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Abstract—“Big Data” processing in modern datacenters dramatically increases the data volume moving between applications and 
storage. A major challenge is achieving acceptable levels of availability and reliability in an environment characterized by huge storage 
capacities, large numbers of disk drives, and very high interconnection bandwidth (e.g., 100 petabytes and 17000 disk drives at CERN1). 
In this paper, we show that existing RAID mechanisms are insufficient, and that the mean time to data loss (MTTDL) falls drastically as 
the number of disks and data volume increase. We introduce a new high availability storage configuration, which we call RAID-CUBE, 
and show that it is more resilient to data loss as the datacenter scales in capacity than existing RAID dual parity and triple parity 
schemes. We also identify the limits to capacity of a datacenter (in terms of the number of disks) to maintain an acceptable MTTDL for 
different data protection mechanisms. Finally, we briefly introduce an effective mechanism for bit error protection for large sequential 
IOs in this environment.  

I. INTRODUCTION  
The emergence of “big data” imposes new challenges for datacenter storage. As storage capacity and the number of disks 

increase, data loss becomes not just a possibility but inevitable. The sheer size and scale of data movement between applications 
and storage in a large-scale datacenter renders latent defects more prevalent. When combined with the inevitable operational 
failures in the disks, this increasingly results in unrecoverable data loss. Data protection in datacenters has emerged as a critical 
issue. For example, as far back as 2008, Google reported they suffered a disk failure every time they executed a 6-hour long 
petabyte sort across 48,000 disks2. 

In modern datacenters, the storage hierarchy is complex, and assessing it for data loss is complicated. Performance sensitive 
applications stage their “hot” data into SSDs. The data then spills to local disks, and then to geo-scale storage. Data loss can happen 
in various system layers, e.g., there can be data corruption due to device wear out in the SSDs, data loss in the local disks due to 
latent defects and operational failures, data loss in geo-distributed storage, and finally data corruption in the network. In map-
reduce workloads, there can be imminent loss during the enormous amount movement. 

When the Google file system [6] was originally designed (and later re-implemented in open source as HDFS), RAID 
techniques, with their parity calculation overheads, were rejected because storage was getting cheaper and redundancy could be 
achieved simply by keeping multiple copies of files. The data sizes now managed by datacenters, whether data logs or consumer 
photos, are simply too large and the need to manage multiple copies too difficult. With effective use of memories hierarchies and 
in-memory processing, and even given that most files die young [1], datacenter storage workloads are becoming increasingly 
dominated by large block I/Os. This is highly advantageous for avoiding the “small update” Read-Modify-Write overheads of 
RAID parity processing. The IO block size is also increasing, making bit errors or latent defects even more prominent [18]. The 
only effective way to protect against these as well as operational failures is to intelligently use more data redundancy.  

RAID redundancy mechanisms include simple RAID 5 parity [14], “dual parity” RAID6 [4], erasure coding [2, 9], network 
coding [5], copy-set replication [3], and RAID triple parity [8]. These techniques certainly protect data. However, as the size and 
volume of data grows, their effectiveness diminishes. Moreover, techniques like erasure coding and network coding are difficult to 
scale to larger number of disks because of the computational burden. Also the bandwidth of reconstruction is high for erasure 
coding. 

                                                           
1 http://home.web.cern.ch/about/updates/2013/02/cern-data-centre-passes-100-petabytes 
2 http://royal.pingdom.com/2008/12/12/wanted-hard-drive-boys-for-our-new-ginormous-data-center/ 



In this paper, we focus on how best to provide data protection and recovery in a datacenter with a large number of disks, 
measured in the tens of thousands. Given enough disks, the probability of data loss becomes sufficiently high that data loss 
becomes operationally inevitable. For example, let the probability of data loss with some protection mechanism for 10 disks be 

0.0001. When we scale 1000 times and deploy 10,000 disks, the same probability becomes 
1000)0001.01(1 −− = 0.095 (i.e., 

there is a 9.5% chance of data loss) if the disks fail independently. In the case of correlated failure (i.e., due to the effect of physical 
conditions [16]), the risk of data loss may be further aggravated. In the literature so far, there has not been any formal analysis on 
the mean time to data loss (MTTDL) for very large number of disks in a datacenter (e.g., 20000 disks). We formally analyze the 
MTTDL for a given mean-time-to-recovery (MTTR) for very large number of disks in a datacenter with different protection 
mechanisms. We then introduce RAID-CUBE, a RAID configuration that is better equipped to handle data loss than RAID6, with a 
comparable amount of redundancy or number of parity disks. We also show that for a large number of disks, RAID-CUBE 
tolerates and protects data loss for large number of disks as compared to RAID6. 

