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Abstract

Active Systems with Uncertain Parameters: an Information-Theoretic Perspective
by
Gireeja Vishnu Ranade
Doctor of Philosophy in Electrical Engineering and Computer Sciences
University of California, Berkeley
Professor Anant Sahai, Chair

The sister fields of control and communication share many common goals. While com-
munication aims to reduce uncertainty by communicating information about the state of the
world, control aims to reduce uncertainty by moving the state of the world to a known point.
Furthermore, transmitters must communicate over the unreliability in the communication
channel, while controllers must overcome unreliability in the sensing and actuation channels
of the system to stabilize it. Extensive work in information theory has provided a framework
with which we can understand the fundamental limits on the communication capacity of a
communication channel. This dissertation builds on the information-theoretic perspective
to understand the limits on the ability of controllers to actively dissipate uncertainty in
systems.

High-performance control systems include two types of uncertainty: noise that might
be introduced by nature, and inaccuracy that might be introduced by modeling, sampling
errors or clock jitter. The first of these is often modeled as an additive uncertainty and
is the object of most prior work at the intersection of communication and control. This
dissertation focuses on the multiplicative uncertainty that comes from modeling and sampling
inaccuracies. Multiplicative uncertainty could be introduced from the observation mechanism
that senses the state (the sensing channel) or from the actuation mechanism that implements
actions (the actuation channel). This dissertation examines the control capacity of systems
where the parameters of these channels are changing so fast that they cannot be perfectly
tracked at the timescale at which control actions must be performed. This parallels the
fast-fading models used for wireless communication channels.

This dissertation defines a notion of the “control capacity” of an unreliable actuation
channel as the fundamental limit on the ability of a controller to stabilize a system over that
channel. Our definition builds from the understanding of communication capacity as defined
by Shannon. The strictest sense of control capacity, zero-error control capacity, emulates
the worst-case sense of performance that the robust control paradigm captures. The weakest
sense of control capacity, which we call “Shannon” control capacity, focuses on the typical
behavior of the zeroth-moment or the log of the state. In between these two there exists a



range of n-th moment capacities of the actuation channel. These different notions of control
capacity characterize the impact of large deviations events on the system. They also provide
a partial generalization of the classic uncertainty threshold principle in control to senses of
stability that go beyond the mean-squared sense.

Since the “Shannon” control capacity of an actuation channel relates to physically sta-
bilizing the system, it can be different from the Shannon communication capacity of the as-
sociated communication channel. For the case of actuation channels with i.i.d. randomness,
we provide a computable single-letter expression for the control capacity. Our formulation
for control capacity also allows for explicit characterization of the value of side information
in systems. We illustrate this using simple scalar and vector examples.

These ideas also extend to systems with unreliable sensing channels. Somewhat surpris-
ingly, we find that in the case of non-coherent sensing channels, the separation paradigm
that is often applied to understand control problems with communication constraints on the
observation side, can fail. Active learning and control of a system state is possible (i.e. the
control capacity is finite), even though passive estimation is not. An interesting aspect of
this result is the techniques used. The problem is reduced to estimating the initial state of
the system using a prior and the non-coherent observations. Then a genie-based argument
can be used to lower bound the Bayesian problem using a minimax-style hypothesis testing
bound.

The results throughout are motivated by observations made using simplified bit-level
“carry-free models.” These models are generalized versions of deterministic bit-level models
that are commonly used in wireless network information theory to capture the interaction
of signals. Here, we modify them to capture the information bottlenecks introduced by
parameter uncertainty in active systems.
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Chapter 1

Introduction

The past few decades have seen technology and society take ever larger steps towards au-
tomation of activities in our daily lives. Today, the Internet of Things presents a vision
that is strikingly close to what was futuristic science fiction fifty years ago. There has been
extensive development in sensing and data processing for applications in home automation,
civic and environmental systems, and medical monitoring technology. The larger vision of
the Internet of Things (IoT) includes not only sensing but also simultaneous actuation of
numerous wirelessly connected devices. The goal is to enable a large number of globally dis-
tributed computing devices that communicate with each other and interact with the physical
world at both personal and industrial scale. Truly immersive IoT applications with humans
in the loop require highly-reliable communication, and latency requirements on the control
loop are on the order of human-response times, i.e. tens of milliseconds. Industrial control
applications have similar latency constraints and require reliability on the order of 1078, The
next generation of 5G wireless communication protocols are being developed today to target
these applications in the high-performance regime. The processing speedup from Moore’s
law and more bandwidth can move us closer to this vision, but they cannot get us all the
way there.

This push towards high-performance control really forces us to ask the question: what
are the fundamental bottlenecks in control applications? This dissertation provides an
information-theoretic approach to understand the fundamental performance limits on ac-
tive control systems.

There are many parallels between the sister fields of communication and control. While
communication aims to reduce uncertainty by communicating information about the state of
the world, control aims to reduce uncertainty by moving the state of the world to a fixed point.
Furthermore, transmitters must communicate over the unreliability in the communication
channel, while controllers must overcome unreliability to stabilize the system. Extensive
work in information theory has provided a framework with which we can understand the
fundamental limits in communication. Communication capacity is a standard metric in
wireless system design that has motivated work in coding theory and influenced protocol
design in wireless communications.



This dissertation develops a notion of “control capacity” to understand the impact of
uncertain parameters in control systems. High-performance systems might have systems pa-
rameters that cannot be perfectly tracked at the timescale at which control actions must be
performed. Further, systems can include both uncertainties that are introduced by nature
but also inaccuracies that are introduced by the system model itself. While nature-introduced
uncertainties tend to be additive, model parameter errors can introduce multiplicative un-
certainties in the system.

