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FRPA:
A Framework for Recursive Parallel Algorithms

David Eliahu∗†, Omer Spillinger§†, Armando Fox‡†, and James Demmel¶

Abstract—Recursion continues to play an important
role in high-performance computing. However, paral-
lelizing recursive algorithms while achieving high per-
formance is nontrivial and can result in complex, hard-
to-maintain code. In particular, assigning processors
to subproblems is complicated by recent observations
that communication costs often dominate computation
costs. Previous work [1]–[3] demonstrates that carefully
choosing which divide-and-conquer steps to execute
in parallel (breadth-first steps) and which to execute
sequentially (depth-first steps) can result in signif-
icant performance gains over naïve scheduling. Our
Framework for Recursive Parallel Algorithms (FRPA)
allows for the separation of an algorithm’s implemen-
tation from its parallelization. The programmer must
simply define how to split a problem, solve the base
case, and merge solved subproblems; FRPA handles
parallelizing the code and tuning the recursive paral-
lelization strategy, enabling algorithms to achieve high
performance. To demonstrate FRPA’s performance ca-
pabilities, we present a detailed analysis of two al-
gorithms: Strassen-Winograd [1] and Communication-
Optimal Parallel Recursive Rectangular Matrix Multi-
plication (CARMA) [3]. Our single-precision CARMA
implementation is fewer than 80 lines of code and
achieves a speedup of up to 11× over Intel’s Math Ker-
nel Library (MKL) [4] matrix multiplication routine
on “skinny” matrices. Our double-precision Strassen-
Winograd implementation, at just 150 lines of code, is
up to 45% faster thanMKL for large square matrix mul-
tiplications. To show FRPA’s generality and simplicity,
we implement six additional algorithms: mergesort,
quicksort, TRSM, SYRK, Cholesky decomposition,
and Delaunay triangulation [5]. FRPA is implemented
in C++, runs in shared-memory environments, uses
Intel’s Cilk Plus [6] for task-based parallelism, and
leverages OpenTuner [7] to tune the parallelization
strategy.

I. Introduction

Recursion continues to be relevant in many high-
performance computing (HPC) algorithm implementa-
tions. Although the recursive definitions of these algo-
rithms may be quite simple, parallelizing them is non-
trivial [2], [3]. Algorithm developers must make decisions
about load balancing, tuning, and parallelization schemes.
With every optimization that is made to improve parallel

∗deliahu@eecs.berkeley.edu
†EECS Department, UC Berkeley, Berkeley, CA 94720
§omers88@eecs.berkeley.edu
‡fox@cs.berkeley.edu
¶demmel@cs.berkeley.edu, CS Division and Mathematics
Department, UC Berkeley, Berkeley, CA 94720

performance, the underlying algorithm is obscured. Simple
algorithms that can be coded sequentially in tens of lines
of code may require thousands of lines for their highly-
optimized parallel counterparts [8].

Recent research in communication-avoiding algorithms
has lead to the BFS/DFS parallelization strategy [2].
Breadth-first steps (BFS steps) and depth-first steps (DFS
steps) are alternate ways to allocate processors to solve
subproblems in a parallel recursive algorithm. At a BFS
step, all of the subproblems are solved in parallel; at a DFS
step, the subproblems are solved sequentially. In general,
BFS steps reduce communication costs and expose paral-
lelism, but require extra memory relative to DFS steps [1]–
[3]. BFS steps expose parallelism by creating tasks (i.e. the
subproblems) that can be solved in parallel, and decrease
future communication because fewer processors will be
assigned to each subproblem. However, extra memory is
required to execute a BFS step because as the subproblems
are solved in parallel, each one concurrently allocates the
memory it needs. In a DFS step, subproblems are solved
one at a time, reducing concurrent memory usage.

Because of their recursive structure, BFS/DFS algo-
rithms are cache-, processor-, and network-oblivious [9]–
[11]. An optimal interleaving of BFS and DFS steps
that remains within the available memory gives a
communication-optimal algorithm both for classical ma-
trix multiplication [3] and Strassen-Winograd’s algo-
rithm [1], [2] for any memory size. In a shared-memory
environment, the BFS/DFS interleaving affects the al-
gorithm’s memory footprint, cache access pattern, the
number of simultaneous threads of execution, and the size
of the base cases. All of these effects result in machine-
specific performance variation for different BFS/DFS in-
terleavings.

Our Framework for Recursive Parallel Algorithms
(FRPA) aims to separate the algorithm’s kernel from its
parallelization and optimization. By abstracting away the
parallelism and providing a simple API, FRPA allows pro-
grammers to focus solely on expressing their algorithm’s
recursive structure. FRPA handles the rest: parallelizing
the code, autotuning the BFS/DFS interleaving, and au-
totuning algorithm-specific parameters. FRPA also pro-
vides programmers automatic access to a custom memory
tracking tool, which can be used to evaluate a program’s
memory footprint and identify memory leaks.

FRPA’s goal is to make implementing parallel recursive
algorithms as easy as implementing their sequential coun-



terparts. To demonstrate the API’s simplicity and general-
ity, we implement eight algorithms: Strassen-Winograd [1]
and CARMA [3] matrix multiplication, mergesort and
quicksort sorting algorithms, solving triangular systems
of linear equations with many right-hand sides (TRSM),
symmetric rank-k matrix-matrix updates (SYRK), decom-
position of a symmetric positive-definite matrix into the
product of a lower triangular matrix and its transpose
(Cholesky decomposition), and a triangulation algorithm
that maximizes the angles of the triangles (Delaunay
triangulation [5]).

Of course, FRPA can only be useful within the HPC
community if it also delivers high performance. To high-
light FRPA’s efficiency, we perform an in-depth analysis of
two of the aforementioned algorithms: Strassen-Winograd
and CARMA. We show that CARMA’s implementation
in FRPA consistently outperforms the original CARMA
implementation, achieving up to a 57% speedup. The
FRPA implementation also significantly outperforms In-
tel’s MKL [4] (version 10.3.9) matrix multiplication rou-
tine for “skinny” matrix dimensions (up to 11× in speedup
in single precision). We also demonstrate that our im-
plementation of Strassen-Winograd matrix multiplication
achieves high-performance: it outperforms MKL by up
to 45% on large square matrices (double precision), and
exceeds the theoretical peak performance of any classical
matrix multiplication algorithm by up to 26%.

By implementing our framework in C++, we are able
to design an easy-to-use object-oriented API without
sacrificing performance. FRPA uses Intel’s Cilk Plus [6]
for task-level parallelism, and Cilk Plus handles task
scheduling and load balancing. Additionally, FRPA uses
OpenTuner [7] to tune the BFS/DFS interleaving and
all algorithm-specific tuning parameters. FRPA performs
best when the platform supports many parallel threads of
execution.

A. Contributions
• We design and implement FRPA, a simple frame-

work for expressing recursive parallel algorithms on
shared-memory platforms. Programmers define the
recursive structure of an algorithm, and the frame-
work automatically handles parallelization and au-
totuning, thereby providing users without extensive
computer science expertise a tool for generating high-
performance code.

• We demonstrate that the FRPA implementations of
CARMA and Strassen-Winograd exhibit very high
performance: both significantly outperform the Intel
MKL [4] dense matrix multiplication routine.

• We implement a total of eight algorithms using FRPA
to illustrate its generality and simplicity. These algo-
rithms, which include matrix multiplication, merge-
sort, Delaunay triangulation, and Cholesky decom-
position, vary widely in their recursive pattern and
complexity.

• We use OpenTuner [7] to autotune the BFS/DFS
parallelization strategy of algorithms in FRPA, and
we expose OpenTuner’s API to allow developers to
tune algorithm-specific parameters. We study the ef-
fect of tuning the BFS/DFS interleaving for Strassen-
Winograd and CARMA.

B. Paper Organization
We begin by surveying related work in Section II. We

describe the API in Section III and define its syntax
in Section IV. In Sections V and VI, we discuss the
implementation of FRPA itself. We then present detailed
evaluations of two of the algorithms we implemented
(Strassen-Winograd in Section VII and CARMA in sec-
tion VIII). We analyze the performance patterns of these
algorithms and OpenTuner’s convergence in Sections IX
and X, respectively. Finally, we discuss opportunities for
future work in Section XI. We include brief discussions of
the other six algorithms we implemented in the Appendix.

