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Abstract

An Analysis of the RPL Routing Standard for Low Power and Lossy Networks

by

Aishwarya Parasuram

Master of Science in Computer Science

University of California, Berkeley

Dr. David Culler, Research Advisor

RPL is a distance-vector routing protocol designed by the ROLL Working Group in order
to cater to the specific needs of low-power and lossy networks (LLNs). It is specified in the
standards document RFC 6550 and is the emerging standard for routing in Wireless Sensor
Networks. RPL has been widely criticized for a number of reasons, including underspecifi-
cation and complexity of implementation. This thesis analyzes the RPL routing standard
with regards to specification, performance, comparison with other routing standards, open
source and industrial implementations, as well as improvement e↵orts. It also proposes an
alternative to the RPL routing standard, RPL-Lite, that overcomes the shortcomings of the
current RPL design. RPL-Lite reduces the feature set by including only the most necessary
features required for routing. By doing so, it reduces the implementation complexity and
makes it more suitable for deployment on resource constrained nodes.



i

Dedication

I would like to dedicate this work to the Almighty, whose grace and kindness has shown me
light on the darkest of days.



ii

Contents

Contents ii

List of Figures vi

List of Tables vii

1 Introduction 1
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Need for RPL 4
2.1 Wireless Sensor Networks (WSNs) . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Low Power and Lossy Networks (LLNs) . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Introduction to LLNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Unique Challenges for Routing in LLNs . . . . . . . . . . . . . . . . . 5

2.3 Routing in LLNs before creation of ROLL . . . . . . . . . . . . . . . . . . . 5
2.4 Initial Goals of ROLL Working Group . . . . . . . . . . . . . . . . . . . . . 6

3 Understanding RPL 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 What is RPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 About this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 RPL Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 DODAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 DODAG Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.4 RPL Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 RPL Control Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 RPL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Supported Tra�c Patterns . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9



iii

3.4.3 Upward Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.4 Downward Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.5 Loop Detection and Avoidance . . . . . . . . . . . . . . . . . . . . . 11

3.5 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Trickle Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.7 Security Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.8 Features of RPL Necessary for Interoperability . . . . . . . . . . . . . . . . . 13

4 Analysis of RPL 14
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Performance Evaluation Studies . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Comparative Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 RPL and CTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 RPL and LOADng . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.3 Proactive vs reactive Routing Protocols for WSNs . . . . . . . . . . . 21

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 RPL Implementations 26
5.1 Open Source Implementations of RPL . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 SimpleRPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 TinyRPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.3 ContikiRPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.4 RIOT-RPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Industrial Implementations of RPL . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Issue-by-Issue Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Incompatible Modes of Operation . . . . . . . . . . . . . . . . . . . . 28
5.3.2 Multiple Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.3 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3.5 Floating DODAGs and Local DODAGs . . . . . . . . . . . . . . . . . 29
5.3.6 Underspecification of Local and Global Repair Trigger . . . . . . . . 29
5.3.7 General Size of Code Base . . . . . . . . . . . . . . . . . . . . . . . . 29

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Past Work on RPL Improvements 31
6.1 Combined Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Additive and Lexical Composition of Metrics . . . . . . . . . . . . . . 32
6.1.2 CA-RPL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.3 QoS-Aware Fuzzy Logic Objective Function . . . . . . . . . . . . . . 34
6.1.4 Per-Hop ETX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.5 Improved Energy E�ciency . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Average Delay Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



iv

6.3 Multipath forwarding schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3.1 E�cient Topology Construction . . . . . . . . . . . . . . . . . . . . . 39
6.3.2 Increased Network Lifetime . . . . . . . . . . . . . . . . . . . . . . . 40
6.3.3 Improved Packet Delivery Ratio (LQA-RPL) . . . . . . . . . . . . . . 41
6.3.4 Support for Anycast . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Broadcast Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Need for a New Standard 47
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 Unnecessary Features of RPL . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Under-specification of standards document . . . . . . . . . . . . . . . . . . . 48
7.4 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.5 Types of applications RPL does not cater to . . . . . . . . . . . . . . . . . . 53
7.6 Features that would benefit RPL . . . . . . . . . . . . . . . . . . . . . . . . 54
7.7 Has RPL succeeded or failed . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 RPL-Lite 56
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.1.1 Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1.2 Expectations of Link-Layer Type . . . . . . . . . . . . . . . . . . . . 57

8.2 Protocol Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
8.2.1 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2.1.1 Constructing Topologies . . . . . . . . . . . . . . . . . . . . 57
8.2.1.2 RPL-Lite Identifiers . . . . . . . . . . . . . . . . . . . . . . 58
8.2.1.3 RPL-Lite DAGs . . . . . . . . . . . . . . . . . . . . . . . . 58

8.2.2 Upward Routes and DAG Construction . . . . . . . . . . . . . . . . . 58
8.2.2.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . 58
8.2.2.2 DAG Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 58
8.2.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2.2.4 Administrative Preference . . . . . . . . . . . . . . . . . . . 59
8.2.2.5 Data-Path Validation and Loop Detection . . . . . . . . . . 59
8.2.2.6 Distributed Algorithm Operation . . . . . . . . . . . . . . . 59

8.2.3 Downward Routes and Destination Advertisement . . . . . . . . . . . 60
8.2.4 Rank Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.5 Loop Detection, Avoidance and Recovery . . . . . . . . . . . . . . . . 61

8.2.5.1 DAG Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.2.5.2 DA Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.3 Tra�c Flows Supported by RPL-Lite . . . . . . . . . . . . . . . . . . . . . . 61
8.3.1 Multipoint-to-Point Tra�c . . . . . . . . . . . . . . . . . . . . . . . . 62
8.3.2 Point-to-Multipoint Tra�c . . . . . . . . . . . . . . . . . . . . . . . . 62



v

8.3.3 Point-to-Point Tra�c . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 RPL-Lite Control Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.4.1 RPL-Lite Equivalents of RPL Control Messages . . . . . . . . . . . . 63
8.4.1.1 DAG Information Solicitation Messages . . . . . . . . . . . 63
8.4.1.2 DAG Information Advertisement Messages for Upward Routes 63
8.4.1.3 Destination Advertisement Objects for Downward Routes . 63
8.4.1.4 Destination Advertisement Acknowledgement Messages . . . 64
8.4.1.5 Consistency Check Messages . . . . . . . . . . . . . . . . . . 64

8.4.2 RPL-Lite Control Message Options . . . . . . . . . . . . . . . . . . . 64
8.5 Upward Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.5.1 Upward Route Discovery and Maintenance . . . . . . . . . . . . . . . 66
8.5.1.1 Neighbors and Parents . . . . . . . . . . . . . . . . . . . . . 66
8.5.1.2 DAG Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.5.1.3 Poisoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.5.2 Node Advertisement Transmission . . . . . . . . . . . . . . . . . . . . 67
8.5.3 Operation as a Leaf Node . . . . . . . . . . . . . . . . . . . . . . . . 68

8.6 Downward Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.6.1 Destination Advertisement Parents . . . . . . . . . . . . . . . . . . . 68
8.6.2 Downward Route Discovery and Maintenance . . . . . . . . . . . . . 69
8.6.3 INDA Transmission Scheduling . . . . . . . . . . . . . . . . . . . . . 69
8.6.4 Downward Routing Mechanism . . . . . . . . . . . . . . . . . . . . . 70

8.7 Loop Avoidance and Detection . . . . . . . . . . . . . . . . . . . . . . . . . 70
8.7.1 DAG Inconsistency and Loop Detection . . . . . . . . . . . . . . . . 71
8.7.2 DA Inconsistency Detection and Recovery . . . . . . . . . . . . . . . 71
8.7.3 Global Repairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.7.4 Local Repairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

9 Conclusion 73

Bibliography 75



vi

List of Figures

8.1 IPv6 Neighbor Discovery and IPv6 Inverse Neighbor Discovery Option Format . 62
8.2 IPv6 Neighbor Discovery Option for RPL-Lite DIO . . . . . . . . . . . . . . . . 63
8.3 IPv6 Inverse Neighbor Discovery Advertisement Message . . . . . . . . . . . . . 64
8.4 DAG Configuration option for RPL-Lite . . . . . . . . . . . . . . . . . . . . . . 65
8.5 Solicited Information option for RPL-Lite . . . . . . . . . . . . . . . . . . . . . 65



vii

List of Tables

4.1 Performance Evaluation Studies of RPL . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Comparative Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Studies on Improvements to the RPL Routing Standard . . . . . . . . . . . . . 46



viii

Acknowledgments

Firstly, I would like to thank my parents Subbalakshmi Parasuram and Tirunelveli Ratnagiri
Parasuraman, for their unconditional love and support. Their fierce belief in my potential
led me to dream beyond what I am. I would like to thank my sister Sahana Parasuram, who
has shown love to me on days when I couldn’t love myself. She is my greatest inspiration and
has taught me that love and kindness conquers all. I would also like to sincerely thank my
research advisor, Dr. David Culler, for giving me the opportunity to pursue graduate studies
at my dream university and gain knowledge from some of the best computer scientists in
the world. His wisdom and foresight was most inspiring during my journey at Berkeley. I
would like to thank all the supporting sta↵ at UC Berkeley. They have been so kind and
encouraging throughout and have helped me feel welcome from the very first day. I would
like to thank my colleagues and lab-mates. They exemplify self-motivation, and have taught
me that success is only secondary to truly enjoying what you do. I would like to thank my
grandparents, friends and family members for motivating me throughout. I am very lucky
to have you all in my life. I would also like to thank God, for always showering His grace
and love upon me and helping me see light on the darkest of days. I am so blessed to be at
the receiving end of such priceless gifts, and will forever be grateful to each and every one
of you.



1

Chapter 1

Introduction

1.1 Problem Statement

In this thesis, we aim to analyze the disadvantages and drawbacks of the Routing Protocol
for Low-power and Lossy Networks (RPL) [77] and propose a high-level specification for an
interoperable and easy to implement protocol, RPL-Lite.

1.2 Motivation

RPL was proposed as a solution for routing in low-power and lossy networks (LLNs) and
catered to unique routing challenges. LLNs are typically resource constrained in terms of
memory, battery life and processing power. They include Wireless Personal Area Networks
(WPANs), low-power Power Line Communication networks (PLC) and Wireless Sensor Net-
works (WSNs). Standard routing protocols such as OSPF were not suited for the special
challenges that LLNs posed. RPL was specially designed to overcome these challenges. It
included many specific features such as dynamic rate of control message dispatch based on
network consistency and addressing topology changes only when data packets have to be
sent[73]. Due to such design considerations, RPL was able to remain conservative in terms
of constrained resources. However, the RPL feature set included repetitions of tasks already
performed by other IP layers. It also included many unnecessary features that were never
used in real deployments. Consequently, the specification proved much too complex to im-
plement in entirety on a single resource constrained node.

Due to this, many current implementations of RPL only implement a subset of the original
feature-set, making them non-interoperable. In order to be standards-compliant and thereby
interoperable, it is required that the implementations include a certain set of features, which
is not always possible given the size and memory limitations of the nodes operating in LLNs.
Additionally, the underspecification and ambiguity in the standards document give rise to
a large number of implementation choices, many of which adversely impact overall perfor-
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mance.

This thesis analyses the shortcomings of RPL, and also proposes a new routing protocol
that could potentially serve as a standard built o↵ of RPL with less complexity and a reduced
feature-set.

1.3 Roadmap

Chapter 2 provides background on the need for a routing standard like RPL. It gives a ba-
sic introduction to Wireless Sensor Networks and Low-Power and Lossy networks, and also
describes the unique routing challenges in LLNs. A background on routing protocols before
the design and standardization of RPL is also provided, and the initial goals of the ROLL
Working Group [62] in charge of designing RPL are discussed.

In Chapter 3, the RPL routing standard is analyzed in detail. All information in this
chapter is a direct summarization of the standards document RFC6550, and does not include
any personal views or opinions. The purpose of this chapter is to provide a broad overview
of the RPL routing standard, for further speculation in the following chapters.

Chapter 4 summarizes a number of past studies on RPL. There have been a number
of works that focus on quantitatively and qualitatively evaluating RPL’s performance with
regards to a number of parameters, such as energy e�ciency, routing overhead and scale.
It was observed that a large majority of such work were tested only on simulators. RPL
is also evaluated against routing protocols such as Collection Tree Protocol (CTP) [22] and
LOADng [7], which have been designed for similar purposes.

In Chapter 5, a number of open-source and industrial implementations of RPL are stud-
ied. Some of the open-source implementations include the popularly deployed ContikiRPL
and the recently designed RIOT-RPL. Industrial implementations have not been inspected
in as much detail because of proprietary ownership of the code base. However, a study of
these implementations points out a number of flaws in the current design, which are pre-
sented in this section.

