
Bloom Cookies: Web Search Personalization without User
Tracking

Nitesh Mor

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2015-39
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-39.html

May 1, 2015



Copyright © 2015, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission.

 
Acknowledgement

 
Special thanks to Oriana Riva who had been an invaluable mentor during
the entire project. This project could not have been finished without the
thoughtful feedback from Suman Nath and the tremendous support from
John Kubiatowicz. I thank Doug Burger for initially suggesting Bloom
filters for service personalization. I also thank Ryen White and Dan
Liebling for help understanding web search personalization algorithms
and processing search logs.
 
The research was conducted during a summer internship at Microsoft
Research, Redmond. At UC Berkeley, this work was partly supported by
the TerraSwarm Research Center, one of six centers supported by the



STAR-net phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored by MARCO and
DARPA.



Bloom Cookies: Web Search Personalization
without User Tracking

Abstract—We propose Bloom cookies that encode a user’s
profile in a compact and privacy-preserving way, without prevent-
ing online services from using it for personalization purposes.
The Bloom cookies design is inspired by our analysis of a large
set of web search logs that shows drawbacks of two profile
obfuscation techniques, namely profile generalization and noise
injection, today used by many privacy-preserving personaliza-
tion systems. We find that profile generalization significantly
hurts personalization and fails to protect users from a server
linking user sessions over time. Noise injection can address
these problems, but only at the cost of a high communication
overhead and a noise dictionary generated by a trusted third
party. In contrast, Bloom cookies leverage Bloom filters as a
privacy-preserving data structure to provide a more convenient
privacy, personalization, and network efficiency tradeoff: they
provide similar (or better) personalization and privacy than
noise injection (and profile generalization), but with an order
of magnitude lower communication cost and no noise dictionary.
We discuss how Bloom cookies can be used for personalized web
search, present an algorithm to automatically configure the noise
in Bloom cookies given a user’s privacy and personalization goals,
and evaluate their performance compared to the state-of-the-art.

I. INTRODUCTION

Online services such as web search and advertising are
becoming increasingly personalized. The more and the longer a
service knows about an individual, the better personalization it
can provide. Typically, these online services build user profiles
(containing e.g., web sites frequently visited, user interests,
demographics information) on the server side by tracking
multiple online activities from the same user and linking
them together using various techniques, usually under poorly
informed user consent. In the face of privacy-concerned users
and stricter privacy regulations, a search engine that provides
personalized results while maintaining privacy has a definite
competitive edge over other search engines. In this paper, we
study how to achieve personalization while minimizing the
risk of being successfully tracked by an online service, and
we propose a solution called Bloom cookies for encoding a
user’s profile in an efficient and privacy-preserving manner.

The simplest way to link a user’s online activities is to use
the IP address of his device. However, as a device’s IP address
can change over time, online services track users across their IP
sessions using cookies, device fingerprinting [32], and browser
plug-ins (e.g., Google toolbar), to name a few. To limit such
tracking, users can hide IP addresses by using techniques such
as proxies and anonymity networks [33], onion routing [22],
or TOR [16]. They can also disable web cookies, and browse
in private mode [2] to prevent tracking by cookies. However,
a fundamental problem with all these approaches is that they
deny personalization because services do not have access to
the information necessary for building user profiles anymore.

Although privacy and personalization are at odds, they are
not mutually exclusive. For example, it is possible to maintain
user profiles at the client and carry out personalization there, to
the extent possible (e.g., [20], [23], [27], [47]); in this way, lit-
tle or nothing is disclosed to the server. However, a pure client-
side approach has serious drawbacks that make it infeasible in
a real system. First, without any information about the user,
the server needs to send all or a large number of results to the
client for local personalization. The communication overhead
can be prohibitive for many platforms such as mobile devices.
Second, and most importantly, it requires the service to put its
proprietary personalization algorithms on the client, which is
often unacceptable.

To address these challenges, existing systems such as
Privad [23] use two techniques. First, personalization is done
by the server or by a personalization proxy and not on the
client. The personalization proxy is, in general, not trusted by
the client. Second, because the client does not trust the party
providing personalization, it sends limited information about
the user profile (e.g., high-level interests) with its request, so
that the proxy (or server) can filter out results irrelevant to
the user or can partially personalize the results. Hence, a key
requirement of these systems is to properly obfuscate the user
profiles before sending them out.

In this paper, we investigate practical techniques to obfus-
cate a user’s profile in a way that preserves user privacy and yet
allows the server (or a personalization proxy) to personalize
results in a useful manner. We start with two well-known
techniques for profile obfuscation: generalization [43] that
shares items in a user’s profile only at a coarse granularity
(e.g., category of frequently visited web sites, instead of actual
URLs), and noise addition [5] which adds fake items to the
profile to hide the real items.

A key contribution of this paper is to systematically
investigate privacy-personalization tradeoffs of such profile
obfuscation techniques in the context of web search. We
use search logs from a popular search engine to quantify
the tradeoffs. We find that noise addition provides a better
privacy-personalization tradeoff than generalization. This is in
contrast to existing systems such as Privad, Adnostic [47] and
RePriv [20] that advocate for using generalized profiles to
protect users’ privacy. Interestingly, even though generalized
profiles provide anonymity, this does not naturally translate
into unlinkability over time. If a server is able to identify
whether two requests are coming from the same or different
clients (linkability), it can collect enough information to iden-
tify the user over time. On a random subset of 1300 users in
our search log, even when only a user’s high-level interests are
disclosed, it is possible to link a user’s searches across time



in 44% of the cases.1

The superior performance of noisy profiles, however,
comes at two costs. Depending on how much noise is added
to the profile, a noisy profile can be very large and hence can
impose a large communication overhead. Our evaluation shows
that to achieve reasonable privacy and personalization, we had
to add up to tens of kB of noise per request. Moreover, the
noise needs to be generated by using a large noise dictionary
usually provided by a trusted third party.

To address these issues, our final contribution is to propose
Bloom cookies, a noisy profile based on Bloom filters [9]2

that is significantly smaller (comparable to the size of today’s
web cookies) and that does not require a noise dictionary.
A Bloom cookie is generated and maintained by the client
device and is sent to online services every time the user makes
a service request. An online service can use the cookie to
deliver personalized results. Thus, Bloom cookies can replace
traditional cookies (i.e., the user can disable third party cookies
in his browser), with the possibility of the user controlling what
profile information is included in the Bloom cookie and when
the cookie is sent to which online service.

Besides explicitly injecting noisy bits into the Bloom filter,
we exploit the false positives naturally occurring in it as noise
to provide privacy. We also provide an algorithm that, given
a user’s privacy and personalization goals, can automatically
configure a Bloom cookie’s parameters. Note that Bloom
cookies leverage Bloom filters as a privacy-preserving data
structure, in contrast to almost all previous work that adopted
Bloom filters for network and storage efficiency reasons [10],
[39]. To the best of our knowledge, we are the first to use
Bloom filters for a practical privacy mechanism and evaluate
their privacy-personalization tradeoff.

Our results show that Bloom cookies provide a more
convenient privacy, personalization, and network efficiency
tradeoff. For example, Bloom cookies can provide comparable
unlinkability to state-of-the-art noise addition techniques with
a 50% improvement in personalization, or up to 12× less
network overhead (2 kbit of Bloom cookies compared to
25 kbit of noisy profiles generated with state-of-the-art noise
addition techniques).

The rest of the paper is organized as follows. In §II, we
define our problem space, goals and threat model, and intro-
duce three key design questions we will answer throughout the
paper. §III gives background information on web search, and
defines our personalization and privacy (unlinkability) metrics.
The second part of the paper answers the three design questions
previously stated by showing the limitations of state-of-the-art
techniques (§IV) and proposing Bloom cookies as a solution
(§V). We review related work in §VI, discuss the limitations
of our work in §VII, and conclude in §VIII.

1With a larger user population unlinkability increases, but in our evaluation
we show through projection that it is still significant.

2A Bloom filter is a space-efficient probabilistic data structure used to store a
set of elements and support membership queries. When querying if an element
exists in the Bloom filter, false positives are possible but false negatives are
not.

II. PRIVACY AND PERSONALIZATION IN WEB SEARCH

Our first goal is to understand how various design choices
affect personalization and privacy in real systems. This un-
derstanding can help in better design of privacy-preserving
personalization for many applications. To be concrete, we
keep our discussion limited to web search, which we chose
for three main reasons. First, search engines like Google
and Bing are among the most visited web sites and users
are concerned about how these services implement person-
alization [34]. Second, most search queries are short [25],
[38] and ambiguous [15], [29], [40], and personalization can
help disambiguating the queries towards an individual user’s
interests. Third, we had logs from a popular search engine
available, making a practical analysis possible.

Like previous privacy-preserving personalization sys-
tems [20], we assume a generic client-server model. Each
client is associated with a profile that captures the user’s
general preferences and is represented as a bag of profile items
such as interest categories or URLs of web sites he frequently
visits. Profiles are usually constructed using users’ search
history, but they could also leverage demographic information,
web browsing history or social network interactions, for even
richer user models. In processing a query from the client, the
server utilizes the user’s profile to personalize search results
for him.

