
Introduction to the Language of Convex Optimization

Elan Frenkel

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-249

http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-249.html

December 17, 2015

Copyright © 2015, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I'd like to thank Professor Rao and Professor Raghavendra for introducing
and teaching me mind-boggling applications of this material, which then
inspired me to go back and learn the details. I'd also like to thank them for
taking the time to read this report.

I'd like to thank Professor El Ghaoui for teaching me a framework for
understanding this material. I'd like to thank Professor Boyd and Professor
VandenBerghe for writing a lucid text that I could refer to when I was
confused. I'd also like to thank Professor Bartlett for providing clarity as to
how convex optimization unifies machine learning concepts related to
support vector machines.

Introduction To the Language Of Convex

Optimization

Elan Frenkel

October 2015

Introduction

These notes were written as part of a Masters Project to help introduce com-
puter science undergraduates to the world of convex optimization. Convex Opti-
mization is a relatively new field that has seen many applications, but the math
required to understand it is rarely taught at the undergraduate level. Another
aim of this work was selfish– I wanted to synthesize and internalize some of the
material that I have learned over the past 2 years for fear of otherwise losing it.
I think I have succeeded in the latter goal.

The notes are aimed at introducing the mathematics required of convex model-
ing, rather than algorithms. Convexity is a universal phenomenon in tractable
problems, but recognizing it is hard.

The material is largely synthesized from 3 sources– I make no claim to the
novelty of content:

(1) Professor Boyd and Professor Vandenberghe’s Convex Optimization [1](pri-
mary source for my first section on Convex Sets and Functions)
(2) Professor El Ghaoui’s notes, hyper-textbook, and class for EE 227 A-B [2]
(primary source for my second section on Convex Optimization, and in partic-
ular the historical anecdotes)
(3) Professor Bartlett lecture notes from CS 289 (primary source for applica-
tions in machine learning)

These sources provide go into much greater detail than I have. In particu-
lar, I have italicised technical terms. If the reader is unfamiliar with them, It
would behoove her or him to search the term to learn more about it.

1

Acknowledgements

I’d like to thank Professor Rao and Professor Raghavendra for introducing and
teaching me mind-boggling applications of this material, which then inspired
me to go back and learn the details. I’d also like to thank them for taking the
time to read this report.

I’d like to thank Professor El Ghaoui for teaching me a framework for un-
derstanding this material. I’d like to thank Professor Boyd and Professor Van-
denBerghe for writing a lucid text that I could refer to when I was confused. I’d
also like to thank Professor Bartlett for providing clarity as to how convex opti-
mization unifies machine learning concepts related to support vector machines.

Contents

1 Convex Sets and Convex Functions 3
1.1 Affine Sets . 3
1.2 Convex Sets . 4

1.2.1 Operations that Preserve Convexity 4
1.3 Cones . 4
1.4 Examples . 5

1.4.1 Hyperplanes and Halfspaces 5
1.4.2 The Positive Semi-Definite Cone 5

1.5 The Spectral Decomposition Theorem 6
1.5.1 Ellipsoids . 6

1.6 Generalized Inequalities . 7
1.6.1 Minimum and Minimal Elements 8

1.7 The Separating Hyperplane Theorem 8
1.8 Convex Functions . 9

1.8.1 The Epigraph Criterion 10
1.8.2 Sub-level Sets of a Convex Function 10
1.8.3 Jensens Inequality . 10
1.8.4 Examples . 11

1.9 Differentiable Convex Functions 11
1.9.1 First Order Condition . 11
1.9.2 The Second Order Condition 12
1.9.3 Examples . 12

1.10 Operations That Preserve Convexity 13

2 Convex Optimization 14
2.0.1 Optimality . 14

2.1 Linear Programming . 16
2.1.1 A Little History: An International Effort 16

2

2.1.2 A standard form . 16
2.1.3 Machine Learning Application: Training a Binary Classifier 17

2.2 Conic Optimization . 18
2.2.1 A Little More History . 18
2.2.2 Tractable Cones . 19

2.3 Second Order Cone Programming 20
2.3.1 Rotated Second Order Cone Constraints 21
2.3.2 Reductions to Linear and Quadratic Programming 21
2.3.3 Revisiting Machine Learning: Separating Hyperplanes with

Maximum Margin . 22
2.4 Positive Semi-Definite Programming 23

2.4.1 A Standard Form . 23
2.4.2 Quadratic Boolean Optimization 24

1 Convex Sets and Convex Functions

1.1 Affine Sets

Before attempting to understand convex optimization it is worthwhile to famil-
iarize and digest the mathematical language in which it operates.

A set C is an affine set if for all x, y ∈ C, θ ∈ R , θx + (1 − θ)y is also in
C.

Geometrically, θx+ (1− θ)y is the unique line containing both vectors x and y.
In order to see this, note that by the geometry of vector addition, subtraction
and scaling, certainly y + θ(x− y) is such a line.

An affine combination of points v1, v2...vn is θ1v1 + θ2v2 + ...θnvn such that∑
θi = 1.

A set is affine if and only if it contains every affine combinations of a finite
subset of its points. The non trivial direction can be proved via induction.