A large number of e↵orts have been made towards improving the RPL routing standard.
Some of these e↵orts include designing new metrics for better suiting application needs.
Others include optimizing RPL’s performance by using multipath schemes and providing a
higher degree of routing redundancy. Many such works have been analyzed in Chapter 6,
and they indicate that the current design is unsuitable for a number of LLN scenarios.

Chapter 7 revisits the need for a new routing standard by succinctly pointing out the
unnecessary features in the RPL standards document, the under-specifications that lead to
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diverse and non-interoperable implementation choices as well as a number of known issues
that RPL faces, in spite of its highly comprehensive feature set. This chapter also looks
into the types of applications for which RPL is not fully suited for, and investigates how
successful RPL is in catering to the unique challenges posed by LLNs.

Finally, Chapter 8 proposes RPL-Lite, which is a new routing protocol that is built o↵
of the current RPL specification. RPL-Lite is intended to be a lightweight design of RPL
that weeds out unnecessary features and modifies the current standard to be less complex
and more easily implementable.
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Chapter 2

Need for RPL

2.1 Wireless Sensor Networks (WSNs)

According to [80], WSNs consist of small and cheap nodes with processing, communication
and sensing capabilities that cooperatively interact to carry out complex monitoring tasks
in a geographical area of interest. WSNs are used in a number of applications today such as
industrial monitoring, building automation (HVAC, lighting, access control, fire), connected
home, health-care, environmental monitoring, urban sensor networks sensor networks, assets
tracking and refrigeration. They represent a key technology that will revolutionize human life
in the upcoming years, providing at the same time new business opportunities [1]. There are
many WSN applications that play a crucial role in important domains such as smart-cities,
environmental monitoring, distributed sensing in industrial plants and healthcare. However
according to [25], WSNs assume an a priori knowledge of the tra�c patterns to optimize
for, with sensor-to-controller tra�c (multipoint-to-point) being predominant, controller-to-
sensor tra�c (point-to-multipoint) being rare and sensor-to-sensor tra�c being some-what
esoteric. Hence a number of routing protocols designed for such networks prioritize MP2P
tra�c pattern over others [73][22]. It is often acceptable to have longer paths in order to
reduce the amount of control tra�c flowing within the network.

2.2 Low Power and Lossy Networks (LLNs)

2.2.1 Introduction to LLNs

Low power and lossy networks (LLNs) are those in which the routers and their interconnects
are highly resource constrained. Routers are usually limited in terms of processing power,
battery and memory, and their interconnects are characterized by unstable links with high
loss rates, low data rates and low packet delivery rates. The tra�c patterns are also varied,
and may comprise of point to point (P2P), point to multipoint (P2MP) or multipoint to
point (MP2P). They can potentially comprise thousands of nodes [77].
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2.2.2 Unique Challenges for Routing in LLNs

LLNs are inherently di↵erent from standard networks because they are highly resource con-
strained at the routers as well as the interconnects. Routers are constrained in terms of
memory, processing power and battery life. The interconnects are lossy with high packet-
drop rate. These networks use a wide variety of communication technologies including both
wired and wireless. Furthermore, these networks can potentially comprise of thousands of
nodes. They also have to support multiple types of tra�c patterns.

An additional consideration is that high data-tra�c very easily leads to network conges-
tion [68]. Such scenarios cause large amount of packet loss and delay. Since sensor networks
are commonly deployed in environments with potentially high data-tra�c and in many cases
require a time-sensitive response, it is necessary that such concerns need to be addressed
while designing a routing protocol for LLNs.

The existing routing protocols such as Open Shortest Path First (OSPF) [8], Intermediate
System to Intermediate System (IS-IS) [12], Ad Hoc on Demand Vector (AODV) [53] and
Optimized Link State Routing (OLSR) [67] have been extensively evaluated by the ROLL
Working Group (ROLL-WG) [62] and have been found to be unsuccessful satisfying the
requirements of LLNs [41]. For example, path selection must be designed to take into
consideration the specific power capabilities, attributes and functional characteristics of the
links and nodes in the network.

2.3 Routing in LLNs before creation of ROLL

Initially, it was thought that the Internet architecture was not suited for sensor networks.
This was due to a number of reasons. Firstly, it was assumed that sensor networks are de-
signed to specifically cater to the requirements of a single application domain, hence having
a generic architecture that could accommodate a wide range of applications was unneces-
sary. Also, it was thought that the end-to-end architecture was unhelpful for the localized
algorithms and in-network processing required to achieve robustness and scalability in such
networks [36][18].

Due to this, the progress and advancement in developing network abstractions and new
protocols for sensor networks was a collection of disjoint, non-interoperable and dispersed
e↵orts within the community. Additionally these networks were not able to communicate
with each other (due to non-standardization of communication protocols) or with the wider
Internet since they were not using IP. They required the use of complex application-layer
gateways which added further complexity and overhead of design and coordination.
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2.4 Initial Goals of ROLL Working Group

The ROLL (Routing over Low-power and lossy networks) Working Group [62] was created to
specify a comprehensive routing protocol that could route data e�ciently over LLNs. ROLL
primarily focused on the determining the routing requirements for the following scenarios
while creating RPL: industrial, connected home or building and urban sensor networks.
The designed routing protocol must fit the various requirements introduced by the working
group’s target applications specified in [4], [55], [44] and [15]. This group believed that tech-
nology was surely transitioning to IPv6, and hence aimed to provide an IPv6 only routing
architectural framework for these application scenarios. According to [25], the uno�cial
goal of this working group was to prevent fragmentation in the WSN market by providing
an IP-based routing standard and solicit broad industrial support behind that standard.

Some of the main features that this group took into consideration were providing high re-
liability in the presence of time varying loss characteristics and connectivity while permitting
low-power operation with very modest memory and CPU pressure in networks potentially
comprising a very large number (several thousands) of nodes. The group also explored as-
pects of mobility within a single LLN (if any) in the routing requirement creation. Routing
security and manageability (e.g., Self Configuration) was an important consideration, as were
transport characteristics that the control messages will face. The main objective of this pro-
tocol is to target networks which comprise up to thousands of routers, where the majority of
the routers have very constrained resources, where the network to a large degree is managed
by a (single or few) central superrouters, and where handling mobility is not an explicit
design criteria. Supported tra�c patterns include multipoint-to-point, point-to-multipoint
and point-to-point tra�c. The emphasis among these tra�c patterns is to optimize for
multipoint-to-point tra�c, to reasonably support point-to-multipoint tra�c and to provide
basic features for point-to-point tra�c, in that order [25][77].
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Chapter 3

Understanding RPL

3.1 Introduction

3.1.1 What is RPL

RPL is a distance-vector and a source routing protocol that is designed to operate on top of
several link layer mechanisms including IEEE 802.15.4 PHY and MAC layers [77][20]. These
link layers could be constrained, potentially lossy, or typically utilized in conjunction with
highly constrained host or router devices, such as but not limited to, low-power wireless or
PLC (Power Line Communication) technologies [p10]. RPL mainly targets collection-based
networks, where nodes periodically send measurements to a collection point. A key feature
of RPL is that it represents a specific routing solution for low power and lossy networks. The
protocol was designed to be highly adaptive to network conditions and to provide alternate
routes, whenever default routes are inaccessible. RPL provides a mechanism to disseminate
information over the dynamically formed network topology. This mechanism uses Trickle
[43] to optimize the dissemination of control messages [p9].

3.1.2 About this Chapter

This chapter includes direct references from the standards document [77] released by the
ROLL WG. It does not include personal opinions or viewpoints, and is simply intended
to be a short summarization of the key features of RPL. It also highlights certain features
that draw special attention in the rest of the thesis. Since many lines are directly drawn
from the RFC, a special form of referencing is used for referring to a particular line from
RFC6550. In particular, the letter ’p’ followed by a number implies that the particular line
(or a paraphrasing of the line) or set of lines immediately preceding the reference can be
found in RFC6550 in the page indicated by the number.
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3.2 RPL Topology

3.2.1 DODAG

RPL organizes its topology into DODAGs or destination-oriented directed acyclic graphs. A
DODAG is a DAG rooted at a single destination. The DODAG root has no outgoing edges
[p10]. A DODAG is uniquely identified by a combination of RPL Instance ID and DODAG
ID. Each DODAG has a DODAG root, which is the DAG root of the DODAG.

3.2.2 Rank

A nodes Rank defines the nodes individual position relative to other nodes with respect to
a DODAG root. Rank strictly increases in the Down1 direction and strictly decreases in the
Up2 direction. The exact way Rank is computed depends on the DAGs Objective Function
(OF). The Rank may analogously track a simple topological distance, may be calculated as
a function of link metrics, and may consider other properties such as constraints [p11].

3.2.3 DODAG Root

The DODAG root is the DAG root of the DODAG. The DODAG root may act as a border
router for the DODAG, and aggregate routes in the DODAG and may redistribute DODAG
routes into other routing protocols [p11]. The DODAG root is responsible for configuring
a number of parameters, which are advertised as options and carried in DIO messages.
Examples of such options include:

• Trickle Timer Options (DIOIntervalDoublings, DIOIntervalMin, DIORedundancyCon-
stant)

• Path control size

• MinHopRankIncrease

• DODAGPreference Field

The DODAG root also plays an important role in multicast. It acts as an automatic proxy
Rendezvous Point for the RPL network and as a source towards the non-RPL domain for all
multicast flows started in the RPL domain.

3.2.4 RPL Instances

A RPL instance is a set of one or more DODAGs that share a RPLInstanceID. Each RPL in-
stance operates independently of other RPL instances, and implements a di↵erent objective

1
‘Down’ direction implies away from the root.

2
‘Up’ direction implies towards the root.
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function. A network may run multiple instances of RPL simultaneously, when the require-
ment states that di↵erent and possibly countering constraints are to be used for within the
same LLN. However, [77] only defines operation of a single instance. A single RPL instance
may have multiple DODAGs. A node can only be part of a single DODAG per RPL instance.
A single node maybe part of multiple RPL instances.

3.3 RPL Control Messages

There are four main types of control messages supported by RPL:

• DIO: DODAG Information Object This message carries information that allows a node
to discover a RPL Instance, learn its configuration parameters, select a DODAG parent
set, and maintain the DODAG. This is similar to IPv6 Router Advertisements [45].

• DIS: DODAG Information Solicitation These are similar to IPv6 Router Solicitations
[45] and are used to solicit DIO from a RPL node.

• DAO: Destination Advertisement Object This is used to propagate destination infor-
mation upward along the DODAG. In storing mode, DAO is unicast to selected parents.
In non-storing mode, it is unicast to the DODAG root.

• DAO-ACK: Destination Advertisement Object Acknowledgement The DAO-ACK mes-
sage is sent as a unicast packet by a DAO recipient (a DAO parent or DODAG root)
in response to a unicast DAO message.

• CC: Consistency Check The CC message is used to check secure message counters and
issue challenge-responses. A CC message must be sent as a secured RPL message.

3.4 RPL Operation

3.4.1 Supported Tra�c Patterns

RPL was designed mainly for optimizing MP2P type of tra�c flow which is prevalent in
collection-based networks. According to the standards specification, RPL routes are opti-
mized for tra�c to or from one or more roots that act as sinks for the topology [p13]. It can
also be used for P2P and P2MP, but these are less optimized. To implement just the MP2P
tra�c flow, RPL requires only DIO and DIS control messages. For P2P and P2MP, RPL
requires the use of DAO and optionally DAO-ACK messages as well.

3.4.2 Modes of Operation

RPL supports two modes of operation for supporting P2MP and P2P communication: Stor-
ing Mode (fully stateful, MOP 0) and non-storing mode (fully source routed, MOP 1). Both
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these modes require the usage of DAO messages and the optional usage of DAO-ACK mes-
sages. In non-storing mode, a node sends data all the way up to the DODAG root by
recursively passing on the messages to DIO parents. At the DODAG root, the packet is
source-routed to the required destination. In storing mode, the packet is passed up to the
DIO parents until it reaches an ancestor through which the destination prefix is reachable.
These two modes of operation are incompatible.

3.4.3 Upward Routes

In RPL, upward routes are constructed from each node to the DODAG root to provide MP2P
communication. The MP2P communication pattern is a significant feature of collection-
based networks, where a number of sensors send their data to a common collection point
(which in this case is a DODAG root). This in turn can act as a border router and transmit
this data to a time-series data store or other publishing space.

In RPL, these upward routes are by default constructed using a node’s preferred DIO
parent. Each node has a set of one-hop neighbors, called the candidate neighbor set. Out
of these, the node selects a group of nodes which have a rank strictly less than the node’s
current rank within this particular RPL instance. This set is called the candidate parent
set. Out of these, the node chooses one (or possibly more, but by default 1) parent through
which it sends packets to the DODAG root. When the node has some data that needs to be
sent to the root, it immediately sends this to the preferred parent. The parent node sends
it to its own parent and so on until it reaches the DODAG root.

