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1

Abstra
t

E�
ient Multi-Level Modeling and Monitoring of End-use Energy Pro�le in

Commer
ial Buildings

by

Zhaoyi Kang

Do
tor of Philosophy in Engineering - Ele
tri
al Engineering and Computer

S
ien
es

University of California, Berkeley

Professor Costas J Spanos, Chair

In this work, modeling and monitoring of end-use power 
onsumption in 
ommer-


ial buildings are investigated through both Top-Down and Bottom-Up approa
hes.

In the Top-Down approa
h, an adaptive support ve
tor regression (ASVR) model is

developed to a

ommodate the nonlinearity and nonstationarity of the ma
ro-level

time series, thus providing a framework for the modeling and diagnosis of end-use

power 
onsumption. In the Bottom-Up approa
h, an applian
e-data-driven sto
has-

ti
 model is built to predi
t ea
h end-use se
tor of a 
ommer
ial building. Power dis-

aggregation is studied as a te
hnique to fa
ilitate Bottom-Up predi
tion. In Bottom-

Up monitoring and diagnosti
 dete
tion, a new dimensionality redu
tion te
hnique is

explored to fa
ilitate the analysis of multivariate binary behavioral signals in building

end-uses.
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Chapter 1

Introdu
tion

1.1 Motivation

In the United States, buildings, both in 
ommer
ial and residential se
tors

1

a

ount

for around 40% of the total energy 
onsumption (Figure 1.1), 73% of the total ele
-

tri
ity 
onsumption, and 47% of the total natural gas 
onsumption, as illustrated in

the EIA's annual energy outlook [23℄. Buildings indeed play in
reasingly important

roles in addressing the 
urrent energy and 
limate issues [11℄. Signi�
ant resear
h &

development e�orts have been invested in this �eld of study, su
h as in the area of


ontrol, monitoring, diagnosis, demand response, and more [39℄[45℄[73℄[55℄[56℄[40℄.

Re
ently, 
ommer
ial buildings

2

, in parti
ular, are drawing more attentions. On

one hand, they are usually the dominant 
onsumers of energy and other utilities while

being major 
ontributors to in
reasing energy demands [23℄; on the other hand, they

employ sophisti
ated power supply and distribution systems, whi
h enables e�e
tive

demand side management [79℄[66℄[77℄.

In studying these buildings, it is important to understand their end-use pro�les.

A building end-use pro�le aims to evaluate the power 
onsumption of ea
h end-

use 
ategory in an entire building, for example, spa
e heating, spa
e/room lighting,

mis
ellaneous plug-in loads, shared loads, gas 
onsumption, et
.

Among the many reasons to study the building end-use pro�le, the �rst and

foremost is the need to better estimate and dete
t the building's power load and its

1

industry buildings 
onsume approximately 32% of the total energy 
onsumption, but are not

usually in
luded in building energy analysis be
ause of their strong dependen
e on the related

industry a
tivities.

2

Commer
ial buildings are de�ned as buildings with more than half of its �oor spa
e allo
ated

for 
ommer
ial a
tivities, e.g. o�
es, malls, retail stores, edu
ational fa
ilities, hotels, hospitals,

restaurants, et
.
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Figure 1.1: Buildings, in
luding 
ommer
ial and residential se
tors, are major 
on-

tributor to US energy 
onsumption. (sour
e: Quadrennial Te
hnology Review 2011,

US Department of Energy [19℄)

variability, so as to better de�ne future requirements in terms of the power plants

and the whole power distribution network. The o

upant-related load is of spe
ial

importan
e in 
onsidering the design and evaluation of the smart power demand

system [67℄[75℄[77℄[62℄.

Se
ond reason is the requirement of demand side regulation and management.

As in the EIA annual energy outlook report [23℄, to have a 0.6% annual growth

in energy 
onsumption (as 
ompared to a residential se
tor growth of 0.2%), while

average �oor spa
e in
reases at a rate of only 1.0% annually. To respond to this rising

demand, new demand-response strategies are implemented and Renewable Energy

Resour
es (RERs) are deployed [67℄[29℄[79℄. Reasonable estimation and diagnosis of

the performan
e in ea
h end-use se
tor will be required.

The two 
ore 
omponents in studying the building end-use pro�les are Modeling

and Monitoring. The former involves reasonable predi
tion or modeling of the end-

use 
onsumption, while the latter deals with monitoring and diagnosis of ea
h end-use

system. Most of the e�ort in understanding building end-use pro�les will be put into
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these two 
omponents, as we will show in the next few 
hapters.

1.2 Two Approa
hes: Top-Down vs. Bottom-Up

Building end-use pro�les 
an be usually studied from two perspe
tives, either Top-

Down approa
hes and Bottom-Up approa
hes, distinguished by how the data intera
t

within the approa
hes [67℄[29℄, as illustrated in Figure 1.2:

…

…

User 1 User 2 User N

Macro-

Economic
Weather

Building 

structure
Building 

Power 

Profile

Building 

Power 

Profile

Bottom-Up Models Top-Down Models

Figure 1.2: Two types of approa
hes to study the building end-use pro�les: Top-

Down and Bottom-Up

• The Top-Down approa
h treats a building as a bla
k box and fo
uses on the


olle
tive demand of ea
h end-use se
tor. Usually, a statisti
al model is built to

des
ribe demand variability and used to evaluate the performan
e of a build-

ing's power system. The model would in
ludema
ro-s
ale extraneous variables,

su
h as ma
roe
onomi
 indi
ators (gross domesti
 produ
t [GDP℄, in
ome, and

pri
e rate), 
limate, building 
onstru
tion, et
. [29℄. Model parameters are es-

timated from a training set, and building end-use 
an be modeled or monitored

based upon those parameters.

• The Bottom-Up aapproa
h takes into a

ount the individual 
omponents in

ea
h end-use se
tor. From the modeling perspe
tive, individual behaviors
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an be 
hara
terized as a sto
hasti
 model, and the whole power 
onsump-

tion 
an be estimated from Monte Carlo (MC) simulation. The parameters

of the sto
hasti
 model are estimated from Time-Of-Use (TOU) survey data,

whi
h re
ords daily personal usage patterns of ea
h applian
e 
ategory. From

the monitoring perspe
tive, instead of whole-building power performan
e, we

are looking at a multivariate o

upant-level signal, whi
h 
ontains behavioral

information of the building o

upants.

Among these two types of approa
hes, Top-Down ones are less 
ompli
ated and

better studied, whereas Bottom-Up approa
hes are relatively new but more adaptive

to di�erent s
enarios, espe
ially in re
ent years when building end-use intera
ts more

with o

upant behavior through demand-side management. The o

upant-dependent

�u
tuation in power 
onsumption is also dire
tly 
aptured by a Bottom-Up approa
h.

On the 
ontrary, Top-Down approa
hes do not typi
ally have the �exibility to do

that. In addition, the Bottom-Up approa
h better adapts to 
hanges in the building

infrastru
ture, su
h as new te
hnologies and new poli
ies, whereas the Top-Down

approa
h relies mainly on histori
al data, as will be illustrated in Chapter 2.

Overall speaking, Bottom-Up approa
h will be more thoroughly studied in this

work, while a few issues about the Top-Down approa
h will also be addressed.

1.3 Current Challenges

Challenges in Top-Down approa
h

Statisti
al modeling is at the 
ore of any Top-Down approa
h for both monitoring

and modeling purposes. Most 
urrent models, however, espe
ially the linear Gaussian

random noise statisti
al models, have limited 
apability to handle deviations from

linearity or stationarity, whi
h is often observed in building end-use pro�les.

Challenges in Bottom-Up approa
h

Bottom-Up analysis of building energy has been a di�
ult task, sin
e measuring ea
h

end-use 
ategory is 
ostly. In re
ent years, this problem is easier to ta
kle, thanks to

the development of large-s
ale wireless sensor networks and distributed data storage

systems. Many existing works have demonstrated su
h a development, su
h as in[39℄,

[38℄, [45℄, et
. However, several issues still need to be addressed.

From the modeling perspe
tive, behavior-dependent end-use se
tors, su
h as plug-

in loads, o

upant-
ontrolled lighting, and o

upant-adjusted HVAC, have a signi�-


ant amount of diversity and �u
tuation [39℄ while being the bottlene
ks to demand-
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side management [57℄. Better 
apture of this varian
e in a new model is highly

preferred.

From the monitoring perspe
tive, on one hand, measuring end-use bottom-level

power 
onsumption brings up several issues. More spe
i�
ally, deploying sensors to

ea
h applian
e in modern 
ommer
ial buildings will be 
ostly, while this method also

introdu
es priva
y issues. Therefore, a model obje
tive should in
lude low density,

non-intrusive monitoring. On the other hand, monitoring, and even diagnosis or


ontrol, will be 
hallenging in larger buildings if there are a great amount of individual

applian
es. In fa
t, from both a statisti
al and engineering perspe
tive, a meti
ulous

analysis will be wasteful. A 
on
ise but reliable des
ription of the applian
es in ea
h

end-use 
ategory is preferred.

This thesis fo
uses on issues des
ribed above while demonstrating potential solu-

tions for both modeling perspe
tive and monitoring perspe
tive.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

Chapter 2 presents a non-parametri
 statisti
al model, adaptive support ve
-

tor regression (ASVR), as a Top-Down approa
h to address non-linearity and non-

stationarity issues in the ma
ro-s
ale modeling of 
ommer
ial building end-uses.

Chapter 3 moves from ma
ro-level Top-Down approa
hes to mi
ro-level Bottom-

Up approa
hes. We demonstrate a Bottom-Up applian
e-data-driven sto
hasti


ON/OFF probability model is demonstrated to sto
hasti
ally estimate the end-use of

di�erent 
ategories of applian
es followed by a dis
ussion about a non-homogeneous

Poisson pro
ess approa
h to model the shared applian
es.

In Chapter 4, based on the study in Chapter 3, a Bottom-Up approa
h is used

to model real building plug-in loads power 
onsumption under di�erent s
enarios. A

new power disaggregation te
hnique is proposed, whi
h is used to �lter out ON/OFF

states of individual applian
es from aggregated raw power stream.

In Chapter 5, 
hallenges in Bottom-Up monitoring are addressed. A dimension-

ality redu
tion te
hnique, Logisti
 PCA (LPCA), is deployed to deal with binary

behavioral data in the Bottom-Up perspe
tive, and a sequential version of Logisti


PCA (SLPCA) is proposed and analyzed.

Finally, Chapter 6 
on
ludes this study and in
ludes a brief dis
ussion about

future tasks found within the topi
s studied by this thesis.
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Chapter 2

Top-Down Approa
h for End-Use

Modeling & Monitoring

2.1 Introdu
tion

In this 
hapter, a Top-Down approa
h is dis
ussed, followed by the proposed non-

parametri
 adaptive support ve
tor regression method for ma
ro-level building end-

use modeling.

As illustrated in Chapter 1, a Top-Down approa
h treats the building as a bla
k

box and uses histori
al data or other physi
al parameters as features to build up a

statisti
al model. The widely used features in
lude histori
al building power 
on-

sumption for ea
h se
tor; physi
al parameters, su
h as the 
onstru
tion area, mate-

rial, stru
tures, et
.; environmental parameters, su
h as the temperature, humidity,

sunlight level, rain pre
ipitation, et
.; and ma
ro-e
onomi
 features, su
h as gross

domesti
 produ
t (GDP), salary level, unemployment rate, applian
e penetration

level, et
.

Model predi
tion 
apability is 
riti
al. Resear
hers have studied two types of

models, namely, physi
al and statisti
al. Physi
al models simulate the energy 
on-

sumption from thermodynami
s standpoint. Examples of this approa
h in
lude En-

ergyPlus

1

, whi
h is a software developed by the Building Te
hnology O�
e of the

US Department of Energy. A physi
al model usually gives a

urate results and 
an

be more adaptive to the 
hange of the building stru
ture and material. However,


al
ulation is usually too tedious to be used in a real-time monitoring and evaluation

platform.

On the other hand, statisti
al models are empiri
al in nature (i.e., based on

1

http://apps1.eere.energy.gov/buildings/energyplus/
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observation) and are usually implemented as linear or nonlinear regression on a set

of features. The features 
an be sele
ted based on statisti
al signi�
an
e rather

than on physi
al prin
iples. Future power 
onsumption is usually extrapolated from

the features. Statisti
al models are usually too simple to provide highly a

urate

results, but they are statisti
ally robust and 
omputationally e�
ient. Hen
e, they

are preferred in real-time modeling and monitoring.

In this 
hapter, we will fo
us on statisti
al methods and develop an adaptive

least-mean square version of the nonlinear time series model, whi
h 
ould be used in

real-time building end-use monitoring and diagnosis.

The rest of this 
hapter is organized as follows: Se
tion 2.2 presents a literature

review on existing models and 
hallenges. Se
tion 2.3 introdu
es the linear autore-

gressive model. Se
tion 2.4 brie�y talks about 
hallenges lying in the 
urrent data

feed. Se
tion 2.5 dis
usses an adaptive support ve
tor regression model. Se
tion

2.6 gives results and dis
ussion, while Se
tion 2.7 
on
ludes with dis
ussions about

future tasks.

2.2 Prior Works

Prior Top-down studies apply physi
al, statisti
al, or e
onometri
 models to use

histori
al data or other features to predi
t load 
urve e [78℄.

Physi
al models have been developed as software tools, su
h as DOE-2

2

, Ener-

gyPlus

3

, BLAST

4

, ESP-r

5

. An overview 
an be found in [14℄, and an updating list

of these tools 
an be found in [18℄. These tools, in most 
ases, use very detailed

information about the building, whi
h be
omes time-
onsuming in both training and

estimation.

Statisti
al methods have been developed as approximate but 
omputationally

e�
ient alternatives. There is an extensive amount of work on these topi
s, in
luding

linear regression methods developed for di�erent geographi
al or 
limati
 
onditions

[46℄, linear time series models, the so-
alled Conditional Demand Analysis (CDA) [2℄,

the Ba
k Propagation Neural Network (BPNN) based methods [35℄, and the Support

Ve
tor Ma
hine (SVM) [47℄. The linear regression or time series model take the least

amount of parameters, whereas BPNN 
ould take more 
ompli
ated model stru
ture

[78℄.

2http://doe2.com/DOE2/
3http://apps1.eere.energy.gov/buildings/energyplus/
4http://apps1.eere.energy.gov/buildings/energyplus/

energyplus_research_legacy.cfm, EnergyPlus is a
tually a merge of DOE-2 and BLAST

5http://www.esru.strath.ac.uk/Programs/ESP­r.htm

http://doe2.com/DOE2/
http://apps1.eere.energy.gov/buildings/energyplus/
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_research_legacy.cfm
http://apps1.eere.energy.gov/buildings/energyplus/energyplus_research_legacy.cfm
http://www.esru.strath.ac.uk/Programs/ESP-r.htm
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SVM [13℄ based methods are attra
ting more and more attentions re
ently be-


ause of their �exibility to model nonlinear behaviors and their relatively a

eptable

model 
omplexity. In time series modeling, it 
an be extended to Support Ve
-

tor Regression (SVR) with Auto-regressive terms [65℄. Several works have done on

exploring the appli
ation of this model [65℄ [51℄ [49℄ [24℄.

