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Abstract 

 Because of physical limitations on how fast we can operate modern digital integrated 

circuits, trends point towards increasing the number of processing cores by leveraging 

parallelism. Fast and efficient communication between all of these cores is paramount for 

optimal performance. In our report, we explore the design space of high radix switches up to 

64x64 ports. We also examine alternative methods of building the switch using Synopsys design 

tools. 
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Problem Statement 

 The current trend in the computing industry is to offer more performance by leveraging 

more processing cores. Because we have run into some physical limits on how fast we can make 

a single processor run, the industry is now finding ways to utilize more cores running in parallel 

to increase computing speeds. Looking beyond the four and eight core systems we see in 

commercially available computers today, the natural progression is to scale this up to hundreds 

or thousands of processing units (Clark, 2011). All of those processing units working together 

cohesively at this scale requires a great deal of communication. Furthermore, these processors 

need to talk not only to each other, but also to any number of other resources like external 

memories or graphics processors. Being able to move bits around the chip efficiently and quickly 

therefore becomes one of the limiting factors in the performance of such a system. 

To enable this communication, most of today’s multi-core systems use interconnection 

networks. While there are many different ways to design these networks, network latency, the 

time it takes to communicate between network endpoints, becomes directly dependent on the 

number of router hops (Daly, 2004). The number of router hops depends upon the total number 

of endpoint devices as well as the number of ports available on each router—the router’s radix. 

With higher radix routers, we can connect more endpoint devices with fewer total hops. Our 

project is thus to explore the design space for a high radix router, which will reduce the latency 

of the interconnect networks and thus enable more efficient communication. Given an initial 

design based on the work of Stanford graduate student Daniel Becker, we will be exploring how 

changing different parameters affects the performance of the overall router design in terms of 

chip area, power consumed, data transmission rates, and transmission delays. We hope to use this 

data to draw conclusions about the optimal configurations for a high-radix router, and to justify 



Chen 17 

our conclusions with data. The researchers at Berkeley Wireless Research Center (BWRC) will 

consider the results of our analysis as they try to construct future high performance systems. 
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Industry and Market Trends 

I. INTRODUCTION 

With current trends in cloud computing, big data analytics, and the Internet of Things, the 

need for distributed computation is growing rapidly. One promising solution that modern 

computers employ is the use of large routers or switches to move data between multiple cores 

and memories. The goal of our Petabit Switch Fabric capstone project is to explore the design 

tradeoffs of such network switch architectures in order to scale this mode of communication to 

much larger magnitudes. We aim to examine the viability of using these designs for a petabit 

interconnect between large clusters of separate microprocessors and memories. High bandwidth 

switches will allow distributed multicore computing to scale in the future. Given a prototype, we 

will be studying power, area, and bandwidth tradeoffs. By analyzing the performances of these 

parameters, we will eventually map a Pareto optimal curve of the design space. The results of the 

project will provide valuable data for future research related to developing network switch 

designs. As we consider how to commercialize this project, it becomes useful to understand the 

market that we will be entering. In this paper, we will use Porter’s Five Forces as a framework to 

determine our market strategy (Porter, 1979). 

II.  TRENDS 

        First, we will explore some of the trends in the semiconductor and computing industries 

that motivate our project. One of the most important trends in technology is the shift toward 

cloud computing in both the consumer and enterprise markets. On the enterprise side, we are 

observing an increasing number of companies opting to rent computing and storage resources 

from companies such as Amazon AWS or Google Compute Engine, instead of purchasing and 

managing their own servers (Economist, 2009). The benefits of this are multi-fold. Customers 
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gain increased flexibility because they can easily scale the amount of computing resources they 

require based on varying workloads. These companies also benefit from decreased costs because 

they can leverage Amazon’s or Google’s expertise in maintaining a high degree of reliability. 

We are seeing that these benefits make outsourcing computing needs not only standard practice 

for startups, but also an attractive option for large, established companies because the benefits 

often outweigh the switching costs. 

        As warehouse scale computing consolidates into a few major players, the economic 

incentive for these companies to build their own specialized servers increases. Rather than 

purchasing from traditional server manufactures such as IBM or Hewlett-Packard, companies 

like Google or Facebook are now operating at a scale where it is advantageous for them to design 

their own servers (Economist, 2013). Custom built hardware and servers allow them to optimize 

systems for their particular workloads. In conjunction with the outsourcing and consolidation of 

computing resources, these internet giants could potentially become the primary producers of 

server hardware, and thus become one of our most important target customers as we bring our 

switch to market. 

        On the consumer side, we have seen a rapid rise in internet data traffic in recent years. 

