOCATION
permission is used in a background task.

A portion of the peg for the running example is shown in Figure 2.3. Every vertex
represents an event context. There are two types of edges. Solid edges represent synchronous
behavior, and dashed edges represent asynchronous behavior. We refer to the firing of one
or more event handlers as an event and the use of one or more apis and permissions as an
action. An edge label E

A
represents that when the event E occurs, the action A is performed.

Figure 2.3 shows that when the event handler REC.onClick is called, the action denoted
Start-Recording occurs. This action represents calling an api to start recording. We have
omitted portions of the peg related to the activity initialisation, destruction, and the service
lifecyle. Next, the event STOP.onClick is enabled, and when it occurs, causes the Stop-Recording
action. The dashed edge from onResume indicates an asynchronous call to start a service.

The peg captures semantic information about an application that is not computed by
existing techniques. For example, we see that there are two distinct contexts in which the
audio is recorded. We also see that recording stops if we click STOP, but this is not the only



CHAPTER 2. PEGASUS 11

way to stop recording.
Examining the peg reveals that the application records audio even if REC is not clicked.

Moreover, we can determine the sequence of events leading to this malicious behavior: a new
service is started, a timer is then created, and timer events start recording. pegs generated
in practice are too large to examine manually. In such cases, specifications can be treated
as queries about the application, and model checking can be used to answer such queries.

Security Analysis with pegs The techniques we develop have several uses. All the uses
follow the workflow of starting with a set of properties, automatically constructing a peg
for an application and model checking the peg, manually examining the results of model
checking, and repeating this process if required.

There are several kinds of properties that an analyst can check. We have developed a
cookbook of application-independent properties, such as background audio or video record-
ing. An analyst can write application-specific properties to check that an application func-
tions as expected. For example, clicking REC should start recording, and STOP should stop
recording. An analyst can also pose questions about the behavior of specific event handlers:
Does clicking the STOP button stop recording? If the application is sent to the background,
will recording continue or stop? If the application is killed while recording, will the data be
saved to the sd card? All these questions can be encoded as temporal properties.

Our tool Pegasus can be used to automatically construct the peg for an application and
model check the peg. If a property is satisfied, the analyst will have to check if it was too
general, and try a more specific property. If a property is not satisfied, the model checker will
generate a counterexample trace: a sequence of events and actions violating the property.
The analyst has to examine the trace and see if it is symptomatic of malicious behavior. If
the behavior is potentially malicious, the analyst will have to reproduce it at runtime. If
the behavior is benign, the analyst will have to strengthen the property that is checked to
narrow the search for malicious behavior.

To summarize, a vocabulary based on events and actions allows for describing a new
family of benign and malicious behavior beyond the reach of existing specification mech-
anisms. Events are a runtime manifestation of user interaction with an application, and
actions describe an application’s response. Specifications involving events and actions allow
us to encode user intent in mechanical terms. From a user’s perspective, a peg summarizes
the dialogue between a user (via events) and an application. From an algorithmic perspec-
tive, a peg is a data-structure encoding the interaction between the Android event system
(via calls to event handlers) and application code.

2.3 An Abstraction of Android Applications
The contributions of this section are a formal definition of pegs, and a symbolic encoding
of pegs.
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Transition Systems from Android Apps

An Android application defines an infinite-state transition system, which describes the run-
time behavior of an application. The transition system we define makes the control flow
and event-relationships in an application explicit. It is a mathematical object that we never
construct, but it informs the design of our analysis.

States A runtime state, or just state, is composed of an application state and a system
state. The application state consists of the application program counter, a valuation of
program variables, and the contents of the stack and the heap. The system state consists
of the contents of the event queue, event handlers and listeners that are enabled, and other
global system states. The set of states

State = App-States × Sys-States

contains all combinations of application and system states. These sets include unreachable
states. A state σ = (p, s), consists of an application state p and a system state s. We denote
the set of initial states of execution as Init .

Transitions An application changes its internal state by executing statements, and changes
the system state by making api calls. Conversely, the system may change its own state or
change application state by calling event handlers. A transition is the smallest change in the
state of an application or system, and

Trans ⊆ State × State

is the transition relation of an application. A transition t is caused by executing a statement,
denoted stmt(t), in the application or system code. We call t is an application transition if
stmt(t) is in the application code and is a system transition otherwise.

Transition Systems The evolution of an application and the Android system over time
is mathematically described by a transition system

T = (State,Trans , Init , stmt)

consisting of a set of states State, a transition relation Trans , a set of initial states Init , and
a function stmt that labels transitions with statements.

Traces We formalize the execution of the application in the system. A trace of T is a
sequence of states π = π0, π1, . . . in which π0 is an initial state and every pair (πi, πi+1) is a
transition. We write traces(σ) for the set of traces originating from σ, and write traces(T )
for the set of traces of T . A trace contains complete information about application and
system transitions.
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Permission Event Graphs

The transition system defined by an application is infinite and checking its properties is
undecidable in general. The standard approach to addressing such undecidability is to con-
struct an abstraction of this transition system. We now introduce Permission Event Graphs,
a variation of transition systems, which can represent finite-state abstractions of Android
applications.

Example 1. Revisit the peg for the running example in Figure 2.3. A vertex in the figure is
called an abstract state. The abstract state a1 represents all possible runtime states in which
the REC.onClick event handler may be called in the recorder activity. An edge in the figure
is an abstract transition. The abstract transition from a1 to a2 has a label representing that
if the event handler REC.onClick is called, the application will disable the REC, enable the
STOP, start recording, and transition to the state a2. The dashed edge is an asynchronous
transition, representing that the action Start-Recording launches an asynchronous task. In
this case, a service is started. C

A formal definition of pegs follows. We use the prefix “a” to indicate sets used as
abstractions. We write P(S) for the set of all subsets of a set S.

We define an event to be a set of event handlers. For example, the event STOP.onClick
represents a single event handler. We can also define an event onClick that corresponds to
all event handlers which may be called when a button is clicked. Formally, let Handler be
a set of event handlers and Event be a set of symbols, each representing one or more event
handlers.

Definition 1. A Permission Event Graph (peg) over a set of event symbols Event and apis
API is a tuple

PEG = (aState, aTrans , bTrans , aInit)

consisting of the following.
• A set of abstract states aState. Every abstract state represents a set of runtime states,

which form the context of an event.
• A labelled transition relation aTrans ⊆ aState ×Event ×P(API)× aState, where each

transition (s1, E,A, s2), represents that in state s1, the event E may fire, and causes
the apis in A to be called, leading to abstract state s2.
• A relation bTrans ⊆ P(API) × aState, where each tuple (A, s), represents that the

action A causes an asynchronous transition to the abstract state s.
• A set aInit of abstract initial states.

pegs are different from control flow graphs, call graphs, and other standard graph-based
abstractions of programs. A peg is different from a control flow graph because it does not
represent the syntactic structure of source code. A peg only contains calls to system apis,
rather than all calls, as in a call graph, but also includes the values of arguments, hence is
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related, but incomparable (mathematically) to a call graph. We use the word “Permission”
in the name because permissions are determined by calls to apis and their arguments. We
use the word “Event” to emphasise that state transitions represent the effect of firing event
handlers.

We use graph algorithms to analyze pegs. To derive the pegs of an application efficiently,
our abstraction engine uses the symbolic encoding introduced next.

A Symbolic Encoding of PEGs

We now devise a compact encoding of pegs. Our encoding uses Boolean variables to rep-
resent peg states and labels to represent actions, and can be exponentially more succinct
than representing a peg as a labelled graph.

Mode Variables and Event-Modalities We first encode peg states using Boolean vari-
ables. Define a set ModeVars of Boolean-valued mode variables. The Boolean encoding of
an abstract state is a function

s : ModeVars → {true, false}

that assigns truth values to mode variables. The number of mode variables we need is
logarithmic in the number of states of a peg.

A Boolean formula ϕ over ModeVars represents the set of Boolean encodings that make ϕ
true. Recall that a literal is a Boolean variable or its negation, and a cube is a conjunction of
literals. Let Cube be the set of cubes over mode variables in a subset of ModeVars . We only
use cubes and not arbitrary Boolean formula over ModeVars to represent sets of encodings
because cubes can be efficiently manipulated, while arbitrary formula cannot. The same
encoding choice is used in the slam project [7].

We encode abstract transitions using tuples called event-modalities. An event-modality
is a tuple

(Pre,A, Post) ∈ Cube × P(API)× Cube

consisting of a precondition Pre, a set of api labels A, and a postcondition Post. An event-
modality (Pre,A, Post) represents the set of abstract transitions that begin in some abstract
state represented by Pre, and transition to some abstract state represented by Post, while
causing the action A.

A symbolic encoding of a peg is a tuple

sPEG = (aInit ,EventModality)

consisting of a cube aInit representing initial states and a set EventModality of event-
modalities.

Example 2. Consider a Boolean variable TimerEnabled and a label Start-Recording. The
timer-related behavior in Figure 2.3 can be encoded using the value true for TimerEnabled
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States

Application

Event System Libraries

api call

Register
Listener

Call Event
Handler

EventModalities

Event
Semantics
Engine

Application
Analyzer

API
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api call
Precondition
Postconditions

Handler name

Preconditions

Figure 2.4: Intuition behind the abstraction engine. The system computes event modalities
by combining a static analyzer, which abstracts application semantics, an api semantics
engine, which abstracts api calls, and an event semantics engine, which abstracts the event
system.

to represent s2 and the value false to represent s3. The abstract transition from s1 to s2 is
represented by the event-modality below.

(TimerEnabled , {Start-Recording},¬TimerEnabled)

If the precondition TimerEnabled is true, the timer event TIMER.run is enabled. If the
event fires, the event handler causes the application to transition to a state satisfying the
postcondition ¬TimerEnabled . C

2.4 The Abstraction Engine
The contribution of this section is a procedure and architecture for constructing pegs from
Android applications. Our implementation of this procedure combines a model of the An-
droid event system and apis with fixed point iteration in a lattice to derive pegs.

The Core Algorithm

The interaction between an application, the event mechanism and libraries in an Android
application is summarized in the upper part of Figure 2.4. The dashed arrows show that
the state of an execution is modified either by executing application code or when the event
system fires an event handler. The solid arrows denote calls. An application may call the
Android apis, and if the call is to register a listener, the apis in turn access the event system.

The architecture we use to compute a symbolic peg is shown in the lower part of Fig-
ure 2.4. Each shaded box represents an engine in our implementation. The different engines
interact to compute a set of event-modalities. We abstract application code with a static
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analyzer, model event generation and destruction with an event semantics engine, and model
apis with an api semantics engine.

Our static analyzer determines a set of preconditions, which specify event contexts. When
an api call is encountered, the precondition and api name are given to the api semantics
engine. If the api modifies the application state, a postcondition is returned to the static
analyzer. If the api modifies the system state, the name of the api is given to the event
semantics engine. The event semantics engine computes the set of preconditions for that
event handler to fire, and the static analyzer had to determine whether to analyze the event
handler code. By iterating between these three engines, we derive a set of event-modalities
that symbolically encode a peg for an application.

The functions below formalize these components.

entry : Handler → P(API)
next : Handler ×API→ P(API)

event-sem : Handler → P(Cube)
api -sem : API× Cube → P(Cube)
app-sem : Handler ×Cube → P(P(API)× Cube)

The function entry takes as input an event handler name, retrieves the code, constructs the
cfg for the event handler, and retrieves the first set of api calls reachable from the entry of
the cfg, without calling other apis. The function next is similar to entry . When invoked
as next(h,A) on an event handler h with api call A, next will return the set C of apis in h
that may be called after calling A, such that there is no api call between A and each api
in C. These functions are implemented in the static analyzer, by combining control flow
reachability with pointer analysis.

The function event-sem takes as input an event handler and returns as output a set of
cubes representing preconditions for that event handler to fire. This function is implemented
by the event semantics engine.

The function api -sem takes as input an api call A and a precondition p and returns a set
Q of postconditions. The postconditions satisfy that executing A in a state satisfying p leads
to a state satisfying some cube in Q. This function is implemented by the api semantics
engine.