In case the node’s immediate parent is not able to participate in routing the data to the
DODAG root, the node can select another alternative parent from its candidate parent set,
and route through this new parent instead.

3.4.4 Downward Routes

In RPL, downward routes are only required for implementing P2MP or P2P communication.
It is an optional feature that is supported using di↵erent modes of operation. These are
accomplished by using DAOs and DAO-ACKs. P2P routes are by default incorporated by
having the sensor node transmit the data packet via its preferred parent all the way up to the
DODAG root. Once the root receives the message it transmits it to the destination either
by appending the source route to the data packet or by simple hop-by-hop routing down the
DODAG. This depends on whether the mode of operation (MOP) is set to be storing mode
or non-storing mode.
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3.4.5 Loop Detection and Avoidance

RPL includes a reactive loop detection technique that protects from meltdown and triggers
repair of broken paths. The DODAG is inconsistent if the direction of a packet does not
match the Rank relationship. A receiver detects an inconsistency if it receives a packet with
either the O bit set (to Down) from a node of a higher Rank or the O bit cleared (for Up)
from a node of a lower Rank.

3.5 Objective Function

In order to be useful in a wide range of LLN application domains, RPL separates packet
processing and forwarding from the routing optimization objective. Examples of such objec-
tives include minimizing energy, minimizing latency, or satisfying constraints [p8]. The OF
is identified by an Objective Code Point (OCP) within the DIO Configuration option [p17].
The Objective Function (OF) defines how RPL nodes select and optimize routes within a
RPL instance. The OF along with a set of metrics are used for the following purposes:

1. The selection of DODAG to join

2. The rank of each node within the DODAG

3. the number of peers in that DODAG as parents and computation of an ordered list of
parents

4. The outcome of the process used by a RPL node to select and optimize routes within
a RPL instance based on the Information Objects available

As of the date when this document was written, the ROLL WG has defined two objective
functions:

• OF0: Objective Function Zero [50]
Here the routing metric adopted is hop count. OF0 is designed to be the common OF
that will allow interoperation between the di↵erent implementations of RPL[20].

• MRHOF: Minimum Rank with Hysteresis Objective Function [21]
MRHOF selects routes that minimize a metric, meanwhile using hysteresis to reduce
churn in response to small metric changes. MRHOF works with metrics that are
additive along a route. That is the traditional ETX (Expected Transmission Count)
metric. ETX of a wireless link is the estimated average number of transmissions of
data frames and ACK frames necessary for the successful transmission of a packet [78].

The separation of OFs from the core protocol specification is intended to allow RPL to be
adapted to meet the di↵erent optimization criteria required by the wide range of deployments,
applications, and network designs [50].
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3.6 Trickle Timer

RPL uses the Trickle timer [43][42] to reduce control message overhead by transmitting
updates only when inconsistencies are detected in the network. If a node hears DIO updates
from its neighbors that are consistent with its own understanding of the network topology,
then a redundancy counter is incremented. If the number of consistent updates heard within
a particular time interval exceeds the redundancy count, then the node does not transmit any
updates and the listening period is doubled. However, if an inconsistent update is heard,
then the timer is reset and an update is rapidly propagated. To save energy, the Trickle
timer sends out fewer control messages as the network becomes more stable. However, when
an inconsistency is detected, the timer gets reset and starts sending DIO messages more
frequently in order to quickly propagate updates through the rest of the network. The
Trickle timer has three configuration parameters:

1. The minimum interval size, I
min

, is defined in units of time (e.g., milliseconds, seconds).

2. The maximum interval size, I
max

, is described as a number of doublings of the minimum
interval size (the base-2 log(max/min)).

3. The redundancy constant is a natural number (an integer greater than zero).

In addition to these three parameters, Trickle maintains three variables:

1. I, the current interval size

2. t, a time within the current interval, and

3. c, a counter.

RPL defines default values for Trickle parameters but allows reconfiguration without a↵ecting
interoperability.

3.7 Security Features

A bit of the RPL message code identifies whether or not a RPL message is secure. RPL
includes secure versions of the basic control messages DIO, DIS, DAO and DAO-ACK. In
addition, it also includes several messages that are relevant only in networks that are security
enabled.

Given the resource constraints in LLNs as well as the size and complexity of RPL, security
features defined in the RFC are optional and need not be implemented if unnecessary. RPL
has three basic security modes:

• Unsecured Security Mode
The basic versions of control messages are used and security may be implemented using
other mechanisms such as link layer security or application layer security.
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• Pre-installed Security Mode
In this security mode, RPL uses secure messages. Hosts and routers require a pre-
installed key to join RPL instances. These keys provide message confidentiality, in-
tegrity, and authenticity.

• Authenticated Security Mode
In this security mode, RPL uses secure messages. Pre-installed keys are used to join
a network as a leaf to provide message confidentiality, integrity, and authenticity. To
join the network as a router, a second key must be obtained from a key authority.

Since RPL does not support asymmetric algorithms, authenticated security mode cannot be
implemented based on current advancements.

3.8 Features of RPL Necessary for Interoperability

The list of interoperability criteria specified in the RFC is not exhaustive. The ROLL WG
has instead provided some guidelines that may help with interoperability, but have not clearly
defined the necessary and optional feature set that is required for interoperability between
di↵erent implementations. The following is a general list of criteria specified in the RFC:

1. According to the specification, the greatest level of interoperability may be achieved
when all of the nodes in a RPL LLN are cooperating to use the same MOP, OF,
metrics, and constraints [p109].

2. All RPL implementations need to support the use of RPL Packet Information trans-
ported within data packets [p109].

3. RPL implementations will need to support the use of Neighbor Unreachability Detec-
tion (NUD), or an equivalent mechanism, to maintain the reachability of neighboring
RPL nodes [p109] . The exact mechanism can be implementation specific, but it will
lead to more limited functionality.
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Chapter 4

Analysis of RPL

4.1 Introduction

A number of studies have focused on evaluating RPL with regards to various performance
metrics such as energy e�ciency, network convergence time, protocol control-tra�c over-
head, path length and packet delay. In this chapter, a few of them are detailed. These works
include studies performed on networks that range from 20 nodes to 1000 nodes. All these
studies are performed on simulators such as Contiki/Cooja [49], Network Simulator (NS2)
[65][70], OMNET++ with Castalia [74][3] and WSNet [19].

This chapter also discusses the Collection Tree Protocol [22] and LOADng [7], which
were proposed as a solution for routing in WSNs and mobile sensor networks alongside
RPL. These protocols are evaluated against RPL with respect to a number of metrics such
as Packet Reception Ratio (PRR), churn, control-tra�c overhead, type of tra�c patterns
catered to, size of protocol control messages, delay and energy e�ciency. A more generic
study on the comparison between proactive and reactive protocols for WSNs is discussed in
Section 4.3. Of the five comparative studies discussed, four of them have been evaluated on
simulators such as Contiki/Cooja and NS2 while one of them [37] has been implemented on
a medium size test-bed comprising 51 TelosB motes.

4.2 Performance Evaluation Studies

[24] studied the behavior of RPL when deployed in networks that have a predominance of
bidirectional tra�c. It was found that the maximum and average ranks of participating
routers grows logarithmically with the number of routers. Here, rank basically represents
the distance of the router from the DODAG root in terms of number of hops. The maximum
rank would represent the diameter of the network. The convergence time of the network,
i.e, the time that is needed for all the routers that are in the same connected component
as the controller (DODAG root) to join the DODAG, also grew logarithmically with the
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number of routers in the network. When the density of the network was kept constant,
the average number of parents per node grew logarithmically with number of routers. This
intuitively seems correct since RPL forms a DODAG structure, which is similar to a tree.
The rank would correspond to the depth of the node in the tree, which holds a logarithmic
relationship with the number of nodes in the tree. The control tra�c overhead was found
to grow polynomially with the number of routers in the network. However all of these are
simulation studies performed on a Java implementation of RPL on NS2. Hence how much
they correlate to the actual hardware implementation is up for speculation.

In [25], the authors analyze the RPL routing protocol and propose a few broadcast mech-
anisms. The performance evaluation studies are again performed on a Java implementation
of RPL on the NS2 simulator. This was a basic version of RPL which had only upward
routes and a single RPL instance. There were no global repairs during the simulation hence
the DODAG sequence number remained the same. Performance of this implementation was
evaluated using two variations, one in which the DIO was transmitted periodically and the
other in which the DIO was transmitted according to a Trickle timer. The simulation study
comprised a network of 1000 routers. It was found that the maximum and average rank of
a node in the network, the average number of parents per node, the convergence time as
well as the average path length in terms of number of hops grew logarithmically with the
number of routers in the network. Control tra�c however, was found to increase linearly
with the number of nodes in the network. The variation using a Trickle timer showed much
less control tra�c and DIO collision ratio.

[1] evaluates RPL’s performance using the Contiki Cooja simulator [49]. The network
comprised 20 to 100 nodes, and rank is calculated according to the ETX [21] metric. It
was found that the sink starts receiving data almost as soon as the network is deployed
indicating very low setup time. In steady state, the routing overhead constituted about 25%
of the overall tra�c in a network with 20 nodes, and this shot up to 75% in a network with
100 nodes. The optional DAO messages, which are used to handle downward tra�c, were
found to be the dominant cause of control message overhead, as compared to DIO and DIS.
They also found that packet delay rate was dependent on distance of the node from the sink
and was not very sensitive to Packet Error Rate (PER). The total delay was quite small
and less than two seconds for the network with 20 nodes and less than eight seconds for
the network with 100 nodes. Hence they concluded that RPL’s quick setup time allows it
to be deployed in critical scenarios such as rescue or military operations. The network size
plays an important factor in responsiveness, as the delay increases with number of nodes.
However, it requires further optimization to handle the high protocol overhead.

[72] evaluates RPL’s performance using real link data gathered from networks deployed
on the fields, in order to make the simulation studies more realistic. This data was used
to compute the PDR (Packet Delay Rate) for each link in the simulated network used for
testing. RPL was simulated using OMNET++ [74] which is a well known discrete event
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based simulator written in C++ and NED [46]. Castalia-2.2 [3] was used as the WSN Sim-
ulator framework within OMNET++. Outputs and events were visualized using Network
AniMator(NAM), which is distributed with Network Simulator (NS). The radio was simu-
lated as TelosB CC2420 radio and 802.15.4 MAC protocol was used. Storing MOP RPL
is implemented. Packets were sent by each node according to a Constant Bit Rate (CBR).
To depict a more realistic scenario, majority of the tra�c (20%) was sent to the DODAG
root and the remaining 80% was distributed among the other nodes in an 86 node topol-
ogy. The results of the simulation showed that most paths generated by RPL had a hop
length greater than that produced by a hypothetical ideal routing algorithm. However the
authors conclude that this is not drastically worse than the ideal case. While using the
ETX metric, RPL showed results very similar to the ideal scenario. When comparing the
tra�c generated by control and data packets, it was found that nodes closer to the sink
have a higher degree of data packets since they participate in the routing. Leaf nodes were
found to have a comparable number of control and data packets. This study implemented
global repairs through the periodic emission of a new DAG Sequence Number by the DAG
root. It was found that as the period to emit a new DAG sequence increases, the amount
of control tra�c decreases because the trickle interval gets larger for each node. However
the smaller amount of control tra�c comes at the price of increased time for loss of connec-
tivity between the period when a node loses connectivity to when a global repair is triggered.

In [56], the performance of RPL has been investigated in terms of both the standard-
ized objective functions, OF0 [50] and MRHOF [21]. The network was simulated on Con-
tiki/Cooja [49] and had between 20 and 45 nodes per simulation. For both OF0 and MRHOF,
it was found that PDR increased as Packet Reception ratio (RX) increased. Beyond a par-
ticular threshold for RX (in this case 60%), PDR was close to 100%. Hence it was concluded
that maintaining RX value of 60% was good enough for high performance of RPL with re-
gards to PDR in light-density networks. It was also found that power consumption decreased
linearly with increase in RX. At RX � 60%, the average power consumption was fair, again
supporting the claim that maintaining 60% RX was su�cient for RPL. Between OF0 and
MRHOF, MRHOF showed slightly better per node power consumption than OF0. This
was attributed to MRHOF choosing better routes by taking into account the energy saving,
which consequently provides better network lifetime.

