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ABSTRACT 
 
This paper illustrates the design and implementation of a robotic software system 
based on robot-human interactions, which increases the applications of low-cost, 
inaccurate robots such as Baxter. The first four parts of the paper discuss the 
motivation, market & industry, IP strategy and system workflow. Then the paper 
explains a specific technical contribution of the project in detail – estimating 
Baxter’s positioning accuracy. Based on forward kinematics and Jacobian matrix 
respectively, two models are built to convert the error tolerance of the joints to the 
error tolerance of the end effector in the Cartesian space. The second model based 
on Jacobian matrix is chosen as the final approach since it has linear complexity and 
it is more computationally efficient. The result gives a reasonable estimation of 
Baxter’s accuracy, which allows valid comparison with the task’s accuracy 
requirements. Thus we are able to determine how the human can interact with the 
robot and improve its performance. 
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Robotic Manipulation with a Human in the Loop 

Jiewen Sun 

Final Capstone Report – Accuracy Estimation of the Baxter Robot 

 

1 PROBLEM STATEMENT 

(Authors: Schweigert, Srinivasan, Sun, Su, Jouppi) 

We live in an age of increasing automation, but while we have machines that can open a 

can, pour a glass of water, or assemble a piece of furniture, the world does not have a machine 

that is versatile enough to do all of these tasks. 

Normally, when people think of automation, they think of robots designed to accomplish 

a very specific task, such as lifting a car-door into a car-frame, over and over again. The newer 

generation of robots though is the class of general-purpose robots. While such robots have yet to 

materialize commercially, general-purpose is a great concept. Imagine if families could have a 

robotic assistant to take care of household tasks or run daily errands. In short, human life would 

be much more convenient and efficient. 

Unfortunately, a major limitation towards reaching such a milestone is the engineering 

trade-off between cost and performance: with a limited budget of resources, it is almost 

impossible to add additional levels of complexity without decreasing performance. As such, it 

has traditionally been challenging to use robots that are both low-cost and versatile in domestic 

environments because the applications of these robots are limited by their low performance – 

specifically, their inaccuracy. This is where we decided that the human should come in. 

To address this barrier of limited resources, our capstone team has developed a system 

that is designed around robot-human interaction, where human instructors train and work with 
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cost-effective robots to accomplish a broad range of tasks with high accuracy. Using a set of 

algorithms that we have developed, the robot learns how to perform a task from a human who 

teaches it through a series of demonstrations. Following this learning process, the robot evaluates 

the task and identifies the precision requirements using a mathematical model. And when the 

robot detects that it is unable to achieve the accuracy required for a certain portion of the task, it 

requests human assistance. The final outcome is a system that excels across a vast range of duties, 

due to the combination of both the efficiency of robots working on a large-scale and the 

precision of humans working on a small-scale. 

This revolutionary design of cooperation between man and machine succeeds at tasks that 

are otherwise impossible for the machine to accomplish alone. In essence, we added in the 

human as an additional resource to improve the overall performance of the system. This was the 

rationale behind our capstone project, for we saw an opportunity here to make an enormous 

technical stride in society’s current usage of commercial robots: we took an otherwise 

unimpressive commodity – the low-cost and inaccurate robot – and engineered commercial value 

from it in the form of robotic adaptability. 

 

2 INDUSTRY AND MARKET TRENDS 

(Authors: Schweigert, Srinivasan, Sun, Su, Jouppi) 

Before examining any technical details though, we first wanted to scope out the business 

potential of our project. Consequently, in an attempt to analyze our strategic position in the 

market, we evaluated the competitive forces outlined by Porter (Porter, 2008) because we felt 

that an in-depth analysis of the intensity of these forces will influence our marketing strategies. 

In other words, analyzing these five forces enabled us to have a better understanding of our 
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industry and shaped our strategies to sustain long-term profitability. Before we begin our 

analysis however, let us first clearly define both our market and our product. 

 

2.1 Market and Product 

We defined our market to be consumer households with the intent that our algorithms 

accomplish household tasks, such as assembling furniture. We chose to target the elderly and the 

disabled as buyers of our product because this is a large, growing population with critical and 

largely unmet needs. Simply put, the elderly population in the United States is growing. While 

the current number of senior citizens in the US is roughly 40 million, that number is expected to 

grow to over 80 million by 2050 (Ortman et al., 2014). Additionally, according to US 2010 

census data, about 30%, 38%, and 56% of the population aged 70 to 74, 75 to 79, and 80 or over, 

respectively, live with severe disabilities (Brault, 2012). To further narrow our market though, 

we chose to focus specifically on affluent elderly-and-disabled individuals as our target 

customers. This is a reasonable objective because many elderly people have amassed a wealth 

savings and investments cultivated over their lifetimes. Indeed, according to a Pew Research 

study, the median net worth of senior citizens in the US is $170,000, which is 47 times greater 

than that of people aged 35 and younger (Censky, 2011). 

The definition of our product is a more complex matter because, at its core, our capstone 

project involved the research and development of an algorithm that allows a robot to learn a task 

and cooperate with a human to perform that task; it is not a complete software – or hardware – 

solution. Unfortunately, while software solutions usually have commercialization potential, 

algorithms alone do not. In order to take our robot-learning algorithm and relate it to a 

commercial application, we had to decide what form that application should take and how to take 
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such a product to market. One option was to simply license out our algorithm for others to utilize; 

we would receive royalties as a result of these sold licenses, and companies could make products 

or provide services using our algorithm. One major caveat, though, is that our algorithm 

incorporates ideas presented in externally-published research, so the intellectual property for this 

method may not lie entirely with us. We therefore chose not to investigate this option any further. 