A. Personalization and privacy goals

Personalization. Personalization in web search refers to rank-
ing search results such that higher-ranked results are more
likely to be clicked by the user than lower-ranked results. The
server can use existing techniques, such as tailoring search
queries to a user’s interests or re-ranking search results based
on web sites the user visits most frequently, in order to push
likely-to-be-clicked results towards the top of the result list.

Privacy. We assume that the client does not trust the server
with his profile. Exposing the exact profile to the server
may leak a user’s identity and hence for privacy, the client
obfuscates his profile before sending it to the server. We
consider unlinkability as our key privacy measure. The precise
definition of unlinkability will be given in the next section;
intuitively, it ensures that the server cannot identify if two
queries are coming from the same client or different clients.
Like previous work [5], we consider achieving unlinkability of
a client’s profile by obfuscating it with noise, i.e., by adding
fake items in the profile, before sending it to the server.

B. Threat model

We aim for unlinkability across IP-sessions, where an IP-
session is a sequence of all queries with the same source IP
address. We do not assume techniques for hiding a device’s
IP address (proxies and anonymity networks [33], onion rout-
ing [22], or TOR [16]) are available, because they require
changes to the network infrastructure thus are not always
practical. These techniques are orthogonal to Bloom cookies
and can further increase a user’s privacy. In our scenario, the
search engine sees the IP address the search queries are coming
from. Thus, our goal is to thwart a malicious server’s attempts
to correlate queries from different IP-sessions to find if they
are associated with the same user.
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Unlinkability across IP-sessions is a useful privacy goal
since IP-sessions are typically short (of the order of a few
weeks) in practice. For instance, a smartphone’s IP address
changes relatively often, basically each time there is no net-
work activity and the radio is turned off [4]. In a home network,
IP addresses change less frequently, depending on the type
of provider and network contract. Bhagwan et al. [7] probed
1,468 unique peer-to-peer file sharing hosts over a period of
7 days and found that more than 50% used more than one
IP address. Casado and Freedman [11] report seeing 30% of
537,790 email clients using more than one IP address in a 2-
week period. According to [14], in June 2008 US machines
used 5.7 distinct IP addresses in a month. Finally, another
study [48] reports dynamic IPs with a volatility of 1 to 7 days,
with 30% of the IP addresses changing between 1 to 3 days.
In a corporate network, IP addresses may remain the same for
longer, but network traffic from multiple devices is aggregated
under the same IP address thus making user identification
hard.3 In general, the shorter the IP-session, the harder for the
server to link different sessions. In our analysis, we assume
2-week long IP-sessions to emulate an average home network
scenario based on existing studies [7], [11], [14], [48], and
given our 2-month long search logs.

We assume that users’ web browsers are configured in a
way that prevents online services from tracking them through
cookies, browser fingerprinting, browser plug-ins, or similar
techniques. The browser (or the underlying system) keeps track
of the user’s online activities (e.g., search queries, visited sites)
and maintains a profile that reflects the user’s interests. The
profile is not directly shared with any online service; instead
it is encoded as a Bloom cookie and is sent with each search
query to the server. As we later show, Bloom cookies are
efficient and privacy-preserving, and yet allow the server to
personalize results.

A server might launch correlation attacks based on the con-
tent of the search queries, or other meta-information associated
with the queries (e.g., time of the search query, frequency,
location or language). We indirectly factor the effect of such
correlations in the size of our user population. A search engine
potentially has billions of users, but a malicious search engine
which is trying to link the different IP-sessions belonging to
a single user together, can use this extra information to group
search sessions into smaller clusters. A simple example is to
use IP geolocation to put all the IP-sessions from a small
town into one cluster. The smaller the clusters, the easier it
is to link users together. In our evaluation, we use a set of
1000 users, which we believe is large enough to smoothen
any of the outlier users and small enough to have a realistic
and compelling use case.

Finally, we assume the server has access only to infor-
mation collected though its own service (i.e., search requests
submitted to the search engine). We assume the server is
not colluding with other sources, such as other services (e.g.,
email, social networks) or third party trackers.

3The IP address stays the same but source ports change with every new
outgoing connection. This is similar to the smartphone case where devices get
a new IP address every time the radio wakes up.

C. Key design questions

Designing a privacy-preserving personalized search engine
involves many important design choices. We now discuss some
important questions these choices pose. Later in the paper we
answer these questions by analyzing real search logs (§IV)
and show how the findings can be utilized to enable practical,
privacy-preserving, and personalized web search (§V).

Profile obfuscation mechanisms. An important design deci-
sion is how a client’s profile is obfuscated so that the server can
still find it useful for personalization, but cannot link profiles
from the same user. Existing solutions for privacy-preserving
web search can be classified into two categories:

• Profile generalization [43], [49]: Profile items are
generalized to a coarser granularity (e.g., a URL is
generalized to its category). The server cannot distin-
guish between users with the same generalized profile,
even if their original profiles are different. The idea
has been used in other applications as well, such as
cloaking a user’s location with a cloaked region to
achieve location privacy [3], [26].

• Noise addition [5], [28]: Fake profile items, called
dummies, are added to and some original profile items
are taken away from the profile. With a large number
of fake items independently added to the profile each
time it is sent to the server, two noisy profiles from
the same client look different, making it difficult for
the server to link them.

An important design question is:

• What obfuscation technique is more suitable for
privacy-preserving personalization of web search?

Existing systems use these different techniques for evaluat-
ing either personalization or privacy. For example, RePriv [20],
a privacy-focused system, uses generalized profiles and as-
sumes that they can be safely shared with servers to en-
sure some form of anonymity. Personalization-focused sys-
tems [18], on the other hand, show that URLs without any
generalization yield a better personalization. We systematically
evaluate these techniques to understand their tradeoffs between
privacy and personalization.

Our Results. We show that noise addition provides a better
privacy-personalization tradeoff than generalization. We show
that anonymity provided by generalized profiles does not
naturally translate into unlinkability over time. In general, we
show that a noisy profile can provide a similar level of unlink-
ability as a generalized profile, but with better personalization
(or similar personalization with better unlinkability). This is
counter-intuitive since noise, by definition, negatively affects
personalization. However, the negative effect is offset by finer
granularity of profile items (than generalized profile items),
resulting in a net positive improvement in personalization.

The cost of noise. Even though a noisy profile has its
advantages over a generalized profile, they do not come for
free. There are two key disadvantages. First, if many fake
items must be added to the profile to ensure reasonable
unlinkability, the noisy profile can be very large. Since the
noisy profile is sent to the server often, possibly with each
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request, the communication overhead can be too much for
energy-constrained devices like smartphones. Second, the fake
items need to be picked from an unbiased sample of the items
in the profiles of all users in the system. If the sample from
which the client chooses fake items is biased (e.g., all items are
related to football) and if the bias is known to the server, it can
easily filter the noise out to identify the real items. Thus, the
client needs to find a trusted third party who would compute
an unbiased sample for him. This is a strong dependence. The
sample also needs to be updated as users join and leave the
system, as new profile items appear or as items’ popularity
changes.

This leads us to investigate the following:

• How big a dictionary and how much noise are
required to achieve reasonable unlinkability?

Our results. We show that both types of cost due to noise
addition are non-negligible. More specifically, the size of the
noisy profile that needs to accompany each client request can
be in the order of tens of kB, much larger than actual requests
and responses. The overhead is significant even if the noisy
profile is compressed (see §V-B).

Efficient noisy profile. The high costs of noisy profiles can
make them impractical. Moreover, the requirement of a noise
dictionary constitutes an additional threat because a malicious
server may supply biased dictionaries that make the noise more
predictable. The costs and additional threats of dictionaries
lead us to the final question that we investigate in this paper:

• Is it possible to receive the advantages of noisy
profiles without incurring the aforementioned costs
(i.e., noise dictionary and large communication
overhead)?

Our results. As a key contribution of the paper, we propose
Bloom cookies that affirmatively answer the above question to
enable a practical noise addition technique for web search. In
particular, we show that Bloom cookies can achieve compara-
ble personalization and unlinkability to a noisy profile, without
requiring a noise dictionary and with an order of magnitude
smaller communication overhead. We describe our solution in
§V.

Note that the research questions above are in no way
exhaustive, but they are some of the key questions we faced
while building our system. In §IV, we answer these questions
with an experimental methodology that we describe in the next
section.

III. EVALUATION METHODOLOGY

Our evaluation is based on search logs of a popular search
engine from May and June 2013. Each entry in the search
logs contains five fields: a unique user ID4, the search query
submitted by the user, timestamp, the top-10 search results
shown to the user, and the results that were clicked by the
user including the timestamp of each click. Each search result

4These IDs are typically established using IP address, cookies and search
toolbars.

consists of a URL and top-3 (first or second level) ODP [1]5

categories for the web page at the URL. We replay these logs to
simulate a scenario where users query a search engine, share
their profile with the search engine to receive personalized
results, and their IP addresses change once every two weeks
(i.e., IP-session length is two weeks).