II. Related Work
Making parallelism accessible to people without sub-

stantial computer science expertise is a well-known chal-
lenge. Early attempts to accomplish this were language
based. A Nested Data-Parallel Language (NESL) [8] was
designed with four goals in mind: to support parallelism
via data-parallel constructs based on sequences, to support
complete nested parallelism, to generate efficient code
for a variety of architectures, and to be suitable for
describing parallel algorithms. We acknowledge the value
of designing a programming language such as NESL from
the ground up for its ability to be optimized for teaching
and prototyping parallel algorithms. However, we believe
that this approach has an inherent obstacle to widespread
use: the learning curve is high for users who are only
familiar with mainstream programming languages such as
C, C++, or Python. By providing a simple interface to
the complex and powerful parallelism capabilities of an
existing programming language, FRPA achieves many of
NESL’s goals without forcing users to adopt an entirely
new language.

The researchers behind the Cell superscalar (CellSs) [12]
and SMP superscalar (SMPSs) [13] programming environ-
ments also address the challenge of providing an easy-to-
use, flexible, and portable programming model for high-
performance parallel programming on SMP and multipro-
cessor architectures. CellSs and SMPSs require pragmas
to identify tasks (atomic routines that operate over a set
of parameters). The compiler and runtime library detect
task calls as well as their interdependencies and parallelize
them. Although FRPA is less general than SMPSs, its
focus on recursive algorithms allows it to provide more
guidance for programmers as well as advanced optimiza-
tions such as autotuning the BFS/DFS interleaving.

PATUS [14] is a code generation and autotuning frame-
work that focuses on stencil computations. Although it

2



doesn’t support recursive algorithms, its overall concept
is similar to FRPA’s. Users define the algorithm’s kernel
using C-like syntax, which the framework parallelizes and
optimizes for the hardware platform using domain-specific
knowledge that is not included in general-purpose compil-
ers.

Another relevant area of HPC research is heterogeneous
architectures. XKaapi [15], a runtime system for data-
flow task programming on heterogeneous architectures,
supports multi-CPU and multi-GPU architectures. This
framework consists of a locality-aware work stealing al-
gorithm, a fully asynchronous task execution strategy
on GPUs, low overhead tasks, and lazy computation of
dependencies. These optimizations allow algorithms such
as Cholesky decomposition to achieve high performance
on systems with multiple CPUs and GPUs.

One of the most recent parallel code generation frame-
works, Huckleberry [16], has goals that are similar to
FRPA’s. Huckleberry accepts sequential recursive divide-
and-conquer programs as input, and outputs parallel
implementations for multiprocessor machines. However,
FRPA is a much simpler framework due to its modular
design. In FRPA, task parallelism is entirely handled
by Cilk Plus. In addition, communication-avoidance is
described by BFS/DFS interleavings and optimized by
OpenTuner. By leveraging existing tools such as Cilk Plus
and OpenTuner, FRPA’s API remains simple without
sacrificing performance.

Finally, PetaBricks [17] is an implicitly parallel language
and compiler that automates algorithm selection at differ-
ent depths of a recursive algorithm. PetaBricks provides a
framework for specifying multiple ways to solve a problem,
and a built-in autotuner selects which algorithm to run
based on input size. FRPA is similar to PetaBricks in
that it uses task-based parallelism and a work-stealing
scheduler. However, unlike PetaBricks, FRPA allows for
direct tuning of the BFS/DFS parallelization strategy
and supports algorithms with inputs of arbitrary dimen-
sions. Also, FRPA uses OpenTuner to handle autotuning.
OpenTuner, which was created by many of the same
researchers who previously developed PetaBricks, uses a
different tuning strategy that generally outperforms the
built-in PetaBricks autotuner [7].

The BFS/DFS approach that FRPA uses was first
applied to distributed-memory architectures in the
implementation of “Communication-Optimal Parallel
Strassen” [1]. The technique was later extended to
shared-memory machines in “Communication-Optimal
Parallel Recursive Rectangular Matrix Multiplication”
(CARMA) [3]. In this paper, we generalize the work from
CARMA and extend the BFS/DFS approach to arbitrary
recursive algorithms in shared memory.

III. API Description
To implement a recursive problem in FRPA, a developer

must define how the problem splits into subproblems, how

to solve the base case, and how subproblems are merged
once solved. These are the only required functions of a
recursive algorithm in FRPA, but there are additional
features and tools that can improve an algorithm’s per-
formance. In this section, we describe FRPA’s API at a
high level (see Section IV for syntax).

A. Basic API
To implement a parallel recursive algorithm in FRPA,

one must define how to split a problem into subproblems
(split()), how to solve the base case (runBaseCase()),
and how to merge a collection of solved subproblems
(merge()). Once an algorithm is properly defined, it can
be instantiated and solved using FRPA. FRPA requires
that the BFS/DFS interleaving of the parallel recursion
be specified at runtime. See Section IV-B for syntax and
additional details.

B. Sequential split() and merge()

As described in Section I, FRPA may or may not choose
to execute subproblems in parallel. In the event that
FRPA executes the subproblems sequentially (known as
a depth-first step, or DFS), there may be an opportunity
to optimize the split() and merge() functions.

To allow optimizations that can only be done in the
case of a DFS step, FRPA exposes two optional meth-
ods: splitSequential() and mergeSequential(). These
routines are called in place of their non-sequential counter-
parts during a DFS step. See Section IV-C for the syntax
of splitSequential() and mergeSequential().

One example of when splitSequential() and
mergeSequential() are useful is in CARMA. CARMA is
a matrix multiplication algorithm that recursively splits
the longest of the three dimensions (i.e. m, k, or n, where
an m × k matrix is multiplying a k × n matrix). In the
event that the middle dimension k is split, CARMA must
avoid race conditions by allocating a temporary matrix
to hold the results of the second subproblem. However,
if both subproblems will be executed sequentially, there
are no race conditions and there is no need to allocate
the temporary matrix. In our CARMA implementation,
splitSequential() is the same as split() but without
the extra memory allocation. Also, because both CARMA
subproblems write to the same matrix in the DFS case,
mergeSequential() need not merge the temporary
matrix with the result matrix. See Section VIII for an
explanation of the algorithm, and the first example in
Figure 5 for the case where the temporary matrix must
be allocated when running in parallel.

C. Expressing Base Case Constraints
Certain types of recursive problems have constraints

on whether the base case can or must be called. To
specify these constraints, the developer may implement
canRunBaseCase() and mustRunBaseCase() (see Sec-
tion IV-D for syntax).
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canRunBaseCase() is used to specify whether or not a
particular instance of the problem can be solved with the
base case. We use canRunBaseCase() in our implementa-
tion of Delaunay Triangulation (see Appendix F). In the
algorithm, the problem can only be solved with the base
case if the number of points is less than three. Otherwise,
the base case cannot be called and the algorithm must
recurse further.

mustRunBaseCase() is used to specify whether or not an
instance of the problem must be solved with the base case.
We use mustRunBaseCase() in our implementation of
Quicksort, among others (see Appendix B). In Quicksort,
the base case must be called if the length of the array is
less than or equal to one.

D. Memory Tracking
FRPA provides a built-in tool for tracking the memory

usage of an algorithm. By default, FRPA will print three
values at the completion of the program: current_memory,
max_memory, and total_memory. current_memory is the
amount of memory that has been allocated and not freed;
this value should always be zero at a program’s comple-
tion (otherwise there are memory leaks). max_memory is
the maximum amount of memory allocated and not yet
freed at any time during the execution of the program.
In other words, max_memory is the highest value that
current_memory ever reached. Finally, total_memory is
the total amount of memory allocated during the life of
the program. All three values are recorded in bytes.

In addition to reporting these three values upon the
completion of a program, FRPA enables the developer
to query these values at any point during a program’s
execution. See Section IV-E for the full API.

FRPA’s memory tracker can analyze the memory foot-
print of any algorithm implemented in FRPA. This may
be used to guide more efficient algorithms, and was used
in this manner to minimize the number of memory allo-
cations performed in our Strassen-Winograd implementa-
tion. Another use case is to ensure that an implementation
contains no memory leaks (i.e. current_memory is zero at
the end of the program’s execution).

E. Parallelizing split() and merge()

To take full advantage of a machine’s parallelism, it may
be necessary to parallelize the split() and/or merge()
functions. Significant computation may be performed
within split() and/or merge(). Before many BFS steps
have been executed, there are idle processors that may be
put to good use in these routines.

We parallelized the split() and merge() functions
in our implementation of Strassen-Winograd. We found
that for this particular algorithm, because the majority of
the computation occurs in the base case multiplications,
parallelizing split() and merge() did not have a signif-
icant effect on performance. We therefore removed this
optimization in the final version of our code.
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Fig. 1: Illustration of how a MergesortProblem splits into
subproblems.

IV. API Syntax
In order to implement a recursive algorithm in FRPA,

developers must adhere to FRPA’s API. In this section,
we provide the syntax for this API.

A. Custom Datatypes
FRPA uses two custom datatypes to help the program-

mer define recursive problems.
Problem:

Defined in Problem.h and Problem.cpp. Every
recursive algorithm implemented in FRPA must
be a subclass of type Problem.