Within control theory, system identification and adaptive control have developed algo-
rithms by which a controller can gather information to better model a system. The controller
first uses known perturbations to learn the system dynamics to a desired accuracy and then
stabilizes it. This may be done in an active fashion where the input signals are chosen on-
line, in response to the system’s observed behavior. Alternatively, it might be done passively
with a predetermined set of inputs. Robust control tends to deal with uncertainty using a
non-stochastic worst-case perspective, and often focuses on linear strategies for stabilization.

However, traditional information theory ignores message semantics and focuses on system
rate. Complexity, delay and reliability are secondary considerations. On the other hand,
traditional control theory has a natural focus on interpreting an observation to perform the
right action and cares about the rate of convergence and computable solutions. As a result
the tools in both of these fields have largely been developed independently of each other
and do not quite mesh. There have been previous attempts to try to develop a theory of
information that is compatible with the cost function and structure of control systems, as
indicated by this quote from Witsenhausen in 1971 [114]:

Changes in information produce changes in optimal cost. This suggests the idea
of measuring information by its effect upon the optimal cost, as has been proposed
many times [11]. Such a measure of information is entirely dependent upon the
problem at hand and is clearly not additive. The only general property that it is
known to possess is that additional information, if available free of charge, can
never do harm though it may well be useless.This simple monotonicity property
is in sharp contrast with the elaborate results of information transmission theory.
The latter deals with an essentially simpler problem, because the transmission
of the information is considered independently of its use, long periods of use of
a transmission channel are assumed, and delays are ignored.

Efforts to establish a new theory of information, taking optimal cost into account,
have not as yet been convincing [54, 104, 113, 8].

This dissertation proposes a novel information-theoretic approach to understand the bot-
tlenecks due to parameter uncertainties in control systems. The notion of “control capacity”
proposed depends on the problem formulation and is also additive, i.e. it can easily account
for additional side information.



1.1 Basic system model

To set up a framework for the dissertation, we give the general system model (Fig. 1.1).
Elements on the observation and control side mirror each other.

This thesis considers three types of channels in the system: communication channels,
sensing channels, and actuation channels. Communication channels are the channels that
are traditionally considered in information theory, and may occur on the input or on the
output side of the plant. These model unreliability and noise introduced after the data
collection process is completed or before the actuation has started. As a result, encoders
and decoders can be used to combat the uncertainty of these channels. The remaining two are
illustrated in the figure below. The bottlenecks presented by the sensing and the actuation
channels are related to the physical limitations of the devices.

System/Plant
X|[n] X[n]
Sensing Actuation
channel channel
Yn] Observet/ Uln]
Controller

Figure 1.1: A general model for control and estimation of a system over networks.

e System/plant: The system determines the physical evolution of the system state.

e Observer/controller: This is a box with computational power that can estimate the
system state and compute controls. The desired control actions are sent to the actuator
via the actuation channel. There might be communication channels inside this box that
use encoding and decoding.

e Sensors and sensing channels: The sensors and sensing channel is the output interface
of the system to the rest of the world. The sensing channel has access to (noisy) mea-
surements of the system state, but has little to no computational power. It transmits
the observations out of the system. In a sense, decoding of these transmissions by the
controller is possible, but encoding isn’t. This might also be a network. We can think
of this as the physical sensor that is actually collecting the data.

e Actuators and actuation channels: The actuation channel is the input interface for the
controller to interact with the system. Control signals are transmitted over this to the
system actuators. This also has little to no computational power and can only execute
the controls sent to it by the controller. This represents the physical actuator that is
implementing the control. So here, encoding might be possible, but decoding isn’t.



Standard linear system models for estimation often have the format below:

X[n+1]=

—

Yin]=C-X

[n] + Vn] (1.1)

X [n] is the m x 1 state vector and A is a known m x m constant matrix. n is the
time index. C is also known and may or may not be full rank. Wn], V[n] are a additive
m X 1 noise matrices. With no observation encoding or rate-limits, the optimal open-loop
estimation in the presence of additive noise is given by the traditional Kalman filter [58].

This setup is slightly modified in the case of control, with the control signal U [n] which
is a function of Y[n], added in. B is the control gain matrix.

Xn+1=A-X[n]+ B-Uln]+ Wn]
Yn] = C- X[n] + V|n] (1.2)

The objective of a good controller is to minimize the cost function associated with the
system. This cost usually involves both the state magnitude and the control power. Papers
such as [101] and related works successfully use dynamic programming to tackle these prob-
lems. However, it can be difficult to deal with rate-constraints in a system in the presence
of a control cost. To simplify the setting, many works in the community tend to focus on
asymptotic system stability, since it is the precursor to understanding the full control cost.
This dissertation also focuses on stability as a first step to understand control capacity.

Much of the previous work at the intersection of communication and control has focused
on the channels on the output of the system, i.e. the observation and sensing side. This
is because there is an obvious connection between communication and control when we
think of the state of the control system as an information source. The system is generating
messages that must be transmitted to the controller at adequate rate so that the system can
be tracked and also stabilized. In this context, estimation theory is the natural bridge from
communication to control.

The next section gives a history of related work at the intersection of communication and
control.

1.2 Previous work

We divide the related previous work into four subsections. The first subsection focuses on
performance bottlenecks in the sensing and observation channels in a control system, while
the second focuses on performance bottlenecks due to the control and actuation channels
in the system. When thinking of communication (or sensing or actuation) channels that
are being used for control, the required rate and required reliability are the two relevant
measures. We discuss both of these here. The impact of observation-side bottlenecks are
much better understood than the control side bottlenecks, and this thesis tries to fill in some



of the gaps on the latter side. There has been very little work on actuation channels that is
compatible with information-theoretic tools. Many of the arguments are separation-based.