Our next option to consider was to sell a software solution for users to install on devices that they 

already own. However, the “device” in this case would be a full-fledged robot, where, as a point 

of reference, a Baxter robot from Rethink Robotics – our current hardware-platform of choice – 

has a set price of approximately $35,000 (Rethink Robotics, 2015). Clearly, it would be 

ludicrous for people to purchase such costly technology without ensuring that it already comes 

with the necessary software to function. This left us with our final choice: a “full package”, in 

which we offer a robotic apparatus preloaded and set up with our software such that a consumer 

only needs to buy one product, with installation services if necessary. This way, we can market 

our product directly to our target consumers and eliminate the customer’s barrier-to-purchase 

that comes from setting up the technology. Thus, we decided on this “full package” as the form 

for our product: a physical robot bundled with software algorithms that we implement. 

We must consider several factors with the decision to market this “full package”. The 

first is price, and this is largely influenced by the suppliers since we must obtain the proper 

robotic hardware or components externally. After all, according to an IBISWorld report, the cost 

of mechanical manufacturing is increasing as the expenditure of raw materials increases, so we 

opt to purchase a whole robot setup instead of building our own robot from basic components 

(Crompton, 2014:25). As a result, we would look to Rethink Robotics as a supplier of our Baxter 

robot, a hardware platform. With a markup from our software and services, selling our product at 
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around $40,000, or at about a 15% markup, is not an unreasonable price point – especially if we 

were to get an Original Equipment Manufacturer (OEM) discount for Baxter. This provides us 

with a defined pricing model. 

Lastly, we must discuss promotion and place/distribution. As O’Donnell points out, 50% 

of seniors are not using the internet, so marketing is better achieved through conventional 

channels such as mail, television, and newspapers (O’Donnell, 2015). Interestingly, O’Donnell 

also predicts an increased use of social media by seniors in 2020, making social-media 

campaigns a possibility in the near future (O’Donnell, 2015). Distribution of this product, 

however, is complicated; while we would like to be able to sell our product online, providing 

setup services would require a trained professional to be present. As such, we will most likely 

have to either distribute through local partners that provide such services or create a local 

presence ourselves, incurring additional costs. With our product, price, promotion, and place 

now defined, we have all the significant facets of a commercialization strategy. Note that we do 

not analyze the minimum viable product (MVP) in detail. This is because our research 

specifically investigates the Baxter robot’s ability to learn the task of assembling a coffee table, 

at which point we will have a decent MVP that performs table assembly. Thus, we have 

established a viable (if hypothetical) commercialization strategy for our research efforts. 

 

2.2 Competitive Forces Analysis 

2.2.1 Power of Buyers 

With the market and product definition out of the way, we can begin to evaluate Porter’s 

five forces, the first of which is the power of buyers (Porter, 2008). We deduce this force to be 

relatively weak, since the large population of potential buyers means that individual buyers do 
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not have much leverage or bargaining power with us in our product offering. Moreover, as we 

will address later on, there are few – if any – direct rivals in our industry. Thus, a scarcity of 

competing products only elevates our power, as options are limited for the buyer. Furthermore, 

the switching costs for complex, robotic solutions would be high; given that the price of these 

robots with our software would be roughly $40,000, it is not an expense to be made frequently. 

We imagine that a typical customer will only purchase one such robotic system in their life. Thus, 

it is not of great concern that customers would switch to using a competitor’s domestic robot 

solution after purchasing our product. All in all, the power of buyers is assessed to be fairly weak, 

and we do not concern ourselves in mitigating this force. 

 

2.2.2 Power of Competitors 

Regarding rivalry within our industry, there are two main classifications of competitors: 

robotics companies and robotics research institutions. Some of these competitors offer products 

that are mildly similar to our envisioned product, and they also target similar markets. For 

example, Clearpath Robotics, a robotics company (Hoover’s, Inc. “Clearpath Robotics Inc.,” 

n.d.), offers support to the PR2 robot to perform household chores like fetching food from the 

refrigerator and cooking it. Alternatively, there are research institutions like the Information and 

Robot Technology Research Initiative (IRT) at the University of Tokyo working on developing 

software that allows the AR robot to accomplish household assignments such as cleaning floors, 

washing laundry, and so on. Fortunately, companies and research institutions like these will only 

indirectly compete with us because our product differs from theirs in the extent that humans are 

involved. The robotic systems these competitors are developing are meant to be fully 

autonomous – the robots execute their tasks independent of any human interaction – while our 

system is meant to be semi-autonomous, enabling a human to both work with and teach a robot 
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to perform various tasks. This is an advantageously superior method because now the scope of 

the system is not limited to what the robot can accomplish independently; the scope is broadened 

to what the robot and human can accomplish together synergistically. Simply put, the generality 

of our method enhances a robot’s utility and flexibility. Apart from offering a unique product 

though, we also have some advantages over our competitors in terms of hardware costs. To 

illustrate, a two-arm PR2 robot is priced around $400,000 (Owano, 2011) while a Baxter robot, 

as mentioned previously, is priced around only $35,000 (Rethink Robotics, 2015), a relatively 

far-cheaper option. To summarize, since we are working in a fairly new field, there are no true 

established rivals in this specific area yet. Thus, we can conclude that the force of competitors is 

weak. 