Task:
Defined in Task.h and Task.cpp. Encodes how a
Problem is split into subproblems (subproblems
are also of type Problem). Every Problem splits
into a C++ vector of Tasks. A Task is essentially
a list of Problems. All Tasks may be executed in
parallel, so there can be no dependencies between
Problems in separate Tasks. However, FRPA en-
forces that all Problems within a Task are run
sequentially. Therefore, every Problem within a
Task may depend on all previous Problems within
that same Task.

To illustrate the distinction between Tasks and
Problems, consider a simple example: two-way mergesort.
A MergesortProblem splits into two subproblems, also of
type MergesortProblem. Because these subproblems are
independent, a MergesortProblem splits into two Tasks
(one for each subproblem). See Figure 1 for an illustration
of mergesort.

Now consider a more complicated example: Triangular
Matrix System Solver (TRSM). A TrsmProblem splits
into two sets of subproblems (see Appendix C for an
explanation of the algorithm). The sets of subproblems
are independent, but all Problems within each set must be
executed in sequence. In FRPA, each set maps to a Task,
and each Task contains the Problems associated with that
set. See Figure 2 for an illustration of TRSM.
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Fig. 2: Illustration of how a TrsmProblem splits into
subproblems.

Note that a TrsmProblem splits into instances of not
only TrsmProblem, but also of MultProblem. This is an
example of algorithm composition. FRPA supports algo-
rithm composition in that Problems may split into in-
stances of any other type of Problem. SYRK and Cholesky
are other Problems that are composed of heterogeneous
subproblems (see Appendix D and Appendix E for more
details).

B. Basic API
As described in Section III-A, the developer must spec-

ify how to split a problem into subproblems, how to
solve the base case, and how to merge a collection of
solved subproblems. Developers provide this information
by subclassing Problem and implementing three methods:

std::vector<Task*> split()
This method defines how a Problem is split into
subproblems. split() returns a vector of Task
objects. Recall that a Task object is essentially an
ordered list of Problems; Tasks are independent,
but Problems within a Task may share dependen-
cies (see Section IV-A for more details).

void merge(std::vector<Problem*> subproblems)
This function specifies how to merge a vector of
solved subproblems.

void runBaseCase()
This method defines how to solve an instance of
the Problem.

In addition to implementing these three functions, the
developer must store state with each instance of the
Problem. split() initializes this state for the subprob-
lems, runBaseCase() operates on this state, and merge()
merges this state back into the original Problem. The state
associated with a MergesortProblem, for example, is the
array to be sorted and the length of that array.

The framework has only one entry point: solve().
solve() requires two arguments:

Problem* problem
An instance of type Problem that is to be solved.

std::string interleaving
A string representing the BFS/DFS interleaving
of the parallel recursion. interleaving is a per-
mutation of ‘B’ and ‘D’ characters. For example,
a valid interleaving is ‘BBDB.’

To illustrate the basic API, we provide the actual code
for mergesort. See Listing 1 for MergesortProblem.h,
Listing 2 for mergesort_harness.cpp, and Listing 3 for
MergesortProblem.cpp.
C. Sequential split() and merge()

To allow optimizations that can only be done in the case
of a DFS step (see Section III-B for an example), FRPA
exposes two optional methods:

std::vector<Problem*> splitSequential()
This function is called in place of split() dur-
ing a DFS step. Note that splitSequential()
returns a vector of Problems, unlike split()
which returns a vector of Tasks. This is because
all subproblems will be executed sequentially, so
there is no need to specify which subproblems
may run in parallel.

void mergeSequential
(std::vector<Problem*> subproblems)

This function is called in place of merge() during
a DFS step.

If splitSequential() and mergeSequential() are
not implemented by the algorithm, FRPA falls back to
the algorithm’s default implementation of split() and
merge().
D. Expressing Base Case Constraints

To specify constraints on whether the base case can or
must be called, an algorithm may override the following
methods:

bool canRunBaseCase()
Specifies whether or not the problem can be
solved with the base case. If canRunBaseCase()
is not implemented by the Problem, it defaults
to true (i.e. the base case can always be exe-
cuted). This default implementation is desired for
algorithms like CARMA or Strassen-Winograd,
where the base case is the MKL matrix multipli-
cation routine (which can be called at any point
during the recursion).

bool mustRunBaseCase()
This method is used to specify whether or not
the problem must be solved with the base case.
If mustRunBaseCase() is not implemented by the
Problem, it defaults to false (i.e. a problem can
always be split for deeper recursion).

See Section III-C for a description and examples of when
canRunBaseCase() and mustRunBaseCase() may be used.
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#i n c l u d e " Task . h "
#i n c l u d e " Problem . h "

c l a s s MergesortProblem : p u b l i c Problem {

p r i v a t e :
double ∗ A;
i n t l e n g t h ;

p u b l i c :
MergesortProblem ( double ∗ A, i n t l e n g t h ) ;
bool mustRunBaseCase ( ) ;
void runBaseCase ( ) ;
std : : vector <Task∗> s p l i t ( ) ;
void merge ( std : : vector <Problem∗> subproblems ) ;

} ;

Listing 1: MergesortProblem.h

#i n c l u d e " harness . h "
#i n c l u d e " framework . h "
#i n c l u d e " MergesortProblem . h "

double ∗ randomArray ( i n t l e n g t h ) {
double ∗ A = ( double ∗) mal loc ( l e n g t h ∗ s i z e o f (

double ) ) ; ;
f o r ( i n t i = 0 ; i < l e n g t h ; i ++) {

A[ i ] = 10000 ∗ drand48 ( ) − 1 ;
}
r e t u r n A;

}

i n t main ( i n t argc , char ∗∗ argv ) {
srand48 ( time (NULL) ) ;

i n t l e n g t h = a t o i ( argv [ 1 ] ) ;
s td : : s t r i n g i n t e r l e a v i n g = ( argc > 2) ? argv [ 2 ] :

" " ;

double ∗ A = randomArray ( l e n g t h ) ;
MergesortProblem ∗ problem = new MergesortProblem (A

, l e n g t h ) ;

s t r u c t t imeval s t a r t , end ;
gett imeofday (& s t a r t , NULL) ;

Framework : : s o l v e ( problem , i n t e r l e a v i n g ) ;

gett imeofday (&end , NULL) ;
double mergesortTime = ( end . tv_sec − s t a r t . tv_sec )

+ 1 . 0 e−6 ∗ ( end . tv_usec − s t a r t . tv_usec ) ;

p r i n t f ( " l e n g t h : %d , i n t e r l e a v i n g : %s , time : %f
seconds \n " , length , i n t e r l e a v i n g . c_str ( ) ,
mergesortTime ) ;

f r e e (A) ;
d e l e t e problem ;

r e t u r n 0 ;
}

Listing 2: mergesort_harness.cpp

#i n c l u d e " MergesortProblem . h "
#i n c l u d e " memorytracking . h "

i n t cmp( const void ∗ x , const void ∗ y ) {
double xx = ∗( double ∗) x ;
double yy = ∗( double ∗) y ;

i f ( xx < yy ) r e t u r n −1;
i f ( xx > yy ) r e t u r n 1 ;
r e t u r n 0 ;

}

MergesortProblem : : MergesortProblem ( double ∗ A, i n t
l e n g t h ) {

t h i s−>A = A;
t h i s−>l e n g t h = l e n g t h ;

}

bool MergesortProblem : : mustRunBaseCase ( ) {
r e t u r n ( l e n g t h <= 1) ;

}

void MergesortProblem : : runBaseCase ( ) {
q s o r t (A, length , s i z e o f ( double ) , cmp) ;

}

std : : vector <Task∗> MergesortProblem : : s p l i t ( ) {
i n t midpoint = l e n g t h / 2 ;
std : : vector <Task∗> t a s k s ( 2 ) ;
t a s k s [ 0 ] = new Task ( new MergesortProblem (A,

midpoint ) ) ;
t a s k s [ 1 ] = new Task ( new MergesortProblem (A +

midpoint , midpoint + ( l e n g t h % 2) ) ) ;
r e t u r n t a s k s ;

}

void MergesortProblem : : merge ( std : : vector <Problem∗>
subproblems ) {

MergesortProblem ∗ s1 = ( MergesortProblem ∗)
subproblems [ 0 ] ;

MergesortProblem ∗ s2 = ( MergesortProblem ∗)
subproblems [ 1 ] ;

double ∗ merged = ( double ∗) mal loc ( l e n g t h ∗ s i z e o f (
double ) ) ;

i n t p1 = 0 , p2 = 0 ;
i n t i = 0 ;

// merge
whi le ( p1 != s1−>l e n g t h && p2 != s2−>l e n g t h ) {

i f ( s1−>A[ p1 ] < s2−>A[ p2 ] ) {
merged [ i ] = s1−>A[ p1 ] ;
p1++;

} e l s e {
merged [ i ] = s2−>A[ p2 ] ;
p2++;

}
i ++;

}

// move l e f t o v e r s
i f ( p2 == s2−>l e n g t h ) {

memcpy(A+i , s1−>A+p1 , ( length−i ) ∗ s i z e o f ( double
) ) ;

}

// copy merged array i n t o A
memcpy(A, merged , i ∗ s i z e o f ( double ) ) ;

f r e e ( merged ) ;
}

Listing 3: MergesortProblem.cpp

6



E. Memory Tracking
As described in Section III-D, FRPA provides a built-

in tool for tracking the memory usage of an algorithm.
The memory tracker only tracks memory allocated within
the framework (i.e. memory allocated by a Problem in
split(), merge(), or runBaseCase()). In order to enable
FRPA’s memory tracker, an algorithm must include the
memorytracking.h header file and must be compiled with
the -DDEBUG flag. Default memory logging can be disabled
by compiling with the -DTERSE flag.

