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Abstract

Efficient Multi-Level Modeling and Monitoring of End-use Energy Profile in
Commercial Buildings

by
Zhaoyi Kang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer
Sciences

University of California, Berkeley

Professor Costas J Spanos, Chair

In this work, modeling and monitoring of end-use power consumption in commer-
cial buildings are investigated through both Top-Down and Bottom-Up approaches.
In the Top-Down approach, an adaptive support vector regression (ASVR) model is
developed to accommodate the nonlinearity and nonstationarity of the macro-level
time series, thus providing a framework for the modeling and diagnosis of end-use
power consumption. In the Bottom-Up approach, an appliance-data-driven stochas-
tic model is built to predict each end-use sector of a commercial building. Power dis-
aggregation is studied as a technique to facilitate Bottom-Up prediction. In Bottom-
Up monitoring and diagnostic detection, a new dimensionality reduction technique is
explored to facilitate the analysis of multivariate binary behavioral signals in building
end-uses.
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Chapter 1

Introduction

1.1 Motivation

In the United States, buildings, both in commercial and residential sector account
for around 40% of the total energy consumption (Figure [LT]), 73% of the total elec-
tricity consumption, and 47% of the total natural gas consumption, as illustrated in
the ETA’s annual energy outlook |23|. Buildings indeed play increasingly important
roles in addressing the current energy and climate issues [11]|. Significant research &
development efforts have been invested in this field of study, such as in the area of
control, monitoring, diagnosis, demand response, and more [39|[45]73]]55][56][40].

Recently, commercial buildingﬂ, in particular, are drawing more attentions. On
one hand, they are usually the dominant consumers of energy and other utilities while
being major contributors to increasing energy demands [23]; on the other hand, they
employ sophisticated power supply and distribution systems, which enables effective
demand side management [79]|66][77].

In studying these buildings, it is important to understand their end-use profiles.
A building end-use profile aims to evaluate the power consumption of each end-
use category in an entire building, for example, space heating, space/room lighting,
miscellaneous plug-in loads, shared loads, gas consumption, etc.

Among the many reasons to study the building end-use profile, the first and
foremost is the need to better estimate and detect the building’s power load and its

lindustry buildings consume approximately 32% of the total energy consumption, but are not
usually included in building energy analysis because of their strong dependence on the related
industry activities.

2Commercial buildings are defined as buildings with more than half of its floor space allocated
for commercial activities, e.g. offices, malls, retail stores, educational facilities, hotels, hospitals,
restaurants, etc.
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22% Residential

Space Heating [N 0s.1%
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Lighting I 10.9%
Electronics [ 7.9%
Refrigeration [ 6.7%
Wet Clean [ 4.8%
Cooking I 4.5%
Transportation computers Il 2.5%
0, other Il 3.5%
28% Adjust to SEDS* Il 2.8%

Buildings

40% 18% Commercial

Lighting - NG 2.7%
Space Heating N 15.5%
Space Cooling N 13.4%

Ventilation [N 9.1%
Refrigeration [ 6.9%
Water Heating [l 4.2%

Electronics M 4.1%

Computers Il 3.8%

Cooking W 1.3%

other NG 12.8%
Adjust to SEDS* I 7.3%

* Energy adjustment EIA uses to relieve
discrepencies between data sources. Energy
attributes to the commercial buildings sector,
but not directly to specific end-users.

Figure 1.1: Buildings, including commercial and residential sectors, are major con-
tributor to US energy consumption. (source: Quadrennial Technology Review 2011,
US Department of Enerqy [@])

variability, so as to better define future requirements in terms of the power plants
and the whole power distribution network. The occupant-related load is of special
importance in considering the design and evaluation of the smart power demand
system [67][73][77][62.

Second reason is the requirement of demand side regulation and management.
As in the EIA annual energy outlook report ], to have a 0.6% annual growth
in energy consumption (as compared to a residential sector growth of 0.2%), while
average floor space increases at a rate of only 1.0% annually. To respond to this rising
demand, new demand-response strategies are implemented and Renewable Energy
Resources (RERs) are deployed [@]Nﬁg][@] Reasonable estimation and diagnosis of
the performance in each end-use sector will be required.

The two core components in studying the building end-use profiles are Modeling
and Monitoring. The former involves reasonable prediction or modeling of the end-
use consumption, while the latter deals with monitoring and diagnosis of each end-use
system. Most of the effort in understanding building end-use profiles will be put into
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these

1.2

Build

two components, as we will show in the next few chapters.

Two Approaches: Top-Down vs. Bottom-Up

ing end-use profiles can be usually studied from two perspectives, either Top-

Down approaches and Bottom-Up approaches, distinguished by how the data interact
within the approaches [@] [@], as illustrated in Figure

Bottom-Up Models Top-Down Models

~= Building [ Macro- ] [ Weather] [ B""d"‘g]
3 Economic structure
- Power

0o Profile j

|

s

:--I Building
— — - Power
= User 1] [,_‘c’\Userz] o Profile
@ @

——
—_—

Figure 1.2: Two types of approaches to study the building end-use profiles: Top-
Down and Bottom-Up

The Top-Down approach treats a building as a black box and focuses on the
collective demand of each end-use sector. Usually, a statistical model is built to
describe demand variability and used to evaluate the performance of a build-
ing’s power system. The model would include macro-scale extraneous variables,
such as macroeconomic indicators (gross domestic product [GDP], income, and
price rate), climate, building construction, etc. [29]. Model parameters are es-
timated from a training set, and building end-use can be modeled or monitored
based upon those parameters.

The Bottom-Up aapproach takes into account the individual components in
each end-use sector. From the modeling perspective, individual behaviors
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can be characterized as a stochastic model, and the whole power consump-
tion can be estimated from Monte Carlo (MC) simulation. The parameters
of the stochastic model are estimated from Time-Of-Use (TOU) survey data,
which records daily personal usage patterns of each appliance category. From
the monitoring perspective, instead of whole-building power performance, we
are looking at a multivariate occupant-level signal, which contains behavioral
information of the building occupants.

Among these two types of approaches, Top-Down ones are less complicated and
better studied, whereas Bottom-Up approaches are relatively new but more adaptive
to different scenarios, especially in recent years when building end-use interacts more
with occupant behavior through demand-side management. The occupant-dependent
fluctuation in power consumption is also directly captured by a Bottom-Up approach.
On the contrary, Top-Down approaches do not typically have the flexibility to do
that. In addition, the Bottom-Up approach better adapts to changes in the building
infrastructure, such as new technologies and new policies, whereas the Top-Down
approach relies mainly on historical data, as will be illustrated in Chapter 2.

Overall speaking, Bottom-Up approach will be more thoroughly studied in this
work, while a few issues about the Top-Down approach will also be addressed.

1.3 Current Challenges

Challenges in Top-Down approach

Statistical modeling is at the core of any Top-Down approach for both monitoring
and modeling purposes. Most current models, however, especially the linear Gaussian
random noise statistical models, have limited capability to handle deviations from
linearity or stationarity, which is often observed in building end-use profiles.

Challenges in Bottom-Up approach

Bottom-Up analysis of building energy has been a difficult task, since measuring each
end-use category is costly. In recent years, this problem is easier to tackle, thanks to
the development of large-scale wireless sensor networks and distributed data storage
systems. Many existing works have demonstrated such a development, such as in|39),
[38], [45], etc. However, several issues still need to be addressed.

From the modeling perspective, behavior-dependent end-use sectors, such as plug-
in loads, occupant-controlled lighting, and occupant-adjusted HVAC, have a signifi-
cant amount of diversity and fluctuation |[39] while being the bottlenecks to demand-
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side management [57|. Better capture of this variance in a new model is highly
preferred.

From the monitoring perspective, on one hand, measuring end-use bottom-level
power consumption brings up several issues. More specifically, deploying sensors to
each appliance in modern commercial buildings will be costly, while this method also
introduces privacy issues. Therefore, a model objective should include low density,
non-intrusive monitoring. On the other hand, monitoring, and even diagnosis or
control, will be challenging in larger buildings if there are a great amount of individual
appliances. In fact, from both a statistical and engineering perspective, a meticulous
analysis will be wasteful. A concise but reliable description of the appliances in each
end-use category is preferred.

This thesis focuses on issues described above while demonstrating potential solu-
tions for both modeling perspective and monitoring perspective.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents a non-parametric statistical model, adaptive support vec-
tor regression (ASVR), as a Top-Down approach to address non-linearity and non-
stationarity issues in the macro-scale modeling of commercial building end-uses.

Chapter 3 moves from macro-level Top-Down approaches to micro-level Bottom-
Up approaches. We demonstrate a Bottom-Up appliance-data-driven stochastic
ON/OFF probability model is demonstrated to stochastically estimate the end-use of
different categories of appliances followed by a discussion about a non-homogeneous
Poisson process approach to model the shared appliances.

In Chapter 4, based on the study in Chapter 3, a Bottom-Up approach is used
to model real building plug-in loads power consumption under different scenarios. A
new power disaggregation technique is proposed, which is used to filter out ON/OFF
states of individual appliances from aggregated raw power stream.

In Chapter 5, challenges in Bottom-Up monitoring are addressed. A dimension-
ality reduction technique, Logistic PCA (LPCA), is deployed to deal with binary
behavioral data in the Bottom-Up perspective, and a sequential version of Logistic
PCA (SLPCA) is proposed and analyzed.

Finally, Chapter 6 concludes this study and includes a brief discussion about
future tasks found within the topics studied by this thesis.



Chapter 2

Top-Down Approach for End-Use
Modeling & Monitoring

2.1 Introduction

In this chapter, a Top-Down approach is discussed, followed by the proposed non-
parametric adaptive support vector regression method for macro-level building end-
use modeling.

As illustrated in Chapter 1, a Top-Down approach treats the building as a black
box and uses historical data or other physical parameters as features to build up a
statistical model. The widely used features include historical building power con-
sumption for each sector; physical parameters, such as the construction area, mate-
rial, structures, etc.; environmental parameters, such as the temperature, humidity,
sunlight level, rain precipitation, etc.; and macro-economic features, such as gross
domestic product (GDP), salary level, unemployment rate, appliance penetration
level, etc.

Model prediction capability is critical. Researchers have studied two types of
models, namely, physical and statistical. Physical models simulate the energy con-
sumption from thermodynamics standpoint. Examples of this approach include En-
ergyPlu, which is a software developed by the Building Technology Office of the
US Department of Energy. A physical model usually gives accurate results and can
be more adaptive to the change of the building structure and material. However,
calculation is usually too tedious to be used in a real-time monitoring and evaluation
platform.

On the other hand, statistical models are empirical in nature (i.e., based on

Thttp://appsl.eere.energy.gov/buildings /energyplus/
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observation) and are usually implemented as linear or nonlinear regression on a set
of features. The features can be selected based on statistical significance rather
than on physical principles. Future power consumption is usually extrapolated from
the features. Statistical models are usually too simple to provide highly accurate
results, but they are statistically robust and computationally efficient. Hence, they
are preferred in real-time modeling and monitoring.

In this chapter, we will focus on statistical methods and develop an adaptive
least-mean square version of the nonlinear time series model, which could be used in
real-time building end-use monitoring and diagnosis.

The rest of this chapter is organized as follows: Section 2.2 presents a literature
review on existing models and challenges. Section 2.3 introduces the linear autore-
gressive model. Section 2.4 briefly talks about challenges lying in the current data
feed. Section 2.5 discusses an adaptive support vector regression model. Section
2.6 gives results and discussion, while Section 2.7 concludes with discussions about
future tasks.

2.2  Prior Works

Prior Top-down studies apply physical, statistical, or econometric models to use
historical data or other features to predict load curve e [78|.

Physical models have been developed as software tools, such as DOE—ﬂ, Ener-
gyPlug’, BLAS, ESP-ifl. An overview can be found in [14], and an updating list
of these tools can be found in [18]. These tools, in most cases, use very detailed
information about the building, which becomes time-consuming in both training and
estimation.