 

2.2.3 Power of Substitutes 

Moving onto the next force listed by Porter, we realize that significant attention needs to 

be given to the force of substitutes since there are, broadly speaking, quite a number of 

substitutes to our product. For instance, alternative technologies, like the iRobot Roomba 

(Biesada, n.d.) – a popular floor cleaning robot, have existed in the consumer market for many 

years, and these established technologies have a large customer base. Customers are more 

comfortable with familiar products, so it will not be easy to encourage customers to migrate to a 

substitute product. Moreover, if we look past the technological substitutes, there are a variety of 

human-labor alternatives in regards to accomplishing household tasks, such as employing a live-

in caretaker or residing in a nursing home. However, similar to our stance against the competitor 

force, we again have some advantages due to our functionality and low cost. Addressing the 

concern of alternative technologies, even though products like the iRobot Roomba are popular 

and functional, they tend to have a limited set of features, such as floor cleaning. Our product, on 
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the other hand, is a more general solution which can be used to tackle a variety of household 

chores. Along that same line, for many tasks in this set, our robot can be more efficient than a 

human caretaker due to its autonomous nature. Furthermore, as mentioned previously, our 

pricing model markets our product at a cost of about $40,000 with an extensive lifespan, while 

most nursing homes cost up to $80,000 – and that is per year (Ellis, 2013). All of these 

arguments make our product competitive to existing substitutes, motivating us to divert attention 

from this force and concentrate on more pressing ones. 

 

2.2.4 Power of New Entrants 

In contrast to the mild nature of the forces mentioned previously, new-entrant 

competition looming over the horizon should be of great concern. For instance, some of the 

heavy-hitters in robotic research include companies like Clearpath Robotics (McMillan, 2015) 

and 3D Robotics (Bi, 2015), both of which were founded only six years ago in 2009. It seems 

that, unlike the issue of existing rivals and possible substitutes, there is indeed a strong force in 

regards to new entrants. To further illustrate this fact, large corporations with broader goals in 

the technological field can certainly seep into our industry, such as Amazon with its Amazon 

Prime Air drones or Google with its autonomous cars. Big players such as these would certainly 

have the resources to quickly create a new division within their company and fund research in 

alternative robotic avenues. Furthermore, even our suppliers can be considered possible new 

entrants, since they both already posses their own hardware and can additionally reverse-

engineer our software algorithm that was, in large-part, acquired from public research papers. All 

in all, to summarize, we see that dangerous incoming players in this industry are: either startups 

or big companies with other additional focuses, or suppliers that provide our hardware. When 

combined with the fact that there are no true established rivals yet as mentioned previously, this 
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danger reinforces both the notion that robotics is a relatively new field and that the threat of new 

entrants is high. 

 

2.2.5 Power of Suppliers 

The last of Porter’s five forces to address is the threat of suppliers (Porter, 2008). This 

threat is a complex point that requires careful analysis in our business strategy. To first clarify, 

we envision robotic-hardware-platform manufacturers as our suppliers. As per our product 

description, we would take the robotic hardware platforms from companies like Rethink 

Robotics and Universal Robotics, customize the robots with our specialized software that gives 

them practical intelligence to work alongside humans, and then sell them to customers. In 

particular, we would purchase from companies that produce innovative, low-cost robotic 

hardware platforms upon which we can then build our solution. Our smart software would make 

up for the inaccuracies in the cheaper hardware with better algorithms and human-in-the-loop 

collaboration. Since there are currently only a few firms producing such low-cost platforms, 

these few suppliers have high bargaining power, as we are left with fewer alternate firms from 

which to choose. 

 

2.3 Market Strategy 

We see that presently, of Porter’s five forces, both new entrants and existing suppliers 

hold strong power (Porter, 2008). Knowing this, we can establish our market strategy to mitigate 

these two forces, strategically positioning ourselves in a superior situation. 

To mitigate the threat of new entrants from the suppliers themselves (see Section 2.2.4), 

we can generalize our software to work across multiple platforms and disincentivize suppliers to 
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enter the market, as they would only be encouraged to produce software across their own single 

platform. Additionally, to discourage new and small startups from forming, we can both establish 

strong relationships with suppliers to gain a leg up on others looking to pursue our method of 

utilizing existing hardware and maintain a high fixed cost – such as a high R&D cost by 

developing more proprietary algorithms – to deter incomers that have a small amount of seed 

funding. Finally, we can address the threat of entry from large corporations by realizing that 

these companies have more overarching goals, so focus on their robotics branch will not be as 

heavy as on their other branches. As such, we can capture a niche market to detour focus and 

attention away from us. Fortunately, we have already positioned ourselves in such a situation, in 

which we target a niche group of customers – the elderly and the disabled. As a result, we see 

that our competitive landscape as it applies to new entrants can be classified as quite aggressive, 

but there are indeed routes we can take to dodge much of this aggression. 

To mitigate the issue of being locked into a single supplier (see Section 2.2.5), the core 

strategy is still to generalize our software. This would considerably increase our power, since we 

would no longer be dependent on any one supplier. Note that as a trend, robotics startups are 

becoming increasingly common (Tobe, 2013), and we thus anticipate more suppliers coming into 

the market in the future. As of right now though, suppliers are a strong force that must be 

considered carefully in our strategy, and we must route efforts to ease this force. 