RAID-CUBE is not an entirely new idea, with the existing precursors such as 2D RAID [7] and its subsequent enhancements 

[11, 12, 13, 20]. In 2D RAID [7], 
2n disks are arranged in the form of a nn× two-dimensional square, and each individual row 

and column is protected by row parity and column parity disks respectively resulting into a total of 2n parity disks. Since in such an 
arrangement, each disk is protected by one row parity and one column parity disks, higher resiliency is achieved as compared to 
single parity RAID 5. A recent paper [13] shows that replicated row or column parities achieves even higher resiliency. In this case, 
if the row parity disks are replicated then the configuration has 2n row parity disks and a total of 3n parity disks.  

RAID-CUBE formally extends the concept of arrangement of disks in a two-dimensional grid into higher dimensions. In this 
configuration, the disks can be arranged in three, four or in any m-dimensional space. First we show how the parity disks are 
organized in such higher dimensional configuration. We then generalize the reliability analysis (MTTDL) for any number of disk 
failures in the presence of a large number of disks. We use the state transition diagram as presented in Paris, et al. [12, 13], and 
generalize the analysis for any number of disk failures. We then use that generalized analysis to evaluate RAID-CUBE along with 
RAID6 (Dual parity) [4], RAID-TP (Triple Parity) [8] and the configuration proposed by Paris, et al. [12, 13]. Our analysis results 
show the superiority of RAID-CUBE compared to these alternatives.  

We then extend our RAID-CUBE configurations for the case of large sequential IOs [1] in datacenters and propose a 
mechanism to protect against bit errors without read-modify-write cycles [15]. 

Overall, in this report we analyze the data loss probability in terms of MTTDL in the presence of large number of disks for 
various different data protection schemes. We propose a new data protection mechanism that not only provides better protection 
against disk failures but also protect the bit errors. The rest of the paper is organized as follows. In Section 2, we describe the 
general configuration of RAID-CUBE. In Section 3, we present a new and generalized formulation for how to compute the mean 
time to data loss (MTTDL) for a large number of disks in a datacenter. We then use this generalized analysis results for two-
dimensional and three-dimensional RAID-CUBEs along with RAID6. In Section 4, we present the MTTDL as provided by the 
analysis in large datacenter for different protection mechanisms and derive certain insights. We then show how RAID-CUBE can 
be effectively used for bit error protection and recovery for large sequential IOs in datacenters without read-modify-write cycles. In 
Section 6, we show the significance of interleaved parity disks that is used in the RAID-CUBE configuration. Finally we 
summarize and draw conclusions in the Section 7. 

II. RAID-CUBE 
In two dimensions, RAID-CUBE is similar to that of 2D RAID [7, 11, 12] except that it has two extra “parity of the parity” 

disks as shown in Figure 1. In Figure 1, we show a 5x5 2D RAID-CUBE which has 25 data disks. For each row, we have a parity 
disk computing the parity of the data disks in that row. Similarly for each column, we have one parity disk computing the parity of 
the data disks in that column. We have additional two parity disks, one for row parity disks and the other for column parity disks 
(interleaved parity disks). The parity of the row parity disks computes the parity of the parity disks over rows, and similarly for the 
parity of the column parity disks. 

Note that, the bits stored by these two parity disks are identical (they are replicants of each other), however, use of two such 
“parity of parity” disks provide significantly more powerful redundancy as discussed in Section 6.  

As we move to three dimensions, the data disks are organized in the form of cube, and for each two dimensional plane there is 
one parity disk as shown in Figure 2. In 3D RAID-CUBE, as shown in Figure 2, we have 5x5x5 = 125 data disks. Along each 
dimension we have 5 parity disks computing the parity of the respective data disks in a plane normal to that dimension and 
positioned according to the parity disk. Therefore, in this case we have 3x5 = 15 parity disks. There are three replicated parity of 
parity disks additionally. We can view each of them as computing the parity of the parity disks in each dimension. In general, for 

an m-dimensional RAID-CUBE with n data disks in each dimension, we have 
mn data disks, m*n parity disks computing the parity 

of each (m-1)-dimensional structure, and m replicated parity of parity disks. Therefore, total number of disks becomes 



)1( ++= nmnN m
        (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For example, if we have 64 data disks, in 8x8 2D RAID-CUBE, we have 2*8+2 = 18 parity disks in total. In three-dimension, 
for a 4x4x4 3D RAID, we have 3*4+3 = 15 parity disks in total. For the same number of data disks, the resultant number of parity 
disks decreases as we move to higher dimensional RAID-CUBE. 