Affine spaces are closely related to vector subspaces. In fact, they are simply
translations of subspaces. If C is affine, and if x0 ∈ C, then C−xo is a subspace.

pf: Let v1, v2 ∈ C − x0. Then αv1 + βv2 + x0 = α(v1 + x0) + β(v2 + x0) + (1−
α− β)x0 is in C. Thus αv1 + v2 is in C − x0.

3

1.2 Convex Sets

Convex sets are a relaxation of affine sets. For every two points in a convex
set, the line segment (instead of the entire line) is contained in that set. This
relaxation allows for much more interesting geometries (to the human eye) than
simple translations of subspaces.

Mathematically, this amounts to restricting θ to lie in [0, 1]. Specifically, a
set C is a convex set if for all x, y ∈ C, θ ∈ [0, 1], θx+ (1− θ)y is also in C.

We define convex combinations in the same way as affine combinations, except
that we add the restriction that θ � 0.(Here, we use the generalized inequality
� on the vector θ to mean that every θi is ≥ 0.) Once again a set is convex if
and only if it contains all convex combinations of any finite subset of its points.
(Note: finite assumption can be dropped).

1.2.1 Operations that Preserve Convexity

The following operations preserve convexity:

The intersection of (a possibly infinite) set of convex sets
The image of a convex set under an affine function (a linear function plus an
offset)
Similarly, the inverse image of a convex set under an affine function
The projection of a convex set onto some of its coordinates
The sum two convex sets
The product of two convex sets

As an example, consider a polyhedron : {x : Ax � b, Cx = d}. It can be seen
as the intersection of half planes and half spaces (which are easily proven to be
convex). It can also be seen as the inverse image of the Cartesian product of the
non-negative orthant and the origin under the affine function (b− Ax, d− Cx)
(and hence convex).

1.3 Cones

A set C is a cone if for all x ∈ C, θ ≥ 0, θx is also in C.

We are mostly interested convex cones. Combining the two definitions, we see

4

that a set C is a convex cone if for all x, y ∈ C, θ1, θ2 ≥ 0, θ1x+ θ2y is also in
C.

A proper cone K is convex, closed (contains its limit points), solid (has a non-
empty interior) , and pointed (if x ∈ K and −x ∈ K then x = 0).

1.4 Examples

1.4.1 Hyperplanes and Halfspaces

Although simple, the hyperplane has proven to be very useful in the fields of
convex optimization and machine learning. A hyperplane divides our space in
two, and as we shall later see, can separate two disjoint convex bodies. By
taking a simple dot product, we can see which halfspace a given point lies on
with respect to the hyperplane.

A hyperplane H is the affine set x : atx = b. The vector a is orthogonal
to vectors that are spanned by the subspace x : atx = 0, which can also be
thought of as a⊥, the set of vectors perpendicular to a. Of less importance is
the scalar b, which determines how far this subspace has been translated.

To see this, consider any x0 ∈ H. Then H is the set x : atx − b = 0 ≡ x :
at(x− x0) = 0. The solution to this latter equation is the set a⊥ + x0.

The shortest distance from the origin to the hyperplane H must be in the direc-
tion of a. (This can be proved using a right triangle and elementary geometry).
Therefore, dist(H,0) =‖ka‖ for some scalar k. Since atka = b, k = b

‖a‖2 . The

distance from H to the origin is therefore |b|
‖a‖ in the direction sign(b) ∗ a.

A halfspace is the set x : atx ≤ b. It is convex but not affine. Geometri-
cally, it is the set of points on one side of a hyperplane. If we assume b is
positive (which we can always do by dividing by -1), a given point xi lies on
the halfspace containing the origin if and only if atx ≤ b. (Note the technicality
regarding the boundary).

1.4.2 The Positive Semi-Definite Cone

The positive semi-definite cone Sn+ is a subset of the set of symmetric matrices
Sn. A matrix A is positive semi-definite if and only if for all vectors v vtAv ≥ 0.

It is a convex cone. If A,B ∈ Sn+, α ≥ 0, then vt(α1A + α2B)v = α1v
tAv +

α2v
tBv ≥ 0. It is also a proper cone.

5

Another neat way to prove convexity is by showing that Sn+ intersection of
infinitely many half spaces. Consider ∩v∈Rn{X : X ∈ Sn and vtXv ≥ 0}. For
each v, the set of X that satisfy the inequality is a half space in (n2 − n)/2 + n
variables.

A matrix A is called positive definite if the inequality above is strict, mean-
ing vtAv > 0.

1.5 The Spectral Decomposition Theorem

Let A be a real symmetric matrix. The spectral decomposition theorem says that
there exists a decomposition such that A = U tDU , where U is an orthogonal
matrix and D is a diagonal matrix. The rows of U are precisely the eigenvectors
of A, and the diagonal entries of D are the corresponding eigenvalues of A. The
proof of this theorem is constructive and uses the Gram-Shmidt Process. Note
that this theorem guarantees that every real symmetric matrix is diagonalizable
, or put another way, has an eigenbasis.

An orthogonal matrix U has the property that U tU = I. Seen as linear op-
erators, orthogonal matrices preserve the dot product between vectors (and
hence the norm of a vector): < Ux,Uy >= xU tUy =< x, y >. Geometrically,
these operators represent rotations or reflections of the space.