[29] analyzes the impact of di↵erent routing metrics on the stability and e�ciency of
RPL. It states that a good metric must reflect the radio link quality of the whole path
between the node and the border router, and must not just be a local optimization. The
energy e�ciency of the path must also be taken into account in order to reduce the total
energy consumption. There must be a healthy trade-o↵ between stability and reaction
towards changes. RPL was implemented on the Contiki OS, and the WSNet simulator [19]
was used. The authors propose an OF based on minimum rank with hysteresis using the
ETX metricMIN-HOP, ETX and LQI(Link Quality Indicator) metrics. PDR was the first
evaluation metric, which indicated RPL reliability. It was found that PDR decreased with
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increasing distance of the node from the DODAG root. Overall, the PDR was quite low,
with LQI having the highest median value. It was concluded that further e↵orts must be
made to improve RPL’s reliability. When evaluating end-to-end delay, it was found that
MinHop showed the least delay as most packets are dropped, especially those from nodes
far from the border router. This was followed by ETX and then LQI. It was also found that
energy consumption was more evenly distributed among the nodes in MinHop and ETX,
than LQI. This a↵ects the network lifetime. This is because, in MinHop, even nodes that
are 200-300 metres away from the root can be one hop away, and thereby get chosen as the
preferred parent. In LQI, its most often the nodes closest to the root that are chosen as
the preferred parent, leading to a non-negligible portion of the nodes consuming most of
the resources. The authors also evaluate the stability of the DODAG by measuring route
prevalence, which is the ratio between the number of times the principal route was used and
the number of times all routes have been used. It was found that the overall route stability
was quite poor. MinHop showed the highest stability of 45%, while ETX and LQI performed
much poorer. The authors also tested the DODAG stability by measuring the number of
times a node changed its preferred parent in a network of 500 nodes. It was found that all
three metrics show frequent changes to preferred parents, with ETX having the maximum
number of changes. The authors concluded that each metric comes with its own set of
trade-o↵s. MinHop metric exhibits the lowest instability, but performs very poorly because
it tends to use bad radio links. LQI limits the instability but o↵ers larger end-to-end delays.
ETX balances the load more e�ciently among the di↵erent nodes but comes at the cost of
increased DODAG reconfigurations.

4.3 Comparative Studies

4.3.1 RPL and CTP

In [69], RPL is compared to the commonly used data collection tree protocol, Collection
Tree Protocol (CTP) [22]. CTP is a distance-vector routing algorithm that was developed
as a solution to routing in WSNs. It stands as a predecessor to RPL and was considered the
de-facto routing standard for TinyOS. It builds a tree-based topology with the root at the
sink of the network, similar to RPL’s DODAG structure. An adaptive beaconing mechanism
is used to broadcast routing control messages. While CTP relied on a specific link-layer tech-
nology for topology formation, RPL uses the OF which is more generic and customizable for
specific applications. CTP was earlier known for its e�cient energy consumption and high
Packet Reception Ratio (PRR). Both these protocols were implemented and evaluated on
the Contiki/Cooja simulator on a network of 9-49 nodes. A data collection model was tested
where the predominant tra�c flow pattern was MP2P, as is the case in collection-based
networks. It was found that in smaller networks (in this case, a network containing seven
nodes), CTP showed a better PRR, but as the network size increased to 49 nodes, RPL
showed a better PRR as well as less energy consumption. Upon increasing the data tra�c,
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CTP’s PRR decreased further. The churn, or number of times parents were switched was
also significantly less in RPL than CTP. Hence the authors concluded that RPL improved
Packet Reception Ratio (PRR) and maintained low levels of energy consumption. Due to
the strict rules of DODAG formation and the cooperation between the di↵erent control mes-
sages (DIO, DIS and DAO), RPL was able to perform better when the network was scaled
in terms of network size and growing data tra�c.

[37] uses the BLIP (Berkeley Low-power IP Stack) and TinyRPL implementations in
TinyOS 2.x to evaluate RPL against CTP on a medium-size testbed of 51 TelosB motes
distributed over two floors in an o�ce building. This implementation of RPL used the
path-ETX metric and MRHOF, and disabled downward routes in order to make a fair com-
parison with CTP. Upon testing the PRR, it was found that RPL and CTP performed very
competitively and both achieved a PRR that was higher than 99.8%. Contrary to results
obtained in [69], RPL was found to have a higher churn than CTP. It was also found to
have a greater volume of control messages and 15 bytes of overhead in each data packet
to achieve the same functionalities of the CTP routing header, though this di↵erence was
not considered significant. RPL also had a slightly higher per-hop ETX value and selected
marginally longer routes than CTP. However RPL o↵ers a major benefit in terms of catering
to a variety of tra�c patterns such as P2P and P2MP, which CTP is incapable of doing. It
also has the ability to directly connect to Internet nodes by exchanging packets with global
IPv6 addresses.

An important conclusion that can be drawn from these two studies is that simulation
studies can often yield results that are contrary to real testbed implementations. Hence
evaluating RPL using actual hardware is imperative to draw conclusive results.

4.3.2 RPL and LOADng

The Lightweight on-demand ad hoc distance-vector routing protocol-next generation or
LOADng is a lightweight variation of AODV for LLNs. It is designed based on the idea
that LLNs are idle most of the time. Hence instead of adopting a proactive approach would
generate unnecessary overhead, LOADng follows a reactive approach in which routes are
established towards destinations only when there is some data to send [7].

In [79], the authors perform a detailed comparison of RPL and LOADng, exposing the ad-
vantages and disadvantages of both. The proactive RPL was specifically designed for sensor
networks where the predominant tra�c flow is multi-point to point (MP2P). It provides very
fast data collection when there are no loops from the node to the DAG root. However the
paper also identifies several disadvantages of RPL. Firstly, since it has been predominantly
designed for MP2P tra�c flow, it is not optimized for other tra�c patterns such as root to
sensor (P2MP) or sensor to sensor (P2P). If these tra�c patterns have to be included, DAO
control messages must be used and this seems to have been included in RFC6550 more as
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an afterthought than as an actual design consideration, since the emission interval hasn’t
been specified nor are the routes optimized. Secondly, [77] places special importance on
the existence of a root node, which is di↵erent from all the other hosts and routers in the
network. This node is the central relay for tra�c through and between other RPL routers
in the networks. This node is also capable of connecting to the outside internet by acting as
the border, or it can work as a virtual DODAG root and connect this DODAG with other
DODAGs within or outside the current RPL instance. The root is responsible for initiation,
configuration and management of the DODAG. However, this root also poses a single point
of failure and a very probable congestion point. Additionally, when P2P communication
is being carried out, using a root causes route stretch. Thirdly, RPL control messages are
quite huge and can be subjected to fragmentation while being routed with a reasonably high
probability. Fragmentation of control messages is highly undesirable for LLNs considering
they are already lossy. When compared to LOADng which is a reactive routing protocol,
LOADng was found to be suitable for a more general tra�c pattern. It does not have any
node that performs special functions like the root and is hence not subjected to the sub-
sequent problems that arise due to such a consideration. Also, due to its compressed and
flexible data format, there is no possibility of fragmentation. It does not impose any strict
source routing rules, hence it can accommodate applications which require a fixed MTU.
However, LOADng might have a higher delay in the route discovery phase and might have
higher control tra�c overhead if the tra�c flows are predominantly P2P.

[75] also performs a comparative study between LOADng and RPL. However, this study
is conducted specifically in the home automation scenario, which poses the special require-
ment of low latency. This paper identifies a number of issues with LOADng. Primarily
there is a route discovery delay since LOADng is a reactive protocol and discovers routes
only when there are data packets to send. This was also verified in [79]. Secondly during
the discovery process, outgoing packets are bu↵ered which may lead to losses in memory
constrained nodes. Also, since LOADng follows a flooding mechanism to discover routes to
the destination, the network su↵ers from energy depletion since flooding is a highly energy
ine�cient process. Also, during flooding, there maybe collision of control messages leading
to unnecessary retransmissions.

The home automation scenario in this paper is studied using a centralized architecture.
RPL and LOADng are both implemented on Contiki OS. When comparing the end to end
delay in a one-hop scenario, between 26% and 47% of packets sent through LOADng experi-
enced a delay of over 0.5 seconds, which is the maximum latency allowed in home automation
scenarios as specified by [4]. The range in percentage arises due to variable Route Hold Time
(RHT), which was varied between ten minutes and one hour. RHT indicates the time for
which a route remains valid. However, RPL being a proactive protocol has an upper bound
of 10% of packets falling outside the 0.5 second latency range. Increasing the number of
hops increased the probability of a packet falling outside the allowable latency range, but
the increase was felt more sharply in LOADng than RPL. The number of hops was varied
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till four, which is again the common maximum as specified in [4]. With regards to number
of hops between source and destination, RPL routes were always restricted within four hops
whereas LOADng routes sometimes went way over four hops. This is because, when the
RHT is small, a packet that reaches a router need not always follow the same route. It could
change depending on the results of the latest flooding.

While considering size of routing tables, both LOADng and RPL have disadvantages. In
case of LOADng, the size of the routing table increases when RHT is larger, since there are
a large number of redundant entries as a result of frequent flooding. In RPL, the size of the
routing table varies based on the position of the node in storing mode. A node placed closer
to the DODAG root could potentially have a large number of entries causing the device to
run out of memory. Also, when the number of nodes is scaled up, RPL performs very poorly
due to the limited number of neighbor entries that nodes can store. Hence more routes were
needed in the routing table. Finally the control tra�c overhead was studied. In case of
RPL, there was high volume of control messages during the setup phase but due to Trickle,
it reduced and reached a steady state. This also depends greatly on the DAO interval used,
which is implementation specific. However, the amount of control tra�c in LOADng was
inversely proportional to RHT. Hence in case of a steady network, RPL probably performs
better but LOADng can be made to perform e�ciently under any scenario by varying the
RHT. This paper however concludes that RPL is better suited for home automation envi-
ronments than LOADng.

In [24], the authors compare RPL and LOAD with special focus on how the two protocols
perform in environments with bidirectional links. Bi-directional links are an integral part of
a number of sensor network applications. While RPL is optimized for MP2P tra�c, LOAD
is designed for a more general tra�c pattern. The two protocols were tested on an NS2
simulator and are compared on the basis of data tra�c delivery ratio, control tra�c overhead,
number of collisions, network convergence time, etc. Since the studies were performed on
the simulator, this paper does not perform energy consumption analysis as the amount of
energy consumed is directly related to the underlying hardware. The Java implementation
of RPL chooses a DAOInterval of 15s and the Java implementation of LOAD chooses a
route lifetime of five seconds. It was found that the control tra�c overhead of RPL was
almost twice as much as LOAD. This was attributed to the periodic DAOs that get sent out.
However, [79] argues that this was a result of a poor implementation choice, namely, the
DAO transmission interval being 15s. DAO transmission time is definitely a major cause of
control tra�c overhead in RPL. However, how much of an impact choosing this particular
value had over other values is left for future work. A point to note is that the control
tra�c overhead is directly dependant on data tra�c for a reactive protocol like LOAD. For
a reactive protocol like RPL, control tra�c is independent of data tra�c. When comparing
path routes, it was again found that LOAD routes were longer than RPL routes. However
both were quite close to the routes found by GodRP, or the “God” Routing Protocol, which
is a hypothetical protocol that always finds the best routes. It was also noted that since
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RPL uses source routing in non-storing mode, the destination can be no more than 8 hops
from the source without IPv6 compression, and 64 hops when addresses are compressed [31].
Hence RPL is unsuited for applications with long chain-like topologies. In both cases, the
packet delivery rate was unrealistically found to be 100%, which can be attributed to the fact
that these studies were performed on simulators and not the real hardware. The delay was
higher in LOAD since a data packet is bu↵ered at the source during route discovery. In RPL,
routes are formed well ahead and hence delay is much lesser.The number of collisions were
also higher in LOAD due to the flooding protocol used, which leads to broadcast storm.

4.3.3 Proactive vs reactive Routing Protocols for WSNs

In [58], the authors perform a comparative study of proactive and reactive protocols for
WSNs. In particular, they compare the performance of proactive protocols RPL and CTP
with reactive protocols AODV [53] and DSR [32] in an emergency monitoring and evacuation
scenario, while using CoAP/UDP as the application/transport layer protocol. AODV is the
Ad hoc On-Demand Distance Vector Routing Protocol which enables dynamic, self-starting,
multihop routing between participating mobile nodes wishing to establish and maintain an
ad hoc network. DSR, or the Dynamic Source Routing Protocol is designed specifically
for use in multi-hop wireless and allows the network to be completely self-organizing and
self-configuring, without the need for any existing network infrastructure or administration.
Implementations of all these protocols were tested on the SpeckSim simulator, and compared
based on the routes generated for humans (nodes) to escape from a fire in a safe manner. The
WSN comprised of 24 nodes within a building. The results of the simulation showed that
RPL had the lowest latency, since the DODAG root node was strategically positioned close
to the exit. RPL also had the least control message overhead, since it is a proactive protocol
and uses a Trickle timer for reducing the number of control messages disseminated. However,
it must be noted that RPL was only used for MP2P communication in this scenario. DAO
messages, which contribute to a majority of protocol overhead, were not involved in this
specific application. RPL also showed slightly better per-node power-consumption statistics
as compared to all other protocols. RPL however had the least packet delivery ratio among
all four protocols, which shows the need to incorporate more reliability into the framework.
RPL’s response to failures were not evaluated because the standards document does not
currently specify any fault tolerance mechanisms. Node failures are neither detected nor
propagated through the network due to increased overhead.