Smartphones and increasing data speeds allow people to consume more data than ever. Based on 

market research in the UK, fifty percent of mobile device users access cloud services on a 

weekly basis (Hulkower, 2012). The number of mobile internet connections is also growing at an 

annual rate of 36.8% (Kahn, 2014:7). Data usage is growing exponentially as an increasing 

number of users consumes increasing amounts of data. Moreover, the Internet of Things (IoT) is 

expected to produce massive new amounts of traffic as data is collected from sensors embedded 

in everyday objects. This growth in both data production and consumption will drive a strong 
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demand for more robust networking infrastructure to deliver this data quickly and reliably. This 

will present a rapidly growing market opportunity in the next decade (Hoover’s, 2015). Overall, 

the general trends in the market suggest a great opportunity for commercializing our product. 

        As the IoT, mobile internet, and cloud computing trends progress, they will all drive 

greater demand for more efficient data centers and the networking infrastructure to support 

further growth. Concurrently, the pace of advances in semiconductor fabrication technology has 

historically driven rapid performance and cost improvements every year. However, these gains 

have already slowed down significantly in recent years, and are expected to further stagnate over 

the next decade. We are rapidly approaching the physical limits of current semiconductor 

technology. As a result, we observe a large shift from single core computing to parallel systems 

with many distributed processing units. With no new semiconductor technology on the 

immediate horizon, these trends should continue for the foreseeable future. 

III. INDUSTRY AND COMPETITIVE LANDSCAPE 

        Next, we will examine our industry and competitive landscape. The semiconductor 

industry is comprised of companies that manufacture integrated circuits for electronic devices 

such as computers and mobile phones. This is a very large industry, consisting of technology 

giants such as Intel and Samsung, with an annual revenue of eighty billion dollars in the United 

States alone (Ulama, 2014:19). Globally, the industry revenue growth was a relatively modest 

4.8% in 2013 (Forbes, 2014). However, as cloud computing becomes more prevalent, we expect 

that the need for better hardware for data centers will continue to rise, and the growth of this 

sector will likely outpace the overall growth of the semiconductor industry. 

         Although the sector is growing rapidly and the demand for networking infrastructure is 

high, competition is fierce in both telecommunications and warehouse scale computing. There 
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are many well established networking device companies such as Juniper Networks, Cisco, and 

Hewlett-Packard. Large semiconductor companies such as Broadcom and Mellanox, along with 

smaller startups such as Arteris and Sonics, are also designing integrated switches and network 

on chips (NoC). 

        Specifically, one of our most direct competitors is Broadcom. In September of 2014, 

Broadcom announced the StrataXGS Tomahawk™ Series (Broadcom, 2014). This product line 

is targeted towards Ethernet switches for cloud-scale networks. It promises to deliver 3.2 terabit-

per-second bandwidths. This new chip will allow data centers to vastly improve data transfer 

rates while maintaining the same chip footprint (Broadcom, 2014). It is designed to be a direct 

replacement for current top-of-rack as well as end-of-row network switches. This means that the 

switching costs are extremely low, and it will be very easy for customers to upgrade their 

existing hardware. Another key feature that Broadcom is offering is packaged software that will 

give operators the ability to control their networks for varying workloads (Broadcom, 2014). The 

Software Defined Network (SDN) is proprietary software customized for the Tomahawk family 

of devices. This software might be a key feature that differentiates Broadcom’s product from 

other competitors. 

We distinguish ourselves from these companies by targeting a very focused niche market. 

For example, Sonics has found its niche in developing a network on chip targeted towards the 

mobile market. Their product specializes in connecting different components such as cameras, 

touch screens, and other sensors to the processor. We find our niche in fulfilling a need for a high 

speed high radix switch in the warehouse scale computing market. Data centers of the future will 

be more power hungry and will operate at much faster rates (Hulkower, 2012). Therefore, our 
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product aims to build more robust systems by minimizing power consumption while maximizing 

performance. 

The semiconductor industry already competes heavily on the basis of price, and as 

performance gains level off, we expect this competition to increase (Ulama, 2015, p. 27). As a 

new entrant, we want to avoid competing on price with a distinguished product. As previously 

mentioned, our switch product is meant to enable efficient communication between collections 

of processors in data centers. However, it also has potential applications in networking 

infrastructure. Given the strong price competition within the industry, we would want to focus on 

one or the other in order to bring a differentiated product to market. 

        Another force to consider is the threat of substitutes, and we will now examine two 

distinct potential substitutes: Apache Hadoop and quantum computing. Apache Hadoop is an 

open source software framework developed by the Apache Software Foundation. This 

framework is a tool used to process big data. Hadoop works by breaking a larger problem down 

into smaller blocks and distributing the computation amongst a large number of nodes. This 

allows very large computations to be completed more quickly by splitting the work amongst 

many processors. The product’s success is evidenced by its widespread adoption in the current 

market. Almost every major company that deals with big data, including Google, Amazon, and 

Facebook, uses the Hadoop framework. 