In addition to reporting current_memory, max_memory,
and total_memory at the completion of a program (see
Section III-D for definitions), FRPA provides the following
functions to query these values at any point during a
program’s execution:

long Memory::getCurrent()
Returns the current value of current_memory.

long Memory::getMax()
Returns the current value of max_memory.

long Memory::getTotal()
Returns the current value of total_memory.

void Memory::reset()
Reset all memory counters to zero.

Memory tracking in FRPA is implemented using
only atomic operations (namely atomic additions and
compare_and_swap) for minimal impact on performance.

F. Parallelizing split() and merge()

As Section III-E explains, it may be necessary to paral-
lelize the split() and/or merge() functions to take full
advantage of a machine’s parallelism. To allow for this
optimization, FRPA tracks the number of BFS steps that
have been taken. This value can be queried in the split()
and merge() functions as Problem::numBs. When desired,
numBs can be used to determine whether to parallelize
split() and merge() and how much parallelism to ex-
ploit.

FRPA only exposes the number of BFS steps taken
because the number of idle processors depends only on this
value. For example, CARMA splits into two subproblems.
When a BFS step is executed, the number of idle proces-
sors is cut in half (assuming there still are idle processors).
Therefore, after three BFS steps there are up to eight
processors in use, and the rest are idle. No additional
processors are utilized when a DFS step is executed, so
the number of DFS steps has no effect on the number of
available processors.

We utilized this technique to parallelize the split()
and merge() functions of Strassen-Winograd. We used
the OpenMP parallel for loop, and set the number
of OpenMP threads based on the value of numBs. As
described in Section III-E, this optimization did not result
in significant performance improvements and was removed
in the final version of our code.

V. Framework Implementation
A. Language Choice

We chose to implement FRPA in C++. C++ allows
us to use an object-oriented design without sacrificing
performance. Inheritance and virtual functions make our
implementation of Problems elegant and simple. More-
over, many high-performance scientific computing libraries
are accessible from C++ and can easily be called in the
base case of algorithms written in FRPA.

B. Parallelization
FRPA’s parallelism is handled by the Cilk Plus runtime

system. Cilk multi-threaded computations have a directed
acyclic graph structure. This DAG is constructed and
scheduled dynamically. Each vertex of the DAG represents
a thread that, once invoked, can run to completion without
blocking. Cilk threads can spawn child threads that may
run concurrently with their parent. If a thread spawns
child threads, it must also spawn a successor thread to
receive the children’s return values. Edges in the graph
connect parent threads with child threads, and connect
threads that have data dependencies with each other.
The Cilk work-stealing scheduler achieves execution space,
time, and communication bounds all within a constant
factor of optimal [6].

Cilk Plus was a convenient choice for several reasons.
First, its task-oriented parallelism fits perfectly with our
task-based recursion model. Second, Cilk Plus handles
all task scheduling, so we must only spawn the parallel
subproblems and let the built-in scheduler do the rest.
Finally, Cilk Plus is supported by both ICC and GCC.

C. Framework Flow
The framework takes control of the algorithm’s execu-

tion as soon as solve() is called. FRPA first checks if
the base case should be executed: runBaseCase() should
be called if canRunBaseCase() returns true and either
mustRunBaseCase() returns true or there are no more
characters remaining in the interleaving string. If the
interleaving string is exhausted but canRunBaseCase()
returns false, FRPA will continue to recurse with only
DFS steps until canRunBaseCase() returns true.

The framework then checks whether to run the next
level of the recursion in parallel (a BFS step) or sequen-
tially (a DFS step). If a BFS step is required, FRPA
calls problem->split() and spawns a new Cilk Plus task
to solve the subproblems in each of the resulting Tasks.
Finally, the framework calls problem->merge() to merge
the subproblems.

If a DFS step is to be executed, the framework
calls problem->splitSequential() and solves each of
the resulting subproblems sequentially. Once solved, the
framework calls problem->mergeSequential() to merge
the subproblems. Recall that mergeSequential() and
splitSequential() default to merge() and split() if
they are not implemented by the Problem.
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VI. Autotuning with OpenTuner
OpenTuner [7] is a new open source framework for build-

ing domain-specific multi-objective program autotuners.
It supports fully-customizable configuration representa-
tions, an extensible technique representation to allow for
domain-specific autotuning strategies, and an easy-to-use
interface to communicate with the program to be tuned. A
key capability of OpenTuner is its usage of a multitude of
search techniques simultaneously; techniques that perform
well will dynamically be allocated a larger proportion
of tests than techniques that perform poorly. We use
OpenTuner to tune FRPA algorithms offline, creating the
optimal execution plan that can be queried from the
OpenTuner SQL database at runtime.

A. General Usage
There are two important components to an OpenTuner

autotuner. These components must be implemented
in a small Python program that interfaces with
the OpenTuner API. The first component is a
ConfigurationManipulator, which defines the search
space: OpenTuner will search over the parameter objects
contained within the ConfigurationManipulator. The
second component is the run() function, which is used
to execute and evaluate the program with a specific
configuration (specified by OpenTuner).

B. Tuning BFS/DFS Interleaving
FRPA is expected to be used in conjunction with

OpenTuner to determine the optimal BFS/DFS
parallelization strategy. The BFS/DFS interleaving
is defined by two parameters on the OpenTuner
ConfigurationManipulator: schedule and depth.
schedule is a boolean array of length MAX_DEPTH that
specifies the BFS/DFS interleaving. depth is an integer
that specifies how deep the recursion should go (i.e. how
many steps to take).

Listing 4 shows our implementation of the OpenTuner
tuning script for Strassen-Winograd and CARMA matrix
multiplication. The script accepts four parameters: the di-
mensions of the matrices (m, k, and n) and the maximum
length of any BFS/DFS interleaving. The run() function
reads the current configuration’s BFS/DFS interleaving
(provided by OpenTuner), runs the matrix multiplication
algorithm with the specified interleaving, and returns −1∗
GFlops (OpenTuner minimizes this return value, and min-
imizing −1 ∗ GFlops results in maximizing performance).
The manipulator() function constructs an OpenTuner
ConfigurationManipulator that represents the search
space. In this case, the ConfigurationManipulator con-
tains the two parameters that define the interleaving:
schedule and depth.

Note that there is an inherent inefficiency in the way we
specify the BFS/DFS interleaving in an OpenTuner con-
figuration. We wish to generate configurations that contain
a boolean array of arbitrary length (i.e. an array of ‘B’s

import a r g p a r s e
import opentuner
from opentuner . s ea r ch . manipulator import ∗
from opentuner . measurement import

MeasurementInterface

p a r s e r = a r g p a r s e . ArgumentParser ( parents=opentuner .
a r g p a r s e r s ( ) )

p a r s e r . add_argument ( "−−max_depth " , type=int , d e f a u l t
=10, he lp="max a l l o w a b l e depth o f r e c u r s i o n " )

p a r s e r . add_argument ( "−−m" , type=int , d e f a u l t =1024 ,
he lp="m dimension o f matrix " )

p a r s e r . add_argument ( "−−k " , type=int , d e f a u l t =1024 ,
he lp=" k dimension o f matrix " )

p a r s e r . add_argument ( "−−n " , type=int , d e f a u l t =1024 ,
he lp=" n dimension o f matrix " )

c l a s s FRPATuner( MeasurementInterface ) :
de f __init__ ( s e l f , a rgs ) :

super (FRPATuner , s e l f ) . __init__ ( args )
s e l f .MAX_DEPTH = args . max_depth
s e l f .m = args .m
s e l f . k = args . k
s e l f . n = args . n

de f run ( s e l f , d e s i r e d _ r e s u l t , input , l i m i t ) :
i n t e r l e a v i n g = " "
c f g = d e s i r e d _ r e s u l t . c o n f i g u r a t i o n . data
f o r i in range ( 0 , c f g [ " depth " ] ) :

i f c f g [ " s c h e d u l e " ] [ i ] :
i n t e r l e a v i n g += "B"

e l s e :
i n t e r l e a v i n g += "D"

run_command = " " . j o i n ( [ " . / harness " , s t r ( s e l f .m)
, s t r ( s e l f . k ) , s t r ( s e l f . n ) , i n t e r l e a v i n g ] )

r e s u l t = s e l f . cal l_program (run_command)
stdout = r e s u l t [ " stdout " ]
g f l o p s = f l o a t ( stdout . s p l i t ( " , " ) [−1])
r e t u r n opentuner . r e s u l t s d b . models . Result ( time

=(−1∗ g f l o p s ) )

de f manipulator ( s e l f ) :
manipulator = Conf igurat ionManipulator ( )

params = [
IntegerParameter ( " depth " , 1 , s e l f .MAX_DEPTH) ,
BooleanArrayParameter ( " s c h e d u l e " , s e l f .