 

 

 

 

 

 

 

 

 

 

 

 

III. RELIABILITY ANALYSIS FOR LARGE NUMBER OF DISK FAILURES 
We first provide a generalized framework for analyzing the mean time to data loss (MTTDL) of a system of disks by extending 

the model of analysis as provided in Paris, et al. [12, 13]. Next we use the framework to estimate the MTTDL of different 
protection mechanisms. In general, disk failures may not follow the exponential distribution as studied in [17]. The operational 
failures can be better modeled by Weibull or Gamma distributions as studied in [17]. The bit errors also do not necessarily follow 
the exponential distribution. Moreover, the bit errors failure rate may vary substantially depending on temperature, workload 
pattern, time, and other factors [15, 18]. In this paper, for simplicity of analysis, we assume exponential distribution of failures with 
a constant rate. 

We assume that the disks fail independently or the bit errors happen independently (the assumption may not be true in reality, 
however, we restrict to this assumption for a computationally realizable analysis of the system). Once a disk fails, the recovery 

Figure 1: A configurations of 2D RAID-CUBE 

Figure 2: Configuration of 3D RAID-CUBE 



process immediately starts to recover the data. If multiple disks fail then the recovery of these disks can take place in parallel. We 
also assume that the recovery rate is exponentially distributed.  

 

 

 

 

 

 

 

 

 

 

 

 

Let λ be the failure rate of the exponentially distributed failure process, µ be the recovery rate of the exponentially distributed 
recovery process. Figure 3 shows a continuous time Markov chain of the entire failure process for different failure rates. The 
system is initially in state 0 which indicates that there is no failure and all disks are operational. Since there are N disks in the 
system, there can be λN probability of one disk failure. After one disk failure, the system goes to state 1. The failed disk can be 
replaced and data can be recovered with a recovery probabilityµ . Once the data is recovered the system returns to state 0. In this 
analysis we assume that there is no data loss if there is one disk failure. The analysis can be more generalized considering that there 
is a probability of data loss even if there is one disk failure. 

In State 1, if another disk fails then there may be data loss with a probability λα1 . Since there are (N-1) operational disks in 

State 1, there is a probability  λα1)1( −N  of data loss. If there is data loss, system moves to the data loss state L. If there is no 

data loss then system moves to State 2 with 2 disk failures with a probability λα )1)(1( 1 −− N . Since both he failed disks can be 

replaced and recovered simultaneously, the system returns from State 2 to State 1 with a probability µ2 . Extending this logic, we 

can say that the system can move from a state i to state i+1 with a probability λα ))(1( iNi −− , and there is a probability 
λα )( iNi − of data loss. If the data loss happens then the system moves to data loss state L. The system can return from state i+1 

to state i with a probability µ)1( +i . Let there be at most K disk failures after which the system cannot be returned to normal state 

if one more disk fails, and data loss becomes inevitable. In that case, 1=Kα and the system goes to data loss state L after one 
more disk fails. With constant rates of failure and recovery under the assumption of the exponentially distributed failure and 

recovery processes, we can express the transient changes in the probability of system states KPPPPP ,,,,, 3210 K  as the 
Kolmogorov system of differential equations [19] given by Equation (2). 
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Figure 3: A continuous time Markov chain of the disk failures 
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In Equation (2), Ki ≤+ 2 , ,1)0(0 =P and 0)0( =iP for all 0>i . 

It is very difficult to obtain closed form solution of the system of differential equations for a large number of system states. First 
we obtain the Laplace transformation of the system of equations. The mean time to data loss (MTTDL) can be expressed as [19]. 
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The loss in the system can be expressed as 

)(/)()()( sVsUssPsL L ==       (4) 

Where U(s) and V(s) are given as 

)()( 0 ssV β=        (5) 

Where  

 

       (6) 

with 11 =+Kβ , and 
0=jβ for all j > K+1. 