Hadoop, however, comes with a number of problems. Hadoop is a software solution that 

shifts the complexity of doing parallel computations from hardware to software. In order to use 

this framework, users must develop custom code and write their programs in such a way that 

Hadoop understands how to interpret them. A high throughput and low latency switch will 

eliminate this extra overhead because it is purely a hardware solution. The complexity of having 
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multiple processors and distributed computing will be hidden and abstracted away from the end 

user. Hadoop is a software solution, so you still need physical switch hardware to use Hadoop, 

but future improvements to Hadoop or similar frameworks could potentially mitigate the need 

for the type of high-radix switch which we are building. 

        The other substitute we will look at is quantum computing. Quantum computing is a 

potential competing technology because it provides a different solution for obtaining better 

computing performance. In theory, quantum computers are fundamentally different in the way 

that they compute and store information, so they will not need to rely as heavily on 

communication compared to conventional processors. However, it is unclear whether practical 

implementations of quantum computers will ever be able to reach this ideal. Currently, only one 

company - D-Wave - has shown promising results in multiple trials, but, their claims are 

disputed by many scientists (Deangelis, 2014). Additionally, we expect our solution to be much 

more compatible with existing software and programming paradigms compared to quantum 

computers, which are hypothesized to be very good for running only certain classes of 

applications. Therefore, switching costs are expected to be much higher with quantum 

computers. Because quantum computing is such a potentially disruptive technology, it is 

important to consider and be aware of advancements in this field. 

IV. MARKET 

        Next, we will examine two different methods of commercializing our product: selling our 

design as intellectual property (IP), or selling a standalone chip. Many hardware designs are 

written in a hardware description language such as Verilog. This code describes circuits as 

logical functions. Using VLSI (Very Large Scale Integration) and EDA (Electronic Design 

Automation) tools, a Verilog design can be converted into standard cells and manufactured into a 
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silicon chip by foundries. If we were to license our IP, a customer would be able to purchase our 

switch and integrate it into the Verilog code of their own design. 

        Some key customers for licensing our IP are microprocessor producers. The big players 

in this space are Intel, AMD, NVIDIA, and ARM. Intel owns the largest share of microprocessor 

manufacturing, and it possesses a total market share of 18% in semiconductor manufacturing 

(Ulama, 2014:30). Microprocessors represent 76% of Intel’s total revenue, making it the largest 

potential customer in the microprocessor space (Ulama, 2014:30). AMD owns 1.4% of the total 

market share, making it a weaker buyer (Ulama, 2014:31). While Intel represents a very strong 

force as a buyer because of its power and size, they are still an attractive customer. If our IP is 

integrated into their design, we will have a significant share in the market. 

        Another potential market is EDA companies themselves. We can license our product to 

EDA companies who can include our IP as a part of their libraries. This can potentially create a 

very strong distribution channel because all chip producers use these EDA tools to design and 

manufacture their products. Currently, EDA is a $2.1 billion industry, with Synopsys (34.7%) 

and Cadence (18.3%) representing 53% of the total market share (Boyland, 2014:20). Having our 

switch in one of these EDA libraries would result in immediate recognition of our product by a 

large percentage of the market. 

        Another option for going to market would be selling a standalone product. This means 

that we will design a chip, send our design to foundries to manufacture it, and finally sell it to 

companies who will then integrate the chip into their products. This contrasts with licensing our 

design to other semiconductor companies. Licensing our design would allow our customers to 

directly embed our IP into their own chips. One downside of manufacturing our own chip is the 

high cost. Barriers to entry in this industry are high and increasing, due to the high cost of 
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production facilities and low negotiation powers of smaller companies (Ulama, 2014:28). Selling 

a standalone chip versus licensing an IP also targets two very different customers—companies 

who buy parts and integrate them, or companies who manufacturer and sell integrated circuits. 

        The main application of our product is in warehouse scale computing. The growth in 

cloud computing and media delivered over the internet means that demand for servers will see 

considerable growth (Ulama, 2014:8). High-speed high-radix switches will be essential in the 

future for distributed computing to scale (Binkert, 2012:100). In a data center, thousands of 

servers work together to perform computations and move data. Our product can be integrated in 

network routers connecting these servers together. Companies such as Cisco and Juniper, who 

supply networking routers, are our potential buyers. They purchase chips and use them to build 

systems that are sold to data centers. Our product can also be integrated directly inside the 

servers themselves. Major companies producing these servers include Oracle, Dell, and Hewlett-

Packard. These companies design and sell custom servers to meet the needs of data centers. As 

the number of processing units and memories increase in each of these servers, a high-radix 

switch is needed to allow efficient communication between all of these subsystems. 