A. Personalization strategies and metric

The state-of-the-art in web search personalization uses two
main techniques for building user profiles from search logs:
fine-grained URL-based [18] and coarse-grained interest-
based [12], [21], [30], [37], [44] profiling. As their names
suggest, URL-based profiles include URLs that users visit most
often, while interest-based profiles include models of users’
interests mined from users’ past behavior. We implemented
both techniques. To build URL-based profiles, for each search
session in the user’s search log where at least one of the
search results was clicked, we extract the satisfied click [6], a
click followed by a period of inactivity. We then extract the
corresponding clicked URLs and assemble the user profile as
a list of domain names (and not the full URLs), ordered by
recurrence in the search log. To build interest-based profiles,
we first label each query in the user’s search log with a
category. The category of a query is determined as the most
common ODP category of top-10 search results of the query.
Higher weights (e.g., by default double weight) are assigned
to the ODP categories of the clicked results for a certain
query. The interest profile of the user is then constructed
as a distribution of ODP categories across all queries in the
available search history for the user.

Once profiles are built, they are used for ranking search
results. Specifically, for a given search query, we assign a
score to each of the top M search results (M = 50 in our tests)
returned for the query (note that these results are provided by
the search back-end before personalization is applied, more
on this later). If the domain (or any of the ODP categories)
of the search result is present in the user’s URL (or interest)
profile, the search result receives a score of α∗M , where α is a
parameter ranging from 0 to 1 that controls the aggressiveness
of personalization. The larger α, the more aggressive the re-
ranking (we use α = 0.25). If the domain (or the ODP
category) is not present, the score is 0. We then re-rank the
results based on the score.

To evaluate personalization, we leverage user clicks
recorded in the search logs. The key insight of this method-
ology (proposed in [18] and later widely adopted, e.g., [41])
is that if a personalization algorithm is able to rank “relevant”
results (i.e., those that were clicked) at the top, the user will
be more satisfied with the search. Hence, clicking decisions
are used as a relevance metric to quantify the personalization
improvements.

As in other such studies [18], [42], we measure the quality

5The Open Directory Project (ODP) classifies a portion of the web according
to a hierarchical taxonomy with several thousand topics, with specificity
increasing towards the leaf nodes of the corresponding tree. Web pages are
classified using the most general two levels of the taxonomy, which account
for 220 topics.
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of personalization by average rank, defined as

Avg ranki =
1

|Rc
i |

∑
r∈Rc

i

rankr (1)

where Rc
i is the set of results clicked for a given query

i, and rankr is the rank of the result r assigned by the
personalization algorithm. The smaller the average rank, the
higher the personalization quality.

In evaluating personalization, the optimal case is the per-
sonalization quality provided by today’s search engines to
users who decide to sign in, and allow the search engine to
collect their search history over the long term. This case is pro-
vided by our search logs. However, to test personalization, we
also need a set of non-personalized results to be re-ranked by
our personalization algorithms. We download from a separate
source of the same production system where personalization is
turned off (i.e., no user history is provided), the top-50 results
and associated top-3 ODP categories for all queries contained
in our search logs.6 Then, for each query we compute two
types of average rank: i) the average rank of the ideal case,
avg rankideal, which is extracted directly from the search
logs; and ii) the average rank of the personalization algorithm
test under study, avg ranktest. We then compute the absolute
difference between avg rankideal and avg ranktest (i.e., if
the difference is negative, it means the production system’s
avg rank is smaller, which means better personalization).

Note that in our first comparison of URL-based and
interest-based personalization presented in §IV-A we report
the absolute drop in personalization quality compared to
avg rankideal; later on we re-define our baseline as the
avg rankURL, our implementation of URL-based personal-
ization, and report the percentage decrease compared to that.

B. Privacy strategies and metrics

As described in §II-C, interest-based profiling is a form of
profile generalization for privacy preservation. To represent the
state-of-the-art of noise addition techniques, we implemented
two techniques: RAND and HYBRID. Both these techniques
work by introducing fake profile items (i.e., URLs) in the real
user profile. The noise level is controlled by the parameter f ,
which represents the number of fake profile items added for
each real profile item.7 Such algorithms assume a dictionary D
which contains URLs and top-3 ODP categories associated to
each URL. RAND represents a naı̈ve noise addition technique,
which simply draws fake URLs randomly from D. HYBRID is
a more advanced technique inspired by [31], which draws fake
URLs randomly from a user-specific dictionary, called uD,
computed by eliminating from D all URLs that do not have
any ODP category matching the user’s interests (which are
also expressed as ODP categories). The advantage of HYBRID
over RAND is that if a malicious server is able to infer a user’s
interests (e.g., from search keywords), it cannot simply discard
(fake) URLs that do not match the user’s interests.

6As our search logs are for May-June, to ensure coverage of the results, we
downloaded the data in the month of July. Queries whose clicked results were
not included in the top-50 non-personalized results were eliminated from the
test set.

7For example, if the original profile has k items, the noisy profile with
f = 10 will have 11 ∗ k items.

As mentioned before, we use unlinkability as our privacy
measure. We use two metrics of unlinkability.

1) Entropy-based unlinkability: We start from the formal
definition of unlinkability given in [19], that measures the
degree of unlinkability of a set of elements as entropy. A
partition of the set of elements (meaning a division of the set as
a union of non-overlapping and non-empty subsets) represents
a possible way to “link” all elements in the set to each other
(e.g., given a set of 4 elements, 15 partitions exist). In our
context, “linking” means identifying user profiles collected in
different contexts (e.g., different time periods) that belong to
the same user. The unlinkability of the elements in the set is
measured as entropy8

H(X) = −
∑
x∈X

p(x) log2 p(x)

where X denotes the set of possible partitions and p(x) is
the probability mass function, 0 ≤ p(x) ≤ 1, denoting the
probability that x is the correct partition.

Without any additional information, a priori, all parti-
tions are equally possible so the probability distribution is
uniform and the entropy of the elements is at its maximum
(Hpriori(X) = −log2(1/m)). However, an adversary with ac-
cess to some information about the partitions can, a posteriori,
rule out some candidate partitions, thus lowering the entropy.
In our context, a malicious server can observe the content
of the user profiles and assign higher probabilities to certain
partitions. According to [19], the degree of unlinkability of the
set of elements against an adversary is therefore defined as the
ratio between the a posteriori entropy to the a priori entropy:

U(X) =
Hposteriori(X)

Hpriori(X)

Unfortunately, this definition does not scale to a large set,
as enumerating all possible partitions is a computationally hard
problem. Therefore, we make some simplifying assumptions.
First, we assume that we have a constant number of users in
the system over time, and a user whose profile is seen in the
time period i (where the time period is a fixed length of time of
the order of a few weeks) will have a profile also in the time
period i + 1. Second, we assume that historical information
about some users that interacted with the system is available
(this allows for training of a linkability model that a potential
adversary may build, see below). Third, instead of computing
all possible partitions to calculate the system unlinkability, we
compute “per-user unlinkability” by comparing a user’s profile
in time-period i with all the other profiles in time-period i+1,
independently of the other users in the system, as described in
details as follows.

The process consists of two steps. In the first step, we
build a linkability model from the search logs of n users over

8Information entropy is a well-known metric that measures the level of
uncertainty associated with a random process. It quantifies the information
contained in a message, usually in bits/symbol. In this setting, entropy
measures the information contained in the probability distribution assigned
to the set of possible partitions of the set of elements.
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a period T = T1+T2 (T = 1 month).9 For each of the n users
we create two profiles, one from the first time period T1 and
one from the next time period T2. Next, to measure profile
similarity we calculate the Jaccard similarity10 between the n2
possible pairs of profiles, where the first profile comes from
the set of T1 profiles and the second comes from the set of
T2 profiles. Using the ground truth available in the users’ logs
(i.e., the information of which T1 and T2 profile belong to the
same user), we train a linkability model, defined as a function
that maps the Jaccard similarity of a pair of profiles into the
probability of these two profiles belonging to the same user
(see Appendix VIII for an example of linkability function).

In the second step, we compute the unlinkability of a user’s
profile by calculating the a priori and a posteriori entropy.
Given a set of m users, where each user has two profiles
computed over two consecutive (possibly overlapping) time
periods P1 and P2, we apply the linkability model to compute
the probability of a particular profile from P1 being linked to
a profile in P2, (i.e., belonging to the same user). Note that
P1 and P2 are different time periods from T1 and T2 above,
but of the same length.11 Without any information about any
user, the probability of a particular profile pP1

i being linked
to another profile pP2

j is 1/m, hence, the a priori entropy is
log2 (m). If more information about users becomes available
(by calculating the similarity between profiles and using the
linkability model described above), then the probability that
pP1
i is linked to a particular pP2

j changes, and we can use it
to compute the a posteriori entropy, smaller than the a priori
entropy. The ratio of the a posteriori to the a priori entropy is
the unlinkability of user i.

