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Abstract

Robust Optimization and Data Approximation in Machine Learning

by

Gia Vinh Anh Pham

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Laurent El Ghaoui, Chair

Modern learning problems in nature language processing, computer vision, computational

biology, etc. often involve large-scale datasets with millions of samples and/or millions of

features, thus are challenging to solve. Simply replacing the original data with a simpler

approximation such as a sparse matrix or a low-rank matrix does allow a dramatic reduction

in the computational effort required to solve the problem, however some information of

the original data will be lost during the approximation process. In some cases, the solution

obtained by directly solving the learning problem with approximated data might be infeasible

for the original problem or might have undesired properties. In this thesis, we present a new

approach that utilizes data approximation techniques and takes into account, via robust

optimization the error made during the approximation process in order to obtain learning

algorithms that could solve large-scale learning problems efficiently while preserving the

learning quality.

In the first part of this thesis, we give a brief review of robust optimization

and its appearance in machine learning literature. In the second part of this the-
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sis, we examine two data approximation techniques, namely data thresholding and

low-rank approximation, and then discuss their connection to robust optimization.

Professor Laurent El Ghaoui
Dissertation Committee Chair
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Chapter 1

Introduction

Modern supervised learning algorithms such as support vector machine or logistic regres-

sion have become popular tools and widely used in many areas: natural language processing,

computer vision, data mining, bioinformatics, etc.. In most of real-world learning problems,

for instance text classification, the number of features can be very large - hundreds of thou-

sands or millions, so is the number of training samples; thus, we have to face the daunting

task of storing and operating on matrices with thousands to millions rows and columns. It

is expensive to store the large-scale data in the memory and in many cases the data cannot

even be loaded into the memory. More importantly, these learning algorithms often require

us to solve a large convex optimization problem in which under large-scale setting, might be

impossible at times.

In many machine learning applications, the problem data involved is closed to one having

a simple structure (we will see in more details in Chapter 3 and 4), for example the input

data could be closed to a sparse matrix or a low-rank matrix, etc.. If the data matrix has

exactly simple structure then it is often possible to exploit that structure to decrease the
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computational time and the memory needed to solve the problem. What if, instead, the data

matrix is only approximately simple, and we have at our disposal the simple approximation?

In this dissertation, we will introduce a new approach that uses data approximation

under robust optimization scheme to deal with large-scale learning problems. The main idea

is that instead of ignoring the error made by approximating the original data with a simpler

structure, we consider such error as some sort of artificially introduced data uncertainty 1

and then use robust optimization to obtain modified learning algorithms that are capable

of handling the approximation error even in worst case scenario. We show that the savings

obtained using data approximation still hold for the robust counterpart problem1. In this

sense, our approach takes advantage of the simpler problem structure on the computational

level; in addition it allows to control the noise. The proposed approach has both advantage of

having memory saving and computational speedups as well as having reliable performance.

The thesis is organized as follows: we first describe robust optimization and its important

concepts such as data uncertainty and robust counterpart problem in Chapter 2. We will

also briefly review robust optimization in machine learning literature in Chapter 2. We then

introduce data thresholding technique for large-scale sparse linear classification in Chapter 3.

In Chapter 4, we will introduce an efficient and scalable robust low-rank model for LASSO

problem. We draw conclusions and point out some future research directions in Chapter 5.

1this concept will be described in details in Chapter 2
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Chapter 2

Robust Optimization

2.1 General optimization problem

In general mathematical optimization, we often assume that the input data is precisely

known, and we seek to optimize an objective function over a set of decision variables as

following:

min
x

f0(x, u0)

subject to fi(x, ui) ≤ 0, i = 1, . . . ,m
(2.1.1)

where x ∈ Rd is a vector of decision variables and {ui}mi=1 are known input parameters for

functions {fi}mi=1.

Many machine learning problems require us to solve an optimization problem - usually

a convex optimization problem of the form (2.1.1). Following are some of such problems in

which we will look at in the latter chapters of this thesis:

(a) Linear classification: given a set of n training examples {(xi, yi)}ni=1 where each

input xi ∈ Rd is a d-dimensional vector and the output yi ∈ {−1,+1} is a binary

variable, the two-class linear classification problem aims to find a classification rule
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from training data so that given new input x ∈ Rd, we can “optimally” assign a class

label y ∈ {−1,+1} to x, for example y = sign(wTx+b) for some weight vector w ∈ Rd

and scalar b ∈ R. In general, the linear classification problem seeks for the optimal

solution of the following optimization problem:

min
w∈Rd,b∈R

1

n

n∑
i=1

f
(
yi(w

Txi + b)
)

+R(w)

where f : R → R+ is a non-negative convex function, so called the loss function and

R : Rd → R+ is the regularization function.

• In case of Support Vector Machines (SVM), the loss functions is hinge loss:

f(z) = [1− z]+ (we define [z]+ := max(0, z))

min
w∈Rd,b∈R

1

n

n∑
i=1

[1− (yi(w
Txi + b)]+ +R(w)

• For logistic regression, the loss function is logistic loss: f(z) = log(1 + e−z).

min
w∈Rd,b∈R

1

n

n∑
i=1

log
(
1 + exp(−yi(wTxi + b))

)
+R(w)

The regularization term is widely used to seeks a trade-off between fitting the observa-

tions and reducing the model complexity, for example: l1-regularization R(w) = λ‖w‖1,

or l2-regularization R(w) = λ‖w‖2.

(b) Least squares regression and its variations: given a response vector y ∈ Rn and

data matrix X ∈ Rd×n (each column of X corresponds to a data sample in Rd), the

least squares regression problem is to find a weight vector w ∈ Rd so that the l2 norm

of the residual y−XTw is minimized, i.e. solving the following optimization problem:

min
w
‖y −XTw‖2

Since minimizing the squared error can lead to sensitive solutions (Golub and Van Loan

(1996)), variations of least squares problem that use regularization methods such as
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Tikhonov regularization (Tikhonov and Arsenin (1977)) - using l2 norm regularization,

and LASSO - Least Absolute Shrinkage and Selection Operator (Tibshirani (1996);

Efron et al. (2004)) - using l1 norm regularization. Both methods provide some level

of regularity to the solution. LASSO is also known for selecting sparse solutions, i.e.

having few entries that are non-zero, and therefore identifying the features on the data

matrix X that are useful to predict the response vector y.

(c) More general supervised learning problems: linear classification and regression

problems, amongst many others, can be generalized to solving the following optimiza-

tion problem:

min
v∈R,w∈C

f(ATw + cv) (2.1.2)

where the loss function f : Rn → R+ is convex, the data matrix A ∈ Rd×n and vector

c ∈ Rn are given, C ⊆ Rd is a convex set that constraining the decision variable w.

This formulation covers well-known problems, for example:

• By choosing f(z) :=
∑n

i=1(1 − zi)+, A := [y1x1, . . . , ynxn], c := y, v := b and

the constraint set C := {w : ‖w‖2 ≤ λ} we obtained the (constrained) l2-SVM

problem:

min
‖β‖2≤λ

n∑
i=1

[1− yi(xTi w + b)]+

• By choosing f(z) := ‖y − z‖2, c := 0, A := [x1, . . . , xn] and the constrain set

C := {w ∈ Rd : ‖w‖1 ≤ λ} we obtained the LASSO problem:

min
‖w‖1≤λ

‖y −XTw‖2
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2.2 Robust optimization and Data uncertainty

When a real-world application is formulated as a mathematical optimization problem,

more often than not the problem data is not precisely known, but is subject to some sort of

uncertainty due to many factors - for example:

• prediction errors : occur when we do not have the data at the time the problem is

solved and we need to predict their values.

• measurement errors : occur when we cannot record the data exactly due to limitation

of measurement devices.

The data uncertainty can affect either the feasibility of a solution to the optimization

problem, or it could affect the optimality of a solution, or both. Robust optimization pro-

vides a novel and systematic approach to deal with problems involving data uncertainty by

generating a robust solution that is immunized against the effect of data uncertainty.

When data uncertainty affects the feasibility of a solution (i.e. the constraints), robust

optimization seeks to obtain a solution that is feasible for any possible realization of the

unknown parameters; and when data uncertainty affects the optimality of a solution (i.e.

the objective function), robust optimization seeks to obtain a solution that optimizes the

worst case scenario. In particular, suppose that the parameters u = (u0, . . . , um) varies

in some uncertainty set U that characterizes the unknown parameters u, the robust

counterpart problem solves:

min
x

max
u∈U

f0(x, u0)

subject to ∀u ∈ U : fi(x, ui) ≤ 0, i = 1, . . . ,m.
(2.2.1)
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The goal of (2.2.1) is to compute the optimal solution that minimizes the worst case

objective function amongst all those solutions which are feasible for all realizations of the

disturbances that affects the parameters u within the uncertainty set U .

Being a conservative (worst-case oriented) methodology, robust optimization is often

useful when the optimization problems have hard constraints that must be satisfied no matter

what, or the objective function/optimal solutions are highly sensitive to perturbations, or we

cannot afford low probability high-magnitude risks (for example in aerospace design, nuclear

plant design, etc.).

2.2.1 Robust optimization vs. Sensitivity analysis

Sensitivity analysis is another traditional method of dealing with data uncertainty. How-

ever, unlike robust optimization that seeks for an uncertainty-immunized solution under

worst-case scenario to an optimization problem involving uncertainty data, sensitivity anal-

ysis aims at analyzing the goodness of a solution when there are small perturbations in the

underlying problem data. It first solves the problem with fixed values of the parameters

and then see how the optimal solution is affected by small perturbations. Such post-mortem

analysis is not helpful for computing the solutions that are robust to data perturbation.

2.2.2 Robust optimization vs. Stochastic optimization

In stochastic optimization, the data uncertainty are assumed to be random and the

feasibility of a solution is expressed using chance constraints. Suppose that we know in

advance the distribution of the input parameters, the corresponding stochastic optimization
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is:

min
x

t

subject to Pu0∼P0 [f0(x, u0) ≤ t] ≥ 1− ε0,

and Pui∼Pi
[fi(x, ui) ≤ 0] ≥ 1− εi, i = 1, . . . ,m

(2.2.2)

where εi � 1, i = 0, . . . ,m are given tolerances and Pi is the distribution of the input

parameter ui, i = 0, . . . ,m.