MAX_DEPTH) ,
]

f o r param in params :
manipulator . add_parameter ( param )

r e t u r n manipulator

i f __name__ == "__main__" :
args = p a r s e r . parse_args ( )
FRPATuner . main ( args )

Listing 4: tuner.py

and/or ‘D’s, where the ith element of the array determines
whether to take a BFS step or DFS step at depth i).
However, at the time of writing, OpenTuner does not pro-
vide built-in, variable-length boolean array configuration
parameters. Therefore, we choose to express a BFS/DFS
interleaving with two parameters: schedule and depth.
All instances of schedule are of length MAX_DEPTH, and
the configuration parameter depth actually determines
how deep the recursion is. For example, a configuration
with schedule ‘BBDB’ and depth 3 represents the in-
terleaving ‘BBD’. This means that there exist distinct
configurations that represent the same BFS/DFS inter-
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leaving. For instance, the configuration with schedule
‘BBDB’ and depth 3 represents the same interleaving
as the configuration with schedule ‘BBDD’ and depth
3, namely ‘BBD’. In our experiments, this redundancy
did not seem to hinder OpenTuner’s convergence on the
optimal interleaving (see Section X).

C. Tuning Arbitrary Program Parameters

OpenTuner can also be used to autotune program-
specific parameters in conjunction with the BFS/DFS
interleaving. To add custom tuning parameters to the
search, the ConfigurationManipulator must be initial-
ized with the additional parameters and the run() func-
tion must use the user-defined parameters when executing
the program.

VII. Case Study: Strassen-Winograd

The Strassen-Winograd algorithm [18] is a matrix mul-
tiplication algorithm that requires asymptotically fewer
floating-point multiplications than classical matrix multi-
plication. The Strassen-Winograd version is usually pre-
ferred over the original Strassen algorithm because it
requires fewer additions [1]. Each Strassen-Winograd mul-
tiplication problem splits into seven smaller matrix multi-
plication problems that can be solved recursively.

The algorithm is defined as follows (we are computing
C ← A ∗B, where A is an m× k matrix and B is a k× n
matrix). First partition A, B, and C into four quadrants:

A =
[
A11 A12
A21 A22

]
B =

[
B11 B12
B21 B22

]
C =

[
C11 C12
C21 C22

]
(1)

Then create the following temporary matrices:
T0 = A11

T1 = A12

T2 = A21 + A22

T3 = T2 −A11

T4 = A11 −A21

T5 = A12 − T3

T6 = A22

S0 = B11

S1 = B21

S2 = B12 −B11

S3 = B22 − S2

S4 = B22 −B12

S5 = B22

S6 = S3 −B21

(2)

Then solve the following seven multiplications recursively:

Q0 = T0 ∗ S0

Q1 = T1 ∗ S1

Q2 = T2 ∗ S2

Q3 = T3 ∗ S3

Q4 = T4 ∗ S4

Q5 = T5 ∗ S5

Q6 = T6 ∗ S6

(3)

Finally combine the results:

U1 = Q0 + Q3

U2 = U1 + Q4

U3 = U1 + Q2

C11 = Q0 + Q1

C12 = U3 + Q5

C21 = U2 −Q6

C22 = U2 + Q2

(4)

TABLE I: Machines used in this study.

Machine Cores Threads CPU Type
Emerald 32 64 Intel Xeon X7560
Boxboro 40 80 Intel Xeon E7-4860

A. Implementation
Our implementation of Strassen-Winograd follows

from the definition presented above1. An instance of
StrassenProblem must store the following state: A, B, C,
lda, ldb, ldc, m, k, and n. split() separates the matrices
into quadrants specified in Equation 1, computes the
temporary matrices shown in Equation 2, and initializes
the seven subproblems defined in Equation 3. merge()
performs the matrix operations specified in Equation 4 to
solve the problem. The base case is single-threaded MKL.

In order to reduce the amount of memory required,
care was taken to reuse already-allocated memory when
possible. The temporary matrices T0, T1, T6, S0, S1, S5,
Q0, Q2, Q3, and Q4 can all point to previously-allocated
memory and need not be allocated at each recursive step.

B. Performance
Figure 3 shows Strassen-Winograd’s performance for a

selection of BFS/DFS interleavings on two machines (see
Table I for hardware specifications). We multiply large,
square, randomly-generated matrices with m = k = n
ranging from 1024 to 30 720 (in increments of 1024).
We do not warm the cache before each trial, and the
multiplication problems are sufficiently large so that it is
not necessary to time batches of multiplications. We repeat
each multiplication at least 5 times2, and record the max-
imum performance across all trials (we wish to measure
the algorithm’s peak capability on a given machine).

On the vertical axis, we plot effective GFlops. Effective
GFlops represents the number of floating point operations
per second (Flops) that would be achieved by a classical
O(n3) matrix multiplication algorithm if it executed in
the same amount of time. We compute effective GFlops
according to the following formula3:

effective GFlops = m ∗ k ∗ n

time (seconds) ∗ 29 (5)

1For simplicity, our Strassen-Winograd implementation requires
that matrix dimensions be divisible by 2depth, where depth is the
number of recursive steps (i.e. the length of the BFS/DFS interleav-
ing). This constraint would be straightforward to remove.

2The variability of some matrix multiplications on our machines
necessitated additional trials in order to accurately measure max-
imum performance. The average ratio of max performance to min
performance over all trials was between 1.13 (double precision on
Emerald) and 1.20 (single precision on Boxboro). The average stan-
dard deviation as a percent of mean (the coefficient of variation)
ranged from 3.6% to 5.5%.

3For classical matrix multiplication, each entry of the m×n matrix
C requires 2k floating point operations (k multiplies and k adds).

9



0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
iv

e 
G

Fl
op

s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
ive

 G
Fl

op
s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
iv

e 
G

Fl
op

s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
iv

e 
G

Fl
op

s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
iv

e 
G

Fl
op

s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
iv

e 
G

Fl
op

s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
ive

 G
Fl

op
s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
ive

 G
Fl

op
s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak0 5 10 15 20 25 30

0

50

100

150

200

250

300

350

400

Matrix Size (m = k = n, thousands)

Ef
fe

ct
ive

 G
Fl

op
s

 

 

BB
DBB
BDB
BDBD
BBB
DBBB
BDBB
BDBDB
Classical Peak

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Matrix Size (m = k = n, thousands)

E
ff

e
c
ti
v
e

 G
F

lo
p

s

(a) Emerald, Single Precision

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

Matrix Size (m = k = n, thousands)

E
ff

e
c
ti
v
e

 G
F

lo
p

s

(b) Boxboro, Double Precision

Fig. 3: Strassen-Winograd’s performance for a selection of
BFS/DFS interleavings on two machines. Effective GFlops
is the number of floating point operations per second that
a classical O(n3) matrix multiplication algorithm would
perform if it completed the multiplication in the same
amount of time. Classical peak is the maximum achievable
performance of a classical algorithm. Dashed lines are
interleavings that contain two BFS steps, and solid lines
are interleavings that contain three BFS steps.
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Fig. 4: Comparison of FRPA Strassen-Winograd with
Intel’s MKL. Strassen-Winograd outperforms MKL by up
to 45% for large square matrices. Effective GFlops is the
number of floating point operations per second that a clas-
sical O(n3) matrix multiplication algorithm would perform
if it completed the multiplication in the same amount of
time. For MKL, effective GFlops = actual GFlops because
MKL employs a classical matrix multiplication algorithm.
Classical peak is the maximum achievable performance of
a classical algorithm.
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Plotting effective GFlops allows us to compare Strassen-
Winograd’s performance with the theoretical maximum
performance of any classical O(n3) algorithm (the hori-
zontal line labeled “Classical Peak” in Figure 3). Classical
peak is machine-specific.