The numerator U(s) in Equation (4) is given as 
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Therefore the loss function )(sL  is determined by )(sβ which in turn depends on the coefficients α . We derived the 
expression for L(s) by recursively computing the values of )(),(),( 321 sPsPsP  and so on. We then find the generalized form of 
equation that can express the U(s) and V(s). Equating the negative of derivative of the loss function and letting s=0, we obtain the 
MTTDL for given values of α .  

Therefore,           
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Since the derivatives are difficult to express in closed form equations, we programmatically compute the MTTDL using 
recursive formulations instead. Depending on the system configuration, the values of α change and the respective MTTDLs 
change. Next we analyze the MTTDL for RAID CUBE.    

A. Two Dimensional RAID-CUBE 

In 2D RAID-CUBE, it is obvious that 01 =α . Similarly for three disk failures, the data can be recovered unlike the case shown in 
[12]. If there are four disk failures then there are certain special cases when the data cannot be recovered as shown in Figure 4. In 
the figure, the transparent circles represent the operational disks whereas the black represent the failed disks. 

The four failed disks govern four parity equations; however, only three of these equations are independent, and therefore the 
data cannot be recovered in this case. Apart from these type special arrangements of the four failed disks, the data can be recovered 
for other cases. Let there be nn× data disks in the in 2D CUBE and 22 +n parity disks. In order to analyze the probability of 
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data loss, let us assume that there is only one parity of parity disks. In that case, it is organized as )1()1( +×+ nn disks. Any two 
disks can be chosen from a row, and the number of possible combinations is  

          (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once we choose a row, there are n disks in a column, out of which the third disk can be chosen. So the total number of 
possibilities is 

          (10) 

 

 

In our nn× 2D CUBE, the failure of parity of parity disk does not happen because there are 2 such parity disks. If both are 
failed then we are left with a choice of two disks and therefore, the data loss will not happen. So the number of combinations in 

which the single parity of parity disk is involved is
2n . We are therefore left with a number of possible configurations in which 

four disk failure can result in data loss is 
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If there is a series of l such nn× 2D CUBEs then we have total number of disks as 

lnnN )22( 2 ++=        (12) 

We therefore have 
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

















=

4

2
3 N

nl
n

α

n
n








 +

2
1

n
n

nn
n









=−







 +

22
1 2

Figure 4: A four disk failure resulting into data loss 
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Any combination of five disk failure which has a four disk arrangement as discussed above will lead to data loss. In addition 
there are certain special cases involving the parity of the parity disks that lead to data loss as shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 5, both the parity of the parity disks get corrupted and therefore, the row parity and column parity cannot be 
recovered. As a result the data of the data disk cannot be recovered. This case can happen if any one data disk is selected out of the 

2n data disks and the locations of the parity disks are determined by the location of the data disk. Therefore the total possible 
combination of data loss configurations due to five disk failures in a nn× CUBE is given as 
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Therefore, we obtain  
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In the case of six failures, we can select any one disk in addition to the configurations for five disk failure, and those results into 
data loss. Therefore, 
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Figure 5: A specific five disk failure resulting into data loss 



In general, we have 

))2(,1min(1 ii i αα +=+     for 5≥i .      (17) 

 

The minimum condition is imposed because as α cannot be greater than unity, and if it goes to unity that conditions an 
inevitable data loss. 

 

B. Three Dimensional RAID CUBE 

Just as in the case of 2D RAID CUBE, in 3D CUBE also, we have 021 ==αα . However, similar to the 2D CUBE, if four 
disks fail in the same plane then data cannot be recovered. The situation is illustrated in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the four nodes encompass a rectangular shape, the parity equations are not independent and the data cannot be recovered. 
Let us assume that we have nnn ×× 3D CUBE and the total number of disks in l such 3D CUBEs is given as 

lnnN )33( 3 ++=
      (18) 

Since there are 3 dimensions, the coefficient 3α  is given as 
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Any five disk failure can happen due to a configuration of a four disk failure as above and any one more disk failure. However, 
in the 3D CUBE, the special case of five disk failure as in 2D CUBE as illustrated in Figure 5 does not happen because of the 
presence of three replicated parity of the parity disks. Therefore we have 