Although the above model (2.2.2) is powerful, there are some associated fundamental

difficulties. First of all, it is difficult to obtain the actual distributions of the uncertain input

parameters, and sometimes it is hard to interpret these distributions as well. Furthermore,

even if we can obtain the probabilistic distributions, it is still computationally challenging

to check the feasibility of the chance constraints, even more challenging to solve the opti-

mization problem. In many cases, the chance constraints can destroy convexity and make

the stochastic optimization problem become computationally intractable.

2.2.3 Example: linear programming problem

One could model the uncertainty set as flexibly as he/she wants, either using probablistic

data model or uncertainty-but-bounded data model. To illustrate the concept of robust

optimization and data uncertainty, we consider a simple linear programming problem:

min
x∈Rd

cTx

subject to aix ≤ bi, i = 1, . . . , n

Below are some examples of how we could model data uncertainty and how we could

derive the robust counterpart problems:

(a) data uncertainty in objective function

8



Suppose that the cost vector c ∈ Rd is uncertain but lies in a ball centered at a known

vector c̄ ∈ Rd and radius R > 0: B(c̄, λ) := {c : ‖c− c̄‖2 ≤ R}, the robust counterpart

problem writes:

min
x

max
‖c−c̄‖2≤R

cTx

subject to aix ≤ bi, i = 1, . . . , n

Since max
‖c−c̄‖2≤R

cTx = c̄Tx+ max
‖z‖2≤R

zTx = c̄Tx+R‖x‖2, the robust counterpart problem

is thus:

min
x

c̄Tx+R‖x‖2

subject to aix ≤ bi, i = 1, . . . , n

(b) data uncertainty in constraints - decoupled

Suppose that the data uncertainty occurs in the constraints, and the uncertainty for

vectors ai are decoupled, each vector ai could be perturbed in a l2 fixed ball with a

known center and radius : Ui := {ai : ai = āi + δi, ‖δi‖2 ≤ Ri}, i = 1, . . . , n, the robust

counterpart problem writes:

min
x

cTx

subject to (āi + δi)x ≤ bi,∀δi : ‖δi‖2 ≤ Ri, i = 1, . . . , n

Since (āi + δi)
Tx ≤ bi, ∀δi : ‖δi‖2 ≤ Ri if and only if max‖δi‖2≤Ri

(āi + δi)
Tx ≤ bi , which

is equivalent to āTi x+Ri‖x‖2 ≤ bi, the robust counterpart problem is thus:

min
x

cTx

subject to āix+Ri‖x‖2 ≤ bi, i = 1, . . . , n

(c) data uncertainty in constraints - coupled

Suppose that the data uncertainty occurs in the constraints, and the uncertainty for

vectors ai are coupled, given as: U := {A : A = Ā + ∆, ‖∆‖F ≤ R} where A ∈ Rn×d

9



is the matrix with rows {ai}ni=1. The robust counterpart problem writes:

min
x

cTx

subject to (Ā+ ∆)x ≤ b,∀∆ ∈ Rn×d : ‖∆‖F ≤ R

Since (Ā + ∆)x ≤ b,∀∆ ∈ Rn×d : ‖∆‖F ≤ R if and only if max‖∆‖F≤R(Ā + ∆)x ≤ b,

which is equivalent to Āx+R‖x‖21 ≤ b, the robust counterpart problem is thus:

min
x

cTx

subject to Āx+R‖x‖21 ≤ b

(d) probabilistic data uncertainty model

For simplicity, we consider the case that n = 1, i.e. A := aT ∈ Rd×1, b ∈ R. Suppose

that our data (a, b) varies in the uncertainty set

U :=

{
[aδ, bδ] = [a(0), b(0)] +

K∑
k=1

δk[a
(k), b(k)] : δ ∼ P

}

where a(k), b(k), k = 0, . . . , K are known and the distribution P is also known. The

robust counterpart problem writes:

min
x

cTx

subject to Pδ∼P
[
aTδ x ≤ bδ

]
≥ 1− ε

Dealing with such probabilistic model is difficult, very often the problem is severely

computationally intractable. In few cases, for example when P is Gaussian distribution,

i.e. δ ∼ N (µ,Σ) and ε < 1/2, the problem is tractable. Indeed, we observe that

zx = aTδ x− bδ = [a(0)]Tx+
K∑
k=1

δk[a
(k)]Tx− b(0) −

K∑
k=1

δkb
(k)

is a Gaussian random variable with the expectation E[zx] = αT [x; 1] and variable

var[zx] = [x; 1]TQTQ[x; 1] where α and Q are vector and matrix that can be computed

from the data {[a(k), b(k)]}, µ,Σ. Via some derivations, noting that ε ∈ [0, 1/2], we
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can reduce the probabilistic constraint is P[zx ≤ 0] ≥ 1 − ε to the second-order cone

constraint αT [x; 1] + Cε‖Q[x; 1]‖2 ≤ 0 for some constant Cε. The robust counterpart

problem is thus:

min
x

cTx

subject to αT [x; 1] + Cε‖Q[x; 1]‖2 ≤ 0

Due to the complexity and intractability of probabilistic data uncertainty model, in

this thesis we will only focus on uncertain-but-bounded models.

2.3 Robust optimization in Machine learning

In recent years, there have been a number of works on the idea of using robust opti-

mization to deal with data uncertainty that arises in many machine learning models. These

works essentially consider learning problems in which training samples are assumed to be

uncertain - but restricted in some bounded sets, and then proposes robustified learning algo-

rithms that are modified versions of the nominal learning algorithms to guarantee immunity

to data pertubations.

2.3.1 Data uncertainty models

Bhattacharyya (2004); Bhattachryya et al. (2003) investigated on linear classification

problem (SVM) assuming an ellipsoidal model of uncertainty in which each data sample xi

is uncertain but lies in a known ellipsoid B(x̄i,Σi, γi) := {x : (x − x̄i)TΣ−1(x − x̄i) ≤ γ2
i }.

The corresponding robustified learning algorithm is then formulated as an SOCP (Second

Order Cone Programming), which can be solved efficiently:
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min
w,b,ξ

n∑
i=1

ξi

subject to yi(w
Txi + b) ≥ −ξi + γi‖Σ1/2

i w‖2

‖w‖2 ≤ A

ξi ≥ 0,∀i = 1, . . . , n

Trafalis and Gilbert (2007) considered lp-norm uncertainty sets for SVM problem, in

which each data sample xi is assumed to be in an lp-ball Bp(x̄i, ηi) := {x : ‖x− x̄i‖p ≤ ηi}.

The resulting robust counterpart optimization problem can be transformed into an SOCP

when p = 2 and or simply a linear programming problem when p = 1 or p =∞.

Going further, Shivaswamy et al. (2006) considered linear classification and linear regres-

sion problems under probabilistic data uncertain model, assuming that each data sample

xi is a random variable picked from a family of distributions which have a known mean

and covariance. The authors also proposed SOCP formulations that robustify the standard

learning algorithms and showed that these formulations outperform the imputation based

classifiers and regression functions when applying to the missing variable problem.

Globerson and Roweis (2006) introduced a robust optiomization-inspired method for

learning SVM classifiers under a worst case scenario of feature deletion at test time. In

particular, the data uncertainty model assumes that up to K features may be deleted/missing

from each data vector and then compute the worst case objective function. The authors

considered the following nominal problem (bias term is not introduced explicitly, and could

be included by adding a constant feature):

min
w

1

2
‖w‖2

2 + C

n∑
i=1

[1− yiwTxi]+

Under worst case scenario when up to K features may be deleted from each data vector, the
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worst case hinge loss [1−yowTxi]+ of sample i can be derived to be [1−yiwTxi+si]+, where

si = max
αi∈Rd

yiw
T (xi ◦ αi)

s.t. 0 ≤ αi ≤ 1∑
j αij = K

where ◦ denotes point-wise multiplication. The resulting robust counterpart problem can be

written as the following quadratic problem and can be solved efficiently:

min
w,t,z,v

1

2
‖w‖2

2 + C
n∑
i=1

[1− yiwTxi + ti]+

subject to ti ≥ Kzi +
∑

j vij

vi ≥ 0

zi + vi ≥ yixi ◦ w

Data uncertainty is not only modeled for data points in the feature space but also for

data labels. Caramanis and Mannor (2008) studied two types of adversarial disturbance in

which the labels are corrupted: disturbance in the labels of a certain fraction of the data,

and disturbance that affects the position of the data points. The authors proposed a general

optimization-theoretic algorithmic framework for finding a classifier under these disturbances

and provided distribution-dependent bounds on the amount of error as a function of the noise

level for the two models.

A comprehensive study of other data uncertainty models for machine learning problems

can also be found in (Ben-Tal et al. (2009)).