2) Linkable users and max probability: The unlinkability
metric gives an average estimation based on entropy, but it does
not capture the full distribution of the a posteriori probability.
Entropy-based unlinkability tries to quantify the amount of
information that is required to totally break the anonymity of
a profile (i.e., identify another profile with the same owner), but
in practice successful attacks occur if a subset of the profiles
can be linked with a good probability, significantly greater than
in the case of the uniform distribution.12 Others [13], [46] have
reported similar problems with entropy-based metrics and have
proposed complementing them with additional metrics such as
quantiles and maximum probability.

To address this problem, we use two additional measures:
linkable users percentage and max probability. Linkable users
percentage measures the percentage of users which can be

9In the actual experiments, to train the linkability model we used n = 300
users from the May 2013 logs (T1 is May 1–15 and T2 is May 16–30) with
a total of 66,746 queries.

10The Jaccard similarity coefficient (or Jaccard index) measures similarity
between finite sample sets, and is defined as the size of the intersection divided
by the size of the union of the sample sets. In our case the sample sets are
the user profiles. Each user profile is in fact a set of URLs or interests.

11We used m = 1000 users from the June 2013 logs, with a total of 264,615
queries. P1 is June 1–14 and P2 is June 8–21.

12To illustrate, let us consider 4 profiles a user can be linked against.
The a priori probability is 0.25 for each profile. Now, let us assume that
the a posteriori probabilities are either a) [0.05, 0.45, 0.45, 0.05] or b)
[0.115, 0.115, 0.655, 0.115]. The entropy for a) and b) is similar (1.469
and 1.476 respectively), however it is easier to link one of the profiles in
case b) (assuming the 3rd profile is the correct one). Although, the average
unlinkability is the same, the number of correctly identified users is possibly
larger for b.

correctly linked using our linkability model. We compute the
linkability probabilities between the P1 and P2 profiles of the
m users to obtain a m ∗m matrix of probabilities. Using this
matrix, we link each profile from P2 to a profile from P1,
starting with the one with highest probability and eliminating
profiles from P1 and P2 as they get linked. We define
linkable users percentage as the percentage of users whose
profiles of two consecutive periods can be linked correctly.
Max probability is the maximum linkability probability in the
m ∗m matrix of probabilities after removing the top outliers,
typically the top 1% (this is equivalent to computing the 99th
percentile as suggested in [13]).

C. Dataset

Queries. Research on search personalization has shown that
personalization cannot be applied to all types of search queries
successfully; personalization can improve some queries but
can instead harm others [45]. For example, personalization
has very little effects on navigational queries like “google”
or “facebook”. Instead, personalization can help ambiguous
queries (e.g., one-word queries, acronyms) [41] or expanded
queries [18]. To distinguish these cases, we separately report
results for the entire set of queries (all), one-word queries (one-
word), and expanded queries (expanded). Expanded queries are
queries that at the beginning of a search session contained only
one or two words and by the end of the search session were
expanded into several words. As an example, the query “ndss”
was expanded into “ndss security” which was expanded into
“ndss security conference 2015”. If a click was reported for a
result shown in the third query’s result page, we are interested
in evaluating whether when the first query is submitted, per-
sonalization can rank the clicked result higher than it appeared
in the first query’s result page.

Users. In measuring personalization, we selected users that had
a search history long-enough to build reasonable user profiles.
We selected users from the month of June 2013 that had at
least 250 queries in that month and whose resulting profile had
at least 22 URL domains and 11 interests. For users with more
than 22 URL domains and 11 interests we used the top 22 and
top 11, respectively, so the profile length was the same for all
users. We selected 308 users, for a total of 264,615 search
queries. User profiles were built using 2 consecutive weeks of
search history, while the following third week was used for
testing. Using a sliding window, we also tested the queries in
the fourth week. In evaluating privacy, we used a larger dataset
consisting of 1300 users (300 users from May 2013 and 1000
from June 2013) for a total of 331,361 search queries. These
users included the 308 users selected for personalization. For
evaluating privacy a larger set of users could be used because
no constraints needed to be imposed on the length of users’
search history.

IV. RESULTS

We now answer the design questions we posed in §II-C.

A. Limitations of generalized profiles

We first report how generalized profiles perform under our
evaluation. For simplicity, we first compare them with “exact”
profiles without any noise, i.e., profiles consisting of the URLs
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Absolute personalization loss Unlinkability
Type of profile compared to production quality

all one-word expanded entropy-based % linkable users max prob (1%)
Exact (URLs) -1.73 -0.83 -0.98 0.66 (0.12) 98.7 0.73
Generalized (Interests) -2.14 -1.32 -1.78 0.83 (0.06) 44.1 0.37

TABLE I: Personalization-privacy tradeoff for exact and generalized profiles. For personalization, the table reports the
difference between avg rankideal (extracted from the search logs with production quality personalization in use) and
avg rankURL and avg rankInterest (obtained using our unoptimized URL and interest-based personalization algorithms).
Results are for “all” queries (308 users, 264,615 queries), with a breakdown “one-word” (44,351) and “expanded” (146,497)
queries. For privacy, it reports unlinkability as avg (stdev) entropy-based unlinkability, linkable users percentage and
max probability with top 1% outliers removed. Privacy results are computed for 1000 users (264,615 queries).

frequently visited by users. This analysis will give us a lower
bound of unlinkability and upper bound of personalization of
noisy profiles as noise can only increase unlinkability and hurt
personalization of the exact profile. Later we evaluate noisy
profiles as well.

Table I compares personalization and privacy of exact and
generalized profiles. For personalization, we report the differ-
ence between the avg rank of production-quality personal-
ization (called avg rankideal in §III) and the one obtained
when ranking results using our URL or interest-based person-
alization algorithms. For privacy, we compute entropy-based
unlinkability, linkable users percentage and max probability.

All personalization values in Table I, including exact pro-
files, are negative, which means that our personalization al-
gorithms perform worse than the production-quality algorithm
(i.e., avg rankideal is smaller than the avg rank obtained
with our personalization). This is expected as our algorithms
for user profiling and personalization are not optimized and
certainly not advanced as those used in the commercial search
engine. Moreover, they most likely use a shorter user history.

However, this negative performance does not affect our
evaluation because we are interested in evaluating the relative
loss in personalization when privacy protection is enabled.

We make two observations from the results in Table I.
First, generalized profiles significantly hurt personalization.
The average rank with generalized profiles is from 24% (-
2.14 vs -1.73 for “all”) to 82% (-1.78 vs -0.98 for “expanded”)
worse than that with exact profiles, mainly because generalized
profiles contain less information for personalization. Other
studies on personalized search (e.g., [18]) drew a similar
conclusion and emphasized the need for exact URLs in the
profiles.

Second, as expected, generalized profiles provide better un-
linkability than (noise-free) exact profiles, but they still do not
ensure reasonable unlinkability. In other words, even though
anonymity of generalized profiles make linking consecutive IP-
sessions of the same user harder, user tracking is still largely
achievable—in about 44% of the cases.

Because of the limitations above, we argue that generalized
profiles are not suitable for privacy-preserving personalization
of web search. Exact profiles do not ensure unlinkability either,
but they are promising because they allow us to add noise. Next
we show that it is possible to add noise to increase unlinkability
without substantially hurting personalization.

Fig. 1: Jaccard distance of the interest-based profile of each
user from an average profile computed across all users (a),
and Jaccard similarity for each user’s 2-week long interest-
based profiles over 4 weeks (b). Users are grouped into
correctly/incorrectly linked (1000 users).

Why do generalized profiles perform poorly? We took the
1000 users used in the analysis above and divided their search
traces into two 2-week time periods. For each time period,
we extracted their interest profile. We then computed a) the
Jaccard similarity between the profiles of the same user from
the two time periods, and b) the Jaccard distance between each
user’s profile (from the first time period) from the average
profile. The average profile was computed by treating the traces
of all users (from the first time period) as one single user’s
trace and extracting the URL and interest profiles. Figure 1
reports the CDFs for a) and b). We distinguish between users
whose profiles were correctly or incorrectly linked across
the two time periods (this corresponds to the “linkable users
percentage” metric in Table I).