        In order to enter the market strategically, we need to consider our positioning. The market 

share of the four largest players in the networking equipment industry—our target customers—

has fallen by 5.2% over the past five years (Kahn, 2014:20). The competition is steadily 

increasing, and the barriers to entry are currently high but decreasing (Kahn, 2014:22). With the 

influx of specialist companies offering integrated circuits, new companies can take advantage of 

this breakdown in vertical integration (Kahn, 2014:22). This means that the industry may expect 

to see a rise in new competitors in the near future. With the increase in competition among the 

buyers, their power is expected to decrease. Thus, if we have a desirable technology, we may be 
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in a strong position to make sales. Competition in server manufacturing is also high and 

increasing with low barriers of entry (Ulama, 2014:22). This competitive field in both 

networking equipment and data center servers is advantageous for us because these companies 

are all looking for any competitive edge to outperform each other. A technology that will give 

one of these companies an advantage would be very valuable. 

        In order to create a chip, we will need to pay a foundry to manufacture our product. 

Unfortunately, although there is healthy competition among the top companies in the 

semiconductor manufacturing industry, prices have remained relatively stable because of high 

manufacturing costs and low margins (Ulama, 2014:24). Because custom and unique tools are 

required for producing every chip, there are very high fixed costs associated with manufacturing 

a design. Unless we need to produce very large volumes of our product, the power of the 

foundries, our suppliers, is very strong. The barriers of entry for this industry are extremely high, 

and we don’t expect to see much new competition soon. EDA tools developed by companies 

such as Synopsys and Cadence are also required to create and develop our product. As discussed 

in previous sections, these two companies represent more than half of the market share. As a 

result, small startups have weak negotiation power. Both our suppliers, foundries who 

manufacture chips and EDA companies that provide tools to design chips, possess very strong 

power largely in the form of fixed costs. 
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V. CONCLUSION 

 In this paper, we have thoroughly examined a set of relevant trends in the market and, 

using Porter’s Five Forces as a framework, conducted an analysis of the semiconductor industry 

and our target market. We have concluded that our project will provide a solution for a very 

important problem, and is well positioned to capitalize on projected industry trends in the near 

future. We have proposed and analyzed two different market approaches - IP licensing and 

selling discrete chips - and weighed the pros and cons of each. We have surveyed the 

competitive landscape by looking at industry behaviors and researching a few key competitors, 

as well as thinking about potential substitutes. With all of this in mind, we can carefully tailor 

our market approach in a way that leverages our understanding of the bigger picture surrounding 

our technology.  
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IP Strategy 

Distributed computing is rapidly growing due to demand for high performance 

computation. Today, computers have multiple cores to divide and solve complex computational 

problems. In the near future, they will have many more cores which will need to work in unison. 

In this project, we are designing a high-radix router which will serve as an interconnect between 

processor cores and memory arrays in data centers. Our project addresses the problem of 

transferring large amounts of data between processors and memories to achieve high speed 

computation. It is a part of ongoing research in Berkeley Wireless Research Center (BWRC) for 

building hardware for next generation data centers.  

The router we are designing is unique among other routers available today in several 

ways. First, it is a high-radix router which means it can be used to direct traffic to and from a 

large number of endpoints. Second, the router can support very high bandwidth. We have 

designed such a high-performing router by proposing a novel system architecture based on a few 

key design decisions from the results of our design space exploration. These design decisions 

differentiate our router from existing designs in the commercial and research domains, and 

would form the core of our patent application. 

If we are successful in implementing our proposed design changes, then the router design 

can qualify for a patent. We would apply for a utility patent since the router will produce a useful 

tangible result like increased bandwidth. One of our marketing strategies is to sell the router as a 

standalone chip, which means we will be mass producing the router from a chip foundry. This 

makes it an article of manufacture, another quality of a utility patent. In addition to qualifying for 

one of the patent categories, our router can be considered novel invention since it is a high radix 
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router with up to 256 ports. This is much higher than any others that we have come across during 

our literature review.  