Statistical methods have been developed as approximate but computationally
efficient alternatives. There is an extensive amount of work on these topics, including
linear regression methods developed for different geographical or climatic conditions
[46], linear time series models, the so-called Conditional Demand Analysis (CDA) [2],
the Back Propagation Neural Network (BPNN) based methods [35], and the Support
Vector Machine (SVM) [47]. The linear regression or time series model take the least
amount of parameters, whereas BPNN could take more complicated model structure
[78].

http://doe2.com/DOE2/

3http://appsl.eere.energy.gov/buildings/energyplus/

‘http://appsl.eere.energy.gov/buildings/energyplus/

energyplus_research_legacy.cfm, EnergyPlus is actually a merge of DOE-2 and BLAST
*http://www.esru.strath.ac.uk/Programs/ESP-r.htm
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SVM |13| based methods are attracting more and more attentions recently be-
cause of their flexibility to model nonlinear behaviors and their relatively acceptable
model complexity. In time series modeling, it can be extended to Support Vec-
tor Regression (SVR) with Auto-regressive terms |65]. Several works have done on
exploring the application of this model [65] [51] [49] [24].

In this chapter, we will study an adaptive autoregressive SVR model for nonlinear
time series that can be used effectively to estimate energy consumption with great
extendibility.

2.3 Linear Auto-regressive Model

Conventionally, the linear auto-regressive model has been used to model time series
data. Some well-known methods include the Auto-Regressive (AR) model, the Auto-
Regressive Moving-Average (ARMA) model, and more. The AR model gives an
estimation of a certain data point based on a linear extrapolation of its own history.

As an example, for time series x1,---,x, = {xt}tT:l, we model x; based on a
weighted sum of z;_, through x;_,,.

Ty = iﬂixt—i (2-1)
i=1

in which ¢ is the order of the AR model and {f;}{_, are the parameters. The
parameters can be learned from minimizing the sum of square error as:

2
q

Biy- -+ By = %rgm;n Z (3715 - Z@%z) (2.2)
LrPe t i=1

By writing 5y = —1, we can transform equation (2]) as:

q
Z Biwi—i =0
i=0

Here we introduce the Backward-operator as B;x; = x;_;, and hence:

iﬁixt—i = iﬁilgixt = (i Bi) = ¢g(B)ry =0
=0 =0 i=0
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In which ¢,(B) = > [_,8:B;. Similarly, seasonality can be easily added by
Seasonal-AR (SAR) model.

Zm%(l’)’)xm-s =D 0B ¢y(B)ar = 6,(B%)dy(B)zy = 0 (2.3)

J=0

in which s is the period and ¢4(B%) = >>%_ 7,55 .

An important assumption of these kind of models is that the model parameter
set {8;}_, or {n;}3=, is stationary, which means the parameters are invariant over
time. If the parameters are subject to change, linear AR or SAR model will not be
able to capture that.

2.4 Challenges in Linear Auto-regressive Model

The linear auto-regressive models, although delivering well-formed theory, are subject
to practical issues.

e Usually, AR, especially the SAR model, needs a large amount of data for model
training.

e Additionally, linear AR or SAR models are not suitable for nonlinearity appli-
cation.

e Furthermore, as illustrated earlier, linear AR or SAR modeling assumes sta-
tionarity of the model. If the data is nonstationary, then linear modeling is not
enough.

Take B-90 building in Lawrence Berkeley National Laboratory of U.S. Depart-
ment of Energy (DOE) as an example (as shown in Figure 2.I)). Two building-level
power consumption time series of B-90 are shown in Figure 2.2l The data are mea-
sured by DENT meteid (as in Figure 23) in one hour or 15 min intervals, and
collected through sMAP prota]lﬂ.

In Figure 2.2, a strong periodic pattern and chaotic glitches can be observed.
Modeling by simple AR-type models is not enough. Recently, non-parametric data-
driven methods have been proposed to overcome this issue. In this work, we will
study an alternative model, which is called the Adaptive Support Vector Regression
(ASVR) model.

6http://www.dentinstruments.com
"http://new.openbms.org/plot/
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Nice View of Building-90

{1113

Figure 2.1: Building-90 in Lawrence Berkeley National Laboratory (LBNL)

2.5 Adaptive Support Vector Regression

In ASVR model, modeling problem is formed in a different way. Let u; = {z;_1, -, 2}
be the autoregressive term, and our estimation of a certain data point x; would be
BTu,. By introducing a soft error bound of the difference x, — 7w, similar to the
famous soft margin Support Vector Machine (SVM) ﬂﬁ] @], we can put the opti-
mization problem (2.2)) in the following form.

n

1
min + )21 2812 54
BiViE &t ; (& +&) 3508l (2.4)
S —& <a - T <GV

The £[|8]|* is a regularization term, indicating that a flat or small 3 is preferred
here@(lﬂl) is a convex optimization problem. The Lagrangian function is as be-
low [65]

n

Llof or 66.6) = 3 (& +6)" + 5 161°

t=1

+Y o (= B =)+ ) o (=& —m+ M) (25)
=1 =1
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Figure 2.2: Example of data collected from Building-90. Total Electricity consump-
tion (upper) and Network gateway node consumption (bottom).

in which o;, a; are the positive Lagrangian multipliers. Following the KKT condi-
tion of this strictly convex problem [8], we have the following conditions:

e Derivative v.s. (:

n n

oL
g5 =P et aru =0
p = =

e Derivative v.s. &, Vt:

(9[4 n - n
2% 2> (& +E) =D af
& t=1 t=1
e Derivative v.s. &, Vt:
8L n n

(2.6)
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Figure 2.3: Dent meter used to collect the macro-level data

e Complementary slackness, Vt:
af (v = Ty — &) =y (=& =z + 1) =0 (2.7)

The Equation (Z.0]) satisfies:
n n
B=Y (af —a))w =) am
i=1 i=1
Notice that here the «; terms do not need to be positive. Hence, the estimated
observation follows:

n
i = plTu = Zaz(ui, u;) (2.8)
i=1
Due to (27), only part of the «;’s are non-zero, corresponding to points with
equality in the constraints in (24)). Besides, following equation (28], only those
data points contribute to the weighted sum of estimation. In Figure 2.4 we can see
that the circled dots are those corresponding to the data with non-zero «;’s. Those
data points are called Support Vectors (SVs), in that they support the shape of the
curve.
In case of nonlinearity, in the observed data in Figure 2.2l An alternative way is
to map the input u; into another domain ¢(u;) in which the relationship is linear,
we have:

Ty = Z ai{p(uy), (u;)) = Z%‘k‘(uta u;) (2.9)
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Figure 2.4: Support vectors

in which we have k(u;, u;) = (¢(wy), d(0;)), called the Kernel function. In (2.9), we
don’t really need to know the form of ¢(-), as long as we have an idea about the
Kernel function k(-,-). This is also called the kernel trick [@]

The most widely used kernel function is the Gaussian kernel, which can be written
in the form of k(uy,u;) = e~l"~uil’  Gaussian kernel quantifies the correlation or
similarity between uy, u;. Other widely used kernel function includes the polynomial
kernel function k(ug, u;) = [Juy — wf?.

When the data is in real time, it is costly to form a convex optimization problem
as (24) at every step. A solution to this is to put it in a recursive least square
formulation. For RLS, we can learn «;’s in Equation (Z.9)) recursively. Due to the
complementary slackness in ([2.7), some data points may contribute to the shape of
the curve, and some data points may not be support vectors.

Since support vectors are those data points critically determines the shape of the
curve, they usually demonstrates less similarity compared to the previous data points.
Hence, we can determine whether a data point is support vectors by examining the
kernel function k(uy, u;) between ut to all the previous ul’s as well as examining
the error of estimation x; — Zf } aik(ug,v;) = ut u;) in which SVs is the
support vector dlctlonaryﬁ following the idea of @] [@] ] and @]

o Let K;=1[--,k(u,u;), --],Vi € SVs.

e For each time step t = 1,--- ,n, we have the error term Err; = z; — K oy, and
a distance with respect to the kernel functions Dist; = max;egvs ||k(us, w;)||

8By support vector dictionary, we mean the collection of all the support vectors up to the
current data point
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e If Err, < p and Dist, < w. Let K; = [K7,1]7 and & = [a],0]T, update the
coefficient as: .
Ty — K;T&t
AT
[ K1+ p
in which 7 is the learning rate. The larger the 7, the more adaptive to the
change in the process.

Q1 = Oy

(2.10)

e Else, update the coefficient as

Tt —KtTOét

_— = 2.11
IR+ p (2.11)

Q1 =+ 17

Therefore, we learn the parameters «;’s. When a new data point is determined
as a support vector, we just add it into the support vector dictionary, and change
the dimensionality of a accordingly.

2.6 Results and Discussion

Firstly, we examine the online evolution of the support vector dictionary. As shown
in Figure 2.7, we have several key observations.

e Usually, only 15% of the data points are support vectors, which means we only
need to store a small portion of the data but are able to capture most of the
fluctuation, nonlinearity, and nonstationarity of the time series.

e The support vectors mostly appear around change-points or nonlinear patterns
of a time series, exactly as expected.

e There is definitely a trade-off between accuracy and the dictionary-size. The
more support vectors we have, the more capable we are to capture the orig-
inal pattern; however, there is more storage cost. The number of support
vectors can be tuned by changing the hyperparameter in the kernel function
(0). This is illustrated in Figure when running the algorithm on a three-
month total plug-in loads power consumption in the CREST center, and an
almost-monotonic pattern is observed. Moreover, same as the conventional
linear model, an overly detailed model suffers from over-fitting, which is illus-
trated in Figure 2.6l The total plug-in loads are also used in Figure 2.3, but
two-month’s data is used as training and one-month’s data is used as testing.
In Figure 2.6] training error decreases as expected when we have a more de-
tailed model, whereas testing error demonstrates a bowl shape when compared
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Figure 2.5: Number of support vectors as a function of hyperparameter in kernel
function (o)

to the hyperparameter. In real time, a hyperparameter is most often used that
is not too complicated but detailed enough to provide reasonable accuracy.

The ASVR can be used in pattern discovery with great extendibility. Specifi-
cally, a data point is added into the support vector dictionary when a new pattern
appears, and thus, prediction error or kernel distance function increases, as shown
in Figure 2.8

The distance measurement (in other words, the change recognition functions in
Figure 2.8)) can also be altered to accommodate different scenarios. For example,

. 1 2w At SAL?
Dist; = max Ik (ay, w;) exp (—a\l — cos( - )| ) X exp (— - ) | (2.12)
Periodizrweight D;gay

It is worth mentioning that the choice of the kernel distance function (or change
recognition function) can affect the support vector dictionary’s distribution as well,
which will be a subject of future work.
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Figure 2.6: Training and Testing error as a function of hyperparameter in kernel
function (o)

2.7 Conclusion and Future Tasks

In this chapter, we discuss the Top-Down modeling of building end-use power con-
sumption. The linear auto-regressive model is studied and its limitations in dealing
with nonlinearity and nonstationary are discussed. A non-parametric data-driven
adaptive support vector regression (ASVR) model is introduced as an alternative
approach. The ASVR model can effectively capture nonlinearity and nonstationary
by storing only a small portion of the original data points.

The future tasks of this chapter would be the design of proper distance function
(or change recognition score function) to cope with different types of nonlinearity or
nonstationarity, and the method could be extended to the fault diagnosis problem.
Including more parameters into the model will also be useful.

However, it should be noted that this method is a so-called black-box method.
It can capture statistically significant features of a building but provides little in-
formation about occupant-dependent information, which is, unfortunately, of special
importance in modern smart building operation.

In the next several chapters, we will move on to the discussion of Bottom-Up
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approaches, which are more capable of modeling occupant-dependent features.
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Chapter 3

Bottom-Up End-Use Modeling:
Model Setting

3.1 Background

The last chapter briefly introduced the Top-Downapproach, and here we will move
on to the Bottom-Up approach. As mentioned before, Bottom-Up approaches are
relatively new and attracting more attention in recent years, because of their capa-
bility in evaluating occupant demand and its adaptability under different strategic
scenarios. In the next two chapters, we will firstly discuss modeling issues under
Bottom-Up settings and then study Bottom-Up monitoring issues in Chapter 5.

One of the earliest works on Bottom-up models is written by A. Capasso et al.
[10]. Presence probability is used to model the likelihood that a resident is in a
house. Activity probability is used to model how likely it is that an activity will
be happening. These probabilities are extracted from Time-Of-Use (TOU) data.
TOU data comes from survey recordings of residents’ daily activities in 15-min time
intervals. Together with duration statisticsl obtained from prior knowledge, a power
stream can be generated by Monte Carlo (MC) simulation. In|[74|, TOU data is
used again, and nine synthetic activity patterns are defined. A non-homogeneous
Markov Chain is used to model the turn-ON events of each activity. Duration and
ON events are sampled randomly from the estimated distribution. In [62], activity
probability is also estimated from TOU data and other extraneous data, so that is
non-homogeneous. In |75], estimation of activity probability patterns is based on
TOU survey, duration statistics, and a more elaborate model.