 

2.4 Market Trends 

With an evaluation of competitive forces complete, we end with a discussion of the major 

trends that influence our project strategy. Aside from the trends of both the changing age 

demographic of the US – affecting the power of both buyers and substitutes – and the increased 
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interest in the robotic industry – affecting the power of both substitutes and new entrants, another 

trend to consider is the recent advancement in integrated circuit (IC) technology that has resulted 

in improved computing performance and reduced cost, resulting in reduced barriers-to-entry and 

thus further enhancing the threat of new entrants. IC technology has seen consistent 

improvements in computing power and consistent reductions in cost since their inception. Our 

industry is directly affected by these advancements; in recent years, more powerful 

computational devices have generated more robotic technology in the household arena, for 

engineers are allowed to easily incorporate computing power into the chassis of the robot. This 

design contrasts with industrial robots, where the computational power is often located in an 

external computer. The trend is summarized with a concept known as Moore’s law, stating that 

the computational power of the average IC doubles nearly every two years. This trend has been 

relatively consistent since the early history of ICs. However, there is disagreement among 

analysts about how much longer this trend will continue (Hoover’s, Inc. “Home Health Care 

Services.,” n.d.). The trend has the effect of making our products more functionally efficient and 

versatile, which reduces the power of substitutes. However, the lower cost of computing 

technology also reduces the barriers-to-entry in the industry, which increases the power of rivals. 

Only time will reveal the overall impact that this trend will have. 

To summarize, from our strategy analysis, we have deduced that while some competitive 

forces are certainly in our favor, a few forces bring cause-for-concern and need to be addressed. 

With adequate industry analysis, we can plan our strategy in order to leverage ourselves into a 

better position within the market. Summarizing our findings, we have identified within the 

market both the power of new entrants and the power of suppliers to be strong forces. 

Consequently, to dampen these threats, we would generalize our software to work across 
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multiple platforms, disincentivizing suppliers from entering the market as well as taking away 

supplier bargaining power. We would also encourage people to use our product instead of 

substitutes by having features and functionality that other products do not, at a price point that is 

not prohibitively expensive. 

 

3 IP STRATEGY 

(Authors: Schweigert, Srinivasan, Sun, Su, Jouppi) 

Aside from a business standpoint though, we must also consider which legal avenues to 

take in order to protect our intellectual property (IP): in particular, whether or not our idea is 

patentable. After all, in many research scenarios such as ours, a patent is the most feasible way to 

safeguard any IP that is developed. Unfortunately, as this section will argue, patenting our work 

may not be the most practical path to pursue; however, we do have an alternative strategy better 

suited to our purposes, in the form of copyright. 

We feel that in our more specific situation, the costs of attempting to obtain and enforce a 

patent far outweigh the benefits, for a number of reasons. One consideration is that the 

mathematics behind the algorithms we employ are pulled from published research papers, 

particularly those that deal with robot learning-by-demonstration (Billard et al., 2008). Therefore, 

the proprietary essence of such research is not ours to claim. By the same token, we cannot 

patent the ROS (Robot Operating System) software platform upon which we develop because it 

is open-source and thus, once again, publically available. Most importantly, we do not feel that it 

is pragmatic to patent the software code itself. This is because software, at its core, is the 

manifestation of logical deductions, and another group or individual may take a different route of 

logical deductions to arrive at the same conclusion. Following this train of thought, it is 
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ordinarily quite difficult to obtain and/or protect a patent when the end result can be reached in 

various ways. As explained by Anthony Klein, an IP attorney at Latham & Watkins LLP, pure 

software patents remain controversial since “what would constitute patentable subject matter is 

unclear” (Klein, 2015). 

Before investigating an alternative means at protecting our ideas however, it is important 

that we have the foresight to research whether existing patents overlap with our results. We 

discovered that the closest patent to our project is entitled: “Method and system for training a 

robot using human-assisted task demonstration” (Bajaras, 2014). It describes a system for 

humans to train robots for pick-and-place tasks by moving the robot’s arm while recording 

trajectory-and-perception data through the robot’s sensory systems. At first glance, it may appear 

that our project directly infringes upon this patent. However, after delving into the details, this is 

not the case due to the limited scope of this patent. To give some background on the nature of 

patents, a patent consists of independent claims and dependent claims; if one does not violate the 

independent claims, then by definition, one does not violate the dependent claims (Brown & 

Michaels, PC 2006). Now, many of our project’s similarities with this patent lie in the dependent 

claims. However, if we can argue that our capstone project does not infringe upon any of the 

independent claims, then we can legally claim that we do not infringe upon the dependent claims 

as well – and thus the patent as a whole. 

There are two independent claims mentioned in this patent. To quote the first independent 

claim (claim 1): 

 

A method for training a robot to execute a robotic task in a work environment, the 

method comprising: moving the robot across its configuration space … assigning, via the 

ECU, virtual deictic markers to the detected perceptual features (Bajaras, 2014). 



Sun 14 
 

 

We argue that we do not infringe this claim because our project does not use “virtual deictic 

markers” – markers based on a representational paradigm that use “selective attention and 

pointers … to learn and reason about rich complex environments” (Ravindran, 2007). As for the 

second independent patent claim (claim 2): 

 

The method of claim 1, wherein moving the robot across its configuration space includes 

moving at least one of a robot arm and a robot manipulator attached to the robot arm 

(Bajaras, 2014). 

 

Our project does not use a single “arm and a manipulator”, but rather a dual-armed Baxter-robot. 

Hence, our project does not violate any of the independent claims and thus none of the dependent 

claims. Therefore, while this is the closest patent to our idea, we do not infringe upon it and are 

therefore not required to license from it. Since other existing patents are even less related, a 

breach of IP is of no worry to us. 