Correctly linked user profiles have on average the same
distance from the average profile as incorrectly linked user
profiles (graph on the left side). In fact, the curves for
incorrectly and correctly linked profiles saturate at the same
point (around a distance of 0.55). This shows how interests are
good at hiding users with unique profiles items, thus making
them less likely to be linked. Although this may seem intuitive,
the distribution of interests across all users is not uniform and a
large fraction of interests are unique among users. For instance,
we observed that the 20 top interests across all 1000 users are
common to 20–70% of the users, but then there is long tail of
interests which are unique to a handful of users. At a given
point in time, unique interests are not sufficient to uniquely
identify users, but over time they make users linkable. In other
words, anonymity helps make users unlinkable, but it is not
sufficient because the similarity between a user’s profiles from
different time periods can make them linkable. This is shown in
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Noise addition mechanism Personalization loss (%) Unlinkability Avg profile
compared to exact profiles size (bits)

noise level all one-word expanded entropy-based % linkable users max prob (1%)
Exact profile (URLs) f=0 0.00 0.00 0.00 0.66 (0.12) 98.7 0.73 294.0

f=10 0.14 0.11 0.28 0.69 (0.09) 97.4 0.63 3784.5
f=20 0.36 0.96 0.56 0.76 (0.07) 93.1 0.47 7273.2
f=30 0.49 0.49 0.68 0.81 (0.06) 80.2 0.37 10763.3

RAND f=40 0.64 1.41 1.00 0.88 (0.05) 57.0 0.30 14253.9
f=50 0.81 1.83 1.32 0.92 (0.02) 34.1 0.15 17743.1
f=60 0.89 1.19 1.56 0.94 (0.02) 26.8 0.15 21232.6
f=70 1.10 1.61 1.82 0.96 (0.01) 20.0 0.06 24722.6
f=3 0.71 1.49 1.15 0.68 (0.10) 91.2 0.67 1183.3
f=5 1.15 1.99 1.78 0.75 (0.07) 73.3 0.48 1773.9

HYBRID f=7 1.76 2.95 2.89 0.79 (0.05) 47.3 0.25 2366.2
f=10 2.15 3.53 3.42 0.81 (0.05) 34.9 0.19 3252.3
f=15 3.55 4.73 5.80 0.83 (0.05) 17.4 0.16 4727.5
f=20 4.23 6.52 7.17 0.83 (0.06) 13.6 0.24 6197.9

TABLE II: Personalization, privacy and efficiency tradeoffs for RAND and HYBRID when varying the noise level f (1000
users, 264,615 queries). For personalization, the table reports the difference between avg rankURL (computed using
exact profiles, first row in the table) and the average rank obtained with URL-based noisy profiles. For privacy, it reports
unlinkability as avg (stdev) entropy-based unlinkability, linkable users percentage and max probability with top 1%
outliers removed. For efficiency, it reports the size of the noisy profile.

the graph on the right side: profiles whose similarity across the
two time periods is above 0.7 are likely to be linked (between
0.7 and 0.8 the curve of linked users shows a steep increase)
while profiles whose similarity is below 0.65 are likely not to
be linked.

B. Benefits and costs of noisy profiles

We now consider the effect of adding noise to exact profiles
using state-of-the-art techniques represented by RAND and
HYBRID described in §III-B. Table II evaluates the privacy
protection (measured as entropy-based unlinkability, linkable
users percentage and max probability) provided by RAND and
HYBRID as well as their impact on personalization and network
efficiency. The noise level of RAND and HYBRID is controlled
by the parameter f , which represents the number of fake profile
items added for each real profile item. Both the algorithms
assume a dictionary D which contains 157,180 URLs and top-
3 ODP categories associated to each URL. Tests are executed
on the same dataset and using the same methodology as for
the results in Table I. Personalization results are reported as
loss compared to the average rank obtained with exact profiles;
later we also consider generalized profiles and compare results
in Table I and Table II. Finally, note that for RAND and
HYBRID f varies on a different range of values. As we will
show below, this is necessary because the algorithms work in
a different manner, so that to obtain the same performance
different amounts of noise are required.

Both noise addition techniques are able to provide higher
unlinkability than exact profiles. Compared to exact profiles
where 98.7% of user profiles were correctly linked, noise
addition lowers the percentage to 20% (with RAND) or 5.8%
(with HYBRID). Notice that although the average unlinkability
is generally better for RAND, in practice HYBRID makes users
less linkable, as shown by the linkable users percentage and
the max probability metrics, which are both smaller than with
RAND. The reason for this behavior is what we discussed in

§III-B and this is why we do not consider the average entropy-
based metric alone.13

The two algorithms have distinct behaviors. RAND is a
conservative algorithm that provides only moderate unlink-
ability but keeps the personalization loss relatively small.
To achieve levels of unlinkability comparable to HYBRID,
RAND requires much larger amounts of noise (this is why
for RAND we consider up to the case of f = 70), thus
significantly increasing the network overhead. HYBRID is a
more aggressive and efficient algorithm which achieves high
levels of unlinkability with smaller amounts of noise, but with
a big loss in personalization. The reason behind this is that in
HYBRID the added noise relates to true interests of the user
(i.e., it has the same ODP categories as the true URLs) thus
having a probability of collusion with the URLs that interest
the user higher than with RAND.

Comparison with generalized profiles. Although HYBRID
causes a decrease in personalization, this is still much smaller
than with interest-based profiles. We can combine Table I
(second row) and Table II to directly compare noisy profiles
to generalized profiles. For HYBRID with f=20, for instance,
the personalization loss for “all” is 4% compared to the
personalization quality of exact profiles, while interest-based
profiles have a decrease of 24% compared to the same exact
profiles. For ”expanded” queries the difference is even larger:
a loss of 7% with HYBRID-20 and a loss of 82% with interest-
based profiles. Summarizing, the comparison shows that noisy
profiles, RAND with f ≥ 50 and HYBRID with f ≥ 10
can simultaneously provide better personalization and better
unlinkability than generalized profiles. For example, HYBRID
with f = 10 links 35% users at the cost of a personalization
loss of < 4%, while generalized profiles link 44% people at

13Even when entropy-based unlinkability is high (e.g., 0.88 for RAND
with f = 40 vs. 0.81 for HYBRID with f = 30, a larger number of profiles
(57% vs. 40%) may be linked correctly because of the probability distribution.
This behavior is captured by the max probability metric (0.30 vs. 0.19)–the
higher the max probability, the more likely profiles are correctly linked.
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the cost of a personalization loss of 24–82%.

Costs of noisy profiles. Adding noise to profiles inflates
their sizes and requires a noise dictionary. Although HYBRID
requires less noise, the network overhead these noise addition
techniques cause is substantial. As an example, a web cookie
is typically a few hundred bytes in size, and no more than
4kB. With a modest level of noise such as f = 30, the size
of the profile is more than 30 times the noise-free profile
and several times the size of a typical web cookie. HYBRID,
however, requires a larger dictionary as it needs both URLs
and categories of the URLs. In our evaluation, the dictionary
sizes of RAND and HYBRID were a few MBs. The dictionaries
require a trusted third party (as mentioned in §II-C), and their
network and memory footprints are significant.

V. BLOOM COOKIES

We now describe our solution for building noisy profiles
that have similar unlinkability and personalization advantages
to RAND and HYBRID, but without their costs. Our solution,
which we call Bloom cookies, is significantly smaller in size
than RAND and HYBRID and does not require any noise
dictionary. In this section, we discuss the design of Bloom
cookies, compare their performance with RAND and HYBRID,
and present an algorithm to automatically tune their parameters
for target privacy and personalization goals.

A. Bloom cookies design

Bloom cookies are based on Bloom filters [9], a well-
known probabilistic data structure. A Bloom filter is used to
store elements from a set E, and is implemented as a bit-
string of size m with k hash functions. When querying if an
element exists in the Bloom filter, false positives are possible
but false negatives are not. The probability p of false positives
can be controlled by varying m and k; according to [10],
k = m/n · ln2 minimizes p, where n = |E|.

One straightforward way to use Bloom filters is to insert the
URLs from the noisy profile generated by RAND or HYBRID
into a Bloom filter, which the client sends to the server along
with his queries. For personalization, the server simply queries
the Bloom filter for all the URLs contained in the search
results for the submitted search query and re-ranks the results
accordingly. The number of search results to be re-ranked is
commonly in the range 10–100, which makes the number of
Bloom filter queries acceptable. As the Bloom filter size can
be significantly smaller than the actual list of URLs, this can
reduce the communication overhead. However, this approach
still does not remove the need for a noise dictionary required
by RAND and HYBRID.

To avoid the need for a noise dictionary and reduce even
further the communication overhead, we introduce noise at the
bit-level of a Bloom filter. More specifically, we start with the
exact profile of the client, encode the URLs present in the exact
profile into a Bloom filter, and then set a random set of fake
bits in the filter to 1. We call this data structure, consisting
of a Bloom filter of an exact profile and a set of fake bits,
a Bloom cookie. The presence of fake bits increases the false
positive rate of the filter and acts as noise. The number of fake
bits acts as a tuning knob to control the magnitude of noise.
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Fig. 2: Bloom cookies framework for web search.

The above use of Bloom filters to generate Bloom cookies
is relatively simple. However, unlike almost all previous work
that adopted Bloom filters for network and storage efficiency
reasons [10], [39], Bloom cookies use them as a privacy-
preserving data structures. To the best of our knowledge,
we are the first to use Bloom filters for a practical privacy
mechanism and to evaluate its privacy-personalization tradeoff.
The only other work in this direction we are aware of is [8],
which is discussed in §VI.

We argue that there are at least five benefits that make
Bloom filters interesting for profile obfuscation.

1) Efficiency: In terms of size, Bloom filters are much
more compact than a bag of URLs used by noise
addition techniques such as RAND and HYBRID.
This reduces the communication overhead of sending
noisy profiles to the server.

2) Noisy by design: Bloom filters’ false positives, typi-
cally considered as drawbacks, are an advantage for
us. In fact, the false positives in a Bloom filter act as
natural noise that can be controlled via various design
parameters such as the number of hash functions.