In this 
hapter, we will study an adaptive autoregressive SVR model for nonlinear

time series that 
an be used e�e
tively to estimate energy 
onsumption with great

extendibility.

2.3 Linear Auto-regressive Model

Conventionally, the linear auto-regressive model has been used to model time series

data. Some well-known methods in
lude the Auto-Regressive (AR) model, the Auto-

Regressive Moving-Average (ARMA) model, and more. The AR model gives an

estimation of a 
ertain data point based on a linear extrapolation of its own history.

As an example, for time series x1, · · · , xn
.
= {xt}Tt=1, we model xt based on a

weighted sum of xt−1 through xt−q.

xt =

q∑

i=1

βixt−i (2.1)

in whi
h q is the order of the AR model and {βi}qi=1 are the parameters. The

parameters 
an be learned from minimizing the sum of square error as:

β̂i, · · · , β̂q = argmin

β1,··· ,βq

∑

t

(
xt −

q∑

i=1

βixt−i

)2

(2.2)

By writing β0 = −1, we 
an transform equation (2.1) as:

q∑

i=0

βixt−i = 0

Here we introdu
e the Ba
kward-operator as Bixt
.
= xt−i, and hen
e:

q∑

i=0

βixt−i =

q∑

i=0

βiBixt =

(
τ∑

i=0

Bi

)
xt = φq(B)xt = 0
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In whi
h φq(B) =
∑τ

i=0 βiBi. Similarly, seasonality 
an be easily added by

Seasonal-AR (SAR) model.

s∑

j=0

ηjφq(B)xt−j·S =

s∑

j=0

ηjBS
j φq(B)xt = φs(BS)φq(B)xt = 0 (2.3)

in whi
h s is the period and φs(BS) =
∑s

j=0 ηjBS
j .

An important assumption of these kind of models is that the model parameter

set {βi}qi=1 or {ηj}sj=1 is stationary, whi
h means the parameters are invariant over

time. If the parameters are subje
t to 
hange, linear AR or SAR model will not be

able to 
apture that.

2.4 Challenges in Linear Auto-regressive Model

The linear auto-regressive models, although delivering well-formed theory, are subje
t

to pra
ti
al issues.

• Usually, AR, espe
ially the SAR model, needs a large amount of data for model

training.

• Additionally, linear AR or SAR models are not suitable for nonlinearity appli-


ation.

• Furthermore, as illustrated earlier, linear AR or SAR modeling assumes sta-

tionarity of the model. If the data is nonstationary, then linear modeling is not

enough.

Take B-90 building in Lawren
e Berkeley National Laboratory of U.S. Depart-

ment of Energy (DOE) as an example (as shown in Figure 2.1). Two building-level

power 
onsumption time series of B-90 are shown in Figure 2.2. The data are mea-

sured by DENT meter

6

(as in Figure 2.3) in one hour or 15 min intervals, and


olle
ted through sMAP protal

7

.

In Figure 2.2, a strong periodi
 pattern and 
haoti
 glit
hes 
an be observed.

Modeling by simple AR-type models is not enough. Re
ently, non-parametri
 data-

driven methods have been proposed to over
ome this issue. In this work, we will

study an alternative model, whi
h is 
alled the Adaptive Support Ve
tor Regression

(ASVR) model.

6http://www.dentinstruments.com
7http://new.openbms.org/plot/

http://www.dentinstruments.com
http://new.openbms.org/plot/


CHAPTER 2. TOP-DOWN APPROACH FOR END-USE MODELING &

MONITORING 10

�����������	�
���
������

Figure 2.1: Building-90 in Lawren
e Berkeley National Laboratory (LBNL)

2.5 Adaptive Support Ve
tor Regression

In ASVRmodel, modeling problem is formed in a di�erent way. Let ut = {xt−1, · · · , xt−r}
be the autoregressive term, and our estimation of a 
ertain data point xt would be

βTut. By introdu
ing a soft error bound of the di�eren
e xt − βTut similar to the

famous soft margin Support Ve
tor Ma
hine (SVM) [13℄ [69℄, we 
an put the opti-

mization problem (2.2) in the following form.

min

βi,∀i,ξ+t ,ξ−t ,∀t

n∑

t=1

(
ξ+t + ξ−t

)2
+

1

2
‖β‖2 (2.4)

s.t. − ξ−t ≤ xt − βTut ≤ ξ+t , ∀t

The

1
2
‖β‖2 is a regularization term, indi
ating that a �at or small β is preferred

here. (2.4) is a 
onvex optimization problem. The Lagrangian fun
tion is as be-

low [65℄

L(α+
t , α

−
t , ξ

+
t , ξ

−
t ) =

n∑

t=1

(
ξ+t + ξ−t

)2
+

1

2
‖β‖2

+
n∑

t=1

α+
t (xt − βTut − ξ+t ) +

n∑

t=1

α−
t (−ξ−t − xt + βTut) (2.5)
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Figure 2.2: Example of data 
olle
ted from Building-90. Total Ele
tri
ity 
onsump-

tion (upper) and Network gateway node 
onsumption (bottom).

in whi
h α+
t , α

−
t are the positive Lagrangian multipliers. Following the KKT 
ondi-

tion of this stri
tly 
onvex problem [8℄, we have the following 
onditions:

• Derivative v.s. β:

∂L

∂β
= β −

n∑

t=1

α+
t ut +

n∑

t=1

α−
t ut = 0 (2.6)

• Derivative v.s. ξ+t , ∀t:

∂L

∂ξ+t
= 2

n∑

t=1

(ξ+t + ξ−t )−
n∑

t=1

α+
t

• Derivative v.s. ξ−t , ∀t:

∂L

∂ξ−t
= 2

n∑

t=1

(ξ+t + ξ−t )−
n∑

t=1

α−
t
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Figure 2.3: Dent meter used to 
olle
t the ma
ro-level data

• Complementary sla
kness, ∀t:
α+
t (xt − βTut − ξ+t ) = α−

t (−ξ−t − xt + βTut) = 0 (2.7)

The Equation (2.6) satis�es:

β̂ =
n∑

i=1

(α+
i − α−

i )ui =
n∑

i=1

αiui

Noti
e that here the αi terms do not need to be positive. Hen
e, the estimated

observation follows:

x̂t = β̂Tut =

n∑

i=1

αi〈ui,ui〉 (2.8)

Due to (2.7), only part of the αi's are non-zero, 
orresponding to points with

equality in the 
onstraints in (2.4). Besides, following equation (2.8), only those

data points 
ontribute to the weighted sum of estimation. In Figure 2.4, we 
an see

that the 
ir
led dots are those 
orresponding to the data with non-zero αi's. Those

data points are 
alled Support Ve
tors (SVs), in that they support the shape of the


urve.

In 
ase of nonlinearity, in the observed data in Figure 2.2. An alternative way is

to map the input ut into another domain φ(ut) in whi
h the relationship is linear,

we have:

xt =

n∑

i=1

αi〈φ(ut), φ(ui)〉 =
n∑

i=1

αik(ut,ui) (2.9)
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Figure 2.4: Support ve
tors

in whi
h we have k(ut,ui) = 〈φ(ut), φ(ui)〉, 
alled the Kernel fun
tion. In (2.9), we

don't really need to know the form of φ(·), as long as we have an idea about the

Kernel fun
tion k(·, ·). This is also 
alled the kernel tri
k [69℄.

The most widely used kernel fun
tion is the Gaussian kernel, whi
h 
an be written

in the form of k(ut,ui) = e−σ‖ut−ui‖2
. Gaussian kernel quanti�es the 
orrelation or

similarity between ut,ui. Other widely used kernel fun
tion in
ludes the polynomial

kernel fun
tion k(ut,ui) = ‖ut − ui‖p.
When the data is in real time, it is 
ostly to form a 
onvex optimization problem

as (2.4) at every step. A solution to this is to put it in a re
ursive least square

formulation. For RLS, we 
an learn αi's in Equation (2.9) re
ursively. Due to the


omplementary sla
kness in (2.7), some data points may 
ontribute to the shape of

the 
urve, and some data points may not be support ve
tors.

Sin
e support ve
tors are those data points 
riti
ally determines the shape of the


urve, they usually demonstrates less similarity 
ompared to the previous data points.

Hen
e, we 
an determine whether a data point is support ve
tors by examining the

kernel fun
tion k(ut,ui) between ut to all the previous ui's, as well as examining

the error of estimation xt−
∑t−1

i=1 αik(ut,ui) =
∑

i∈SVs αik(ut,ui) in whi
h SVs is the

support ve
tor di
tionary

8

, following the idea of [42℄, [24℄, [49℄ and [61℄.

• Let Kt = [· · · , k(ut,ui), · · · ], ∀i ∈ SVs.

• For ea
h time step t = 1, · · · , n, we have the error term Errt = xt −KT
t αt, and

a distan
e with respe
t to the kernel fun
tions Distt = maxj∈SVs ‖k(ut,ui)‖
8

By support ve
tor di
tionary, we mean the 
olle
tion of all the support ve
tors up to the


urrent data point
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• If Errt ≤ µ and Distt ≤ ̟. Let K̃t = [KT
t , 1]

T
and α̃t = [αT

t , 0]
T
, update the


oe�
ient as:

α̃t+1 = α̃t + η
xt − K̃T

t α̃t

‖K̃t‖2 + ρ
(2.10)

in whi
h η is the learning rate. The larger the η, the more adaptive to the


hange in the pro
ess.

• Else, update the 
oe�
ient as

αt+1 = αt + η
xt −KT

t αt

‖Kt‖2 + ρ
(2.11)

Therefore, we learn the parameters αi's. When a new data point is determined

as a support ve
tor, we just add it into the support ve
tor di
tionary, and 
hange

the dimensionality of α a

ordingly.

2.6 Results and Dis
ussion

Firstly, we examine the online evolution of the support ve
tor di
tionary. As shown

in Figure 2.7, we have several key observations.

• Usually, only 15% of the data points are support ve
tors, whi
h means we only

need to store a small portion of the data but are able to 
apture most of the

�u
tuation, nonlinearity, and nonstationarity of the time series.

• The support ve
tors mostly appear around 
hange-points or nonlinear patterns

of a time series, exa
tly as expe
ted.

• There is de�nitely a trade-o� between a

ura
y and the di
tionary-size. The

more support ve
tors we have, the more 
apable we are to 
apture the orig-

inal pattern; however, there is more storage 
ost. The number of support

ve
tors 
an be tuned by 
hanging the hyperparameter in the kernel fun
tion

(σ). This is illustrated in Figure 2.5 when running the algorithm on a three-

month total plug-in loads power 
onsumption in the CREST 
enter, and an

almost-monotoni
 pattern is observed. Moreover, same as the 
onventional

linear model, an overly detailed model su�ers from over-�tting, whi
h is illus-

trated in Figure 2.6. The total plug-in loads are also used in Figure 2.5, but

two-month's data is used as training and one-month's data is used as testing.

In Figure 2.6, training error de
reases as expe
ted when we have a more de-

tailed model, whereas testing error demonstrates a bowl shape when 
ompared
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Figure 2.5: Number of support ve
tors as a fun
tion of hyperparameter in kernel

fun
tion (σ)

to the hyperparameter. In real time, a hyperparameter is most often used that

is not too 
ompli
ated but detailed enough to provide reasonable a

ura
y.

The ASVR 
an be used in pattern dis
overy with great extendibility. Spe
i�-


ally, a data point is added into the support ve
tor di
tionary when a new pattern

appears, and thus, predi
tion error or kernel distan
e fun
tion in
reases, as shown

in Figure 2.8.

The distan
e measurement (in other words, the 
hange re
ognition fun
tions in

Figure 2.8) 
an also be altered to a

ommodate di�erent s
enarios. For example,

Distt = max
j∈SVs

‖k(ut,ui) exp

(
− 1

α
|1− cos(

2π∆t

ω
)|
)

︸ ︷︷ ︸
Periodi
 weight

× exp

(
−δ∆t2

ω

)

︸ ︷︷ ︸
De
ay

‖ (2.12)

It is worth mentioning that the 
hoi
e of the kernel distan
e fun
tion (or 
hange

re
ognition fun
tion) 
an a�e
t the support ve
tor di
tionary's distribution as well,

whi
h will be a subje
t of future work.
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Figure 2.6: Training and Testing error as a fun
tion of hyperparameter in kernel

fun
tion (σ)

2.7 Con
lusion and Future Tasks

In this 
hapter, we dis
uss the Top-Down modeling of building end-use power 
on-

sumption. The linear auto-regressive model is studied and its limitations in dealing

with nonlinearity and nonstationary are dis
ussed. A non-parametri
 data-driven

adaptive support ve
tor regression (ASVR) model is introdu
ed as an alternative

approa
h. The ASVR model 
an e�e
tively 
apture nonlinearity and nonstationary

by storing only a small portion of the original data points.

The future tasks of this 
hapter would be the design of proper distan
e fun
tion

(or 
hange re
ognition s
ore fun
tion) to 
ope with di�erent types of nonlinearity or

nonstationarity, and the method 
ould be extended to the fault diagnosis problem.

In
luding more parameters into the model will also be useful.

However, it should be noted that this method is a so-
alled bla
k-box method.

It 
an 
apture statisti
ally signi�
ant features of a building but provides little in-

formation about o

upant-dependent information, whi
h is, unfortunately, of spe
ial

importan
e in modern smart building operation.

In the next several 
hapters, we will move on to the dis
ussion of Bottom-Up
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approa
hes, whi
h are more 
apable of modeling o

upant-dependent features.
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ation of pattern re
ognition of adaptive support ve
tor regres-

sion (ASVR). The Predi
tion Error 
orresponds to Errt = xt − KT
t αt; the Change

Re
ognition S
ore is the distan
e fun
tion.
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Chapter 3

Bottom-Up End-Use Modeling:

Model Setting

3.1 Ba
kground

The last 
hapter brie�y introdu
ed the Top-Downapproa
h, and here we will move

on to the Bottom-Up approa
h. As mentioned before, Bottom-Up approa
hes are

relatively new and attra
ting more attention in re
ent years, be
ause of their 
apa-

bility in evaluating o

upant demand and its adaptability under di�erent strategi


s
enarios. In the next two 
hapters, we will �rstly dis
uss modeling issues under

Bottom-Up settings and then study Bottom-Up monitoring issues in Chapter 5.

One of the earliest works on Bottom-up models is written by A. Capasso et al.

[10℄. Presen
e probability is used to model the likelihood that a resident is in a

house. A
tivity probability is used to model how likely it is that an a
tivity will

be happening. These probabilities are extra
ted from Time-Of-Use (TOU) data.

TOU data 
omes from survey re
ordings of residents' daily a
tivities in 15-min time

intervals. Together with duration statisti
s1 obtained from prior knowledge, a power

stream 
an be generated by Monte Carlo (MC) simulation. In[74℄, TOU data is

used again, and nine syntheti
 a
tivity patterns are de�ned. A non-homogeneous

Markov Chain is used to model the turn-ON events of ea
h a
tivity. Duration and

ON events are sampled randomly from the estimated distribution. In [62℄, a
tivity

probability is also estimated from TOU data and other extraneous data, so that is

non-homogeneous. In [75℄, estimation of a
tivity probability patterns is based on

TOU survey, duration statisti
s, and a more elaborate model.