2.3.2 Connection to regularization

Robust optimization and regularization in machine learning are strongly related, and in

some cases are equivalent. Early work by Ghaoui and Lebret (1997), Anthony and Bartlett
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(1999) showed that structured robust solutions to least squares problems with uncertain data

under Frobenius norm can be interpreted as a Tikhonov (l2) regularization procedures:

Theorem 1 The following robust optimization formulation of the lease squares problem in

which the data uncertainty set is described by U = {U ∈ Rd×n : ‖U‖F ≤ λ}:

min
β∈Rd

max
U∈U
‖y − (X + U)Tβ‖2

is equivalent to Tikonov-regularized regression problem:

min
β∈Rd

‖y −Xβ‖2 + λ‖β‖2

Recently, Xu et al. (2011) created a precise connection between robustness and regularized

Support Vector Machine via notions of sublinear aggregated uncertainty set, which defined

as follows:

Definition 1 U0 ⊆ Rn is called Atomic Uncertainty Set if

(i) 0 ∈ U0

(ii) ∀w0 ∈ Rn : sup
u∈U0

wT0 u = sup
u′∈U0

wT0 u
′ < +∞

Definition 2 U ⊆ Rn×m is called Sublinear Aggregated Uncertainty Set of U0, if U− ⊆ U ⊆

U+ where

U− =
m⋃
k=1

U−k where U−k := {(u1, . . . , um)|uk ∈ U0;ui 6=k = 0}

U+ =

{
(α1u1, . . . , αmum)|

m∑
i=1

αi = 1, αi ≥ 0, ui ∈ U0, i = 1, . . . ,m

}
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Theorem 2 Xu et al. (2011) Assume {xi, yi}ni=1 are non-separable and U is a sublinear

aggregated uncertainty set then the following problems are equivalent:

(P1) min
w,b

max
(u1,...,un)∈U

{
R(w, b) +

n∑
i=1

[1− yi(wT (xi + ui) + b)]+

}

(P2) min
w,b

{
R(w, b) +

n∑
i=1

[1− yi(wTxi + b)]+ + max
u∈U0

wTu

}

An immediate corollary of Theorem 2 shows the equivalent of robust formulation and norm-

regularized SVM:

Corollary 3 Assume {xi, yi}ni=1 are non-separable then the following problems are equiva-

lent:

(P1) min
w,b

max
(u1,...,un):

∑m
i=1 ‖ui‖∗≤λ

n∑
i=1

[1− yi(wT (xi + ui) + b)]+

(P2) λ‖w‖+ min
w,b

n∑
i=1

[1− yi(wTxi + b)]+

where ‖.‖∗ is dual-norm of ‖.‖.

2.4 Robust optimization and Data approximation

2.4.1 Data approximation

Modern supervised learning algorithms such as support vector machine (SVM) or logistic

regression have become popular tools for classification problems. Many real-life problems,

for instance text classification can be formulated as SVM or logistic regression problem.

However, for such problems the number of features can be very large - hundreds of thousands,

so is the number of training data, and solving such large scale problems often requires solving

a large convex optimization problem which might be impossible at times. Moreover, it is

also expensive to store the data matrix in the memory and sometimes the data cannot even

be loaded into the memory.
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Furthermore, we are often required to do classification/regression on a single dataset

multiple times - one for each different response vector y. For example, problems involving

multiple-label classification in which multiple target labels must be assigned to each sample

and the one-against-all method is used (Tsoumakas and Katakis (2007)); or problems in

which labels are columns of the data matrix (e.g. discovering word association in text

datasets as in (Gawalt et al. (2010)). Algorithms that use the original feature matrix directly

to solve the learning problem in such setting have extremely large memory space and CPU

power requirements, and it is sometimes infeasible due to huge dimensions of the datasets

and the number of learning instances need to be run.

One simple solution to deal with large-scale learning problems is to replace the data with

a simpler structure. We could first simplify the data and then run learning algorithms to

exploit cheap storage, efficient memory allocation. Following are some of data approximation

techniques that are applicable in a large-scale setting:

• Thresholding: given a matrix A ∈ Rn×d and a thresholding level, we want to ap-

proximate A by Â ∈ Rn×d such that Âij = Aij if |Aij| ≥ t and Âij = 0 otherwise.

• Low-rank approximation: given a matrix A ∈ Rn×d, we want to approximate A

as product of two low-rank matrices B ∈ Rn×k, C ∈ Rk×d such that the spectral

norm/largest singular value norm error ‖A−BC‖2 is minimal.

• Non-negative matrix factorization: given a matrix A ∈ Rn×d
+ , and pre-specified

positive integer r < min(n, d), we want to approximate A as product of two (possibly

low-rank) non-negative matrix W ∈ Rn×r and H ∈ Rr×d such that the Frobenius norm

of the error ‖A−WH‖F is minimal.

Unlike other methods that also reduce the data complexity such as random projection or

feature selection, the most advantageous property of data approximation approach is that

16



it doesn’t change the shape of the original data matrix - therefore we can also work with

samples and features of the approximated data the same as with the original data matrix.

2.4.2 Is data approximation enough?

Simply replacing the original data with its approximation does allow a dramatic reduc-

tion in the computational effort required to solve the problem. However, we certainty lose

some information about the original data. Further more, it does not guarantee that the

corresponding solutions is feasible for the original problem. Indeed, consider a simple linear

program:

min
x∈R2

cTx : Ax ≤ b, x ≥ 0

where c =

 −0.5

1

 , A =

 1 −1

−1 0.001

 , b =

 0

−1

.

Solving this linear program we obtain the optimal solution x∗ =

 1.001

1.001

. Suppose

we approximate matrix A by setting all entries with magnitude less than or equal to 0.001

to 0 (i.e. sparsifying the data with thresholding level 0.001), we obtain an approximation of

A: Ā =

 1 −1

−1 0

. Solving the above linear program with data matrix Ā we obtain the

optimal solution x̄∗ =

 1

1

, and it is easy to see that x̄∗ is not feasible for the constraint

with original data matrix: Ax ≤ b.

To deal with such issues, we proposed a new approach that takes into account, via ro-

bust optimization, the approximation error made during the data approximation process.

We will use robust optimization principles and consider the approximation error as artifi-

cially introduced uncertainty on the original data. We will show that the simple structure
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of the approximated data can also be exploited in the robust counterpart. In fact, our em-

pirical results show that the proposed method is able to achieve good performance, requires

significantly less memory space and has drastically better running time complexity. We

are also able to deal with huge datasets (with millions of training samples and hundreds

of thousands features) on a personal workstation. In the next two chapters, we will exam-

ine two data approximation techniques, namely data thresholding (chapter 3), low-rank

approximation (chapter 4).
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Chapter 3

Data Thresholding

3.1 Introduction

In this section, we consider the linear classification problem presented in Chapter 2, in

which we desire to solve the following optimization problem:

min
w∈Rn,b∈R

1

m

m∑
i=1

f
(
yi(w

Txi + b)
)

+ λ‖w‖1

where training samples X = [x1, . . . , xn] ∈ Rd×n, y ∈ Rn are given, f(t) is the loss function.

As the closet convex relaxation of l0-norm, l1-norm regularization not only controls model

complexity but also leads to sparse estimation, which provides both interpretable model

coefficients and generalization ability.

Many efficient algorithms have been developed for l1-penalized classification or regres-

sion problems: Friedman et al. (2010) proposed cyclical coordinate descent algorithm for

solving generalized linear model problems that computes the whole solution path, thus help

adaptive selection of tuning parameter; Genkin et al. (2007) and Balakrishnan and Madigan

(2008) implemented a cyclic coordinate descent method called BBR which minimizes sub-
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problems in a trust region and applies one-dimensional Newton steps to solve l1-regularized

LR; Koh et al. (2007) described an efficient interior-point method for solving large-scale l1-

regularized LR problems, Shi et al. (2010) introduced hybrid iterative shrinkage algorithm

which comprised of a fixed point continuation phrase and an interior point phrase; Fung and

Mangasarian (2004), Mangasarian (2006) proposed a fast Newton method for SVM problem,

etc. However, the complexity of these algorithms, when it is known, grows fast with size of

the dataset. There have been several strategies used in the literature to reduce the computa-

tional complexity of solving these problems: decomposition methods that work on subsets of

training data - solving several smaller problems instead of the large one as in decomposition

method, such as in Perkins et al. (2003), Osuna et al. (1997), Tseng and Yun (2008). The

second strategies consists of parallelizing the learning algorithm. Approximation methods

try to design less expensive and less complex algorithms that give an approximate solution

without compromising the test set accuracy; for instance, Bordes and Bottou (2005) and

Loosli et al. (2005) proposed an efficient online algorithm for solving SVM problems using

selective sampling.

In this chapter, we propose and analyze a data thresholding technique for solving large

scale sparse linear classification problems: sparsifying the dataset with appropriate thresh-

olding level to obtain memory saving and speedups without losing much of the performance.

The proposed method can be used on top of any learning algorithm as a preprocessing step.

We will provide theoretical bound on the amount of thresholding that can take place in

order to guarantee sub-optimality with respect to the original problem and illustrate the

effectiveness of the method by showing experiment results on large scale real-life datasets.
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3.2 Data thresholding for sparse linear classification

problems

We consider the sparse linear classification problem

φλ(X) := min
w,b

1

m

m∑
i=1

f(yi(x
T
i w + b)) + λ‖w‖1 (3.2.1)

and its constrained counterpart

ψc(X) := min
w,b

1

m

m∑
i=1

f(yi(x
T
i w + b)) : ‖w‖1 ≤ c (3.2.2)

with λ, c non-negative parameters. Here the data matrix X = [x1, . . . , xm] ∈ Rn×m is given.

We assume that the loss function f is decreasing and Lipschitz with constant L, i.e.

f(u) ≥ f(v),∀u ≤ v and |f(u)− f(v)| ≤ L|u− v|

Note that both hinge loss and logistic loss satisfy above assumption with constant L = 1

In the next sections, we will examine the effect of thresholding the data matrix according

to an absolute threshold rule. The rule is defined by a parameter t and the thresholded

matrix is X(t), with, for 1 ≤ i ≤ n, 1 ≤ j ≤ m:

Xij(t) =

 Xij if |Xij| > t,

0 otherwise.

Thus, we have ‖X −X(t)‖∞ ≤ t, where ‖ · ‖∞ is the largest magnitude of the entries of

its matrix argument. In the sequel, we denote by xi, xi(t) and zi the i-th column of matrices

X, X(t), and Z, i = 1, . . . ,m.

Our focus here is to determine the largest value of the threshold level t under which we

can guarantee that a (suboptimal) solution the problem with t-thresholded data achieves a

similar suboptimality condition for the original problem.
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3.2.1 Penalized problem

For a given matrix X ∈ Rn×m, we define w(X), b(X) to be a minimizer for problem (3.2.1)

with data matrix X, which means that:

φλ(X) =
1

m

m∑
i=1

f(yi(x
T
i w(X) + b(X))) + λ‖w(X)‖1.

Evaluating the objective function of (3.2.1) at w = 0, b = 0 we obtain φλ(X) ≤ f(0),

which implies ‖w(X)‖1 ≤ f(0)/λ for any X.