Two survey papers give a very good idea of the state-of-the-art for both these subsections.
The survey paper by Schenato et al. [101] highlights the use of Riccati equations and LMI
techniques to provide numerically computable bounds and thresholds for system stability.
A second survey paper (from the same IEEE special issue) by Nair et al. [80] focuses on
rate constraints in control systems and uses statistical and information-theoretic tools. The
models in [101] use an infinite capacity real-erasure channel in their model. The formulations
considered in [101] do not allow for encoding and decoding over the sensing and observation
channels. This allows for a focus on the the reliability bottleneck that is generated by
observation and sensing channels: errors are caused when information is received “too late”
as opposed to because “too few” bits are received. On the other hand, the models in [80]
are rate-constrained and the results extensively use information-theoretic tools. However,
these models cannot capture the critical aspects of reliability for control. The work discussed
in [80] considers powerful encoders and decoders on the sensing and observation channel in
the system. The following sections discuss the relationships between both sets of models as
well as the complementary perspectives they provide.

The third subsection provides a discussion of uncertain parameters and multiplicative
noise in systems, which is the focus of this dissertation. Finally, we discuss previous discus-
sions on the value of information in systems.

1.2.1 Sensing and observation channels

Encoder

| System
Y[n] X|n]

Channel

~

Observer [>X[n+1]

Figure 1.2: Estimation of the system state based on observation-feedback over a lossy link.
The decoder is part of the observation box.

Information theorists look to rate as the parameter that characterizes a communication
system. A natural first attack is to bring in tools from information theory and look at
estimation and control over rate-limited channels.



Rate-limited observation channels

Explicit encoding and decoding with rate-limited channels was was first considered in papers
such as Wong et al. [117], Nair et al. [79] and Tatikonda and Mitter [110]. [110] looked at
the estimation and then control of an unstable system over a noiseless rate-limited channel,
with access to a full encoder and decoder on either end of the channel (Fig. 1.2). They
showed there is a threshold on the rate required over a communication channel for stable
estimation and stable control, and that the threshold is the same in both cases! First, they
showed that for an observer to be able to track the state with finite mean squared error, the
observation channel must be able to support a rate R > > log|A(A)|, where A(A) are the
unstable eigenvalues of the matrix A. The proof technique was non-standard in control at
the time, and hinged on showing that the volume of uncertainty in the system was growing
as the product of the unstable eigenvalues of A.

Encoder
| System
Y[n] X[n}
Channel
Observer Uln]
Controller

Figure 1.3: Rate-limited control allows an encoder and decoder for communication across
the channel. The decoder box can be thought to be merged with the observer/controller box
and is not shown separately here. Further, the controller provides feedback of the control
signal sent to the encoder box so that only the innovation in the system need be encoded.

Their basic argument to show that the threshold for stabilization is the same as for
estimation is based on the separation paradigm. First, they note that the controller can
simulate an observer and estimate the system state in open-loop. Since it has memory of
the previous controls it applied, it can also estimate the closed-loop system state. Then, it
can compute the optimal control from the current state-estimate as the one that will cancel
out the state. The necessary condition on the rate is given from the estimation results.
Subtracting the state estimate at each time (using knowledge of the controls that have been
previously applied by the controller) gives a matching sufficient condition. Full knowledge of
the actual impact of the applied controls is critical in this strategy, and the results in [110,
96] use control feedback to the encoder to achieve stabilization (see Fig. 1.3).

A large set of data-rate theorems for control over (noiseless and noisy) rate-limited chan-
nels have built on these ideas and follow from separation theorems, as in [110, 96, 79], and
more recently in results like [75]. In these problems, it is common to think of the observer
and controller as lumped into one box (Fig. 1.3), with a noiseless channel between controller
and actuator.



One property of messages/bits transmitted in a communication system is the transmission
rate. A second one is the reliability at which the bits are received by the decoder. This
reliability is particularly important in control systems [97]. However, this reliability, or
the probability of error associated with a bit is ignored in noiseless rate-limited channels.
[97] used a binary erasure channel to show that just large enough Shannon capacity is not
sufficient to ensure bounded estimation error. The most significant bits (MSBs) of the
state must be estimated to greater reliability, i.e. the communication system must guarantee
a lower probability of error for the MSBs of the state as time goes on. This was fully
understood for scalar systems by Sahai and Mitter [96]. This paper showed that for a scalar
system with eigenvalue a, a necessary and sufficient condition for a finite n-moment error is
that the anytime capacity for reliability nloga is greater than log a.

Using the discussions in [98] and deterministic style models such as those proposed by
Avestimehr, Diggavi and Tse (ADT models), we can illustrate this result. Think of the
system state as a stack of bits, with the LSBs at the bottom and MSBs at the top. This
stack is growing taller with each clock tick as the unstable system is multiplied by a gain
(Fig. 1.4). The observer must estimate each bit before it gets too large, and so the required
reliability on the bits increases as they take higher positions in the stack. Since the cost bits
are proceeding upwards by 7nloga positions each time, i.e. the magnitude of the n-moment
of the state is growing by 27°8¢  the probability of error on that state bit must shrink by
at least 277°8¢ Hence, nloga is the required reliability. The communication rate is given
by the number of new bits that are pulled into the system state at each time, which is log a.
(We emphasize this picture because it has been useful to understand the information flow in
other decentralized estimation and control problems [47, 84, 93]).