Patenting our novel design will give us a huge competitive advantage because we would 

be the first to develop a petabit bandwidth router. In general, the semiconductor industry is 

highly litigiousness because of rapid change in the technology each year. Many lawsuits are filed 

every year between rivals like Broadcom, Qualcomm, and Samsung. Furthermore, many of these 

companies have very deep pockets, along the motivation and resources to rigorously protect their 

patent portfolio. Therefore, before commercializing our technology, we must to exercise careful 

scrutiny to ensure we do not infringe on anyone else’s patents. In this environment, it also 

becomes necessary for us to hold our own patents, both to keep others from copying our 

technology and to prevent them from coming after us with lawsuits. However, as a small startup, 

we would have to weigh any sort of legal action very carefully, as we would likely not have 

sufficient funding to carry out protracted legal battles.  

The primary risk of choosing not to patent our novel router architecture would be 

forfeiting the legal protections that a patent grants. As a small company starting out, we would 

not provide much value as to our customers beyond our technological advantage. Without a 

patent, we risk allowing a much larger company to copy our technology. Combined with their 

vast resources, this could effectively put us out of business. While we might not actually be able 

to defend our patent, having one would at least deter others from blatantly copying us. 

Something else to consider here would be how easy we think it would be for our 

technology to be reverse engineered. Since our project is conducted in a research setting under 

BWRC, any major breakthroughs would most likely be published and peer reviewed, rather than 

kept as a trade secret. Furthermore, since our technology would be based on a novel architecture 
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rather than an implementation detail, others would almost certainly be able to engineer their own 

solutions based on our architecture, depending on how much we decide to publish. Thus, without 

a patent, we would have no way of controlling or profiting from our technology. 

 A potential secondary risk of not patenting might be that we would be passing on the 

chance to attract potential investors. In addition to the legal protection described above, holding a 

patent could have the additional effect of demonstrating strength to investors in multiple ways. 

First, the patent would differentiate us from our competitors; it gives us a sustainable, legally 

enforceable competitive advantage. Second, the patent would signal a high level of expertise to 

investors; it can signal that we are truly experts in our particular domain. Finally, the patent 

could provide assurances to investors that other companies will not be able to patent something 

similar and attempt to come after us for infringement. 

With all of this in mind, we would most definitely want to obtain a patent for our novel 

technology. Practically, the extent of legal protection we might receive remains questionable 

given our limited financial resources, but a patent still grants us many other advantages which 

could provide a huge boost to a company in its early stages. From this preliminary analysis, the 

benefits far outweigh to costs, and we would thus want to pursue a patent as soon as possible. 

We will conduct a thorough patent search with assistance from a patent attorney to make sure our 

invention has not previously been patented and does not infringe on any existing patents. 
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Technical Contributions 

I. OVERVIEW 

 The main goal of the Petabit Switch Fabric capstone project was to explore the design 

space of a high radix router. Using an open sourced router design from Daniel U. Becker’s 

Stanford dissertation, “Efficient Microarchitecture for Network-on-Chip Routers,” we explored 

tradeoffs between power, area, and bandwidth by adjusting parameters and implementing custom 

design changes. For example, increasing the number of input and output ports might result in 

higher bandwidth because more bits can travel across the router. However, this would increase 

our power and area metrics because the design would be larger. Alternatively, we might attempt 

to decrease power and area by reducing the complexity of control algorithms. As expected, the 

performance of the router is likely to decrease because of less efficient controllers. Our project 

aims to study and quantify these tradeoffs. 

 In order to collect the power, area, and bandwidth data of our chip, we needed to push our 

design through a set of Synopsys Design Compiler tools. These tools will be discussed in further 

detail in the Methods and Materials section of this paper. The first task of the project was to set 

up these tools to work properly for our specific design. This involved setting up our compute 

environment, configuring the tools, and modifying custom build scripts. Whenever a new 

parameter was changed or the design was updated, the router needed to be re-compiled and 

pushed through the tool-flow again. Early in the project, we realized that the large router designs 

we were planning on implementing were taking far too long for the tools to process. Each design 

was taking many days to complete. If we were to iterate over a combination of parameters, it 

would be infeasible to finish collecting the necessary data within the timeframe of the project. 



Chen 32 

Therefore, we quickly realized that the majority of work would actually be dedicated to 

improving the turn-around time of the Synopsys tools. 

Because of the highly linear progression of tasks that were required before we could 

actually begin to build our chip and run simulations, our group worked in parallel for a 

significant portion of the project without clearly separated tasks. This means that there was a 

significant amount of collaboration that was required because our tasks were overlapping. 

Therefore, in our set of technical contribution papers, we will each be discussing our individual 

contributions that helped our group accomplish common goals, rather than discussing isolated 

tasks. 