A diagonal matrix is a matrix where all non-diagonal entries are 0. Seen as
a linear operator, diagonal matrices simply stretch and shrink a vector along
the coordinate axis.

The spectral decomposition gives us a way to visualize the action of any real
symmetric matrix on a vector. First, the vector’s coordinate system is oriented
to the eigenbasis via U . Then, the vector is stretched and shrinked along cer-
tain axis proportional to the eigenvalues of the corresponding axis. (Remember:
our axis now are our eigenvectors). Finally, the new vector’s coordinates are
rewritten in the original basis via the inverse of U , namely UT .

1.5.1 Ellipsoids

(courtasy of Professor El Ghaoui)

Ellipsoids are geometric structures which can give clarity and insight to many
topics in convex optimization and linear algebra.

6

An ellipsoid can be defined as the image of an affine transformation of the
unit ball: {y : y = x0 +A(x), ‖x‖ ≤ 1, A non-singular}.

Rewriting the above condition, we see that the ellipsoid can equivalently de-
fined as {y : ‖A−1(y − x0)‖ ≤ 1} = {y : (y − x0)TA−TA−1(y − x0) ≤ 1}. We
can now define B = A−TA−1, which is trivially positive definite.(why?)

By taking the symmetric decomposition of B = UTDU , and letting y∗ =
U(y − x0), we see that the ellipse is the set {y∗ : y∗TDy∗ ≤ 1 →

∑
y2i di ≤

1→
∑ y2i

(1/
√

(di))2
≤ 1.

Thus we see that an ellipsoid’s axes are aligned with the eigenvectors of B.
The length of each axis is proportional to the respective inverse of the square
root of the eigenvalue of B. Basic linear algebra facts tells us that B−1 is pos-
itive definite, has the same eigenvectors as B, and has eigenvalues which are
the inverse of the eigenvalues of B. Furthermore, every positive definite matrix
has a unique positive definite square root. Looking back, we defined A to be
an arbitrary invertible matrix. But we could have defined it to be the unique
positive definite square root of B−1. Since each positive definite matrix results
in a different ellipsoid (if we ignore the center x0), the set of positive definite
matrices are in one-to-one correspondence with the set of ellipsoids centered at
the origin.

1.6 Generalized Inequalities

The mathematical abstraction (some would say nonsense) of a generalized in-
equality � induced by proper cones provides conceptual clarity for the theory
of semi-definite programming as it relates to linear programming.

Given 2 elements A,B in some underlying space which contains a proper cone
K, we say A �K B if A− B ∈ K. We say A � B if A− B is in the interior of
K.

This ordering satisfies many of the algebraic properties you would expect of
an ordering, such as transitivity and reflexivity.

However, it is not necessarily a total ordering. Many elements in the under-
lying space may not be be comparable.

Rather than delving into these abstractions, however, we note that we will
be using 2 generalized inequalities frequently:

7

(1) The generalized inequality induced by K = non-negative orthant. Given
two vectors x, y ∈ Rn we say x �K y if xi ≥ yi for all i. Similarly, we say
x �K y if xi > yi for all i. This inequality between vectors is used so frequently
that we drop the subscript K from now on.

(2) The generalized inequality induced by K = Sn+, the set of semi-positive
definite matrices. Given two matrices X,Y ∈ Sn, we say X �K Y if X − Y is
positive semi-definite. The interior of Sn+ is the set of positive definite matrices.
Therefore, we say X �K Y if X−Y is positive definite. Once again, we use this
inequality between matrices so frequently that we normally drop the subscript
K.

1.6.1 Minimum and Minimal Elements

Given a set S, and a generalized inequality �K , we can define the minimum
element of the set, x to be the element such that for all y ∈ S y �K x. Note that
this requires x to be comparable to all other elements in the set, and therefore
this element will often not exist.

We are also interested in minimal elements of a set S. An element x is minimal
in S if for all y ∈ S, x �K y if and only if x = y.

If K is the non-negative orthant in R2, for instance, an element x is the min-
imum element in S if all other elements are above and to the right of it. An
element is minimal if there are no elements to the buttom and left of it.

Ellipsoids give us geometric intuition on to the ordering of positive definite
matrices. For each positive definite matrix X one can associate the ellipsoid
EX : {v : vTXv ≤ 1}. Then X � Y if and only if EX ⊂ EY .

As an example, suppose we take 2 positive definite matrices A,B. We de-
fine S to be the set of positive definite matrices {X : X � A and X � B}.
An element C ∈ S is minimal if EC is contained within EA and EB but no
other ellipsoid can ’squish’ between the containment (There does not exist D
such that EC ⊂ ED and ED ⊂ EA, ED ⊂ EB .) Drawing examples in R2 should
provide the insight that there could be many minimal elements in general, and
hence there does not exist a minimum element of S in general.

1.7 The Separating Hyperplane Theorem

An important theoretical result for the theory of convex optimization is the fol-
lowing: Given 2 convex bodies X,Y , we can find a hyperplane H(v) = aT v − b

8

that ’seperates’ them, meaning H(x) is non-negative for all x ∈ X, and H(y) is
non-positive for all y ∈ Y .

Proof:

Let α ∈ X and β ∈ Y be chosen such that the dist(x, y) , x ∈ X, y ∈ Y is
minimized. Consider the vector a = α − β. This will be the orthogonal vector
for our hyperplane.