Consider two matrices X,Z ∈ Rn×m such that ‖X − Z‖∞ ≤ t. Using convexity, mono-

tonicity and homogeneity of the loss function f , we can show that for every w that is feasible

for (3.2.2):

φλ(X) ≤ 1

m

{
m∑
i=1

f(yi(x
T
i w(Z) + b(Z)))

}
+ λ‖w(Z)‖1

=
1

m

{
m∑
i=1

f
(
yi(z

T
i w(Z) + b(Z))) + yi(xi − zi)Tw(Z)

)}
+ λ‖w(Z)‖1

≤ 1

m

{
m∑
i=1

f
(
yi(z

T
i w(Z) + b(Z))) + t‖w(Z)‖1

)}
+ λ‖w(Z)‖1

≤ 1

m

{
m∑
i=1

f
(
yi(z

T
i w(Z) + b(Z))

)
+ Lt‖w(Z)‖1

}
+ λ‖w(Z)‖1

≤ 1

m

{
m∑
i=1

f(yi(z
T
i w(Z) + b(Z))) +

Ltf(0)

λ

}
+ λ‖w(Z)‖1

= φλ(Z) +
Ltf(0)

λ

(3.2.3)

Therefore, for any two n×m matrices X,Z with ‖X − Z‖∞ ≤ t, we have

φλ(X) ≤ 1

m

m∑
i=1

f(yi(x
T
i w(Z) + b(Z))) + λ‖w(Z)‖1 ≤ φλ(Z) +

Ltf(0)

λ
. (3.2.4)

By exchanging the roles of X,Z we can show that: |φλ(X)− φλ(Z)| ≤ Ltf(0)

λ
.
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Revisiting the sequence (3.2.4) with Z = X(t), and denoting w(X(t)) = w(t), we obtain

φλ(X) ≤ 1

m

m∑
i=1

f(yi(x
T
i w(t) + b(t))) + λ‖w(t)‖1 ≤ φλ(X(t)) +

Ltf(0)

λ
≤ φλ(X) +

2Ltf(0)

λ

We have obtained

0 ≤ 1

m

m∑
i=1

f(yi(x
T
i w(t) + b(t))) + λ‖w(t)‖1 − φλ(X) ≤ 2Ltf(0)

λ
.

The above implies that solving the penalized problem with thresholded data X(t) in lieu

of X we achieve ε-suboptimality with w(t) with respect to the original problem provided

t ≤ (λε)/(2Lf(0)). This satisfies the intuition that if λ and/or ε are large, then more

thresholding can take place.

Relative bound for penalized problem

Another observation on the penalized problem is that not only do we have ‖w(X)‖1 ≤

f(0)/λ but we also have ‖w(X)‖1 ≤ φλ(X)/λ (this is stronger then ‖w(X)‖1 ≤ f(0)/λ since

we always have φλ(X) ≤ f(0)). With this observation, (3.2.4) can be modified to get

φλ(X) ≤ φλ(Z)

(
1 +

Lt

λ

)
Therefore, in addition to additive bound we obtain the following multiplicative bound:

1 ≤
1
m

∑m
i=1 f(yi(x

T
i w(t) + b(t))) + λ‖w(t)‖1

φλ(X)
≤
(

1 +
Lt

λ

)2

In other words,

0 ≤ 1

m

m∑
i=1

f(yi(x
T
i w(t) + b(t))) + λ‖w(t)‖1 − φλ(X) ≤ θφλ(X)

where θ :=
(
1 + Lt

λ

)2 − 1. Thus to achieve ε in relative accuracy, we can set

t :=
λ(
√

1 + ε− 1)

L
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3.2.2 Constrained problem

For a given n×m matrix X, we define w(X), b(X) to be a minimizer for problem (3.2.2)

with data matrix X.

Consider two matrices X,Z ∈ Rn×m such that ‖X − Z‖∞ ≤ t. Using convexity, mono-

tonicity and homogeneity of the loss function f , we can show that for every w that is feasible

for (3.2.2):

ψc(X) ≤ 1

m

m∑
i=1

f(yi(x
T
i w(Z) + b(Z)))

=
1

m

m∑
i=1

f
(
yi(z

T
i w(Z) + b(Z))) + yi(xi − zi)Tw(Z)

)
≤ 1

m

m∑
i=1

f
(
yi(z

T
i w(Z) + b(Z))) + t‖w(Z)‖1

)
≤ 1

m

m∑
i=1

f
(
yi(z

T
i w(Z) + b(Z))

)
+ Lt‖w(Z)‖1

≤ 1

m

m∑
i=1

f(yi(z
T
i w(Z) + b(Z))) + Ltc = ψc(Z) + Ltc.

(3.2.5)

By exchanging the roles of X and Z, we can show that: |ψc(X)− ψc(Z)| ≤ Ltc.

Revisiting the above steps with Z = X(t), and denoting w(X(t)) = w(t), b(X(t)) = b(t),

we obtain:

ψc(X) ≤ 1

m

m∑
i=1

f(yi(x
T
i w(t) + b(t))) ≤ ψc(X(t)) + Ltc ≤ ψc(X) + 2Ltc (3.2.6)

Therefore,

0 ≤ 1

m

m∑
i=1

f(yi(x
T
i w(t) + b(t)))− ψc(X) ≤ 2Ltc (3.2.7)

Thus, if we solve the problem with thresholded data X(t) in lieu of X we achieve ε-

suboptimality for the original problem provided t ≤ ε/(2Lc). This satisfies the intuition

that if c is small, and/or ε is large, then more thresholding can take place.
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Optimality of bounds

Our results provide an upper bound on how much thresholding can take place while

maintaining a given level of sub-optimality. We will show that these bounds are optimal, in

the sense that they are attained by some choice of a data set. We consider the constrained

SVM problem (problem (3.2.2))

Assume that the data set consists of m = 2 vectors, X = [x,−x] ∈ Rn×m where x =

(t, 0, . . . , 0) ∈ Rn, and y1 = 1, y2 = −1. We have

ψc(X) = min
‖w‖1≤c

1

2
((1− (w1t+ b))+ + (1 + (−w1t+ b))+)

≥ min
‖w‖1≤c

1

2
((1− (w1t+ b) + 1 + (−w1t+ b))+

= min
‖w‖1≤c

1

2
(2− 2w1t)+ ≥ (1− ct)+

Equality occurs when w = (c, 0, . . . , 0), b = 0 hence ψc(X) = (1− ct)+

On the other hand,

ψc(X(t)) = min
w,b : ‖w‖1≤c

1

2
((1− b)+ + (1 + b)+) ≥ min

‖w‖1≤c

1

2
(1− b+ 1 + b))+ = 1

Equality occurs for any b(t) ∈ [−1, 1], w(t) : ‖w(t)‖1 ≤ c hence ψc(X(t)) = 1

By choosing b(t) = 0, w(t) = (c, 0, . . . , 0) we have:

1

m

m∑
i=1

(1− yi(xTi w(t) + b(t))+ = (1− ct)+ = ψc(X)

By choosing b(t) = 0, w(t) = (−c, 0, . . . , 0) we have:

1

m

m∑
i=1

(1− yi(xTi w(t) + b(t)))+ = (1 + ct)+ = ψc(X) + 2ct

Therefore, the sub-optimal bound we obtain in equation (3.2.7) is tight.
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3.2.3 Iterative thresholding

Suppose that we have a sequence of regularization parameters λ0 > λ1 > . . . and the

corresponding thresholding levels t0, t1, . . .

Let’s define:

φλ(X,w, b) :=
1

m

m∑
i=1

f(yi(w
Txi + b)) + λ‖w‖1

and (w(k), b(k)) = arg minw,b φλk(X), thus

φλk(X) = min
w,b

φλk(X,w, b) = φλk(X,w(k), b(k))

Also define the objective obtained in step kth to be φ̂k = φλk(X,w(tk), b(tk))

We observe that:

φλk+1
(X) ≤ φλk(X) ≤ φλk(X,w(tk), b(tk)) = φ̂k

Using relative error bound in Section 1.2, we have

0 ≤ 1

m

m∑
i=1

f(yi(x
T
i w(tk+1) + b(tk+1))) + λk+1‖w(t)‖1 − φλk+1

(X) ≤ θφλk+1
(X) ≤ θφ̂k

where θ :=
(

1 + Ltk+1

λk+1

)2

− 1

So to obtain ε absolute error, we need θφ̂k ≤ ε which means that we can do more

thresholding by setting the (k + 1) thresholding level to

tk+1 :=
λk+1(

√
1 + ε/φ̂k − 1)

L

3.3 Experimental results

All experiments are conducted on a personal workstation with 16GB RAM and 2.6GHz

quad-core Intel processor.
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Figure 3.1. Result of SVM with data thresholding on UCI Forest Covertype dataset.

3.3.1 UCI Forest Covertype dataset

1 We modified the 7-class classification problem into a binary classification problem where

the goal was to separate class 1 (Spruce/Fir) from the other 6 classes. Each example was

described by 54 input features, in which the first 10 are real numbers, the rest are binary

variable. We normalized the first ten by scaling the first 10 attributes to [−1, 1]. The dataset

had more than 500,000 examples. We sample 10 times, each time we randomly select 50,000

examples to be training data and 50,000 examples to be test data. We compute the average

statistics on these 10 samples and show the result in Figure 3.1.

As can be seen from Figure 3.1, as we increase the thresholding level, we can solve the

1http://archive.ics.uci.edu/ml/datasets/Covertype
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t = 0 t = 0.02 t = 0.04 t = 0.06 t = 0.08 t = 0.1
’polygon’ ’polygon’ ’polygon’ ’polygon’ ’polygon’ ’pov’

’animation’ ’animation’ ’animation’ ’tiff’ ’pov’ ’graphics’
’tiff’ ’sphere’ ’tiff’ ’graphics’ ’graphics’ ’polygon’

’graphics’ ’tiff’ ’graphics’ ’pov’ ’animation’ ’tiff’
’cview’ ’graphics’ ’sphere’ ’sphere’ ’tiff’ ’sphere’
’sphere’ ’images’ ’pov’ ’images’ ’sphere’ ’cview’

’pov’ ’cview’ ’images’ ’cview’ ’cview’ ’images’
’images’ ’pov’ ’cview’ ’animation’ ’images’ ’bezier’
’mpeg’ ’mpeg’ ’bezier’ ’bezier’ ’bezier’ ’animation’
’image’ ’image’ ’mpeg’ ’diablo’ ’image’ ’wireframe’

Table 3.1. Top 10 keywords obtained with topic comp.graphics as the thresholding level
increases. The top keywords do not change significantly when more thresholding applies.

problem faster (blue line) and use less memory (red line) to store the data by sacrificing

some minor amount of accuracy (black line).