With the threat of similar, existing IP out of the way, we can now begin to pursue an 

alternative strategy of IP protection. After much consideration, we believe that copyright is the 

most appropriate option – in fact, this happens to be the choice for many software companies. Of 

course, copyright does indeed present a few risks since, in general, patents protect ideas while 

copyright only protects the expressions of ideas. 

The first risk is the risk of knock-offs: there are ways around copyright such that people 

can make products very similar to ours but are not in violation of copyright law. This includes 

implementing our algorithm through a different tactic – one example is converting our code to a 

different programming language – as well as merely adapting functions from our program. The 
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point is that copyright does not protect our ideas, making it incredibly easy for others to take our 

ideas and tweak them to look slightly different in their end product. We would need to mitigate 

this issue by implementing our algorithm across multiple programming languages to prevent the 

scenarios where someone claims credit on our ideas based on simple modifications. 

The second risk is the risk of undetected duplication. It is the first risk in reverse, where 

certain competitors are indeed copying our code directly, but we have no way of detecting that 

they are doing so. The reason for this is that we will generally not have the source code of our 

competitors to compare to our own; all we will have is the compiled functionality that their code 

is capable of demonstrating. In that sense, it is near impossible to identify specifically if they 

have violated copyright. Consequently, it is quite difficult to mitigate this risk. 

While copyright does offer less protection than patents, it is nonetheless more feasible 

and realistic to acquire. For instance, copyright is granted automatically when an original work is 

created, so registration is not required. This simplified procedure immediately eliminates the 

time and money that we would otherwise need to spend to obtain a patent. Moreover, the 

duration of copyright is the life of the author(s) plus 70 years, which is plenty of time for us 

given the short life cycle of software. Furthermore, copyright offers authors the exclusive rights 

to reproduction, protects against public displays and derivatives of their work, and establishes a 

public credibility that can attract investment and customers. Licensing can also present itself as a 

way to increase profit and expand a business. 

All in all, it appears that pursuing a patent is not the route for us to go. Instead, a more 

practical approach at protecting our IP is for us to pursue copyright, due to both the more lenient 

restrictions and more efficient timeline at obtaining copyright. 
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4 SYSTEM ORGANIZATION 

(Authors: Schweigert, Srinivasan, Sun, Su, Jouppi) 

As mentioned before, we are developing a general-purpose robotic software system that 

incorporates robot-human interactions. In order to implement and test our system, we choose to 

work on a specific task: having Baxter assembling a coffee table with the help of human. Figure 

1 shows the workflow. Figure 2 shows the organization of system components. 

 

Figure 1: System Workflow  

 

Figure 2: System Component Organization 
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5 TECHNICAL CONTRIBUTIONS 

(Author: Sun) 

5.1 Overview 

The goal of our project is to design a software system around robot-human interaction, 

where a human can train and work with cost-effective robots to accomplish a broad range of 

tasks, including those which require high accuracy. To achieve this goal, we addressed a series of 

technical issues, which can be divided into four parts: (1) operating the Baxter robot based on 

ROS; (2) implementing learning-by-demonstration algorithms; (3) estimating the accuracy of the 

Baxter robot; and (4) integrating the human-robot interactions. 

In this paper, I present several methods I adopted to estimate the accuracy of Baxter and 

analyze the results. More specifically, I addressed the following issue: given a certain joint 

configuration of Baxter, what is the positioning accuracy of its gripper? Answering this question 

is an intermediate part of our project: it requires knowledge of robotic operation in ROS, and it 

plays a key role in the ultimate integration phase, when it comes to compare the robot’s accuracy 

with the task’s accuracy requirements. 

 

5.2 Literature Review 

The accuracy of a robotic system depends on many different factors, including 

manufacturing tolerance, sensor resolution, and various environmental conditions (e.g. 

temperature, humidity). There have been some successful attempts in robot-accuracy estimation, 

both in academia and industry. In this section, I introduce two main approaches in this field, 

discuss their pros and cons, and choose one that fits our project. 
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First of all, the definition of robot positioning accuracy needs to be clarified. A widely 

accepted definition is: “the ability of the robot to precisely move to a desired position in 3-D 

space” (Conrad, 2000). In our case, I further refine the definition of accuracy as the ability of 

Baxter to position its gripper to a desired position in the 3-D Cartesian coordinate system. 

The first approach for accuracy estimation is called metrology, which is essentially using 

sensing equipment to directly track the actions of a robot in repeated experiments. For example, 

an LED strip can be attached on a robot’s gripper, with a camera fixed at a certain point (Alici, 

2005). Through calibration and image processing, we can estimate the accuracy statistically. Of 

course, there are also other sensing methods, like optical tracking, inertial measurement, and 

trilateration probing. In general, the advantage of the metrological approach is that it is explicit 

and precise. However, it is not widely utilized due to its high cost and selectivity. 

Another approach for accuracy estimation is called accuracy parameterization. That is to 

say, a model is built upon a set of parameters and it calculates the accuracy estimation based on 

these parameters. Accuracy parameterization models are greatly based on robot kinematics and 

dynamics, more specifically, on forward kinematics and the Jacobian matrix. In general, this 

approach is not as accurate as the metrology approach. However, it is more widely adopted 

because of its versatility, simplicity, and low cost. 