3) Non-deterministic noise: The level of noise intro-
duced by Bloom filters changes automatically as the
content of the filter changes. This makes it harder for
an adversary to predict the level of noise utilized. As
discussed in [5], noise determinism is a significant
problem for standard noise addition techniques.

4) Dictionary-free: By adding noise by setting random
fake bits, Bloom cookies can work without any noise
dictionary. As discussed in §II-C, the requirement of
a noise dictionary introduces additional overhead and
privacy threats.

5) Expensive dictionary attacks: Unlike most profile
obfuscation techniques that represent noisy profiles
as a list of profile items, Bloom filters represent them
as an array of bits. To build a complete user profile,
a potential adversary would need to query the Bloom
filter for all possible elements.

In addition to false positives naturally occurring in Bloom
filters, we inject noise by setting random bits in the filter. The
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level of noise is controlled by the parameter l (different from
the noise level f used in RAND and HYBRID) which represents
the fraction of bits set in a Bloom filter, either corresponding
to the original profile items or to noise. Note that l is used
to control only the number of fake bits that we need to set
after we insert the original profile items. If the number of bits
set by the original profile items is already greater than the
target value of l, we do not add any noisy bits. In our tests,
we did not face this situation except for l = 0. The reason
for configuring noise as a fraction of the total number of bits
(rather than as a constant number of bits) is to keep the number
of bits observed by the server constant. To understand let us
consider the case of two profiles A and B each containing
n = 10 element. When stored in a Bloom filter (with k = 1),
let us assume A sets 7 unique bits and B sets 10 unique bits.
It is intuitive to see that when trying to reverse engineer the
content of the Bloom filter the second profile will be mapped
to more profile items than the first one, thus indicating that B
requires fewer noisy bits than A to achieve the same level of
protection. This is why the fraction of bits set in the Bloom
filter, regardless of whether they are real or fake bits, is itself
an indication of the degree of obfuscation.

Figure 2 summarizes the Bloom cookies framework applied
to web search. At the client, a profiler builds a personalization
profile based on the user’s search history. The profile, consist-
ing of URLs of the web sites the user visited most often, is
fed into an obfuscator which generates a Bloom cookie for
the ongoing IP-session. The obfuscator configures the level of
obfuscation of the profile through two parameters: number of
hash functions (k) and noise level (l). Note that, in principle,
a Bloom filter’s probability of false positives p depends on k
and m (the larger k, the smaller p; the larger m, the smaller
p [5]). In practice, as shown below, m has little impact on
the obfuscation achieved, so we decide to vary only k for
obfuscation purposes. m is typically set to 1000–2000 bits. The
parameters k and l are computed by a noise generator once
for each IP-session. This uses a simple prediction algorithm
(described later) that given a user’s personalization and privacy
goals together with a history of profiles previously sent to the
server predicts the optimal <k, l> configuration. The Bloom
cookie is sent to the search engine along with the user’s
search request, and stays constant for the current IP-session.
At the search engine, a personalizer re-ranks the search results
based on the noisy user profile stored in the Bloom cookie.
Optionally (we did not implement this component yet), a
client-side personalizer can further refine the results and their
rank based on the noise-free user profile which is known to
the client.

B. Comparison with state-of-the-art obfuscation techniques

We now evaluate how effective Bloom cookies are as
obfuscation mechanisms compared to state-of-the-art noise
addition techniques, particularly RAND and HYBRID. For sim-
plicity, we use a Bloom filter with m = 2000 and k = 3,
and vary only the level of noise l. In the next set of tests,
we study its performance when also varying k and m. For
RAND and HYBRID the noisy profile is in plain text. For
BloomCookies we consider the worst case scenario in which
a malicious server reverse engineers the content of the filter
(this means querying the filter for all possible profile items
present in the dictionary of RAND) in an attempt to play a

linkability attack. Note that this brute-force reversal of the
filter, although expensive, is strictly a stronger attack than
intersection attacks or similar, which may be easier with Bloom
filters. Table III reports the privacy protection, personalization
loss and network overhead of BloomCookies for increasing
levels of noise. Tests are executed on the same dataset and
using the same methodology as for the results in Table II.

Overall, Bloom cookies provide a more convenient privacy-
personalization-efficiency tradeoff. If we compare BloomCook-
ies to HYBRID (see Table II) and consider the cases l = 25 and
f = 15 respectively, we see that not only do BloomCookies
provide comparable (actually slightly better) unlinkability, they
also halve the personalization loss of HYBRID (1.77% vs.
3.55% for “all”). If we compare BloomCookies to RAND, to
achieve the same unlinkability guarantees of BloomCookies,
RAND needs to add lots of noise. In fact, only for f = 70
(i.e., 70 fake profile items for each real profile item) RAND
achieves a level of unlinkability comparable to BloomCookies
with l = 25 (the average unlinkability is 0.96 and 0.95,
respectively), while personalization is slightly better for RAND.
On the other hand, the size of the RAND profile for f = 70
is 24.7 kbits compared to the 2 kbits of BloomCookies, more
than 20 times bigger.

As we discussed above, one may argue that a simpler
solution would be storing the output of RAND (or HYBRID)
in a Bloom filter. We experimented with this option by using
a number of hash functions that minimizes the probability of
false positives such that the unlinkability and personalization
performance remain the same. For space constraints, we only
comment on the case of RAND with f = 70 stored in a
Bloom filter where we obtain a profile of size of 15.6 kbits,
still almost 8 times larger than BloomCookies. Moreover, this
alternative approach does not remove the dependency on the
noise dictionary.

If we compare the performance of BloomCookies to exact
URLs (no noise) or interest-based profiles (Table I), the noisy
profile provided by BloomCookies clearly provides a much bet-
ter privacy-personalization-efficiency tradeoff. Interest-based
profiles drop the level of personalization achieved with exact
URLs by 24% (“all”) to reduce the percentage of linkable users
from 99% to 44%. With the same drop in personalization as
interest-based profiles, BloomCookies can reduce the linkable
users to 0.3%; likewise, with a drop in personalization of
only 1% (still compared to exact URL profiles), BloomCookies
(l = 15) can provide a similar level of unlinkability (45%
vs 44% linkable users) as interest-based profiles. All this
is achieved with a network overhead comparable to that of
today’s web cookies.

C. Effects of k and m

We now verify the assumption that k (number of hash
functions) and l (level of noise) are the main parameters to
control obfuscation in Bloom cookies. Figure 3 reports the
average unlinkability and personalization loss compared to
exact URL profiles when varying k (k = 3, 5.7) or the size of
the Bloom filter m (m = 1000, 1500, 2000), and for different
levels of noise (l). When increasing k (see Figure 3(a)), the
average unlinkability decreases and the personalization loss
shrinks. In fact, increasing k means reducing the probability
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Noise addition mechanism Personalization loss (%) Unlinkability Avg profile
compared to exact profiles size (bits)

noise level all one-word expanded entropy-based % linkable users max prob (1%)
Exact profile (URLs) f=0 0.00 0.00 0.00 0.66 (0.12) 98.7 0.73 294

l=0 0.16 0.04 0.35 0.65 (0.11) 93.8 0.71 2000
l=5 0.17 0.08 0.37 0.66 (0.10) 91.5 0.68 2000
l=10 0.25 0.42 0.51 0.73 (0.08) 91.1 0.55 2000
l=15 0.57 1.02 1.07 0.80 (0.07) 80.0 0.41 2000

BloomCookies l=20 1.00 1.61 1.83 0.90 (0.05) 44.7 0.29 2000
l=25 1.77 2.42 3.01 0.95 (0.01) 15.6 0.08 2000
l=30 3.30 6.75 5.70 0.97 (0.00) 2.3 0.01 2000
l=35 4.68 6.50 7.73 0.98 (0.00) 2.5 0.02 2000
l=40 6.81 11.75 11.62 0.99 (0.00) 1.0 0.00 2000
l=50 11.94 19.68 20.66 0.99 (0.01) 0.3 0.05 2000

TABLE III: Personalization, privacy and efficiency tradeoffs for Bloom cookies when varying the noise level l (1000
users, 264,615 queries). For personalization, the table reports the difference between avg rankURL (computed using exact
profiles, first row in the table) and the average rank obtained with Bloom cookies. For privacy, it reports unlinkability
as avg (stdev) entropy-based unlinkability, linkable users percentage and max probability with top 1% outliers removed.
For efficiency, it reports the size of the noisy profile.

(a) Effect of k and l (b) Effect of m and l

Fig. 3: Bloom cookies average unlinkability and personalization loss when varying k (k = 3, 5, 7) or m (m =
1000, 1500, 2000) with different noise levels (l), 300 users.

of false positives as well reducing the number of noisy bits
controlled by l (because with larger k more bits are set for
each profile item when stored in the Bloom filter). Conversely,
increasing m (slightly) increases unlinkability (and has almost
no effect on personalization). This is because although a larger
m reduces the probability of false positives, a larger Bloom
filter means that more noisy bits are set because l controls
the fraction of bits set. The noise effect controlled by l
prevails thus making unlinkability higher when m increases.
We notice however that the variations are relatively small (there
is no substantial difference between the case m = 1500 and
m = 2000 bits). For this reason, we use only k and l to control
the noise level of BloomCookies.