3.3.2 20 Newsgroup Dataset

This dataset consist of Usenet articles Lang collected from 20 different newsgroups (e.g.

comp.graphics, comp.windows.x, misc.forsale, sci.space, talk.reglision.misc, etc.) which con-

tains an overall number of 20000 documents. Except for a small fraction of the articles, each

document belongs to exactly one newsgroup. The task is to learn which newsgroup an article

was posted to. The dataset is divided so that the training set contains 2/3 the number of

examples and the test set contains the rest. The dimension of the problem is 61K (number

of words in the dictionary). For each document, word we compute the corresponding TFIDF

score and then threshold the data based on TF-IDF score.

In Table 3.1, we show the list of top 20 keywords obtained with topic comp.graphics as

we varied the thresholding level, as can be seen as we increase the thresholding levels the top
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Figure 3.2. Speed-up and space-saving for SVM with data thresholding on 20 Newsgroup
dataset, topic = comp.graphics. Number of training samples: 13K, number of features: 61K.

features (words) do not change significantly. This suggests that the result (weight vector) of

sparse linear classification with thresholding can still be used for feature selection.

Figure 3.2 shows the speed-up and space-saving for SVM with data thresholding on 20

Newsgroup dataset for topic comp.graphics. As we increase the thresholding level, we can

solve the problem faster (red line) and use less memory (blue line) to store the data by

sacrificing some minor amount of accuracy (black line)

3.3.3 UCI NYTimes dataset

UCI NYTimes dataset contains 300,000 news articles with the vocabulary consists of

102,660 words. In this experiment, we use the first 100,000 news articles (which has approx-
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1 stock 11 bond
2 nasdaq 12 forecast
3 portfolio 13 thomson financial
4 brokerage 14 index
5 exchanges 15 royal bank
6 shareholder 16 fund
7 fund 17 marketing
8 investor 18 companies
9 alan greenspan 19 bank
10 fed 20 merrill

Table 3.2. SVM Result: Top 20 keywords for topic ’stock’ on UCI NYTimes dataset with
thresholding level of 0.05 on TF-IDF score (reduced dataset is only 3% of the full dataset).
Total runtime: 4317s

imately 30 millions words in the collection) for training task. It is impossible to train SVM

with the whole dataset on a laptop/PC, so in this experiment we will just run SVM on the

thresholded dataset (by TF-IDF scores) and then report the top features in Table 3.2. The

thresholded dataset size with the thresholding level 0.05 only contains 850,000 non-zeroes,

which is roughly 3% of the full dataset.
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Chapter 4

Low-rank Approximation

4.1 Introduction

A standard task in scientific computing is to determine for a given matrix A ∈ Rn×d an

approximate decomposition A ≈ BC where B ∈ Rn×k, C ∈ Rk×d; k is called the numerical

rank of the matrix. When k is much smaller than either n or d, such decomposition allows

the matrix to be stored inexpensively, and to be multiplied to vectors or other matrices

quickly.

Low-rank approximation has been used for solving many large-scale problems that in-

volves large amounts of data. By replacing the original matrices with approximated (low-

rank) ones, the perturbed problems often requires much less computational effort to solve.

Low-rank approximation methods have been shown to be successful on a variety of learning

tasks, such as Spectral partitioning for image and video segmentation Fowlkes et al. (2004),

Manifold learning Talwalkar et al. (2008). Recently, there have been interesting works on

using low-rank approximation in Kernel learning: Fine and Scheinberg (2002) proposed an

efficient method for kernel SVM learning problem by approximating the kernel matrix by a
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low-rank positive semidefinite matrix. Bach and Jordan (2005) and Zhang et al. (2012) also

proposed similar approaches for more general kernel learning problems which also exploit

side information in the computation of low-rank decompositions for kernel matrices.

One important point worth noting here is that all of the above works just replace the

original data matrices directly with the low-rank ones, and then provide a bound on the error

made by solving the perturbed problem compared to the solution of the original problem. In

this thesis, we propose a new modeling approach that takes into account the approximation

error made when replacing the original matrices with low-rank approximations to modify

the original problem accordingly, via robust optimization perspective.

In this chapter, we focus on solving LASSO problem:

min
‖β‖1≤λ

‖y −XTβ‖2 (4.1.1)

However, the result can also be generalized to more supervised learning problems:

min
v∈R,w∈C

f(ATw + cv) (4.1.2)

where the loss function f : Rn → R is convex, the data matrix A ∈ Rd×n and vector c ∈ Rn

are given, C ⊆ Rd is a convex set that constraining the decision variable w.

In practice, a low-rank approximation may not be directly available, but has to be com-

puted. While the effort in finding low-rank approximation is typically linear in the size of

data matrix, in our approach leads to the biggest savings in what we refer to as the repeated

instances setup. In such a setup, the task is to solve multiple instances of similar programs,

where all the instances involve a common (or very similar) coefficient matrix. In that setup,

of which we provide real-world examples later, it makes sense to invest some effort in finding

the low-rank approximation once, and then exploit the same low-rank approximation for

each instance. The robust low-rank approach then offers enormous computational savings,

and produces solutions that are guaranteed to be feasible for the original problem.
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4.2 Algorithms for Low-rank Approximation

In general, to find rank-k approximation of a matrix A ∈ Rn×d, we wish to find matrices

B ∈ Rn×k, C ∈ Rk×d such that the spectral norm/largest singular value norm error ‖A −

BC‖2 is minimal. The truncated singular value decomposition is known to provide the best

low-rank approximation for any given fixed rank Eckart and Young (1936); however, it is also

very costly to compute. There have been many different approaches proposed for computing

low-rank approximations, such as rank-revealing factorization (QR or LU) Gu and Eisenstat

(1996); Miranian and Gu (2003), subspace iteration methods, Lancoz algorithms Demmel

and Heath (1997). Recently, randomized algorithms have been developed and proved to be

reliable and computationally efficient (see a comprehensive review in Halko et al. (2011)). In

this work, we use fast randomized subsampling algorithm (Algorithm 1) presented in Halko

et al. (2011).

Algorithm 1 Fast Randomized Subsampling (Halko et al. (2011))

Input: A ∈ Rn×d with d ≤ n, l ≥ k > 0

Output: a rank-k approximation

1. Draw an d× l SRFT test matrix Ω

2. Form the n× l matrix Y = AΩ using a (subsampled) FFT.

3. Compute an orthogonal column basis Q for Y

4. Compute B = QTA

5. Compute Bk, the rank-k truncated SVD of B

6. Return QBk

In algorithm (1), SRFT (subsampled random Fourier transform) test matrix Ω is of

the form Ω =
√
d/lDFR, where D ∈ Rd×d diagonal matrix whose entries are inde-

pendent random signs, F ∈ Rd×d is the unitary discrete Fourier transform: Fpq =
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d−1/2 exp (−2πi(p− 1)(q − 1)/d) and R ∈ Rd×l which samples l coordinates from d uni-

formly at random.

Computing Y = AΩ can be done in O(nd log(l)) flops via a subsampled fast Fourier

transform. If A has special structure (e.g. sparsity) this can be fastened to O(lNA+(n+d)k2)

where NA is the number of non-zero entries in A.

When l ≥ Ω((k + log(kd)) log(k)) then with high probability we have:

‖A−QBk‖ ≤ O

(√
d

l

)
σk+1(A).

4.2.1 First order methods with Low-rank approximation

There has been extensive research on algorithms for solving the constrained LASSO

problem. Tibshirani (1996), Osborne et al. (2000) and Efron et al. (2004) amongst many

others developed algorithms using quadratic programming methods. These algorithms often

need to compute matrix inversions repeatedly, the computational cost increases rapidly as

the input size increases and hence they might not be applicable to very large scale datasets.

First order methods have also been used to solve the constrained LASSO problem:

NESTA - Nesterov’s proximal gradient method by Becker et al. (2011), GPSR - projected

gradient method by Figueiredo et al. (2007), PGN - projected quasi-Newton algorithm by

Schmidt et al. (2009), SPG - Spectral projected gradient algorithm by Birgin et al. (2003),

etc. In this work, we will use SPG (Algorithm 2) to solve LASSO and its variations, due

to its effectiveness for very large-scale convex optimization. SPG is also known to be more

efficient than classical gradient projected method due to spectral step length selection and

non-monotone search Birgin et al. (2003); Figueiredo et al. (2007); van den Berg et al. (2008).

However, our work can be applied to any first-order algorithm for solving the constrained

LASSO problem.
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Algorithm 2 Spectral Projected Gradient Algorithm (Birgin et al. (2000))

goal: min
x∈C

f(x), where f : Rn → R convex, differentiable; C ⊆ Rn is a closed convex set.

parameters: steplength bound parameters αmax > αmin > 0; safeguarding parameters

0 < σ1 < σ2 < 1; γ ∈ (0, 1).

initialize k = 0, x(0) ∈ C, α0 ∈ [αmin, αmax].

while ‖PC(x(k) −∇f(x(k)))− x(k)‖ ≥ ε do

1. compute d(k) = PC
(
x(k) − αk∇f(x(k))

)
− x(k)

2. line search

(i) set x+ ← x(k) + d(k), η = 1 and δ ← ∇f(x(k))Td(k)

(ii) while f(x+) > max
0≤j≤min(k,M)

f
(
x(k−j))+ γηδ

• compute η̂ =
−η2δ

2(f (x+)− f (x(k))− ηδ)

• if η̂ ≥ σ1η and η̂ ≤ σ2η then set η ← η̂, else set η ← η/2

• set x+ ← x(k) + ηd(k)

(iii) set steplength ρk ← η

3. set x(k+1) = x(k) + ρkd
(k), s(k) = x(k+1) − x(k), and y(k) = ∇f(x(k+1))−∇f(x(k))

4. if (s(k))Ty(k) ≤ 0 then set αk+1 ← αmax

else set αk+1 ← min

(
max

(
(s(k))T s(k)

(s(k))Ty(k)
, αmin

)
, αmax

)
5. set k ← k + 1

(PC(z) denotes the projection of vector z onto the set C : PC(z) = arg minw∈C ‖z − w‖)
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For sparse learning problems such as LASSO, the set C is the l1-ball B1(λ) = {w :

‖w‖1 ≤ λ}. We adopt the following algorithm developed by Duchi et al. (2008) to compute

projections onto the l1 ball efficiently in linear time:

Algorithm 3 Linear time projection onto l1 ball (Duchi et al. (2008))

input: z ∈ Rd and λ > 0

initialize U = {1, . . . , d}, s = 0, η = 0

while U 6= ∅ do

1. pick k ∈ U randomly.