)5,1min( 34 αα =
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)6,1min( 45 αα =
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Figure 6: A four disk failure in 3D CUBE resulting into data loss 
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However, there is a special case of seven disk failures where all three parity of the parity disks fail as illustrated in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this case, none of the parity disks can be recovered and therefore the data is lost completely. We therefore have 
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For any more disk failures, we have 

))2(,1min(1 ii i αα +=+  for 7≥i .     (22) 

 
C. RAID6 (Dual Parity) 

In RAID6, an array of disks is protected by tow parity disks. For example, in (8+2) RAID-DP, we have 8 data disks and two 

parity disks. We consider the general case of l arrays of )2( +n RAID-DP. RAID-DP can protect against any two disk failures in 

an array. Therefore we have 01 =α . If there are three disks failure in a single array then there is data loss. Therefore we have 
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Figure 7: A specific seven disk failure resulting into data loss 
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For any subsequent failure, we have 

))2(,1min(1 ii i αα +=+  for 3≥i .      (25) 

IV. ANALYSIS RESULTS 
In our analysis, first we compute the MTTDL for different MTTR (recovery rates) in 2D CUBE and 3D CUBE and compare 

the performance with RAID6. We consider a standard five-year life span of the disks. Note that, in today’s standard the life span of 

the disks can be more; however, we restrict our analysis to five year life-span. A five-year life-span means )5*365/(1=λ . We 
consider 64 data disks arranged in 88×  2D CUBE and 444 ×× 3D CUBE. As a comparison, we also study the MTTDL of 8 
arrays of 8+2 RAID6. 

A. MTTDL for 64 Data Disks 
In the case of 2D CUBE, we have 18 parity disks in total; in the case 3D CUBE, we have 15 parity disks, and for RAID6 we 

have 16 parity disks. The MTTDL is computed in all cases for an MTTR in between 12 to 48 hours (i.e., between half a day and 4 
days). Figure 8 illustrates the various MTTDL achieved for different configurations for different MTTR. Evidently, the 2D and 3D 
RAID CUBEs substantially outperforms the existing RAID6 configuration. 2D RAID CUBE edges over 3D CUBE using 
additional 3 parity disks for 64 data disks. Interestingly, although RAID6 has one more parity disk as compared to 3D CUBE, its 
MTTDL is substantially less than 3D CUBE. 

We also formally compare the RAID-CUBE performance with replicated row or column parity disks as presented in Paris et al. 

[13]. In [13], the authors have used a two-dimensional nn× grid of data disks having 
2n disks, a set of n column parity disks, and 

a set of replicated 2n row parity disks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In such a configuration, we have a total of nn 32 + disks for 
2n data disks. Figure 9 shows the MTTDL for 2D and 3D RAID-

CUBE and that of Paris et al.[13] for 64 data disks and MTTR ranging from 12 to 48 hours. Here, we consider that the life-time of 
a disk is 5 years on an average. Note that, the number of parity disks required in Paris, et al.[13] is much more than RAID-CUBE 
although the performance of RAID-CUBE is better. In 2D RAID CUBE, we have 18 parity disks, 3D CUBE we have 15 parity 
disks, and in Paris, et al. [13], we have 24 parity disks. 

 

 

 

Figure 8: MTTDL vs. MTTR for three different cases in 64 data disks 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We compare the reliability of the RAID-CUBE with that of RAID Triple parity as presented in [8]. We derive the MTTDL of 
RAID-TP in the same way as RAID-DP as presented in Equation (23). RAID-TP can always protect against three disks failure. 
However, in the case of four disks failures, there is a possibility of data loss. 

We consider that there are l arrays of )3( +n disks, each array comprising of n data disks and 3 parity disks. If there are three 
disks failures in any array then also RAID-TP is able to recover the data. Therefore, we have 

021 ==αα . 

If there is a fourth disk failure in one array then there will be data loss. We therefore have, 
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where lnN )3( += . For any subsequent disk failures, we have  

))2(,1min(1 ii i αα +=+  for 4≥i .     (27)   

 

We also model the data loss probability of Reed-Solomon Code (Erasure code). Let us assume that there are l arrays of (n,k) RS 
codes where k is the number of data disks and (n-k) is the number of parity disks. RS code in that case can tolerate any (n-k) 
failures. We therefore have 0121 === −−knααα . For a subsequent failure, we have 

Figure 9: A comparison of the performance of RAID-CUBE with that of Paris et al. [13] 
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where N = n*l is the total number of disks. For any subsequent failure, we have the same equation as in (27).  