The function app-sem takes as input an event handler and a precondition, and returns
a set of pairs of the form (A, q). Let h be an event handler. Towards formally defining
app-sem, we define a function

reach-semh :P(P(API)× API× Cube)→ P(P(API)× API× Cube)

that maps a tuple (A, a, p) representing a set of apis A previous executed, and the api a
that will be executed with precondition p to the tuple (A∪ {a}, b, q), where b is an api that



CHAPTER 2. PEGASUS 17

can be executed after a and q is the postcondition of executing a when p holds.

reach-semh(R) = R ∪ {(A ∪ {a}, {b}, q) | where
(A, a, p) is in reach-semh(R), and
b is in next(h, a), and
q is in api -sem(b, p)}

Note that reach-semh occurs on both sides of the definition. The function is implemented
by fixed point iteration over the cfg to compute a set of action, postcondition pairs. The
function app-sem computes event modalities by computing reach-semh and projecting out
the action, postcondition pairs that reach the exit point of the event handler. Formally,
app-sem satisfies the condition below.

app-sem(h, p) = {(A, q)|q ∈ Cube, and

A =
⋃

(B,b,q)∈R

B ∪ {b},

where R = {(∅, a, p) | a ∈ entry(h)},
and next(h, b) = ∅}

A pair (A, q) is produced by app-sem(h, p) exactly if A is a set of apis reachable in h, and
executing h in a state satisfying p leads to the postcondition q at the exit point of h. We
now describe how the precondition p is generated.

Fixed Point We combine the functions above to compute a fixed point whose result is the
peg for a given application:

EventModality = {(p,A, q) | p ∈ event-sem(h),

and (A, q) ∈ app-sem(h, p),

and h ∈ Handler}

In words, we consider each event handler h in Handler , use the event semantics engine to
generate preconditions for h to fire, and then combine app-sem and api -sem to determine the
postconditions derived by firing h. The implementation of each function above is discussed
below.

Implementation of the Engines

A contribution we make, en route to computing pegs, is to engineer a static analyzer, an
event semantics engine, and an api semantics engine. We discuss implementation details
below.
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Static Analysis We implement a partially context-sensitive points-to analysis serving two
purposes. First, the analysis overapproximates the targets of the method call. Overapprox-
imation arises due to dynamic dispatch, where different executions of a given method call
may invoke different methods. The second purpose is computing information about method
arguments. For example, consider a call to Button.setOnClickListener. The first argument
to this method is the event handler to attach as the onClick listener. We use the points-to
analysis to disambiguate arguments and to overapproximate the set of event handlers the
application will attach. Resolving arguments is necessary to derive sufficient information for
verification, because an api call can map to different permissions depending on the values
of its arguments. For example, a call to the ContentResolver.query(URI) method will access
the phone’s contacts if the uri points to the contacts content provider, while the same api
will access the phone’s sms messages for a different uri. The two operations require different
permissions.

We augment the context-insensitive analysis for event handlers by propagating the points-
to information for method call parameters from the caller to the callee. This provides partial
context-sensitivity. In particular, it allows the analysis of sub-functions to reason about
values which are computed in parent functions. Our experience shows that this is important
to handle, since many applications pass arguments for system apis through helper functions
or wrappers for those apis. For flow-sensitivity, we use flow-insensitive analysis for class
fields and flow-sensitive analysis for local variables to balance efficiency and precision. Our
hybrid approach to points-to analysis is similar to the use of object representatives or instance
keys [11, 33, 61].

Event Semantics Engine The event semantics engine implements the event-sem func-
tion. It receives a method handler name as input and returns the preconditions for the
handler to execute. This engine models the semantics of events by capturing the context
in which an event may fire. We implemented the engine by examining the effect of event
handling mechanism as specified in the Android documentation and in the Android platform
code. A list of 63 event handlers we model is given in Table 2.1.

API semantics engine The api -sem receives as input a method call and a precondition,
and generates as output the event-modalities generated by executing the method when that
precondition is satisfied, and the postcondition in which the method terminates. Though
these event-modalities are determined by the implementation of Android apis, we do not
analyze the Android api source code. Instead, we model every api call we have found
necessary to support during analysis. Figure 2.5 summarizes the api coverage of the api
semantics engine. We support 1200 api calls, which covers over 90% of the call-sites we
found on a data set of over 95, 000 applications. The entire list of methods we support is
too long to recall here.
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Figure 2.5: Coverage of api calls in the api semantics engine. api calls are represented by
numbers on the x-axis. A vertical blue line represents the number of applications in which
an api call occurs. The red line represents the cumulative distribution of api calls across
call-sites. 1062 apis make up for 90% of the calls in 95910 applications, and are part of those
supported by our api semantics engine.

2.5 Pegasus
We design and implement Pegasus, an analysis system that combines the abstraction proce-
dure in Section 2.4 with analysis of pegs and rewriting of Android applications.

System Overview Figure 2.6 presents an overview of the Pegasus architecture. Pegasus
takes as input an Android application and a specification expressed as safety property over
events and actions. It uses a translation tool to convert Dalvik bytecode to Java bytecode.
Using Java bytecode allows us to use off-the-shelf analysis frameworks.

The abstraction engine takes as input Java bytecode and generates an peg as output.
The peg is fed to the verification tool, along with a specification to check for conformance. If
certain application behavior cannot be analyzed (for instance, due to unresolved reflection),
the rewriting tool generates a new application that contains dynamic checks when reflective
calls are made.

If the peg satisfies the specification, and the implementation of the api and event se-
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Figure 2.6: Pegasus architecture. The system consists of a translation and a verification
tool, and an abstraction engine.

mantics engines, and the verification procedure is sound, the application is guaranteed to
satisfy the specification as well. If the peg does not satisfy the specification, it may be
because the application violates the specification, or because the overapproximation creates
false positives. For each violation, Pegasus produces a counterexample trace which can be
used to determine if the violation corresponds to a feasible execution.

Specifications Recall that safety properties assert that certain undesirable behaviors never
occur. Researchers have developed a numerous languages for safety properties. The slam
project used a C-like specification language called slic [5], because it was convenient to use
specification language with similar syntax to the analyzed programs. Similarly, we write
specification monitors in Java.

A specification for the running example is shown in Figure 2.7. The callback function
checkEvent is used to determine if the current event modality corresponds to the button click
handler for REC. If the current event modality corresponds to the REC button click event,
the specification checker sets class field recButtonClicked to true. It then scans all the
behaviors associated with the current event modality. If it finds the RecordStart behavior
and the record button has not been previously clicked, it signals a violation by returning
true.

A user of our system implements specifications using the SpecificationChecker interface,
which defines the callback function checkEvent. The verification algorithm calls this function
for each event modality reached during exploration. Depending on the specification, the
checkEvent function inspects the event type, the actions associated with the event, or both.
The checkEvent returns true if a violation has occurred based on the current event modality,
and false otherwise. The specification checker can maintain a specification state in its
class fields. The specification state is stored and restored by the verification tool using Java
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1 public class RunningExample implements SpecificationChecker {
2 // is the application currently recording?
3 private boolean isRecording = false;
4 // is the application allowed to record? (i.e., did the user
5 // press the Record button and not yet press the Stop button?)
6 private boolean recordingAllowed = false;
7
8 public boolean checkEvent(EventModality event) {
9 if (event.getEventHandler() ==
10 getClickHandlerForButtonByLabel(‘‘REC’’))
11 recordingAllowed = true;
12 else if (event.getEventHandler() ==
13 getClickHandlerForButtonByLabel(‘‘STOP’’))
14 recordingAllowed = false;
15
16 for (Action action : event.getActions()) {
17 if (action == RECORD_START)
18 isRecording = true;
19 else if (action == RECORD_STOP)
20 isRecording = false;
21 }
22
23 boolean violation = (isRecording && !recordingAllowed);
24 return violation;
25 }
26 }

Figure 2.7: Specification for the running example.

serialization.
To ease the task of writing specifications, we also implement a mapping from low-level

api calls to high-level actions, such as maps from api calls to permissions [3, 31], and other
security relevant actions, such as the start and the stop of recording. Pegasus enumerates the
application’s sequences of actions. It uses a Java interface to pass these sequences to the Java
specification, which updates the state of the specification until a violation state is reached.
If no sequence in a peg leads to a violation, the application satisfies the specification.

Verification Pegasus includes a verification algorithm that uses a bounded, breadth-first
graph search with pruning, to check security properties written as Java checkers. Once the
peg has been generated, specifications can also be checked using other model checkers.

Rewriting Our analysis is designed to successfully analyze many common-case uses of
potentially problematic Java constructs such as reflection and dynamic invoke dispatching.
The semantics of these constructs depends on information that is available only when the
program executes, so static analyzes may be unable to precisely analyze programs that use
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them. We rewrite applications to include runtime checks to account for cases where static
analysis does not succeed.

When the abstraction engine fails to analyze part of an application, three strategies can
be applied. The first one is to introduce a havoc statement and assume anything can happen.
This strategy usually leads to a high false positive rate, and consequently, a tool that is not
usable in practice.

The second strategy is to add runtime checks to only allow executions that respect the
conditions computed by static analysis. For example, we can add runtime checks to only
allow a reflective call if the target call was already derived by static analysis. Static analysis
may also fail to determine all the sensitive resources an application accesses. We can similarly
add runtime checks to only permit accesses to uris that were either statically determined,
or are not considered sensitive, such as contact lists or smses.

We use the second strategy. In specific cases, where we have manually scrutinised an
application, we permit executions even if they have not been analyzed statically. This occurs
when we believe the behavior that was not statically analyzed is benign. Such manually aided
rewriting allows us to reduce the overhead of runtime checks.

In Section 2.6 we evaluate the number of unresolved transitions in the applications we
analyzed. The number is generally small, a fact we attribute to the simple coding patterns
used by most applications (e.g., using a constant string as the argument to a reflection call),
as well as our per-event context-sensitive analysis which allows us to propagate information
through method calls within each event handler.

We do not support unknown native code. Known native code is modelled by the api
semantics engine. Known dynamic class loading is supported by analysing the class and
treating its loading point as a reflective call.

Implementation Pegasus is implemented in 11,626 lines of Java code, including the code
for the abstraction, model generation, and verification phases. The api semantics engine
models 1218 apis and the event semantics engine supports 62 different types of events.
We developed a translation framework to translate Dalvik bytecode to Java bytecode; the
dataflow analysis and rewriting are implemented in Soot [69], a compiler and static analysis
framework for Java bytecode.

2.6 Evaluation
This section describes our experiments using Pegasus to demonstrate that pegs can be used
to automatically check and enforce policies in Android applications. All experiments are
performed on an Intel Core i7 CPU machine with 4GB physical memory.



CHAPTER 2. PEGASUS 24

Figure 2.8: cdf of abstraction time (in seconds).

Generic Specification Checking

We run Pegasus on 152 malicious and 117 benign Android applications , and measure the
execution and the size of the peg. The malicious applications are from the Android Malware
Genome Project[74], and the benign applications are randomly selected from the Google Play
Store. Figure 2.8 presents the Cumulative Distribution Function (cdf) of the time spent on
peg generation. On over 80% of the applications, the abstraction phase terminates within
600 seconds. The abstraction phase also always terminated within 2 hours. Figure 2.9
presents the cdf of peg verification time, on a logarithmic scale. The verification phase
terminates within 1000 seconds, for over 80% of the inputs, and the verification phase always
terminates within 3.6 hours. To boost efficiency, we heuristically bounded verification to
terminate after 50000 states were explored. The justification behind this heuristic is shown
in Figure 2.10, where most of the applications have at most 10000 unique states, so the
probability of an unsound result is low.

In the verification phase, we check 6 application-independent properties to determine if
sensitive operations are guarded by user interaction. The three sensitive operations we con-
sider are reading the gps location, accessing the sd card, and sending smses. The properties
we check are that the three behaviors above are always bracketed by user interaction, such
as a button click. The result of verification is shown in Table 2.2. We see that malicious ap-
plications performing sensitive operations without user consent more frequently than benign
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Figure 2.9: cdf of the verification time (in seconds).

Sensitive Malicious Benign
Operation NoUI Total NoUI Total

gps 15 15 18 30
sd card 25 26 25 32
sms 10 11 0 1

Table 2.2: Results of checking application-independent specifications. The first column is the
name of the sensitive resource accessed. The “NoUI” columns list the number of applications
accessing these resources without user consent.

applications.