Existing methods that employ the Bottom-Up approa
h provide great insights

into end-use pro�le models of 
ommer
ial buildings. However, there are still several
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remaining issues:

• Previous works mostly used TOU data to obtain indoor a
tivity probability,

and then a
tivity was 
onverted to applian
e pattern through an empiri
al

model. This is sometimes problemati
, sin
e 
onversions are usually not rigor-

ously justi�ed.

• In 
ommer
ial buildings, variation of power 
onsumption among buildings is

not of signi�
ant interest, sin
e the infrastru
tures of di�erent buildings 
an sig-

ni�
antly vary, whereas variation among users be
omes espe
ially interesting,

sin
e it 
an indi
ate performan
e limits of a building's power system. However,

the latter is not thoroughly studied in previous work.

• Cross-
orrelation among applian
es is not dire
tly 
aptured in the past. A ran-

dom Markov Chain model 
ould under-estimate the demand. Moreover, most

previous resear
h mentioned modeling shared a
tivities, whereas validation of

these models is di�
ult.

In this 
hapter, we will dire
tly estimate probability patterns of applian
es in


ommer
ial buildings and develop a model based on the turning-ON/OFF probability

of applian
es to quantify the variation of building end-use power pro�le. We will also

address 
orrelation between applian
es with a 
orre
tion term.

This 
hapter is organized as follows: In Se
tion 3.2, the big pi
ture of the Bottom-

Up model is dis
ussed. In Se
tion 3.3, the Statisti
al Parameters in the model are

investigated. Se
tions 3.4 review the models of shared applian
es. In Se
tion 3.5, a


on
lusion is given.

3.2 Big Pi
ture

A Bottom-up model 
an be viewed as a gray-box that takes two types of parameters,

as shown in Figure 3.1.

One is 
alled the Statisti
al Parameter, whi
h des
ribes statisti
al properties of

applian
es (e.g., ON/OFF probability, presen
e probability, duration statisti
s, et
.).

This type of parameter is usually extra
ted from applian
e usage data 
olle
ted by

wireless sensor networks, and it 
an be learned in one building and extended to other

buildings with similar pro�les. For example, if a model is built for student spa
e, it


an be extended to other s
hool buildings.

The other type of parameters is 
alled the Field Parameter, whi
h in
ludes the

number of o

upants, number of 
omputers, monitors, printers, mi
rowaves, et
.,



CHAPTER 3. BOTTOM-UP END-USE MODELING: MODEL SETTING 21

Level-
I 

Model

Statistical parameters

Field parameters

Building 
Functionality

ON/OFF probability, 
Presence probability, 

Duration, Rate-Of-Usage 
of each category of 

appliance, etc.

Number of appliances in 
each category, e.g. 
laptops, monitors, 

desktops, refrigerator, 
printer, etc.

Number and 
type of 

occupants

Level-
II 

Model

Level-
III 

Model

Figure 3.1: Parameters in Bottom-up model: Field Parameters and Statisti
al Pa-

rameters. Level-III model is the most 
omplex, and Level-II model is less 
omplex;

Level-I is the simplest but low a

ura
y.

depending on building stru
ture and utility. These parameters are 
olle
ted from

�eld study or empiri
al knowledge and will be evaluated in the CREST 
enter, the

SWARM lab, and the fourth �oor of Sutardja-Dai Hall, all at UC Berkeley, as will

be dis
ussed in more detail in Chapter 4.

Based on the 
omplexity of the Field Information, we 
an further divide the

models into Level-I model, Level-II model and Level-III model.

• In the most simpli�ed Field Parameter setting, we only know the building

fun
tionality. O

upant 
hara
teristi
s (e.g., the number of o

upants, number

of desktop and laptops, et
.) are inferred from building fun
tionality, and we


all this kind of model the Level-I model. Level-I will be most wel
omed in


ommer
ial appli
ation, but its a

ura
y 
annot be guaranteed.

• As we get to know more information of the o

upants, for example, the number

and type of o

upants, we are 
loser to the applian
es, and the a

ura
y 
ould
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be better. The relatively 
omplex model is 
alled the Level-II model.

• The Level-III model dire
tly 
ontains parameters about the applian
es, su
h

as the number of desktops, laptops, monitors, printers, mi
rowaves, lamps, et
.

However, though demonstrating great a

ura
y, these data are relatively 
ostly

to 
olle
t, or even unavailable, espe
ially for early-stage power system design.

To a
hieve better a

ura
y in this work, only the relative more 
omplex models,

in other words, Level-II and Level-III models, are 
onsidered.

3.3 Statisti
al Parameters

Previously, people use di�erent types of statisti
al parameters in their end-use model.

We 
an roughly divide their methodologies into the following three modules: rate-

of-use statisti
s, duration statisti
s, and ON/OFF-probability statisti
s.

To fa
ilitate the analysis, for an applian
e, given that we have d days of obser-

vations, we de�ne S
(i)
t as its state of i-th day, i.e. S

(i)
t ∈ {0, 1} and 1 stands for

ON.

Rate-of-Use Statisti
s

Rate-Of-Use (ROU) statisti
s is a basi
 model used to des
ribe applian
e usage.

De�nition 3.3.1 (Rate-Of-Use). Rate-Of-Use (ROU) is the portion of time that the

applian
e is ON in ea
h time-of-day:

ROUt =
1

d

d∑

i=1

S
(i)
t = St (3.1)

For example, in the 80 days of experiment, the monitor is ON at 12:00PM in 16

days, the ROU would be 16/80 = 0.2 at 12:00PM. The ROU is plotted for monitor,

laptop and desktop in Figure 3.2. Strong daily pattern is observed. ROU indi
ates

the average energy 
onsumption, but it doesn't indi
ate the usage pattern of the

applian
e.

Duration Statisti
s

Duration statisti
s were used to 
hara
terize duration time of ea
h a
tivity [62℄ [75℄.

We extra
ted the duration statisti
s from sensor data after power disaggregation.
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Figure 3.2: Rate-Of-Use of three types of applian
es: monitor (left), laptop (middle)

and desktop (right)
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Figure 3.3: Histogram of duration statisti
s in minutes of three types of applian
es:

monitor (left), laptop (middle) and desktop (right). X axis is in 5 minutes interval
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The results are shown in Figure 3.3 for o�
e applian
es. The limited 
apability

to model the turn-o� applian
e events is a potential problem. Another issue of

duration statisti
s is that they are usually time-dependent, whi
h makes them 
ostly

to estimate.

ON/OFF-Probability Statisti
s

Another module fo
uses on the empiri
al ON/OFF-probability [62℄[75℄ (i.e. the

probability of turning-ON/OFF at ea
h time step).

De�nition 3.3.2 (ON/OFF Probability). For 
ertain applian
e at t, the empiri
al

ON/OFF probability is de�ned as P̂
ON/OFF

t :

P̂ON

t =

∑m
j=1 S

(j)
t (1− S

(j)
t−1)∑m

j=1(1− S
(j)
t−1)

=
St − StSt−1

1− St−1

(3.2)

P̂OFF

t =

∑m
j=1 S

(j)
t−1(1− S

(j)
t )

∑m
j=1 S

(j)
t−1

=
St−1 − St−1St

St−1

(3.3)

with whi
h we 
an do MC simulation to obtain the state sequen
es as a Markov Chain

of all the applian
es that we are interested in.

De�nition 3.3.3 (Markov Chain). Markov Chain is a spe
ial 
ase of a sto
hasti


pro
ess. A sto
hasti
 pro
ess is a time sequen
e of variables S1, S2, · · · , St, and their

joint probability 
an be written as:

Pr(S1, S2, · · · , St) = Pr(S1)
t∏

i=2

Pr(Si|Si−1, · · · , S1)

A sto
hasti
 pro
ess is a Markov Chain (�rst order) if it follows the Markov

property, in that Pr(Si|Si−1, · · · , S1) = Pr(Si|Si−1), and we have:

Pr(S1, S2, · · · , St) = Pr(S1)

t∏

i=2

Pr(Si|Si−1) (3.4)

Here Pr(Si|Si−1) 
an also be viewed as transition probability. If they are 
onsistent

for all the i's, the Markov Chain is 
alled Homogeneous Markov Chain; otherwise it

is 
alled Non-Homogeneous Markov Chain.

De�nition 3.3.4. After we run J MC simulations, we de�ned the simulated state

in the j-th MC run as Ŝj
1:T , j = 1, · · · , J .
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Compared to ROU model, the ON/OFF probability model 
an 
apture the us-

age pattern [39℄[62℄[75℄. Previously, this model is built upon some time slots (e.g.

"0∼8AM", "8∼9AM", "9∼11:30AM", "11:30∼1:30PM", "1:30∼5PM", "5∼7PM",

"7∼9:30PM" and "9:30PM∼0AM"). The ON/OFF probability is assumed to be


onstant within ea
h time slots.
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Figure 3.4: Time-dependent ON probability of three types of applian
es: desktop

(bla
k), monitor (red) and laptop (blue)

The time-slot-based ON-probability P̃ON

t is shown in Figure 3.4, for desktop,

monitor and laptop. Note that in Figure 3.2 the desktop pattern seems to be at


onstant line, whi
h is due to the limited number of desktops in our test spa
e,

and be
ause some of them are kept on overnight (i.e, their P̃OFF

t is small on
e they

are ON). To simulate turning-ON, we use the probability of P̃ON

t /TSLOT, in whi
h

TSLOT is the length the time slots. For example, at time interval "8∼9AM", if we

use 5 min interval step, TSLOT = 12.
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Figure 3.5: ON probability inside ea
h time slot for monitor

One 
on
ern about the time-slot-based model is that the probability inside ea
h

slot is not 
aptured well. A

ording to a simple Poisson model, assuming independent

events within ea
h time slot, the ON events are geometri
ally distributed. However,

as shown in Figure 3.5 where monitor is taken as an example, most events do not

follow the model. The pattern of laptop and desktop 
an also demonstrate su
h

dis
repan
y.

Applian
e ON/OFF Probability Model

In our work, for statisti
al parameters, the applian
e high-resolution ON/OFF prob-

ability model is used.

• On one hand, the ON/OFF states of the applian
es are used, instead of the

Time-Of-Use data in previous work. Hen
e, there is no empiri
al inferen
e

involved.
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• On the other hand, the data 
olle
ted in wireless sensor networks are used,

whi
h has resolution of up to one se
ond per sample.

In our 
hosen model, we use an applian
e-data-driven high-resolution ON/OFF

probability model.

• We extra
t the probability that an applian
e is present in some day, marked as

PPRES, as well as the probability that an applian
e is ON overnight, marked

as PINIT. Then, from the wireless sensor network, we 
olle
t applian
e power

stream and build the model based on applian
e information, instead of on

a
tivities (as presented in other works, in whi
h an often-problemati
 a
tivity-

to-applian
e transformation is needed [29℄).

• â�¢ Both ON/OFF probabilities are in
luded and formulated in a Markov

Chain framework, whereas duration statisti
s are not in
luded. Therefore, we


an better model the applian
es' turning-OFF events.

ON OFF

���
���

���
�� � � ���

��� � ���
���

Figure 3.6: FSM interpretation of the model

• Instead of the time-slot model in Figure 3.4, we use a non-homogeneous Markov

Chain model for both ON/OFF probabilities. For ea
h applian
e, the model


an be interpreted as a two-state Finite State Ma
hine (FSM) at ea
h times-

tamp (Figure 3.6).

Power Estimation

Based on the FSM model, power 
onsumption of a given spa
e is estimated by

running a Monte Carlo (MC) simulation to generate power sequen
es aggregated

from individual applian
es.
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The MC-simulated applian
e ON/OFF sequen
es (a) 
an 
apture non-homogeneous

sto
hasti
ity of applian
e usage patterns and is easily extended to analyze new te
h-

niques and poli
ies, and (b) statisti
ally 
onverges to the ROU model in estimating

states, whi
h means this method is essentially reasonable in end-use energy pro�le

modeling.

Theorem 3.3.1 (Convergen
e of MC Simulation). If Ŝj
1:n is the jth MC simulated

time series from the FSM as in Figure 3.6 and we have J su
h MC simulations, then

E[ 1
J

∑
j Ŝ

j
t ] = St, in whi
h St is the ROU, and limJ→∞Var( 1

J

∑
j Ŝ

j
t ) → 0. In other

words, MC simulation 
onverges a.s. to ROU.

Proof. Let Ŝ1, · · · , Ŝt be the states at di�erent time steps from MC simulation. As-

sume that the states follows Markov Property, s.t. Pr(Ŝt|Ŝt−1, · · · , Ŝ1) = Pr(Ŝt|Ŝt−1).
Then by the 
hain rule of expe
tation [63℄, we have:

E[Ŝt] = E[E[Ŝt|Ŝt−1]] (3.5)

Sin
e we have:

E[Ŝt|Ŝt−1] = Pr(Ŝt = 1|Ŝt−1)

= P̂ON

t (1− Ŝt−1) + (1− P̂OFF

t )Ŝt−1

= P̂ON

t + (1− P̂ON

t − P̂OFF

t )Ŝt−1 (3.6)

Let us de�ne Gt whi
h follows as:

Gt = 1− P̂ON

t − P̂OFF

t =
StSt−1 − St · St−1

(1− St−1)St−1

Then, 
ombining (3.5) and (3.6) we obtain:

E[Ŝt] = P̂ON

t +GtE[Ŝt−1] (3.7)

Therefore, we 
an iteratively write E[Ŝt] as:

E[Ŝt] = P̂ON

t +

t∑

τ=3

P̂ON

τ−1

t∏

i=τ

Gi + E[Ŝ1]

t∏

i=2

Gi (3.8)

The initial state at t = 1 in MC simulation is generated from a Bernoulli pro
ess

p1 = E[Ŝ1] = S1. We put the expression of P̂
ON/OFF

t as (3.2) and (3.3) in (3.8).

P̂ON

2

t∏

i=3

Gi + S1

t∏

i=2

Gi = S2

t∏

i=3

Gi (3.9)
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Then we have the following equation:

E[Ŝt] = P̂ON

t +

t∑

τ=4

P̂ON

τ−1

t∏

i=τ

Gi + S2

t∏

i=3

Gi

Therefore, we 
an simply equation (3.8) as:

E[Ŝt] = P̂ON

t + St−1Gt

=
St − StSt−1

1− St−1

+
StSt−1 − St · St−1

1− St−1

= St (3.10)

Sin
e Ŝj
t s are all binary sequen
es, Var(Ŝj

t ) = St(1− St) and naturally we have

lim
J→∞

Var(
1

J

∑

j

Ŝj
t ) = lim

J→∞

1

J
Var(Ŝj

t ) → 0 (3.11)

Thus, MC simulation 
onverges to the ROU. It should, however, be noted that

Theorem 3.3.1 holds only if the ON/OFF probabilities are 
onsistent between simu-

lation and observation.

Data Sparsity & Kernel Smoothing

The ON/OFF events are always sparse [41℄, and varian
e of the estimation is always

high. In this situation, smoothing is needed.

When there are large amount of spikes, the empiri
al probability fun
tion 
an be

smoothed by a Kernel Smoother to obtain the probability fun
tion.