In FRPA, OpenTuner selects the optimal BFS/DFS
interleaving for each matrix size. This produces the solid
red lines in Figure 4. For comparison, we also plot MKL’s
performance across the same set of matrix sizes. Our
Strassen-Winograd implementation outperforms MKL by
up to 45% for large square matrices (Boxboro, double
precision).

Because the MKL routine employs an O(n3) matrix
multiplication algorithm, it cannot exceed the classical
peak (shown in dashed green). The Strassen-Winograd
algorithm, however, executes asymptotically fewer floating
point operations than any classical algorithm. As a result,
the effective GFlops of our implementation of Strassen-
Winograd exceeds the classical theoretical peak by up to
26% (Emerald, single precision).

Note that in Figure 4, MKL and Strassen-Winograd
share a portion of the line (denoted by alternating red
and blue dashes). This is because in FRPA, an algorithm
executed with an empty BFS/DFS interleaving will im-
mediately call the base case. For Strassen-Winograd, the
base case the MKL matrix multiplication routine.

VIII. Case Study: CARMA
CARMA is a communication-optimal, cache-oblivious,

parallel recursive rectangular matrix multiplication al-
gorithm [3]. CARMA combines the largest-dimension-
splitting technique of Frigo and Leiserson [19] with the
recursive BFS/DFS approach introduced by Ballard, Dem-
mel, Holtz, Lipshitz, and Schwartz [2].

CARMA is a simple recursive algorithm. At each recur-
sive step, an m×k matrix A is multiplying a k×n matrix
B to produce an m × n matrix C. The largest of these
three dimensions is split in half, creating two subproblems
of equal size that are solved recursively. The base case is
solved with single-threaded MKL.

Figure 5 shows an example of each of the possible
dimension splits. In each case, the largest dimension is
divided to create two subproblems (the blue matrices
represent one subproblem and the gold matrices represent
the other).

A. Implementation
CARMA’s implementation in FRPA is straightforward4.

An instance of CarmaProblem must store the following
state: A, B, C, lda, ldb, ldc, m, k, and n. split()
determines which of the three dimensions are largest,
and splits the matrix multiplication into two subproblems

4For simplicity, our CARMA implementation requires that matrix
dimensions be divisible by 2depth, where depth is the number of
recursive steps (i.e. the length of the BFS/DFS interleaving). This
constraint would be straightforward to remove.
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Fig. 5: Illustration of how a CARMA problem may split
into subproblems. The first row demonstrates splitting in
the k dimension, the second row shows splitting in the m
dimension, and the third row represents splitting in the n
dimension. In all cases, the longest of the three dimensions
is split. The blue matrices represent one subproblem and
the gold matrices represent the other

accordingly. In the event that the k dimension is largest
(the top example in Figure 5), a temporary matrix is
required to hold the result of the second subproblem in
order to prevent race conditions when executed in parallel.
merge() must merge this temporary matrix with C if k
was split. The base case is single-threaded MKL.

As described in Section III-B, we can perform an op-
timization if we know that the subproblems will not be
executed in parallel (and therefore there can be no race
conditions). We define splitSequential() to be the same
as split(), with the exception of not creating the tempo-
rary matrix when the k dimension is split. Because there
is no temporary matrix to merge and the multiplication
happens in-place, mergeSequential() is a no-op.

B. Performance
Figure 6 shows CARMA’s performance for a selection

of BFS/DFS interleavings on two machines (see Table I).
We multiply randomly-generated “skinny” matrices, or
matrices that have a large inner dimension k and small
outer dimensions m and n (recall that multiplication is of
the form A ∗ B, where A is an m × k matrix and B is a
k×n matrix). For this experiment, we set m and n to 64,
and vary k up to 16 777 216 in increments of 1 048 576. We
do not warm the cache before each trial. We repeat each
multiplication at least 5 times5, and record the maximum

5As with Strassen-Winograd, the variability of some matrix mul-
tiplications on our machines necessitated additional trials in order
to accurately measure maximum performance. The average ratio of
max performance to min performance over all trials was between 1.26
(single precision on Boxboro) and 1.34 (single precision on Emerald).
The average standard deviation as a percent of mean (the coefficient
of variation) ranged from 6.6% to 8.2%.

11



0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak0 2000 4000 6000 8000 10000 12000 14000 16000

0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak0 2000 4000 6000 8000 10000 12000 14000 16000

0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak0 2000 4000 6000 8000 10000 12000 14000 16000

0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak0 2000 4000 6000 8000 10000 12000 14000 16000

0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak0 2000 4000 6000 8000 10000 12000 14000 16000

0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak0 2000 4000 6000 8000 10000 12000 14000 16000

0

25

50

75

100

125

150

Middle Dimension (k, thousands)

G
Fl

op
s

 

 

BBBBBB
BBBBBDB
BBBDBBB
BBBDDBBB
BBDBDBDBB
BDBDBDBDBDB
BBBBBBB
BBBDBBBB
BBBBDBBB
BBBDBDBBB
BBDBBBDBB
BBBBBBDDB
Effective Peak

0 2000 4000 6000 8000 10000 12000 14000 16000
0

50

100

150

200

250

Middle Dimension k (m = n) (thousands)

G
F

lo
p

s

(a) Emerald, Single Precision

0 2000 4000 6000 8000 10000 12000 14000 16000
0

25

50

75

100

125

150

Middle Dimension k (m = n) (thousands)

G
F

lo
p

s

(b) Boxboro, Double Precision

Fig. 6: CARMA’s performance on “skinny” matrices for
a selection of BFS/DFS interleavings on two machines.
Effective peak is the maximum achievable performance
of CARMA on “skinny” matrices. Dashed lines are inter-
leavings that contain six BFS steps, and solid lines are
interleavings that contain seven BFS steps. Note that only
the middle dimension, k, changes; m and n are set at 64.
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Fig. 7: Comparison of FRPA CARMA with original
CARMA and Intel’s MKL. Our new implementation out-
performs the original by up to 56% and MKL by up
to 11×. The original implementation of CARMA was
only evaluated on Emerald, so we only compare the two
implementations on Emerald. Note that only the middle
dimension, k, changes; m and n are set at 64.
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performance across all trials (we wish to measure the
algorithm’s peak capability on a given machine).

We plot GFlops (billion floating-point operations per
second) on the vertical axis, which is computed by the
following equation:

GFlops = m ∗ k ∗ n

time (seconds) ∗ 29 (6)

We also show effective peak, which is the maximum achiev-
able performance of a CARMA on “skinny” matrices. We
compute effective peak on each machine by measuring
single-threaded MKL for m = k = n = 64 and multiplying
by the number of cores. This is an estimation of the best
performance CARMA can achieve because the algorithm
is limited by the base case multiplications, which all have
m = n = 64.
As explained in Section VI, OpenTuner finds the op-

timal BFS/DFS interleaving for each matrix size. This
produces the solid red lines in Figure 7. For comparison,
we also plot the performance of the original CARMA im-
plementation (described in [3]). FRPA’s implementation
surpasses the original algorithm (by up to 56%) because
the original version only executes BFS steps whereas
FRPA tunes the parallelization strategy.

We also show MKL’s performance in Figure 7. CARMA
outperforms MKL by up to 11× (Boxboro, single preci-
sion) due to the communication-optimal BFS/DFS ap-
proach [3]. MKL and CARMA share a portion of the line
(represented by alternating red and blue dashes). This is
because the MKL matrix multiplication routine is the base
case in CARMA.

IX. Analysis of Performance Variation
As we expected, performance varied across different

BFS/DFS interleavings. We attribute this variation to
four factors, described in this section: the number of Cilk
tasks spawned, the size of base case problems, the memory
footprint, and the cache access pattern.

A. Number of Cilk Tasks
One source of variability is the number of Cilk tasks

spawned. As more tasks are spawned, Cilk’s load balancer
has more flexibility and fine-grained control. However,
excessive task spawning introduces overhead that can
outweigh the benefits. Each additional BFS step increases
the number of Cilk tasks exponentially. In algorithms with
high branch factors like Strassen-Winograd (which spawns
7 subtasks), this can hurt performance.

For example, compare an interleaving with ten BFS
steps to one with only five. In Strassen-Winograd, the
interleaving with five BFS steps spawns 75 (approximately
17 thousand) Cilk tasks; the interleaving with ten BFS
steps spawns 710 tasks (over 280 million). Seventeen thou-
sand tasks is clearly enough to fully utilize the processors,
and the overhead of spawning 280 million tasks is insur-
mountable.