Existing methods that employ the Bottom-Up approach provide great insights
into end-use profile models of commercial buildings. However, there are still several
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remaining issues:

e Previous works mostly used TOU data to obtain indoor activity probability,
and then activity was converted to appliance pattern through an empirical
model. This is sometimes problematic, since conversions are usually not rigor-
ously justified.

e In commercial buildings, variation of power consumption among buildings is
not of significant interest, since the infrastructures of different buildings can sig-
nificantly vary, whereas variation among users becomes especially interesting,
since it can indicate performance limits of a building’s power system. However,
the latter is not thoroughly studied in previous work.

e Cross-correlation among appliances is not directly captured in the past. A ran-
dom Markov Chain model could under-estimate the demand. Moreover, most
previous research mentioned modeling shared activities, whereas validation of
these models is difficult.

In this chapter, we will directly estimate probability patterns of appliances in
commercial buildings and develop a model based on the turning-ON/OFF probability
of appliances to quantify the variation of building end-use power profile. We will also
address correlation between appliances with a correction term.

This chapter is organized as follows: In Section 3.2, the big picture of the Bottom-
Up model is discussed. In Section 3.3, the Statistical Parameters in the model are
investigated. Sections 3.4 review the models of shared appliances. In Section 3.5, a
conclusion is given.

3.2 Big Picture

A Bottom-up model can be viewed as a gray-box that takes two types of parameters,
as shown in Figure Bl

One is called the Statistical Parameter, which describes statistical properties of
appliances (e.g., ON/OFF probability, presence probability, duration statistics, etc.).
This type of parameter is usually extracted from appliance usage data collected by
wireless sensor networks, and it can be learned in one building and extended to other
buildings with similar profiles. For example, if a model is built for student space, it
can be extended to other school buildings.

The other type of parameters is called the Field Parameter, which includes the
number of occupants, number of computers, monitors, printers, microwaves, etc.,
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Figure 3.1: Parameters in Bottom-up model: Field Parameters and Statistical Pa-
rameters. Level-III model is the most complex, and Level-II model is less complex;
Level-1 is the simplest but low accuracy.

depending on building structure and utility. These parameters are collected from
field study or empirical knowledge and will be evaluated in the CREST center, the
SWARM lab, and the fourth floor of Sutardja-Dai Hall, all at UC Berkeley, as will
be discussed in more detail in Chapter 4.

Based on the complexity of the Field Information, we can further divide the
models into Level-I model, Level-II model and Level-III model.

e In the most simplified Field Parameter setting, we only know the building
functionality. Occupant characteristics (e.g., the number of occupants, number
of desktop and laptops, etc.) are inferred from building functionality, and we
call this kind of model the Level-I model. Level-I will be most welcomed in
commercial application, but its accuracy cannot be guaranteed.

e As we get to know more information of the occupants, for example, the number
and type of occupants, we are closer to the appliances, and the accuracy could
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be better. The relatively complex model is called the Level-IT model.

e The Level-IIT model directly contains parameters about the appliances, such
as the number of desktops, laptops, monitors, printers, microwaves, lamps, etc.
However, though demonstrating great accuracy, these data are relatively costly
to collect, or even unavailable, especially for early-stage power system design.

To achieve better accuracy in this work, only the relative more complex models,
in other words, Level-II and Level-III models, are considered.

3.3 Statistical Parameters

Previously, people use different types of statistical parameters in their end-use model.
We can roughly divide their methodologies into the following three modules: rate-
of-use statistics, duration statistics, and ON/OFF-probability statistics.

To facilitate the analysis, for an appliance, given that we have d days of obser-
vations, we define St(i) as its state of i-th day, i.e. St(i) € {0,1} and 1 stands for
ON.

Rate-of-Use Statistics

Rate-Of-Use (ROU) statistics is a basic model used to describe appliance usage.

Definition 3.3.1 (Rate-Of-Use). Rate-Of-Use (ROU) is the portion of time that the
appliance is ON in each time-of-day:

d
1 N
ROU, = - > 5 =5, (3.1)
i=1

For example, in the 80 days of experiment, the monitor is ON at 12:00PM in 16
days, the ROU would be 16/80 = 0.2 at 12:00PM. The ROU is plotted for monitor,
laptop and desktop in Figure 3.2l Strong daily pattern is observed. ROU indicates
the average energy consumption, but it doesn’t indicate the usage pattern of the
appliance.

Duration Statistics

Duration statistics were used to characterize duration time of each activity [62] [75].
We extracted the duration statistics from sensor data after power disaggregation.
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Figure 3.2: Rate-Of-Use of three types of appliances: monitor (left), laptop (middle)
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Figure 3.3: Histogram of duration statistics in minutes of three types of appliances:
monitor (left), laptop (middle) and desktop (right). X axis is in 5 minutes interval
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The results are shown in Figure B3] for office appliances. The limited capability
to model the turn-off appliance events is a potential problem. Another issue of
duration statistics is that they are usually time-dependent, which makes them costly
to estimate.

ON/OFF-Probability Statistics

Another module focuses on the empirical ON/OFF-probability [62|[75] (i.e. the
probability of turning-ON/OFF at each time step).

Definition 3.3.2 (ON/OFF Probability). For certain appliance at t, the empirical
ON/OFF probability is defined as PO~/ OFF :

ﬁON _ Z;n:l St(J)(l - St(J—)l) gt — StSt—l
A =

, = — 3.2
Z;nzl(l - 515(1)1) 1 =54 ( )
PpOFF _ 2 Sf@l(l B Séj)) S — 515 (3.3)
¢ = m ; = - .
Zj:l St(]—)l St-1

with which we can do MC simulation to obtain the state sequences as a Markov Chain
of all the appliances that we are interested in.

Definition 3.3.3 (Markov Chain). Markov Chain is a special case of a stochastic
process. A stochastic process is a time sequence of variables Sy, S5, -+ ,S;, and their
joint probability can be written as:

Pr(Sy, Sg, -+, S¢) = Pr(S) ﬁPr(SZ-|SZ-_1, e, S)
i=2
A stochastic process is a Markov Chain (first order) if it follows the Markov
property, in that Pr(S;|S;_1,---,51) = Pr(S:|Si—1), and we have:
Pr(Sy, Ss, -+, S;) = Pr(Sy) ﬁ Pr(S;|S;-1) (3.4)
i=2
Here Pr(S;]S;-1) can also be viewed as transition probability. If they are consistent

for all the i’s, the Markov Chain is called Homogeneous Markov Chain; otherwise it
s called Non-Homogeneous Markov Chain.

Definition 3.3.4. After we run J MC simulations, we defined the simulated state
in the j-th MC run as S, j=1,---,J.
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Compared to ROU model, the ON/OFF probability model can capture the us-
age pattern [39](62]||75]. Previously, this model is built upon some time slots (e.g.
10~SAM", "8~9AM", "9~11:30AM", "11:30~1:30PM", "1:30~5PM", "5~7PM",
"7~9:30PM" and "9:30PM~0AM"). The ON/OFF probability is assumed to be
constant within each time slots.
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Figure 3.4: Time-dependent ON probability of three types of appliances: desktop
(black), monitor (red) and laptop (blue)

The time-slot-based ON-probability ﬁtON is shown in Figure B.4], for desktop,
monitor and laptop. Note that in Figure the desktop pattern seems to be at
constant line, which is due to the limited number of desktops in our test space,
and because some of them are kept on overnight (i.e, their PP¥¥ is small once they
are ON). To simulate turning-ON, we use the probability of PON/TsLoT, in which
Tsprot is the length the time slots. For example, at time interval "8~9AM", if we
use 5 min interval step, Tspotr = 12.
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Figure 3.5: ON probability inside each time slot for monitor

One concern about the time-slot-based model is that the probability inside each
slot is not captured well. According to a simple Poisson model, assuming independent,
events within each time slot, the ON events are geometrically distributed. However,
as shown in Figure where monitor is taken as an example, most events do not
follow the model. The pattern of laptop and desktop can also demonstrate such
discrepancy.

Appliance ON/OFF Probability Model

In our work, for statistical parameters, the appliance high-resolution ON/OFF prob-
ability model is used.

e On one hand, the ON/OFF states of the appliances are used, instead of the
Time-Of-Use data in previous work. Hence, there is no empirical inference
involved.
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e On the other hand, the data collected in wireless sensor networks are used,
which has resolution of up to one second per sample.

In our chosen model, we use an appliance-data-driven high-resolution ON/OFF
probability model.

e We extract the probability that an appliance is present in some day, marked as
PprEs, as well as the probability that an appliance is ON overnight, marked
as Pintr. Then, from the wireless sensor network, we collect appliance power
stream and build the model based on appliance information, instead of on
activities (as presented in other works, in which an often-problematic activity-
to-appliance transformation is needed @])

e 4A¢ Both ON/OFF probabilities are included and formulated in a Markov
Chain framework, whereas duration statistics are not included. Therefore, we
can better model the appliances’ turning-OFF events.

pOFF
P;

1-pPrF pON 1-—pov

Figure 3.6: FSM interpretation of the model

e Instead of the time-slot model in Figure[3.4] we use a non-homogeneous Markov
Chain model for both ON/OFF probabilities. For each appliance, the model
can be interpreted as a two-state Finite State Machine (FSM) at each times-

tamp (Figure [3.0]).

Power Estimation

Based on the FSM model, power consumption of a given space is estimated by
running a Monte Carlo (MC) simulation to generate power sequences aggregated
from individual appliances.
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The MC-simulated appliance ON/OFF sequences (a) can capture non-homogeneous
stochasticity of appliance usage patterns and is easily extended to analyze new tech-
niques and policies, and (b) statistically converges to the ROU model in estimating
states, which means this method is essentially reasonable in end-use energy profile
modeling.

Theorem 3.3.1 (Convergence of MC Simulation). If g{n is the j* MC simulated
time series from the FSM as in Figure[3.8 and we have J such MC simulations, then
E[S > 5t = St, in which Sy is the ROU, and lim o Var(4 >.;5¢) = 0. In other

words, MC' simulation converges a.s. to ROU.

Proof. Let §1, St be the states at different time steps from MC simulation. As-
sume that the states follows Markov Property, s.t. Pr(S,|S,_1,- -, S;) = Pr(5,|S,_1).
Then by the chain rule of expectation [63], we have:

E[S\t] = E[E[§t|§t—1“ (3.5)
Since we have:
E[S,|S;_1] = Pr(S, = 1|5,_1)
= PPN(1 = 8,) + (1= P25,
_ ﬁtON + (1 i ]’5t0N B /PStOFF)gtil (3.6)

Let us define G; which follows as:

Gt —1_ ﬁtON i ]’_—;tOFF _ StSt—l - E ' St—l
(1 = Si-1)Se-1
Then, combining (3.5]) and (3.6) we obtain:
E[S,] = PON + G,E[S,_4] (3.7)
Therefore, we can iteratively write E[S)] as:
t t
:PtONJrZPONHG +E[S ] G (3.8)
T= =T =2

The initial state at ¢ = 1 in MC simulation is generated from a Bernoulli process
= E[S)] = 5;. We put the expression of PPN 9FF as @2) and (33) in BX).

t t t
ﬁzoNHGi—f—EHGi:EHGi (3.9)
=3 =2 =3
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Then we have the following equation:
. t . t t
= PN+ PONT[Gi+ S [[ G
T=4 =T =3
Therefore, we can simply equation (3.8) as:
E[S\t] - ﬁtON + Stfth

S-SSo | S -85
1—S,41 1 -5

=5, (3.10)

Since /s are all binary sequences, Var(Ag) = S;(1 —S;) and naturally we have

A~

lim Var(— ZSJ = lim Var( 7)—0 (3.11)

J—00 J—ooo J

Thus, MC simulation converges to the ROU. It should, however, be noted that
Theorem [3.3.1] holds only if the ON/OFF probabilities are consistent between simu-
lation and observation. O

Data Sparsity & Kernel Smoothing

The ON/OFF events are always sparse [41], and variance of the estimation is always
high. In this situation, smoothing is needed.