P̃
ON/OFF

t =

∑n
i=1K(t, i)P̂

ON/OFF

i∑n
i=1K(t, i)

(3.12)

in whi
h K(t, i) is the kernel fun
tion. Usually we use Gaussian kernel K(t, i) =

exp
(
− (i−t)2

2h2

)
in whi
h h is the bandwidth. The larger the bandwidth, the more

smoothing the kernel does. h 
an be 
hosen as the plug-in bandwidth (hpi) [71℄.

Remark 3.3.1. If we use P̃
ON/OFF

i instead of P̂
ON/OFF

i , Theorem 3.3.1 no longer

holds. However, under some most basi
 regularity 
ondition of the fun
tion P̂
ON/OFF

i ,

we have the following relationship:

lim
h→0

P̃
ON/OFF

i → P̂
ON/OFF

i
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This means, under reasonably 
hosen bandwidth of the fun
tionK(·), the smoothed

probabilities in (3.13) will be reasonable approximation for P̂
ON/OFF

i , and Theorem

3.3.1 will also approximately holds. It should be noted here that a stri
t analysis on

the 
ondition of the bandwidth would be required to fully understand the performan
e

of smoothing, and be
ause of the s
ope of this work, this will be a subje
t of future

work.

Modeling of Cross-Correlation

In this study's experimental spa
e, espe
ially for 
omputer-related applian
es, we

have 11 monitors, 5 desktops, and 14 laptops

1

. Intuitively, we 
an simulate ea
h

applian
e independently and aggregate them to get the full power 
onsumption value.

The mean of the aggregation, as a 
orollary of Theorem 3.3.1, is unbiased. The

varian
e, however, 
ould be underestimated. Cross-
orrelation among applian
es

needs to be addressed. Here in this study, there are two reasonable assumptions.

• The applian
es in the same 
ategory (monitors, desktops, or laptops) are the

same type

2

• The 
orrelation pattern is homogeneous, whi
h means it is same for every day.

An intuitive way to analyze this information is to generate 
orrelated Bernoulli se-

quen
es in Monte Carlo simulation [50℄. However, for multivariate non-homogeneous

Markov Chain, generation su
h 
orrelated Bernoulli sequen
es is di�
ult and unreli-

able [50℄. In this work, we propose a way to 
orre
t the varian
e on the independently

simulated sequen
es.

For example, let St,i be the state of i-th single applian
e, its varian
e Var (St,i) =
σ2
g we already know, g ∈ {desktop,monitor, laptop} is the applian
e type, then the

aggregated varian
e of p di�erent applian
es is:

Var

(
p∑

i=1

St,i

)
=

p∑

i=1

σ2
t,a(i) +

∑

i 6=j

cov (St,i, St,j) (3.13)

in whi
h a(i) is the type of the i-th applian
e, The se
ond term on RHS 
orresponds

to the 
ovarian
e between di�erent applian
es, and should be added to avoid under-

estimation of overall variation. This term 
an be extra
ted dire
tly from histori
al

data.

1

The 
ross-
orrelation among lighting and shared applian
es are not of signi�
an
e

2

This is reasonable espe
ially for o�
e buildings when o

upants have roughly the same sets of

applian
es.
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Results and Dis
ussion
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Figure 3.7: ON/OFF Probability in 5 min interval for Monitor, Laptop, and Desktop.

Gray lines: Measurement; Colored lines: Kernel smoothed

• O�
e Applian
es: O�
e Applian
es: The o�
e applian
es in
lude monitor,

laptop, and desktop. The estimated ON/OFF probabilities for these three types

of applian
es are shown in Figure 3.7. It is observed that the ON probability

peaks in the early morning and de
reases during the day, whereas the OFF

probability peaks later in the day. It should be noted that data regarding

desktop is sparse and ON/OFF probabilities 
ontain more un
ertainty. Only

weekdays are in
luded in this study.

• Pathway/Room Lighting: Pathway/Room Lighting: Lighting power 
onsump-

tion is a major 
ontributor to a building's energy pro�le. In this study's test

spa
e in Cory 406 at UC Berkeley, there is pathway lighting and room lighting.

Pathway lighting is shared in a large working area and has a more standard

s
hedule throughout the day. Room lighting has a motion sensor, so it is more
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Figure 3.8: ON/OFF Probability in 5 min interval for Room lighting, Pathway

lighting and Mi
rowave. Gray lines: Measurement; Colored lines: Kernel smoothed

adaptive to o

upant behavior. The PowerS
out data we 
olle
ted 
ontains the

aggregated signal of lighting power in seven rooms. For model simpli
ity, we

will assume that the seven rooms are the same. The result is shown in Fig-

ure 3.8. The pathway lighting has little overnight a
tivity, and the estimation

has more bias, sin
e in (3.3), St is zero for some t. These data points are given
a probability of 0.5.

• Shared Applian
es: Shared applian
es in
lude a mi
rowave, a water heater,

a 
o�ee maker, and a refrigerator. The water heater and refrigerator have a

strong periodi
 pattern and less dependen
y on o

upant behavior. The mi-


rowave and 
o�ee maker show a spike-like pattern. The estimated probability

density for a mi
rowave is shown in Figure 3.8. Noti
e that the OFF probabil-

ity is very high, sin
e the duration of ea
h ON event is usually very short, as


ompared to our �ve-minute estimation interval.

A
tually, for those applian
es, duration is roughly �xed depending on the ap-



CHAPTER 3. BOTTOM-UP END-USE MODELING: MODEL SETTING 33

plian
e settings. In the next Se
tion, we will dis
uss an alternative way to

model the applian
es, based on a non-homogeneous Poisson Pro
ess model.

It is expe
ted that in a larger o�
e building, when more applian
es are present,

our proposed model would be more 
apable to 
apture overnight patterns.

Moreover, it should be noted that when the building o

upan
y s
hemati



hanges, the only thing that needs to be tuned is the building pro�le. As long

as we have a reasonable 
ategory of users, we 
an evaluate the building energy

performan
e a

ordingly.

3.4 Shared Applian
es

Poisson Pro
ess Model

As mentioned in Se
tion 3.5, shared applian
es (e.g., mi
rowaves, printers,


o�ee ma
hines) usually demonstrate spiking patterns. The duration of the

spike is usually due to a ma
hine's setting. The bottlene
k of the modeling

is, instead, the turning-ON probability of the applian
e. Sin
e several people

are sharing this applian
e, we would like to �lter out an individual turning-ON

probability or other usage 
hara
teristi
 that is independent of the number of

users. That way, we are able to extend this model to another building spa
e.

This work shows a methodology to model the shared applian
es and eventually

�lter out a usage pattern of a shared applian
e from one o

upant.

Essentially, we model the usage of an applian
e through a Poisson pro
ess [63℄,

with the rate of the pro
ess depending on the number of o

upants inside a

spa
e. The Poisson Pro
ess (PP) models the number of events nt during a [0, t]
interval, and nt follows the Poisson distribution with rate λt as nt ∼ Pois(λt)
as:

Pr(nt = k) =
λktk

k!
e−λt

in whi
h λ is the rate fun
tion. The expe
tation of the number of events is λt,
and the varian
e is λt as well. PP is a memoryless pro
ess [63℄, whi
h means in

the time interval [s, t+ s], the in
remental events satis�es Poisson distribution

Pois(λt) as well:

Pr(nt+s − ns = k) =
λktk

k!
e−λt

(3.14)

If we model ea
h user as a PP, and we have l identi
al users in total, the

aggregation is still PP as

∑l
k=1 n

(k)
t ∼ Pois(lλt).
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Non-Homogeneous Poisson Pro
ess (NHPP) Model

If the rate fun
tion is time dependent λ(t), then the pro
ess is Non-Homogeneous

Poisson Pro
ess (NHPP). For instan
e, given the rate fun
tion at time t as
λ(t), the number of events in a small interval [t, t + h] follows nt+h − nt ∼
Pois(λ(t)h). If we argue that h is one unit of time, then the expe
tation would

be E[nt+h − nt] = λ(t). Hen
e, if we assume the number of o

upants is also

time dependent fun
tion Θ(t), then nt+h − nt ∼ Pois(λ(t)Θ(t)h). From this

stand point, we only need to estimate the time-dependent rate fun
tion λ(t) in
order to extra
t an individual usage pattern.

Based on this model, we 
onstru
t a relationship between the events and the

time dependent rate fun
tion λ(t). If we would like to estimation the time-

dependent rate fun
tion λ(t), we 
an obtain it through statisti
al inferen
e.

Bayesian Statisti
s framework

Based on NHPP model, we 
an 
onstru
t the full probability fun
tion in

Bayesian framework. Let v(t) be the in
remental number of events at time

t, and let the joint prior probability fun
tion for λ(t) and θ(t) as φ(λ(t), θ(t)),
we 
an write the full probability fun
tion of n(t), λ(t) and θ(t) as:

Pr ∝
n∏

t=1

e−λ(t)θ(t)[λ(t)θ(t)]v(t)φ(λ(t), θ(t)) (3.15)

If we further assumes that θ(t) is the daily number of o

upants, whi
h means

it is 
onstant within a day; whereas λ(t) is time-of-day dependent and same for

ea
h day, and let λ(t) = λ0η(t) for simpli
ity, in whi
h η(t) ∈ {η1, · · · , ηp} is a

normalized data with

∑
j ηj = p the daily data points3, and θ(t) ∈ {θ1, · · · , θd}

as d the total number of days. Let v be total number of events, vj 
orresponds
to the number of events w.r.t. the j-th time slots (su
h that

∑
j vj = v), and

v(i) be the number of events on the i-th day, we have:

Pr ∝ e−λ0p
∑

i θiλv
0

(
∏

j

η
vj
j

)(
∏

i

θv
(i)

i

)
φ(·) (3.16)

We 
an use MCMC te
hniques su
h as Gibbs sampler to generate sample of

λ0, {ηj}pj=1 and {θi}dj=i. The prior of Poisson distribution is the Gamma distri-

bution [63℄, we follow the pro
ess as below:

3

In 5 min interval data, there are 288 date point every day, so P = 288.
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Figure 3.9: Sampling result of λ(t) along the day with 5 min per sample.

� sample λ0 ∼ Γ(αλ + v, βλ + p
∑

i θi), whi
h assumes a prior of Γ(αλ, βλ)

� sample η1, · · · , ηp, in whi
h ηj ∼ Dir(αη + vj) whi
h is the Diri
hlet dis-

tribution with prior Dir(αη).

� sample θ1, · · · , θd in whi
h θi ∼ Γ(αθi + v(i), βθi + pλ0), whi
h assumes a

prior of Γ(αθk , βθk).

Results and Dis
ussion

Prior distributions are assumed from rough understanding, and we run 1500

MCMC steps, with another 500 as burn-in period.

The sampling result of λ(t) (t = 1, ·, p) is shown in Figure 3.9. The histogram

of λ0 in Equation (3.16) is shown in Figure 3.10 for referen
e. We 
an tell the

daily pattern from Figure 3.9 as well as the daily �u
tuation in distribution.

The sampling result of θ(t) (a
tually θ1, · · · , θd) is shown in Figure 3.11. We


an also obtain the statisti
al variability from the �gure. This indi
ates that

the sampling method not only 
an give estimation of the parameters, but also

give estimation of their statisti
al variability.
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Figure 3.10: Sampling histogram of λ0.

Figure 3.11: Sampling result of Θ(t) in ea
h day.
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3.5 Con
lusion

In this 
hapter, modeling issues under the Bottom-Up setting are 
omprehen-

sively dis
ussed. Compared to the Time-Of-Use (TOU) data used in previous

Bottom-Up models, this work takes advantages of the high frequen
y sampled

data from wireless sensor networks and builds an applian
e-data-driven end-use

model. ON/OFF probabilities of applian
es are extra
ted, and a theoreti
ally

unbiased Finite-State-Ma
hine (FSM) Monte Carlo model is developed with


ross-
orrelation 
orre
tion. This 
hapter also brie�y introdu
es work on mod-

eling the shared applian
e based on the Non-Homogeneous Poisson Pro
ess

(NHPP) sampling method, whi
h 
an �lter out an individual usage pattern

out of ON/OFF states of shared applian
es.
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Chapter 4

Bottom-Up End-Use Model: Data

and Experiments

In Chapter 3, we studied the theories and settings of the Bottom-Up end-

use model and demonstrated that the Bottom-Up model 
an be re-used in

other similar buildings to estimate end-use power 
onsumption. This se
tion


ontinues this line of study by pulling everything together and veri�es model

performan
e in a real end-use modeling appli
ation.

In this work, we make use of the Bottom-Up model stru
ture shown in Chapter

3, and only Level-II and Level-III models are fo
used on here. For 
onvenien
e,

the proposed model's s
hemati
 is shown again in Fig. 4.1.

In Se
tion 4.1, the data 
olle
tion pro
ess is dis
ussed. Then in Se
tion 4.2,

a brief dis
ussion about the power disaggregation te
hnique used to �lter out

individual applian
e ON/OFF states from aggregated raw power sequen
es

follows. Finally, in se
tion 4.3, experimental results are shown as happened in

Cory Hall and Sutardja-Dai Hall at UC Berkeley, followed by the 
on
lusion in

Se
tion 4.3.

4.1 Data Colle
tion

Power 
onsumption of the applian
es is 
olle
ted through a large-s
ale wireless

sensor network (WSN). WSNs have been implemented in many di�erent s
e-

narios to fa
ilitate system estimation, 
onditioning, and diagnosis [39℄[45℄[38℄.

� DENT meter [17℄ is used to 
olle
t whole spa
e real-time power 
onsump-

tion data. The DENT meter has 18 
hannels, ea
h one monitoring a
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Level-
I 

Model

Statistical parameters

Field parameters

Building 
Functionality

ON/OFF probability, 
Presence probability, 

Duration, Rate-Of-Usage 
of each category of 

appliance, etc.

Number of appliances in 
each category, e.g. 
laptops, monitors, 

desktops, refrigerator, 
printer, etc.

Number and 
type of 

occupants

Level-
II 

Model

Level-
III 

Model

Figure 4.1: Parameters in Bottom-up model: Field Parameters and Statisti
al Pa-

rameters. Level-III model is the most 
omplex, and Level-II model is less 
omplex;

Level-I is the simplest but rather hard to a
hieve.

subset of applian
es, e.g. plug loads, lights, kit
henware et
. The DENT

meter data is handled in CoreSight from OSIsoft

1

.

� ACme sensors are used to 
olle
t real-time power 
onsumption of ea
h

o

upant [33℄, with resolution up to one se
ond per sample. The ACme

meter data is handled using the sMAP proto
ol [16℄. We implement one

ACme sensor for ea
h o

upant to optimize 
ost and experimental per-

forman
e. The states of ea
h applian
e are �ltered out by the power

disaggregation algorithm from the aggregated o

upant-level power 
on-

sumption, as will be illustrated in the next se
tion [37℄.

1http://picoresight.osisoft.com/

http://picoresight.osisoft.com/
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4.2 Power Disaggregation

In Bottom-Up models, we need to 
olle
t power 
onsumption data of ea
h

individual applian
e. However, deploying sensors to ea
h applian
e will be


ostly and raise issue in priva
y and stability, espe
ially in modern 
ommer
ial

buildings.