Time n+2

O
OO OO0 O
Oolo O OO

Figure 1.4: The system state can be thought of as a stack of bits marching upward.

The scalar anytime ideas can be extended to vector systems through a change of coordi-
nates and diagonalization [99]. Projected on to the appropriate basis, a vector system is like
multiple (possibly interacting) scalar systems. This may come at the cost of finite delay: if



the observations belong to a lower dimensional subspace than the system due to the struc-
ture of the B matrix, then the system must wait to accumulate enough observations. [99]
gives a characterization of stable regions involving reliability vectors. While we can compute
these in the scalar case, for the vector setup the regions are hard to compute even for simple
channels like the BEC with feedback. We do not even have non-trivial bounds. Hence, the
result is somewhat dissatisfying.

The special case of the real-erasure channel (with arbitrary encoding and decoding) is
easier to understand [99]. The rate constraint is removed with the infinite-capacity-real-
erasure channel, and the limit arises due to the reliability constraint alone. Then, the
critical erasure probability is dictated only by the maximal eigenvalue of the A matrix, and
is m for n-moment stability of the error'.

This shows that reliability constraints have a “max” nature: they combine to give the
strictest of the constraints (when rate is not an issue). On the other hand, rate constraints
naturally add, as we know from Tatikonda and Mitter [110].

Real-erasure observation channels

The vector real-erasure channel in the anytime results requires a very non-trivial encoding to
be able to meet the WI(,M constraint: a vector is packed into a scalar by bit interleaving!
Does the result hinge on this complex encoding strategy?

This question leads to the intermittent Kalman Filtering model, which also considers
mean-squared estimation of a system over a real-erasure channel [102]. This model simply
takes encoding off the table and focuses on reliability. A basic block diagram is in Fig. 1.5.

System

Lossy
Link

Observer =
X

[n+ 1]

Figure 1.5: Estimation of the system state based on observation-feedback over a lossy link.
Note that encoding is not allowed.

IConsider the following strategy: at each time encode the real-valued observations for each element of the
system state vector into one real number by interleaving the bits. We have access to a powerful decoder and
so the state-estimation error is renewed every time an observation arrives. As long as the erasure probability
is low enough that it can catch the growth due to the maximal eigenvalue, the estimation error remains
bounded. This is caricatured by the deterministic model picture of bits running off to infinity along the
eigenvectors for each eigenvalue of A.



To be able to use the traditional Kalman Filtering tools, Sinopoli et al. modeled packet
drops over a network as an additive noise with infinite variance, i.e. a noise that wiped out
the observation entirely. Subsequently, they showed that the results also hold with packet
drops modeled as a discrete-valued multiplicative noise, 5[n] = Bernoulli(1 — p,), in addition
to the additive noise for the system observation [101], as below:

—

A-X[n] + W]n]
Bn](X[n] + V[n)) (1.3)

Using a Riccati equation approach, they show that the optimal Kalman gain for this
problem is time-varying and depends on the arrival sequence [n|. They then restrict the
solution to be linear and time-invariant to give a Modified Algebraic Riccati Equation which
can be analyzed using LMI techniques as shown in [102]. With this, they show that the
critical erasure probability for the mean-squared error is upper-bounded by m, where
Amaz(A) is the maximal eigenvalue of the matrix A. The estimation error is unstable for
higher packet loss probabilities. This matches the result of the vector anytime problem with
17 = 2 in the previous section: a strategy without encoding cannot beat a strategy with
encoding. However, this bound is not tight, and they find that in certain cases the LMI
predictions do not match this bound. This left a gap open to explore.

In a decentralized setup, simultaneous encoding of the different components of a vector
system-state might not even be possible. What happens if all of the required observations
are not generated by the same sensor and hence have different erasure probabilities? This
question was noted and explored by Liu and Goldsmith [65]. By holding one of the two drop
probabilities constant, they formulate a problem similar to [102] and provide LMI-based
bounds for the critical erasure probabilities. In this case as well, there is gap between the
upper and lower bounds in the general case. However, the authors show how the bounds can
help design decisions. Engineering considerations might allow a designer to allocate more or
less resources to a particular channel and these bounds can guide the allocations to ensure
system stability.

Mo and Sinopoli [77] further explored the gap above and gave clear examples of systems
where the critical erasure probability can be either g based on the nature of

Amaj(A)Q or H/\(lA
the matrix A with no restriction on the filter gain (i.e. it was allowed to vary with time and
depend on the specific observation arrival sequence). This gap was then fully understood
by the introduction and analysis of eigenvalue cycles in [86]. If the pattern of observation
erasures is such that the observer keeps receiving redundant information, it will not be able
to decode the state. It turns out that this can only happen in special cases where the

eigenvalues of A have a very specific cyclic structure. For instance, if the system dimension
and cycle period are both n, then the critical erasure probability is m. However, for

generic A the critical erasure probability is exactly ; cleanly resolving the estimation

1
az (A)Q Y
problem [86]. In principle, these results have brought closure to the erased observations

problem.
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It is important to note that the works above did not allow for the possibility of an encoder
with memory or delay. The estimate for X [n| must be produced at time n. One of the ideas
in [86] is to break up the eigenvalue cycles by non-uniform sampling. This could also be
achieved by an encoder of memory-n that takes a random linear combination of samples

before sending them across the channel, which would get us back to the m bound [86].

1.2.2 Control channel

In addition to unreliable and noisy sensing and communication channels on the output side,
real-world systems also have to contend with unreliable or delay-prone actuation channels
or communication channels on the control end.