2. partition U into G = {j ∈ U |zj ≥ zk}, L = U \G

3. if (s+
∑

j∈G zj)− (η + |G|)zk < λ then s← s+
∑

j∈G zj; η ← η + |G|;U ← L

4. else U ← G \ {k}

set θ = (s− λ)/η

output w = {max(zi − θ, 0)}di=1

We now show how to use low-rank approximation to speedup first order methods. As

we will see, the speedup when applying our approach will be achieved with any first order

algorithm that involves computing the gradient. Generally, first-order method for LASSO

requires us to compute the gradient of the objective function in which for the constrained

LASSO problem, it is of the form:

∇β‖y −XTβ‖2 = X
XTβ − y
‖XTβ − y‖2

Finding such gradient involves computing the product of a matrix X ∈ Rn×d and a vector

u ∈ Rd as well as the product of XT with a vector v ∈ Rn. Each operation costs O(nd)

flops for dense matrix X or O(N) flops for sparse matrix X with N non-zero entries.
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Assuming that the data matrix has a low-rank structure, that is X ≈ UV T where U ∈

Rn×k, V ∈ Rd×k with k << min(n, d). We can then exploit the low-rank structure in

order to improve the efficiency of the above matrix-vector multiplication by writing Xu =

U(V Tu). Computing z = V Tu costs O(kd) flops, and computing Uz costs O(kn) flops,

thus the total number of flops is O(k(n + d)). This is a significant improvement compared

to the cost of matrix-vector multiplication on the original data matrix, especially when

X is dense, high dimensional and approximately low-rank. When X is sparse and k is

much smaller than the average number of non-zero entries per sample, the matrix-vector

multiplication computation that exploits the low-rank structure is also much faster than

direct multiplication. Furthermore, the space complexity required to store the low-rank

approximation is only O(k(n + d)) compared to O(nd) when X is dense or O(N) if X is a

sparse matrix.

For more general supervised learning problem (4.1.2), we could also compute the gradient

exploiting the low-rank structure of the data matrix: suppose that A = V UT where U ∈

Rn×k, V ∈ Rd×k with k << min(n, d), let h(w, v) = f(ATw + cv), the gradient can be

computed as following:

∇wh(w, v) = A∇f(ATw + cv) = V UT∇f(UV Tw + cv)

∇vh(w, v) = cT∇f(ATw + bv) = cT∇f(UV Tw + cv)

Similarly, the cost of computing the above gradient is only O(k(n + d)) for dense data

matrix X or O(N) for sparse one.

4.3 Robust Low-rank LASSO

Important questions worth asking when replacing the original data matrix by a low-rank

approximation are “how much information do we lose?”, and “how does it effect the LASSO
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problem?”. In this section, we will examine the effect of using low-rank approximation, or

in other words, thresholding the singular values of the data matrix according to an absolute

threshold level εk. We replace the matrix X by X̂, the closest (in largest singular value

norm) rank-k approximation to X, and the error ∆ := X̂ −X satisfies ‖∆‖ ≤ εk, where ‖ · ‖

denotes the largest singular value norm.

As seen in previous section, computing the low-rank approximation of a matrix is feasible

even in a large scale setting. Our basic goal is to end up solving a slightly modified LASSO

problem using rank-k approximation, while controlling for the error made.

We want to take into account the worst-case error in the objective function that is made

upon replacing X with its rank-k approximation, X̂. To this end, we consider the following

robust counterpart to (4.1.1):

ψεk,λ(X̂) := min
‖β‖1≤λ

max
‖X−X̂‖≤εk

∥∥y −XTβ
∥∥

2

= min
‖β‖1≤λ

max
‖∆‖≤εk

∥∥∥y − (X̂ −∆)Tβ
∥∥∥

2

(4.3.1)

Let us define f(z) = ‖z‖2, we have:
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max
‖∆‖≤εk

∥∥∥y − (X̂ −∆)Tβ
∥∥∥

2
= max
‖∆‖≤εk

f(y − X̂Tβ + ∆Tβ)

= max
‖∆‖≤εk

max
u∈Rm

{
uT (y − X̂Tβ + ∆Tβ)− f ∗(u)

}
= max

u∈Rm

{
uT (y − X̂Tβ)− f ∗(u) + max

‖∆‖≤εk
uT∆Tβ

}
= max

u∈Rm

{
uT (y − X̂Tβ)− f ∗(u) + max

‖∆‖≤εk
〈∆T , βuT 〉

}
= max

u∈Rm

{
uT (y − X̂Tβ)− f ∗(u) + εk‖βuT‖∗

}
= max

u∈Rm

{
uT (y − X̂Tβ)− f ∗(u) + εk‖β‖2‖u‖2

}
= max

u∈Rm

{
uT (y − X̂Tβ)− f ∗(u) + max

‖z‖2≤εk‖β‖2
uT z

}
= max
‖z‖2≤εk‖β‖2

max
u∈Rm

{
uT (y − X̂Tβ + z)− f ∗(u)

}
= max
‖z‖2≤εk‖β‖2

f(y − X̂Tβ + z)

= max
‖z‖2≤εk‖β‖2

‖y − X̂Tβ + z‖2

= ‖y − X̂Tβ‖2 + εk‖β‖2

here ‖.‖∗ is the nuclear norm (the dual of spectral norm) and f ∗ is the conjugate dual of f .

Therefore, we can write the robust counterpart of LASSO problem in (2) as:

ψεk,λ(X̂) = min
‖β‖1≤λ

‖y − X̂Tβ‖2 + εk‖β‖2 (4.3.2)

Let g(β) = ‖y − X̂Tβ‖2 + εk‖β‖2, its gradient is:

∇βg(β) = X̂
X̂Tβ − y
‖X̂Tβ − y‖2

+ εk
β

‖β‖2

Hence the cost of computing this gradient is also similar as for the low-rank LASSO problem,

which is O(k(n+ d)).
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4.3.1 Theoretical Analysis

In this section, we present some theoretical analysis for the Low-rank LASSO models, in

particular we bound how far their solutions from the true weight vector. In order to do so,

we will need the following definitions:

Restricted nullspace (Cohen et al. (2009)): for a given subset S ⊆ {1, . . . , d} and a

constant α ≥ 1, define:

C(S, α) := {θ ∈ Rd : ‖θSC‖1 ≤ α‖θS‖1}

Given k ≤ d, the matrix X is said to satisfy the restricted nullspace condition of order k if

null(X) ∩ C(S, 1) = {0},∀S ⊆ {1, . . . , d} : |S| = k.

Restricted eigenvalue (Bickel et al. (2008)): the sample covariance matrix XTX/n is

said to satisfy the restricted eigenvalue condition over a set S with parameters α ≥ 1, γ > 0

if 1
n
‖Xθ‖2

2 ≥ γ2‖θ‖2
2,∀θ ∈ C(S, α). We denote that X ∈ RE(S, α, γ) if the above condition

is true.

Main result: we consider the classical linear model with noisy settings: y = Xβ∗ + w,

where y ∈ Rn is the vector of responses, the matrix X ∈ Rn×d is feature matrix, and w ∈ Rd

is a random white noise vector: w ∼ N (0, σ2In×n). Let define:

β̄(λ) = arg min
‖β‖1≤λ

‖y −Xβ‖2

β̂(λ, η) = arg min
‖β‖1≤λ

‖y − X̂β‖2 + η‖β‖2

Hence, β̂(λ, εk) is the solution for the robust counterpart optimization problem (4.3.2) and

β̂(λ, 0) is the solution for the LASSO problem if we just replace the feature matrix X by its

low rank approximation X̂.

We will now show that when the feature matrix X is “close“ to low-rank (i.e. εk is small),

the estimators β̂(λ, η) is closed to the optimal weight vector β∗ for any 0 ≤ η ≤ εk.
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To shorten the equations, we abbreviate β̂(λ, η) as β̂.

We also use standard assumptions as for nominal LASSO problem as in Raskutti et al.

(2010):

(a) λ = ‖β∗‖1, S is the support of β∗ and |S| = p.

(b) X ∈ RE(S, 1, γ) for some γ > 0.