Now we need to figure out b. We want to translate our hyperplane so that
it is midway between the segment between α and β. This amounts to project-

ing the midpoint of α and β onto a. Thus b = (α+β)
2 ∗(α−β) = (‖α‖2−‖β‖2)/2.

Note that this is a very natural choice for a and b. Now we need to prove
that H(v) = aT v − b separates X and Y .

We prove that for all x ∈ X, H(x) is non-negative. The proof for y ∈ Y is
non-positive is similar.

Suppose for contradiction that there exists a q such that q ∈ X and H(q) < 0.

Now, H(q) = aT q − b = (α− β)T q − (α−β)T (α+β)
2 = (α− β)T (q − (α+ β)/2) =

(α− β)T (q − α+ (α− β)/2) = (α− β)T (q − α) + 1
2‖α− β‖

2.

Therefore, if H(q) is negative than (α− β)T (q − α) must be negative.

Consider the line segment between α and q ≡ α + t(q − α). Now consider a
small neighborhood, around α, and its distance to β. d

dt‖α+ t(q−α)−β‖|t=0 =
2(α− β)T (q − α).

Since this is precisely the quantity that we proved was negative earlier, this
implies that there exists a point c on the line segment between α and q such
that the dist(c, β) < dist(α, β). Moreover, since X is convex, c is in X! But this
contradicts the fact that α and β were chosen such that the distance between
X and Y is minimized. QED.

1.8 Convex Functions

A function f is said to be a convex function on a convex domain D if for all
x, y ∈ D and scalars {λ : 0 < λ < 1}, f(λx+ (1− λy) ≤ λf(x) + (1− λ)f(y).

Geometrically, a function is convex if for any two points in the domain, the
segment between the output values on these two points lies above the graph of

9

the function.

A function f is said to be a concavefunction if −f is convex. For the re-
mainder of these notes, we will restrict our discussion to convex functions. It
should be importantly noted that for each concept for convex functions and
their optimization problems, there is a natural equivalent concept for concave
functions. (Which can easily be derived from the fact from if f concave → −f
convex.

1.8.1 The Epigraph Criterion

The epigraph of a function f from Rn → R is the set E in Rn+1, where
E = {(x, t) : t > f(x)}.

The connection between convex functions and convex sets is provided by the
epigraph. A function f is convex if and only if it’s epigraph is a convex set.

Since the epigraph is a set, the geometric intuition of convex sets can be applied
to the study of convex functions.

1.8.2 Sub-level Sets of a Convex Function

The sub-level sets of a function are defined as the sets Sα : {x : f(x) ≤ α}.

The sub-level sets of a convex function are convex: Let x, y ∈ Sα. Then
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ α..

1.8.3 Jensens Inequality

Let f be a convex function.

The definition of convexity can be extended to convex combinations of points:

f(θ1x1 + θ2x2 + ...//θixi) ≤ θ1f(x1) + θ2f(x2) + ...θif(xi) such that θ ≥ 0
and

∑
θi = 1.

This extends to infinite sums and integrals: f(
∫
D
p(x)x) ≤

∫
D
p(x)f(x) where∫

D
p(x) = 1.

10

If x is a random variable, this means that f(E(x)) ≤ E(f(x)).

If x is fixed, and if r is a random vector with zero mean in RN , then from
the above equation we see that if f is convex, E(f(x+ r)) ≥ f(x). This can be
interpreted to mean that if a function is convex, then adding random (symmet-
ric) noise cannot decrease the value of f on average.

These inequalities are all known as Jensen’s inequality. They can be used to
derive many famous inequalities .

For example, if we take f(x) = −log(x), which is convex, (see the section
on differentiable convex functions), and use θ = 1

2 in the standard definition of
convexity, one can derive that the arithmetic mean is always greater than the
geometric mean. (Try it!)

1.8.4 Examples

Norms

Let ‖‖∗ be any norm on Rn. Then ‖λx+ (1− λ)y‖∗ ≤ ‖λx‖∗ + ‖(1− λ)y‖∗ =
λ‖x‖∗ + (1− λ)‖y‖∗. Thus, norms are always convex.

Max Function

Let f(x) = max{x1, x2...xn}. Then max(λx+ (1− λ)y ≤ max(λx) +max(1−
λ)y = λmaxx+(1−λ)maxy. Thus, the maximum element of a vector is convex.

1.9 Differentiable Convex Functions

If the function f is differentiable on a convex domain D then, we have other
characterizations of convexity.

1.9.1 First Order Condition

The differential function f is convex on D if and only if the first order taylor
approximation is a global under-estimator of the function on D:

f(y) ≥ f(x) + (y − x)T ∗ 5f for all x, y ∈ D

This property is part of the reason convex optimization is ’easy’ (complexity

11

wise). Once you find a minimum, you can be assured that it is the global mini-
mum.

Proof It is easy to see that a function is convex if and only if it is convex
restricted to any line in its domain. Thus the first step is to prove the equiva-
lence for scalar functions.

Let f be a function on R. For sufficiency, assume convexity : f(x + t(y −
x)) − (1 − t)f(x) ≤ tf(y). Divide by t and take the limit as t → 0 to get the
result.