Consider

Xn+1]=A-X[n]+[n]- B-Uln),
nl,

Yin] = X| (1.4)
where X[n] is the m x 1 state vector, A is an m x m constant matrix, B is an m x 1 constant
matrix, and [n] are i.i.d. Bernoulli(1 — p.) random variables.

Elia and co-authors were among the first to consider control actions sent over a real-
erasure actuation channel (eq. 1.4)and ask: how can we control a system (with perfect
observations) when the control packets to the actuator might be lost over a real-erasure
channel [32, 30, 31]7 They restricted the search space to consider only linear time-invariant
(LTI) strategies so that the problem might become tractable*. [101, 55] also looked at
this problem using dynamic programming techniques and showed that LTI strategies are
in fact optimal in the infinite horizon. Riccati equation techniques and dynamic program-
ming can show a separation result in the case of simultaneous lossy observation and control
channels [101, 55].

[32, 101, 55] also identified the importance of acknowledgements on the actuation channel.
In the case where packet losses over the actuation channel are acknowledged (i.e. the control
transmission is over a “TCP-like” protocol, Fig. 1.6), separation between estimation and
control holds. The optimal control strategy is a linear function of the state-estimate, and
the optimal controller gain converges to a constant in the infinite horizon case [101]. On
the other hand, in the case where control packets are not acknowledged (i.e. the actuation
transmission uses a “UDP-like” protocol), separation does not hold. In the generic case,
non-linear and possibly time-varying strategies are necessary [101, 55]. The estimator error

*This restriction is essentially the same as in [102]. Elia showed that pe < g7z, where A(A) are
the unstable eigenvalues of the matrix A, is the critical probability for stabilization using LTI controllers.
The techniques here provides an insight into the theorem that is hidden when seen through the dynamic
programming lens and are discussed further in Chapter 7.

Sinopoli et al. restricted the Kalman gain to be time-invariant to be able to approach the problem using
standard Riccati techniques.
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I Ack

Controller

[

Figure 1.6: Control packets are acknowledged as in a TCP protocol.

covariance depends on the control input, and the erasure probabilities of the observation and
the control channel may interact.

Combining the fact that LTI strategies are optimal (with packet acknowledgements) [101,
55], with the bound for LTT controllers from [30] we can conclude that the p, < m bound

holds for all control strategies®. The restriction to LTI strategies in [30] was in fact not a
restriction at alll

Liu and Goldsmith [65] considered the case of physically separate sensors for estimation.
What about the control problem with physically separate actuators and separate channels
between different actuators and the controller? This problem is considered by Garone,
Sinopoli, Goldsmith and Casavola in [36, 37]. They extend the techniques of [101] to show
that just as with a single channel, the separation principle still holds with both multiple
sensor and actuator channels and acknowledgements for the control channel. In [37], it is
interesting that the optimal control is a linear function of the state that explicitly depends
on the loss probabilities of each channel (Remark 4 of [37]). This is different from the case of
a single channel, where the controller can afford to remain agnostic to the drop probabilities.
There, the optimal control at time k£ is computed assuming that it will get through the
channel.

We provide a simple scalar example (not in the paper [37]) helps illustrate what is going
on here:

X+ 1] = A+ X[a] + 2 ufn] - Uili] + 5 - 2oln] - ],
Y[n] = X[n] (1.5)

Let 71 [n] and 73[n] be independent Bernoulli-(p;) and Bernoulli-(ps) random variables. Then,
the optimal control vectors U;[n] and Us[n] must take p; and p, into account: for instance
the control with p; = 0 and p; = 1 is clearly different from p; = 1 and p, = 0 and also

3The assumption of noiseless perfect observations in [30] is equivalent to assuming control acknowledge-
ments.
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different from p; = py = 0.5. In the last case, some kind of average control action is the right
thing to do. The two independent random variables combine to form a random multiplicative
scaling for the control action. The control must account for this multiplicative noise and
hence depends on the drop probabilities.

Gupta, Spanos, Hassibi and Murray [52] used dynamic programming techniques to show
that an observation/sensing channel can tolerate more erasures if the system is allowed an
encoder and decoder around the channel: the critical probability goes from depending on
the product of the eigenvalues to depending only on the maximal eigenvalue. While this can
be seen directly using an information-theoretic perspective, it is more challenging to arrive
at the result using other arguments. The problem considered by Gupta, Sinopoli, Adlakha,
Goldsmith and Murray in [51] builds on this. Here authors consider the utility of an actuator
with memory, which can be thought of as an approach to understand the control case with
encoding over control packets allowed. For a generic A matrix with no cycles and rank-1
B matrix, an actuator memory equal to the dimension of the system changes the tolerable

1

erasure probability from I 88 in [30] to m. We provide a simple example (not in

the paper [51]) to understand the spirit of the result:

AL 00 1
Xn+1=|0 X 0| Xnl+ 1| Upnl,
0 0 A 1
Y[n] = X[n], (1.6)

with distinct Ai, Ao, A3. Then the system can be set to 0 in three time steps. If these
controls can be precomputed and sent to the actuator in advance (i.e. the actuator has a
memory buffer of 3), one time step is sufficient, which brings us to the m bound since
now we only have to account for the fastest eigenvalue. This helps interpret the simulation
results presented in [51]: for a two dimensional system the control cost became constant with
actuator memory of 2. The authors use these simulations to point out that such memory
would be most useful in the case of correlated or bursty losses, which are common in real-
world networks.