D. Algorithm for configuring Bloom cookies

By varying the noise level, a user can control the privacy-
personalization tradeoff. A privacy-concerned user may choose
to operate at the highest noise levels, while a user that
values privacy and personalization in the same manner may
decide to operate at moderate noise levels. We designed an
algorithm that automatically configures the noise parameters
in the Bloom cookie given a user’s privacy and personalization
goals.

Algorithm. The pseudocode of the algorithm is shown in
Figure 4. The algorithm takes as input a personalization goal

specified as maximum percentage loss that a user is willing
to tolerate (compared to the personalization obtained with
exact profiles), and a privacy goal specified as the minimum
unlinkability a user wants to achieve. In addition, the algorithm
uses the history of profiles previously sent by the client to
the server to compute the profile similarity over time. The
algorithm returns the pair <k, l> for configuring the Bloom
cookie.

The algorithm employs two prediction models, one for
personalization and one for privacy. The models are trained
using a set of users for which search history is available.14

We build the personalization model by computing the loss
in personalization for the training users when independently
varying the parameters k and l (m = 2000). Given a tar-
get personalization loss, the model predicts various <k, l>
combinations by performing a linear interpolation between all
measured data points.

To build the privacy model, we leverage the observation
that the similarity of a user’s profiles over time makes him
more trackable. Hence, the greater the similarity, the more
noise required to achieve a certain level of unlinkability. The

14We train the models using 300 users for which we have 1 month-long
logs (300 are used for training the privacy model and a subset of 93 users
whose personalization profile is large enough is used for the personalization
model).
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def find_noise(sim,pergoal,privgoal,permodel,privmodel):
simc = find_similarity_class(sim)
solutions = []
for k in k_vals:

per = scaling(interpolation(permodel[k]))
priv = scaling(interpolation(privmodel[simc][k]))
# find _min s.t. priv(_min) = privgoals
_min = inverse(priv)(privgoal)
# find _max s.t. per(_max) = pergoal
_max = inverse(per)(pergoal)
if _min<=_max: solutions.append((k,_min))

return random.choice(solutions)

Fig. 4: Code snippet of the algorithm for configuring a
Bloom cookie’s obfuscation parameters (k and l) given a
personalization and a privacy goal.

goal of the privacy model is then to represent the relationship
between similarity, unlinkability and <k, l>. We compute the
Jaccard similarity between two consecutive 2-week profiles of
the training users and then divide them in s = 10 buckets
based on the similarity value.15 For each bucket, we then create
a privacy model by doing a linear interpolation in a similar
way as for the personalization model. For a desired level of
unlinkability the model predicts the pair <k, l>. Thus, given a
privacy goal and the similarity of a user’s profile across time,
the algorithm finds which similarity bucket the user belongs
to, and then uses the appropriate privacy model for that bucket
to predict <k, l>.

The privacy model provides a lower bound on the noise
(i.e., with more noise higher unlinkability is achieved). The
personalization model provides an upper bound (i.e., with more
noise a larger personalization loss is experienced). If the lower
bound is higher than the upper bound, there is no solution
satisfying the goals. Otherwise, the solution is determined by
randomly selecting a k among the possible values and use the
minimum noise level for such k.

Effect of population size. Unlinkability depends on the
population size. Hence, if we train on a certain sized set
of users and use a different sized population for testing, we
need to take this factor into account. When a user population
increases we expect it to be harder to link user profiles so the
unlinkability goal becomes easier to some extent.

We hypothesize that when the population size increases
from n to kn, the probability distribution function of different
profiles from different time periods to belonging to the same
user (i.e., what we called p(x) in §III-B) remains the same,
except scaling by a constant factor. In this case, we can
express the new unlinkability u′ for that user in terms of
the old unlinkability u and the population sizes. Given the
unlinkability definition in §III-B, unlinkability for a population
of size n′ = kn is the following

u
′
=

∑n′
(p′

i ∗ log p′
i)

log 1
n′

=
k
∑n(

pi
k ∗ log

pi
k )

log 1
kn

=
u ∗ log 1

n − log(k)

log 1
kn

We verify our hypothesis by taking user populations of dif-
ferent sizes (n = 50, 100) and use them to predict the average

15Instead of imposing arbitrary similarity ranges, we derive the ranges by
diving the users in equal sets, so to mimic the actual user distribution. As an
example, the first 3 classes are (0.0, 0.207), (0.207, 0.313) and (0.313, 0.399).

(a) (b)

Fig. 5: Error in predicting unlinkability when increasing
the number of users from 100 to 900 (a) and from 50 to
900.

unlinkability for larger user populations (kn = 200, 500, 900).
We measure the error for varying levels of noise. Results are
shown in Figure 5. The average prediction error for n = 100
is 2.8%, 5.8% and 7.7% for scaling to 200, 500 and 900
users, respectively. For n = 50, it is 3.2%, 6.3% and 8.1%
when scaling to 200, 500 and 900 users, respectively. The
prediction error is reasonably small for small scaling factors.
However, even for large scaling factors, the prediction is
typically conservative—the observed unlinkability is larger
than the predicted value. Hence, we use this approach to make
our algorithm’s predictions scale to larger populations of users.

Algorithm evaluation. We evaluate the performance of the
algorithm on a set of 700 users (and a subset of size 215 for
personalization). For a particular combination of privacy and
personalization goals, we invoke the algorithm for each user to
obtain a <k, l> pair for that user. We then measure the average
unlinkability and personalization loss for such a set of users
assuming they would use the noise parameters as specified by
the algorithm. We then verify whether the initial goals are met.
Table IV reports the results for various combinations of goals.

Privacy goals are met in all conditions, with an average
unlinkability higher than desired. Personalization goals are
met fully or with a very small error when the minimum
personalization loss requested is below 0.3%. For instance,
for a target personalization loss below 0.2%, the actual loss
is 0.29% and 0.34%. Personalization strongly depends on the
user so it is harder to build a general model which works well.
More information about the user profile (e.g., distribution of
user interests, demographics, etc.) could be used as features for
training the personalization model. On the other hand, simply
given a larger training set, we expect the algorithm to be able
to meet stricter goals on personalization as well.

VI. RELATED WORK

The body of research closest to our work is that of client-
side solutions for preserving privacy in services such as search,
advertising, and news portals [20], [23], [27], [47]. There are
three problems with current client-side solutions: the client
overhead generated by carrying out personalization at the
client, the quality of personalization achievable by sharing
coarse-grained profiles with servers, and the privacy loss,
particularly in the case of an adversary that attempts to link
a user’s activities over time. Bloom cookies are designed to
help with all three issues.
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Desired goals Achieved goals
personalization privacy personalization privacy

0.2 0.7 × (0.29) X(0.84)
0.2 0.8 × (0.34) X(0.93)
0.2 0.9 No solution
0.3 0.7 × (0.31) X(0.83)
0.3 0.8 × (0.34) X(0.95)
0.3 0.9 X(0.29) X(0.93)
0.4 0.7 X(0.29) X(0.84)
0.4 0.8 X(0.34) X(0.95)
0.4 0.9 × (0.48) X(0.91)
0.5 0.7 X(0.31) X(0.84)
0.5 0.8 X(0.34) X(0.94)
0.5 0.9 X(0.50) X(0.93)
0.6 0.7 X(0.31) X(0.84)
0.6 0.8 X(0.42) X(0.95)
0.6 0.9 X(0.50) X(0.93)
0.7 0.7 X(0.31) X(0.84)
0.7 0.8 X(0.50) X(0.95)
0.7 0.9 X(0.68) X(0.95)

TABLE IV: Algorithm performance (700 users). The table
reports the desired goals and if a solution is found whether
the goals were met. In parenthesis it is the actual unlink-
ability and personalization achieved with the algorithm’s
predicted k and l.

In our work, we do not rely on anonymization proxies,
onion routing, TOR and other anonymity networks because
their deployment may be too expensive. However, if these
solutions are available, Bloom cookies become even more
important for personalization because servers are left with no
means of building user profiles.

Non-anonymous privacy models that allow user identifica-
tion, but prevent derivation of personal information have been
largely studied in the privacy community, in particular for web
search. Tools like TrackMeNot [24], PRAW [36], PDS [31],
OQF-PIR [35], GooPIR [17] and NISPP [50] (all extensively
reviewed in [5]) fall into this category. TrackMeNot, for
instance, is a browser plugin that generates extra dummy
queries to mislead a potential adversary that is trying to infer
the interest profile of its users. A first problem with these
solutions is the relatively large increase in the server’s query
load, which may not be tolerable by many online services. A
second problem is that they do not consider personalization as
a goal, thus significantly affecting the experience of services
like web search.