In our project, we don’t require a highly precise estimation of the accuracy. Therefore, 

the second approach, accuracy parameterization, is a better fit for us. Our accuracy 

parameterization model is based on the common robot-kinematics models, with some customized 

modifications to make it more effective. First, I made it as simple as possible. Since the data size 

of our project is quite large, simple model enables more efficient computation. Next, I tailored 
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the outputs to make sure that the data format is consistent with the rest of our system, which 

facilitates the effectiveness of the integration. 

 

5.3 Implementation 

The implementation of accuracy parameterization is based on many mathematical tools, 

especially linear algebra and probability theory. First of all, I implemented the kinematics model 

for Baxter. Then I decided on the related parameters. Lastly, I built two models for accuracy 

parameterization and applied different ways to quantify the results. All code is written in Python, 

which is widely used in robotic systems nowadays. 

 

5.3.1 Baxter Robot Model 

Baxter is a humanoid robot with two arms. Each arm has seven joints, that is, seven 

degrees of freedom, as illustrated in Figure 3. In the case of Baxter, we consider a manipulator to 

be one of its arms. In this paper, I only analyze one arm because the other arm is symmetric. In 

the following parts, when I say manipulator, it refers to the left arm of Baxter. Additionally, 

where there is mention of an end effector, it refers to the gripper. 

     

Figure 3: Baxter Robot (Rethink Robotics 2015) 
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5.3.1.1 Forward Kinematics 

Coordinate transformation is a fundamental mathematical tool in analyzing robotic 

manipulators. The most common application in coordinate transformation is forward kinematics. 

Forward kinematics answers the following question: given the angle of each joint in the 

manipulator, what is the transformation (rotation and translation) of the tool frame with respect 

to the base frame? I used the following steps to write the forward kinematics map for Baxter’s 

serial chain manipulator (Bestick 2014). 

First of all, we need to define a zero configuration for the manipulator, as shown in 

Figure 4. That is to say, in this configuration: 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7] = 0. In this way, we 

are able to set values for the seven joints. The base frame (S) is at the center of Baxter’s body 

base while the tool frame (T) is at the center of its gripper. 

 

 

Figure 4: A Zero Configuration of Baxter’s Left Arm (Bestick 2014) 
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The transformation of this zero configuration is in the form: 

𝑔𝑆𝑇(0) = [
𝑅𝑆𝑇(0) 𝑞

0 0
] 

We calculate the twist for each joint in the manipulator accordingly: 

𝜉𝑖 = [
−𝜔𝑖 × 𝑞𝑖

𝑞𝑖
] 

Then we can calculate the product-of-exponential map for the complete manipulator, or 

rather, the homogenous coordinate transformation, which is a 4 × 4 matrix: 

𝑔𝑆𝑇(𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5, 𝜃6, 𝜃7) = 𝑒𝜉1̂𝜃1𝑒𝜉2̂2 ⋯ 𝑒𝜉7̂𝜃7𝑔𝑆𝑇(0) 

Following these steps, I built a forward kinematics function which inputs seven joint 

angles and outputs the transformation of the tool frame with respect to the base frame. 

 

5.3.1.2 Jacobian Matrix 

In addition to the relationship between joint angles and end-effector transformation, one 

often makes use of the relationship between joint velocities and end-effector velocities (Murray 

1994), which can be expressed in a Jacobian matrix. 

The Jacobian of a manipulator is traditionally described as the differentiation of the 

forward-kinematics map.  

If we represent forward kinematics as a mapping: 

𝑔: 𝑅𝑛 → 𝑅𝑝 

The Jacobian is the linear mapping: 

𝜕𝑔

𝜕𝜃
(𝜃): 𝑅𝑛 → 𝑅𝑝 
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There are two kinds of Jacobian matrices: the spatial Jacobian matrix and the body 

Jacobian matrix. I am using the body Jacobian matrix because it measures the velocity of the tool 

frame with respect to the base frame, which is the actual velocity we are looking for. 

The body Jacobian matrix is calculated according to the following formulas: 

 

In our case, Baxter has seven joints: thus the body Jacobian matrix is a 6 × 7 matrix. In 

the following sections, when mentioning the Jacobian, it refers to the body Jacobian. 

 

5.3.2 Joint Error 

Given the above models of the Baxter robot, we can use the angle error of each joint to 

calculate the error of the end-effector, so as to analyze the end-effector positioning accuracy. As 

stated in the hardware specification of Baxter (Rethink Robotics, 2014), the joint error is 

influenced by both the sensor resolution and the controller tolerance. The typical sensor 

resolution is ±0.1 degrees while the default controller tolerance is ±5 degrees. Therefore, we 

can estimate that the accumulated error for each joint is ±5.1 degrees = ±0.089 rads. 

After deciding on the value of joint error, I further assumed that it follows a Gaussian 

(Normal) distribution, which is a common distribution for a robotic system. It was also 

reasonable to assume that the confidence level is 95%. That is to say, the joint error is 95% 

certain to be in the range [– joint_error, + joint_error]. In other words, the joint angle is 95% 

certain to be in the range [expected_joint_angle – joint_error, expected_joint_angle + 

joint_error]. Due to the linear mapping of Jacobian, these assumptions also guarantee that, in 

common cases (when the robot is not in singularity and it doesn’t reach its joint limit), the 
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positioning error of the end effector is also in the form of a Gaussian distribution (with a 

confidence level of 95%). This matches the outputs of the Gaussian Mixture Model (Calinon 

2007) used in our learning-by-demonstration algorithms. 