If f satisfies the first order condition, define z = θx + (1 − θ)y. Then f(x) ≥
f(z) + f ′(z)(x − z). Similarly, f(y) ≥ f(z) + f ′(z)(y − z). Multiply the first
equation by θ, the second by 1− θ, and add them to prove that f is convex.

For the general case, for necessity simply restrict f to a line. For any x, y ∈ D
let g(t) = f(tx+(1−t)y). If f is convex then so is g. Since g is a scalar function,
we apply the result above and therefore the first order condition is met on g.
Now apply the first order condition g(1) ≥ g(0)+g′(0) to get the general result.

For sufficiency in the general case, apply the first order condition to the points
x∗ = t1x+ (1− t1)y and y∗ = t2x+ (1− t2)y. A simple application of the chain
rule and implies that g(t1) ≥ g(t2) + g′(t2)(t1 − t2). This implies the convexity
g by our 1-dimensional result, which in turn implies the convexity of f .

1.9.2 The Second Order Condition

If a function f if twice differentiable, then it is convex if and only if the hessian
matrix is semi-positive definite: 52f ≥ 0.

Proof Idea and Hints: The structure of the proof is the same as the first
order condition. First you prove equivalence to the first order condition in the
scalar case. Expanding the Taylor series one can see that the first order criterion
implies the second order criterion. In the reverse direction, one can use the fact
that a non-negative second derivative implies a non-decreasing first derivative.
Then you restrict the function to a line to prove the general case.

1.9.3 Examples

Negative Entropy

Let f = xlogx . Then f ′′ = 1/x which is positive on the domain R++. There-

12

fore the negative entropy function is convex on its domain.

Log Sum Exp

Consider f(x) = log
∑
exi , which is often used as a differentiable approximation

of the max function, since max(x) ≤ f(x) ≤ max(x) + log(n).

Let v = (ex1 , ex2 ..., exn). One could check that 52f = 1
(1T v)2

∗ ((1T v)diag(v)−
vvT) Given a vector y, we must show that yT52 fy ≥ 0. But this can be proven
by using the Cauchy Swartz inequality aTabTb ≥ (aT b)2 with ai = yi

√
vi and

bi =
√
vi.

1.10 Operations That Preserve Convexity

(Professor El Ghaoui’s synthesis)

(1) The non-negative weighted sum of convex functions is convex

(2) The composition with an affine function is convex. Meaning, if f(x) is
convex, then so is f(Ax+ b)

(3) The pointwise maximum of a family of convex functions is convex. Namely,
if fi is convex for all i, then f(x) = maxifi(x) is convex.

Example: Largest Singular Value of a Matrix:

The function which take the largest singular value of a matrix: f(A)→ max‖Ax‖2 :
‖x‖2 = 1 is convex because it the pointwise maximum (indexed by x : ‖x‖ = 1)
of the convex function ‖‖2 composed with the affine function A→ Ax.

WARNING: This example often causes confusion because the function f is
of the matrix A and not the variable x.

(4) The partial minimization of a convex function is convex. If f(x, y) is
convex in x and y (note that these can both be vectors of any length), then
f(x) = minyf(x, y) is convex.

(5) The composition of 2 convex functions is not always convex. However, if h,
from Rk → R is convex and non-decreasing in each argument, and gi : i = 1..k
are all convex, then f(x) = h(g1(x), g2(x)...gi(x)) is convex.

13

2 Convex Optimization

(Onwards is largely taken from Professor El Ghaoui’s textbook and notes, and
class).

In this section we describe the general form of a convex optimization prob-
lem. The form is important because most problems in this form can be solved
efficiently.

Let fi be convex for all i. A convex optimization problem is a problem in
the following form:

Minimize f0(x)
Subject To The Following Constraints:
fi(x) ≤ 0 for i = 1...m
Ax = b

The feasible set is the set of points X such that the constraints are not vio-
lated. Note that in a convex optimization problem the feasible set is convex:
it is the intersection of sub-level sets of convex functions and the hyperplane
Ax = b.

The objective function is the function f0.

Although the form may seem restrictive, it is actually quite general. There
are many standard tricks to bring a wide variety of problems into this form. We
will encounter some.

2.0.1 Optimality

A point x∗ is said to be locally optimal if there exists a radius R > 0 such that
x∗ is feasible and attains the minimum on f0for all points x : ‖x∗ − x‖ ≤ R.

An important property for convex optimization problems is that any feasible
local optimum must be a global optimum:

Proof: Let x∗ be a local optimum. Let y be another feasible point. We can
assume f0(y) ≤ ∞, otherwise we are done. Since the feasible set is convex, the
entire line segment between x∗ and y is feasible. Let z = αy + (1 − α)x∗ be a
point on the segment. Now since f0 is convex, f0(z) ≤ αf0(y)+(1−α)f0(x∗)→
f0(z) − f0(x∗) ≤ α(f0(y) − f0(x∗)). Since x∗ is a local minimum, there exists
a z such that f0(z)− f0(x∗) is positive. But this implies that f0(y)− f0(x∗) is
also positive.

14

Note that although every local optimum is a global optimum, we may have
more than one optimum. Of course, as one can easily show, the set of optimal
points is convex !

Differentiable objective functions

If the objective function f0 is differentiable we can further characterize opti-
mal points.