On one hand, modern buildings demonstrate sophisti
ated fun
tionality and

in
reasing number of applian
es, whi
h makes large-s
ale sensor deployment


ostly. On the other hand, users may 
omplain if many sensors are deployed

in their spa
e. Finally yet importantly, as more sensors are in
luded in the

network, 
ommuni
ation may su�er from stability issues, and thus data quality

is less guaranteed [45℄.

For all of these reasons above, a low-
ost, non-intrusive monitoring is preferred

that 
an measure power 
onsumption of applian
es without the dire
t atta
h-

ment of power meters [76℄. The most 
ommon solution to this issue is to use

a power strip to aggregate all the applian
es of ea
h user and atta
h it to a

power meter to measure aggregated power. Then, we apply power disaggre-

gation methods to the aggregated signal to obtain signals of ea
h individual

applian
e, as shown in Figure 4.2. With the applian
e-level 
onsumption re-


overed, we 
an build a Bottom-up model for the building spa
e under study.

Here is a mathemati
al de�nition of power disaggregation:

De�nition 4.2.1 (Power Disaggregation). In power disaggregation, we de
ode

the ON/OFF state of individual applian
e from an observed aggregated power

stream. Let pt, ∀t = 1, · · · , n be the aggregated power stream from p applian
es.

Let St be the state ve
tor of the n applian
es at step t. Our task is to infer

St from pt. St is a ve
tor of n binary variables, one for ea
h applian
e, i.e.

St ∈ {0, 1}p, in whi
h 1 for ON, 0 for OFF. There are in total 2p 
ombinations

of ON/OFF states.

Various existing power disaggregation methods are studied in this se
tion, along

with a 
omparison of their performan
e followed by proposed new algorithms

based on sequential hypothesis testing.

Related Work

Typi
al solutions to Power Disaggregation are either based on a Hidden Markov

Model, or on Edge-based Model.
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Figure 4.2: S
hemati
s of power disaggregation, de
oding aggregated power stream

(in
luding a desktop, a monitor and a laptop) to applian
e-level streams

power 

states of n appliances 

 

   

   

   

 

  

 

 

 

 

Figure 4.3: S
hemati
s of Hidden Markov Model for power 
onsumption over time

(pt, t = 1, · · · , T )

� Hidden Markov Model (HMM): The aggregated power stream is modeled

as a Hidden Markov Chain (HMC), with hidden states as the ON/OFF

states of individual applian
es, as shown in Figure 4.3 [25℄.

Firstly, the aggregated power pt is a Gaussian distributed variable 
on-

ditioned on the applian
e state ve
tor st. If we assume that the power
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onsumption of the i-th applian
e is approximately Gaussian distributed

as N (Wi, σ
2
i ), and let w = {W1, · · · ,Wn} and Σ = {σ2

1, · · · , σ2
n}, then the

aggregated power follows:

pt|s ∼ N (sTw, sTΣ) (4.1)

Se
ondly, the sequen
e of st with t = 1, · · · , T in Figure is modeled as a

Markov Chain (MC).

De�nition 4.2.2 (Markov Chain). Markov Chain is a spe
ial 
ase of a

sto
hasti
 pro
ess. A sto
hasti
 pro
ess is a time sequen
e of variables

S1, S2, · · · , St, and their joint probability 
an be written as:

Pr(S1, S2, · · · , St) = Pr(S1)

t∏

i=2

Pr(Si|Si−1, · · · , S1)

A sto
hasti
 pro
ess is a Markov Chain (�rst order) if it follows the

Markov property, in that Pr(Si|Si−1, · · · , S1) = Pr(Si|Si−1), and we have:

Pr(S1, S2, · · · , St) = Pr(S1)

t∏

i=2

Pr(Si|Si−1)

Here Pr(Si|Si−1) 
an also be viewed as transition probability. If they are


onsistent for all the i's, the Markov Chain is 
alled Homogeneous Markov

Chain; otherwise it is 
alled Non-Homogeneous Markov Chain.

For 
onvenien
e, we note that:

Pr(st|st−1, · · · , s1) = Πst−1,st (4.2)

Based on (4.1) and (4.2), we estimate the state at ea
h step, based on

Maximum Likelihood Estimation (MLE) estimation of st:

st = argmax
s

Pr(st = s|p1:T ) (4.3)

Sin
e the sear
h spa
e is 2n, there will be an exponential explosion w.r.t.

n. However, if we assume that only one applian
e is swit
hing at ea
h

step, the in
remental state sear
h spa
e from st−1 to st is only n. This

assumption is reasonable with manually swit
hed devi
es and a sampling

rate at the sensor node higher than 1 se
/sample.

Equation (4.3) 
an be solved by a Viterbi algorithm [25℄.
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De�nition 4.2.3 (Viterbi Algorithms). We note Lt(s) = Pr(st = s|p1:T )
as the likelihood fun
tion and we use st−1,ML = Ψt(st) to store the most

likely state ba
k at step t− 1 given that the 
urrent state at t is st. Then,
it is argued that Lt(s) and Ψt(st) 
an be obtained from the terms from step

t− 1: {
Lt(s) = maxs′ Lt−1(s

′)Πs′,s Pr(pt|st = s)
Ψt(st) = argmaxs′ Lt−1(s

′)Πs′,st
(4.4)

The above problem is solved sequentially, as �rst estimate the state at the

last step sT = argmaxs′ LT (s
′), and then ba
ktra
k for the best estimate

at ea
h step as st−1 = Ψt(st).

HMM gives stable state inferen
e, and many existing algorithms on power

disaggregation are built upon this basi
 model. Wang et al. [72℄ treated

power disaggregation in a 
onvex optimization framework using sparse


onstraints. [59℄ solved the HMM by the Extended Viterbi algorithm and


onsidered only the major power 
onsuming applian
es. The sampling

method is widely used to deal with the exponential explosion issue. In

[41℄[44℄[43℄[34℄, statisti
al inferen
e of the joint distribution is based on

Fa
torial HMM [28℄, though most of the sampling methods have 
ompu-

tation issues.

However, the standard HMM does not have a good way to handle the fa
t

that states may stay un
hanged for long time intervals. This is signi�
ant

for our problem, sin
e many applian
es, su
h as a lamp or a monitor, will

have very di�erent duration 
hara
teristi
s, while HMM models the dura-

tion as a Geometri
 distribution [44℄. Some extensions of HMM have been

proposed to address this issue. In [27℄, the persisten
e of state (sti
kiness)

is guaranteed by introdu
ing a 
onstraint on the Markov 
hain model.

Whereas in [44℄, [43℄, a Hidden Semi-Markov Model is used to model du-

ration statisti
s. However, in most 
ases, we need a long training period

of time of this model, sin
e ON/OFF events of individual applian
es may

not be that frequent.

� Edge-based Model: An intuitive way to get around duration modeling is

to fo
us only on the ON/OFF edges, in an approa
h we 
all the Edge-

based model, as shown in Figure 4.4. Edge-based model applies a 
hange

dete
tion algorithm to tra
k the edges and tra
e the sour
e based on

statisti
al learning methods [4℄. Usually, we tra
k the mean (βt) and

varian
e (σ2
t ) of the aggregated power over time using an exponential
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Edge 1

Edge 2

Edge 4

Edge 3

Edge 6Edge 5

Figure 4.4: S
hemati
s of Edge-based method

moving average �lter su
h as:

{
β0 = 1

d

∑t−d
τ=t−1 pτ exp

(
− τ−t

ω

)

σ2
0 = 1

d

∑t−d
τ=t−1(pτ − β0)

2 exp
(
− τ−t

ω

)
(4.5)

where ω is the de
ay fa
tor and d the window size. Then, we look at the

deviation of the 
urrent power pt w.r.t. the mean and varian
e [7℄. Edge-

based model originates from the early work on NILM [30℄. A review 
an

be found in [76℄. Algorithms that are studied in
lude Linear Dis
riminant

Classi�er [20℄, Bayes 
lassi�er [22℄, Neural Network [21℄, et
.

Around the edges, there are several transient features that 
an be ex-

tra
ted from the a
tive power or the rea
tive power readings, the latter

often having unique harmoni
 patterns when observed at high enough

sampling rates [48℄. Su
h high frequen
y transients 
an help distinguish

between, for example of a 
o�ee-maker and a 
handelier, espe
ially when

fo
using on their rea
tive power patterns.

In general, high frequen
y sampling will also be useful in distinguishing

between applian
es, sin
e larger data sets, aided by the Law of Large

Numbers [7℄, will generally be better for distinguishing among di�erent

sour
es. The obvious tradeo� here is, of 
ourse, that higher sampling

rates would typi
ally imply higher instrumentation and 
omputational


ost.

Existing Challenges

In general, the existing 
hallenges are from the noise and the non-stationarity.

� We have the assumption that the power 
onsumption is essentially a Gaus-

sian random variable. However, in a real power system, the noise is an
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Figure 4.5: Impulse noise observed in power 
onsumption data

approximate Gaussian noise plus large amounts of spikes or impulses. In

Figure 4.5, we 
an see that the spikes apparently deviate from Gaussian

distribution and 
an be as high as 5∼10 Watts. This deviation from Gaus-

sian noise would 
ause unexpe
ted trouble to the performan
e of a power

disaggregation algorithm.

� Another assumption is that the power 
onsumption is stationary. An

applian
e with multiple levels of power 
onsumption 
urve 
an be modeled

as a Gaussian mixture. However, many power 
onsumption 
urves follow

temporal trends or �u
tuations, as shown in Figure 4.6. We 
all this

phenomenon non-stationarity. This would make the traditional power

disaggregation fail.

In this work, we will be fo
using on addressing those issues. A robust sequential

test-based method will be proposed.

Sequential Test Based Power Disaggregation: Theory

From the statisti
s perspe
tive, edge dete
tion is inherently a hypothesis testing

problem [7℄. The null hypothesis is no 
hange happened (H0), and the alternative

hypothesis is 
hange happened (H1). Hypothesis testing for 
hange dete
tion has

been widely studied before [4℄[7℄. Usually we design a test statisti
 T (x). If and only

if T (x) > λ, H0 is reje
ted; whereas if T (x) ≤ λ, we still keep H0, in whi
h λ is the

threshold. To evaluate the test, we use the power of the test and the False Positive

Rate (FPR).
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Figure 4.6: Non-stationarity observed in power 
onsumption data, in both periodi
-

ity, trending, and 
haoti
 way

De�nition 4.2.4 (Power of Test). The power of a test (β) is de�ned as the prob-

ability that it will 
orre
tly reje
t the null hypothesis. Mathemati
ally, it is formed

as:

β = Pr(T (x) > c|H1) (4.6)

De�nition 4.2.5 (False Positive Rate). Moreover, we de�ne the False Positive Rate

(FPR), whi
h determines the error rate of a hypothesis test as:

α = Pr(T (x) > c|H0) (4.7)

The test statisti
 T (x) determines the power and error rate of the test. In [7℄,

it has been argued that within all the test statisti
s, Neyman-Pearson framework is

the most powerful.

De�nition 4.2.6 (Neyman-Pearson Test). Let the probability density and parameter

be f0(x) and θ0 for H0, respe
tively, and f1(x) and θ1 for H1, respe
tively. The N-

P framework ensures that the Uniformly Most Powerful (UMP) test given 
ertain

False Positive Rate (FPR) is a
hieved by using Probability Ratio as test statisti
, i.e.

T (x) = f1(x)
f0(x)

. The result of the test (noted as a 0/1 variable δ(x)) follows:

δ(x) =

{
1 if T (x) > λ i.e. reje
t H0

0 if T (x) < λ i.e. do not reje
t H0
(4.8)

where the value of λ is determined from the 
onstraint of FPR α = Pr(T (x) > λ|H0).
However, the power of the N-P test depends on the sample size of the input data x,
whi
h limits the performan
e of the test.
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De�nition 4.2.7 (Sequential N-P Test). The sample size issue 
an be solved by the

sequential version of the N-P Test, knows as the Sequential Probability Ratio Test

(SPRT). In this framework, the likelihood fun
tion is in
rementally updated after

every new sample arrival [5℄, given xn = {X1, · · · , Xn}:

L(xn) = log
f1(x

n)

f0(xn)
= L(xn−1) + log

f1(Xn)

f0(Xn)
(4.9)

where reje
t H0 if L(xn) > α and reje
t H1 if L(xn) < β, where α and β are two


onstants. If α ≥ L(xn) ≥ β, we 
ontinue to a

ept new samples till a de
ision 
an

be made.

SPRT simulates the way human makes de
isions. One makes de
ision if one has

enough 
on�den
e and will 
ontinue to re
eive information if not. In SPRT, we do not

need to pre-determine the size of the test. Instead, the size is adaptively determined

based on the observations. Even better is that SPRT requires fewer samples than

standard non-sequential N-P test given the same FP Rate 
onstraint. The expe
ted

number of samples for 
ertain FP rate α is given as [60℄

{
E(N |H0, H1) ≈ log(α)

D(f0|f1) for Sequential

E(N |H0, H1) ≈ log(α)
C(f0|f1) for Non-sequential

(4.10)

in whi
h D(f0|f1) is the Kullba
k-Leibler (K-L) distan
e and C(f0|f1) the Cherno�
distan
e. For Gaussian variable, the K-L distan
e is usually greater than Cherno�

distan
e. Therefore, SPRT needs fewer samples to rea
h a de
ision.

The optimality of the sequential test motivates us to formulate the power disag-

gregation problem based on it.

Now we move on to multiple-hypothesis test. If we have one null hypothesis

and k alternative hypotheses, from [7℄, we should 
ompare one hypothesis with all

the other 
hoi
es. Suppose that the jth hypothesis has a prior πj , we 
an write the

posterior probability of the jth hypothesis as:

pjn =
πj

∏n
i=1 fj(Xi)∑k

j=0 πj′
∏n

i=1 fj′(Xi)
(4.11)

For 
omputation purpose, we use its inverse as the test statisti
. De
ision is made

towards the jth hypothesis if the threshold 
orresponding to the jth hypothesis, whi
h
is noted as χj, is ex
eeded. Otherwise, more data are sampled:

F n
1 (j) =

1

pjn
< χj (4.12)



CHAPTER 4. BOTTOM-UP END-USE MODEL: DATA AND EXPERIMENTS48

The algorithm works as in Figure 4.7(a), in whi
h F n
1 (1) ex
eeds the threshold,

whereas F n
1 (2) goes to the opposite dire
tion. The threshold for the jth hypothesis is


al
ulated as χj = α
(
δj
∑

j′
πj′

δj′

)−1

, in whi
h δj = minj′ 6=j D(fj|fj′) [2℄. The number
of samples we need to rea
h a de
ision is:

n = inf {n ≥ 1, F n
1 (j) < χj, ∀j} (4.13)

The se
ond issue is to lo
ate the edge e�
iently. Usually, exa
t edge lo
ation is

not known a priori. If we assume the edge is at time τ . Then, the a

umulation

of the probability ratio fun
tions in Equ. (12) will start from τ , and the number of

sample n will be τ dependent:

n(τ) = inf
{
t ≥ 1, St

τ (j) < Aj, ∀j
}

(4.14)

As we have dis
ussed before, the fun
tions F t
τ (j) will only move toward threshold

when its hypothesis is the truth. Thus, if a guess is ahead of the true lo
ation, the

fun
tion will move away from threshold for a while; whereas if the guess is behind

the true lo
ation, the fun
tion will have a late hit to the threshold, as shown in

Figure 4.7(b). Therefore, the exa
t lo
ation will be determined by the fun
tion that

�rstly hit the threshold, as:

n = inf
τ
n(τ)

For Gaussian distribution, the density de
ays very qui
kly for outliers. This is

not preferable from a numeri
al standpoint. The log-likelihood fun
tion is more

promising. Thus, the original formulation is modi�ed as follows:

N(τ) = inf
t≥1

{
F t
τ (k) < χk, ∀k

}

≈ inf
t≥1

{
max
j 6=k

t∑

i=t−τ

log
fj(Xi)

fk(Xi)
< log

χk

k
, ∀k
}

≈ inf
t≥1

{
t∑

i=t−τ

max
j 6=k

log
fj(Xi)

fk(Xi)
< log

χk

k
, ∀k
}

(4.15)

The �rst approximation is to relax the left side of the inequality and transform

it into log-likelihood ratio, while the se
ond puts the maximum inside the sum and

takes the maximum at ea
h step, hen
e will make the test robust to noisy data (i.e.