Application-Specific Properties

Sample Applications In this section, we check application-specific properties on 17 sam-
ple applications, including 8 benign applications and 9 applications with known malicious
behaviors, to demonstrate Pegasus used as a diagnostic tool. Table A.1 in the appendix lists
these sample applications and presents a short description for each application. The first 8
applications are benign samples selected from the official Android Market and third-party
application stores. We selected these applications to represent a broad variety of different
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Figure 2.10: cdf of peg size measured by the number of states.

application classes that together exercise most of the core functionality supported in the An-
droid system. These applications implement a variety of behaviors such as recording audio,
accessing the phone’s contacts, sending sms messages, and accessing the device gps location.
The remaining 9 samples are malware which exhibit a variety of malicious behaviors.

Specifications For these applications, we constructed application-specific properties after
installing each application, reading its documentation to understand its intended function-
ality, looking at the list of events and gui widgets used by the application, then determining
a security policy which an analyst might reasonably wish to impose on the application. We
wrote 23 application-specific properties.

PEG Generation Table 2.3 summarizes the results of peg generation. The last two
columns of Table 2.3, show how often the analysis can resolve the targets of intent calls and
reflective calls. We also manually inspected the decompiled source code to resolve values
that were not automatically determined, then used the rewriting tool to enforce those values
at runtime.

Verification We used Pegasus to check the generated pegs for conformance to their prop-
erties. When Pegasus found a violation, we manually executed the applications and used
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Name Size em Intents Reflection
kb # ur t ur t

Who’s Calling? 148 83 0 2 0 0
Share Contacts 135 359 0 9 1 2
Geotag 117 226 0 19 1 2
Find My Phone 285 29 0 2 6 11
Simple Recorder 20 16 0 0 0 0
Diet SD Card 304 155 0 14 2 5
SMS Cleaner Free 159 175 0 14 0 3
SyncMyPix 425 300 4 12 1 3

SMS Replicator 63 18 0 0 0 0
ADSms 41 38 0 0 0 0
ZitMo 20 19 0 0 0 0
HippoSMS 404 434 0 38 0 0
DroidDream 204 89 12 15 0 0
Zsone 241 30 0 0 1 3
Geinimi 558 51 4 4 4 6
Spitmo 20 6 0 0 0 0
Malicious Recorder 20 25 0 0 0 0

Table 2.3: Summary of the evaluation results. The columns are: (1) name of application,
(2) size of the .apk file, (3) number of event-modalities, (4) number of (unresolved) intents,
(5) number of (unresolved) reflection calls.

the counterexample trace to determine if the violation represented a feasible behavior of the
application. If source code was available, we also inspected the code.

Our results show that Pegasus completes verification of most applications in less than a
second, with a maximum verification time of 10 seconds. The length of the counterexample
traces for violations ranges from 4 to 10 events.

The properties we checked are discussed in detail in Section 2.6. We checked 8 benign
applications, against a total of 16 properties. For 11 of these properties, Pegasus determined
that the application satisfied the property. For 3 of the remaining properties, we deter-
mined that Pegasus found a property violation due to legitimate but unexpected application
behavior. We believe that analysts would find such information valuable.

For 1 of the remaining 2 properties, Pegasus determined that an infeasible path involving
dead code violated the property. For the last property, imprecision in the analysis caused
Pegasus to determine that the application violated the property. Consequently, we conclude
that Pegasus has false positives for 2 of the 16 properties.

For all 9 malicious applications, Pegasus correctly reported violations of at least one of
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the 7 properties. In other words, there were no false negatives for these properties.

Case Studies

We now present case studies illustrating properties one can check with Pegasus. Table A.2
in Appendix A provides detailed information about the security actions and events used in
the specifications in this section.

Specification Format For brevity, we present specifications as ltl formula. Note that
Pegasus does not actually take ltl formula as input but requires specifications to be encoded
as a Java checker. A specification for the Find My Phone application is shown below.

¬Send-SMS U Receive-SMS

The symbol U is the until operator, while Send-SMS is an action and Receive-SMS is an event.
The specification is read in English as asserting that

The application does not send an sms until it receives an sms.

A important technical clarification is in order: the temporal logics supported by standard
model checkers are usually state-based, meaning the propositions occurring in formula de-
scribe properties of states. In our specification, mode-variables describe states and action
labels describe properties of transitions. In technical temporal logic parlance, our speci-
fications are both state and event-based. Consult [20] for an in-depth discussion of such
issues.

Simple Recorder The simple recorder contains two buttons to start and stop recording,
and behaves as expected. We check that the application only records audio when the REC is
clicked, and stops when STOP is clicked. This property is expressed in ltl as

(¬Start-Recording U REC.onClick) ∧ (Stop-Recording ⇐⇒ STOP.onClick)

The application satisfies this property.

Diet SD Card We check that the application accesses the sd card only after a button
labelled Clean is clicked.

¬Access-SD U Clean.onClick

The application satisfies this property, showing that the sd card is only accessed after Clean
is clicked.
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Geotag We check that the application accesses geolocation information only after the user
clicks the Locate button.

¬Access-GPS U Locate.onClick

Pegasus discovers a property violation. On examining the counterexample, we determined
that the main activity’s onCreate event handler initialises the Google Ads library, which
spawns a new background task and accesses the geolocation information. If we refine our
property to

¬Access-GPS U

(
Locate.onClick

∨ AdTask.onPreExecute

)
Pegasus no longer reports a violation. We have also learnt that the only way the geolocation
can be accessed without the user’s consent is via the Google Ads library.

Who’s Calling? Similar to the Geotag application, we check the that contacts information
is only accessed after a phone call is received.

¬Access-Contacts U PhoneCall.onReceive

Pegasus returns a counterexample which shows that the application retrieves and caches the
contact list when it starts up. We verified this behavior manually by running the application
in an emulator and observing its api calls.

Share Contacts We check whether the application accesses contacts if an sms is not sent.

¬Send-SMS U Access-Contacts

This property holds. We then checked that smses are sent in response to user input.

¬Send-SMS U Send.onClick

This property also holds. Finally, we check if adding a new contact requires user consent.

¬Insert-Contacts U Insert.onClick

This property too is satisfied.

SMS Cleaner Free This application allows users to delete sms messages that match a
user-provided contact name. We check if accessing contacts is user-driven.

¬Access-Contacts U Select-Contact.onClick

Pegasus reports a property violation. We manually investigated the counterexample gener-
ated and concluded that the counterexample was not feasible. The reported violation is a
false positive. This application uses a switch statement to register the same event handler
for different button clicks. Our abstraction engine does not consider branch conditions, so
in the generated peg every button click can trigger every event handler.
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Find My Phone This application responds to the receipt of an sms containing a specific
keyword by sending the phone’s gps location. We check if an sms can be sent without any
being received.

¬Send-SMS U Receive-SMS

Pegasus reports a violation. We manually verified that the violation was a false positive.

SyncMyPix The SyncMyPix application specifies the target of an intent by looking at
the configuration file and using a default value if the user does not specify the target. The
set of possible runtime targets is not arbitrary, because they must be components in the
application, but static analysis does not have this information and is inconclusive. We
rewrite the application to force the target of the intent to be the default one. The rewriting
takes 5 seconds and the rewritten application works correctly. We check if the rewritten
application can access contacts without the Sync being clicked.

¬Access-Contacts U Sync.onClick

Pegasus reports a property violation. The counterexample revealed that the application may
access the contacts if the user clicks the Result button. We verified manually that clicking
Result displays the results of synchronising pictures. This behavior is innocuous, so we refined
the property as below.

¬Access-Contacts U

(
Result.onClick

∨ Sync.onClick

)
The application satisfies the refined property.

Malicious Recorder This application contains the same functionality as the benign record-
ing application. However, it also records audio for 15 seconds whenever a new sms is received.
We check the same specifications as the Simple Recorder application and verification fails.
The counterexample shows that that a timer can trigger recording.

ZitMo (Malware) In most benign applications, the sms messages received should either
be passed on to the next Broadcast Receiver or displayed to the user. Thus we check

¬BroadcastAbort

to see whether the ZitMo application discards smses without notifying the user. Pegasus
reports a violation, which we confirmed manually.

SMS Replicator Secret (Malware) We checked two properties of this application.

¬Send-SMS U Button.onClick

¬BroadcastAbort

Both properties are violated, because the application malicious sample sends sms messages
without user interaction, and deletes certain incoming sms messages.
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ADSms We use Pegasus to study this application and understand how it uses permissions.
We check three properties.

¬Kill-Background-Processes

¬Read-IMEI

¬Send-SMS

The counterexamples show that this application registers a broadcast receiver to kill anti-
virus processes. We also discovered that the broadcast receiver starts a new process, which
reads imei information and sends sms messages to premium-rate numbers.

2.7 Related Work and Discussion
We build upon work at the intersection of specification languages, program analysis, model
checking, and Android security. These areas are all mature and a comprehensive survey is
beyond the scope of this chapter. We only attempt to place our work in the context of either
seminal or very recent chapters in each area.

Specification Languages A specification language may be external to a program, as with
a temporal logic or internal to a program as in design-by-contract mechanisms. See [70] for a
hardware-oriented survey of industrial formats for temporal logics, and [12] for an overview
of jml and esc/Java2, which is well known, but only one of many specification mechanisms
for Java.

Our use of rewriting achieves a form of in-line monitoring, an idea articulated in [28].
Monitoring for security policies has been implemented in efsa [59] and pslang [27], and
with a focus on mobile security in the s3ms project [21], The Apex [53] system uses Android
permissions to guide runtime monitoring, while our monitoring policies are defined by custom
security properties.

We use runtime monitoring to deal with cases in which static analysis is ineffective, such
as in the presence of dynamic class loading or running native code. This combination can
also be viewed as an optimisation that reduces the overhead of runtime checks, and leverages
the strengths of both. Jam, developed concurrent to our work, combines model checking
with abstraction-refinement to alleviate monitoring overheads [34]. Techniques from Jam
can be used to improve our rewriting tool.

Static Analysis The design of our abstraction engine combines ideas from abstract inter-
pretation [17] and software model checking. The closest related work is the slam toolkit [7],
for checking properties of device drivers. Similar to slam, we check policies about the inter-
action of an application and the operating system, and use cubes over Boolean variables for
symbolically encoding. Unlike slam, we abstract the operating system context of an event.
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Moreover, instead of a theorem prover, we use a domain specific event- and api-semantics
engines to determine how mode variables are transformed.

The ideas in slam has been extended to lazy abstraction [41], which interleaves the
abstraction and checking process, and to Yogi [10], which combines testing and theorem
proving to construct abstractions. Most developments that follow slam, such as those
surveyed in [46] focus on improving either model checking or abstraction. Our work is
orthogonal because we compute a different type of abstraction. Much work successive to
slam, can be lifted to Android and used to improve the construction or verification of pegs.

Though program analysis is a mature field, event driven programs have only recently
received attention. Interprocedural data-flow analysis with a finite-height, powerset lattice
is expspace-hard [45]. In a language like Java, all analysis depends on the quality of points-
to analysis. Points-to-analysis in the presence of an event-queue faces similar complications
as with function pointers [22]. These are obstacles that will have to overcome if we wish to
improve our analysis.

Android Security TaintDroid [26] supports dynamic taint-tracking for Android applica-
tions. It explores one execution at a time, while our system checks all the possible behaviors
of an application. Security analysis based on control flow patterns and simple static analysis
has been used in [25] to detect a range of malicious behavior. A semantically richer static
analysis has been applied to Android in [55], but the focus is on common bugs rather than
security properties.

The Stowaway system [31] combines static analysis with a permission map to identify
applications requesting more permissions than they use. Permission-based approaches [3,
24, 53] use a map from api calls to Android permissions. Pegasus uses use a map from
api calls and arguments to a custom-defined set of actions. This set of actions extends the
abstraction of apis provided by permissions.

Access control gadgets[58] is a secure UI element to capture the user’s permission-granting
intent at runtime. It tries to solve the problem of enabling cooperative application developers
to write applications that can be easily analyzed, while we try to solve the problem of
detecting a new category of malicious behavior from legacy and potentially non-cooperative
applications.

Discussion Analysis of pegs provides richer semantic information than is available in
standard program representations. pegs abstract the operating system context in which
event handlers execute, and model checking of pegs provides more information than pattern
matching on syntactic program artefacts. We can detect permissions used in background
tasks, or in event handlers triggered by invisible buttons. We are not aware of other tech-
niques that can detect such behavior.