These effects can be measured by comparing the perfor-
mance of two interleavings of the same length, but with
different numbers of BFS steps. For example, consider
the two interleavings ‘BDBDBDBDBD’ (five ‘B’s) and
‘BBBBBBBBBB’ (ten ‘B’s), each of which recurses to
a depth of ten. The former outperforms the latter: for
double-precision Strassen-Winograd on Boxboro at m =
k = n = 10 240, for example, the interleaving with five
BFS steps is 42% faster.

B. Base Case Size
Another factor that affects performance is the size of the

problem when it reaches the base case. Depending on the
base case routine and the problem itself, certain sizes of
inputs to the base case may perform better than others.
As the recursion gets deeper (regardless of which steps
are used), the problems at the base case become smaller.
This has a slightly negative effect on performance in both
CARMA and Strassen-Winograd: all else equal, the single-
threaded MKL routine is more efficient operating on larger
matrices.

C. Memory Allocation
Memory allocation also affects overall algorithm perfor-

mance: all else equal, more memory allocation increases
overhead. This effect is difficult to isolate; in most cases,
“all else” is not equal because changing the BFS/DFS
interleaving also affects the other three factors (number
of Cilk tasks, base case size, and cache access patterns).
For example, executing a BFS step rather than a DFS
step in CARMA increases total memory usage, but enables
additional parallelism and may be necessary to generate
enough Cilk tasks for the algorithm to efficiently use the
available processors.

The effect of memory allocation on performance can
be somewhat isolated when comparing BFS/DFS inter-
leavings that differ in recursive depth. For example, the
Strassen-Winograd interleavings ‘BBB’ and ‘DBBB’ differ
by only the DFS step at the beginning. This DFS step
causes a significant increase in memory allocation (nearly
a factor of two), yet does not expose additional parallelism
or opportunity for load balancing. As a result, ‘BBB’
outperforms ‘DBBB’ for all matrix sizes in our tests.

D. Cache Access Patterns
Finally, the cache access pattern (which represents com-

munication in shared-memory architectures), also affects
performance. Changing the BFS/DFS interleaving and
recursion depth significantly affects data locality, and
therefore cache performance.

Although it is difficult to isolate this factor from the
others, the impact of cache locality is apparent in some
instances. For example, consider the BFS/DFS interleav-
ings ‘DBDB’ and ‘BDBD’ for Strassen-Winograd. These
interleavings spawn the same number of Cilk tasks, solve
base cases of the same size, and allocate the same amount
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of memory. However, at m = k = n = 10 240 on Emerald
(double precision), the ‘BDBD’ interleaving outperforms
the ‘DBDB’ interleaving by 31%. Careful analysis shows
that the ‘BDBD’ execution results in 51% fewer L3 cache
misses than the ‘DBDB’ interleaving. This explains the
performance difference we observe.

We measure L3 cache miss rates using the Performance
Application Programming Interface (PAPI) [20], version
84017152. In order to avoid the effects of prefetching
on PAPI’s counters, we disable hardware prefetching on
our machine via the BIOS. PAPI only measures cache
misses from a single thread, but because our algorithm
spawns many tasks and because Cilk Plus employs a
work-stealing scheduler, one thread’s L3 cache misses is
roughly proportional to total L3 cache misses. We repeat
each multiplication ten times and average the results (we
observed a standard deviation of 6% to 8% of mean).

To validate that we are properly measuring L3 cache
misses, we ran a simple experiment. We created a program
that allocates two arrays of equal size and and a stride
length of one, fills them both with random floating-point
numbers between -1 and 1 (to warm the cache), and
repeatedly copies one array into the other6. We then
instrumented the array copy using our approach (i.e.
disabling hardware prefetching and reporting PAPI’s L3
total cache miss counter, PAPI_L3_TCM).

We vary the array sizes from 32KB to 50MB each and
measure the number of cache misses that occur while
copying one array into the other (after warming the cache).
We repeat each array copy 100 times and report the
average number of cache misses. As expected, once the
sum of the array sizes grows somewhat larger than the L3
cache size (24MB on Emerald), the number of measured
cache misses approaches 2 ∗ Array Size

64 (Emerald’s L3 cache
line is 64 bytes long). This indicates that our technique
for measuring L3 cache misses is valid. See Figure 8 for an
illustration.

X. OpenTuner Convergence
Figure 9 shows OpenTuner’s convergence at a single

datapoint (Strassen-Winograd, m = k = n = 4096, single
precision, Emerald). The solid line represents the median
(over 100 trials7) of the fastest BFS/DFS interleaving
discovered after tuning iteration i, for i ranging from 1 to
100. Each tuning iteration represents OpenTuner trying
a single configuration (i.e. BFS/DFS interleaving) for the
specified matrix dimensions8, and we plot the performance
of the best configuration found so far (performance can
only increase with additional iterations). The error bars
mark the first and third quartiles at each tuning iteration,
and the maximum performance is shown as a dashed
green line. OpenTuner’s MAX_DEPTH (the longest allowable

6This procedure was inspired by the STREAM Benchmark [21].
7Because the tuning process is nondeterministic, we repeated it

100 times for this experiment.
8OpenTuner must tune each value of (m, k, n).
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Fig. 8: Validation of our L3 cache miss measuring tech-
nique. We allocate two arrays of size ranging from 32KB
to 50MB each, warm the cache, and measure the number
of cache misses that occur while copying one array into
the other. We repeat the array copy 100 times and plot the
average number of cache misses. As expected, once the sum
of the array sizes grows somewhat larger than the L3 cache
size (24MB on Emerald), the number of measured cache
misses approaches 2 ∗ Array Size

64 (Emerald’s L3 cache line
is 64 bytes long). For (2 ∗ Array Size) < (L3 Cache Size),
we observe very few cache misses (as expected) for roughly
two-thirds of the repetitions, and 2∗ Array Size

64 cache misses
for the other one-third (for unknown reasons), resulting
in the line shown in the figure when the iterations are
averaged.

BFS/DFS interleaving) is 10, and the performance of
each configuration is recorded as the maximum of three
multiplications. At this datapoint, which is roughly repre-
sentative of most, OpenTuner converges to 95% of optimal
after 18 iterations.

XI. Future Work

We have identified multiple areas for potential future
work including further analyzing FRPA’s capabilities,
implementing FRPA in existing frameworks, expanding
FRPA’s feature set, and extending FRPA to other archi-
tectures.

A. Analyze Performance of Additional Algorithms
We only performed detailed performance analyses on

two algorithms (Strassen-Winograd and CARMA). We
hypothesize that the performance of the other six recursive
algorithms we implemented are comparable to other well-
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Fig. 9: OpenTuner convergence (Emerald, single precision
Strassen-Winograd, m = k = n = 4096). The solid
line represents the median (over 100 trials) of the fastest
BFS/DFS interleaving discovered after tuning iteration i,
for i ranging from 1 to 100. The error bars mark the first
and third quartiles at each tuning iteration. OpenTuner
converges to 95% of optimal after 18 tuning iterations.

tuned versions of the algorithms, and we leave this analysis
for future work.

B. Explore Benefits of Parallelizing split() and merge()

We only explored the effects of paralleling split()
and merge() in our implementation of Strassen-Winograd.
Due to the fact that the algorithm’s runtime is dominated
by the base case matrix multiplications, this optimiza-
tion had no measurable performance impact. It would
be interesting to find an algorithm in which performance
is bottlenecked by the split() and merge() functions,
and then evaluate the effect of parallelizing split() and
merge().

C. SEJITS Integration
Work is in progress to create a SEJITS [22] specializer

to extend the framework’s API to be accessible from
Python. Domain scientists hoping to write parallel recur-
sive algorithms would implement the split(), merge(),
and runBaseCase() functions in Python. These input
functions would be used to generate efficient C++ code.

D. Nonuniform BFS/DFS Interleavings
Currently FRPA executes all subproblems at a given

level using the same parallelization strategy (i.e. breadth-
first or depth-first). A more complicated parallelization
strategy that executes some subproblems at the same
depth in parallel and others sequentially is possible.
This may be especially beneficial in problems with non-
homogeneous subproblems. In TRSM, for example, it may

be favorable to execute the TrsmProblem subproblems in
parallel and the MultProblem subproblems sequentially.
We leave it to future work to explore these tradeoffs.

E. Distributed Memory Implementation

We hope to explore a similar framework for paral-
lel recursive algorithms on distributed-memory systems.
Spark [23], an open-source data analytics cluster comput-
ing framework, may provide an appropriate platform for
FRPA. This distributed-memory framework would be log-
ically equivalent to our current one, but would be able to
support larger computations and datasets on distributed
machines.