"spikes" that frequently appear in power stream data).

The MSPRT originates from the Edge-based model. However, by sequentially


onsidering the density fun
tion, MSPRT borrows ideas from the probabilisti
 HMM

and it appears that it 
ombines some of their advantages.
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Example Power Data 

threshold 

Figure 4.7: Demonstration of MSPRT: (a) Log-likelihood fun
tion evolution; (b)

Edge positioning

Sequential Test Based Power Disaggregation: Results

The k-hypotheses in MSPRT 
an be used to test the status of k di�erent applian
es.

By sequentially applying MSPRT to the power stream, we 
an �nd the right hy-

pothesis, hen
e the right swit
hing applian
e. Thus, MSPRT 
an be used in power

disaggregation appli
ations. We will dis
uss this more in this se
tion and 
ompare

MSPRT with HMM and the Edge-Based Model.

It is also worth noting that to use MSPRT in the power disaggregation appli
a-

tion; we need to know in advan
e the applian
e pro�les that 
onne
t to the sensor

node. This is usually done by learning from a period of ground-truth data. Apart

from that, MSPTR does not ask for extra parameters 
ompared to that of HMM

or Edge-based Model. For the situation in whi
h some applian
es 
an have multi-

ple states, these states 
an be transformed into virtual applian
es, whi
h presents a

similar problem as before.

Pseudo-realisti
 power stream is used in this study's analysis. Firstly, a set of

real data was 
olle
ted by measurement. Several meters have been deployed in 550

Cory Hall at UC Berkeley 
olle
ting power streams of plug-in loads. Ea
h applian
e

has its 
hara
teristi
s pro�le, and some applian
es, su
h as a laptop 
omputer, have
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a non-stationary pattern, as illustrated in Figure 4.8.

The data 
olle
ted by measurement has limited sto
hasti
ity, so white Gaus-

sian noise and/or impulse noise was added to introdu
e randomness. By tuning

the noise parameters, the potential performan
e limit of di�erent methods 
an be

ben
hmarked. Thirty Monte Carlo simulations were performed at ea
h setting of

parameters.

To evaluate the model performan
e, one 
riteria we used is the Dete
tion Error

Rate (DER), whi
h is the gap between the dete
ted and the true number of edges,

i.e.:

DER =
ndetect − ntrue

ntrue

(4.16)

Another one we used is the LDA s
ore, or F-s
ore [41℄. LDA s
ore integrates the

Pre
ision and Re
all s
ores. Pre
ision is given by

Pre
 =
TP

TP + FP

in whi
h TP is True Positive rate, FP is False Positive rate. Re
all is given by:

Re
 =
TP

TP + FN

in whi
h FN is False Negative rate. The LDA is eventually given by:

LDA =
2Pre
× Re


Pre
 + Re


(4.17)

Therefore, the e�
a
y of the various methods will be judged in terms of a
hieving

low DER and high LDA values.

In this study's simulation, one desktop 
omputer, one 
omputer monitor, and

one laptop 
omputer were in
luded, as these are the most 
ommon applian
es in

a typi
al o�
e building. We also in
luded a water heater with a pump for water

�ltering. The patterns for the �ve applian
es are shown in Figure 4.9. Note that

non-stationary time series is also 
onsidered here (e.g., in the left �gure). Non-

stationarity de�nitely bring about extra 
hallenge, and in this work, it was handled

by 
onsidering the dynami
 time series model.

There are two groups of study in this se
tion. In the �rst group we only 
onsider

Gaussian random noise, and the data is modeled as pt = h(st) + zt with h(st) being
the state-dependent 
lean signal, and zt being the Gaussian noise with varian
e

σ2
z . The impa
t of noise is investigated by tuning σ2

z from 1 to 256, based on the

measurements. The state duration is modeled as Gamma distributed [41℄, and it was

assumed that at ea
h step, one applian
e swit
hes at most.
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Figure 4.8: Measured power pro�le of desktop, monitor and laptop
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Figure 4.9: Simulated power pattern for �ve devi
es

The three methods under study in this se
tion are as follows: the MSPRT, the

HMM, and the Edge-Based Model. The simulation results for these three methods

are summarized by showing the LDA in Figure 4.10, and the DER in Figure 4.11.

In terms of LDA for the laptop and monitor, there is a drop in LDA above

a 
ertain noise level for the Edge-Based Model. For �xed sample dete
tion, the

expe
ted number of samples needed is following equation (4.10). If this number

is over the test sample size (whi
h in
reases as the noise level in
reases), then the


hanges 
ould be missed. MSPRT adaptively learns the test samples size, and HMM
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Figure 4.10: Monte Carlo Simulated LDA results for the �ve applian
es as a fun
tion

of Gaussian noise amplitude, under the three models

tunes itself by introdu
ing state transitions. Thus, they do not have the abrupt drop

in LDA, as shown in Figure 4.10, though MSPRT is slightly better.

In terms of DER, MSPRT is the most a

urate method, sin
e the state 
hanges

only after the edge is dete
ted and the sample size 
an be self-tuned. The edge-

based model su�ers a sudden in
rease of DER at high noise levels be
ause it is

non-sequential, whereas HMM is worse in DER 
ompared to MSPRT, sin
e the state

sti
kiness is not well modeled in HMM.

The impa
t of impulse noise was studied in the se
ond group. Here, we model the

data as pt = h(st)+ zt+λwt, where wt is the impulse noise term with varian
e σ2
w ≫



CHAPTER 4. BOTTOM-UP END-USE MODEL: DATA AND EXPERIMENTS53

— HMM

— MSPRT

— Edge-based

1 16 49 100 169 256
-30

-20

-10

0

10

20

30

40

50

Noise Variance σz
2

D
e

te
ct

io
n

 E
rr

o
r 

R
a

te
 (

D
E

R
)

Figure 4.11: Monte Carlo simulated DER as a fun
tion of Gausian noise amplitude

for the three methods under study

σ2
z , and λ ∈ 0, 1 is a Bernoulli pro
ess that models the impulse noise probability.

The impa
t of impulse noise was investigated by varying noise varian
e σ2
w as well

as the Bernoulli pro
ess probability Pr(λ = 1). Based on measured data, the range

of σ2
w was set from 502 to 1502, and Pr(λ = 1) was set to be from 0.02 to 0.5. The

only fo
us here is on MSPRT and HMM, sin
e these methods give better average

performan
e.

The LDA and DER of MSPRT and HMM are shown in Figure 4.13, Figure 4.14

and Figure 4.15. They have similar performan
e in terms of LDA, and MSPRT, not

surprisingly, has better DER than HMM. However, even for MSPRT, the DER goes

beyond 100% as noise-level in
reases.

It is well known that tests assuming a Gaussian distribution are sensitive to

outliers or impulses [7℄. In the presen
e of impulse noise, both MSPRT and HMM

su�er from degradation 
aused by the outliers. Therefore, it is ne
essary to introdu
e

a robust model. This is found to be most e�
ient for MSPRT.

Several distributions 
an model data sets that either have longer-than-Gaussian

tails, or are skewed. Examples in
lude the student t-distribution or the Gamma

distribution. In this work, inspired by the Huber Robust Loss Fun
tion [32℄, a robust

distribution that has quadrati
 de
ay in its main body and linear de
ay towards its

tails is introdu
ed. Assuming, without loss of generality, that the data is zero-
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Figure 4.12: Demonstration of RMSPRT: (a) Impulse noise response and (b) True

edge response


entered and standardized (y = x
σk
):

log fk ∼= −y2

2
1 {|y| ≤ ξ} − |y|+ ξ2 − ξ

2
1 {|y| > ξ}

The normalization 
oe�
ient of fk 
an be obtained as:

C = 2σk

{√
2π (Φ(ξ)− 0.5) + 2e−

1
2
ξ2
}
∝ σk

in whi
h Φ(ξ) is the 
umulative density fun
tion (CDF) of the standard Normal

Distribution. Thus, the log-likelihood fun
tion 
an be written similar to the Gaussian


ase (yk(j) =
x

σk(j)
) as log

fj
fk
.

A demonstration of the Robust MSPRT (R-MSPRT) is shown in Figure 4.12.

From Figure 4.12(a), R-MSPRT is less sensitive to impulse noise. However, as seen

in Figure 4.12(b), R-MSPRT is, at the same time, less likely to dete
t true 
hanges,

even in a normal setting. We need to pay attention to this tradeo� as we 
hoose the

parameters.

We 
ompare the performan
e of this R-MSPRT with the MSPRT and the HMM

in Figures 4.13 to Figure 4.15, and we only fo
us on the �rst three applian
es in
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Figure 4.13: LDA as a fun
tion of impulse noise amplitude and impulse Bernoulli

probability for the �rst three applian
es under study, using Monte Carlo simulated

data

Figure 4.9. The R-MSPRT gives better LDA 
ompared with the other two methods,

and it shows mu
h better DER as well. A
tually, R-MSPRT has DER 
onsistently

below 5% and does not su�er frommu
h degradation as noise varian
e in
reases. This

is due to the introdu
tion of a noise that is robust to large deviation. It should be

noted that R-MSPRT has similar 
omputational 
omplexity to the ordinary MSPRT.

A problem of R-MSPRT is that when the observed data is ambiguous, many

samples may need to be pro
essed in order to satisfy the 
on�den
e requirement. A

de
ision 
an be made before a 
ertain number of samples are rea
hed by a trun
ated

SPRT [60℄, whi
h 
ould be a subje
t for future study.

With power disaggregation te
hniques, the ON/OFF states of individual appli-

an
es 
an be obtained, and then ON/OFF probabilities used in simulation may be


al
ulated. In the next se
tion, we will test the performan
e of our model in Chapter

3 in real buildings.
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Figure 4.14: Monte Carlo simulated DER as a fun
tion of Bernouli noise probability

showing the e�
a
y of the Robust noise model

4.3 Experiments and Results

Model Setting

To make it 
lear, the Bottom-up approa
h is built based on the following steps.

• Firstly, the ON/OFF states of applian
es are extra
ted using the power disag-

gregation algorithm dis
ussed in Se
tion 4.2.

• Se
ondly, the Statisti
al Parameters are extra
ted as illustrated in Se
tion

3. The shared applian
es are modeled as Non-Homogeneous Poisson Pro
ess

(NHPP).

• Thirdly, the Field Parameters are also extra
ted either in a Level-III or in a

Level-II model. For a

ura
y reasons, the Level-I model is not 
onsidered in

this work.
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Figure 4.15: Monte Carlo simulatede DER as a fun
tion of Bernouli noise amplitude

showing the e�
a
y of the Robust noise model.

Model Training

The model was trained based on ACme power-meter readings during the 2014 Fall

Semester (i.e., 09/01/2014 to 12/01/2014) at UC Berkeley's CREST Center. The

ACme meters are implemented at an individual level, and power disaggregation te
h-

nique was used to de
ompose the aggregated 
ubi
le level to an applian
e level, as

dis
ussed in Se
tion 4. Then, following the rules in Se
tion 3, a Bottom-Up model

based on the sto
hasti
 ON/OFF probability was built. As ba
kground information,

there are 18 o

upants in the CREST spa
e with 3 desktops, 10 monitors, and 11

laptops.

Cory Hall 406 Winter Semester

In the 2014â��15 winter semester (12/28/2014 to 01/16/2015), the CREST spa
e is

mu
h less o

upied, with only 3 monitors, 5 laptops, and 2 desktops a
tively running.

The simulated and measured mean and standard deviation of the power 
onsumption

of the Level-III model are shown in Figure 4.16. Most of the levels are 
aptured, and

the error in standard deviation 
omes from the limited data in our study, espe
ially
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for desktop. For the Level-III model, mu
h �eld information is needed, whi
h in most


ases is unreliable. For a new test spa
e, the Level-II model is preferred.
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Figure 4.16: The simulated (Sim.) and measured (Mea.) mean and standard devia-

tion (std.) of the power 
onsumption (in kW).

Sutardja-Dai Hall 4th Floor Fall Semester

The se
ond test was 
arried out on the fourth �oor of UC Berkeley's Sutardja-Dai

Hall. The s
hemati
 of the �oor spa
e is illustrated in Figure 4.17. There were 62

o

upants on fourth �oor, with 46 of them in 
ubi
les and 16 of them in o�
es.

There are also three printers and one kit
hen.

The se
ond test is for Level-II model, and the di�eren
e of Level-II model from

Level-III model is that it only takes the number of o

upants as input and infer
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the number of applian
es based on the possession probability. This probability is

estimated from the fourth �oor of Sutardja-Dai Hall, and CREST 
enter spa
e, as

well as SWARM lab in Cory Hall, all at UC Berkeley. There are more than 110

users in
luded. For ea
h individual, the probability of having an laptop is 0.4545,

monitor is 0.6545, and the desktop is 0.2455. Printers are spe
ial, for o�
e users,

ea
h o

upant has a printer; for 
ubi
le users, ea
h 
ommon spa
e has roughly one

printer. De�nitely, it should be noted that the 
omputer applian
es are still the

major power 
onsumption.

Figure 4.17: S
hemati
 of CITRIS fourth �oor.

Whole-building plug-in measurements were 
olle
ted during 09/01/2014 to 12/01/2014,

and a Level-II model simulation was 
ompleted. The result is shown in Figure 4.18.

Most of the daytime variation is 
aptured but with an unidenti�ed baseline missing.

This baseline is almost 
onstant and is believed to 
orrespond to the 
onstant server

or pro
essor operation on this �oor. Thus, for the Level-II model, adding the num-

ber of pro
essors into the model, apart from the number of o

upants, will probably

yield results that are more a

urate. However, it should also be noted that su
h

pro
essors 
ould be task-spe
i�
.
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Figure 4.18: Simulated and measured data from CITRIS fourth �oor. The uniden-

ti�ed baseline is the measurement minus the simulation.

4.4 Con
lusions and Future Tasks

In this 
hapter, based on the study from Chapter 3, we make use of the Bottom-

up approa
h to model the building plug-in loads power 
onsumption under di�erent

s
enarios.

Power disaggregation as an important te
hnique to �lter applian
e ON/OFF state

from aggregated raw power sequen
es is dis
ussed. A new disaggregation te
hnique

based on multiple-hypothesis sequential testing and robust statisti
s is introdu
ed,

showing stable performan
e under impulsive power sequen
es.