Unlike the estimation setup, which is now well understood, the space of control problems
still has open questions. So it seems that the duality between estimation and control does not
always hold. Consider the simple case of a scalar observation sent over a real-erasure channel
for estimation and the dual control problem with perfect observations but a scalar real-
erasure control channel. We know from [86] that the critical drop probability for estimation
of a system, as in eq. (1.3), with generic matrix A is m. This is different from the
erasure probability tolerable in the dual control problem, as in eq. (1.4), considered by
Elia [30] which is m. This is significantly more stringent than in the observation case.

Why does the duality of estimation and control break down in the case of lossy sensing
and actuation channels? Why is the control problem harder? We will try to address these
questions in this dissertation.
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1.2.3 Parameter uncertainty as multiplicative noise

Parameter uncertainty has a long history in controls, communication and learning, and
usually manifests as multiplicative randomness in the system. The erasure sensing and
actuation channels considered in the earlier sections are specific examples of multiplicative
uncertainty on a channel, Bernoulli uncertainty. This dissertation explores more general
multiplicative noise on the sensing and actuation channels in a system.

Since linear systems are additive and commutative, additive noise in the actuation channel
has the same effect as additive noise in the plant itself would. Hence, the data-rate theorems
discussed in the earlier section effectively capture the effect of additive uncertainty on the
actuation channel. However, the examples in the previous section show that multiplicative
noise can break this duality between the sensing and actuation channels, and we explore the
two aspects separately in this thesis.

Communication systems

Communication channels with multiplicative noise have been extensively studied in infor-
mation theory. Non-coherent channels in communication systems emerge when phase-noise,
frequency hopping or fast-fading make it impossible for the receiver to perfectly track the
channel state. Such communication has been studied as far back as 1969 when Richters
conjectured that even for continuous unknown fading-distributions the optimal input distri-
bution is discrete [94]. The conjecture was proved in 2001 [1, 59]. Since then we know that
the capacity of channels with unknown Gaussian fading scales as loglog(SN R) as opposed
to the log (SN R) scaling of channels with known fading [108, 63].

Control and estimation systems

Non-coherent observations in control systems can similarly arise from synchronization and
sampling errors in control systems [73]. Consider a nearly trivial continuous-time system:

X(t)=a-X(t).

The system collects samples at regular intervals ¢, 2¢¢, 3t and so on. The system differential
equation above implies X () = e X (0), which gives the difference equation:

X[n+1] =e™ - X|n].

Say we are recording a sample Y [n] at time ntg, but clock noise leads to the sample actually
being collected at time nty + Aty, where Aty is a continuous-valued random noise variable.
Then we have:

Y[n] = e?(totA%) X (0) = B[n]e*™) X (0).

where B[n] = e** is necessarily a continuous-valued random variable. We would have liked
to observe Y[n] = e4™) X (0), but we must make do with the multiplicative random noise.
Thus, with timing jitter, state information is received over a non-coherent channel.
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Estimation with multiplicative noise was explored around the same time as questions
regarding non-coherent transmission were being asked [91, 112]. Furthermore, the very idea
of robust control [122] and adaptive control [5] is about dealing with parameter uncertainty.

On the control side, the paper [29], by El Ghaoui is an example of a discussion of control
of systems with multiplicative noise. This paper takes a convex optimization approach and
solutions involve linear matrix inequalities. The author states that: Some of these problems
have a known “analytical solution” (via a nonstandard Riccati equation...); most do not.
After this, multiplicative uncertainty has also been explored in a robust control context for
example by Phat et al. [89] or Gershon et al. [41]. These papers take a worst-case perspective
and primarily use LMI techniques. There is also work in robust control that focuses on the
Ho norm and takes a stochastic approach.

Elia [30] builds on the robust control approach. Using a restriction to LTI strategies,
he is able to connect the results back to the system eigenvalues. However, in general, while
LMI based approaches allow us to numerically get a handle on the system parameters, they
do not provide much intuition into the fundamental bottlenecks of the problem and are
not compatible with information-theoretic approaches. Other attempts to characterize the
behavior of systems with parameter uncertainty (i.e. multiplicative noise) have been limited
to linear strategies [30, 91, 112] or a priori stable systems [42, 40, 121].

A classical result in control theory that deals with multiplicative uncertainty in systems
is the uncertainty threshold principle [6]. They consider a scalar linear system with Gaussian
randomness in both the system gain and the control gain. The observation channel is perfect.
Using Riccati equation techniques as developed in Aoki [3], they provide an explicit threshold
on the uncertainty in the system and control gain that can be tolerated for mean-squared
stabilization of the system. Unfortunately, there is no analytical solution for the imperfect
information counterpart of this model [12, p. 229]. Furthermore, these general dynamic
programming techniques are difficult to apply beyond the quadratic cost case.

The separation theorem often comes to the rescue in the imperfect information case [12, p.
233|, and dynamic programming techniques can give linear strategies for quadratic cost case.
However, it is more difficult to understand general cost functions on the state. Furthermore,
as we will see later in this thesis, the separation theorem might not hold in examples with
multiplicative noise.

Finally, it is worth mentioning that parameter uncertainty and multiplicative noise has
also been studied in through the reinforcement learning paradigm. Bandit problems focus
on the tradeoff between exploring unknown parameters in a system and taking actions based
to exploit the system [16].