We know that f0(y) ≥ f0(x∗) + 5f0(x∗)(y − x∗) This implies that x∗ is op-
timal if and only if 5f0(x∗)(y − x∗) ≥ 0.

A supporting hyperplane av = b for a set is a hyperplane in which all the points
in the set lie on one side of it. (When you plug a point v ∈ S into av − b you
always either get purely non-negative numbers or purely non-positive numbers.)

Thus, we can say that if x∗ is optimal, 5f(x∗) is a supporting hyperplane
to the feasible set.

Some Special Cases:

(1) If the function f0 is differentiable and there are no constraints, the opti-
mality condition reduces to 5f(x∗) = 0, which confirms what we learned in
calculus class.

(2) If the only constraints are linear equality constraints Ax = b , then we
can use linear algebra to find a neat characterization:

Let x∗ be optimal and y be another feasible point. Note that since both y
and x∗ satisfy Ax = b, we know that the set of feasible y can be written as
x∗ + N(A), where N(A) is the nullspace of A.This implies that the optimality
condition can be written as for all u ∈ N(A),5f0(x∗)Tu = 0. By the fundamen-
tal theorem of algebra, the N(A) is orthogonal to the range of AT . Therefore,
the optimality is assured if there exists a v such that AT v = 5(f0(x∗)).

In summary, optimality is assured if x∗ satisfies Ax = b and there exists a
v such that AT v = 5f0(x∗))

15

2.1 Linear Programming

2.1.1 A Little History: An International Effort

The first type of convex optimization problem to be implemented efficiently was
Linear Programming. George Dantzig, an American mathematical scientist, in-
vented the simplex method in 1949 which solved most linear programs efficiently
in practice. However in the worst case exponential behaviour was possible. In
1979, Leonid Khachiyan, a Soviet of Armenian descent, discovered the ellipsoid
method for solving all linear programs in polynomial time. This method was
theoretically valid but hard to use in practice due to numerical issues. In 1984
Narendra Karmarkar, an Indian mathematician made the final breakthrough
by developing an interior point method that was both theoretically efficient and
empirically robust in practice.

2.1.2 A standard form

A linear program is simply a convex optimization problem in which all fi are
affine functions. Namely:

min aTx
subject to:
Ax = b
Bx ≤ c

Some off-the-shelf algorithms use the following ’standard’ form :

minimize aTx such that
Bx = d
x � 0

To go from the first form to standard form we introduce non-negative slack
variables si and transform the inequality constraint to equality:
Bx+ s = c.

Then we introduce non-negative. x+, x− so that x = x+ − x−. The trans-
formed problem looks like:

min aTx+ − aTx−
subject to:
Ax+ −Ax− = b
Bx+ s = c
x+ � 0, x− � 0, s � 0

16

The final step is to create an appropriate mega matrix (composed of A,B, I ,
mega vector (composed of x+, x−, s), and new objective (doubling a and padding
with 0’s) to get it into the compact standard form described earlier. I will spare
the reader the gory details.

Bottom Line: Linear programming is very versatile. One can take inequali-
ties or equalities of affine functions in the constraint. One can also maximize
or minimize the objective (since affine functions are both convex and concave).
As long as all of constraints are linear, we can always bring the problem back
to standard form.

2.1.3 Machine Learning Application: Training a Binary Classifier

The problem of binary classification is fundamental to machine learning. Using
a linear classifier (a separating hyperplane) is a historical technique dating back
to the perception algorithm. The theory of convex optimization has given ma-
chinery to view separating hyperplanes in a principled fashion. We start with
the simplest of models, which leads to a linear program. We will revisit this
example as our machinery expands.

Consider the problem of training a separating hyperplane on training set of
points X, where each point xi has a label yi ∈ {+1,−1}. If we know the points
are separable, than there exists a hyperplane wTx+b which separates the points.
Given the points, our problem is to find w and b.

Our conditions give us the affine inequality constraints:

yi(w
Txi + b) ≥ 0 for each (xi, yi)

This is called an unconstrained linear program since there is no objective func-
tion. (We can simply replace the objective function with the constant function
in standard software packages, which is trivially affine).

Once we have ’learned’ w and b via our training examples, we can predict a
new data point x∗ label y∗ = sign(wTx∗ + b).

The preceding example is contrived in the sense that we assumed our train-
ing data is separable. In practice, there is usually no such reason that our data
will be linearly separable, and therefore our training data need not be linearly
separable.

Thus, we aim to minimize the amount of mis-classifications by the hyperplane.

17

This leads to the minimization of the objective function
∑
I
yi(wT xi+b). Here,

I(r) is the function which is 0 if r ≥ 0 and 1 if r < 0.

Of course, this objective function is not convex, let alone linear, so we will
have to upper bound by the use of a ’hinge function’ : (1− v)+ = max(0, 1− v)
, yielding the following objective:

min
∑

(1− yi(wTxi + b))+

In order to transform this into a linear program, we introduce slack variables
zi:

min
∑
zi

such that
zi ≥ (1− yi(wTxi + b))
zi ≥ 0

It is worthwhile to convince yourself that both problems are equivalent. (What
value does zi take at optimum?)

This is a good start, but in order to find the better hyperlanes we will need
more sophisticated machinery.