Analysis of pegs is not a panacea for malware detection. However, our analysis gives
security analysts an advantage in their arms race against new malware, by aiding in iden-
tifying a new class of malicious behavior. While attackers can work to evade our analysis
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mechanisms, e.g., using native code or dynamic class loading, such evasion requires code to
adopt a more convoluted structure or exhibit more circuitous behavior, compared to benign
applications — thereby making the code more conspicuous. Thus, much as the zozzle
defense against heap spraying attacks in Javascript [19], our analysis can support and fa-
cilitate the identification of malware. Even simple pattern matching of syntactic structure,
or triggered runtime checks, may be sufficient to reveal anomalies that indicate malicious
intent.

Another type of attacks to evade our detection system is to leverage the lack of details
or information flow due to our approximation. For example, to evade our general policy
enforcement in SMS Replicator Secret, the malware can wait util user clicks on anything
and then send SMS, or lure the user into clicking on any button, or mount clickjacking
attacks[42].
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Chapter 3

WebSyn: Iterative Security Analysis of
Web Protocols using Synthesized Models

3.1 Introduction
Web applications are a critical component of the Internet ecosystem, and provide diverse
functionality such as social networking, online shopping, and storage and retrieval of data in
the cloud. A unique characteristic of such applications is integration with third-party services
to implement critical functions. Such mashups typically access diverse third party services
over web (or http) protocols. For example, a modern application may rely on services such
as Facebook Connect to authenticate users, Disqus for comments, Dropbox for storing user
data, and may rely on Paypal for monetary transactions. The web application integrates
each mechanism via protocol defined on top of http . Due to this integration, a vulnerability
in even one of these mechanisms can have critical consequences for the security and privacy
of users, other web applications, and online services. Unfortunately, implementing such
mashups and the underlying protocols is challenging: subtleties of the web’s security model
often result in inadvertent vulnerabilities. For example, researchers identified vulnerabilities
in web-based sso protocols in 2010 [48, 2], 2011 [71], 2012 [66, 67], 2013 [72] and 2014 [75].

Existing tools approach the vulnerability discovery problem from two major perspectives.
One perspective is that of a top-down approach based on applying model checking and proof
systems [2, 72, 8, 9] on manually constructed models (specifications) of web applications.
However, web applications often lack formal specifications. Manually writing specifications
in a formal language requires significant effort, and remains quite challenging and error
prone. Developers or security analysts wishing to write the specification or the model would
need to understand the intricacies of the formal specification language as well as translate
complex modern applications into the given formal language. These challenges could lead to
the developed model itself being erroneous and inconsistent with the implementation. Even
worse, if the user wishes to analyze another application, the whole manual process has to be
repeated.
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The second perspective is that of bottom-up approaches that use static analysis or sym-
bolic execution techniques to automatically build system models [1, 6, 15] from full system
implementations. However, web applications operate in a distributed setting, and the de-
veloper or the security analyst may only have partial visibility into the full protocol. The
implementation of a web protocol is typically only partially visible because the code (or bi-
naries) for some parties in the protocol will not be available. For example, a typical mashup
developer lacks access to Facebook or Paypal code. In addition, such approaches are unable
to efficiently recognize high-level protocol related semantics in the implementation.

Our Approach In this chapter, we propose a new approach for finding security vulnerabil-
ities that is applicable under the unique constraints posed by web applications. Our approach
provides a middle ground between the two perspectives of manually specifying models and
fully-automated model inference. Instead of manually writing models for each application,
we provide a set of basic building blocks (in the form of a domain specific language) that
are common in web protocol models and can be assembled to form different web protocol
logics; and instead of deriving the protocol models from the implementation, we inductively
synthesize the models from examples of system execution traces.

Providing examples of system execution traces presents a natural interface for authoring
application specifications and analyzing security; humans already generalize from examples.
We leverage recent advances in the field of inductive program synthesis [37] to translate user
provided examples into candidate models. The synthesis techniques make use of the domain
specific language (dsl) discussed above to infer a candidate model corresponding to the
execution trace. Finally, we couple the inferred model with state-of-art formal verification
tools (namely Alloy [43]) to find security vulnerabilities. Our approach is amenable to
interactive analysis; developers or security analysts can refine the analysis by providing
additional example traces or guiding the formal verification tool.

Our approach shares similar motivation with previous work on inductive specification
generation for vulnerability discovery [4, 56, 29], and provides a general framework thanks
to synthesis techniques (See Section 3.10). We note that while synthesis from examples has
been explored in some other domains [37], to the best of our knowledge, we are the first to
explore the benefits of program synthesis and domain languages for enhancing application
security.

WebSyn To demonstrate the concrete benefits of our approach, we present WebSyn,
a system that aims to find vulnerabilities in web applications. Web developers or security
analysts can provide execution traces of web applications as an input to WebSyn. This
satisfies the unique constraints of web applications; execution traces are accessible to such
users even under the constraints of partial code visibility and lack of application specification.

Our main insight is that we can use program synthesis techniques, which have recently
been successful in a number of domains [63, 62, 36, 68], to guide the inference of web
application models from example execution traces.
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The design of WebSyn consists of three main components. First, we define a domain
specific language (dsl) for web protocols, in order to control and customize the search
space in vulnerability discovery. Second, we introduce a new algorithm for synthesizing
code describing a protocol from execution traces and analyst feedback.WebSyn expresses
the protocol as a program in a declarative dsl, which the analyst can examine and provide
feedback to the tool. Third, we integrate formal verification tools such as Alloy with the
inferred model to construct an end-to-end system for vulnerability detection using execution
traces.

WebSyn accommodates interactive system analysis; the analyst can interact with the
system via additional example execution traces, and provide feedback on the vulnerabilities
and the issues WebSyn identifies. We note that our end-to-end system provides new op-
portunities for interaction with formal verification tools: first we are able to enable model
refinement via additional execution traces, and second, we are able to translate the output of
the formal verification tool in terms of execution traces using the domain specific language.

Experimental Results As a proof of concept, we implemented our WebSyn system,
and evaluated it with four real world web applications. In three of them, WebSyn was able
to find various csrf vulnerabilities, demonstrating the utility of our approach. WebSyn
was able to discover both previously-known vulnerabilities (previously found using manual
analysis), as well as new vulnerabilities. These results demonstrate that by defining a single
dsl for web protocols, and by performing synthesis using the dsl and execution traces, we
can make the process of vulnerability discovery easier to implement across a number of web
applications.

Contribution Our work makes the following contributions.
1. A general approach for finding security vulnerabilities using system execution traces,

domain specific languages, and synthesis techniques.
2. A dsl to represent the set of typical semantics of web applications, and a new algorithm

for the synthesis of web protocol models (in terms of the dsl) from system executions
and analyst feedback. Our algorithm enables modeling systems in which code may
only be partially available.

3. An application of our system to synthesize models of web protocols that involve http
requests and responses among the client and multiple websites. Our proof-of-concept
case studies demonstrate how our system can efficiently detect real-world, csrf vul-
nerabilities, including previously unknown ones.

We review the relevant background in Section 3.2. Section 3.3 presents an overview of
our approach. In Section 3.4, we present the domain specific language we use to represent
the synthesized protocol. In Section 3.5, we present the algorithm of the protocol synthesis.
Section 3.6 introduces the verification process and the user feedback. We describe our im-
plementation in Section 3.7 and evaluate it in Section 3.8. Section 3.9 presents a discussion
of limitations and future directions.
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GET /login HTTP/1.1
Host: bodgeitstore.com

HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: session=7ffa4512

<form method="post" action="/login">
<input type="hidden" name="csrftoken" value="3eff8527">
<input type="text" name="username">
<input type="password" name="password">
<input type="submit" name="submit" value="login">
</form>

POST /login HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Cookie: session=7ffa4512
Host: bodgeitstore.com

csrftoken=3eff8527&username=user1&password=secretpwd&submit=login

HTTP/1.1 200 OK
Content-Type: text/html

<b>Welcome!</b>

Listing 3.1: Example traces from the Bodgeit Store

3.2 Background

Web Security

Running Example We use the Bodgeit Store application[57] as our running example. The
Bodgeit Store is a deliberately vulnerable web application used for teaching web security.
It is an online shopping web application that allows users to register an account, login to
an account, manage shopping carts and make purchases. Listing 3.1 is an example of some
messages from its protocol.

Web Applications A web application is a distributed system based on the http protocol.
We refer to the participants of a web application as endpoints. A client endpoint (client for
short) is a browser and a server endpoint (server for short) is a web principal represented by
its web origin. A message is either an http request or an http response. A web protocol is
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a specification of the sequences of messages exchanged between endpoints and the invariants
satisfied by these messages.

A session is a set of messages pertaining to a single online activity. http is a stateless
protocol. A typical approach to building a stateful, session-aware web application around
http is to include session identifiers in every http request. In our running example, the
session field in the cookie identifies the shopping activity session. In addition, we also
consider that the username and password fields identify the overall user session, and the
csrftoken identifies the login activity session.

Server Model We assume a simple model of the server: it receives an http request and
extracts information from the request. Based on the extracted information and the history
of requests and responses, the server constructs a response and sends it to the client.

Threat Model We consider the web attacker model and session integrity formally defined
in Akhawe et al. [2]:

A web attacker is a malicious principle who controls a web server visited by the user.
Intuitively, the web attacker can be thinked as having “root access” to this web server, and is
able to retrieve arbitrary information contained in the request, and send arbitrary response
to the user. As a result of interpreting the response in the user’s browser, the web attacker
also has access to the browser’s web APIs exposed to common websites. In addition, the web
attacker can send arbitrary http requests to the honest servers. However, the web attacker
has no special network privileges. This means the web attacker can only respond to http
messages directed at the web attacker’s own servers.

A session integrity condition states that the attacker should not be able to cause benign
servers to undertake potentially sensitive actions. Cross-Site Request Forgery (csrf) attacks
are typical violations of the session integrity policy. A csrf is a type of attack by a web
attacker that violates the session integrity of a web application in which the user is authenti-
cated. For example, a login csrf attack violates the login session by directly logging in the
user without the initial login page. If the Bodgeit Store code did not check the csrftoken
(Listing 3.1) in the second request, a malicious website could just submit a request (via the
user’s browser) to the store using the attacker’s password and log the user in as the attacker
to Bodgeit.

Our tool searches for a large variety of csrf attacks. These csrf attacks can take place
in different forms during different steps of a web protocol. For example, the aforementioned
csrf attack happens at the user credential submission step, and the client is authenticated
as the attacker. There are also csrf attacks that construct other authorization tokens and
perform the action on behalf of the user, which we will show in our case studies in Section 3.8.
A key feature in our approach is the ability to accommodate the customized, non-standard
application logic and generate the correct csrf attack traces tailored to it.
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Program Synthesis

In this section, we give a background overview of synthesis techniques which provides a
basis for developing systems for specification synthesis. See Section 3.10 for a discussion
on related work, and Gulwani at al. [37] for a comprehensive overview of such techniques.
Broadly speaking, a specification synthesis framework takes examples of behavior as input
and searches the space of possible specifications, defined by a domain specific language (dsl),
for candidates that conform to the given input. We discuss all these components further
below.

Domain Specific Languages A language defines a search space for candidate programs;
thus, the choice of a target language has implications on the size of the search space as well
as the space of problems that the synthesizer can solve. For example, a general-purpose
programming language as the target language has the appeal of being able to solve a wide
range of problems. On the other hand, these languages also have an infinite search space of
possible programs. A narrow domain specific language defines a smaller space of program,
but may not be sufficient for the problem.

Synthesizer A synthesizer searches the space of possible programs for candidates that
satisfy the provided constraints. The analyst inputs, via execution examples, form the
constraints for the target program. In any synthesis application, given the computational
complexity of performing a naive search, the primary concern is often designing a clever
search strategy.

Domain knowledge is critical to help guide the search of candidate programs as well
as rank candidate programs. Typically, the search space of possible specifications remains
prohibitively large even with a dsl and synthesis systems require smart search algorithms
as well as liberal use of domain knowledge. It is useful to compare the synthesis search
to what typically occurs when humans author specifications. A specification author would
look at examples of behavior or think of intended behavior and combine it with her domain
knowledge gained with experience, finally creating an appropriate specification—an effort
prone to errors. A synthesizer replaces this step with automated techniques.