F. Heterogeneous Architectures

Many algorithms can achieve very high performance on
heterogeneous architectures comprising multi-core CPUs
and GPUs. We believe adding support for heterogeneous
architectures could make FRPA an even more powerful
tool for generating high-performance code.

XII. Conclusion

FRPA combines Cilk Plus, OpenTuner, and
communication-avoiding parallelization techniques
to provide a powerful API for writing recursive
algorithms. We validate the framework’s generality
by implementing eight algorithms: Strassen-Winograd,
CARMA, mergesort, quicksort, TRSM, SYRK, Cholesky
decomposition, and Delaunay triangulation. An in-depth
study of the performance characteristics of our Strassen-
Winograd and CARMA implementations demonstrates
FRPA’s viability as a tool for developing high-performance
algorithms. Both implementations outperform the Intel
MKL dense matrix multiplication code (CARMA by up
to 11× and Strassen-Winograd by up to 45%). Moreover,
the FRPA implementation of CARMA outperforms the
original CARMA implementation (by up to 57%) due to
the ability to tune the BFS/DFS interleaving.

The Delaunay triangulation implementation was writ-
ten by a researcher who did not contribute to the devel-
opment of the framework itself. Although this is not an
exhaustive analysis, it does reveal that FRPA can be useful
without knowledge of its internal machinery.

We envision FRPA as a component of a larger
Selective, Embedded Just-in-Time Specialization (SE-
JITS) framework, namely A SEJITS implementation for
Python (Asp). At its core, FRPA is about making high-
performance computing accessible to individuals who may
have limited computer science backgrounds. Asp takes
that a step further by providing a mechanism to generate
efficiency-language code from Python source code [22],
[24]. FRPA and SEJITS act as the bridge between domain
experts and high-performance computing.
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Appendix: Algorithm Details
We implemented a total of eight algorithms using

FRPA. Strassen-Winograd and CARMA were discussed in
detail in Section VII and Section VIII, respectively. In this
section, we provide an overview of the other six algorithms
and how we implemented them.

A. Mergesort
Mergesort is a classic sorting algorithm. To sort an

array, mergesort splits the array in half into two subprob-
lems, recursively sorts each subproblem, and merges the
two results into the final sorted array.

An instance of MergesortProblem contains the follow-
ing state: A (the array to be sorted) and length (the
length of that array). split() splits the array in half,
runBaseCase() calls the single-threaded qsort() func-
tion, and merge() merges the two sorted subproblems.

Our implementation of mergesort is 60 lines of code
and has been verified to correctly sort arrays of arbitrary
length. See Listings 1, 2, and 3 for our full implementation
of mergesort.

B. Quicksort
Quicksort is another classic sorting algorithm. In quick-

sort, the array is partitioned into two arrays of roughly
equal size, where every value in one array is less than
every value in the other array. Subproblems are solved
recursively until either the recursion has reached its max-
imum depth or the array to be sorted has fewer than two
elements.

An instance of QuicksortProblem contains the follow-
ing state: A (the array to be sorted) and length (the

length of that array). split() randomly selects a pivot
and partitions the array into one array with values less
than the pivot and one array with values greater than the
pivot. runBaseCase() calls the single-threaded qsort()
function, and merge() is a no-op (the array is sorted in-
place). Our implementation of quicksort is 45 lines of code
and has been verified to correctly sort arrays of arbitrary
length.

C. TRSM
TRSM (triangular matrix system solver) performs a

triangular matrix solve: given an input matrix Xin and
lower non unit triangular matrix T , our implementation of
TRSM solves the equation Xout ∗ T ′ = Xin. Xout replaces
Xin in memory.
The algorithm is defined as follows. First partition X

and T into four quadrants:

X =
[
X11 X12
X21 X22

]
T =

[
T11 T12
T21 T22

]
(7)

Note that T12 = 0 and that T11 and T22 are lower
triangular. TRSM may then be defined recursively:

trsm (X, T) :
trsm (X11 , T11)
mult (X12 , X11 , T21)
trsm (X12 , T22)

trsm (X21 , T11)
mult (X22 , X21 , T21)
trsm (X22 , T22)

mult (C, A, B) :
C = C − A ∗ B’

The first set of three subproblems and the second set of
three subproblems are independent of each other and may
run in parallel. However, the three subproblems within
each set must be executed sequentially. Therefore, each set
of three subproblems represents a Task in our framework
(see Section IV-A for a discussion of Tasks vs Problems).
An instance of TrsmProblem contains the following

state: X, ldx, T , ldt, and n (the size of the matrices).
split() partitions the matrices as shown in Equation 7
and initializes two Tasks with three subproblems each.
runBaseCase() calls Intel MKL’s trsm() function, and
merge() is a no-op (the computation is performed in-
place).

TRSM is an example of algorithm composition because
subproblems of TrsmProblem are of type TrsmProblem and
MultProblem. MultProblem is defined independently, and
executes MKL’s gemm() to perform the multiplication.

Our recursive implementation of TRSM is only 40 lines
of code (not including 20 lines for MultProblem) and has
been verified as correct.

D. SYRK
Our slightly simplified version of symmetric rank-k

matrix-matrix operation (SYRK) takes input matrix A
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and lower triangular matrix C and performs the operation
C = C − A ∗ AT . The A and C matrices are partitioned
into quadrants much like the matrices in TRSM:

A =
[
A11 A12
A21 A22

]
C =

[
C11 C12
C21 C22

]
(8)

SYRK may now be defined recursively:

syrk (C, A) :
syrk (C11 , A11)
syrk (C11 , A12)
mult (C21 , A21 , A11)
mult (C21 , A22 , A12)
syrk (C22 , A21)
syrk (C22 , A22)

mult (C, A, B) :
C = C − A ∗ B’

All six subproblems may be executed in parallel provided a
temporary matrix is used for the duplicated outputs (C11,
C21, and C22).

An instance of SyrkProblem contains the following
state: A, lda, C, ldc, and n (the size of the matrices).
split() partitions the matrices as shown in Equation 8
(allocating temporary matrices for the duplicate C out-
puts) and initializes six Tasks with one subproblems each.
merge() must combine the temporary output matrices
and free them. runBaseCase() calls Intel MKL’s syrk()
function.

Like CARMA, SYRK can take advantage of the
splitSequential() and mergeSequential() optimiza-
tion (see Section III-B). If the subproblems will be ex-
ecuted sequentially (i.e. during a DFS step), we need
not allocate temporary matrices to hold the duplicated
output. Therefore, we implement splitSequential() like
split() but without the extra allocation, and we define
mergeSequential() to be a no-op.

Like TRSM, SYRK is an example of algorithm
composition: subproblems of SyrkProblem are of type
SyrkProblem and MultProblem. Our recursive implemen-
tation of SYRK is 90 lines of code (not including 20 lines
for MultProblem) and has been verified as correct.

E. Cholesky

Cholesky decomposition is the decomposition of a sym-
metric positive-definite matrix A into the product of a
lower triangular matrix L and its transpose (i.e. A =
L∗LT ). The A matrix is partitioned into quadrants exactly
as in SYRK:

A =
[
A11 A12
A21 A22

]
(9)

We now define Cholesky recursively:

cho l e sky (A) :
cho l e sky (A11)
trsm (A21 , A11)
syrk (A22 , A21)
cho l e sky (A22)

All subproblems of CholeskyProblem must be solved
sequentially. Therefore, split() partitions the A matrix
as defined in Equation 9 and creates a single task con-
taining all four subproblems. The parallelism is exposed
further into the recursion when the TRSM and SYRK sub-
problems are solved. runBaseCase() calls MKL’s potrf()
function, and merge() is a no-op (the calculation happens
in-place). An instance of CholeskyProblem contains the
following state: A, lda, and n (the size of the matrix).

Cholesky decomposition is yet another example of al-
gorithm composition. The ability to reuse our previously-
defined TrsmProblem and SyrkProblem (which both rely
on algorithm composition themselves) demonstrates the
ease with which developers can compose problems in
FRPA. Due to our ability to abstract away the other
types of recursive problems that CholeskyProblem uses,
our implementation of Cholesky decomposition is only 30
lines of code9. Our implementation has been verified as
correct.

F. Delaunay Triangulation
Delaunay Triangulation is a triangulation method that

maximizes the angles of the triangles (i.e. it avoids creating
long, skinny triangles if possible) [5]. Benjamin Lipshitz
implemented this algorithm using FRPA: split() divides
the points spatially into left and right halves, merge()
merges the two sets of triangles together from bottom to
top, and runBaseCase() draws the line if there are two
points, or draws the triangle if there are three points.
Because runBaseCase() may be called only if there are
three or fewer points, we overrode canRunBaseCase() in
our implementation. Our implementation is 580 lines of
code and has been verified as correct.
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