In literature, we find four main types of obfuscation
techniques that have been used to protect disclosure of a
user’s personal information, particularly location [26] and
search queries [5], to online services. “Transformation-based
techniques” which employ cryptographic transformations to
hide a user’s data and “progressive retrieval techniques” that it-
eratively retrieve candidate results from the server yield a high
overhead for the client and cannot be implemented without the
cooperation of the server. They have not been applied in the
context of web search. Generalization techniques [26], [49]
replace quasi-identifiers with less specific, but semantically
consistent, values. These approaches are likely not to work for
search as we have seen in §IV when comparing interest-based
and URL-based profiles. Literature [18] in the web community

has confirmed this result, although different opinions exist [49].
Bloom cookies adopt noise addition techniques (extensively
described in [5]) which can be implemented at the client.
Our baseline HYBRID is inspired by Plausibly Deniable Search
(PDS) [31].

We present Bloom cookies in the context of web search.
Extensive research has been done on search personalization. As
shown in [18], personalized search approaches can be classified
depending on whether information relating to a single user or
a group of users is used to create the user profiles. Group-level
personalization (e.g., collaborative filtering) requires the server
side involvement. In this work, we focus on client-side solu-
tions, and hence consider only person-level techniques. Person-
level techniques typically mine user profiles at the granularity
of user interests or URLs. There are two main approaches to
achieve person-level re-ranking of search results [18]: URL-
based profiles and interest-based profile. We implement both
and compare their performance.

We are aware of only one other work that leverages Bloom
filters as privacy structures [8]. The authors propose specialized
techniques for setting bits in a Bloom filter with the goal of
achieving deniability of the stored items. After implementing
their techniques, we deemed them not suitable for our use case
because they are too computationally expensive, they generate
deterministic noise, and they still require the presence of a
dictionary.

VII. LIMITATIONS

Small dataset. We have evaluated Bloom cookies with the
search logs of 1300 users. The number of users in a real
online service can be several orders of magnitude more. The
personalization quality for a certain user is not affected by
other users in the system, and hence we expect our personal-
ization results to be similar with a larger dataset. More users,
however, are likely to improve the privacy of Bloom cookies.
This is because with more users in the system, a user’s noisy
profile is more likely to “collide” with (i.e., look similar to)
another user, making it difficult for the server to link a user’s
profile over time. This was confirmed by our experiments in
§V-D. Moreover, as described in our threat model (see §II-B),
using a small user population gives us a worst case scenario
that takes into account cases in which a malicious server has
other means to reduce the user population size (e.g., using
geolocation, filtering by language, etc.)

User feedback. The privacy guarantee of Bloom cookies is
a statistical one, rather than an absolute one. As our results
show, Bloom cookies achieve unlinkability for a good fraction
of the users, but there are users whose online activities and
interests are so distinct that even with the amount of noise we
added, they remained linkable across IP-sessions. We believe
that it might be possible to provide feedback to those users so
that they can decide to add more noise or use other measures
that provide better privacy at the cost of personalization. Our
future work includes developing such feedback techniques.

Longer term analysis. Our evaluation assumes 2 consecutive
2-week periods of user activities. With longer user history this
evaluation can scale to longer and more time periods.
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Applicability to other applications. We focus on web search
and use personalization techniques (and metrics) which are
standard in the web literature. Commercial search engines
might use more sophisticated but proprietary techniques. How-
ever, if personalization algorithms rearrange search results as
the last step before returning them to users and if rearrang-
ing is performed solely on the presence of certain items in
user profiles, our privacy-preserving approach will work in a
straightforward way. This is true not only for web search, but
also for services with a similar structure such as advertising
(ranking of ads), online shopping (ranking of products), or
personalized news delivery (ranking of news). It might even be
possible for different services to share the data responsibly in a
privacy preserving way, provided they are interested in similar
information about the user, such as the top visited websites.
However privacy-personalization analysis of such a scenario is
out of scope of the current work.

Tracking across services. Unfortunately, tracking often occurs
across services. For instance, Google or Microsoft can track
users using web search, email, or voice calls. As discussed
in our threat model (see §II-B), this scenario is out of scope
for this paper, but this work sets the first step towards such
a vision because IP-based tracking is unavoidable in client-
server setups (unless anonymization proxies can be afforded).
To address a multi-service scenario, it is first necessary to
understand which information every service needs for person-
alization and then how it can be obfuscated. We chose web
search also because of its relatively mature personalization,
which is not the case for most services.

VIII. CONCLUSIONS

Bloom cookies encode a user’s profile in a compact and
privacy-preserving way, but do not prevent online services
from achieving personalization. Compared to profile gener-
alization and noise addition techniques commonly employed
in online privacy-preserving personalization systems, Bloom
cookies provide a much better privacy, personalization and net-
work efficiency tradeoff. Through the analysis of web search
logs, we showed that profile generalization significantly hurts
personalization and fails in providing reasonable unlinkability.
Noise injection can address these problems, but comes with the
cost of a high communication overhead and a noise dictionary
which must be provided by a trusted third party. Bloom cookies
leverage Bloom filters as a privacy-preserving structure to
deliver similar (or better) personalization and unlinkability
than noise injection, but with an order of magnitude lower
communication cost and no noise dictionary dependencies.

REFERENCES

[1] “Open Directory Project,” http://dmoz.org/.
[2] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh, “An Analysis

of Private Browsing Modes in Modern Browsers,” in USENIX Security
Symposium, 2010, pp. 79–94.

[3] C. Ardagna, M. Cremonini, E. Damiani, S. De Capitani di Vimercati,
and P. Samarati, “Location privacy protection through obfuscation-
based techniques,” in Data and Applications Security XXI, ser. LNCS.
Springer Berlin Heidelberg, 2007, vol. 4602, pp. 47–60.

[4] M. Balakrishnan, I. Mohomed, and V. Ramasubramanian, “Where’s that
phone?: geolocating IP addresses on 3G networks,” in Proc. of IMC ’09,
2009, pp. 294–300.

[5] E. Balsa, C. Troncoso, and C. Diaz, “OB-PWS: Obfuscation-Based
Private Web Search,” in Proceedings of the 2012 IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2012, pp. 491–505.

[6] P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey,
F. Borisyuk, and X. Cui, “Modeling the impact of short- and long-
term behavior on search personalization,” in Proc. of SIGIR ’12, 2012,
pp. 185–194.

[7] R. Bhagwan, S. Savage, and G. Voelker, “Understanding availability,”
in Peer-to-Peer Systems II, ser. LNCS. Springer Berlin Heidelberg,
2003, vol. 2735, pp. 256–267.

[8] G. Bianchi, L. Bracciale, and P. Loreti, “‘Better Than Nothing’ Pri-
vacy with Bloom Filters: To What Extent?” in Privacy in Statistical
Databases, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2012, vol. 7556, pp. 348–363.

[9] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[10] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509,
2004.

[11] M. Casado and M. J. Freedman, “Peering Through the Shroud: The
Effect of Edge Opacity on Ip-based Client Identification,” in Proc. of
NSDI ’07. USENIX Association, 2007, pp. 13–13.

[12] P. A. Chirita, W. Nejdl, R. Paiu, and C. Kohlschütter, “Using ODP
metadata to personalize search,” in Proc. of SIGIR ’05, 2005, pp. 178–
185.

[13] S. Claußand S. Schiffner, “Structuring Anonymity Metrics,” in Proc. of
the 2nd ACM Workshop on Digital Identity Management, ser. DIM ’06,
2006, pp. 55–62.

[14] comScore, “The Myth of Static IP,” Sept 2008, http://www.comscore.
com/Insights/Blog/The Myth of Static IP.

[15] S. Cronen-Townsend and W. B. Croft, “Quantifying query ambiguity,”
Proc. of HLT’02, pp. 94–98, 2002.

[16] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the second-
generation onion router,” in Proc. of the 13th conference on USENIX
Security Symposium - Volume 13, 2004, pp. 21–21.

[17] J. Domingo-Ferrer, A. Solanas, and J. Castellà-Roca, “h(k)-private
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APPENDIX

Linkability model. As described in §III-B, the linkability
model is essentially a function that maps the Jaccard similarity
of a pair of user profiles to the probability of these profiles

Fig. 6: Linkability model trained over 300 users with exact
profiles (URLs).

belonging to the same user. To calculate this mapping function,
we take n test users, and for each user we compute two
profiles, one for the time period T1 and one for T2 (both
2-week long). Next, we calculate the Jaccard similarity for
the n2 profile pairs. We divide the entire range of possible
similarities (varying from 0 to 1) into a fixed number (100) of
buckets of equal size. For each bucket, we find how many of
these n2 profile pairs have similarities that lie in that particular
range. From the fraction of these profile pairs that belong to
the same user (known because the ground truth is available
in this case), we calculate a conditional probability, i.e., the
probability that a profile pair belongs to the same user given
that the similarity of the profiles lies within a certain range.

Figure 6 shows such a mapping function with a Bezier
interpolation16 when using exact profiles (URLs). As expected,
if the similarity is above a certain threshold, the probability that
the profiles belong to same user becomes almost 1.

We calculate a mapping function also for generalized
profiles and for each noisy profile we use in our evaluation.
When noise is added to the profile, we first add the noise to the
test users’ profiles and then repeat the same process described
above.

16http://en.wikipedia.org/wiki/Bezier curve

15