Formal Verification

A formal verification tool takes as input an abstract model of the system, and a property
that the analyst want the system to maintain. The tool checks if the system model satisfies
the property. The result of the verification is either YES meaning that the model satisfies
the property, or NO which means otherwise. Optionally, a counter-example is returned with
the NO answer. If the counter-example represents an actual behavior of the system, it means
the implementation of the system fails to satisfy the property. If the counter-example is
spurious, it can be used to refine the model so that it better reflects the implementation of
the system.
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Researchers have created formal verification tools for proving the security of software and
protocols [6, 15]. Researchers have also leveraged formal tools to analyze deployed systems,
resulting in the discovery of real, exploitable vulnerabilities [4, 8, 71].

In our implementation, we use Alloy [43] as the basis of our verification component. The
word Alloy refers to both a model description language based on the notion of relations,
and a model checker that performs verification on Alloy models. Our dsl is compiled
to Alloy for verification, and the counter-examples are translated back to traces of http
messages.

3.3 System Overview
To solve the problem of synthesizing specifications for vulnerability discovery, we must solve
two types of problems. The representation problem is to design a dsl that captures the
subtleties of web protocols while still remaining high-level enough for efficient checking. The
algorithmic problems are to construct a protocol model, find vulnerabilities, and update the
model using analyst feedback. The details of the algorithm depend on the representation,
and hence preclude an off-the-shelf solution. We now describe how these problems are solved
in WebSyn.

Designing a Representation

We design a language, called mdl, with primitives chosen to enable succinct descriptions
of web protocols. These primitives have a precise semantics and compile into the language
of a formal analysis tool. Section 3.4 explains mdl along with a description of our running
example, the Bodgeit store, in mdl (Figure 3.2).

Algorithmic Components

Program Synthesis The first algorithmic problem is to construct a protocol model from
http traces, e.g., the one in Listing 3.1. Since our model is expressed as a program, model
construction can be viewed as a program synthesis task. Specifically, the set of all mdl
programs defines a search space and synthesis from examples seeks to find programs that
generate and generalize those sample executions. Section 3.5 presents our synthesis algorithm
and the data structures we use to achieve the performance necessary in an interactive system.

Vulnerability Discovery The second algorithmic problem is to discover vulnerabilities in
the protocol model. Our system includes template descriptions of web protocol vulnerabilities
(such as csrf). We compile a mdl program together with a vulnerability description into an
Alloy model, and reduce the vulnerability discovery problem to a model checking problem.

The Alloy model simulates all endpoints of a protocol and includes a malicious server
and malicious client. The Alloy model contains definitions of all relevant endpoints (http
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WebSyn

Web
Application Synthesizer Web Model

and mdl
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Inputs
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Figure 3.1: System Architecture: WebSyn consists of a synthesizer and a verification com-
ponent. It takes web application execution traces as input, and uses the synthesizer to
generate protocol models. The verification component compiles protocol model and vul-
nerability templates into Alloy models for vulnerability discovery, and Alloy output to
example attack traces. The analyst interacts with WebSyn by providing inputs and refining
the protocol model and the vulnerability templates.

clients, http servers), messages (http requests, http responses), cookies, tokens etc.,
and the definitions of vulnerabilities such as token forgery. We describe malicious clients,
malicious servers and benign clients in Alloy using a general model of browsers and web
servers. See Section 3.6 for details of this translation.

Feedback and Refinement The third algorithmic problem is to incorporate analyst feed-
back to update either the protocol model or the vulnerability description used by the system.
We present the types of feedback in Section 3.6 and demonstrate their effects on the search
space in Section 3.8.

Architecture and Exploration

The architecture of WebSyn is shown in context in Figure 3.1. WebSyn consists of two
components. The synthesizer takes as input traces and generates an mdl program, which
describes the protocol’s behavior. The verifier takes as input the the mdl program, translates
it to Alloy model, run the Alloy analyzer, and translates the counter-example back to
the mdl level if the analyzer returns one. The analyst generates inputs to run the web
application and feedback to feed directly to WebSyn.

3.4 The MDL Language
In this section, we present the language for describing the protocol model: the Model Descrip-
tion Language (mdl). We start by using the Bodgeit Store example to informally describe
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the semantics of mdl, followed by a formal definition of the key aspect of the language: the
invariants. The full mdl syntax is defined in Figure B.1 in the appendix.

From a protocol execution’s point of view, a mdl program describes the protocol logic
of the servers in a multiparty web application, i.e., a mdl program takes a concrete http
request, and constructs a concrete http response. See Figure 3.2 for the protocol model of
the Bodgeit Store login protocol in mdl.

1 servers: bodgeit;
2 init:
3 bodgeit knows t1,t2;
4 client knows t3,t4;
5messages:
6 helo(server=bodgeit, type=request),
7 rehelo(server=bodgeit, type=response,
8 fields=(jsid in setcookie, csrf in content)),
9 login(server=bodgeit, type=request,
10 fields=(rcsrf in urlparam, rjsid in cookie,
11 username in urlparam, password in urlparam)),
12 relogin(server=bodgeit, type=response);
13 invariants:
14 rehelo.jsid isa t1;
15 rehelo.csrf isa t2;
16 login.username isa t3;
17 login.password isa t4;
18 forall m1:rehelo, m2:login {
19 m1.jsid == m2.rjsid <=> m1.csrf == m2.rcsrf;
20 }

Figure 3.2: The mdl protocol model for the Bodgeit Store. Note that we have changed the
variable names from the randomly generated original ones to more meaningful ones for the
ease of understanding.

A mdl program consists of three top-level expressions: the endpoint declaration (servers
in Figure B.1), the data type declaration (init), the message declaration (messages) and
the invariant declaration (invariants). The endpoint declaration lists the participating
server endpoints. In the Bodgeit Store example, there is only one server endpoint (bodgeit)
as shown in Line 1 of Figure 3.2. The data type declaration lists all the data types and
for each data type the endpoints who know all the data with that type at the beginning
of the protocol. Our running example involves 4 data types t1-t4, as shown in Line 3,4
of Figure 3.2. The first two are initially known by the server (i.e., bodgeit) and the other
two are initially know by the client. The message declaration defines all the messsages
involved in the protocol and the data fields carried by the message. A message is either an
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http request or an http response. The invariant declaration defines how each endpoint
constructs responses according to the received requests. The message declaration and the
invariant declaration are the core of the model. We explain both in more details in the
following paragraphs.

The message declaration consists of a list of messages, where each message specifies which
server it is sent from or to, whether it is a request or a response, and a list of data fields
as well as where the data is located in the message. We are interested in the data location
because it determines how the data get handled by the clients, e.g., whether it is forwarded
in the subsequent requests (i.e. cookie data), or whether it is forwarded to a different web
principle (i.e. data in the url of a http redirection).

The invariant declaration consists of a list of invariants over the messages and data fields.
Current we support two kinds of invariants: the data type of a data field, and a boolean
expression over multiple data fields quantified by message types. These invariants help to
determine how the servers construct responses for requests. Intuitively, when a new request
arrives, the server will match it with a request defined in the message declaration. Once
the corresponding request definition is found, the server construct the response by finding a
concrete solution to the invariants.

For example, Lines 6-8 in Figure 3.2 specifies that the bodgeit server sends a rehelo
response when it receives a helo request. Line 14 in Figure 3.2 specifies that the rehelo
response’s jsid field is of type t1, and Lines 18-20 specifies that if two messages’ session ids
match(rehelo.jsid == login.rjsid), their csrf tokens should be equal, too, and vice
versa.

Figure 3.3 lists the full syntax of the invariant declaration.

INVARIANTS := invariants: INVDEF INVDEF ...
INVDEF := ISA | FORALL

ISA := mt1.f1 isa t1;
FORALL := forall m1:mt1, m2:mt2 ... { BOOLEXP }

BOOLEXP := m1.f1 == m2.f3 | BOOLEXP BOP BOOLEXP
BOP := ∧ | <=>

Figure 3.3: The syntax of the invariant declaration.

3.5 Synthesizing mdl

In this section, we present the algorithm for synthesizing a mdl model. The algorithm
consists of three phases: trace alignment, data propagation and model generation.
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Trace Alignment

The trace alignment phase takes multiple network http traces in the form of

T = [(s11, s
2
1, ...), (s

1
2, s

2
2, ...), (s

1
3, s

2
3, ...), ..., (s

1
n, s

2
n, ...)] (3.1)

and produces an alignment between these traces in the form of

M = ({(s11, s12, ..., s1n), (s21, s42, ..., s2n), (s41, s32, ..., s3n), ...}, <)

where sij represents the i-th message in the original trace j, and < is a partial ordering
function. Here we use (...) to denote a tuple, [...] to denote an ordered list, and {...} to
denote an unordered set.

The input traces are http requests and responses captured during multiple runs of user
demonstration. The alignment algorithm identifies for each message what are the correspond-
ing messages in another trace that are structurally similar. There are a large collection of
work on computing web page similarities for clustering, such as [40]. However, since these
work focus on the content-wise similarity, while we are mainly interested in the similarity of
the metadata, such as url parameters and cookies, we define the similarity of two message
to be the length of the longest common subsequence of the hostname, the url path, the get
or post parameter names, and the names in the <form> elements. From these alignment
pairs, our approach compute an overall alignment so that the size of aligned message set is
maximized. We then discard messages that are not aligned or aligned messages that remain
constant in all traces.

At this point, we have computed the set of aligned message tuples to be included in M .
The partial ordering of any two aligned messages m1,m2 ∈M is defined as

m1 < m2 ⇔ ∀sij ∈ m1,∀skj ∈ m2, i < k (3.2)

Data Propagation

In the data propagation phase, the aligned http messages will be propagated into a set of
data types. This process serves two goals: First, we want to extract the data contained in
each concrete message. For example, among the messages in Listing 3.1, we want to extract
the value of the csrf token embedded in the HTML response content, and also from the
content of the POST request encoded as form data. In order to achieve this, we need to
handle a variety of customized embedding and encoding of the data. Secondly, we want to
discover the invariants between the data fields from different messages. For example, the
csrf token encoded in the POST request should be equal to the csrf token in the HTML
page of a previous response.

We first introduce a data structure that efficiently represents the process of data propa-
gation. This data structure will be used as the input to the model generation phase.
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('7FFA4512','CF89EE07'): t1

('<form method=...',...) pHtml1

('username=user1&...',...) pQuery1

('user1', 'user2'): t3

('session=7ffa4512',...) pCookie2

('secretpwd', 'password2'): t4

('session=7ffa4512',...) pCookie1

rehelo pResp1

login pReq1

('3EFF8527','A8F46C34'): t2

Figure 3.4: Example dfg for the Bodgeit Store

Data Structure We use data-function graphs (dfg) to keep track of how the data fields
are extracted from the messages and the invariants on the data fields. A dfg is a bipartite
directed acyclic graph G = (T,A,E) where

1. T is the set of all data types. They are represented as a tuple of their concrete values
in the example traces.

2. A = T × F is the set of function applications on data types, where F is a set of
decoding functions defined in Table 3.1. Each function f ∈ F takes one input data
type (t ∈ T ) and produces one or more output data types. Since a function can be
applied to multiple elements in T , we use a = (t, f) ∈ T × F, t ∈ T, f ∈ F to uniquely
denote a particular application of a function.

3. E ⊆ T × A + A × T is the set of all the edges in G. For all a ∈ A, a’s incoming
edges Ein(a) ⊆ T × A connect a and its argument data type, and a’s outgoing edges
Eout(a) ⊆ A× T connect a and its result datatypes.

An example dfg for the Bodgeit Store is shown in Figure 3.4. We omit the irrelevant
messages and the content of the non-leaf nodes in the graph for simplicity.

For each server, we take the set of its relevant messages and generate a dfg. Such a dfg
has the following properties:

1. The roots of the dfg is the aligned message set in M , e.g., rehelo and login in
Figure 3.4.

2. The leaves of the dfg form the set of data types in the protocol. This data type set
will appear in the data type declaration of the synthesized model, e.g., the four leaf
nodes in Figure 3.4.

3. The leaves reachable from a root message form the set of data fields carried by the
message. For example, message rehelo has two fields with values (’7FFA4512’,
’CF89EE07’) and (’3EFF8527’, ’ABF46C34’) from two traces.
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4. If a leaf node is reachable by multiple roots, it means the same data appears in multiple
messages, which may imply a cross-origin sharing of knowledge, or a challenge-response-
based authentication. The synthesizer will use this to infer invariants.

5. The paths from a root to a leaf represent how a field can be decoded from a message,
and the reverse paths indicate the way to construct a concrete message according to
the values of its fields. They will be used to construct a concrete attack trace from an
abstract one, e.g., (’user1’,’user2’) is extracted by decoding the content of an http
response message as a url query string.