1.2.4 Value of information

As mentioned by Witsenhausen [114], the idea of measuring information by it’s impact on
optimal cost has be proposed many times. In fact, the uncertainty threshold principle can
be thought of as one way to measure this. The change in the threshold based on information
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that decreases the entropy of the system or control gains can be interpreted as the value of
that information. Can we extend these ideas beyond the Gaussian mean-squared case?
There have also been many other efforts to extend the ideas of information theory into a
domain that also takes into account the semantics of the information being communicated
(the optimal cost in the the case of control problems.) Goldreich et al. [44], Juba and
Sudan [57] and Sudan [105] take a computational complexity approach to the problem. They
define communication to be successful if two agents can achieve a common goal as determined
by an oracle, and indirectly explore notions of value of information in “universal” systems.
There have been many attempts to understand the value of information within control
theory, such as the works described by Witsenhausen [54, 8]. Other later works include
Davis [26] and Back and Pliska [9]. These are discussed in further detail in later chapters
in the thesis. However, these all focus on a mean-squared sense of stability and are not
compatible with information-theoretic notions. For example, side information is hard to
understand in these contexts. This dissertation tries to generalize beyond those concepts.

1.3 Contributions

This thesis develops a framework and a set of tools to illustrate and quantify information
flows in active control systems with uncertain parameters. One of the key developments is
the notion of control capacity, an information-theory-compatible measure of the fundamental
limit on the stabilizability of a system. This is developed towards the end of the thesis
starting in Chapter 5. The presentation starts with building bit-level carry-free deterministic
models for uncertain parameters in communication networks in Chapter 2. These ideas are
then ported to the control and estimation framework in Chapter 3. The investigation of
real-valued control and estimation systems begins with multiplicative uncertainty on the
sensing channel in Chapter 4. We build on this to understand parameter uncertainty in the
control channel and the value of side information in Chapters 6 and 7.

The organization of the thesis and key results in each chapter are discussed below as a
guide to the reader.

1.3.1 Bit level models

Chapter 2 builds from the deterministic models for information flows in wireless network
information theory presented by Avestimehr et al. [7] and Niesen and Maddah-Ali [82] to un-
derstand communication in networks with unknown fading. These models provide a natural
intuition for the loglog SN R capacity of non-coherent channels, i.e. channels with unknown
fading [63]. In the unknown fading context, a carry-free model can be further simplified
to a max-superposition model, where signals are superposed by a nonlinear max opera-
tion. Surprisingly, unlike in relay-networks with known fading and linear superposition, we
find that decode-and-forward can perform arbitrarily better than compress-and-forward in
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max-superposition relay networks with unknown fading. “Beam-forming” is critical in these
networks despite the parameter uncertainty.

We extend carry-free models to understand control and estimation systems in Chapter 3.
We prove a version of the uncertainty threshold principle in the carry-free models. Surpris-
ingly, these models show that the underlying bottlenecks that give rise to the loglog SN R
result in communication and the uncertainty threshold principle are exactly the same: they
stem from the bit scrambling that happens due to multiplicative noise. These models high-
light difference between multiplicative and additive uncertainties and form a basis for the
discussions in the subsequent chapters.

1.3.2 Uncertainty in the sensing channel

Chapter 4 studies the problem of estimating and controlling an unstable system over a non-
coherent channel. We find that carry-free models predict a result that is quite hard to predict
or prove using standard techniques in estimation and control. Systems with non-coherent
sensing channels do not obey the separation theorem, which is somewhat surprising in the
context of the large body of work on data-rate theorems for the sensing channel. It is shown
that such an unstable system is not mean-squared observable regardless of the density of the
random observation gain: the mean-squared estimation error for any estimator must go to
infinity. Standard dynamic programming techniques as well as estimation error lowerbounds
like the Cramer-Rao bound fail to give this result. We use a novel genie based proof to
convert the Bayesian problem to a minimax style hypothesis testing problem to give the
lowerbound.

Achievable strategies to stabilize plants with non-coherent observations have been well
known. Carry-free models help illustrate why active learning helps extract information and
stabilize the system even though passive estimation of the system is not possible. This
is not clear from standard dynamic programming techniques as well as information theory
rate-distortion approaches.

1.3.3 Control capacity: uncertainty in the actuation channel

Chapter 5 finally delivers the promised perspective on control capacity. We provide defini-
tions for the control capacity of carry-free models as well as for simple scalar models of un-
certain actuation channels. Our definition builds from the understanding of communication
capacity as defined by Shannon. The strictest sense of control capacity, zero-error control
capacity, emulates the worst-case sense of performance that the robust control paradigm
captures. The weakest sense of control capacity, which we call “Shannon” control capacity,
focuses on the typical behavior of the zeroth-moment or the log of the state. In between
these two there exists a range of 7-th moment capacities of the actuation channel. These
different notions of control capacity characterize the impact of large deviations events on the
system, and provide a partial generalization of the classic uncertainty threshold principle in
control to sense of stability that go beyond the mean-squared sense.
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Since the “Shannon” control capacity of an actuation channel relates to physically sta-
bilizing the system, it can be different from the Shannon communication capacity of the
associated communication channel. For the case of actuation channels with i.i.d. random-
ness we provide a single-letter expression for the control capacity. Our formulation for control
capacity allows for explicit characterization of the value of side information in systems. We
believe these ideas will extend to vector systems as well as to uncertainties in the sensing
channels and the system gain itself, but this development remains as future work.

1.3.4 The value of information in control

Chapter 6 focuses on the value of side information in control systems from the perspective
of the “tolerable growth rate” for a system. This is the maximal gain that the system can
tolerate while there still exists a strategy that can potentially stabilize it. Information theory
and portfolio theory have extensively studied the growth rates of systems (e.g. the size of
the message set and the value of a portfolio). Control systems on the other hand care about
“decay rates” since the objective is to shrink the system as fast as possible. As in portfolio
theory, we can think of the value of side information in a control system as the change in
the “growth rate” due to side information. A scalar counterexample (motivated by carry-
free deterministic models) shows the value of side information for control does not exactly
parallel the value of side information for portfolios. Mutual-information does not seem to be
a bound here.