 

5.3.3 Accuracy Parameterization Model 

Given the foregoing analysis of the Baxter model and its joint errors, there are different 

ways to build the accuracy parameterization model. In this part, I present two kinds of models: a 

model based on forward kinematics and a model based on the Jacobian. 

 

5.3.3.1 Based on Forward Kinematics 

An intuitive way of parameterizing accuracy is using forward kinematics. To illustrate, 

assume that, given a target joint configuration, each joint jitters in a certain range according to 

the joint error determined above. By generating sets of joint configurations (let us call them 

testing points), we can use forward kinematics to calculate the scattered positions of the end 

effector. This is a purely statistical approach. 

The way to generate the testing points is quite explicit. For example, given an expected 

set of joint angles (listed in Table 1) and the joint error (±0.089 rads), each joint has three 

testing values: a lower bound, an expected angle and an upper bound. A set of testing points is a 

combination of seven joint angles (e.g., 𝜃 =[-0.769, -0.123, 0.00422, 1.51, -0.437, -0.0349, -

0.381]). The total number of combination is 37 = 2187. That is to say, there are 2187 sets of 

testing points in total. 
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Table 1: Explanation of Testing Points 

Unit: rads θ1 θ2 θ3 θ4 θ5 θ6 θ7 

Expected Angles -0.769 -0.0337 0.00422 1.60 -0.526 -0.0349 -0.292 

Lower Bound 

(Expected Angles - 0.089) 
-0.858 -0.123 -0.0848 1.51 -0.615 -0.124 -0.381 

Upper Bound 

(Expected Angles + 0.089) 
-0.680 0.0553 0.0932 1.69 -0.437 0.0541 -0.203 

 

After generating testing points, we can use forward kinematics to calculate the 

corresponding positions of the end effector. One set of testing points uniquely determines an end 

effector position, thus there are 2187 resulting points. The expected resulting point is the position 

of the end effector when each joint is in its expected angle. The scatter plot is shown in Figure 5, 

with the expected resulting point (0.5017, 0.2647, -0.2703). 

From the graph, we can see that this result has large biases in the X and Y directions but 

has relatively little bias in Z direction. This is likely due to the fact that, at this configuration, the 

shoulder joint (s0, whose rotation axis is approximately in the Z axis) has the greatest effect to 

the position of the end effector. To clarify, we project this scatter plot into X-Y plane, as shown 

in Figure 6. The red point in the center is the expected resulting point. 

 

    

Figure 5: 3-D Scatter Resulting Points         Figure 6: 2-D Scatter Resulting Points 
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Subsequently, we can perform density analysis on this data. To accomplish this, I use a 

class called “gaussian_kde” in SciPy (the scientific tools library in Python) to achieve kernel 

distribution estimation based on Gaussian kernels. In other words, given a set of data, we can 

calculate the density in a certain dimensional space. Figure 7 shows the density map at resulting 

points. The density is represented by color: the warmer (redder) the color, the denser the data. 

Generally speaking, the data is denser near the center point, which follows a Gaussian 

distribution. This further verifies that our assumption of a Gaussian distribution is reasonable. 

 

 

Figure 7: Density Map of Resulting Points 

 

Given these results, we still need a way to quantify the accuracy. An intuitive solution is 

to use the volume of a convex hull. The convex hull is the smallest convex that contains a set of 

data points in the Euclidean space. Therefore, it describes the bound of scatter points. The 

smaller the convex hull, the more accurate Baxter is. There is a class in SciPy that can be used to 
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calculate a convex hull. Functions return simplexes, vertices, volume, etc. The convex hull of 

this example is shown in Figure 8, with a volume of 0.00229 m
3
. 

 

 

Figure 8: Convex Hull of Resulting Points 

 

This accuracy parameterization model, based on forward kinematics and statistics, is 

accurate and complete. It offers a large amount of data which allows for ample analyses. 

However, it is computationally expensive. Calculating accuracy for just a single example joint 

configuration takes about 5 seconds. In our project, we ultimately needed to calculate 

approximately 1000 joint configurations, and that calculation would have taken quite a long time. 

Therefore, this approach was not feasible. Moreover, in more general cases, where a robot has N 

joints, the complexity of this algorithm is O(3N), which is exponential; and an algorithm with 

exponential complexity should be used with caution in practice. 
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5.3.3.2 Based on Jacobian Matrix 

An alternative model of accuracy parameterization is based on the Jacobian matrix. As 

mentioned before, the Jacobian matrix reflects the relationship between joint velocities and end-

effector velocities: 

𝑉𝑆𝑇
𝑏 = 𝐽𝑆𝑇

𝑏 𝜃̇ 

According to the Euler Derivative Method, the above equation can be rewritten as: 

[
∆𝑞
∆𝜔

] = 𝐽𝑆𝑇
𝑏 ∆𝜃, where ∆𝑞 = [

∆𝑥
∆𝑦
∆𝑧

] 

Therefore, by multiplying the Jacobian matrix with the joint error, we can know the 

estimated bias of the end effector in the X, Y and Z directions. To get a bound of the bias, simply 

accumulate the absolute value of bias generated by each joint error, which represents the worst 

case in the current configuration. 