When there are large amount of spikes, the empirical probability function can be
smoothed by a Kernel Smoother to obtain the probability function.

sonorr _ Sy K (1) POV O
! szl K(t Z)

in which K(t,4) is the kernel function. Usually we use Gaussian kernel K(t,i) =
exp (—“—“2) in which & is the bandwidth. The larger the bandwidth, the more

(3.12)

252
smoothing the kernel does. h can be chosen as the plug-in bandwidth (hpi) [71].

Remark 3.3.1. If we use ﬁON/OFF instead of I/D\ON/OFF Theorem [3.3.1 no longer

5ON/OFF

holds. However, under some most basic reqularity condition of the function P, ,

we have the following relationship:

N/OFF N/OFF
lim PO /0 —>PO /0
h—0
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This means, under reasonably chosen bandwidth of the function K (-), the smoothed
probabilities in (BI3) will be reasonable approximation for I%-ON/OFF, and Theorem
[Z.31 will also approximately holds. It should be noted here that a strict analysis on
the condition of the bandwidth would be required to fully understand the performance
of smoothing, and because of the scope of this work, this will be a subject of future
work.

Modeling of Cross-Correlation

In this study’s experimental space, especially for computer-related appliances, we
have 11 monitors, 5 desktops, and 14 laptopsﬂ. Intuitively, we can simulate each
appliance independently and aggregate them to get the full power consumption value.
The mean of the aggregation, as a corollary of Theorem B3], is unbiased. The
variance, however, could be underestimated. Cross-correlation among appliances
needs to be addressed. Here in this study, there are two reasonable assumptions.

e The appliances in the same category (monitors, desktops, or laptops) are the
same typ

e The correlation pattern is homogeneous, which means it is same for every day.

An intuitive way to analyze this information is to generate correlated Bernoulli se-
quences in Monte Carlo simulation [50]. However, for multivariate non-homogeneous
Markov Chain, generation such correlated Bernoulli sequences is difficult and unreli-
able [50]. In this work, we propose a way to correct the variance on the independently
simulated sequences.

For example, let S;; be the state of i-th single appliance, its variance Var (S;;) =
03 we already know, g € {desktop, monitor,laptop} is the appliance type, then the
aggregated variance of p different appliances is:

p p
Var (Z Stﬂ-) = Z aza(i) + Z cov (Sii, St.j) (3.13)
i=1 i=1 i#j

in which a(7) is the type of the i-th appliance, The second term on RHS corresponds
to the covariance between different appliances, and should be added to avoid under-
estimation of overall variation. This term can be extracted directly from historical
data.

! The cross-correlation among lighting and shared appliances are not of significance
2This is reasonable especially for office buildings when occupants have roughly the same sets of
appliances.
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Figure 3.7: ON/OFF Probability in 5 min interval for Monitor, Laptop, and Desktop.
Gray lines: Measurement; Colored lines: Kernel smoothed

Office Appliances: Office Appliances: The office appliances include monitor,
laptop, and desktop. The estimated ON/OFF probabilities for these three types
of appliances are shown in Figure B.7l It is observed that the ON probability
peaks in the early morning and decreases during the day, whereas the OFF
probability peaks later in the day. It should be noted that data regarding
desktop is sparse and ON/OFF probabilities contain more uncertainty. Only
weekdays are included in this study.

Pathway /Room Lighting: Pathway/Room Lighting: Lighting power consump-
tion is a major contributor to a building’s energy profile. In this study’s test
space in Cory 406 at UC Berkeley, there is pathway lighting and room lighting.
Pathway lighting is shared in a large working area and has a more standard
schedule throughout the day. Room lighting has a motion sensor, so it is more
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Figure 3.8: ON/OFF Probability in 5 min interval for Room lighting, Pathway
lighting and Microwave. Gray lines: Measurement; Colored lines: Kernel smoothed

adaptive to occupant behavior. The PowerScout data we collected contains the
aggregated signal of lighting power in seven rooms. For model simplicity, we
will assume that the seven rooms are the same. The result is shown in Fig-
ure 3.8. The pathway lighting has little overnight activity, and the estimation
has more bias, since in ([3.3)), S; is zero for some ¢. These data points are given
a probability of 0.5.

Shared Appliances: Shared appliances include a microwave, a water heater,
a coffee maker, and a refrigerator. The water heater and refrigerator have a
strong periodic pattern and less dependency on occupant behavior. The mi-
crowave and coffee maker show a spike-like pattern. The estimated probability
density for a microwave is shown in Figure B8 Notice that the OFF probabil-
ity is very high, since the duration of each ON event is usually very short, as
compared to our five-minute estimation interval.

Actually, for those appliances, duration is roughly fixed depending on the ap-
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pliance settings. In the next Section, we will discuss an alternative way to
model the appliances, based on a non-homogeneous Poisson Process model.

It is expected that in a larger office building, when more appliances are present,
our proposed model would be more capable to capture overnight patterns.
Moreover, it should be noted that when the building occupancy schematic
changes, the only thing that needs to be tuned is the building profile. As long
as we have a reasonable category of users, we can evaluate the building energy
performance accordingly.

3.4 Shared Appliances

Poisson Process Model

As mentioned in Section 3.5, shared appliances (e.g., microwaves, printers,
coffee machines) usually demonstrate spiking patterns. The duration of the
spike is usually due to a machine’s setting. The bottleneck of the modeling
is, instead, the turning-ON probability of the appliance. Since several people
are sharing this appliance, we would like to filter out an individual turning-ON
probability or other usage characteristic that is independent of the number of
users. That way, we are able to extend this model to another building space.
This work shows a methodology to model the shared appliances and eventually
filter out a usage pattern of a shared appliance from one occupant.

Essentially, we model the usage of an appliance through a Poisson process [63],
with the rate of the process depending on the number of occupants inside a
space. The Poisson Process (PP) models the number of events n; during a [0, ¢]
interval, and n, follows the Poisson distribution with rate A\t as n; ~ Pois(\t)
as: kg
Pr(n, = k) = FG_M
in which A is the rate function. The expectation of the number of events is A,
and the variance is At as well. PP is a memoryless process [63], which means in
the time interval [s, f + s, the incremental events satisfies Poisson distribution
Pois(At) as well:
N

Pr(nigs —ns=k) = 76‘” (3.14)
If we model each user as a PP, and we have [ identical users in total, the
aggregation is still PP as 22:1 ngk) ~ Pois(IAt).
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Non-Homogeneous Poisson Process (NHPP) Model

If the rate function is time dependent A(t), then the process is Non-Homogeneous
Poisson Process (NHPP). For instance, given the rate function at time ¢ as
A(t), the number of events in a small interval [t,t 4+ h| follows n;,, — ny ~
Pois(A(t)h). If we argue that h is one unit of time, then the expectation would
be E[n;in — ny = A(t). Hence, if we assume the number of occupants is also
time dependent function ©(t), then ny, — ny ~ Pois(A(£)O(¢t)h). From this
stand point, we only need to estimate the time-dependent rate function A(¢) in
order to extract an individual usage pattern.

Based on this model, we construct a relationship between the events and the
time dependent rate function A(¢). If we would like to estimation the time-
dependent rate function A(f), we can obtain it through statistical inference.

Bayesian Statistics framework

Based on NHPP model, we can construct the full probability function in
Bayesian framework. Let v(¢) be the incremental number of events at time
t, and let the joint prior probability function for A(¢) and 0(t) as ¢(\(t),6(t)),
we can write the full probability function of n(t), A\(¢) and 0(t) as:

Pr ﬁ e AOIO NP d(A(t), 6(1)) (3.15)

If we further assumes that 6(¢) is the daily number of occupants, which means
it is constant within a day; whereas A(¢) is time-of-day dependent and same for
each day, and let \(t) = A\on(¢) for simplicity, in which n(t) € {n,---,n,} is a
normalized data with 3 7; = p the daily data points, and 6(t) € {6, , 04}
as d the total number of days. Let v be total number of events, v; corresponds
to the number of events w.r.t. the j-th time slots (such that »_ v; = v), and

v® be the number of events on the i-th day, we have:

Pr oc e 0P i 0\ (H n;’f) (H 9;’“’) 0] (3.16)

J

We can use MCMC techniques such as Gibbs sampler to generate sample of
Ao, {n;}—; and {6;}]_;. The prior of Poisson distribution is the Gamma distri-
bution [63], we follow the process as below:

3In 5 min interval data, there are 288 date point every day, so P = 288.
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Time-Of-Day Intensity Function in the Space
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Figure 3.9: Sampling result of A(¢) along the day with 5 min per sample.

— sample \g ~ I'(a* + v, 8%+ p >, 6;), which assumes a prior of I'(a?, %)
— sample 7, - -+, 1, in which 7; ~ Dir(a” 4+ v;) which is the Dirichlet dis-
tribution with prior Dir(a").

— sample 6y, - -- 0, in which 6; ~ I'(a% 4+ v®, 8% + p)¢), which assumes a
prior of I'(a%, 3%).

Results and Discussion

Prior distributions are assumed from rough understanding, and we run 1500
MCMC steps, with another 500 as burn-in period.

The sampling result of A(t) (t = 1,-,p) is shown in Figure The histogram
of Ao in Equation (3I6) is shown in Figure B.I0 for reference. We can tell the
daily pattern from Figure as well as the daily fluctuation in distribution.

The sampling result of §(¢) (actually 6y,--- ,04) is shown in Figure B1Il We
can also obtain the statistical variability from the figure. This indicates that
the sampling method not only can give estimation of the parameters, but also
give estimation of their statistical variability.
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3.5 Conclusion

In this chapter, modeling issues under the Bottom-Up setting are comprehen-
sively discussed. Compared to the Time-Of-Use (TOU) data used in previous
Bottom-Up models, this work takes advantages of the high frequency sampled
data from wireless sensor networks and builds an appliance-data-driven end-use
model. ON/OFF probabilities of appliances are extracted, and a theoretically
unbiased Finite-State-Machine (FSM) Monte Carlo model is developed with
cross-correlation correction. This chapter also briefly introduces work on mod-
eling the shared appliance based on the Non-Homogeneous Poisson Process
(NHPP) sampling method, which can filter out an individual usage pattern
out of ON/OFF states of shared appliances.
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Chapter 4

Bottom-Up End-Use Model: Data
and Experiments

In Chapter 3, we studied the theories and settings of the Bottom-Up end-
use model and demonstrated that the Bottom-Up model can be re-used in
other similar buildings to estimate end-use power consumption. This section
continues this line of study by pulling everything together and verifies model
performance in a real end-use modeling application.

In this work, we make use of the Bottom-Up model structure shown in Chapter
3, and only Level-II and Level-I1II models are focused on here. For convenience,
the proposed model’s schematic is shown again in Fig. 4.1.

In Section 4.1, the data collection process is discussed. Then in Section 4.2,
a brief discussion about the power disaggregation technique used to filter out
individual appliance ON/OFF states from aggregated raw power sequences
follows. Finally, in section 4.3, experimental results are shown as happened in
Cory Hall and Sutardja-Dai Hall at UC Berkeley, followed by the conclusion in
Section 4.3.

4.1 Data Collection

Power consumption of the appliances is collected through a large-scale wireless
sensor network (WSN). WSNs have been implemented in many different sce-
narios to facilitate system estimation, conditioning, and diagnosis [39][45][38].

— DENT meter [17] is used to collect whole space real-time power consump-
tion data. The DENT meter has 18 channels, each one monitoring a
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Figure 4.1: Parameters in Bottom-up model: Field Parameters and Statistical Pa-
rameters. Level-III model is the most complex, and Level-II model is less complex;
Level-I is the simplest but rather hard to achieve.

subset of appliances, e.g. plug loads, lights, kitchenware etc. The DENT
meter data is handled in CoreSight from OSTsoft!.

— ACme sensors are used to collect real-time power consumption of each
occupant “ﬁ], with resolution up to one second per sample. The ACme
meter data is handled using the sMAP protocol |[L6]. We implement one
ACme sensor for each occupant to optimize cost and experimental per-
formance. The states of each appliance are filtered out by the power
disaggregation algorithm from the aggregated occupant-level power con-
sumption, as will be illustrated in the next section [37].