The experiment was then 
ondu
ted in Cory Hall and Sutardja-Dai Hall at UC

Berkeley. The model demonstrates a strong 
apability to simulate seasonal and
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daytime variation of power 
onsumption in 
ommer
ial buildings.

For the next step, attention 
ould be given to the modeling and feasibility analysis

of a Level-I model with simpli
ity and 
ommer
ial potential.
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Chapter 5

Bottom-Up End-Use Monitoring: A

Dimensionality Redu
tion Approa
h

5.1 Introdu
tion

In Chapter 3 and Chapter 4, themodeling issue in Bottom-up approa
h was dis
ussed.

In this 
hapter, we will move on to study the monitoring issue. As dis
ussed before,

the advantage of Bottom-up approa
hes is its 
overage of �ne-grained individual

power 
onsumption. However, as in other multivariate systems, when the amount of

data s
ales up, several 
hallenges arise in the e�
ien
y of monitoring, storage, and

the performan
e of statisti
al learning algorithms [31℄. By providing a more e�
ient

lower-dimensional re
onstru
tion of the original system, dimensionality redu
tion

1

is

one of the te
hniques that 
an help to over
ome these issues [58℄.

Among the dimensionality redu
tion te
hniques, Prin
ipal Component Analysis

(PCA) is most widely known. PCA �nds the linear proje
tion of the original data

matrix that explains the largest portion of the varian
e, known as the Prin
ipal

Component (PC). However, when data are not 
onsistently Gaussian distributed

2

,

the linear proje
ted Prin
ipal Component is usually not interpretable. For example,

when data are binary, whi
h happens a lot in behavioral s
ien
e, the linear proje
tion

is usually not binary anymore.

Re
ently, a generalized PCA framework for exponential-family distributed data

is developed (also known as the ePCA) [12℄by formalizing PCA into a generalized

low-rank approximation framework. In the 
ase of Bernoulli random variables, the

1

Dimesionality redu
tion, dimension redu
tion, dimensional redu
tion refer to the same thing,

in this work.

2

By 
onsisten
y the streaming data are following same distribution.
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generalized PCA is 
alled Logisti
 PCA (LPCA).

Moreover, with the explosion of streaming data nowadays, it is also important

to have the algorithm appli
able in real-time setting. Running bat
h mode LPCA

every time when new data point 
omes in is de�nitely too 
ostly, and a sequential

version of LPCA would be highly preferred.

In this 
hapter, we will study the LPCA mentioned before on multivariate binary

data and extend it to a sequential version 
alled SLPCA, based on the sequential


onvex optimization theory [80℄ [64℄. The 
onvergen
e property of this algorithm is

dis
ussed. An appli
ation in building energy end-use pro�le modeling is investigated

based on this method.

This 
hapter is organized as follows: In Se
tion 5.2, the ba
kground and the

detail of the algorithm is given, in
luding PCA, exponential family, and eventually

the sequential LPCA (i.e. SLPCA) whi
h we propose. In Se
tion 5.3, the 
onvergen
e

property of the algorithm is dis
ussed, followed by the simulation results as well as

the appli
ation in energy end-use modeling in Se
tion 5.4. In Se
tion 5.5, 
on
lusion

is drawn.

5.2 Algorithm Framework

PCA as a dimensional redu
tion te
hnique has been well studied, and our Sequential

LPCA is essentially a generalized in
remental version of the 
lassi
al model.

Prin
ipal Component Analysis

PCA is a well-known te
hnique for dimensional redu
tion for high dimension data.

It is of spe
ial importan
e in high dimensional regression model, and in a variety of

appli
ations, ranging from fa
e re
ognition to generalized ma
hine learning [70℄ [31℄.

Apart from the maximum varian
e proje
tion perspe
tive mentioned before, there

is another perspe
tive of PCA 
alled the low-rank fa
torization perspe
tive [68℄. Let

X ∈ R
n×p

be p-dimensional data with length n. PCA �nds a lower rank matrix

Θ to minimize 
ertain loss fun
tion. In 
onventional PCA, the loss fun
tion is in

Frobenious norm (or squared-error) shape:

min
Θ

‖X−Θ‖2F (5.1)

in whi
h ‖ · ‖F is the Frobenious norm. The lower rank matrix Θ will 
ontain the

prin
ipal 
omponents (PCs).

When X ∈ R
n×p

follows Gaussian distribution, this minimization problem is

essentially maximum likelihood low rank re
onstru
tion [68℄. From this standpoint,
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if X follows other distribution, we 
an also extra
t the PCs by designing the loss

fun
tion as negative likelihood fun
tion L(X‖Θ) = − log Pr(X‖Θ). However, there
are two issues needs to be address.

• The maximum likelihood low rank re
onstru
tion problem is not always as

straightforward to solve as in equation (5.1). For non-
onvex loss fun
tion,

global optimal solution is not guaranteed.

• As illustrated before, the low rank re
onstru
ted matrixΘ need to be 
onsistent

with the original distribution.

Fortunately, when original data X ∈ R
n×p

follows Exponential Family distribu-

tion, the two issues above 
an be ta
kled.

Exponential Family

De�nition 5.2.1 (Exponential Family). In the exponential family of distributions

the 
onditional probability of a value X given parameter value Θ takes the following

form:

logP (X|Θ) = logP0(X) +XΘ−G(Θ) (5.2)

in whi
h, Θ is 
alled the natural parameter of the distribution. Then we have E[X ] =
∇G(Θ) = g(Θ) is the inverse 
anoni
al link fun
tion, and Var[X ] = ∇∇TG(Θ).

• Log-likelihood fun
tion of exponential family distribution is 
on
ave with re-

spe
t to the natural parameter Θ, hen
e the negative likelihood minimization

is e�
ient.

• Sin
e E[X ] = g(Θ), we 
an interpret the Prin
ipal Components as g(Θ).

Example 5.2.1. In the 
ase of Gaussian distribution, the negative log-likelihood

follows

L(x‖g(θ)) = 1

2
(x− θ)2

It 
oin
ides with the Frobenious norm fun
tion in equation (5.1).

Example 5.2.2. In the 
ase of Bernoulli distribution, the negative log-likelihood is

the logit fun
tion

L(x‖g(θ)) = log(1 + exp(−x∗θ)) (5.3)

where x∗ = 2x−1 ∈ {−1, 1}. In this 
ase, the loss fun
tion is a 
onvex fun
tion of θ.
However, the minimum 
ould be at in�nity. Hen
e, usually we put a regularization
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term γ θ2

2
there, with the full loss fun
tion being L(x‖g(θ)) = log(1+exp(−x∗θ))+γ θ2

2
.

Note that for Bernoulli distribution, the inverse 
anoni
al link fun
tion is g(θ) =
1

1+exp(−θ)
with 0 and 1. Thus, the Prin
ipal Components 
an be interpretable.

Exponential Family PCA

In this work, we will only work on Bernoulli variable, as in the se
ond example, we

repla
e Frobenious loss in (5.1) by the logit fun
tion. For multivariate binary date

matrix X ∈ R
n×p

, we have:

L(X‖Θ) =
∑

i,j

log(1 + e−x∗

ijθij) (5.4)

For a rank-r matrix Θ, we 
an always write it as a produ
t of two matri
es

Θ = AVT
where A ∈ R

N×r
and V ∈ R

P×r
, both rank-r. Thus equation (5.4)

be
omes:

L(X‖g(AVT)) =
∑

i,j

log(1 + e−x∗

ij(AVT )ij ) (5.5)

The optimization problem in (5.5) is not jointly 
onvex be
ause of the AVT
term.

However, interestingly, from some mathemati
al dis
ussions [53℄[1℄[26℄, every lo
al

minimum is a global minimum, whi
h is partially be
ause of the inter
hangeability

between A andV. Lo
al minimum 
an be obtained from alternating proje
t method,

whi
h means that we solveA withV �xed, and then solveV withA �xed, and iterate

this pro
ess:





At = arg min
A∈Rn×r

L(X‖g(A(Vt−1)T )) + γ
2
‖A‖2F

Vt = arg min
V∈Rp×r

L(X‖g(AtVT )) + λ
2
‖V‖2F

(5.6)

in whi
h

γ
2
‖A‖2F and

λ
2
‖V‖2F are regularization terms.

Equation (5.5) is marginally 
onvex for both A and V, hen
e ea
h equation in

(5.6) is 
onvex and 
an be solved e�
iently by Newton's method. Without loss of

generality, we mark the lo
al minimum obtained from (5.6) as A∗
and V∗

, and this

solution is 
alled Bat
h Logisti
 PCA (BLPCA) solution.

Sequential Logisti
 PCA (SLPCA)

As we work with streaming data (n is not �xed), A ∈ R
N×r


hanges in size as n
in
reases, though the dimension of V is still �xed. It would be too 
ostly to update

the whole A matrix ea
h time when we have a new data point.
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Conventionally as we have a

umulated loss fun
tions L(w) =
∑

t Lt(w) and w
�xed in size, we 
an make use of gradient des
ent to update w sequentially:

wt = wt−1 − η∆Lt(w
t−1) (5.7)

However, A matrix in our 
ase is not �xed in size. Hen
e, we 
hoose to do a

further approximation. At ea
h step t when a new data 
omes in, we only look at

the t-th row of A, whi
h we note by at, t = 1, · · · , n. Sin
e the loss fun
tion in

equation (5.5) 
an be de
omposed by the summation of a loss fun
tion of ea
h row of

A, we only optimize over the loss fun
tions relevant to that row (at), 
alled Lt(at,V):

Lt(at,V) = L(xt‖g(atV
T )) =

∑

j

log(1 + e−x∗

tj(AVT )tj) (5.8)

and note that the total loss fun
tion is the aggregation of (5.8):

L(xt‖g(AVT )) =
∑

t

Lt(at,V)

This method is similar to [54℄. At ea
h time t, instead of working on the full A

up to step t, we only solve for the 
urrent element at. We mark the solution as ãt.

As for V, at ea
h step we optimize it over all the row-level loss fun
tions up to t,
and we mark the solution as Ṽt

).

In this algorithm, for t = 1, · · · , n:




ãt = argmin
a∈R

Lt(a, Ṽ
t−1) + γ

2
‖a‖2F

Ṽt = arg min
V∈Rp

∑t
s=1 Ls(ãs,V) + λ

2
‖V‖2F

(5.9)

The one for ãt in (5.9) is easy to solve with a Newton's method. The one for Ṽt

in (5.9) deal with a target fun
tion in
reasing in size. However, we 
an still make

use of the sto
hasti
 gradient des
ent method as in equation (5.7).

Ṽt = Ṽt−1 − ηt∇VLt(ãt, Ṽ
t−1) (5.10)

where ηt is the step size. The 
hoi
e of step size ηt deserves some dis
ussions.

This method is 
alled Sequential LPCA (SLPCA), and we will investigate the


onvergen
e property of this algorithm in the next se
tion. The full SLPCA algorithm

is shown below in Algorithm 1.
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begin

Input: data X ∈ R
n×p

, X∗ = 2X− 1 ∈ {−1, 1};
Initialize: Ṽt ≈ 0, C, γ, ǫ, β ∈ (0, 1), α;

for t = 1, . . . , n, lt(ãt)
.
= Lt(ãt, Ṽ

t−1) + λ
‖ãt‖2F

2
do

Set ãt = 0, ∆ = ∇lt(ãt) (∇2lt(ãt))
−1∇lt(ãt);

while λ > ǫ do

Let ∆ = − (∇2lt(ãt))
−1∇lt(ãt), d = d0;

while lt(ãt + d∆) > lt(ãt) + αd∇lTt ∆ do

Update d = βd;
end

Update ãt = ãt + d∆;

Update ∆ = ∇lt(ãt) (∇2lt(ãt))
−1∇lt(ãt);

end

Set ηt;

Update Ṽt = Ṽt−1 − ηt∇VLt(ãt, Ṽ
t−1)

end

end

Algorithm 1: Sequential LPCA (SLPCA) Pseudo-Code

5.3 Convergen
e Analysis

In this se
tion, we will study the 
onvergen
e of SLPCA with respe
t to BLPCA

algorithm in terms of some widely-used settings from online statisti
al learning so-


iety.

Evaluation Settings

• Bat
h Loss Fun
tion (BLF), use {A∗} {V∗}:

BLF =
1

n

n∑

t=1

Lt(a
∗
t ,V

∗) (5.11)

• Sequential Loss Fun
tion (SLF), use {ãt} {Ṽn}:

SLF =
1

n

n∑

t=1

Lt(ãt, Ṽ
n) (5.12)
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• Regret Loss Fun
tion (RLF), use {ãt} {Ṽt}:

RLF =
1

n

n∑

t=1

Lt(ãt, Ṽ
t) (5.13)

It is important to note that, the three settings 
oin
ide with the BLPCA and

SLPCA problem in Equation (5.6) and (5.10), ex
ept the regularization term. How-

ever, be
ause of the term

1
n
, the regularization term will be diminishing as n in
reases.

Therefore, the three settings 
an be used as the evaluation of the LPCA algorithm.

Moreover, RLF is of more interests sin
e it 
an sequentially a

umulate the loss

fun
tions without waiting til we 
al
ulate the last update Vn
.

Convergen
e Analysis

Lemma 5.3.1. For t = 1, · · · , n and Lt(·) de�ned in (5.8), ‖∇VLt‖F ≤ ‖a‖F , and
‖∇2

V
Lt‖opt ≤ 1

4
‖a‖2F .

Proof. W.l.o.g., let rank(Θ) = 1, we have:

[∇VLt]j = − x∗
tjat

1 + exp(x∗
tjatv

T
j )

[
∇2

V
Lt

]
ij
=

(
x∗
tjatδij

2 cosh(1
2
x∗
tjatv

T
j )

)2

where δij = 1 only when i = j means matrix ∇2
V
Lt is diagonal. Sin
e cosh(x) ≥ 1,

hen
e the norms satisfy ‖∇VLt‖F ≤ ‖a‖F , and ‖∇2
V
Lt‖opt ≤ 1

4
‖a‖2F .

Lemma 5.3.2. Let ãt be bounded by Ω, for ∀t = 1, · · · , n. Based on (5.13) we have

‖Ṽt − Ṽt−1‖F ≤ ηtΩ.

Proof. From Equation (5.12), we have ‖Ṽt − Ṽt−1‖F = ηt‖∇VLt‖F . Sin
e ãt result

from a regularized problem in (5.10), so ãt is bounded by Ω. Thus we have ‖Ṽt −
Ṽt−1‖F ≤ ηt‖ãt‖F ≤ ηtΩ.

Lemma 5.3.3. For Lt(·) in (5.8), 〈a,∇aLt〉 = 〈V,∇VLt〉. Hen
e, for t = 1, · · · , n,
ηtγ‖ãt‖2F = 〈Ṽt−1,−ηt∇VLt〉 = 〈Ṽt−1, Ṽt − Ṽt−1〉.

This follows dire
tly from (5.5) and (5.10).
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Lemma 5.3.4. Lt(·) and surrogate fun
tion L̃t(·), as well as their �rst derivative

∇Lt(·) and ∇h̃t(·) are all Lips
hitz 
ontinuous.