 

     
 

 

 

We compare the performance of 2D and 3D RAID-CUBE with that of RAID-TP and four arrays of (20,16) erasure code in Figure 
10. We consider 64 data disks with 8 arrays of (8+3) RAID-TP configuration. Thus we have 24 parity disks. We maintain the same 
configurations of 2D and 3D RAID-CUBEs as discussed before having 18 and 15 parity disks respectively for 64 data disks. We 
illustrate the MTTDL for an MTTR between 12 to 48 hours. From Figure 10, we observe that RAID-CUBE provides superior 
protection than RAID-TP, even with less number of parity disks. However, erasure code is superior to RAID-CUBE but the former 
is computationally expensive. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: MTTDL vs. MTTR in three configurations for 64000 data disks. 

Figure 10: A comparison of the performance of RAID-CUBE with that of RAID-TP and Erasure Coding 



 

B. MTTDL for Large Number of Disks 
Our claim in the introduction was that as the number of disks increases in a datacenter, the data loss becomes inevitable. We 

substantiate this claim using 64000 data disks. We organize the data disks in three ways: (1) an array of 1000 88×  2D CUBEs; 
(2) an array of 1000 444 ×× 3D CUBEs and (3) an array of 8000 (8+2) RAID6. We consider an MTTR between 1 to 5 hours. 
Figure 11 illustrates the expected performance of the three different schemes namely 2D and 3d RAID-CUBEs and RAID-DP. 

We observe that for an MTTR = 3 hours, the MTTDL for RAID6 becomes close to one day. That signifies that the data loss in 
RAID6 becomes inevitable. On the other hand, for an MTTR = 3 hours, both 2D and 3D RAID CUBEs have MTTDL close to 100 
days. Therefore, the new scheme is much better in terms of data protection as compared to RAID6. 

Next we analyze the chance of data loss as the number of disks increases for a fixed MTTR. We keep the configurations of 2D 
CUBE, 3D CUBE, and RAID6 same as other two analysis and increase the number of arrays of such configurations. Figures 12, 
13, 14, and 15 illustrate the MTTDL of different schemes with an increasing number of disks using a fixed MTTR = 3, 6, 9, 12 
hours respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Figure 12, we observe that 2D CUBE and 3D CUBE can have approximately 100 days of MTTDL with 80000 data disks. 
On the other hand, to have 100 days MTTDL, RAID6 can accommodate 50000 data disks in a datacenter. As the MTTR increases, 
the reliability of all configurations becomes poor. For example, as in Figure 13, with an MTTR = 6 hours, 40000 disks can be 
accommodated in a datacenter to have 100 days MTTDL for both 2D and 3D RAID CUBEs. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: MTTDL vs. number of disks for an MTTR=3 hours. 

Figure 13: MTTDL vs. number of disks for an MTTR = 6 hours. 



On the other hand to have the same MTTDL, RAID6 can only accommodate 20000 disks in a datacenter. The same behavior can 
be observed from Figures 14 and 15 where 2D and 3D CUBEs are consistently more reliable than RAID6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For 64000 data disks, we report the MTTDL for the three different configurations for MTTR = 2 – 4 hours in the interval of 5 
hours in Table 1. Interestingly, we observe that 3D CUBE has better reliability than 2D CUBE for large number of disks. As the 
number of disks is relatively smaller, 2D RAID CUBE provides better reliability. However, as the number of disks becomes large, 
the 3D RAID CUBE performs better. 

We can observe that even if we maintain an MTTR = 2 hours, RAID6 is highly unreliable and there is a possibility of data loss 
in around 28 days. On the other hand, 3D RAID CUBE is able to protect the data for around four years with an MTTR = 2 hours. 

Next, in Table 2, we compare the MTTDL for different number of data disks for an MTTR = 3 hours. We observe from Table 2 
that if a datacenter is able to maintain MTTR = 3 hours then it can accommodate approximately 32000 disks with an MTTDL = 

Figure 14: MTTDL vs. number of disks for an MTTR = 9 hours. 

Figure 15: MTTDL vs. number of disks for an MTTR = 12 hours. 



216 days using RAID6 (8+2) configurations. On the other hand, same MTTDL can be maintained even if double the number of 
data disks (64000) is accommodated in the datacenter using 3D RAID (4x4x4) configuration. 