'"http://picoresight.osisoft.com/
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4.2 Power Disaggregation

In Bottom-Up models, we need to collect power consumption data of each
individual appliance. However, deploying sensors to each appliance will be
costly and raise issue in privacy and stability, especially in modern commercial
buildings.

On one hand, modern buildings demonstrate sophisticated functionality and
increasing number of appliances, which makes large-scale sensor deployment
costly. On the other hand, users may complain if many sensors are deployed
in their space. Finally yet importantly, as more sensors are included in the
network, communication may suffer from stability issues, and thus data quality
is less guaranteed [45].

For all of these reasons above, a low-cost, non-intrusive monitoring is preferred
that can measure power consumption of appliances without the direct attach-
ment of power meters [76]. The most common solution to this issue is to use
a power strip to aggregate all the appliances of each user and attach it to a
power meter to measure aggregated power. Then, we apply power disaggre-
gation methods to the aggregated signal to obtain signals of each individual
appliance, as shown in Figure With the appliance-level consumption re-
covered, we can build a Bottom-up model for the building space under study.
Here is a mathematical definition of power disaggregation:

Definition 4.2.1 (Power Disaggregation). In power disaggregation, we decode
the ON/OFF state of individual appliance from an observed aggregated power
stream. Let p;,Vt = 1,---  n be the aggregated power stream from p appliances.
Let S; be the state vector of the n appliances at step t. QOur task is to infer
S; from p;. Sy is a vector of n binary variables, one for each appliance, i.e.
S € {0,1}", in which 1 for ON, 0 for OFF. There are in total 2P combinations
of ON/OFF states.

Various existing power disaggregation methods are studied in this section, along
with a comparison of their performance followed by proposed new algorithms
based on sequential hypothesis testing.

Related Work

Typical solutions to Power Disaggregation are either based on a Hidden Markov
Model, or on Edge-based Model.
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— Hidden Markov Model (HMM): The aggregated power stream is modeled
as a Hidden Markov Chain (HMC), with hidden states as the ON/OFF
states of individual appliances, as shown in Figure [4.3 [.]

Firstly, the aggregated power p; is a Gaussian distributed variable con-
ditioned on the appliance state vector s;. If we assume that the power
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consumption of the i-th appliance is approximately Gaussian distributed
as N'(W;,02), and let w = {Wy,--- W, } and ¥ = {0?,--- , 02}, then the
aggregated power follows:

pils ~ N(s"w,s' %) (4.1)

Secondly, the sequence of s; with t = 1,--- |T" in Figure is modeled as a
Markov Chain (MC).

Definition 4.2.2 (Markov Chain). Markov Chain is a special case of a
stochastic process. A stochastic process is a time sequence of variables
S1, 59, -+, S, and their joint probability can be written as:

t
Pr(Sy, S, -+, ) = Pr(S) [ [ Pr(SilSizy, -+, 51)

=2

A stochastic process is a Markov Chain (first order) if it follows the
Markov property, in that Pr(S;|S;—1,---,51) = Pr(S;|Si—1), and we have:

t
Pr(Sy, S, -+, Si) = Pr(Sy) [ [ Pr(Si]8i-1)

=2

Here Pr(S;|S;—1) can also be viewed as transition probability. If they are
consistent for all the i’s, the Markov Chain is called Homogeneous Markov
Chain; otherwise it is called Non-Homogeneous Markov Chain.

For convenience, we note that:

Pr(st|st,1, s 781) =11 (42)

St—1,St
Based on (4J) and (£2]), we estimate the state at each step, based on
Maximum Likelihood Estimation (MLE) estimation of s;:

s; = argmax Pr(s; = s|p1.7) (4.3)

Since the search space is 2", there will be an exponential explosion w.r.t.
n. However, if we assume that only one appliance is switching at each
step, the incremental state search space from s;_; to s; is only n. This
assumption is reasonable with manually switched devices and a sampling
rate at the sensor node higher than 1 sec/sample.

Equation (£3) can be solved by a Viterbi algorithm [25].
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Definition 4.2.3 (Viterbi Algorithms). We note Li(s) = Pr(s; = s|p1.7)
as the likelihood function and we use s;—1 pr = Vi(s¢) to store the most
likely state back at step t — 1 given that the current state at t is s;. Then,
it is argued that L(s) and V(s;) can be obtained from the terms from step
t—1:

Li(s) = maxy L;_1(s")ly s Pr(p|s: = s) (4.4)
\I]t(st> = argmaxy Ltfl(S/)Hs’,st .

The above problem is solved sequentially, as first estimate the state at the
last step sy = argmaxy Lr(s'), and then backtrack for the best estimate
at each step as s;—1 = Vy(sy).

HMM gives stable state inference, and many existing algorithms on power
disaggregation are built upon this basic model. Wang et al. [72] treated
power disaggregation in a convex optimization framework using sparse
constraints. [59] solved the HMM by the Extended Viterbi algorithm and
considered only the major power consuming appliances. The sampling
method is widely used to deal with the exponential explosion issue. In
[41](44]]43][34], statistical inference of the joint distribution is based on
Factorial HMM [28], though most of the sampling methods have compu-
tation issues.

However, the standard HMM does not have a good way to handle the fact
that states may stay unchanged for long time intervals. This is significant
for our problem, since many appliances, such as a lamp or a monitor, will
have very different duration characteristics, while HMM models the dura-
tion as a Geometric distribution [44]. Some extensions of HMM have been
proposed to address this issue. In |27], the persistence of state (stickiness)
is guaranteed by introducing a constraint on the Markov chain model.
Whereas in [44], [43], a Hidden Semi-Markov Model is used to model du-
ration statistics. However, in most cases, we need a long training period
of time of this model, since ON/OFF events of individual appliances may
not be that frequent.

— Edge-based Model: An intuitive way to get around duration modeling is
to focus only on the ON/OFF edges, in an approach we call the Edge-
based model, as shown in Figure .4l Edge-based model applies a change
detection algorithm to track the edges and trace the source based on
statistical learning methods [4]. Usually, we track the mean (5;) and

variance (0?) of the aggregated power over time using an exponential
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Figure 4.4: Schematics of Edge-based method

moving average filter such as:

{ Ho = 523;1—1 Dr €Xp (_TT_t) (4.5)
0f =2 Xt (e — o) exp (—7) |
where w is the decay factor and d the window size. Then, we look at the
deviation of the current power p, w.r.t. the mean and variance ﬂ] Edge-
based model originates from the early work on NILM @] A review can
be found TZ(%E] Algorithms that are studied include Linear Discriminant
Classifier [20], Bayes classifier [@], Neural Network ﬂﬂ], etc.

Around the edges, there are several transient features that can be ex-
tracted from the active power or the reactive power readings, the latter
often having unique harmonic patterns when observed at high enough
sampling rates ] Such high frequency transients can help distinguish
between, for example of a coffee-maker and a chandelier, especially when
focusing on their reactive power patterns.

In general, high frequency sampling will also be useful in distinguishing
between appliances, since larger data sets, aided by the Law of Large
Numbers [1], will generally be better for distinguishing among different
sources. The obvious tradeoff here is, of course, that higher sampling
rates would typically imply higher instrumentation and computational
cost.

Existing Challenges

In general, the existing challenges are from the noise and the non-stationarity.

— We have the assumption that the power consumption is essentially a Gaus-
sian random variable. However, in a real power system, the noise is an
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Figure 4.5: Impulse noise observed in power consumption data

approximate Gaussian noise plus large amounts of spikes or impulses. In
Figure L35 we can see that the spikes apparently deviate from Gaussian
distribution and can be as high as 5~10 Watts. This deviation from Gaus-
sian noise would cause unexpected trouble to the performance of a power
disaggregation algorithm.

— Another assumption is that the power consumption is stationary. An
appliance with multiple levels of power consumption curve can be modeled
as a Gaussian mixture. However, many power consumption curves follow
temporal trends or fluctuations, as shown in Figure We call this
phenomenon non-stationarity. This would make the traditional power
disaggregation fail.

In this work, we will be focusing on addressing those issues. A robust sequential
test-based method will be proposed.

Sequential Test Based Power Disaggregation: Theory

From the statistics perspective, edge detection is inherently a hypothesis testing
problem [7]. The null hypothesis is no change happened (Hy), and the alternative
hypothesis is change happened (H;). Hypothesis testing for change detection has
been widely studied before [4]|7]. Usually we design a test statistic 7'(z). If and only
if T'(x) > A\, Hy is rejected; whereas if T'(x) < A, we still keep Hp, in which A is the
threshold. To evaluate the test, we use the power of the test and the False Positive
Rate (FPR).
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Figure 4.6: Non-stationarity observed in power consumption data, in both periodic-
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Definition 4.2.4 (Power of Test). The power of a test (8) is defined as the prob-
ability that it will correctly reject the null hypothesis. Mathematically, it is formed
as:

p=Pr(T(x) > c|H) (4.6)

Definition 4.2.5 (False Positive Rate). Moreover, we define the False Positive Rate
(FPR), which determines the error rate of a hypothesis test as:

a =Pr(T(x) > c¢|Hyp) (4.7)

The test statistic T'(z) determines the power and error rate of the test. In [7],
it has been argued that within all the test statistics, Neyman-Pearson framework is
the most powerful.

Definition 4.2.6 (Neyman-Pearson Test). Let the probability density and parameter
be fo(x) and Oy for Hy, respectively, and fi(x) and 0y for Hy, respectively. The N-
P framework ensures that the Uniformly Most Powerful (UMP) test given certain
False Positive Rate (FPR) is achieved by using Probability Ratio as test statistic, i.e.

T(x) = ;;Ez; The result of the test (noted as a 0/1 variable 6(x)) follows:

5(z) = { 1 if T(z) >\ i.e. reject Hy (4.8)

0 if T(z) <X i.e donotreject Hy

where the value of X is determined from the constraint of FPR o = Pr(T'(x) > A\ Hy).
Howewver, the power of the N-P test depends on the sample size of the input data x,
which limits the performance of the test.
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Definition 4.2.7 (Sequential N-P Test). The sample size issue can be solved by the
sequential version of the N-P Test, knows as the Sequential Probability Ratio Test
(SPRT). In this framework, the likelihood function is incrementally updated after

every new sample arrival [5], given z™ = {Xq,--+ , X, }:
fi(a") 1 fi(Xn)
L(z") = log =L(z""") + log 4.9
(=) fo(z™) ( ) Jo(Xn) (49)

where reject Hy if L(z™) > a and reject Hy if L(z™) < 8, where a and B are two
constants. If a > L(z™) > 5, we continue to accept new samples till a decision can
be made.

SPRT simulates the way human makes decisions. One makes decision if one has
enough confidence and will continue to receive information if not. In SPRT, we do not
need to pre-determine the size of the test. Instead, the size is adaptively determined
based on the observations. Even better is that SPRT requires fewer samples than
standard non-sequential N-P test given the same FP Rate constraint. The expected
number of samples for certain FP rate « is given as [60)]

gon |
E(N|Hy, H) = athify  for Non-sequential
in which D(fo|f1) is the Kullback-Leibler (K-L) distance and C(fy|f1) the Chernoff
distance. For Gaussian variable, the K-L distance is usually greater than Chernoff
distance. Therefore, SPRT needs fewer samples to reach a decision.

The optimality of the sequential test motivates us to formulate the power disag-
gregation problem based on it.