In the Results and Discussion section, I will be discussing my contributions: initial design 

space exploration of small routers, hierarchical design implementation, and scripts for data 

parsing and running tools. First, the initial design space exploration with small designs was 

important for us to make sure our assumptions based on our literature reviews were correct. It 

helped us gain intuition for how changing certain parameters would impact our router’s power, 

area, and bandwidth. This set of data points was also an indicator that the tools were behaving 

correctly. For example, if we increased our number of ports but found a decrease in total area, it 

would be obvious that we had an error in our method. Next, using hierarchical design was crucial 

for allowing us to complete builds with fast turn-around times. Hierarchical design allowed us to 

use unchanged portions of previous builds in our new build. This reduced redundancy in our 

work, and the tools could complete new designs more efficiently. Finally, Python and Bash 

scripts were extremely useful for parsing reports and aggregating data automatically. These 

scripts were a shared resource that everyone in the group could access, and they further improved 

the ability of the group to collect data quickly. 
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II. KNOWLEDGE DOMAINS 

 In order to explore the design space of a router, we must first understand the different 

parts that make up a router, and how these modules are integrated together. On a high level, a 

router is a component that moves data from any input port to any output port. This switch allows 

different parts of a system to communicate with each other. How efficiently and quickly data can 

be moved from an input port to an output port depends on the design and implementation of the 

router. In this section, I will be discussing arbiters, while the rest of my group will be focusing 

on the other submodules of the router. 

 One of the fundamental operations performed by the control logic in a router is 

arbitration, or the mediation between multiple agents that want to access a shared resource 

(Becker, 2012). In other words, arbiters ensure that if one or more agents request access to a 

particular resource, one of the agents will receive a grant. Arbitration algorithms occur in buffer 

management as well as switch allocators, which will be discussed in Bhavana Chaurasia’s as 

well as Surabhi Kumar’s literature review sections. In the following paragraphs, I will be 

discussing five different arbitration techniques and each of their tradeoffs. 

 First, we will consider the fixed priority arbiter. This is the simplest form of arbitration 

where access to resources is granted to agents based on a predetermined fixed priority order. A 

simple schematic of this implementation is shown in Figure 1. This straightforward approach 

uses a linear array of cells, granting gi if request ri is asserted. This design minimizes complexity, 

resulting in minimized power and area. However, this implementation incorporates no fairness 

because some agents will always receive priority over others. 
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Figure 1: Fixed Priority Arbiter (Becker, 2012) 

  

Another approach is using round-robin arbiters. This implementation is similar to the 

fixed-priority scheme, except that the priority queue is shifted after every request is granted. This 

means that agent with the highest priority, the head, will be moved to the end of the queue after 

any request has been granted. This is accomplished by passing a token around that determines 

the head of the fixed priority arbiter. This implementation ensures better fairness than a fixed 

priority arbiter. However, additional complexity increases power and area. A linear 

implementation of the round robin arbiter is shown in Figure 2. 

In order to achieve the maximum fairness, a matrix arbiter can be used. The matrix 

arbiter implements a least-recently-served policy. For every pair of inputs, a precedence indicator 

is assigned that determines which agent has higher priority among that pair. These precedence 

indicators are stored in a matrix of registers. Anytime an input is granted, it sets the matrix to  
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Figure 2: Round Robin Arbiter (Becker, 2012) 

 

ensure that the most recently granted agent receives the lowest precedence among all pairs for 

future requests. The number of registers required to hold the precedence matrix is the primary 

factor in the allocator’s implementation cost (Becker, 2012). Furthermore, the size of the matrix 

scales quadratically. This means that power and area is also expected to scale quadratically. 

Therefore, although matrix arbiters exhibit the most fairness, it is only attractive for a small 

number of inputs. 
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 Another implementation is the tree arbiter. In some applications, agents are organized 

into multiple groups (Becker, 2012). In these cases, it may be advantageous to grant requests 

fairly among different groups rather than to individual agents. This can be achieved by 

implementing a hierarchical tree structure of arbiters that grants requests to groups. Tree arbiters 

can significantly reduce the power and area while maintaining fairness. However, these arbiters 

are only relevant for specific applications and do not make sense without a well-defined groups 

of agents. 

 Finally, multi-priority arbiters can be implemented in order to dynamically prioritize a set 

of requests (Becker, 2012). This design allows us to support a small number of priority levels 

similar to what we would have done in a fixed priority arbiter design. The agents within these 

priority groups are then arbitrated fairly. Much like the tree arbiter implementation, the multi-

priority arbiter requires well-defined groups. This design has the capability of further reducing 

power and area, but will only work well for a specific set of agents with fine-grained priorities 

(Becker, 2012). 

 

Figure 3: Dual-Priority Example of Multi-Priority Arbiter (Becker, 2012) 
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III. METHODS AND MATERIALS 

 In this section, I will discuss the necessary steps in designing and fabricating a silicon 

chip. A digital circuit can be represented by a hardware description language such as Verilog. 