2.2 Conic Optimization

’I think frugality drives innovation, just like other constraints do. One of the
only ways to get out of a tight box is to invent your way out’ - Jeff Bazos

2.2.1 A Little More History

(Story via Professor El Ghaoui’s Lecture. Forgive my recall errors)
After the success of linear programming in the 1950’s many researchers set out
to gradually expand the optimization frontier. Most researchers believed that
the next frontier was in nonlinear programming.

In America, where resources were widely available, scientists explored heuristics
to tackle non-linearity’s. Unfortunately, as soon as you introduce non-linear
equality constraints, the problem becomes non-convex and very hard to solve.

In the Soviet Union, academics were severely limited. They were often re-
stricted to both the quantity of publications and number of pages they could

18

write. Perhaps this is one of the reason Soviet mathematicians concentrated on
the theoretical underpinnings to convex optimization.

Consider the linear program in ’off the shelf’ standard form:

minaTx
subject to:
Bx = d
x � 0

As alluded to earlier, one way to generalize this model is to allow for non-
linearities in the equality constraints. This was tried but was unsuccessful as
the problems became non-convex and intractable rather easily.

The other way to generalize is to modify the ’structural constraints’ on x. In-
stead of requiring x to lie in R+, we can consider other regions. The regions
that turn out to work are convex cones!

This is precisely what the Soviet mathematicians Nesterov and Nemiroski de-
veloped in the 1980’s. They developed a theory for a class of cones which are
tractable.

What was learned from this is that what made linear programming ’easy’ was
not the fact that it was linear (although this helped), but that the problems
were convex.

In 1994, Nesterov and Nemiroski published a landmark paper on polynomial
interior point methods for non-linear convex optimization problems.

2.2.2 Tractable Cones

Consider the conic programming model:

minaTx
subject to: Ax = b
x ∈ C

Where C is a convex cone.

We have the following tractable conic models:

(1) C = RN+ . This obviously reduces to linear programming.

(2) Let v ∈ RN . Then C = QN ≡ {(v, t) : ‖v‖2 ≤ t}.

19

This is called the second order cone. If v ∈ R2, for example, we get the fa-
miliar ’ice cream cone’ in R3. Note that the cross sections are circles.

(3)C = SN+ , the set of positive semi-definite matrices.

Since the direct product of convex cones is a convex cone, we can mix and
match as we like. For instance, if x ∈ R4, we could require that x1 ≥ 0, and
‖(x2, x3)‖ ≤ x4. This new cone is the result of the direct product of R+ and Q2.

Each of the cones are nested in one another. We can recover the positive orthant
RN+ , we take the direct product of Q n times, while plugging in x = 0.

To show that the semi-positive definite cone is a generalization of the second
order cone, consider the inequality ‖y‖2 ≤ t, which can be represented as :

Y =

t y1 · · · yn

y1 t
. . . 0 · · · 0 · · ·

... 0 · · · t
. . . 0 · · ·

yn 0 · · · 0 · · · t

 � 0

To prove the equivalency, we must invoke the schur complement lemma,, which
states that given a symmetric matrix X partitioned into blocks A,B,C, with C
positive definite:

X =

(
A B
B C

)
, then X is semi-positive definite if and only if A−BTC−1BT is

semi-positive definite.

Clearly our matrix Y satisfies the condition for X. But then the schur comple-
ment condition reads Y is semi-positive definite if and only if t2 ≥ ‖y‖2, which
reduces to the second order cone constraint.

2.3 Second Order Cone Programming

While the conic form presented in the preceding is concise and theoretically
pleasing, in practice the standard form for second order programming has a
different form as to enable more immediate versatility:

min cTx
subject to: Ax = b
‖Cix+ di‖ ≤ eTi x+ fi for all i

20

We basically allow the minmization of an affine function subject to affine equal-
ity constraints and second order cone constraints, where the variables are now
affine functions as well.

Like linear programming, this form can be converted into the form seen ear-
lier through standard tricks.

2.3.1 Rotated Second Order Cone Constraints

A rotated second order cone constraint , where x ∈ RN , and y, z ∈ R+is of the
following form:

{(x, y, z) : ‖x‖2 ≤ yz.

Note that these are equivalent to a second order cone constraint, since:

‖x‖2 ≤ yz ⇐⇒ ‖(2x, y − z)‖2 ≤ y + z.

2.3.2 Reductions to Linear and Quadratic Programming

First we note that if we have a non-linear objective function f0 we can always
replace it with a slack variable t, minimize t and add the constraint f0(x) ≤ t.

Thus we need only focus on constraints to see the generality of the model.

Consider the second order cone constraint ‖Ax + b‖2 ≤ cTx + d. If we let
A = 0, b = 0 then we recover linear programming.

If we let c = 0, and square both sides of the inequality we get xTATAx +
2(Ax)T b ≤ d−‖b‖2. Thus we can choose A, b, d appropriately to get constraints
of the form:

xTEx + fx ≤ g, where E is semi-positive definite. (Recall that every semi
positive matrix can be factored.)

An optimization problem with constraints of this form is called quadratic pro-
gramming.