Now we move on to multiple-hypothesis test. If we have one null hypothesis
and k alternative hypotheses, from [7], we should compare one hypothesis with all
the other choices. Suppose that the j** hypothesis has a prior mj, we can write the
posterior probability of the j** hypothesis as:

’ .
ijo mi [y fir(X)
For computation purpose, we use its inverse as the test statistic. Decision is made

towards the ;% hypothesis if the threshold corresponding to the j** hypothesis, which
is noted as Y, is exceeded. Otherwise, more data are sampled:

(4.10)

{E(N|HO,H1) ~ 2@ o Sequential

p=

F'(j) = 17 < Xj (4.12)
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The algorithm works as in Figure [4.7(a), in which F*(1) exceeds the threshold,
whereas F7'(2) goes to the opposite direction. The threshold for the j* hypothesis is

-1
calculated as x; = « ((5j D 7;-’:) , in which §; = minj; D(f;|f;/) [2]. The number
of samples we need to reach a decision is:

The second issue is to locate the edge efficiently. Usually, exact edge location is
not known a priori. If we assume the edge is at time 7. Then, the accumulation
of the probability ratio functions in Equ. (12) will start from 7, and the number of
sample n will be 7 dependent:

n(r) =inf {t > 1, SL(j) < 4;,Vj} (4.14)

As we have discussed before, the functions F(j) will only move toward threshold
when its hypothesis is the truth. Thus, if a guess is ahead of the true location, the
function will move away from threshold for a while; whereas if the guess is behind
the true location, the function will have a late hit to the threshold, as shown in
Figure L7(b). Therefore, the exact location will be determined by the function that
firstly hit the threshold, as:

n = inf n(7)

For Gaussian distribution, the density decays very quickly for outliers. This is
not preferable from a numerical standpoint. The log-likelihood function is more
promising. Thus, the original formulation is modified as follows:

N(7) = inf {F!(k) < x&, Yk}

t>1

¢
. Ji(Xi Xk
~ g? {i%_T max log (X < log ?,‘v’k‘ (4.15)

The first approximation is to relax the left side of the inequality and transform
it into log-likelihood ratio, while the second puts the maximum inside the sum and
takes the maximum at each step, hence will make the test robust to noisy data (i.e.
"spikes" that frequently appear in power stream data).

The MSPRT originates from the Edge-based model. However, by sequentially
considering the density function, MSPRT borrows ideas from the probabilistic HMM
and it appears that it combines some of their advantages.
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Figure 4.7: Demonstration of MSPRT: (a) Log-likelihood function evolution; (b)
Edge positioning

Sequential Test Based Power Disaggregation: Results

The k-hypotheses in MSPRT can be used to test the status of k different appliances.
By sequentially applying MSPRT to the power stream, we can find the right hy-
pothesis, hence the right switching appliance. Thus, MSPRT can be used in power
disaggregation applications. We will discuss this more in this section and compare
MSPRT with HMM and the Edge-Based Model.

It is also worth noting that to use MSPRT in the power disaggregation applica-
tion; we need to know in advance the appliance profiles that connect to the sensor
node. This is usually done by learning from a period of ground-truth data. Apart
from that, MSPTR does not ask for extra parameters compared to that of HMM
or Edge-based Model. For the situation in which some appliances can have multi-
ple states, these states can be transformed into virtual appliances, which presents a
similar problem as before.

Pseudo-realistic power stream is used in this study’s analysis. Firstly, a set of
real data was collected by measurement. Several meters have been deployed in 550
Cory Hall at UC Berkeley collecting power streams of plug-in loads. Each appliance
has its characteristics profile, and some appliances, such as a laptop computer, have
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a non-stationary pattern, as illustrated in Figure [L.8l

The data collected by measurement has limited stochasticity, so white Gaus-
sian noise and/or impulse noise was added to introduce randomness. By tuning
the noise parameters, the potential performance limit of different methods can be
benchmarked. Thirty Monte Carlo simulations were performed at each setting of
parameters.

To evaluate the model performance, one criteria we used is the Detection Error
Rate (DER), which is the gap between the detected and the true number of edges,
ie.:

DER — Ndetect — Ntrue (416)
Nirue
Another one we used is the LDA score, or F-score [41]|. LDA score integrates the
Precision and Recall scores. Precision is given by

TP

Prec — ——
T TP L FP

in which TP is True Positive rate, FP is False Positive rate. Recall is given by:

TP

Rec = 757N

in which FN is False Negative rate. The LDA is eventually given by:

2Prec x Rec
LDA = Prec 4+ Rec (4.17)
Therefore, the efficacy of the various methods will be judged in terms of achieving
low DER and high LDA values.

In this study’s simulation, one desktop computer, one computer monitor, and
one laptop computer were included, as these are the most common appliances in
a typical office building. We also included a water heater with a pump for water
filtering. The patterns for the five appliances are shown in Figure 4.9 Note that
non-stationary time series is also considered here (e.g., in the left figure). Non-
stationarity definitely bring about extra challenge, and in this work, it was handled
by considering the dynamic time series model.

There are two groups of study in this section. In the first group we only consider
Gaussian random noise, and the data is modeled as p; = h(s;) + z; with h(s;) being
the state-dependent clean signal, and z; being the Gaussian noise with variance

o2. The impact of noise is investigated by tuning o2 from 1 to 256, based on the

z
measurements. The state duration is modeled as Gamma distributed [41], and it was

assumed that at each step, one appliance switches at most.
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Figure 4.9: Simulated power pattern for five devices

The three methods under study in this section are as follows: the MSPRT, the
HMM, and the Edge-Based Model. The simulation results for these three methods
are summarized by showing the LDA in Figure [£.10, and the DER in Figure [£.11]

In terms of LDA for the laptop and monitor, there is a drop in LDA above
a certain noise level for the Edge-Based Model. For fixed sample detection, the
expected number of samples needed is following equation (LI0). If this number
is over the test sample size (which increases as the noise level increases), then the
changes could be missed. MSPRT adaptively learns the test samples size, and HMM
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Figure 4.10: Monte Carlo Simulated LDA results for the five appliances as a function
of Gaussian noise amplitude, under the three models

tunes itself by introducing state transitions. Thus, they do not have the abrupt drop
in LDA, as shown in Figure [L.10, though MSPRT is slightly better.

In terms of DER, MSPRT is the most accurate method, since the state changes
only after the edge is detected and the sample size can be self-tuned. The edge-
based model suffers a sudden increase of DER at high noise levels because it is
non-sequential, whereas HMM is worse in DER compared to MSPRT, since the state
stickiness is not well modeled in HMM.

The impact of impulse noise was studied in the second group. Here, we model the
data as p; = h(s;) + 2: + Mw;, where w, is the impulse noise term with variance o2 >
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Figure 4.11: Monte Carlo simulated DER as a function of Gausian noise amplitude
for the three methods under study

2

o2, and A € 0,1 is a Bernoulli process that models the impulse noise probability.

The impact of impulse noise was investigated by varying noise variance o2 as well
as the Bernoulli process probability Pr(A = 1). Based on measured data, the range
of 02 was set from 50% to 150, and Pr(\ = 1) was set to be from 0.02 to 0.5. The
only focus here is on MSPRT and HMM, since these methods give better average
performance.

The LDA and DER of MSPRT and HMM are shown in Figure I3l Figure [4.14]
and Figure .15l They have similar performance in terms of LDA, and MSPRT, not
surprisingly, has better DER than HMM. However, even for MSPRT, the DER goes
beyond 100% as noise-level increases.

It is well known that tests assuming a Gaussian distribution are sensitive to
outliers or impulses [7]. In the presence of impulse noise, both MSPRT and HMM
suffer from degradation caused by the outliers. Therefore, it is necessary to introduce
a robust model. This is found to be most efficient for MSPRT.

Several distributions can model data sets that either have longer-than-Gaussian
tails, or are skewed. Examples include the student t-distribution or the Gamma
distribution. In this work, inspired by the Huber Robust Loss Function [32], a robust
distribution that has quadratic decay in its main body and linear decay towards its
tails is introduced. Assuming, without loss of generality, that the data is zero-
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centered and standardized (y = 7-):

ly| + &2 —

~ ¥ _ 3
log fi = = 1{lyl < &} 5 1{|y| > &}

The normalization coefficient of f; can be obtained as:
C =20y {\/27‘[‘ (P(€) —0.5) + 26_%52} X O,

in which ®(¢) is the cumulative density function (CDF) of the standard Normal
Distribution. Thus, the log-likelihood function can be written similar to the Gaussian
case (Yr(j) = U;j)) as log %

A demonstration of the Robust MSPRT (R-MSPRT) is shown in Figure A.12]
From Figure [12(a), R-MSPRT is less sensitive to impulse noise. However, as seen
in Figure L12(b), R-MSPRT is, at the same time, less likely to detect true changes,
even in a normal setting. We need to pay attention to this tradeoff as we choose the
parameters.

We compare the performance of this R-MSPRT with the MSPRT and the HMM
in Figures to Figure [AI5] and we only focus on the first three appliances in
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Figure 4.13: LDA as a function of impulse noise amplitude and impulse Bernoulli
probability for the first three appliances under study, using Monte Carlo simulated
data

Figure The R-MSPRT gives better LDA compared with the other two methods,
and it shows much better DER as well. Actually, R-MSPRT has DER. consistently
below 5% and does not suffer from much degradation as noise variance increases. This
is due to the introduction of a noise that is robust to large deviation. It should be
noted that R-MSPRT has similar computational complexity to the ordinary MSPRT.

A problem of R-MSPRT is that when the observed data is ambiguous, many
samples may need to be processed in order to satisfy the confidence requirement. A
decision can be made before a certain number of samples are reached by a truncated
SPRT [@], which could be a subject for future study.

With power disaggregation techniques, the ON/OFF states of individual appli-
ances can be obtained, and then ON/OFF probabilities used in simulation may be
calculated. In the next section, we will test the performance of our model in Chapter
3 in real buildings.
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Figure 4.14: Monte Carlo simulated DER as a function of Bernouli noise probability
showing the efficacy of the Robust noise model

4.3 Experiments and Results

Model Setting

To make it clear, the Bottom-up approach is built based on the following steps.

e Firstly, the ON/OFF states of appliances are extracted using the power disag-
gregation algorithm discussed in Section 4.2.

e Secondly, the Statistical Parameters are extracted as illustrated in Section

3. The shared appliances are modeled as Non-Homogeneous Poisson Process
(NHPP).

e Thirdly, the Field Parameters are also extracted either in a Level-III or in a
Level-IT model. For accuracy reasons, the Level-I model is not considered in

this work.



CHAPTER 4. BOTTOM-UP END-USE MODEL: DATA AND EXPERIMENTS7

e 3 3 | —HMM
600 & E
| | | | *
g 500 B —MSPRT
S I T N = 9
o AV = S T
S Tt
c 300(----- e R R A
S0 2
T 2000 gl - RRERR
a % 'I' 1 1 1
o
: : ‘ == — R-MSPRT
0 i*.b-l--i-'i"."i' ,,,,,,,,, i
0.62 O.i4 0.26 0.58 0‘.5

Impulsive Noise Probability P(y=1)

Figure 4.15: Monte Carlo simulatede DER as a function of Bernouli noise amplitude
showing the efficacy of the Robust noise model.

Model Training

The model was trained based on ACme power-meter readings during the 2014 Fall
Semester (i.e., 09/01/2014 to 12/01/2014) at UC Berkeley’s CREST Center. The
ACme meters are implemented at an individual level, and power disaggregation tech-
nique was used to decompose the aggregated cubicle level to an appliance level, as
discussed in Section 4. Then, following the rules in Section 3, a Bottom-Up model
based on the stochastic ON/OFF probability was built. As background information,
there are 18 occupants in the CREST space with 3 desktops, 10 monitors, and 11
laptops.

Cory Hall 406 Winter Semester

In the 20144AS15 winter semester (12/28/2014 to 01/16/2015), the CREST space is
much less occupied, with only 3 monitors, 5 laptops, and 2 desktops actively running.
The simulated and measured mean and standard deviation of the power consumption
of the Level-ITT model are shown in Figure[Z.T6l Most of the levels are captured, and
the error in standard deviation comes from the limited data in our study, especially
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for desktop. For the Level-IIT model, much field information is needed, which in most
cases is unreliable. For a new test space, the Level-II model is preferred.

Office Appliances

— Mea. mean \
- — Sim. mean LIy

—— Mea. mean +istd 'l
- - Sim. mean + Ef

power/kW
0.20 0.25 0.30 0.35 0.40
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Figure 4.16: The simulated (Sim.) and measured (Mea.) mean and standard devia-
tion (std.) of the power consumption (in kW).

Sutardja-Dai Hall 4th Floor Fall Semester

The second test was carried out on the fourth floor of UC Berkeley’s Sutardja-Dai
Hall. The schematic of the floor space is illustrated in Figure .17 There were 62
occupants on fourth floor, with 46 of them in cubicles and 16 of them in offices.
There are also three printers and one kitchen.

The second test is for Level-II model, and the difference of Level-II model from
Level-ITI model is that it only takes the number of occupants as input and infer
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the number of appliances based on the possession probability. This probability is
estimated from the fourth floor of Sutardja-Dai Hall, and CREST center space, as
well as SWARM lab in Cory Hall, all at UC Berkeley. There are more than 110
users included. For each individual, the probability of having an laptop is 0.4545,
monitor is 0.6545, and the desktop is 0.2455. Printers are special, for office users,
each occupant has a printer; for cubicle users, each common space has roughly one
printer. Definitely, it should be noted that the computer appliances are still the
major power consumption.