We extend this concept to vector systems through a “spinning” system toy example.
The control directions for this system are re-oriented at each time so that the control or
observation direction is partially unknown. The value of side information can be calculated
in this setup and it behaves quite differently in a control vs. estimation context.

1.3.5 Future information in control

Chatper 7 circles back to the classically studied vector observation and control problems
over (scalar) real-erasure channels studied by [102, 86] and [30, 101] respectively. In this
case we try and measure the value of side information though the change in the critical
packet-drop probability for the system. We show that in the case of maximal periodicity
in the eigenvalues of the system matrix, the dual observation and the control problems
actually will have exactly the same critical threshold probability, which is bottlenecked by
the maximal eigenvalue of the system matrix.

However, we find that in the generic case, with no eigenvalue cycles, non-causal side
information regarding the actuation channel drops can be very valuable for the control
problem. The same side information would not improve the performance of the estimation
problem. Full-lookahead on the drops by the actuation channel can help the control problem
match the performance of the observation problem! Using dynamic programming, we can also
show that even partial lookahead can improve the scaling behavior of the critical probability
for the control problem. It seems that an align-and-kill strategy, which is similar to the zero-



18

forcing equalization strategy in communications is the optimal strategy with and without
lookahead in the control counterpart to the “high SNR” regime (i.e. as system eigenvalues
tend to infinity).
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Chapter 2

Bit-level models for uncertain
parameters: communication

2.1 Introduction

This chapter develops a new set of bit-level channel models, called “carry-free” models for
uncertain and unknown communication channels. These build on previous bit-level models
developed in wireless network information theory. Chapter 3 extends these to dynamical
systems.

Channel models have always formed the foundation for understanding and engineering
wireless communication systems. The choice of model involves a tradeoff between simplicity
and “distance” from the real-world. Fig. 2.1 shows a spectrum of these models. Rayleigh-
faded Gaussian models are among the most commonly used and have undoubtedly furthered
the state-of-the-art in the field. However, these models are complex, and this complexity
can obscure the essential interaction between channels and the information flowing through
them.

Deterministic
(ADT) models
2

Wireless Rayleigh- Quantization / Carry-free
media faded Superposition models [1] Max .
“real world” Gaussian Models [3, 4] ax-superposttion

model

Figure 2.1: Models for wireless media. Carry-free models lie between the Rayleigh-faded
Gaussian and quantization models on one side, and ADT models on the other.

This led to the development of the simple deterministic “bubble-model” by Avestimehr,
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Faded | Quantization | Carry-free | ADT

Gaussian 2, 14] [82] [7]

2x2IC v v v v

Relay channel v v v v

(3,3) dof.

in MAC w/o v v v X
timesharing & CSIT

Real TA v v v X

Direct map to

Gaussian Networks v v X X

Beam-forming gain v v X X

Unknown fading v v v X

Table 2.1: A comparison of communication models. The v'* under Quantization models
indicates that while these models can be extended to capture the effects of unknown fading
in channels, the references [2, 14] do not show this.

Diggavi and Tse (ADT model) [7], which pictorially represents information flows and their
interactions. The simplicity of these models led to progress on the relay and interference
channels. However, the same simplicity prevents them from capturing the interference align-
ment phenomena observed in Gaussian fading channels. ADT models only represent gains
that are powers of two—they are limited in their ability to capture real-valued channel gains.

Real interference alignment exploits channel diversity and channel state information at
the transmitter [78]. Channel gains that are not just powers of two are essential to capture it.
However, the naive approach with full bit-level multiplication leads to a different problem:
the “carries” in the multiplication of the channel gain and the signal break the bit-wise
linearity (and hence the simplicity) of the model. To circumvent this issue, the models
recently proposed by Maddah-Ali and Niesen [82] ignore these carries to preserve linearity
and yet model generic channel gains. This inspires us to call these models “carry-free”
models. Essentially, these carry-free models replace a single real channel input by a discrete
valued signal and a real channel gain by an LTT system (Fig. 2.2). Sections 2.2 and 2.3 give
details of the carry-free interpretation of [82]. Section 2.3.3 deals with MIMO channels.

As a summary, Table 2.1 provides a comparison of the different families of models. While
neither ADT nor carry-free models provide direct mappings for individual instances of Gaus-
sian networks, carry-free models are able to capture fractional degrees of freedom and real
interference alignment [82].

Armed with this new richer model, Section 2.4 attempts to understand another Gaussian
phenomenon: communication over unknown i.i.d. fading channels. A first curiosity about
such channels was conjectured in 1969 [94]—even for continuous fading distributions the
optimal channel input distribution is discrete. Since then many works have followed up to



21

characterize unknown point-to-point models [108, 1, 63]. Gaussian channel capacities in this
case behave as log(log SNR), as opposed to the log SN R scaling for channels with known
fading.

Carry-free models prove to be particularly useful in understanding information flows in
control theory. Historically, the fields of communication and control have developed inde-
pendently. Traditional information theory ignores message semantics and focuses on system
rate, with complexity, delay and reliability being secondary considerations. On the other
hand, traditional control theory has a natural focus on interpreting an observation to per-
form the right action and cares about the rate of convergence and computable solutions. In
the past decade, questions in the area of control over communication networks have forced
the two fields to interact. We believe carry-free models help connect these two fields and pro-
vide a information-centric perspective. This idea builds on the previous use of ADT models
in control problems [47, 84, 93]. We discuss how carry-free models can help understand the
information bottlenecks in estimation and control<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>