21

2.3.3 Revisiting Machine Learning: Separating Hyperplanes with
Maximum Margin

(this section is synthesized from Peter Bartlett’s Course on Machine Learning)

Recall the problem of training a separating hyperplane on a set of training
data (xi, yi) where each yi ∈ {−1, 1}. We previously found a linear program
which solved the problem in the case that the data was assumed to be linearly
separated, and then we solved it in the more likely case that the data is not
guaranteed to be separable.

However, in general, there may be many hyperplanes which satisfy the linear
program equally well. How do we distinguish between them?

One idea is to try to maximize the margin of the separating hyperplane. The
margin is simply the distance of the hyperplane to the point closest to it. It can
be empirically validated that this works well.

First, we will simplify our analysis by ridding ourselves of the offset term in
our hyperplane, by appending 1 to each data point.

Once again, let us consider the simple case in which the data is separable.
Even more, we will assume that the data is strictly separable, which simply
means that there exists a normal vector θ and δ > 0 such that yiθ

Txi ≥ δ for
all i.

We can always scale θ so that yiθ
Txi ≥ 1, where this equation holds with

equality for some xj (which is the point closest to the hyperplane).

The distance from xj is precisely
yjθ

T xj

‖θ‖ = 1
θ . This is the quantity we want

to maximize, which is the same as minimizing θ.

Thus, training a hyperplane with maximum margin for separable data leads
to the following optimization problem:

min ‖θ‖
subject to:
yiθ

Txi ≥ 1 for all i

If we introduce the slack variable t, we can rewrite this problem as a second
order cone program:

min t
subject to:
‖θ‖ ≤ t
yiθ

Txi ≥ 1 for all i

22

For the case of non-separable data, we must relax the constraint. We allow
the constraints to be met within εi and punish the objective for using εi:

min ‖θ‖+ C
∑
εi

subject to :
yiθ

Txi ≥ 1− εi for all i
εi ≥ 0.

In practice, the constant term C is a hyper-parameter that is used to adjust
the trade off between a large margin vs. mis-classifications.

Once again this can be turned into a second order program by using a slack
variable t.

2.4 Positive Semi-Definite Programming

The most general conic program is an SDP (Semi-Definite-Program), where the
structural constraint is replaced by the semi-positive cone. This is currently the
state of the art in convex optimization. Indeed, we have seen that the second
order cone is a subset of the semi-positive definite cone, and that both linear
and quadratic programs can be formulated as second order cone program.

2.4.1 A Standard Form

Recall the conic standard form:

min cTx
such that:
Ax = B
x ∈ K, where K is a convex cone.

If we Take K = SN+ , then each xi becomes a element of the matrix.

Recall also that we are allowed to take the direct product of cones (SN+XS
N
+).

This can always be reduced to the case of a single cone S2N
+ . Specifically,

X1, X2 ∈ SN+ , if and only if diag(X1, X2) ∈ S2N
+ .

Consider a single affine equality constraint ax = b (where xi ∈ X ∈ SN).

23

This constraint can be rewritten as Trace(AX) = b for an appropriate matrix
b. Note that Trace(XY) is the standard dot product on SN , so we write it
as < X,Y >. This allows us to conceptualize an SDP in terms of the matrix
variable X:

min < CX >
subject to:
< Ai, X >= bi for all i
X � 0

2.4.2 Quadratic Boolean Optimization

SDP’s have shown to be invaluable tools to approximate boolean problems–
problems where the decision variable x is restricted to lie in {0, 1}N .

For example, consider the problem of finding the maximum cut in a graph.
We would like to find two edge sets, Ea and Eb, such that the sum of the edge
weights wij between Ea and Eb is maximized. This problem is well known to
be NP-Complete. It can be posed as the following optimization problem:

max 1
2

∑
wij(1− xixj)

such that:
x ∈ {−1, 1}N

Notice that there are two troubling qualities of this problem: we are maximizing
a quadratic function and we are restricting our variables to lie in a obviously
non-convex discrete space.

Many people tried finding a non-trivial approximation to this problem without
success. Finally, in 1995, Goemans and Williamson found an SDP relaxation
and proved that it achieves a solution within 15 percent of optimal.

Here we consider the general problem of maximizing a quadratic subject to
boolean constraints (which approximates the max-cut problem as a special case):

max xTAx
subject to:
x ∈ {0, 1}N

Consider the optimization problem :

max < AX >
subject to:

24

X � 0
Xii = 1 for all i
rank(X) = 1

The problems are equivalent. Indeed, by the spectral decomposition theorem X
can be written as a sum of dyads

∑
λiviv

T
i , where vi is an eigenvector and λi

is its eigenvalue. Since X is rank 1, this implies that this sum only has 1 term,
and hence X must be of the form vvT . Together with the fact that Xii = 1 for
all i, this implies that v ∈ {−1, 1}.

Furthermore, since xTAx = Trace(AxTx) = < AX >, we see that the ob-
jective are the same as well. This is rather surprising, as in one formulation we
have a quadratic constraint and in one we have a linear constraint.

If we eliminate the rank constraint, we get an SDP. Indeed, the objective is lin-
ear, we have linear equality constraints, and the matrix variable X is restricted
to be in the semi-positive definite cone. This is called the rank relaxation.

Let α be the true solution value. Let β be the approximation value. In 1996,
Nesterov showed that this approximation satisfies: β−α

β ≤ π
2 − 1

25