This code describes circuits as logical functions. Using EDA tools, this code can be synthesized 

into standard cells. This synthesized design is then given to other tools to do place-and-route, the 

placement, wiring, and sizing of these cells, to finally produce a layout that can be manufactured 

by foundries. In our project, we are using Synopsys Design Compiler (DC) to run synthesis, and 

Synopsys IC Compiler (ICC) to run place-and-route. Because of nondisclosure agreements, we 

are using a Synopsys educational library of standard cells that is not a real technology. However, 

this library is extremely close to mimicking the real 32 nanometer technology, and our design is 

expected to carry over to the real libraries without major changes. 

 Because these tools are used to build any kind of digital circuit ranging from complex 

processors to single decoders, it is crucial to set up the tools properly to design optimal circuits. 

This involves understanding which of the myriad of features to enable or turn off, defining 

custom constraints on wiring and placement so the tools will use less effort, and exploring 

different design approaches such as hierarchical or custom designs. Much of the effort early on 

in the project was devoted to setting up these tools to perform optimally, and exploring different 

ideas to decrease the turn-around time of our designs. 

As described in the overview section, large designs were initially taking far too long to 

complete. This was attributed to the very large amount of wiring that is required in large 

switches. As the number of input and output ports increase, the amount of wiring required grows 

quadratically because every input port needs to be connected to every output port. Furthermore, 

the control logic also grows quadratically. Allocators have an increasing number of agents to 
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handle as the number of ports increases. However, we only have a fixed number of wiring metal 

layers. This means that as we increase the number of input and output ports in our design, the 

wiring and routing between all the cells becomes more difficult quadratically. 

One approach to decrease our turn-around time is using hierarchical design. Hierarchical 

design allows us to use unchanged portions from previous builds in our new design. This means 

that we can tell the tools to reuse modules from previous synthesis and place-and-route steps. If 

part of a design is unchanged, it is much more efficient for the tools to use the completed design 

from a previous build and incorporate it into the current design with minimal changes. In the 

Results and Discussion section, we will explore further why using hierarchical design is expected 

to greatly improve the efficiency of the DC Compiler as well as IC Compiler for our design. 

 Finally, we use another Synopsys tool called Primetime for power estimates. After place-

and-route, our design is ready to be sent to a foundry for production. However, it is useful to 

measure and analyze the power consumption of our design. Power is an important factor to 

consider because efficiency and heat dissipation are becoming paramount concerns in the 

industry. After exercising our design by giving it stimulus, in our case packets being sent from 

input ports to various output ports, Primetime will report power estimates in different parts of the 

chip. 

 Using all of the tools described in this section, we have the capability to map out how 

different design schemes impact power, area, and throughput. 
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IV. RESULTS AND DISCUSSION 

A. Design space for small routers 

 First, I will discuss the results area, timing, and throughput results collected from routers 

with input and output port sizes ranging from five to twenty ports. Figure 4 shows the results of 

the frequency plotted versus the number of ports. The four different series of data represent 

different number of virtual channels. Data is missing for the higher number of virtual channels 

because those design points lie outside of our design space. As expected, the frequency decreases 

approximately linearly as the number of ports increase. As the number of ports increase, the 

routing complexity increases, resulting in an increase in critical path and decrease in the 

maximum frequency of the circuit. 

 

 

Figure 4: Frequency vs Number of Ports 
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 Figure 5 shows the total area of designs of different port numbers and virtual channels. 

As the number of ports increase, the area scales quadratically. This is also expected because 

increasing the number of ports increases the number of standard cells and wiring required 

quadratically as well. 

 

 

Figure 5: Area vs Number of Ports 
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Figure 6: Theoretical Maximum Throughput vs Number of Ports 

 

achieve high throughput, we will need to concentrate on improving frequency by decreasing our 

critical paths. 
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  Area [um^2] Area % Build Time [hours] Build Time % 

Complete Design 13255916 100 86 100 

Crossbar 3967254 29.92817697 84 97.6744186 

Allocators 5625329 42.43636577 12 13.95348837 

Input Control 2529408 19.08135205 4.3 4.96124031 

Output Control 69632 0.525289991 1.6 1.860465116 

 

Figure 7: Table comparing area and build time for different modules of router 

 

 One striking observation is that the build time of the crossbar alone takes over 95% of the 

build time of the entire switch. This was replicated over many runs. Additionally, the crossbar 

design only depends on the number of ports, and does not depend on any other additional 

parameters. This means that it is possible to build a few crossbars of different sizes once, and 

reuse them when we are iterating over the design space. By implementing hierarchical design we 

expect to improve our build runtime. 