L

kel Faalm

Eebdls

wil JJ =

Figure 4.17: Schematic of CITRIS fourth floor.

I H-LL

Whole-building plug-in measurements were collected during 09/01,/2014 to 12/01/2014,

and a Level-II model simulation was completed. The result is shown in Figure [L.18]
Most of the daytime variation is captured but with an unidentified baseline missing.
This baseline is almost constant and is believed to correspond to the constant server
or processor operation on this floor. Thus, for the Level-II model, adding the num-
ber of processors into the model, apart from the number of occupants, will probably
yield results that are more accurate. However, it should also be noted that such
processors could be task-specific.
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Figure 4.18: Simulated and measured data from CITRIS fourth floor. The uniden-
tified baseline is the measurement minus the simulation.

4.4 Conclusions and Future Tasks

In this chapter, based on the study from Chapter 3, we make use of the Bottom-
up approach to model the building plug-in loads power consumption under different
scenarios.

Power disaggregation as an important technique to filter appliance ON/OFF state
from aggregated raw power sequences is discussed. A new disaggregation technique
based on multiple-hypothesis sequential testing and robust statistics is introduced,
showing stable performance under impulsive power sequences.

The experiment was then conducted in Cory Hall and Sutardja-Dai Hall at UC
Berkeley. The model demonstrates a strong capability to simulate seasonal and
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daytime variation of power consumption in commercial buildings.
For the next step, attention could be given to the modeling and feasibility analysis
of a Level-I model with simplicity and commercial potential.
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Chapter 5

Bottom-Up End-Use Monitoring: A
Dimensionality Reduction Approach

5.1 Introduction

In Chapter 3 and Chapter 4, the modeling issue in Bottom-up approach was discussed.
In this chapter, we will move on to study the monitoring issue. As discussed before,
the advantage of Bottom-up approaches is its coverage of fine-grained individual
power consumption. However, as in other multivariate systems, when the amount of
data scales up, several challenges arise in the efficiency of monitoring, storage, and
the performance of statistical learning algorithms [31]. By providing a more efficient
lower-dimensional reconstruction of the original system, dimensionality reductio is
one of the techniques that can help to overcome these issues [58|.

Among the dimensionality reduction techniques, Principal Component Analysis
(PCA) is most widely known. PCA finds the linear projection of the original data
matrix that explains the largest portion of the variance, known as the Principal
Component (PC). However, when data are not consistently Gaussian distributed,
the linear projected Principal Component is usually not interpretable. For example,
when data are binary, which happens a lot in behavioral science, the linear projection
is usually not binary anymore.

Recently, a generalized PCA framework for exponential-family distributed data
is developed (also known as the ePCA) [12|by formalizing PCA into a generalized
low-rank approximation framework. In the case of Bernoulli random variables, the

! Dimesionality reduction, dimension reduction, dimensional reduction refer to the same thing,
in this work.
2By consistency the streaming data are following same distribution.
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generalized PCA is called Logistic PCA (LPCA).

Moreover, with the explosion of streaming data nowadays, it is also important
to have the algorithm applicable in real-time setting. Running batch mode LPCA
every time when new data point comes in is definitely too costly, and a sequential
version of LPCA would be highly preferred.

In this chapter, we will study the LPCA mentioned before on multivariate binary
data and extend it to a sequential version called SLPCA, based on the sequential
convex optimization theory [80] [64]. The convergence property of this algorithm is
discussed. An application in building energy end-use profile modeling is investigated
based on this method.

This chapter is organized as follows: In Section 5.2, the background and the
detail of the algorithm is given, including PCA, exponential family, and eventually
the sequential LPCA (i.e. SLPCA) which we propose. In Section 5.3, the convergence
property of the algorithm is discussed, followed by the simulation results as well as
the application in energy end-use modeling in Section 5.4. In Section 5.5, conclusion
is drawn.

5.2 Algorithm Framework

PCA as a dimensional reduction technique has been well studied, and our Sequential
LPCA is essentially a generalized incremental version of the classical model.

Principal Component Analysis

PCA is a well-known technique for dimensional reduction for high dimension data.
It is of special importance in high dimensional regression model, and in a variety of
applications, ranging from face recognition to generalized machine learning |70] [31].

Apart from the maximum variance projection perspective mentioned before, there
is another perspective of PCA called the low-rank factorization perspective [68]. Let
X € R™P be p-dimensional data with length n. PCA finds a lower rank matrix
® to minimize certain loss function. In conventional PCA, the loss function is in
Frobenious norm (or squared-error) shape:

min X — O} (5.1)

in which || - || is the Frobenious norm. The lower rank matrix © will contain the
principal components (PCs).

When X € R™P? follows Gaussian distribution, this minimization problem is
essentially maximum likelihood low rank reconstruction [68]. From this standpoint,
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if X follows other distribution, we can also extract the PCs by designing the loss
function as negative likelihood function L(X||/®) = —log Pr(X||®). However, there
are two issues needs to be address.

e The maximum likelihood low rank reconstruction problem is not always as
straightforward to solve as in equation (B.I)). For non-convex loss function,
global optimal solution is not guaranteed.

e Asillustrated before, the low rank reconstructed matrix © need to be consistent
with the original distribution.

Fortunately, when original data X € R™*? follows Exponential Family distribu-
tion, the two issues above can be tackled.

Exponential Family

Definition 5.2.1 (Exponential Family). In the exponential family of distributions
the conditional probability of a value X given parameter value © takes the following

form:
log P(X|©) =log By(X) + XO — G(O) (5.2)

in which, © is called the natural parameter of the distribution. Then we have E[X]| =
VG(0) = g(0) is the inverse canonical link function, and Var[X]| = VVTG(O).

e Log-likelihood function of exponential family distribution is concave with re-
spect to the natural parameter ©, hence the negative likelihood minimization
is efficient.

e Since F[X]| = ¢g(©), we can interpret the Principal Components as g(O).

Example 5.2.1. In the case of Gaussian distribution, the negative log-likelithood

follows
1

L(z[lg(9)) = 5(z — 6)°

It coincides with the Frobenious norm function in equation (B.1).

Example 5.2.2. In the case of Bernoulli distribution, the negative log-likelihood is
the logit function
L(x|[g(0)) = log(1 + exp(—z"0)) (5.3)

where x* = 2x—1 € {—1,1}. In this case, the loss function is a convez function of 6.
However, the minimum could be at infinity. Hence, usually we put a regqularization
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term ’y% there, with the full loss function being L(x||g(0)) = log(l+exp(—x*9))+’y%
Note that for Bernoulli distribution, the inverse canonical link function is g(0) =

m with 0 and 1. Thus, the Principal Components can be interpretable.

Exponential Family PCA

In this work, we will only work on Bernoulli variable, as in the second example, we
replace Frobenious loss in (B.I) by the logit function. For multivariate binary date
matrix X € R™*P  we have:

L(X|©) = Zlogl—i—e vii0u) (5.4)

For a rank-r matrix ©, we can always write it as a product of two matrices
© = AVT where A € RY*" and V € R”*", both rank-r. Thus equation (5.4)
becomes:

L(X|lg(AVT)) Zlog 1+ e @iAV iy (5.5)

The optimization problem in (5.5]) is not jointly convex because of the AVT term.
However, interestingly, from some mathematical discussions [53][1][26], every local
minimum is a global minimum, which is partially because of the interchangeability
between A and V. Local minimum can be obtained from alternating project method,
which means that we solve A with V fixed, and then solve V with A fixed, and iterate
this process:

A" =arg min L(X|g(A(V™HT)) + 3[All%
AeRnXT‘ (5_6)
V* =arg min L(X|g(A'VT)) + 3[IVI[3

VeRpPXT

in which 2||A[|% and 3||V||% are regularization terms.

Equation (5.5]) is marginally convex for both A and V, hence each equation in
(5.6]) is convex and can be solved efficiently by Newton’s method. Without loss of
generality, we mark the local minimum obtained from (5.6) as A* and V* and this
solution is called Batch Logistic PCA (BLPCA) solution.

Sequential Logistic PCA (SLPCA)

As we work with streaming data (n is not fixed), A € RY*" changes in size as n
increases, though the dimension of V is still fixed. It would be too costly to update
the whole A matrix each time when we have a new data point.
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Conventionally as we have accumulated loss functions L(w) = >, L;(w) and w
fixed in size, we can make use of gradient descent to update w sequentially:

w' = w'"™ — nAL (w1 (5.7)

However, A matrix in our case is not fixed in size. Hence, we choose to do a
further approximation. At each step ¢ when a new data comes in, we only look at
the t-th row of A, which we note by a;, t = 1,---,n. Since the loss function in
equation (5.3) can be decomposed by the summation of a loss function of each row of
A, we only optimize over the loss functions relevant to that row (a;), called L;(a;, V):

Li(ay, V) = L(x[[g(a, V")) = Z log(1 + eiz:j(AVT)tj) (5.8)

J

and note that the total loss function is the aggregation of (B.8)):

Lxilg(AVT) = > Li(a;, V)

This method is similar to [54]. At each time ¢, instead of working on the full A
up to step ¢, we only solve for the current element a;. We mark the solution as a;.
As for V, at each step we optimize it over all the row-level loss functions up to t,
and we mark the solution as V*).

In this algorithm, for t =1,--- n:

a, =arg rglelﬂg Ly(a, \~/'t_1) + %Ha”%
<, : . ~ \ ) (5.9)
\% :arg\r}gﬂ?p 2521 LS(asaV)+§HV”F

The one for &, in (5.9) is easy to solve with a Newton’s method. The one for V*
in (0.9) deal with a target function increasing in size. However, we can still make
use of the stochastic gradient descent method as in equation (5.1).

Vt = \N/'tfl - nthLt(gta \N/'tfl) (510)

where 7, is the step size. The choice of step size 7, deserves some discussions.

This method is called Sequential LPCA (SLPCA), and we will investigate the
convergence property of this algorithm in the next section. The full SLPCA algorithm
is shown below in Algorithm 1.
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begin

Input: data X € R"?, X* =2X — 1€ {-1,1};

Initialize: V!~ 0,C,v,¢, 43 € (0,1), a;

for t=1,....n, L&) = L&, V&) + MAE go

Set &, = 0, A = VI,(&,) (V20,(&,)) ' VIL(&,);

while \ > ¢ do

Let A = — (V2,(a,)) " VI(a,), d = do;

while ,(&; + dA) > ,(a,) + adVITA do
‘ Update d = gd;

end

Update a; = a; + dA;

Update A = Vi,(a,) (V20,(3,)) ' VI,(a,);

end

Set 7;;

Update Vi = V=1 — 5, Vy Ly (3, Vi1

end

end

Algorithm 1: Sequential LPCA (SLPCA) Pseudo-Code

5.3 Convergence Analysis

In this section, we will study the convergence of SLPCA with respect to BLPCA
algorithm in terms of some widely-used settings from online statistical learning so-
ciety.

Evaluation Settings
e Batch Loss Function (BLF), use {A*} {V*}:

1 n
BLF = EZLt(a;‘,V*) (5.11)

t=1

e Sequential Loss Function (SLF), use {a,} {V"}:

1 Z" ~
t=1
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e Regret Loss Function (RLF), use {&,} {V'}:

I~ . o~
RLF = — > L@, V) (5.13)

t=1

It is important to note that, the three settings coincide with the BLPCA and
SLPCA problem in Equation (5.6) and (5.10), except the regularization term. How-
ever, because of the term %, the regularization term will be diminishing as n increases.
Therefore, the three settings can be used as the evaluation of the LPCA algorithm.

Moreover, RLF is of more interests since it can sequentially accumulate the loss
functions without waiting til we calculate the last update V".

Convergence Analysis

Lemma 5.3.1. Fort =1,---,n and L,(-) defined in (58), |Vv L r < |a||r, and
IV Lellope < Il

Proof. W.l.o.g., let rank(®) = 1, we have:

*

Vvl =—
[Vv L 1+ exp(af;a,v7)

2
rr.a.0;
[V%/Lt}ij - ( e T))

2 cosh(§z7;a,v]

where §;; = 1 only when ¢ = j means matrix V% L, is diagonal. Since cosh(z) > 1,
hence the norms satisfy |[VvL:||r < ||a]|r, and [|V3 Ll < ]al%- O

Lemma 5.3.2. Let a; be bounded by Q, forVt =1,--- n. Based on (5.13) we have
V=V F < ni.