Since ‖∆x‖2 ≤ ‖∆‖2‖x‖2 ≤ εk‖x‖2, we have:

‖y −Xβ̂‖2 = ‖y − X̂β̂ + ∆β̂‖2

≤ ‖y − X̂β̂‖2 + ‖∆β̂‖2

≤ ‖y − X̂β̂‖2 + εk‖β̂‖2

=
(
‖y − X̂β̂‖2 + η‖β̂‖2

)
+ (εk − η)‖β̂‖2

≤
(
‖y − X̂β̄‖2 + η‖β̄‖2

)
+ (εk − η)‖β̂‖2

=
(
‖y −Xβ̄ −∆β̄‖2 + η‖β̄‖2

)
+ (εk − η)‖β̂‖2

≤
(
‖y −Xβ̄‖2 + ‖∆β̄‖2 + η‖β̄‖2

)
+ (εk − η)‖β̂‖2

≤ ‖y −Xβ̄‖2 + (εk + η)‖β̄‖2 + (εk − η)‖β̂‖2

≤ ‖y −Xβ∗‖2 + (εk + η)‖β̄‖2 + (εk − η)‖β̂‖2

In addition, ‖β̄‖2 ≤ ‖β̄‖1 ≤ λ, ‖β̂‖2 ≤ ‖β̂‖1 ≤ λ, so:

‖y −Xβ̂‖2 ≤ ‖y −Xβ∗‖2 + 2εkλ (4.3.3)

Now let ζ = β∗− β̂, we can write y = Xβ∗+w as y−Xβ̂ = Xζ+w, therefore (4.3.3) implies

that:

‖Xζ + w‖2 ≤ ‖w‖2 + 2εkλ

⇒ ‖Xζ + w‖2
2 ≤ (‖w‖2 + 2εkλ)2

⇒ ‖Xζ‖2
2 ≤ 4εkλ‖w‖2 + 4ε2kλ

2 − 2ζTXTw

⇒ 1

n
‖Xζ‖2

2 ≤
4εkλ

n
‖w‖2 +

4ε2kλ
2

n
+ 2‖ζ‖1

∥∥∥∥XTw

n

∥∥∥∥
∞
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Using assumption (a), we obtain:

‖β̂SC‖1 + ‖β̂S‖1 = ‖β̂‖1 ≤ λ = ‖β∗‖1 = ‖β∗S‖1

⇒ ‖β̂SC‖1 ≤ ‖β∗S‖1 − ‖β̂S‖1 ≤ ‖β∗S − β̂S‖1

⇒ ‖β∗SC − β̂SC‖1 ≤ ‖β∗S − β̂S‖1

⇒ ‖ζSC‖1 ≤ ‖ζS‖1 ⇒ ζ ∈ C(S, 1) and

‖ζ‖1 ≤ 2‖ζS‖1 ≤ 2
√
p‖ζS‖2 ≤ 2

√
p‖ζ‖2

Using assumption (b) X ∈ RE(S, 1, γ) and the fact that ζ ∈ C(S, 1), we have 1
n
‖Xζ‖2

2 ≥

γ2‖ζ‖2
2, therefore:

γ2‖ζ‖2
2 ≤

4εkλ

n
‖w‖2 +

4ε2kλ
2

n
+ 4
√
p‖ζ‖2

∥∥∥∥XTw

n

∥∥∥∥
∞

(4.3.4)

Lemma 4 (Wainwright (2010)) Suppose X is bounded by L, i.e. |Xij| ≤ L, w ∼

N (0, σ2In×n) then with high probability we have:∥∥∥∥XTw

n

∥∥∥∥
∞
≤ L

√
3σ2 log d

n

Lemma 5 Suppose w ∼ N (0, σ2In×n) and c > 1, then with probability at least 1−e− 3
16
n(c−1)2

we have:

‖w‖2 ≤
√
σcn

Proof: Since w ∼ N (0, σ2In×n), Z =
∑n

i=1(wi/σ)2 ∼ χ2
n, using the tail bound for

Chi-square random variable by Johnstone (2000), for any ρ > 0 we have:

P [|Z − n| ≥ nρ] ≤ exp

(
− 3

16
nρ2

)
,

Thus, by setting ρ = c − 1, with probability at least 1 − e− 3
16
n(c−1)2 we have Z ≤ cn, i.e.

‖w‖2 ≤
√
σcn.
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Assuming L, σ, λ are constants, using (4.3.4) and the results of Lemma 1 and 2, with

high probability we have:

‖ζ‖2
2 ≤ O

(
εk√
n

)
+O

(
ε2k
n

)
+O

(√
p log d

n

)
‖ζ‖2

Solving this inequality we obtain the upper bound on ‖β∗−β̂‖2 = ‖ζ‖2 (with high probability)

as following:

‖β∗ − β̂(λ, η)‖2 ≤ O

(√
p log d

n
+

εk√
n

+
ε2k
n

)
The above result shows that when the error made by replacing the feature matrix with its

low-rank approximation (LR-LASSO) is small enough compared to
√
n (i.e. εk <<

√
n), the

corresponding estimator β̂(λ, 0) (for LR-LASSO) is closed to the optimal solution β∗. The

solution of the robust counterpart of LASSO (RLR-LASSO) which is β̂(λ, εk), is also closed

to the optimal solution β∗.

4.3.2 Discussion

One might ask what happen if we just use the low-rank approximation matrix directly.

We will show that we might end up with unexpected solutions if we do so. Indeed, we consider

the rank 1 LASSO problem in which the data matrix X is approximated with rank-1 matrix

X̂ = uvT for some u ∈ Rn, v ∈ Rd: min‖β‖1≤λ ‖y − uvTβ‖2. We randomly generate two

vector u ∈ R20, v ∈ R20 and solve the rank-1 LASSO problem for λ = 2−12, . . . , 212, figure

4.1 shows the sparsity pattern of the solution of rank-1 LASSO vs robust rank-1 LASSO

problem.

We can also explain analytically the reason why solution of non-robust rank-1 LASSO
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Figure 4.1. Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The
plot shows the elements of the optimizer as a function of the l1-norm penalty parameter λ.
The non-robust solution has cardinality 1 or 0 for all of 0 < λ < C for some C. The robust
version allows a much better control of the sparsity of the solution as a function of λ.

misbehaves for small value of λ as follows: suppose X̂ = pqT , p ∈ Rn, q ∈ Rd, the rank-1

LASSO problem is: φ(λ) = min
‖β‖1≤λ

‖pqTβ − y‖2

We can always normalize p, q, y so that ‖p‖2 = ‖q‖2 = ‖y‖2 = 1.

φ(λ)2 = min
‖β‖1≤λ

‖pqTβ − y‖2
2 = min

‖β‖1≤λ;t=qT β
‖tp− y‖2

2

= max
µ≥0,γ

min
t,β
‖tp− y‖2

2 + µ(‖β‖1 − λ) + γ(qTβ − t) (by taking the Lagrangian)

= max
µ≥0,γ

[
−λµ+ min

t

(
t2 − (2pTy + γ)t+ 1

)
+ min

β
γqTβ + µ‖β‖1

]
= max
|γ‖q‖∞≤µ

−λµ+ 1− (pTy + γ/2)2 = 1−min
γ
λ‖q‖∞|γ|+ (pTy + γ/2)2

The problem is one-dimensional and we can obtain the exact solutions:

γ∗ = −2sign(pTy) max(0, |pTy| − λ‖q‖∞), µ∗ = |γ∗|‖q‖∞

From the Lagrangian and Slater condition, β∗ has to satisfy: γ∗qTβ∗ = |γ∗|‖q‖∞‖β∗‖1.

Therefore ∀λ < |pTy|/‖q‖∞, we have γ∗ = 0 so β∗i = 0 whenever |qi| < ‖q‖∞.
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4.3.3 Regularized Robust Rank-1 LASSO

In this section, we consider a special case in which the rank of the approximated matrix

X̂ is exactly 1. Note that the constrained LASSO and regularized LASSO are related -

via Lagrangian. Similar to constrained LASSO problem, we can also formulate the robust

regularized LASSO as following:

min
w
‖y − X̂Tβ‖2 + ε‖β‖2 + λ‖β‖1

When X̂ is exactly rank-one, regularized robust LASSO problem becomes very easy -

one-dimensional. Suppose that X̂T = pqT for some p ∈ Rn, q ∈ Rd, the robust counterpart

is expresses as:

ψε,λ(p, q) = min
β
‖qpTβ − y‖2 + ε‖β‖2 + λ‖β‖1. (4.3.5)

We can always normalize p, q so that ‖p‖2 = ‖q‖2 = 1. Indeed, upon replacing λ (resp.

ε) by ‖p‖2‖q‖2λ (resp. ‖p‖2‖q‖2ε), we are back to the normalized case ‖p‖2 = ‖q‖2 = 1.

Finally, we can divide both values λ, ε by ‖y‖2 to reduce further our problem to one with

‖y‖2 = 1. We have:

ψε,λ(p, q) = min
β, t=βT p

‖tq − y‖2 + ε‖β‖2 + λ‖β‖1

Using Lagrangian with multiplier µ, we obtain

ψε,λ(p, q) = max
µ

{(
min
t
‖tq − y‖2 + µt

)
+

(
min
β

ε‖w‖2 + λ‖β‖1 − µpTβ
)}

Let us define A(µ) := mint ‖tq − y‖2 + µt and B(µ) := minβ ε‖w‖2 + λ‖β‖1 − µpTβ.

The first term, A(µ), is −∞ when |µ| > 1. Otherwise, it can be expressed in terms of

45



c := qTy ∈ [−1, 1] and s =
√

1− c2 ≥ 0 as follows:

A(µ) = min
t
‖tq − y‖2 + µt = min

t

√
t2 − 2tc+ 1 + µt

= min
t

√
(t− c)2 + s2 + µt = µc+ min

ξ

√
ξ2 + s2 − µξ [ξ = t− c]

= µc+ s
√

1− µ2 [t∗ = c+ (µs)/
√

1− µ2.]

The second term, B(µ), writes

B(µ) = min
β

ε‖β‖2 + λ‖β‖1 − µpTβ

= max
v,r

0 : µp = v + r, ‖v‖∞ ≤ λ, ‖r‖2 ≤ ε.

The quantity B(µ) is finite (and indeed, zero) if and only if there exist v such that

‖v‖∞ ≤ λ, ‖v − µp‖2 ≤ ε.

Hence, our problem becomes:

max
µ,v

µc+ s
√

1− µ2 : |µ| ≤ 1, ‖v‖∞ ≤ λ, ‖v − µp‖2 ≤ ε.

Note that the function F (µ) := minv ‖v − µp‖2 : ‖v‖∞ ≤ λ has an optimal point

is v∗ = min(λ,max(−λ, µp)) in which the corresponding value is F (µ) = ‖(|µp| − λ1)+‖2.

Therefore, our problem is reduced to a one-dimensional problem:

max
µ

µc+ s
√

1− µ2 : |µ| ≤ 1, ‖(|µp| − λ1)+‖2 ≤ ε.