 After running a small 8x8 router design through the hierarchical design flow, I discovered 

the following results shown in Figure 8 below. Interestingly, the build time increased for the 

smaller design. Because the design is relatively small, the crossbar is simple and uses a small 

number of gates. The benefits of using hierarchical design is overshadowed by the overhead 

introduced by implementing the hierarchical approach into the design flow. As expected, the 

critical path and area both show negative consequences. Because the physical cell for the  

 8x8 router design Normal Build Hierarchical % Change 

Build Time [minutes] 49 91 186% 

Critical Path [ns] 5.18 6.09 118% 

Area [um
2
] 290578.675 312319.194 107% 

 

Figure 8: Table comparing build time, critical path, and area for  

normal and hierarchical builds of an 8x8 router 
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crossbar was designed without knowledge of the loading on the input and output ports, the sizing 

of these gates at the boundaries are not optimized. In order to better design for timing, the loads 

on the crossbar ports can be estimated and used for sizing the gates appropriately. The area is 

also larger for the hierarchical design. This can be attributed to the sub-optimal boundaries. The 

crossbar is now a rectangular box, and the routing becomes heavily constrained depending on 

where the input and output ports of this box are located. 

 The results from a 64x64 router design is summarized in the Figure 9 below. Note that 

the build times are in hours instead of minutes. We observe a 70% decrease in build time. 

However, we also see a large negative impact on critical path (increase by 55%) and area 

(increase by 14%). This hierarchical switch design was achieved by designing a crossbar with an 

estimated capacitive loading on the output. When we implemented the crossbar without any 

loading, as we had done in the previous smaller 8x8 router design, the tools would not finish in a 

reasonable amount of time. Because of irregular placement and wire routing by the tools, many 

output ports of the crossbar actually had very different capacitances ranging from 31 fF to 120 

fF. The crossbar was designed assuming average capacitive loading at every output. For these 

reasons, the timing and area are suboptimal. In order to achieve better timing, area, and build 

time, we need to give better prediction of output loading capacitances. 

 

64x64 router design Normal Build Hierarchical % Change 

Build Time [hours] 86 61 71% 

Critical Path [ns] 7.41 11.5 155% 

Area [um
2
] 13.26x10

6 
15.11x10

6
 114% 

 

Figure 8: Table comparing build time, critical path, and area for  

normal and hierarchical builds of an 64x64 router 
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 Although we observe negative consequences for timing and area, hierarchical design 

approach still allows us to decrease our total build time and iterate through designs more quickly. 

With better modelling and prediction of the output port loading capacitances, we can expect to 

improve the timing and area metrics, as well as further decrease the build time. 

C. Python and Bash scripts 

 Finally, I wrote various Python and Bash scripts that were useful for gathering data and 

running the tools. These scripts improved our group’s efficiency and provided a common method 

for us to collect and analyze data. One Python script was a data collector that parsed reports from 

the Synopsys tools and aggregated them into a single file. This automated process meant that we 

did not need to manually search through various reports and record numbers, improving our 

accuracy and reducing the chance for human error. Another Python script was developed to 

automatically change parameters in the Verilog source code. This was particularly useful when I 

collected data during incremental design, building individual modules separately. During this 

phase, specific parameters from individual modules needed to be modified because the top level 

module was continually changing. Finally, I also developed Bash scripts that would run the tools 

on the compute server farm, automatically utilizing the maximum number of cores and creating 

logs for the progress of the job. This script allowed us to easily monitor our jobs and analyze 

how much time the tools spent on each step of the build. 

  

  



Chen 45 

Concluding Reflections 

 Originally, my capstone team planned to map out a Pareto optimal curve of the design 

space for high radix routers, comparing throughput, area, and timing. However, given time 

constraints, we did not succeed in designing optimal switches that lie on this curve. Much of our 

work was focused on customizing the tool-flow in order to efficiently iterate through designs. 

Instead, we explored the tradeoffs of specific implementation schemes, such as types of arbiters, 

types of allocators, and types of buffers. This design space exploration is valuable in order to 

gain intuition for how a complete design would perform. 

Using a hierarchical design flow is helpful for decreasing the build time for larger switch 

designs. This approach allows us to build modules separately and include them in our switch as a 

black box. Hierarchical design is important for iterating through switch implementations quickly 

to find optimal design schemes. Although we observe negative effects on timing and area, the 

results are still meaningful during design space exploration. When a final design is reached, the 

entire switch can be flattened and run through the tools without hierarchy to achieve higher 

operating frequency and smaller area. For future work, the high radix switches beyond 64 ports 

may be explored using the tool infrastructure we have established. 
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