Proof. From Equation (512), we have |V! — V1| = ;|| Vv Li||r. Since &, result
from a regularized problem in (5.10), so a; is bounded by 2. Thus we have ||V' —
Vi e < ndlladle < ne. O

Lemma 5.3.3. For L,(-) in (58), (a,VaL;) = (V,VvL;). Hence, fort =1,--- ,n,
nyl@lE = (V7 = VvLy) = (V7L V= Vi),

This follows directly from (5.3) and (GI0).
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Lemma 5.3.4. L,(-) and surrogate function Ly(-), as well as their first derivative
VL(-) and Vh(-) are all Lipschitz continuous.

This is indicated directly from Lemma (5.3.0)) & Lemma (5.3.2) and the definition
of Lipschitz continuous [6].

2

opt 48 tn Lemma

Lemma 5.3.5. Fort = 1,--- ,n, if Q is the upper bound of |a||
G32), |VIF < Q3 nd + 29 320 .

Proof. We start from the relationship:

IVE = VR = (IV5 = [V = 20V = VL Vi)
= [V'IIE = IIVHE — 2ne @5

We sum over the LHS and RHS and get:

t t
DVE=V R+ 2y ) nllalF = IVIE - IVOlE

s=1 s=1
For simplicity, assume ||[V||2 & 0, we proved the lemma. O

Theorem 5.3.1 (Proposition 2, [54|). Under the regularity condition of Lemma
34D, and Li(-) a marginally convex function, SLF converges a.s. to BLF.

The Proof has been implemented in [52] and [54], following a quasi-martingale
theory, and use the Bregman divergence under surrogate function as a bridge L;(-).

Theorem 5.3.2. Given step size as 1, = C x t7/% or n, = C, the Regret Loss

Function RLF = L3 Li(a;, V') converges to within a constant to Sequential

Loss Function SLF = 23" | L,(a;, V"), and thus converges to within a constant
of BLF = LY | Ly(a;, V).

Proof. Based on (5.10) we have:

VI = V72 = [V = V12 + 02| Vv L%
—2n(Vy L, VI — V™)
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From Lemma (5.3.0]), Lemma (5.3.2), and ||Vv L||3 < Q2, thus:
n{RLF — SLF} <> (VyL, V™' = V")

t=1

||vn||% - ( 1 1 ) \7 \rt—112 5
< —+ — — V' -V + —
2no ; 2ne  2m H HF 2 T

NE RS ( 1 1 ) P Ui
< + E — — V% 4+ —
2no 2m; 21 H HF 2 n

t=1

e diminishing step size 7, = Ct+~*/2. From Lemma (5.3.35), we have:
Q2Clogn  Q2Clogn

n - 4 \/n
P2y +C) 02

SN

Then lim,, o, |RLF — SLF| < VQE But with reasonable n, the term 9207\/150@
will also be significant. Usually, small C' and ~ can force a lower error bound.
However, small + can result in more steps in optimizing for a;, whereas small
C would make the step size too small, which may not be a good choice if we
want a fast decaying of the error bound.

|RLF — SLF| <

e constant step size 7, = C': For constant step, we have:
|RLF — SLF| < +Q* + Q*C

Similarly, we prefer small small C' and . The challenge of using small C' and
~ has already been discussed.

O

Principal Component Selection Criterion

Conventional PCA evaluates Principal Component (PC) selection by the amount of
variance the PCs capture. In LPCA, this is not working, and we need to find other
criterion.

Since we are maximizing the likelihood function, an intuitive way is to evaluate
the likelihood as below:

L= log |g(65) % (1~ g(6:,))' ] (514)



CHAPTER 5. BOTTOM-UP END-USE MONITORING: A DIMENSIONALITY
REDUCTION APPROACH 71

in which g(6) = (1+ 679)71.
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Figure 5.1: Log Likelihood as a function of the number of Principal Components
taken, based on simulated correlated 10-dimensional binary sequences, with correla-
tion factor equals to 0.8 (upper) and 0.2 (lower).

We can show this from Figure 5.1 which shows the log likelihood as a function
of the number of principal components under different correlation factors.

However, in most cases likelihood function is hard to evaluate. Another intuitive
way is to study the accuracy the PCs carry. As we recover the original data, we
cannot recover the 0,1 multivariate data. Instead, we recover the natural parameter
g(0) = (1+ 679)71, which is a real number between 0 and 1. If the recovery is 0.7,
then there is 70% chance that we will recover the right state. For multivariate data,
we can calculate the average error rate. The error rate function is:

Brr=1-% [g(ez'j)x” (1- g(eij))li)(ij] (5.15)

i?j
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Following the Jensen’s equality, the accuracy function Err is roughly an upper
bound of the likelihood function. We show the result in Figure 5.2l As expected,
for highly-correlated (p = 0.8) sequences, first principal component is enough to
capture roughly 90% accuracy, whereas for p = 0.2, first principal component can
only capture 60% accuracy.

1 19 = k. - 1 = 1 19

©
I
=
oe

0.8
0.6 1
0.4
0.2

P(error|p, X)

[
a

0 1 2 3 4 5 6 7 8 9 10

061 .

P(error|g, X)

0o 1 2 3 4 5 6 7 8 9 10
#of PCs

Figure 5.2: Average accuracy as a function of the number of Principal Components
taken, based on simulated correlated 10-dimensional binary sequences, with correla-
tion factor equals to 0.8 (upper) and 0.2 (lower).
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5.4 Experimental Results

Simulated Binary-State System

Firstly, simulated binary data was used to test the performance of the SLPCA algo-
rithm in a binary-state system. The generation of correlated Bernoulli sequences is
illustrated in [50|. This work focused on the case where rank(@®) = 1, since this usu-
ally demonstrates the best dimension reduction capability. It should be noted here
that the extension to multiple principal components is straightforward, following the
iterative updating rules in [12].

We tried the above on data with P = 8 dimension and length of n = 1000
data points. We initialize V° such that its norm is close but not equal to zero, for
computation and convergence purposes. Fig[5.3]shows the three functions defined in
(EI0) to (BI3); whereas Fig [5.4] shows the key parameters in the sequential steps.
There are some interesting findings.

Firstly, though both SLF and RLF converges at least within a constant to BLF,
the stochastic learning can be clearly divided into three Phases, as shown in Fig[5.3l
Phase I stands for the period when the norm of VY is close to zero right after
the initialization, when L;(a;, V) approaches Plog2 as in Equation (5.8). Phase IT
characterizes the decay of error versus n, whereas Phase III stands for when the error
converges to within a constant independent of n. B

Secondly, ||V!||% increases versus ¢, which means that ||V*'||% behaves differently
from the coefficient in sequential learning of linear model [52]| [54]. Matrix factor-
ization places no constraints for iv/'t, hence cannot guarantee the bound of Vi, From
another perspective, a; is bounded since Equation (.I0) has fixed in size, while V;
not since there is a summation of loss functions. It should be noted that, in Fig[5.4],
a; decreases versus ¢, which could result from (5.9) and is an interesting topic in the
future. B B B

Thirdly, due to the unbounded V?, the term [|[V! — V71| is not o< t~! as in
[52] and [54]. Tt should be noted that the theoretical bound for ||V — V=!|| z under
constant step size could be as low as t~1/2, which could be a result of the convergence
behavior of a; under constant step size.

Last but not least, it is important to mention that the bounds obtained in The-
orem (£.3.2) assume n large enough. However, in many cases the decay of n is not
that fast. Therefore, the effect of n cannot be completely ignored in the analysis.
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Building End-Use Energy Modeling

As illustrated before, Top-Down monitoring of building end-use is usually imple-
mented as a statistical filter. For Bottom-Up monitoring, however, we need to track
multiple-dimensional occupant-behavioral sequences. SLPCA is able to extract a
Principal Appliance out of the multivariate sequences to characterize the whole space
occupant behavior.

As an example field study, we focus on Bottom-Up monitoring of the multiple-
computer-monitors system. The computer monitors are located in CREST space at
University of California, Berkeley. We collect the power consumption of 6 monitors
in 10 minutes interval by ACme sensor networldl through CoreSight OsiSoft system@.
We take five days data, which is roughly 720 data points. The real power sequences
are filtered into ON/OFF states by power disaggregation algorithm [37]. The indi-
vidual as well as the aggregated ON/OFF state sequences are shown in Figure 5.6l
With the ON/OFF states, we then use BLPCA and SLPCA to obtain the Principal
Appliance of the building.

In our SLPCA, we choose constant step size that is short enough to track the
changes as they appearﬁ. We also only consider the first Principal Appliance since
more than 90% accuracy can be achieved. The convergence of the algorithm is shown
in Figure We observe a good convergence for both SLF and RLF. Periodic
fluctuation is observed, due to the periodic transition between day and night energy
consumption, which results in periodical changing of the data model. Moreover, the
online algorithm demonstrates less fluctuation because they adaptively update the
model of the data.

We reconstruct the original data with three sets of variables: the BLF setting
A*; V*; the SLF setting {a;}, V"; and the RLF setting {a;}, {V*}. The results are
compared with the original data in Figure 5.7] (sum of states of all appliances, 1 as
ON and 0 as OFF). Interestingly, SLF setting gives better approximation to BLF
setting since it is more adaptive in terms of V! and can better catch the periodic
pattern of the original data. On the other hand, BLF setting uses the V™, which
could give unpromising result if data is non-stationary.

http://acme.cs.berkeley.edu/

“http:/ /picoresight.osisoft.com/

Sone could presumably also leverage the likely periodic behavior of the data by appropriate
aggregation
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5.5 Conclusions and Future Tasks

In this Chapter, dimensionality reduction in Bottom-Up end-use monitoring is dis-
cussed. A logistic PCA (LPCA) is applied to accommodate the traditional PCA to
the multivariate binary data in Bottom-Up end-use setting. To adapt the LPCA to
streaming data and fast online application, a sequential version of LPCA (SLPCA)
was developed based on online convex optimization theory, which can achieve com-
putational and storage efficiency. In this study, two functions to evaluate the SLPCA
algorithm were defined (i.e., the Sequential Loss Function, or SLF and the Regret
Loss Function, or RLF), and it was shown that both of them converge at least within
a constant to offline batch LPCA (BLPCA) results. An application of this algorithm
in building end-use monitoring was eventually demonstrated.
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Chapter 6

Conclusion and Future Tasks

In this work, the modeling and monitoring of the end-use of commercial buildings
are studied. Two types of the most widely used methods, Top-Down approaches and
Bottom-Up approaches, were investigated and compared while current issues were
addressed.

In the Top-Down approach, an ASVR model was developed to accommodate the
nonlinearity and nonstationarity of the macro-level time series that is difficult to
solve in a linear autoregressive model. A future task in this work would be to design
the change recognition function to deal with new non-ideal patterns, especially in
monitoring and fault diagnosis application.

In the Bottom-Up approach, an appliance-data-driven stochastic model based on
ON/OFF switching events was built to estimate the power consumption of each end-
use sector of a commercial building. Future tasks include a better modeling of shared
appliances and a more reasonable modeling of inter-appliance correlation.

Power disaggregation techniques used in Bottom-Up end-use monitoring and mod-
eling were also discussed. Conventional methods of power disaggregation, includ-
ing HMM and Edge-Driven models were studied and compared, with new methods
based on multi-hypothesis sequential testing algorithm proposed to overcome impulse
noise. With power disaggregation technique to obtain appliance ON/OFF states, the
appliance-data-driven Bottom-Up model was demonstrated in real commercial build-
ings under different scenarios, along with its capability to estimate the end-use power
consumption of commercial buildings.

Finally, monitoring in Bottom-Up settings was studied. Dimensionality reduction
technique was applied to achieve efficient monitoring; in order to accommodate to the
streaming multivariate binary-state occupant-behavioral data, logistic PCA (LPCA)
was chosen as a tool and extended to a sequential version, as SLPCA. In the future, it
is needed to further improve the convergence and performance of SLPCA through a
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more efficient online convex optimization algorithm. A more intuitive way to quantify
dimensionality reduction in binary data is also needed.
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