The optimal µ is of the same sign as c, and the problem is equivalent to

max
µ

µ|c|+ s
√

1− µ2 : 0 ≤ µ ≤ 1, ‖(µ|p| − λ1)+‖2 ≤ ε,

which can be easily solved by bisection in O(n). Note that the dependence on q is only via

c = qTy, s =
√

1− c2. The cost of computing c is O(m), so the robust counterpart (4.3.5)

can be solved in O(n+m).
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When ε = 0, we recover an ordinary LASSO problem with rank-one matrix:

max
µ

µ|c|+ s
√

1− µ2 : 0 ≤ µ ≤ 1, µ‖p‖∞ ≤ λ.

4.4 Experimental Results

The purpose of our experiments is to compare the performance of LASSO, LR-LASSO

and RLR-LASSO in two different tasks: multi-label classification (4.1) and word associations

for multiple queries (4.2).

For models using low-rank approximation (LR-LASSO and RLR-LASSO), we first run

experiments computing low-rank approximation matrices with different values of k using Fast

randomized subsampling algorithm. The low-rank dimension k is ranging from 5 to 50, and

l is set to k+10. Figure 1 shows the running time of computing the low-rank approximation

for different datasets as k varied; the ratio σk+1/σ1 is also reported. As can be seen from the

table, low-rank approximation can be computed quickly even for large datasets with million

of samples and hundreds of thousands of features. The (k + 1)th singular value is also small

compared to the largest singular value of the data matrix.

For the experiments presented in this section, we chose ε = 10−6, γ = 10−4, σ1 = 0.1, σ2 =

0.9,M = 10, αmin = 10−3, αmax = 103, σ0 = 1 as suggested by Birgin et al. (2001). The

regularization parameter λ is tuned from {10i : i = 3, 4, 5, 6} using five-fold cross-validation

on the training data (with F1-score for each one-vs-all sub-classification instance).

All experiments are conducted on a personal workstation with 16GB RAM and 2.6GHz

quad-core Intel processor.
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4.4.1 Datasets

RCV1-V2: Reuters Corpus Volume 1 - Version 2 is a large-scale dataset for text classi-

fication task that is based on the well known benchmark dataset for text classification, the

Reuters (RCV1) dataset. In our experiments, we use the full topics set containing 804,414

news articles, each article is assigned to a subset of 101 topics. We use the pre-processed

data that prepared by Lewis et al. (2004), which splits the data into 23,149 training docu-

ments and 781,265 test documents. The number of features in this dataset is 46, 236 and

the density of the data is 0.031.

TMC2007: Text Mining Competition dataset is based on the competition organized

by the text mining workshop of the 7Th SIAM international conference on data mining. It

contains 28,596 aviation safety reports in free text form, each annotated with a subset of

the 22 problem types that appear during certain flights. TMC2007 has 49,060 features and

density of 0.098.

PUBMED, NYTimes Datasets: we use two largest UCI Bag-of-word datasets 1: NY-

Times news articles dataset which contains 300,000 documents, 102,660 words and approxi-

mately 100,000,000 non-zero terms resulting in a file of size 1GB; and PUBMED abstracts

dataset which contains 8,200,000 documents, 141,043 words and approximately 730,000,000

non-zero terms giving a file size of 7.8GB.

Figure 4.2 shows the top 5000 singular values for each data, scaled by the maximum

singular value - as can be seen from the plot, the singular values decay quickly thus, we are

safe to say that the corresponding data matrices for the above datasets are approximately

low-rank. We believe that such phenomenon is also true for most text datasets.

1http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Figure 4.2. Top 5000 singular values for each dataset, scaled by maximum singular value.
The size of each dataset (number of samples x number of features) is also shown.

4.4.2 Multi-label classification

Since we treat each label as a single classification subproblem (one-against-all method),

we evaluate the performance of all three models using the Macro-F1 measure. The Macro-

F1 measure treats every label equally and calculates the global measure as the means of the

local measures of all labels: Macro-F1 = 2R̄P̄
R̄+P̄

where R̄ = 1
L

∑L
l=1Ri, P̄ = 1

L

∑L
l=1 Pi are the

average recall and precision across all labels. We will also report the average running time

of each model.

Figure 4.3 and 4.4.2 show the average training time speedup for LR-LASSO, RLR-LASSO

compared to LASSO on all labels (RCV1V2 has 101 labels, TMC2007 has 22 labels) over

different runs for each value of regularization parameter λ ∈ {10i : i = 3, 4, 5, 6}, as the

low-rank dimension k varies (one run for each value of the regularization parameter λ).

LR-LASSO and RLR-LASSO run much faster than the nominal LASSO for both datasets,
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Figure 4.3. Multi-label classification: RCV1V2 dataset

around 3-6 times in magnitude. We also observe that RLR-LASSO run slightly faster than

LR-LASSO. Perhaps the l2 regularization term in the objective function of RLR-LASSO

model helps SPG algorithm converges faster than LR-LASSO.

As can also be seen from Figure 4.3 and 4.4.2, as k increases, the performances of low-rank

approximation models improve gradually. Although LR-LASSO does not perform anywhere

close to LASSO, its robust model RLR-LASSO has almost the same Macro F1-Score as the

nominal LASSO with a large enough k.

4.4.3 When labels are columns of data matrix

For many applications - especially in text classification such as in Gawalt et al. (2010),

the goal is to learn a short list of words that are predictive for a given query term in a text

dataset. LASSO can be used to produce such list of predictive words. To be manageable

by a human reader, the list should be very short w.r.t the number of features, thus we solve

the LASSO problem with different values of λ and choose the one that generates enough

non-zeros in the solution.
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Figure 4.4. Multi-label classification: TMC2007 dataset

Given the original data matrix X, for each query term we need to solve a LASSO problem

in which the response vector y is a column vector of X and the corresponding feature matrix

is obtained by removing that column from X. The low-rank approximation for new data

matrix given the low-rank approximation of the original matrix can be derived quickly.

Suppose that X = UV T where U ∈ Rn×k, V ∈ Rd×k. Let’s X(i) ∈ Rn×(d−1) be the matrix

obtained from X by removing the ith column, X−i ∈ Rn×d be the matrix obtained from X

by replacing its ith column with zeroes. Let ci be the ith column of X, ei is the ith unit vector

in Rd, we can write X−i as:

X−i = X − cieTi = UV T − cieTi = [U,−ci][V, ei]T

Let U (i) = [U,−ci] and V (i) be the matrix obtained from [V, ei] by removing its ith row.

We can then write X(i) = U (i)(V (i))T , therefore the rank of X(i) can be bounded as following:

rank(X(i)) ≤ min{rank(U (i)), rank(V (i))}

≤ min{rank(U) + 1, rank(V ) + 1}

≤ k + 1
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automotive agriculture technology tourism aerospace
car government company tourist boeing

vehicle farm computer hotel aircraft
auto farmer system business space
sales food web visitor program

model water information economy jet
driver trade internet travel plane
ford land american tour nasa

driving crop job local flight
engine economic product room airbus

consumer country software plan military
defence financial healthcare petroleum gaming

afghanistan company health oil game
attack million care prices gambling
forces stock cost gas casino

military market patient fuel player
gulf money corp company online

troop business al gore barrel computer
aircraft firm doctor gasoline tribe
terrorist fund drug bush money
president investment medical energy playstation

war economy insurance opec video

Table 4.1. NYTimes news articles - top 10 predictive words for different query terms (10
industry sectors). Low-rank approximation with k = 20 is used, total training time (for all
query terms) is 42918 seconds

We could also compute rank − k decomposition of X(i) with slightly more complicated

derivation as presented in (Brand (2006)).

We experiment with NYTimes and PubMed datasets, both of these datasets are so large

that it’s impossible to run nominal LASSO on a personal workstation. Thus, our experi-

ment’s goal is to find the top predictive words for each given query term. In Table 4.1 and

Table 4.2, we report the top 10 predictive words for given lists of 10 query terms, produced

by RLR-LASSO with k = 20.
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arthritis asthma cancer depression diabetes
joint bronchial tumor effect diabetic

synovial asthmatic treatment treatment insulin
infection children carcinoma disorder level
chronic respiratory cell depressed glucose

pain symptom chemotherapy pressure control
treatment allergic survival anxiety plasma

fluid infant risk symptom diet
knee inhalation dna drug liver
acute airway malignant neuron renal

therapy fev1 diagnosis response normal
gastritis hiv leukemia migraines parkinson

gastric aid cell headache treatment
h pylori infection acute headaches effect
chronic cell bone marrow pain nerve
ulcer hiv-1 leukemic disorder syndrome
acid infected tumor women disorder

stomach antibodies remission chronic neuron
atrophic risk t cell duration receptor
antral positive antigen symptom alzheimer
reflux transmission chemotherapy gene response

treatment drug expression therapy brain

Table 4.2. PUBMED abstracts - top 10 predictive words for different query terms (10
diseases). Low-rank approximation with k = 20 is used, total training time (for all query
terms) is 56352 seconds
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Chapter 5

Conclusion

In this dissertation, we introduced new learning models that are capable of solving large

scale machine learning problems using data approximation under robust optimization per-

spective. We have showed that data approximation under robust scheme is efficient and

scalable and more reliable than just applying the approximation directly.

In Chapter 3, we have described data thresholding technique for large-scale sparse linear

classification and provided theoretical bound on the amount of thresholding level needed to

obtain desired performance. The proposed method is a promising pro-processing method

that can be applied in any learning algorithm to efficiently solve large-scale sparse linear

classification problems, both in terms of required memory as well as the running time of the

algorithm.

Next, in Chapter 4, we have described an efficient and scalable robust low-rank model

for LASSO problem, in which the approximation error made by replacing the original data

matrix with a low-rank approximation is taken into account in the model itself. The exper-

imental results lead us to believe that the proposed model could make statistical learning

that involves running multiple instances of LASSO feasible for extremely large datasets. Al-
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though we only focus on first-order methods in which the main computational effort is to

compute the gradient, we believe that similar approach can be taken on how low-rank struc-

tures could help in speeding up second-order methods for solving LASSO problem. Another

interesting direction we also wish to pursue is to construct robust low-rank models for other

learning problems.
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