This is indi
ated dire
tly from Lemma (5.3.1) & Lemma (5.3.2) and the de�nition

of Lips
hitz 
ontinuous [6℄.

Lemma 5.3.5. For t = 1, · · · , n, if Ω is the upper bound of ‖a‖2opt as in Lemma

(5.3.2), ‖Ṽt‖2F ≤ Ω2
∑t

s=1 η
2
s + 2γΩ2

∑t
s=1 ηs.

Proof. We start from the relationship:

‖Ṽt − Ṽt−1‖2F = ‖Ṽt‖2F − ‖Ṽt−1‖2F − 2〈Ṽt − Ṽt−1, Ṽt−1〉
= ‖Ṽt‖2F − ‖Ṽt−1‖2F − 2ηtγ‖ãt‖2F

We sum over the LHS and RHS and get:

t∑

s=1

‖Ṽs − Ṽs−1‖2F + 2γ

t∑

s=1

ηs‖ãs‖2F = ‖Ṽt‖2F − ‖Ṽ0‖2F

For simpli
ity, assume ‖Ṽ0‖2F ≈ 0, we proved the lemma.

Theorem 5.3.1 (Proposition 2, [54℄). Under the regularity 
ondition of Lemma

(5.3.4), and Lt(·) a marginally 
onvex fun
tion, SLF 
onverges a.s. to BLF.

The Proof has been implemented in [52℄ and [54℄, following a quasi-martingale

theory, and use the Bregman divergen
e under surrogate fun
tion as a bridge L̃t(·).

Theorem 5.3.2. Given step size as ηt = C × t−1/2
or ηt = C, the Regret Loss

Fun
tion RLF = 1
n

∑n
t=1 Lt(ãt, Ṽ

t) 
onverges to within a 
onstant to Sequential

Loss Fun
tion SLF = 1
n

∑n
t=1 Lt(ãt, Ṽ

n), and thus 
onverges to within a 
onstant

of BLF = 1
n

∑n
t=1 Lt(a

∗
t ,V

∗).

Proof. Based on (5.10) we have:

‖Ṽt − Ṽn‖2F = ‖Ṽt−1 − Ṽn‖2F + η2t ‖∇VLt‖2F
− 2ηt〈∇VLt, Ṽ

t−1 − Ṽn〉
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From Lemma (5.3.1), Lemma (5.3.2), and ‖∇VLt‖2F ≤ Ω2
, thus:

n{RLF − SLF} ≤
n∑

t=1

〈∇VLt, Ṽ
t−1 − Ṽn〉

≤ ‖Ṽn‖2F
2η0

+

n∑

t=1

(
1

2ηt
− 1

2ηt−1

)
‖Ṽn − Ṽt−1‖2F +

Ω2

2
ηt

≤ ‖Ṽn‖2F
2η0

+
n∑

t=1

(
1

2ηt
− 1

2ηt−1

)
‖Ṽn‖2F +

Ω2

2
ηt

• diminishing step size ηt = Ct−1/2
. From Lemma (5.3.5), we have:

|RLF − SLF | ≤ Ω2C

2

logn

n
+

Ω2C

4

log n√
n

+
Ω2(2γ + C)

2
√
n

+
γΩ2

2

Then limn→∞ |RLF − SLF | ≤ γΩ2

2
. But with reasonable n, the term Ω2C logn√

n

will also be signi�
ant. Usually, small C and γ 
an for
e a lower error bound.

However, small γ 
an result in more steps in optimizing for ãt, whereas small

C would make the step size too small, whi
h may not be a good 
hoi
e if we

want a fast de
aying of the error bound.

• 
onstant step size ηt = C: For 
onstant step, we have:

|RLF − SLF | ≤ γΩ2 + Ω2C

Similarly, we prefer small small C and γ. The 
hallenge of using small C and

γ has already been dis
ussed.

Prin
ipal Component Sele
tion Criterion

Conventional PCA evaluates Prin
ipal Component (PC) sele
tion by the amount of

varian
e the PCs 
apture. In LPCA, this is not working, and we need to �nd other


riterion.

Sin
e we are maximizing the likelihood fun
tion, an intuitive way is to evaluate

the likelihood as below:

L =
∑

i,j

log
[
g(θij)

Xij (1− g(θij))
1−Xij

]
(5.14)
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in whi
h g(θ) =
(
1 + e−θ

)−1
.

Figure 5.1: Log Likelihood as a fun
tion of the number of Prin
ipal Components

taken, based on simulated 
orrelated 10-dimensional binary sequen
es, with 
orrela-

tion fa
tor equals to 0.8 (upper) and 0.2 (lower).

We 
an show this from Figure 5.1, whi
h shows the log likelihood as a fun
tion

of the number of prin
ipal 
omponents under di�erent 
orrelation fa
tors.

However, in most 
ases likelihood fun
tion is hard to evaluate. Another intuitive

way is to study the a

ura
y the PCs 
arry. As we re
over the original data, we


annot re
over the 0, 1 multivariate data. Instead, we re
over the natural parameter

g(θ) =
(
1 + e−θ

)−1
, whi
h is a real number between 0 and 1. If the re
overy is 0.7,

then there is 70% 
han
e that we will re
over the right state. For multivariate data,

we 
an 
al
ulate the average error rate. The error rate fun
tion is:

Err = 1−
∑

i,j

[
g(θij)

Xij (1− g(θij))
1−Xij

]
(5.15)
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Following the Jensen's equality, the a

ura
y fun
tion Err is roughly an upper

bound of the likelihood fun
tion. We show the result in Figure 5.2. As expe
ted,

for highly-
orrelated (ρ = 0.8) sequen
es, �rst prin
ipal 
omponent is enough to


apture roughly 90% a

ura
y, whereas for ρ = 0.2, �rst prin
ipal 
omponent 
an

only 
apture 60% a

ura
y.

Figure 5.2: Average a

ura
y as a fun
tion of the number of Prin
ipal Components

taken, based on simulated 
orrelated 10-dimensional binary sequen
es, with 
orrela-

tion fa
tor equals to 0.8 (upper) and 0.2 (lower).
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5.4 Experimental Results

Simulated Binary-State System

Firstly, simulated binary data was used to test the performan
e of the SLPCA algo-

rithm in a binary-state system. The generation of 
orrelated Bernoulli sequen
es is

illustrated in [50℄. This work fo
used on the 
ase where rank(Θ) = 1, sin
e this usu-
ally demonstrates the best dimension redu
tion 
apability. It should be noted here

that the extension to multiple prin
ipal 
omponents is straightforward, following the

iterative updating rules in [12℄.

We tried the above on data with P = 8 dimension and length of n = 1000
data points. We initialize Ṽ0

su
h that its norm is 
lose but not equal to zero, for


omputation and 
onvergen
e purposes. Fig 5.3 shows the three fun
tions de�ned in

(5.11) to (5.13); whereas Fig 5.4 shows the key parameters in the sequential steps.

There are some interesting �ndings.

Firstly, though both SLF and RLF 
onverges at least within a 
onstant to BLF,

the sto
hasti
 learning 
an be 
learly divided into three Phases, as shown in Fig 5.3.

Phase I stands for the period when the norm of Ṽ0
is 
lose to zero right after

the initialization, when Lt(at,V) approa
hes P log 2 as in Equation (5.8). Phase II


hara
terizes the de
ay of error versus n, whereas Phase III stands for when the error


onverges to within a 
onstant independent of n.
Se
ondly, ‖Ṽt‖2F in
reases versus t, whi
h means that ‖Ṽt‖2F behaves di�erently

from the 
oe�
ient in sequential learning of linear model [52℄ [54℄. Matrix fa
tor-

ization pla
es no 
onstraints for Ṽt
, hen
e 
annot guarantee the bound of Ṽt

. From

another perspe
tive, ãt is bounded sin
e Equation (5.10) has �xed in size, while Ṽt

not sin
e there is a summation of loss fun
tions. It should be noted that, in Fig 5.4,

ãt de
reases versus t, whi
h 
ould result from (5.9) and is an interesting topi
 in the

future.

Thirdly, due to the unbounded Ṽt
, the term ‖Ṽt − Ṽt−1‖F is not ∝ t−1

as in

[52℄ and [54℄. It should be noted that the theoreti
al bound for ‖Ṽt − Ṽt−1‖F under


onstant step size 
ould be as low as t−1/2
, whi
h 
ould be a result of the 
onvergen
e

behavior of ãt under 
onstant step size.

Last but not least, it is important to mention that the bounds obtained in The-

orem (5.3.2) assume n large enough. However, in many 
ases the de
ay of n is not

that fast. Therefore, the e�e
t of n 
annot be 
ompletely ignored in the analysis.
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Building End-Use Energy Modeling

As illustrated before, Top-Down monitoring of building end-use is usually imple-

mented as a statisti
al �lter. For Bottom-Up monitoring, however, we need to tra
k

multiple-dimensional o

upant-behavioral sequen
es. SLPCA is able to extra
t a

Prin
ipal Applian
e out of the multivariate sequen
es to 
hara
terize the whole spa
e

o

upant behavior.

As an example �eld study, we fo
us on Bottom-Up monitoring of the multiple-


omputer-monitors system. The 
omputer monitors are lo
ated in CREST spa
e at

University of California, Berkeley. We 
olle
t the power 
onsumption of 6 monitors

in 10 minutes interval by ACme sensor network

3

through CoreSight OsiSoft system

4

.

We take �ve days data, whi
h is roughly 720 data points. The real power sequen
es

are �ltered into ON/OFF states by power disaggregation algorithm [37℄. The indi-

vidual as well as the aggregated ON/OFF state sequen
es are shown in Figure 5.6.

With the ON/OFF states, we then use BLPCA and SLPCA to obtain the Prin
ipal

Applian
e of the building.

In our SLPCA, we 
hoose 
onstant step size that is short enough to tra
k the


hanges as they appear

5

. We also only 
onsider the �rst Prin
ipal Applian
e sin
e

more than 90% a

ura
y 
an be a
hieved. The 
onvergen
e of the algorithm is shown

in Figure 5.5. We observe a good 
onvergen
e for both SLF and RLF. Periodi


�u
tuation is observed, due to the periodi
 transition between day and night energy


onsumption, whi
h results in periodi
al 
hanging of the data model. Moreover, the

online algorithm demonstrates less �u
tuation be
ause they adaptively update the

model of the data.

We re
onstru
t the original data with three sets of variables: the BLF setting

A∗
, V∗

; the SLF setting {ãt}, Ṽn
; and the RLF setting {ãt}, {Ṽt}. The results are


ompared with the original data in Figure 5.7 (sum of states of all applian
es, 1 as

ON and 0 as OFF). Interestingly, SLF setting gives better approximation to BLF

setting sin
e it is more adaptive in terms of Ṽt
and 
an better 
at
h the periodi


pattern of the original data. On the other hand, BLF setting uses the Ṽn
, whi
h


ould give unpromising result if data is non-stationary.

3

http://a
me.
s.berkeley.edu/

4

http://pi
oresight.osisoft.
om/

5

one 
ould presumably also leverage the likely periodi
 behavior of the data by appropriate

aggregation
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5.5 Con
lusions and Future Tasks

In this Chapter, dimensionality redu
tion in Bottom-Up end-use monitoring is dis-


ussed. A logisti
 PCA (LPCA) is applied to a

ommodate the traditional PCA to

the multivariate binary data in Bottom-Up end-use setting. To adapt the LPCA to

streaming data and fast online appli
ation, a sequential version of LPCA (SLPCA)

was developed based on online 
onvex optimization theory, whi
h 
an a
hieve 
om-

putational and storage e�
ien
y. In this study, two fun
tions to evaluate the SLPCA

algorithm were de�ned (i.e., the Sequential Loss Fun
tion, or SLF and the Regret

Loss Fun
tion, or RLF), and it was shown that both of them 
onverge at least within

a 
onstant to o�ine bat
h LPCA (BLPCA) results. An appli
ation of this algorithm

in building end-use monitoring was eventually demonstrated.
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ĈT (ṽ
(t))

10
0

10
1

10
2

10
3

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

E
va
lu
at
io
n

Step of data points

Phase I Phase II

Phase III

CT (v
∗)

R̂eT
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Figure 5.3: The three fun
tions BLF, SLF and RLF as fun
tion of t. Top: ηt =
Ct−1/2

, with C = 0.2, γ = 0.1. Bottom: ηt = C, with C = 0.05, γ = 0.1.



CHAPTER 5. BOTTOM-UP END-USE MONITORING: A DIMENSIONALITY

REDUCTION APPROACH 77

200 400 600 800 1000

5

10

15

20

‖ã
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‖Ṽ
t
‖2 F

Step of data points
10

0
10

2

10
−4

10
−2

10
0

‖Ṽ
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Figure 5.4: The 
onvergen
e property of ãt, Ṽ
t
and ‖Ṽt−Ṽt−1‖F . Top: ηt = Ct−1/2

,

with C = 0.2, γ = 0.1. Bottom: ηt = C, with C = 0.05, γ = 0.1.
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���
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Figure 5.5: The three fun
tions BLF, SLF and RLF as fun
tion of t for energy

end-use simulation with 
onstant step size ηt = C as C = 0.05, γ = 0.1.
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es of six


omputer monitors.
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Chapter 6

Con
lusion and Future Tasks

In this work, the modeling and monitoring of the end-use of 
ommer
ial buildings

are studied. Two types of the most widely used methods, Top-Down approa
hes and

Bottom-Up approa
hes, were investigated and 
ompared while 
urrent issues were

addressed.

In the Top-Down approa
h, an ASVR model was developed to a

ommodate the

nonlinearity and nonstationarity of the ma
ro-level time series that is di�
ult to

solve in a linear autoregressive model. A future task in this work would be to design

the 
hange re
ognition fun
tion to deal with new non-ideal patterns, espe
ially in

monitoring and fault diagnosis appli
ation.

In the Bottom-Up approa
h, an applian
e-data-driven sto
hasti
 model based on

ON/OFF swit
hing events was built to estimate the power 
onsumption of ea
h end-

use se
tor of a 
ommer
ial building. Future tasks in
lude a better modeling of shared

applian
es and a more reasonable modeling of inter-applian
e 
orrelation.

Power disaggregation te
hniques used in Bottom-Up end-usemonitoring andmod-

eling were also dis
ussed. Conventional methods of power disaggregation, in
lud-

ing HMM and Edge-Driven models were studied and 
ompared, with new methods

based on multi-hypothesis sequential testing algorithm proposed to over
ome impulse

noise. With power disaggregation te
hnique to obtain applian
e ON/OFF states, the

applian
e-data-driven Bottom-Up model was demonstrated in real 
ommer
ial build-

ings under di�erent s
enarios, along with its 
apability to estimate the end-use power


onsumption of 
ommer
ial buildings.

Finally,monitoring in Bottom-Up settings was studied. Dimensionality redu
tion

te
hnique was applied to a
hieve e�
ient monitoring; in order to a

ommodate to the

streaming multivariate binary-state o

upant-behavioral data, logisti
 PCA (LPCA)

was 
hosen as a tool and extended to a sequential version, as SLPCA. In the future, it

is needed to further improve the 
onvergen
e and performan
e of SLPCA through a
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more e�
ient online 
onvex optimization algorithm. A more intuitive way to quantify

dimensionality redu
tion in binary data is also needed.
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