Intuitively, the dfg mimics how a human analyst would dissect a message into small string
fragments and build correlations between the messages according to the value of the frag-
ments. Next, we are going to present how to automatically generate a dfg for each endpoint,
and how to use it to synthesize the server logic.

DFG Generation In the dfg generation phase, we generate a dfg for each endpoint
in the protocol using the example messages. The graph generation algorithm is shown in
Algorithm 1. It is a worklist based graph construction algorithm. The worklist is initialized
with the roots of the graph, i.e. the messages. Each element in the worklist is a pair (t, f)
where t is a data type node to be extended, and f is the function to be applied on the data
type. If the application is successful, a new application node (t, f) and a set of new data type
node corresponding to the return values of f(t) will be added to the graph, together with
the edges that connect them. And for each returned data types t′ of f(t), all the possible
function applications (t′, fi) will be pushed to the worklist. The propagation iterates until a
fixedpoint is reached.

Propagation Functions A key factor affecting the size of the dfg search space is the
functions used in the propagation, which we call the propagation functions. The propagation
functions used are listed in Column 2 of Table 3.1. The choice of the next functions to try
for each data type determines the search space of the graph. The propagation algorithm
choose different subsets of functions to try depending on where the data type is from. The
subset is determined by the functions that output this data type. Columns 3-6 of Table 3.1
lists which functions will be pushed to the worklist for each return value of a function.
Taking the first row as an example, when (t, f) = (login, pHttpReq), The while loop in
Algorithm 1 will try to parse the input string t as a http request, and if successful (i.e.,
pHttpReq(login) 6= ∅), produces 11 (v, f ′) pairs. The first pair (v1, f ′

1 in the table) is the
url of the request and function 6:pUrl, which means pUrl will be tried on this url in a
future iteration. Similarly, the last 9 pairs are indicated by v3, f ′

3 in the table, which means
that all functions 3-11:pJS-pConcat will be tried on parsing the request content.
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Function computeDFG(M)
Data: M : The result of the trace alignment.
Result: G: The data-function graph of M .
finished = ∅;
forall the mi ∈M do

worklist.push((mi, parseReq)) ;
worklist.push((mi, parseResp)) ;

end
while worklist 6= ∅ do

t, f ← worklist .pop() ;
T ← T ∪ {t} ;
if (t, f) /∈ finished ∧ f(t) 6= ∅ then

A← A ∪ {(t, f)};
E ← E ∪ {(t, (t, f))};
forall the (v, f ′) ∈ f(t) do

E ← E ∪ {((t, f), v)};
if (v, f ′) /∈ finished then

worklist .push((v, f ′)) ;
end

end
end
finished .push((t, f));

end
Algorithm 1: Data-function graph generation.

No. f v1 f ′
1 v2 f ′

2 v3 f ′
3 v4 f ′

4

1 pHttpReq url 6 cookie 7 content 3-11
2 pHttpResp content 3-11 setcookie 7 redir 6
3 pJS token 3-11
4 pJson value 3,5-11
5 pHtml link 6 value 3-11
6 pUrl host - path 10 query 8 frag. 3-11
7 pCookie value 3-11
8 pQuery value 3-11
9 pUrlEscaped orig 3-8
10 pPath item -
11 pConcat item -

Table 3.1: Propagation function signatures. The numbers in Columns 3-6 refer to the func-
tion indices in Column 1.

Model Generation

The model generation phase translates the dfg to a model in our dsl. First, we collect all
the web origins in the trace to form the set of endpoints. Secondly, for each endpoint and
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No. f Description
1 pHttpReq Try parsing the input string as an http request and extracting its url, cookie

string and content.
2 pHttpResp Try parsing the input string as an http response and extracting its content,

setcookie string and redirection url if it is a http 302 response
3 pJS Try parsing the input string as a Javascript source code and extracting the list

of tokens in the parsed abstract syntax tree(ast).
4 pJson Try parsing the input string as a json source code, flattening the parsed tree

into a list of (path-to-leaf, leaf-value) pairs, and extracting the list of values.
5 pHtml Try parsing the input string as a html source code and extracting a list of the

urls and form field values found in the source.
6 pUrl Try parsing the input string as a url and extracting the host, path, query and

fragment values.
8 pQuery Try parsing the input string as a url query string and extracting a list of values

sorted by their keys.
9 pUrlEscaped Try parsing the input string as a url-escaped string and unescaping it.
10 pPath Try parsing the input as a unix path string and extracting each individual

directory name.
11 pConcat Try parsing the input as a concatenated string with some delimiter and extract-

ing a list of the individual items before the concatenation.

Table 3.2: Propagation function description

each request-response pair, we infer the corresponding message definition by collecting all
the leaf data type nodes on the dfg. Third, we extract all the invariants by examining the
multi-root leaves on the dfg. Finally, we infer the initial knowledge set of each endpoint
according to the first appearance of each data types.

Inferring the message fields The set of fields for each message is defined by the set of
reachable leaves from the message in the dfg.

m.fields := DFG.leavesof(m)

In our running example, the first request and the last response carries no data. The first
response carries a cookie in jsid and a csrf token in csrf. And the second request carries
a cookie in rjsid, a csrf token in rjsid , a username in username and a password in
password.

Inferring the invariants For each field in a request message, we need to determine if it
is supposed to contain a previously unseen data type or a known one, and for each field in
a response message, we need to determine if the server needs to construct a new value of
that type or use a known one. To achieve this, we first define the relevant ancestor messages
(RAM) of a request as

RAM(req) := {m|m < req ∧m.fields ∩ req.fields 6= ∅}
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The RAM of a request is the set of all history messages who have some fields equal to a
request fields. We use their fields RAM(req).fields and the fields of the request to form the
set of all candidate data-fields for constructing the response message. Note that an extended,
alternative definition of relevant ancestor messages, which we denote RAM*(req), is

RAM*(∅) := ∅
RAM*(req) := RAM(req) ∪ RAM*(RAM(req))

This definition extends the original RAM(req) by also including its transitive dependencies,
which leads to a more complete approximation of the real session history. We do not use
this definition in order to trade for a faster synthesis algorithm with reduced completeness.

Next, we generate request invariants between fields in req.fields and fields in RAM(req).fields,
in the form of

forall m1:req, m2:??, ... {
m1.?? == m2.?? <=> m1.?? == m2.??
∧ m1.?? == m?.?? <=> m1.?? == m?.??
∧ ...

}
This simulates the server validating the requests according to prior knowledge, such as val-
idating a csrf token. We also generate response invariants between fields in resp.fields ∪
req.fields) and fields in RAM(req).fields, in the form of

forall m1:resp, m2:req, m3: ??, ... {
m2.?? == m3.?? <=> m2.?? == m3.??
∧ ...
∧ m1.?? == m3.?? <=> m1.?? == m3.??
∧ ...

}
This simulates the server using the requests to identify which session this request is with
regard to, as well as what are the relevant data previous recorded, such as a database query,
and then using all these relevant data to construct the response. For example, from the
Bodgeit Store’s dfg we find that both the cookie (t1) and the csrf token (t2) are shared
between rehelo and login. Thus RAM(login).fields = rehelo.fields = {t1, t2}, and as a
result, we generate the following invariant:

forall m1:rehelo, m2:login {
m1.jsid == m2.rjsid <=> m1.csrf == m2.rcsrf;

}

Inferring the initial knowledge sets The initial knowledge sets can be trivially ex-
tracted from the message declaration: For each endpoint, its initial knowledge set is the set
of data types which are first used by this endpoint. In our running example, the username
t3 and password t4 are initially known by the user, and the cookie t1 and the csrf t2
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are initially known by the Bodgeit Store. Note that there is a mistake here made by the
synthesizer, since technically the username and the password should be initially known by
both the server and the client, but in our case studies (Section 3.8) we show that this is
irrelevant if the vulnerability we discover does not rely on this fact, and if it later becomes
relevant, the analyst can correct this mistake by providing some feedback.

3.6 Verification and Feedback
In this section, we present how the synthesized protocol model is used in verification, and
how the analyst can provide feedback to WebSyn and refine the synthesis search space
according to the mdl model and the verification result.

Verification

The verification component takes the mdl model and embeds it into a general model of
web-based distributed systems (called the base model). The whole instance is then used for
model checking.

In this extended model, the problem of finding a vulnerability is converted into the
problem of generating a trace of http messages that satisfies a set of constraints. The
constraints can be divided into 4 categories: the trace constraints, the endpoint constraints,
the protocol constraints and the policy constraints.

The trace constraints The trace constraints define the well-formedness of an http trace.
Some example trace constraints include that a Trace instance in Alloy is a list of Message
instances, a Message instance is either a Request instance or a Response instance, Request
instrances and Response instances appear alternately in a Trace, a Response instance con-
sists of url parameters, set-cookie fields, a response content, and a redirection location, etc.
Note that these trace constraints are only used to constrain the shapes of the attack traces.
While we do not claim that all vulnerabilities can be exploited under these constraints, these
constraints help to reduce the search space significantly. The trace constraints are part of
the base model.

The endpoint constraints The endpoint constraints specify the constraints between two
adjacent messages in the trace, i.e., how each endpoint reacts to an incoming message.
Intuitively, these constraints enforce the following endpoint capabilities:

1. The set of endpoints consists of a benign client, a malicious client, a malicious server
and a set of benign servers defined by the synthesized mdl specification.

2. The benign client can send arbitrary request permitted by the rule of the server. When
it receives a redirection response, it immediately sends a request with the url specified
by the redirection.
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3. The malicious client inherits all the capabilities of the benign client. Additionally, it
may choose to not follow the redirection when receiving a redirection response. The
malicious server and the malicious client can cooperate and share the same knowledge
about the data.

4. The malicious server accepts arbitrary requests and can construct arbitrary redirection
responses.

5. For each benign server, it only accepts requests and send responses according the
synthesized mdl specification, which is separately called the protocol constraints since
they are not part of the base model.

The endpoint constraints are part of the base model.

The protocol constraints The protocol constraints consist of protocol specific constraints
translated from the mdl specification. It follows the semantics of the mdl and enforces that
the generated trace is accepted by the mdl specification.

The policy constraints The policy constraints are translated from the initial vulnerabil-
ity description, which is defined as the malicious server causing the benign client to send a
request containing the attacker supplied data (cross site request forgery). More precisely, we
reduce the question of whether the protocol is vulnerable to the question of whether there
exists an execution, while conforming to the constraints imposed by the mdl model and the
base model, also satisfies the following constraints:

1. There is a redirection response from the attacker.
2. The response is sent to the benign client.
3. The response is followed by a request sending to a benign server.
4. The request’s non-cookie fields are all known by the attacker.

The corresponding Alloy predicate is shown in Figure 3.5. Note that these constraints do
not try to describe and enumerate all possible csrf attacks to a vulnerability. For example,
not every csrf attack includes a redirection, and there are even more sophisticated ones
that do not conform to any of these constraints. We are only searching for vulnerabilities
that can be exploited in this particular way.

1pred iscsrf[e: HTTPReqMessage] {
2 (some e.prev and e.prev in Resp_redir_mal2ua)
3 (e.from = UA)
4 (e.to in (ServerEP − MalEP))
5 some (e.payload − e.cookies)
6 (e.payload − e.cookies in queryKnown[MalEP, e])
7 }

Figure 3.5: Alloy predicate that checks for csrf vulnerabilities



CHAPTER 3. WEBSYN 52

Figure 3.6: The message sequence chart illustrating the protocol synthesized for the Bodgeit
Store.

The verification result The result of the verification is one of the following:
1. Safe: The model checker can not find an instance of Trace which is consistent with

all the constraints. This means the protocol is safe under the synthesized model.
2. Unknown: The search space is too large and the model checker fails because of a

timeout.
3. Vulnerable: The model check is able to find an instance of Trace that satisfies all

the invariant. This means that there exists a session integrity vulnerablilty in the
synthesized model.

For all the three case, a synthesized protocol will be visualized to the analyst in a message
sequence chart, as shown in Figure 3.6. Additionally, in the case when the protocol is
vulnerable, a trace will be presented to the analyst as the demonstration of the attack. Both
the protocol and the attack trace are interactive so that the analyst can inspect them and
provide feedback to refine the synthesis.

For our running example, the verification returns Safe because the login activity is prop-
erly protected by the csrf token. However, if we remove the csrf token, the verification will
return an attack trace exhibiting a login csrf attack, as illustrated in the message sequence
chart in Figure 3.7.