Taking the same joint configuration from Table 1 as an example, the Jacobian matrix is 

then: 

 

By multiplying it with the joint error 0.089, we can then estimate the biases in the X, Y 

and Z directions. This tells us the largest distance the end-effector can vary in the three Cartesian 

directions, which can be represented as a bounding box in Figure 9. The red point is the expected 

resulting point, which is at the center of the box. The result is in accordance with the result of the 

scatter plot from the previous approach. 
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Figure 9: Bound of the End Effector Position 

 

This accuracy parameterization model, based on the Jacobian, is also an effective 

approach. It is less precise than the former model, but it is computationally cheaper, with linear 

complexity. More importantly, this approach works well to maintain consistency in our overall 

system. That is to say, the results of this accuracy parameterization model are comparable to the 

results of the learning-by-demonstration portion of our capstone project. Under the assumption 

of a Gaussian distribution, the learning-by-demonstration algorithms can also generate 95% 

confidence intervals in Cartesian coordinates. At a certain point in the learned trajectory, this 

confidence interval can also be interpreted as a bounding box, which represents the accuracy 

requirements of the task at this point. 

 

5.4 Results and Discussion 

As discussed above, I have built two models for accuracy parameterization. The first 

model is based on forward kinematics, where the accuracy is quantified by the volume of the 

convex hull. The second model is based on the Jacobian matrix, where the accuracy is quantified 
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by a bounding box in 3-D Cartesian space. Note that these two models are both effective and can 

be applied to other robots as well. However, considering the limitation of computation time as 

well as the consistency of data in our project, we decided to use the bounding-box model based 

on the Jacobian matrix as our final approach for Baxter accuracy estimation. We use the first 

model based on forward kinematics for verification only. 

Figure 10 shows an offline workflow of our system. First of all, a set of trajectories are 

recorded and saved in csv files. Then, the means (representing the learned trajectories) and 

standard deviations (representing the accuracy requirements of the task) are calculated by our 

learning-by-demonstration algorithms, which are based on Gaussian Mixture Model (GMM) 

with a pre-processing of Principal Component Analysis (PCA) and Dynamic Time Warping 

(DTW). Estimating Baxter’s inherent accuracy requires the joint angle configurations of the 

learned trajectories as inputs, so I use MoveIt! tools to compute a plan. Joint angles are read from 

the plan and then fed to the accuracy estimation part to calculate the bounding boxes. By 

comparing the bounding boxes with the confidence intervals, we will know when Baxter is 

accurate enough to accomplish the task and when it is not, which is the core idea of our project. 

 

 

Figure 10: Offline Workflow 
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In our demo, Baxter learns the task of assembling a coffee table. A human holds one of 

Baxter’s arms and demonstrates the following action: pick up a table leg from a random starting 

point, move it close to a screw hole on the table surface, and plug it in. While doing this, record 

both the position and the orientation of the end effector. Repeat this for five times and save these 

trajectories in separate csv files. Process the data using the learning-by-demonstration algorithms, 

and a mean trajectory is learned. The original trajectories (dash lines) and the learned trajectory 

(full line) are shown in Figure 11. 

 

 
Figure 11: Trajectories and Example Points 

 

Pick five points on the learned trajectory as example points and calculate Baxter’s 

positioning accuracy at these points. Example results are listed in Table 2. For example, for the 

first point, Baxter’s end effector may be off by 0.190 m in the X direction, 0.206 m in Y 

direction and 0.297 in Z direction, in the worst case. This also shows that Baxter’s accuracy 

varies at different configurations.  

1 

2 

3 

4 

5 
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Table 2: Baxter Accuracy Estimation at Example Points 

Number Position (m) Bias in X (m) Bias in Y (m) Bias in Z (m) 

1 (0.508, -0.310, 0.024) 0.190 0.206 0.297 

2 (0.548, -0.249, -0.034) 0.150 0.230 0.229 

3 (0.580, -0.195, -0.086) 0.121 0.233 0.112 

4 (0.623, -0.122, -0.157) 0.099 0.113 0.098 

5 (0.644, -0.079, -0.199) 0.071 0.103 0.129 

 

In conclusion, this accuracy estimation approach works quite well. We can use it to 

calculate Baxter’s positioning accuracy at any configuration. It is effective, computationally 

efficient, and can be integrated into the system easily. 

 

6 CONCLUDING REFLECTIONS 

(Author: Sun) 

In general, we accomplished the majority of our project plan. We accumulated a sizeable 

knowledge base of using both the Baxter robot and the ROS platform. We successfully 

implemented a set of algorithms for learning-by-demonstration, adopted different approaches for 

accuracy parameterization, and presented a demo with these parts fully integrated. In our demo, 

Baxter is able to learn a simple action from a human, perform the learned trajectory, and identify 

whether its accuracy meets the task’s accuracy requirements, so as to segment the task. 

Additionally, we made our code general and modularized so that it can be applied to other 

robotic systems with good scalability. 

A part of the project that we have not fully worked out is how the human should help the 

robot when the robot is not capable of finishing a task. For example, when Baxter is not accurate 

enough to finish the peg-in-hole and screwing segments of the task, what is the best way for a 
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human to help? We considered three possible solutions: (1) a human takes over the task; (2) a 

human offers a small amount of fixture guidance and Baxter finishes the rest; or (3) a human 

enables the force sensor on Baxter’s gripper that can be used to detect the position of the hole 

during the adjustment process. All in all, robot-human interaction is a fairly new area, and there 

are various interesting related topics for future research. 

Apart from our technical accomplishments, we also gained experience in project 

management. Our team had good cooperation: we split tasks properly according to our different 

expertise, and we used GitHub to manage our source code to achieve effective collaboration. It is 

inevitable to have encountered some form of difficulty, for example, setting up and debugging 

took more time than we had anticipated. However, in the end, we successfully adjusted our 

schedules based on a limited time frame to deliver the best results that we could. 
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