  Table 1: MTTDL vs. MTTR for three configurations with 64000 data disks. 
MTTR 
in hours 

MTTDL in days 

RAID6 2D RAID CUBE 3DRAID CUBE 

2.0 28.5 1098.2 1479.8 

2.5 7.7 958.9 1288.1 

3.0 3.2 157.3 208.4 

3.5 1.8 40.4 52.4 

4.0 1.2 14.5 18.3 

 

  Table 2: MTTDL vs. number of disks for three configurations for an MTTR = 3 hours. 
Number 
of Data 
Disks in 
Multiple 
of 64 

MTTDL in number of days 

8+2  
RAID6 

8x8 2D 
RAID CUBE 

4x4x4 3D 
RAID CUBE 

300 6133.4 39981000 45085000 

400 949.6 1979200 2495300 

500 216.8 170800 218210 

600 65.1 26690 31858 

700 24.2 5587.8 6852.4 

800 10.7 1445.6 1829.9 

900 5.5 443.2 576.6 

1000 3.2 157.3 208.4 

 

We observe that 3D RAID-CUBE provides better MTTDL as the number of disks becomes very large, with fewer parity disks 
versus 2D RAID-CUBE configurations. Furthermore, the RAID-CUBE achieves higher resiliency as compared to replicated row or 
column parity disks [13] with much fewer parity disks.  We observe that it is very difficult for a datacenter to protect data loss if we 
have MTTR more than 3 hours. As it increases, data loss becomes inevitable. Erasure coding can provide much better data 
protection with increased computational complexity. RAID-CUBE provides a higher data protection capability as compared to 
RAID6 with relatively less complexity as compared to erasure coding. 

V. BIT ERROR PROTECTION AND RECOVERY 
Our original claim was to protect the data against latent defects and operational failures. In [15], the authors investigated how 

latent errors followed by operational disk failures result in data loss in the case of RAID. Sometimes it is very hard to detect the 
latent defect or bit errors even by the parity computation mechanisms. In this section, we provide an outline to protect against the 
bit errors using the RAID CUBE technology. 

Traditionally, both random and sequential IOs are prevalent. As mentioned in Section 1, we believe that a large number of 
random IOs will be handled or are being handled in the SSD layer, while large sequential IOs will be directed to the local disks. A 
large sequential IO can be sized so as to be split and distributed among all disks in the CUBE. This has the advantage that Read-
Modify-Writes can be avoided, and parity can be computed more efficiently, as we show below. For example, let there be a large 
sequential IO of size 64MB. Note that with modern applications and systems (e.g., HDFS workload [1,10]), a size of 64MB 
sequential IO size on a disk subsystem is not atypical. The sequential IO can be divided into 1MB chunks and stored in the 64 disks 
of an 88× 2D RAID CUBE or 444 ××  3D RAID CUBE. 



To reduce the overhead of parity computation, an I/O can be distributed across the disks with the same PBN (physical block 
number). Whenever, an IO happens, the chunks are written with the same PBN of different disks. In the same operation, the row 
parity and the column parity can be computed. In this example, each parity size will be 1MB and stored in the row parity and 
column parity disks with the same PBN. As an illustration, we show how column parity can be computed for different chunks in 
Figure 16.  

Similarly, the row parity and the parity of the parity can be computed for the overall disk subsystem. One restriction in this 
mechanism is that I/O is to be symmetrically distributed among all disks. The chunk size can also be less than 1 MB. With this kind 
of arrangement, if there is a bit error, it can be easily detected during the read operation using the parity check mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The write process need not follow a read-verify-write mechanism. However, in this scheme if four chunks in the same IO in 
four different disks (arranged in the form of a rectangle as we discussed before) suffer bit errors then the bit error cannot be 
recovered. A specific chunk can sustain multiple bit errors since each bit is independently protected by the parity mechanism within 
the same chunk. 

VI. SIGNIFICANCE OF THE INTERLEAVED PARITY 
In RAID CUBE, we maintain multiple copies of the interleaved parity. First of all, interleaved parity is important [20]. As 

shown in [11,12], a similar structure without interleaved parity cannot sustain certain types of three disk failures. Use of interleaved 
parity enables us to sustain all types of three disk failures. 