User Feedback

In the user feedback component, the analyst inspects the results by reading the message
sequence charts (e.g. Figure 3.6 and 3.7) or replaying the attack trace to the actual web
service, and reaches a conclusion on the correctness of the synthesized protocol and whether
the attack trace is spurious. If the synthesis is not accurate or the attack trace is spurious, the
analyst provides more hints to the synthesizer. Our system accepts three types of hints. We
elaborate on each of them and their effects on the search space in the following paragraphs.
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Figure 3.7: The message sequence chart for a login csrf attack on the Bodgeit Store.

1. Input hints, in which a new input value is provided as an alternative to the input that
are previously constant, or an annotation is provided to mark one of the current data
types as unimportant. For example, if initially the analyst demonstrated the use of
the Bodgeit store using different accounts but bought the same item, the analyst could
create another demonstration in which the analyst buys a different item, thus making
the item to buy and its price a new data type. This is called a positive input hint.
On the other hand, if the analyst think that the csrf token is guessable, the analyst
could mark it as unimportant, thus removing the csrf token from the model when
searching for csrf attacks, and as a result, the model checker would return an attack
trace that ignores the csrf token. This is called a negative input hint.

2. Scope hints, which are boolean answers to one or more urls indicating whether similar
urls should be excluded or included in the example traces. A regular expression will
be synthesized from these answers. For example, if the analyst were to buy two items
in two demonstrations, and if the synthesizer included the http messages related to
loading the images of the items, the analyst could mark the image urls as a negative
scope hint, which means that urls like these should be excluded from the synthesized
specification.

3. Target hints, which are boolean answers to whether one or more messages should
be considered as a critical message. By default, all messages in the synthesized
specification are considered critical. However, sometimes we want to only focus on
csrf attacks that end at a particular http request, in order to reduce the search space,
and sometimes we want to assume a particular http request is safe and proceed to
find csrf attacks targeting other http messages. We use positive and negative target
hints to handle the above cases, respectively.
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No user feedback is needed for the running example, but in the case studies section
(Section 3.8) we will demonstrate how it can help reduce the search space and adjust the
search strategy.

3.7 Implementation
We have implemented a prototype system of WebSyn. It consists of 2000 lines of python
code and 150 lines of the initial Alloy code. The additional Alloy model compiled from
mdl ranges from 250 to 1100 lines of code. We use the standard Selenium ide and WebDriver
to record user demonstrations and generate more traces with alternative inputs [60]. We use
the BrowserMob proxy [50] to capture the network traces and output the trace files in the
http Archive (har) format. har is a standard format and analysts can rely on other tools
such as the Firefox DevTools, the OWASP Zed Attack Proxy, Fiddler or the Burp Suite [54]
to generate har traces. Our code is freely available online[16] including the original har
traces, intermediate results and final results mentioned in the evaluation section.

3.8 Evaluation
We used WebSyn to identify vulnerabilities in three real world applications. These appli-
cations represent simple, medium and complex protocols and cover all three kinds of user
feedback. The cas protocol case study also provides a comparison with previous work on
manually writing its formal model. We rediscover two (previously found manually) vulnera-
bilities and discover four previously unknown vulnerabilities. We also include a fourth case
study to demonstrate the limitation of our system. We summarize the configuration and the
performance of each iteration in Table 3.3. We performed all the experiments on a desktop
machine with Intel i5 670 3.4GHz CPU and 8GB memory. Each of the case studies involve at
most 3 iterations until we find an “interesting” attack, and we present the user interactions in
details to demonstrate that the user interactions are actually very simple but effective. The
performance is moderate considering it is an offline analysis without interrupting the web
services. From the performance evaluation we also learn that the analyst’s simple feedback
can have significant impact on the size and shape of the search space.

NeedMyPassword.com

NeedMyPassword.com is an online password manager. Next, we present our experience of
testing it with WebSyn.

The initial iteration The analyst provides execution traces containing examples of system
behavior as input to WebSyn. For the initial iteration, we consider execution traces that
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Name Websites New Hints #Msgs #Types #vars #clauses Verif.
Time (s) Attack?

NMP nmp.com
None
Target(-)
Input(+)

8
8
8

16
16
22

1454
1454
1778

109187
109217
121922

7.20
9.53
8.16

Y(New)
N
Y

cas
regclass.edu
auth.edu

None
Target(-)
Target(+)
None

12
12
12
12

18
18
18
18

2022
2022
2022
1998

186261
186297
186297
170923

7.17
41.71
8.63
>7200

Y
Y
Y
N

GOV govtrack.us
facebook.com

None
Scope(-)
Target(-)
Target(+)

48
24
24
24

164
86
86
86

74750
16140
16140
16140

25312696
2293730
2293802
2293874

>7200
699.91
2399.77
149.15

N
Y(New)
Y(New)
Y

JIGO localhost
paypal.com None 32 56 23678 4338001 - -

Table 3.3: Configuration and performance of the case studies. The first column lists the
names of our case studies. The second column lists the servers involved. The third column
list the new hints provided by the analyst in each iteration. For each type of the hint, we
use “+” to indicate a positive answer, and “-” to indicate a negative answer. The fourth
column lists the number of message types in the synthesized model. The fifth column lists
the number of data types. The sixth column lists the number of primary variables of the
sat instances generated by the Alloy analyzer. The seventh column lists the number of
cnf clauses in the sat instances. The eighth column lists the verification time. We bound
the verification to take up to 7200 seconds. The last column lists whether we find any attack
traces. The protocol synthesizer terminates within 5 seconds in all the case studies.

open(needmypassword.com)
type(cssselect=#username,account1)
type(cssselect=#password,password1)
click(cssselector=input.submit)
type(cssselect=#recname,name1)
type(cssselect=#usr,usr1)
type(cssselect=#pwd,pwd1)
click(cssselect=.enter_password)

Figure 3.8: Recording of first user demonstration on NeedMyPassword.

demonstrate the process of logging in and adding a new record of username and password
to the database. See Figure 3.8 for the details of the execution trace.

The analyst also provides credentials for a second NeedMyPassword account (account2
and password2). The example generation component generates two traces using the two sets
of user accounts, and synthesizes an mdl model. Then, the verification component embeds
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the mdl model into the basic web model and the Alloy checker searches for vulnerabilities.
The verification component quickly returns with a login csrf attack.

The login page of NeedMyPassword.com does not include a csrf token, and as a result a
malicious server could make a benign user log in to NeedMyPassword using the attacker’s ac-
count (Figure 3.10). We were not aware of this vulnerability when we started this experiment.
Depending on how careful a user is while adding new credentials to the NeedMyPassword
database, this could be a severe vulnerability.

Figure 3.9: Synthesized protocol for NeedMyPassword.com.

Figure 3.10: The session fixation attack for NeedMyPassword.com
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Figure 3.11: The second csrf attack for NeedMyPassword.com

Negative target hint To continue with the search, we omit the login request (a target
hint) and rerun the synthesizer to generate a new vulnerability description. The new descrip-
tion essentially excludes all the attack traces in which the csrf requests are this particular
request. The model checker returns Safe, but the analyst can still inspect the protocol and
give more hints to refine the model.

Positive input hint The analyst can provide additional example execution traces; we
considered an additional input trace demonstrating the step of adding credentials to the
NeedMyPassword database. As a result of the extended input set, WebSyn synthesizes a
new, more-general protocol that represents a larger search space (See Figure 3.9 for the msc
of the synthesized protocol).

This time the verification component returns with a counterexample showing that there
is a csrf vulnerability in the password management step too (Figure 3.11). The csrf
vulnerability allows a malicious website to insert a new password record into a user’s Need-
MyPassword database. We also generated traces for editing and deleting existing password
records and found that they are all vulnerable to the same kind of csrf attacks.

We note that previous work manually identified the second csrf vulnerability that we
found [48]. This demonstrates the power of our approach; not only was WebSyn able to
rediscover known vulnerabilities from system execution traces, but its systematic analysis
was also able to identify new vulnerabilities in protocols that have been manually vetted.

Accuracy We manually analyzed the website in order to evaluate the accuracy of our
synthesized model. We found that the synthesized model failed to recognized that the
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account credentials are shared between the user and the server. We also found that the cookie
c1 is actually irrelevant to the protocol and it is OK to not include it in the attack, while
the synthesizer defaults to conservatively generate an invariant that enforce it to appear in
every subsequent http requests. Neither of them affected the correctness of the verification
result.

The cas Protocol

Next, we analyze the Central Authentication Service protocol (cas)[51]. The cas protocol
was originally developed at Yale University and at least 80 universities currently deploy
it[44]. Akhawe et al. manually wrote down the protocol model and identified a session
fixation attack (later fixed) [2].

To further validate the fidelity of WebSyn, we attempted to recreate and automatically
identify this vulnerability. We captured example traces at our university by logging into a
class registration system (twice) using the cas protocol. We manually removed the fix to
the Akhawe et al. vulnerability by deleting relevant nonces. Our system is able to synthesize
two protocols from these two sets of traces. Figure 3.12 shows the vulnerable protocol.

Figure 3.12: The vulnerable cas protocol.
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The initial iteration We first embed the vulnerable protocol into our base model and
check for attack traces. The initial attack trace returned by the model checker is a valid csrf
attack that reuses the attacker’s session id in the victim’s client (Figure 3.13. Interestingly,
this attack that was missed by prior manual analysis. Similar to the NeedMyPassword.com
case study, we provide a negative target hint to exclude this attack, and continue the search
for more attacks.

Figure 3.13: The first attack trace for the cas protocol

Negative target hint The verification on the vulnerable protocol with the modified attack
condition returns an attack trace as shown in Figure 3.14. The attack trace basically says
that the attack can authenticate with the authentication server first and get a ticket. Instead
of redirecting to Req_check in the attacker’s browser, the attacker sends the link to a benign
user who ends up logging in as the attacker on the user’s browser. If the user is not aware of
this, he or she could end up registering classes or paying tuition for the attacker. This finding
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Figure 3.14: The second attack trace for the cas protocol

validates the performance of WebSyn. Recall that the vulnerability was previously found
using significant manual analysis. Furthermore, the manual analysis missed the vulnerability
discovered in the initial iteration.

Positive target hint To show the impact of analyst feedback on verification runtime, we
tried using positive target hints instead the negative one above. We explicitly tell the model
checker to find attack traces with the vulnerable message. After this change, the verification
time was reduced from 41.71 seconds to 8.63 seconds. Positive hints like these could be
feasible for a analyst who is familiar with the protocol and the messages affecting critical
resources or access.

Verification on the fixed protocol We run the model checker with no hints on the
fixed protocol. The verification lasts more than 2 hours, which is the timeout we set for
all experiments. Due to the nature of sat solvers we use, we do experience a significant
increase in solver time in the absence of attacks. But the analyst always has the option of
terminating the search and providing more hints.

Accuracy We compared our automatically synthesized model with the manually written
model in Figure 4 of Akhawe et al.[2]. The synthesized mdl model contains two unnecessary
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data fields, i.e., c2 and c3. But similar to the previous case study, the verification phase is
still able to find the vulnerability despite the noise.

Govtrack.us and Facebook Connect

Govtrack.us is a website for easily tracking the activities of the United States congress. It
provides some social features where the user can associate his or her govtrack.us account
with a Facebook account, and also login with Facebook accounts.

In this case study, we use the Facebook Connect api to associate govtrack.us accounts
with Facebook accounts. The input execution trace includes logging into govtrack.us, using
the “connect with Facebook” feature in govtrack.us, and logging into Facebook.

The initial iteration At first, the synthesizer generates a protocol with 48 http messages,
which is too large for the model checker, so the verification times out. When visualized as a
message sequence chart, the analyst can easily see a lot of irrelevant xhr calls1 when loading
the Facebook homepage.

Negative scope hint Since these are irrelevant to the account association functionality of
govtrack.us, the analyst picks two of these urls, and tell the synthesizer that they are out
of scope. The synthesizer generalizes these two urls into a regular expression and excludes
all similar messages. As a result, the protocol synthesized from the second iteration contains
only 24 messages.

In the second iteration, our system successfully synthesized an attack trace, which says
that the malicious server can initiate the association process between govtrack.us and Face-
book when the user visits the malicious server. To exploit this vulnerability, the attacker
would need the Facebook user to click the “Allow” button.