Hence out of the five evaluated metrics (PDR, Latency, Overhead, Power Consumption
and Fault Tolerance), RPL outperforms the other protocols in three (Latency, Overhead
and Power Consumption). However it fares poorly when considering delivery ratio and fault
tolerance. The authors claim that in emergency scenarios, the three main metrics to consider
are reliability, fault tolerance and latency. Due to RPL performing poorly in two out of these
three, the authors recommend AODV as it responds well to failures and has a high PDR.
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4.4 Summary

This chapter analyzes various performance evaluation studies of RPL and notes the various
conclusions drawn. A summary of the results is as follows:

1. According to [24] and [25], the maximum and average rank of a node in the network
and the average number of parents per node grows logarithmically with the number of
nodes in the network.

2. [24] and [25] also found that control tra�c grew linearly with network size. [1] and [72]
concluded that DAO tra�c was more predominant that DIO or DIS, with DIS being
almost negligible. [72] also found that nodes closer to the sink have a higher degree
of data tra�c than the leaves, since they participate in the routing. The leaves were
found to have a higher degree of control tra�c.

3. [25] found that the path length also had a logarithmic relationship with network size,
while [72] found that the paths produced by RPL were slightly longer than the paths
that would be produced by a hypothetical ideal routing protocol.

4. [1] and [29] found that the average packet delay rate (PDR) was inversely proportional
to the distance of the node from the sink, or the network size. This led to the conclusion
that RPL yielded a longer response time in larger networks, and would require further
optimization in order to be used for time-critical applications. [56] found that PDR
was also proportional to packet reception ratio.

5. With regards to power consumption, [56] and [29] found that using MRHOF as the
objective function shows slightly better per-node power consumption.

6. [29] found that the general stability of RPL was quite poor with a large number of
DODAG reconfigurations.

This chapter also discusses comparative studies performed between RPL and similar
routing protocols. A summary of the comparative studies is given below:

1. RPL was first compared to CTP in [69] and [37], which was the de-facto routing stan-
dard for WSNs before RPL was designed. RPL and CTP perform competitively, with
RPL showing a few additional features as benefits such as being link-layer independent
and being able to cater to a variety of tra�c patterns.

2. Next, RPL was compared with LOADng [79][75][24], which is also a protocol designed
for similar scenarios. RPL was found to have larger control messages which lead to
increased risk of L2 fragmentation. It also does not cater well to generalized tra�c
patterns and places special importance on the root node, which could potentially be

1
N is the number of nodes in the network
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Citation Main Results
Size of
Study

Objective
Function

Simulator Comments

[24]

Max Rank / log(N)1

Avg Rank / log(N)
Convergence Time / log(N)

Control Tra�c Overhead / Nx

63 to
1000

Number of
hops

Java
implemen-
tation of
RPL on
NS2

Tra�c was
predomi-
nantly
bidirec-
tional

[25]

Max Rank / log(N)
Avg Rank / log(N)

Convergence Time / log(N)
Avg Num of Parents / log(N)
Control Tra�c Overhead / N

1000
Number of

hops

Java
implemen-
tation of
RPL on
NS2

Broadcast
mecha-
nisms

proposed

[1]

Delay / N
PDR/Dist from sink

Very low setup time
Large Routing Overhead mainly
due to DAO

20 to
100

ETX
Contiki/
Cooja

-

[72]

RPL generates longer paths
Nodes closer to sink have high
data tra�c
Number of global repairs/ Con-
trol Tra�c

86
ETX and
Number of

hops

OMNET++
with

Castalia

Evaluates
RPL based
on real
link data

[56]

PDR /PRR until PRR = 60%
Power consumption / 1

PRR
MRHOF has better power con-
sumption than OF0
MRHOF chooses better routes
than OF0

20 to 45
ETX and
Number of

hops

Contiki/
Cooja

Compares
OFs in
light

density
networks

[29]

PDR /N
Min hop showed least delay
Better energy distribution in
min-hop and MRHOF than LQI
Poor overall route stability

500
Min hop,
ETX and

LQI

Contiki/
WSNet

E�ciency
of metrics
on route
stability
and

e�ciency

Table 4.1: Performance Evaluation Studies of RPL

a single point of failure. However RPL was found to outperform LOADng in terms of
path length and volume of control tra�c.

3. Finally, [58] analyzed proactive routing protocols versus reactive routing protocols
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in the WSN space. RPL showed a few advantages such as low latency and energy
consumption. However when used in emergency scenarios, AODV showed a better
performance in terms of key metrics such as response to failure and PDR.

All the studies reviewed in this section were performed on simulations (except [37]) and
were not tested on actual hardware. This strongly indicates that RPL is too complex to test
on real hardware.

Citation
Compared
Against

Main Results
Size of
Study

Simulator
Used

[69] CTP

� In smaller networks, CTP showed better
PRR. In larger networks, RPL showed bet-
ter PRR and Energy consumption
� CTP’s PRR/ 1

DataTraffic

� RPL showed lesser churn

7 to 49
Contiki/
Cooja

[37] CTP

� Both RPL and CTP showed high PRR
� RPL had higher churn
� RPL had higher control-tra�c
overhead
� RPL able to cater to variety of tra�c pat-
terns, CTP is only collection-based
� Unlike CTP, RPL is link-layer indepen-
dent

51
No, real
test-bed
evaluation

[79] LOADng

� LOADng caters to more general tra�c
pattern
� LOADng has flexible and compressible
packet format unlike RPL
� No single point of failure in LOADng like
root node in RPL
� Longer route discovery phase in LOADng
� More control tra�c in LOADng if tra�c
is predominantly P2P

63 to
500

Performed
on

simulator,
but details

not
mentioned

[75] LOADng

� Higher route discovery delay in LOADng
� Flooding in LOADng is energy ine�cient
� Higher proportion of packets show less de-
lay in RPL
� LOADng generated longer paths
� Both protocols had large routing table
size
� RPL performs poorly when scaled

25 to 40
Contiki/
Cooja
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[24] LOAD

� Twice the amount of control tra�c in
RPL due to DAOs
� In LOAD, control tra�c / data tra�c
� LOAD routes longer than RPL routes
� RPL had cap in route length in storing
mode. Unsuited for long chain-like topolo-
gies
� Higher delay in LOAD due to bu↵ering
during route-discovery
� More collisions in LOAD due to flooding

63 to
1000

NS2

[58]

Proactive
(RTP,CTP)

vs
Reactive
(AODV,
DSR)

Protocols

� RPL had lowest latency by strategic po-
sitioning of root node
� RPL has lower control tra�c overhead
due to Trickle
� RPL had better per-node power consump-
tion than all others
� RPL had least PDR among all four

24 SpeckSim

Table 4.2: Comparative Studies
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Chapter 5

RPL Implementations

5.1 Open Source Implementations of RPL

There are a number of open-source implementations of RPL, each of which implement only
a subset of features of the specification. In this section, we explore some of those implemen-
tations.

5.1.1 SimpleRPL

SimpleRPL [64] is Linux-based implementation of RPL. It aims to complete the Linux Wire-
less Sensor Network ecosystem by bringing a (hopefully) fully-compliant RPL implementa-
tion. It has a code base of 3382 lines written in Python. SimpleRPL implements storing
mode of operation with no multicast support (MOP value 2). A participating node can act
as a DODAG root or as a RPL router. It implements Objective Function zero (RFC 6552).
However, the rank increase is always a same fixed value. This is because there is no feedback
from the layer 2 or the layer 3 (yet), meaning that there can be no indication on the link
quality. SimpleRPL has the capability to store unbounded number of DIO parents, but can
only store one DAO parent at time. This indicates that even if a node has multiple can-
didate parents, it can have only one downward route to itself through any one of the parents.

SimpleRPL however does not implement MRHOF because as of when this implementation
was developed, there was no way to retrieve link quality information from IEEE 802.15.4
links. It does not support floating DODAGs, leaf function and only works in unsecured
mode. There is also no Path Control support in DAO messages.

5.1.2 TinyRPL

TinyRPL [71] is an implementation of RPL for TinyOS. It is designed to be used with BLIP,
the IPv6 stack. TinyOS is an open source, BSD-licensed operating system designed for
low-power wireless devices, such as those used in sensor networks, ubiquitous computing,
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personal area networks, smart buildings, and smart meters. TinyRPL is currently used by
many companies all over the world, such as Motorola, Intel, Arch Rock, Crossbow, and the
People Power Company. It has a code base of 3110 lines written in NESC.

TinyRPL implements Objective Function 3 (ETX)by default. It stores a bounded number
of DIO parents (20). It does not support secure modes of operation, floating DODAGs or
path control. It does however support leaf mode, where a node that does not follow the rules
of the DODAG can still participate in routing by acting as a leaf.

5.1.3 ContikiRPL

Contiki [10] is an open source operating system for the Internet of Things. Contiki connects
tiny low-cost, low-power microcontrollers to the Internet. ContikiRPL [11] is an implemen-
tation of RPL made to run on Contiki. It is used by companies such as Texas Instruments,
Atmel, SAP, Cisco and Redwire. It has a code base of 5340 lines written in C.

ContikiRPL implements ETX as the default OF, but allows the configuration of di↵erent
OFs as well. It supports the storage of unlimited number of DIO parents. Additionally, all
modes of operation (0-3) are supported. Path control and leaf mode operation are supported
but it does not support floating DODAGs or secure modes of operation.

5.1.4 RIOT-RPL

RIOT [60] is an open-source microkernel-based operating system, designed to match the
requirements of Internet of Things (IoT) devices and other embedded devices. It has been
specially designed to work with very low memory footprint (on the order of a few kilobytes),
high energy e�ciency, real-time capabilities, communication stacks for both wireless and
wired networks, and support for a wide range of low-power hardware.

RIOT-RPL [61] supports all modes of operation (MOP 0-3) and is by default configured
for OF 0. It supports the storage of unlimited DIO parents but allows ony one DAO parent
for downward routes. It also supports floating DODAGs. However, security modes are
yet to be implemented and it currently works only in unsecured mode. Among all the
implementations, RIOT-RPL has the most extensive support for running multiple instances
simultaneously. It has a total code base of 1607 lines and is written in C.

5.2 Industrial Implementations of RPL

There are a number of companies that have their own custom implementation of RPL in-
cluding Cisco [6], Ember, Huawei and Samsung. However, due to the implementations being
owned by the company, they are proprietary and confidential. Hence not much information



CHAPTER 5. RPL IMPLEMENTATIONS 28

was collected regarding these. It was however, very clear that most companies preferred to
use one of the standard open source implementations rather than build it from the scratch.

5.3 Issue-by-Issue Analysis

5.3.1 Incompatible Modes of Operation

All the implementations discussed in this section have the following choices with regards to
modes of operation:

1. Do not support downward routes

2. Support downward routes through storing mode

3. Support downward routes through non-storing mode

This gives rise to a major issue, which is incompatibility between the di↵erent modes of
operation. Di↵erent nodes may have di↵erent capabilities, and maybe more suitable for a
specific mode of operation. Nodes with more resources such as memory, processing power
and battery life may prefer to operate under storing mode whereas nodes with a higher
degree of constraint on resources may prefer operating under non-storing mode and handing
o↵ routing duties to more capable nodes like the root. An LLN may comprise of a mixture
of these two types of nodes, but will be forced to operate under a mode that may or may not
suit them. Works like [13] highlight this incompatibility as an issue and propose solutions
that allow a hybrid mode of operation.

5.3.2 Multiple Instances

Three out of the four implementations of RPL that have been discussed in this section do
not support multiple instances. This can be largely attributed to the fact that the RPL
specification itself does not define RPL’s operation when multiple instances are present.
RIOT is the only implementation that provides full support for multiple instances. Even in
the case of RIOT, it is unclear whether there is any existing deployment that actually uses
this feature of RPL.

5.3.3 Objective Functions

RIOT and SimpleRPL contain implementations for OF0 in the source code, while TinyRPL
implements MRHOF. ContikiRPL includes both OF0 and MRHOF in the source code. Al-
though multiple objective functions can be supported, these implementations choose to pro-
vide default support for only a single objective function. In practice, all the works reviewed
in this thesis used only a single objective function in their deployments. Among those that
choose between MRHOF and OF0, a majority use MRHOF due to better energy e�ciency.
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A number of works also design their own routing metric as discussed in Chapter 6. To
achieve a higher degree of interoperability, a single routing metric must be standardized for
LLNs, as discussed further in Chapter 7 and Chapter 8.