It is possible to maintain only one “parity of parity” disks (interleaved parity disk) instead of multiple replicated disks. Use of 
replicated interleaved parity disks has significance both from practical operational point of view and from the reliability angle. 

Whenever, there is a write operation in the RAID-CUBE, the interleaved parity is updated which is not true for row and column 
parity disks. Therefore, the disks storing the interleaved parity can have significantly less life-span than other disks. In our analysis, 
we assumed that the life-spans of all disks are same which may not be true. Replication of the interleaved parity disks enables the 
sustenance of such skewed writing operations. 

Next we analyze the MTTDL of 2D RAID CUBE and 3D RAID CUBE (having 64 data disks) with that of a similar 2D 
structure with only one interleaved parity disk. In analyzing the MTTDL, we can see that the chance of data loss for four disk 
failures in the case of one interleaved parity disk is 

            

 

 

          (29) 

 

 

 

Figure 16: Column parity computation for different chunks. 
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Any subsequent probability of data loss for larger number of disk failures can be expressed as 

)1,)1min(( 1−+= ii i αα
       (30) 

Using these values of α s, we can determine the MTTDL for a similar 2D CUBE organization with one interleaved parity disk 
and 64 data disks. Figure 17 illustrates the MTTDL of a group of 64 disks for different MTTR. Here also we considered the life-
span of a disk to be 5 years. 

We can observe that 2D CUBE with single interleaved parity disk is comparable with 3D CUBE with 3 parity disks (only for 
64 disks); however, it is worse than a similar 2D CUBE with two parity disks. Note that the 3D CUBE shows inferior performance 
than 2D CUBE only for smaller number of disks. As the number of disks increases, 3D CUBE performs better than 2D CUBE as 
we discussed before. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VII. SUMMARY AND CONCLUSIONS 
We have shown a new configuration, RAID-CUBE, that is more resilient than existing RAID-based data protection 

mechanisms, including RAID dual parity [4], RAID triple parity [8], and the two-dimensional RAID layout as proposed by Paris, et 
al. [13]. RAID-CUBE is essentially a generalization of the configuration proposed by Paris, et al. [11,12], with additional 
interleaved parity disks. We provided a new and generalized analytical technique to compute the mean time to data loss for a very 
large number of disks in a datacenter. Using it, we have shown that RAID-CUBE accommodates more capacity (number of disks) 
in a datacenter as compared to the existing RAID configurations with the same mean time to data loss. We also show analytically 
that mean time to recovery (MTTR) is a very important parameter to maintain a reasonable limit on the MTTDL. Usually RAID is 
not well equipped to protect against the bit errors without the read-modify-write cycles. We show a mechanism to protect against 
the bit errors without using read-verify-write cycles for the kind of large sequential IOs that now dominate modern datacenter 
workloads [1,10]. 

In our analysis, we did not differentiate between the disk failure rate and the bit error rate. In practice, bit error rate 
characteristics are different [18] and much higher than the disk failure rates [15]. Further refinement to our analytical model can be 
performed to differentiate between these two rates. Our analysis simplistically assumes exponential distribution for bit errors and 
disk failures. As shown in [17], disk failures do not necessarily follow the exponential distribution, and Gamma or Weibull 
distribution [17] may be better fit for such failures. However, it is very difficult to analytically express the transient differential 
equations for data loss using the Weibull distribution. An elaborate simulation technique may possibly reveal the MTTDL more 
accurately. In modeling the transient state probability equations, we also ignored the other underlying processes such as disk 

Figure 17: MTTDL vs. MTTR for 2D RAID CUBE with a single interleaved parity disk. 



scrubbing, bursty writes, physical conditions such as temperature [16], etc. We also considered the disks failing independently of 
each other. In correlated failures (e.g., in [16]), the failure rate can vary substantially. A thorough analysis of the state diagram is 
required for this purpose. 

In our analysis, we did not address the issue of reconstruction bandwidth of the protection mechanism. For example, in 3D 
RAID-CUBE, all the disks in a single plane will be involved in reconstructing the data of one failed disk. On the other hand, in 
RAID6, the number of disks involved in the reconstruction process is a single array and less than that of the 3D CUBE. Further 
analysis is required. 

We have provided a generalized analysis to derive MTTDL for very large number of disks in a datacenter. Our analysis and 
generalization provides insights into how data loss can happen in datacenters with large number of disks, and how a new RAID 
configuration can provide better protection than the existing variants. 
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