Negative target hint To continue searching for additional attacks, the analyst omits
the association initiation request from the scope. The system returns another synthesized
attack, which says that the malicious server can initiate the account association request to
Facebook using the attacker’s browser, and submit the final association request to govtrack
in the benign user’s browser.

The result of this attack is that the benign user’s govtrack account binds with the at-
tacker’s Facebook account, and the attacker can login to the benign user’s govtrack account
using its “login with Facebook” feature.

Positive target hint We perform the same substitution from negative target hint to a
positive one, and witness a significant reduction of the verification time from almost 40
minutes to 149.15 seconds. Even without such positive target hints, recall that our analysis
is offline, and does not interrupt the web service.

1https://en.wikipedia.org/wiki/XMLHttpRequest

https://en.wikipedia.org/wiki/XMLHttpRequest
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Both the attacks discovered in this case study are new, previously-unknown vulnerabili-
ties, suggesting that WebSyn can be a useful tool for protocol analysis. We have reported
the vulnerability to the developers of govtrack. They have acknowledged the vulnerability
and promised to fix it promptly.

Jigoshop and Paypal Payments

In this section, we introduce a case study where our current implementation fails to synthesize
a useful specification for identifying logic vulnerabilities like the ones in Wang et al.[73].
Jigoshop2 is an online e-commerce application based on Wordpress. Its checkout process
supports third-party payment systems such as the Pay-by-Paypal button.

We recorded two traces using the same Jigoshop and Paypal account but different items
to buy. According to manual inspection of the traces, we suspect that the confirmation
from Paypal to Jigoshop is not properly validated. The attacker could intercept the charge
request from Jigoshop to Paypal and change the amount of the charge to a smaller value. If
the Jigoshop failed to verify that the amount charged by Paypal is the same as the amount
requested, the attacker could buy items with a much cheaper price.

However, we could not find any such vulnerabilities from the synthesized specification.
This is because the security policy in our current implementation is not useful in this case,
there is no benign client involved, no redirection is needed in order to launch such attacks, and
a successful attack is not about submitting a valid charge request, but submitting a charge
request with less amount. Writing such a security policy would require an understanding
of the application-specific semantics of the data types, which can not be generalized. For
example, it is very hard to automatically recognize the difference between changing the price
of the item and changing the serial number of the item, without incorporating the domain
knowledge about e-commerce applications.

3.9 Discussion
In this section, we present a discussion of some properties of our system and the future work.

System Limitations

Our implementation does have a number of limitations. First, our protocol synthesizer as-
sumes a particular server logic detailed in Section 3.2. If the server does not follow this
high-level model, we will not be able to synthesize a meaningful model. Second, our syn-
thesizer currently only infer invariants from the traces’ value differences. We simply ignore
the http messages that only appear in one trace. Finally, due to the our server logic
assumptions and our current constraints on the attack traces, our system only synthesizes
csrf attacks on session integrity. However, there is a large variety of ways to launch such

2https://www.jigoshop.com/

https://www.jigoshop.com/
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attacks depending on the application specific logic, and one possible future work is to ex-
tend both the synthesizer and the security specification in order to incorporate other types
of attacks. Our main contribution is in the general synthesis-based approach—the starting
security specification to use is a separate problem.

System Extensibility

In order to support detecting other kinds of vulnerabilities, WebSyn needs to be extended
in order to recognize relevant execution differences and synthesize more complex invariants.
More specifically, we have looked into open redirect vulnerabilities. An open redirect vul-
nerability exists when an application takes a url as a parameter and redirects a user to the
parameter value without proper validation. For example, in the cas protocol case study
(Section 3.12), Reg_login contains the url of Req_check, and the auth.edu server will
redirect the user to this url with the ticket attached. If the auth.edu server did not vali-
date this redirection url and just blindly redirected the user to any url it received, it would
be an open redirect vulnerability in auth.edu. An attacker could leverage this vulnerability
to steal secret information such as the value of the ticket, or bypass referrer-based request
validation. To support modeling such semantics, the analyst would need to introduce a new
value difference in the demonstration traces, i.e., using a server data type instead of the
constant regclass.edu to perform the cas protocol with auth.edu. However, this poses a
challenge to our data propagation algorithm because the new server’s encoding of data could
be very different from regclass.edu, and it is much harder to extract equivalent fields if
they are not embeded in the messages in a similar way. We have recorded such a set of
traces, and ran our current implementation unmodified on them, the propagation algorithm
was able to extract the same set of data types for auth.edu, but failed to apply propaga-
tion functions other than pResp and pReq on other servers’ messages, due to the significant
structural difference.

Input traces and Errors

It is possible that the example execution traces do not fully specify the system behavior
(contain ambiguity). To increase precision under this scenario, the analyst can provide
additional example traces, as we have shown in our first case study.

It may also be possible that the analyst’s feedback is noisy, and contains some hints that
are incorrect or inconsistent. In this case, the synthesizer will fail to generate a model that
excludes this trace. In future work, we plan to investigate advanced inductive algorithms
such as version space algebra [47], as well as machine learning techniques [52], to add a
probabilistic strategy in the synthesis. In other words, models that only fit a subset of the
example traces can still be assigned a non-zero probability.

Search Space Exploration Unlike the classic Abstract-Check-Refine paradigm, the ex-
ploration performed by WebSyn is distinct from that of most other verification tools. Web-
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Figure 3.15: Conceptual view of how WebSyn explores a protocol with a comparison to
counterexample guided refinement.

Syn employs a Synthesize-Check-Refine strategy. Figure 3.15 illustrates the comparison of
the two in terms of the shape change of the search space. The cloud represents traces of a
protocol implementation and the grid represents a protocol model. In a classic refinement
process, an overapproximation of a system is constructed, analyzed to find a spurious error,
which is then eliminated in the refinement step. In WebSyn, a protocol model is synthesized
as a program. The model is only as good as the examples (E) provided by the analyst and
may neither over- nor under-approximate the search space. Based on analyst feedback, this
model may either expand to include more behavior, or shrink to eliminate spurious behavior.
The two operations are independent, and the analyst may trigger both, leading to a novel,
interactive exploration strategy that zooms in on relevant protocol behavior.

3.10 Related Work
Our work is motivated in part by Wang et al.’s series of mostly manual security analy-
sis on cashier-as-a-service based web stores[73], single-sign-on web services[71] and protocol
sdks[72]. The latter also demonstrates a systematic process of the interaction between the
security analyst and a formal analysis tool. Their approach still requires a lot of manual
efforts and the extent of manual efforts is neither well-defined nor minimized. In our ap-
proach, the iterative vulnerability discovery process is semi-automated, and the core analysis
is formally encoded as a synthesis problem.

AuthScan[4] is a system for automatic extraction and checking of web authentication pro-
tocols. Although WebSyn and AuthScan share similar goals, our approach is very different.
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AuthScan relies on symbolic execution and fuzz testing and AuthScan’s tml language aims
to provide a useful intermediate language for spi-calculus descriptions. In contrast, our ap-
proach is centered around the design of a high-level dsl to enable the interaction between
human and computer. Instead of using low-level constructs such as “send/receive” as in tml,
WebSyn’s mdl directly captures the semantics of the web in the language constructs such
as cookies and http redirections.

Pellegrino and Balzarotti[56] propose a blackbox technique that identifies a number of
behavioral patterns from network traces and generates test cases. Our approach differs from
their approach in the constructed model, the desired security goal, and the algorithm to
explore the search space. In their work, the model is a graph constructed from a collection
of network traces. Three patterns are defined and searched on the graph, which are called
singleton nodes, multi-step operations and waypoints. For each concrete subgraph matching
these patterns, their system generate test cases that break these patterns, such as repeatedly
visiting singleton nodes, breaking multi-step operations, or detouring the way points. These
alternations to the patterns corresponds to a set of predefined logic flaws. A large amount of
such test cases are generated, which includes a significant portion of false positives, and they
are verified dynamically with a testing oracle. In our approach, the synthesize specification
corresponds to a single path on their graph model, and we zoom into the nodes to synthesize
the invariant for both the same data type across different messages and the co-appearance of
two data types within the same message. Our security policy concerns csrf vulnerabilities.
The search for such vulnerabilities are directly performed on the synthesized model, which
allows us to only produce a much smaller amount of counter-examples with lower false
positives.

Invariant detectors like Daikon [29] inductively generate invariants from traces. The
basic constructs of the invariants are low-level operations such as arithmetic or boolean
operations, while the invariants in our dsl have additional semantics inherited from the
base web model. Our approach is similar to the above work in that we also use an inductive
approach to generate specifications. The difference in the choices of the abstraction level
reflects the difference of vulnerabilities each approach focuses on, and different efficiency
trade-offs.

Lie et al. [49] proposed a method to extract specifications automatically from program
code using program slicing. Aizatulin et al. [1] proposed model extraction using symbolic
execution. slam[6] and cegar[15] use predicate abstraction to construct models of program,
and refine the model with counterexamples. All these proposals require access to the whole
system and do not easily apply to distributed web protocols.

At the core of our system is the synthesis of the protocol description in a dsl. Pro-
gram synthesis aims to develop technologies that can translate expressions of user intent
into programs. For example, researchers have recently proposed techniques to automatically
synthesize programs using input-output examples [36, 39], system predicates over input-
output [64, 38], program template structure and constraints [65], natural language [18], and
user demonstration [47]. Gulwani et al. provide a comprehensive overview of such tech-
niques [37]. We present how modern inductive synthesis techniques can provide a framework
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to automatically generate and model-check specifications of web protocols. Automatic gen-
eration of protocol specifications helps ease testing and analysis of these protocols. Previous
work [2] enables automatic security analysis of specifications; our work focuses on automatic
generation of these specifications.
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Chapter 4

Conclusion

In the first part of the dissertation, we have presented a new approach to specifying and
detecting malicious behavior in Android applications. Our conceptual contribution is the
Permission Event Graph (peg) a new, domain-specific program abstraction, which captures
the context in which events fire, and the context-sensitive effect of event handlers. We
devised a new static analysis procedure for constructing pegs from Dalvik bytecode, and
our implementation models of the Android event-handling mechanism and several apis.
Our system Pegasus can check security specifications that characterize interactions between
user-driven events and application actions. Given the rapidly increasing popularity and
sophisticated functionality of mobile applications, we believe that analysis systems such as
Pegasus will improve the capabilities of security analysts.

Our work leads to several questions. One question is to incorporate existing techniques
to improve the precision and efficiency of analyses used to construct and analyze pegs. A
particularly interesting question is to determine if counterexample-driven refinement can be
used to improve both verification and rewriting. A second problem is to identify applications
pegs in other contexts, such as to measure the complexity and usability of user-interfaces,
and statically provided permission information. Answering such questions is left as future
work.

In the second part of the dissertation, we presented WebSyn, an interactive system
that enables modeling and verification of web protocol implementations without access to
the source code. WebSyn operates in the multi-lingual, black box environment of web
development by using execution traces and analyst feedback to construct and refine protocol
models. Our key insight is to leverage modern program synthesis techniques in inferring the
protocol models. Our system eases the burden of manually translating the implementations
of web applications into protocol models. Using several proof-of-concept case studies, we
have demonstrated how WebSyn can discover both previously known vulnerabilities as well
as new vulnerabilities from real world applications. Our research is the first step to explore
the benefits of program synthesis and domain languages for enhancing application security.
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Appendix A

Application, Action and Event Details

Table A.1 lists the sample applications used to evaluate Pegasus. Table A.2 lists the security
actions and events used in the specifications.
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Appendix B

Full mdl Syntax Definition

Figure B.1 lists the full syntax of the mdl language.

PROTOCOL := SERVERS INIT MESSAGES INVARIANTS
SERVERS := servers: s1,s2,...;

INIT := init: s1 knows t1,t2,...; s2 knows t2,t3,...; ...;
MESSAGES := messages: MSGDEF MSGDEF ...

MSGDEF := request|response (server=s1, type=mt1,
fields=(f1 in setcookie|content|urlparam|locparam|cookie,
f2 in ...));

INVARIANTS := invariants: INVDEF INVDEF ...
INVDEF := ISA | FORALL

ISA := mt1.f1 isa t1;
FORALL := forall m1:mt1, m2:mt2 ... { BOOLEXP }

BOOLEXP := m1.f1 == m2.f3 | BOOLEXP BOP BOOLEXP
BOP := ∧ | <=>

Figure B.1: The syntax of the mdl language.
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