5.3.4 Security

All four open source implementations of RPL do not support secure modes of operation.
they operate under the default Unsecured mode and rely on other security mechanisms
(such as link layer security) to satisfy application-specific security requirements. Even the
industry implementation of RPL by Cisco does not have any support for the pre-installed and
authenticated security mode. Since the code base of other industrial implementations was
not available for review, there is no information regarding whether they implement security
features or not. However, all the works studied in this thesis did not implement a secure
RPL. Hence there is evidence to indicate that security as a feature can be removed from the
RPL specification and left to other layers.

5.3.5 Floating DODAGs and Local DODAGs

Three out of the four implementations discussed above do not provide support for floating
DODAGs. RIOT is the only implementation that includes support for this feature, and even
then it is unclear whether this has actually been used in real deployments. None of the works
studied in this thesis have used floating DODAGs as a useful feature to maintain connectivity
during repair (which is stated as a use case in the specification). Local DODAGs are also
not explicitly implemented.

5.3.6 Underspecification of Local and Global Repair Trigger

The RPL specification does not give an exhaustive list of events that trigger a local or global
repair. This ambiguity is clearly reflected in the implementations, as each of them have their
own mechanism of triggering a repair (with few overlaps). This implementation choice has a
huge impact on performance, as repairs are often costly and unnecessary. RIOT, ContikiRPL,
SimpleRPL and TinyRPL trigger local repairs when a non-root node receives a DIO message
that has a newer version number than the one they currently have. Additionally, RIOT and
Contiki also trigger local repairs when no preferred parents are found in the DODAG that
the node is part of. SimpleRPL, ContikiRPL and RIOT trigger global repairs when the root
receives a DIO message that has a newer version number than itself. However TinyRPL has
periodic global triggers which is maintained by a separate timer.

5.3.7 General Size of Code Base

Because of RPL having so many features, a complete (or incomplete) implementation involves
a huge code base that is often unsuitable for resource constrained nodes with limited on-board
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memory. Among the open source implementations discussed in this chapter, RIOT-RPL has
the smallest code base of 1607 lines of C code, while ContikiRPL has the largest with 5340
lines of C code. While RPL is designed with an intent to satisfy a wide-variety of routing
requirements posed by LLNs, the size of code could be a new challenge rendering RPL
unsuitable for small nodes.

5.4 Summary

A fair number of groups have implemented RPL. This chapter explores some of the open
source and proprietary implementations of RPL. The most popular opens-source implemen-
tations of RPL include TinyRPL, ContikiRPL and the more recent RIOT-RPL. Companies
like Cisco have their own custom implementation of this routing standard. From the ob-
servable code base, it is clear that the underspecification and ambiguity in the standards
document has lead to a wide variety of implementation choices, such as the list of events
that trigger a local and global repair. Also, these implementations highlight issues in the
protocol’s design, such as inclusion of too many features that render the code base too huge
to fit into resource constrained nodes, or the incompatible modes of operation.
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Chapter 6

Past Work on RPL Improvements

A number of e↵orts have been made to improve the RPL Routing standard as defined in
RFC6550. Some of them focus on designing composite routing metrics that cater to specific
application needs such as congestion avoidance and improved energy e�ciency. There are also
a class of improvements that target multi-path routing for e�cient topology construction,
increased network lifetime and improved PDR. Yet another class of improvements target
better support for broadcast, reducing average delay and standardizing routing objectives.
A few of these works have been discussed in this chapter. These studies range from

6.1 Combined Metrics

A lot of past work in the field of RPL improvements has had to do with combining two or
more routing metrics to achieve better optimization. In [34], the authors describe a number
of distinct routing metrics and their characteristics:

• Hop Count (HC): This primary routing metric is used to report the number of traversed
nodes along a path. This metric increases strictly monotonically from the root towards
the leaf nodes.

• Link Latency (LL): This is a primary routing metric that is a positive real number and
is minimizable. Paths with lower link latency are better than those with higher values.
However this does not imply lower overall energy consumption since all links are not
equally loaded or equally lossy.

• Expected Transmission Count (ETX): This link-reliability metric was defined to dis-
tinguish lossy and/or congested paths. It is defined as the number of transmissions
(including retransmissions) a node expects to make towards a destination in order to
successfully deliver a packet, according to [33].
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• Link Quality Level (LQL): This is another link-reliability metric. The LQL of a path
contains an array of at most seven values. Each value represents the number of links
along this path with an LQL value equal to the index.

• Remaining Energy (RE): This is an energy-aware routing metric which reflects the
remaining energy of the end node of a direct link. it is expressed as the ratio between
the maximum (initial) energy and the current energy value. It is minimizable.

• Path Forwarding Indication (PFI): This trust-metric is defined as the inverse log of the
probability of successful forwarding of a packet by the next-hop neighbor of a node.
Links with lesser value of PFI are preferred.

As evident, each of these metrics optimizes a single performance aspect. In order optimize
more than one performance aspect, it is ideal to combine multiple primary routing metrics
into a composite one.

6.1.1 Additive and Lexical Composition of Metrics

In [34], the authors define two ways of combining routing metrics: additive composition and
lexical composition. If additive composition is to be used, then the participating routing
metrics need to hold the same order relation in order to be valid. However this condition
need not hold for combining them lexically. In both cases, positive real numbers can be used
as multiplication factors to adjust the relative weights of routing metrics according to the
application requirement.

Composite metrics were tested on the JSIM open simulation platform [35] on a 10X10
grid of 100 nodes, on MP2P tra�c. The results are as follows:

• When combining HC with PFI, it was found that the lexically combined metric showed
better detection of malicious nodes when tested against a pure HC metric. It also
showed comparable latency even though it chose longer paths in certain cases, when
misbehaving nodes were detected.

• When combining HC with RE, it was found that the composite metric showed better
performance in terms of energy distribution among all nodes when compared to pure
HC. There was no di↵erence between lexical combination and additive combination.
there was also no di↵erence when the parameters of composition were varied.

However, while combining HC and PFI, the composite metric is tested only against pure
HC and not against pure PFI. It seems like PFI alone would have helped in singling out
malicious nodes and a composite metric would have only helped in finding a shorter path
while also avoiding misbehaving routers. A similar approach was followed while combining
HC with RE. The composite metric was not tested against pure RE. Also, the authors have
described six primary routing metrics in great detail, but have only discussed two possible
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combinations out of 720. This, in addition to using just simulated results, seems ine�cient
to validate whether composition is really beneficial for the WSN scenario or not.

6.1.2 CA-RPL

CA-RPL [68] is a congestion avoidance multi-path routing protocol which uses composite
routing metrics based on RPL. This is particularly useful in emergency scenarios where there
is high data tra�c which could possibly lead to network congestion, high packet loss and
delay. During emergencies, the sensor network needs to not only collect information from
multiple sensors and relay this information to a central controller, it also needs to make rapid
responses in case they are needed. If the network is congested due to large amounts of data
tra�c, the monitoring system becomes unable to detect information in a timely manner and
may also lose some important information.

As of now RPL implements only two types of Objective Functions, Objective Function
Zero (OF0) [50] and Minimum Rank Hysteresis Objective Function (MRHOF) [21]. In OF0,
the routing metric used is the hop count. In MRHOF, the routing metric used in the ETX.
In either case, RPL uses only a single metric to make routing decisions and both of these fail
in case of emergencies. If OF0 is used, the nodes su↵er from uneven energy and if MRHOF
is used, there is increased delay. In the event of an emergency, it is ideal that neither of these
e↵ects are caused. The basic version of RPL implements ETX as the default OF, which is
clearly not suitable for dealing with this kind of scenario.

CA-RPL considers the link reliability, load balance and time factor, and balances the LLN
by easing the congestion and reducing the time delay. A new routing metric, DELAY ROOT,
is proposed that minimizes the average delay towards the DAG root. This metric is based
on the ContikiMAC radio duty cycling protocol where a node saves time by sending packets
to the parents that are already awake, instead of waiting for the preferred parent to wake
up. The other three route computation metrics are:

1. Link quality using ETX

2. Network Load found by measuring the number of packets received by a node v in a
specific time period (REC

v

). A smaller value indicates that the network is relatively
free.

3. Rank of a node, used to check for loops and prioritize sending packets to nodes closer
to the DAG root

The respective weights of each of these factors can be varied using weight coe�cients ac-
cording to application requirements. By using multipath routing, CA-RPL is successful in
dispersing large amounts of data tra�c to di↵erent paths, thereby avoiding congestion and
reducing delay. The performance evaluation is done through simulation experiments based
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on Contiki. The setup was deployed in a chemical factory where a methane leak was an-
ticipated, leading to high volume of data tra�c. The results showed that CA-RPL reduces
average time delay by about 30% compared to the original RPL when the inter-packet inter-
val is short. It also showed almost 20% reduction in packet loss ratio when the network was
congested. The average throughput, or number of packets received by the root per unit time
(PRN) was studied, and CA-RPL was shown to improve PRN by 20% to 50% depending on
simulation parameters.

However it is worth considering that ContikiMAC already has powerful mechanisms to
achieve precise timing, and hence can be used to implement this new routing metric. It is
unclear whether this metric can be e�ciently implemented using other duty-cycling proto-
cols without adding complexity overhead. ContikiMAC also assumes that all nodes have the
same wake-up interval. This may not be true in all WSN scenarios. This method adds a lot
of additional fields to the DIO, such as ETX, Rank, REC

v

, RANK
v

, and DELAY ROOT.
There is already a risk of L2 fragmentation due to the large size of RPL control messages
so this might only increase the probability of that happening. Adding extra fields to DIO
messages might make CA-RPL non-interoperable with standard implementations of RPL.
Interoperability studies have not been discussed by the authors. Additionally, the simulation
studies were performed on a WSN containing only 21 nodes, hence performance under scale
has not been studied. Also, when there is no congestion in the network, CA-RPL shows
worse packet loss rate than the original RPL because the original RPL is simpler and op-
erates quickly when the data tra�c is small. Time delay for nodes closer to the DAG root
have been found to be higher while using CA-RPL than while using the original RPL. This
is because of the extra complexity in CA-RPL to find optimized routes, as well as competing
for the limited number of congested links to the root in the event of emergencies. Congestion
cannot be avoided here because there is possibly only one route to the root.

Hence, though CA-RPL proposes a composite routing metric that is suitable for emer-
gency scenarios in certain ways, it is largely unclear whether this provides any real perfor-
mance improvement over the existing standard.

6.1.3 QoS-Aware Fuzzy Logic Objective Function

In [20], the authors note that relying on a single objective function maybe ine�cient and could
degrade the performance of the DAG as it may not fully satisfy the application requirements.
Choosing the hop count metric might generate shorter paths, but it could also lead to node
failure due to battery depletion, as battery level is not considered in the decision making
process. In the same manner, ETX might make the network more reliable but it comes at the
cost of high routing latency. Hence it would be unsuited for applications with specific timing
requirements. They identify a need to design a holistic objective function that combines
several representative metrics to be able to characterize the route quality in a more e�cient
way. A number of advantages of fuzzy logic have been indicated in the paper:
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1. It allows an abstract reasoning on values of any range

2. It provides a rigorous algebra for dealing with imprecise information

3. It is a convenient method of combining conflicting objectives and expert human knowl-
edge

4. It can be implemented with low complexity algorithms

A new objective function, OF-FL or the Fuzzy Logic OF has been defined which is a four-
input fuzzy controller with three membership functions for each input. OF-FL considers
end-to-end delay, hop count, link quality and node energy as the di↵erent fuzzy variables.
Fuzzy logic is used to assess the best neighbor to be the preferred parent.

The simulation studies are performed on a Contiki/Cooja implementation of RPL on a
simulated test-bed of 100 RPL routers. The newly defined OF-FL is compared against the
standard OF0 and MRHOF metric and evaluated based on average hop count, end-to-end
delay, packet loss ratio, average remaining energy and average number of parent changes.
The results are summarized as follows:

• OF-FL has the tendency to reduce the number of hops within a DAG and performs
similar to OF0.

• There was higher churn while using OF-FL as compared to using OF0 or MRHOF.
Although this indicates more responsiveness, it also indicates instability.

• OF-FL was found to have the lowest average end-to-end delay for nodes farther away
from the root. In other cases, the delay was comparable with the standardized OFs.

• The energy is well distributed among the nodes while using OF-FL. OF-FL also delays
the battery depletion of the first node.

• OF-FL has a much lower packet loss ratio than that with OF0, and almost the same
packet loss as an ETX based network. OF-FL outperforms MRHOF with ETX when
the amount of data packets is high, which demonstrates the e↵ectiveness of OF- FL in
high throughput.

However, it is worthwhile to note that using fuzzy logic requires extra rule-based condition
checking during parent selection, which adds complexity to the already convoluted RPL
algorithm. Additionally, OF-FL causes higher churn, which indicates instability. This would
generate higher control tra�c overhead, an aspect which hasn’t been discussed in the paper.
Also this study has only been tested on a simulator.
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6.1.4 Per-Hop ETX

In [78], the authors propose a new metric, PER-HOP ETX which combines the minimum
hop count metric and the expected transmission count metric. ETX metric was originally
proposed to help the destination node choose the best wireless link for data transmission.
However in some cases, the cumulative ETX value of paths with lesser number of hops might
be relatively smaller than the ETX value of paths with more nodes, even if it has a relatively
low transmission rate. When the number of nodes increases, especially in a dense network
scenario, a routing path may contains more nodes. The ETX value of the entire path will
be larger than that of a long single hop even though it has a much higher transmission rate.
Such long single hops will become a bottleneck restricting the whole network. PER-HOP
ETX metric takes both link state and hops of potential routing path into consideration.
When calculating the best routing path with the proposed method, the sum of the ETX
values between each node is used in combination with the hop count to get the average ETX
value.

This metric was tested on a Contiki implementation of RPL on the Cooja simulator,
against the traditional OF0 and MRHOF with ETX metrics proposed in [50] and [21]. In
a larger network, PER-HOP ETX was found to reduce network latency by about 25 - 50%.
It was also found to show a very slight increase in PDR, though it is unclear if this is
entirely due to the combined metrics or due to the particulars of the simulation. It was
also found to be slightly more energy e�cient. However, this paper was unsuccessful in
quantitatively analyzing the results, with the graphs being quite unclear about the exact
values of evaluated metrics. Also the details of the simulation study were absent from the
paper. It is not practical to draw conclusions without knowing the size of the network it was
tested on, type of radio simulated, etc.

6.1.5 Improved Energy E�ciency

In [5], the authors again attempt to tackle the problem caused by RPL considering only a
single metric: reliability or energy. Choosing reliability would lead to nodes su↵ering from
uneven energy distribution and choosing energy would lead to higher packet loss rate. To
overcome this, a combination of ETX and other energy metrics is used in order to balance
the overall energy consumption and therefore prolong the network lifetime. The ETX metric
represents the stability of a link or route. The lower the ETX value, the higher the transmis-
sion success rate. Consequently, nodes with higher ETX value may become the bottleneck
which will eventually lead to unbalanced tra�c distribution, residual energy, network parti-
tion and reduction in overall network lifetime.

To combine ETX with energy metrics, the following equation is used for calculating the
score R:

R = ↵

ETX

MaximumETX

+ (1� ↵)(1� RemainingEnergy

MaximumEnergy

)
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where ↵ is the relative weight between the ETX value and energy consumption. For the
simulation studies it was assigned the value 0.5. The results show that the overall energy is
somewhat distributed when using the composite metric, and network lifetime is prolonged
slightly (according to the study, by about 12% for one case). The simulation was performed
on the Cooja simulator for Contiki OS. Non-storing RPL mode was used with DIOMinInter-
val set as three seconds. A total of four to six nodes were used for simulation studies lasting
60 minutes.

However, the tests were performed only on a simulated environment, hence their results
on actual hardware are inconclusive. Additionally they only use four to six nodes for each
simulation which seems terribly inadequate. Network lifetime studies were only conducted
on a single network topology comprising of four nodes. This does not seem su�cient to draw
a conclusion such as “The overall network lifetime for our proposed energy-oriented routing
algorithm increases about 12% as compared to the RPL mechanism”.

In [48], the authors propose two energy e�cient routing metrics that use both ETX and
the remaining energy of parent nodes to determine the preferred parent. This equalizes en-
ergy distribution among the nodes and extends network lifetime. The first metric uses the
remaining energy of only the one-hop neighbor set, whereas the second metric takes into ac-
count the remaining energy of all nodes along the routing path. The metric was tested on the
Cooja simulator, on two simulation environments consisting of 34 and 56 nodes respectively.
In a dense network, at the time when the first node runs out of energy while using MRHOF,
the node with the lowest amount of energy in the runs using both the metrics proposed by
this paper had between 14.9% and 22.7% remaining energy. They also maintained a higher
PDR for a much longer time, as more nodes remained alive than the standard MRHOF
metric.

However, this work might not be fully standards compliant as it requires hard-coding the
battery characteristics onto the mote, which is not always easily accomplished considering
heterogeneous motes and varying battery specifications. There are also cases when the total
energy consumed for routing is greater than RPL using MRHOF, since longer paths are used
to avoid depleted nodes. In these cases, MRHOF gave a longer network lifetime than the
metrics proposed in this paper, as these metrics only aim to equalize the energy and not
minimize it. The work was also only tested on a simulator hence it’s performance on real
hardware is questionable.

6.2 Average Delay Metric

[68] assumes that all nodes have the same sleep interval and wake-up cycle. In [23], the
authors describe a delay e�cient routing metric, Averaged Delay (AVG DEL), that aims to
reduce the delay between the nodes in a WSN to the DODAG root, while assuming that
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nodes run at varying wake-up cycles and have very low duty cycles (under 1%). AVG DEL
significantly reduced the averaged delay towards the DODAG root, especially for nodes that
are located far away from the DODAG root.

The authors identify seven components of delay between when an intermediate router
receives a packet to be forwarded, and when the next hop receives this packet. Out of these,
only the time spent in waiting for the next hop to wake up can be minimized, and the other
factors form a lower bound on total delay. Since the duty cycles vary from node to node,
only the average delay can be computed. AVG DEL is equal to:

• 0 for the DODAG root

• AVG DEL
p

+ D
p

if AVG DEL
p

+ D
p

< D
max

• D
max

if AVG DEL
p

+ D
p

>D
max

Here, AVG DEL
p

is the average delay announced by the candidate parent, D
p

is the for-
warding delay between the node and its parent, and D

max

is the maximum threshold. The
authors propose an enhancement to the ContikiMAC duty cycling protocol, allowing for each
node to have a di↵erent sleeping period. The wake up phase of neighbors is learnt by unicast
of a MAC layer probe beacon to candidate neighbors.

Simulation studies were carried out by implementing this metric on Contiki 2.6 operating
system using Cooja simulator. It was tested against the standard ETX OF. It was found
that the average delay reduced by almost 40% in certain cases, where the nodes were far
from the DODAG root. However no reduction was observed for nodes which were only one
hop away from the DODAG root since it reduces to competing for a single link.

Since this protocol allows each node to have di↵erent duty cycles (as opposed to [68]),
each node should inform its neighbors about its cycle time within a DIO. This adds more
data to an already large DIO, increasing the risk of L2 fragmentation. The authors do
not characterize D

max

, and do not show the basis of its calculation. Also it is unclear
how the delay reaches a threshold when in reality, it could be infinity. Simulation studies
were performed on a WSN containing only 19 motes. Hence it is unclear how this metric
performs when the number of nodes is much higher. The comparative studies are performed
using ETX as the standard routing metric. However, the packet delivery ratio (PDR) is
maintained at 100%, thereby ETX routes through peripheral nodes. It’s not very clear how
ETX studies are conducted when PDR is 100%. A study for an average decrease in delay has
not been performed. The percentage reduction in delay has only been mentioned for two out
of nineteen simulated motes. There was also no reduction in delay noted for nodes that are
only one hop away from the DODAG root. This bottleneck could cause a lot of congestion in
the event of emergencies. Due to these reasons, it is di�cult to draw generalized conclusions.



CHAPTER 6. PAST WORK ON RPL IMPROVEMENTS 39

6.3 Multipath forwarding schemes

Multipath forwarding schemes have been widely studied in the past in works such as [9],
[39], [57] and [2]. They have been found to have a myriad of benefits such as improved
reliability [9], fault-tolerance [39], congestion-avoidance through e�cient load-balancing [2]
and improved QoS [57]. RPL could also benefit from a multi-path strategy where multiple
parents are used for forwarding instead of just a single parent.

6.3.1 E�cient Topology Construction

In [52], the authors identify a number of issues with the tree-like structure of the DODAG
such as:

• A single node failure can cause large scale disruption and loss, since there is only one
path to the sink.

• Forwarding the integrality of the tra�c to a single parent could lead to congestion and
performance degradation.

• Recent works such as [63] and [2] o↵er multiple paths that create stable routes. This
cannot be achieved in a tree-like topology.

• If beacons are used to save energy, a lot of scheduling is required to avoid collision.

In this paper, the authors propose to shift RPL from its current cluster-tree topology to a
DAG topology. This is so that each node has multiple routes to the DAG root and can fully
leverage the redundant topology. Currently, RPL does not fully leverage the mesh topology
since only a single path exists towards the root. Although the RPL protocol maintains a
larger parent set, when the preferred parent is stable, tra�c is always forwarded through it.
This depletes the node when alternatives are available. [52] uses an opportunistic anycast
strategy described in [51] to overcome this issue. Each node picks a packet from its bu↵er
regardless of the current parent. This approach helps to distribute the tra�c more evenly
and leads to performance improvements such as improved PDR and lesser delay. It was
observed that following a new parent required only 0.18% more energy. When following a
greedy approach, having multiple parents actually improved overall energy consumption as
the load was evenly distributed and number of collisions (in MAC layer) were reduced. Mem-
ory requirements increased only linearly per extra parent as very little information about
each parent was maintained. The computational complexity remained unchanged for main-
taining multiple parents. Connectivity of the network, which was defined as the number of
nodes that need to be removed in order to partition the network, was greatly improved. In
a cluster tree topology, this value is one (unless the node is a leaf node). Additionally, a
reduced delay was experienced. RPL anycast forwarding distributes load among di↵erent
parents. Hence the average forwarding queue size is reduced and this positively impacts
end-to-end delay. It was found that maintaining a single parent in a cluster tree required
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20% more control packet transmission than anycast with three parents.

However the studies were only performed on a simulator and not on real hardware. The
authors failed to draw a relationship between number of parents and size of the network.
This would prove useful for drawing conclusions on network scalability.

6.3.2 Increased Network Lifetime

In [30], the authors propose an energy-balancing routing protocol that maximizes the lifetime
of the most constrained nodes. In order to maximize lifetime, each node should consume
the same amount of energy. The DAG structure is exploited to forward tra�c to multiple
parents to speed up convergence and increase stability. The authors identify that the current
version of RPL can be improved in the following ways:

1. [77] focuses on protocol design. Metrics and mechanisms to make RPL function e�-
ciently are a work in progress, and must be defined based on energy criteria.

2. Rather than using a single parent to forward all tra�c, energy balancing mechanisms
should be used to distribute tra�c among multiple parents.

The main idea is that all paths must consume the same amount of energy and no single path
must be overused. They use the Estimated Lifetime metric (ELT) [28], which is the time
before a node runs out of energy if it keeps on forwarding the same quantity of tra�c. This is
computed by making a series of assumptions and calculations regarding tra�c generated by
the node and all its children. Using this value, an energy-balanced topology is constructed
using multiple parents. This topology highlights the bottlenecks, which are the nodes that
will be the first to run out of energy. The tra�c is balanced among all neighbors while
taking into account the remaining energy on the bottlenecks. This is done by maximizing
the minimal lifetime of all bottlenecks. As a result, the number of DAG reconfigurations
were reduced and the routing reliability as well as the network lifetime showed an improve-
ment. RPL was simulated on WSNet [19] over 30 simulations. ELT was found to show
almost as much reliability as ETX, which is the most reliable metric so far. This new metric
also reduced the percentage of nodes that change their preferred parent during one hour of
simulation, as well as the number of changes.

However, there is increased risk of L2 fragmentation while using this approach. Since
each node sends a list of all known bottlenecks as a part of the DIO message, the DIO
message grows larger, and also increases the amount of energy consumed per node. Also,
choosing the preferred parent set requires back and forth computation which is time intensive.
Selecting which parent to forward tra�c through requires computations which are n2 in
time complexity. This introduces a lot of delay in the forwarding plane. Additionally,
the ELT metric is not monotonic, hence the authors propose using ETX to construct the
DODAG and ELT to compute the rank of each node. This adds further complexity to the
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already convoluted algorithm. The algorithm does not handle fragmentation of packets, and
the possibility of each fragment taking a di↵erent path. It merely proposes some possible
solutions but does not implement them. Fragmentation and packet loss is a very real problem
in LLNs and is exacerbated when multipath is used.

6.3.3 Improved Packet Delivery Ratio (LQA-RPL)

In [66], the authors propose a metric through which each node selects a parent with the
maximum remaining energy as the next hop. This multi-parent routing metric is known
to improve PDR (Packet Delivery ratio) especially in environments with a high bit-error
rate. The proposed protocol is called Link Quality Aware Routing Protocol (LQA-RPL).
LQA-RPL calculates rank based on the probability of unsuccessful transmission, which is a
metric that can be derived from ETX. The preferred parent is chosen based on the maximum
residual energy so as to extend the network lifetime. Based on simulation studies, LQA-RPL
was found to outperform standard RPL (which uses hop count as the default metric) in terms
of PDR and network lifetime. However, LQA-RPL is only evaluated against the hop count
metric. It would be more meaningful to evaluate it against ETX since LQA-RPL also uses
a metric that is derived from ETX. Also, the quantitative results of the simulation are not
clearly called out and left to the user’s interpretation.

6.3.4 Support for Anycast

ORPL [17] is an opportunistic routing protocol that supports any-to-any on-demand tra�c.
In large-scale networks where battery operated nodes communicate wirelessly over multiple
hops, a number of extra requirements are imposed on the routing protocol:

1. It must satisfy the energy requirements of the devices, to help operating on battery
and to keep maintenance costs low.

2. It must support tra�c with any pattern in time and space, to act as an application-
agnostic routing infrastructure.

3. It must be reliable and reactive, enabling interactive applications.

The authors note that in today’s WSNs, nodes are not only seen as data sources but also
as globally addressable actuation end-points. Hence routing must be supported not only
towards a sink, but from any node to another. RPL’s rooted DODAG topology helps scale
to large networks by maintaining reliable and small routing state towards a single destina-
tion. However this comes at the cost of increased hop count. ORPL keeps the advantages of
this structure while decreasing routing latency by using a multipath approach. It uses the
Expected Duty Cycle (EDC) metric [40], which is claimed to be the multipath equivalent of
ETX. It also uses a Trickle timer to disseminate routing updates, the same way RPL does.
Nodes anycast packets instead of choosing the next hop and unicasting it. P2P routing is
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done by forwarding a packet up until a common ancestor is found, and then forwarding it
down. This is similar to the storing mode of operation in RPL. In order to reduce the size
of storing state, Bloom filters are used.

ORPL was implemented on the Contiki OS and evaluated on the Indriya testbed [14].
The hardware platform consisted of 135 TelosB motes. Since RPL uses routing tables and
ORPL stores routing sets, ORPL was found to be more memory e�cient even when RPL
routing tables were stored using address compression. When considering upward and down-
ward routes respectively, ORPL showed a slightly higher PDR of 99.5% and 99.0% than
RPL, which showed a maximum PDR of 97.39% and 91.9%. ORPL was also seen to have
lower end-to-end latency since packets are not always sent up to the root. It was also found
to be more robust during network outages since the topology need not always be reconfigured.

Although ORPL does provide certain advantages, it is worth considering that it produces
a significant number of duplicate control packets, which accounted for 9% to 50% of the total
tra�c during evaluation studies. This increases as wake-up interval increases. Since each
node needs to necessarily store routing sets, the memory requirement of each resource con-
strained node increases. This is not always possible in WSNs. Non-storing mode of operation
cannot be used with ORPL. Since routing sets are broadcasted with trickle updates, the size
of the trickle control messages increase, thereby increasing the risk of L2 fragmentation.

6.4 Broadcast Support

In the current specification, RPL does not provide support for broadcast. Broadcast is an
important requirement for a variety of WSN applications. If RPL has to support broadcast,
then the DODAG root would have to unicast data individually to all the nodes in the
subtree. This is very ine�cient and would cause a lot of redundant messages in the network.
[25] proposes a few mechanisms to deal with broadcast, in the event that it is required
by a RPL implementation. Although classical flooding is a solution, it causes a lot of
duplicate transmissions which is highly energy ine�cient, and drains the resource constrained
nodes and reduces network lifetime. In this paper, the authors propose mechanisms which
leverage the existing DODAG structure that RPL constructs. The first mechanism proposed
is classical flooding, wherein a router floods a packet upon first receipt. Subsequent receipts
of the same packet are not retransmitted. Through this mechanism, there is no need for
control tra�c. However, the following conditions are necessary:

1. There must be a method of uniquely identifying a packet to avoid retransmission

2. Each router must maintain state of already received packets, which increases the mem-
ory requirements in resource constrained nodes
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3. There is a large degree of redundant retransmissions in the network which causes energy
drain.

Due to these reasons, classical flooding is not recommended as the flooding mechanism for
broadcasting in WSNs, however it is used as a baseline.

The second mechanism suggested is Multiparent Relay Flooding (MPRF) in which each
node selects a subset of its neighbors to forward data to so that all the two hop neighbors of
the node would receive the packet. This drastically reduces the number of retransmissions
but requires each node to also maintain the two hop neighbor table. Each broadcast packet
must also be uniquely identified at the router. Another mechanism is Parent Flooding (PF),
in which a router retransmits only the broadcast packets received from its parent. An opti-
mization is to only forward packets received from the preferred parent, known as Preferred
Parent Flooding (PPF). Here, duplicates received from other routers are ignores for retrans-
mission. They also suggest mechanisms such as Preferred Parent MPR Flooding (PPMPRF)
and an optimized version of the same. These might reduce the number of retransmissions
but increase the amount of state stored at each router. Upon testing a Java implementation
of RPL with broadcast on the NS2 simulator, it was found that MPRF and PPMPRF yield
the lowest number of collisions and the highest delivery ratios. The optimized MPR-based
broadcast mechanism had the lowest delay with optimal path length.

These mechanisms are certainly useful in heading towards a network wide broadcast.
However, these are only add-ons to the existing RPL specification, and come at their own
cost while trying to use RPL for something it wasn’t designed for.

6.5 Objective Function

The Objective Function is a controversial part of the specification. Many argue that it is
unnecessary and adds a lot of overhead to the already complex protocol. In [26], a new
routing protocol called DMR is proposed as a solution for routing in mobile sensor networks
(MSNs). DMR builds o↵ of RPL’s framework, but provides path redundancy and allows
mobile sensors to find multiple alternative paths in the event of local and global failures.
DMR constructs a DODAG by using two routing metrics, rank information obtained from
RPL using hop count and LQI. Hence there is no concept of OF. Hop count is used to
determine the rank, which is easy to compute and requires no additional measurements
even in the situation where nodes are moving randomly. DMR also moves closer to a DAG
structure versus a DODAG, by allowing routing through sibling nodes in the event of a local
or global network failure. This increases network reliability and leverages the redundancy of
a DAG structure to a much greater extent than standard RPL.
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6.6 Summary

A number of research e↵orts have been made to improve upon the RPL routing standard, in
its existing form as specified in IETF RFC6550. In this section, a few of these e↵orts have
been discussed in detail. A large number of these works [68][23][34][5][66][78][20] focus on
developing new routing metrics which might be better suited for specific application require-
ments. Many of them point out a number of flaws with the existing metrics defined by ROLL
WG, rendering them unsuitable for a variety of applications such as emergencies [68] and
latency-sensitive scenarios. If OF0 is used, the nodes su↵er from uneven energy, battery de-
pletion and network failure, as battery level is not considered in the decision making process.
MRHOF in turn leads to increased delay and high routing latency. Many of these works
design composite metrics [68][34][5][78][20] which use a combination of di↵erent metrics in
order to better satisfy application requirements. Some improvements suggest changes to the
topology by moving towards a DAG structure [52][30][66][17] while others provide solutions
for broadcast [25] and anycast [17].

Once again, it was observed that all except one of these studies have been conducted only
on simulators, and hence the results drawn are not conclusive of performance in hardware.
Only one of these studies [17] was performed on a real testbed. This again seems to indicate
that RPL has a lot of implementation constraints and might not be suitable for real WSNs.

Citation Main Idea Improvements Drawbacks
Number

of
Nodes

Simulator
Used

[34]

Additive
and

Lexical
Composi-
tion of
Metrics

Lexical Composition
performed better
than individual
metrics

Composition metric
not tested against all
combinations

100

JSim
Open
Simula-
tor
Plat-
form

[68]

Congestion
avoidance
using

multipath
routing

Avoids congestion,
increases reliability
in high data-tra�c
scenarios and reduces
delay

Assumes usage of
Contiki MAC Duty
cycling protocol, and
that all nodes have
the same wake-up
cycle. Adds addi-
tional fields to DIO
message

21
Contiki/
Cooja
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[20]
QoS aware
fuzzy-logic

OF

Backwards com-
patible with RPL,
reduces number of
hops, packet loss
and average delay,
distributes energy
well

Higher churn, com-
plex to implement

100
Contiki/
Cooja

[78]

Composite
metric
that

evaluated
Per-hop
ETX

Reduces network la-
tency in larger net-
works, slight increase
in energy e�ciency

Unsuccessful in clear
quantitative analysis
as details of simula-
tion studies were ab-
sent

10 to
100

Contiki/
Cooja

[5]

Composite
metric for
improved
energy

e�ciency

Overall energy is
more distributed,
network lifetime
is slightly more
prolonged.

Very few nodes used
for simulation studies

4 to 6
Contiki/
Cooja

[48]

Composite
metric for
improved
energy

e�ciency

More remaining en-
ergy per node

Higher PDR, requires
hard-coding battery
characteristics in
nodes

34 to 56
Contiki/
Cooja

[23]

Propose an
improve-
ment to

MAC duty
cycling
protocol
for better
energy

e�ciency

Average delay was re-
duced for nodes far
away from DODAG
root

Adds wake-up cy-
cle information to
DIO, increases con-
trol message size

19
Contiki/
Cooja

[52]

Propose to
shift RPL

from
DODAG
to DAG
topology

Improved overall
energy consumption,
reduced end-to-end
delay

Performance evalua-
tion studies were only
conducted on simula-
tors

160 WSNet
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[52]

Propose to
shift RPL

from
DODAG
to DAG
topology

Improved overall
energy consumption,
reduced end-to-end
delay

Performance evalua-
tion studies were only
conducted on simula-
tors

160 WSNet

[30]

Use
multipath
to increase
network
lifetime

Comparable reliabil-
ity with ETX, lesser
churn

Increased DIO mes-
sage size, increased
time complexity and
no proposed solution
for packet fragmenta-
tion

50 WSNet

[66]

Select
node with
maximum
remaining
energy for
next hop

Improved PDR and
network lifetime

Not evaluated
against ETX (only
against hop-count)

200 to
600

WSNet

[17]

Nodes
anycast
packets

instead of
unicasting
it to next

hop
(ORPL)

More memory e�-
cient, better PDR
and latency

Produces significant
number of duplicate
control messages,
cannot be used in
non-storing mode

135
TelosB
motes

No,
Con-

tikiRPL
on

Indriya
Testbed

[25]

Propose
broadcast
mecha-
nisms for
use with
RPL

Multiple broad-
cast mechanisms
and their trade-o↵s
detailed

Trying to use RPL
for something it
wasn’t designed for

1000

Java
imple-
menta-
tion of
RPL on
NS2

[26]

DMR
provides
path re-
dundancy,
uses single

OF

Increased reliability,
leverages redundancy
of DAG structure

Studies not tested on
hardware

100 NS2

Table 6.1: Studies on Improvements to the RPL Routing
Standard
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Chapter 7

Need for a New Standard

7.1 Introduction

From the preceding sections, it is very clear that the RPL routing standard has a lot of
flaws that need to be addressed. Performance evaluation studies and comparative studies
have shown that RPL is not suitable for a number of WSN scenarios. Numerous studies
that propose improvements to RPL highlight the fact that the current standard has a lot of
issues and would benefit from renovation. Hence this section summarizes the drawbacks of
RPL and emphasizes the need for a new routing standard for LLNs and WSNs.

This chapter includes direct references from the standards document[77] released by the
ROLL WG. Hence, similar to Chapter 3, a special form of referencing is used for referring
to a particular line from RFC6550. In particular, the letter ’p’ followed by a number implies
that the particular line (or a paraphrasing of the line) or set of lines immediately preceding
the reference can be found in RFC6550 in the page indicated by the number.

7.2 Unnecessary Features of RPL

1. This thesis studies over 25 past works on RPL and it was found that all of them imple-
ment only a single instance of RPL. From studying the open source implementations
of RPL in Chapter 5, it was found that only one out of four implementations provided
full support for multiple instances. As a matter of fact, [77] itself contains specification
for running only a single instance. It is unclear whether any real world deployment
successfully supports and uses multiple RPL instances within an LLN application.

2. The Objective Function adds a lot of extra implementation complexity, as it gives
rise to each node having multiple ranks (one for each instance that it is part of).
Also, among all the works studied in this paper (over 25), none of them used multiple
objectives within the same LLN scenario. RPL instances and OFs lead to a number of
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extra parameters that need to be configured on every resource constrained router such
as:

a) RPLInstanceID. Though this is configured at the root, in case a node becomes the
root of a floating DODAG, this could lead to a single router containing multiple
instance IDs.

b) list of supported Objective Code Points (OCPs)

c) list of supported metrics

From the analysis, we found that a huge majority of the studies use only the ETX
metric. It is unclear whether all the new application-specific metrics proposed show
an improvement that is worth the additional complexity [20].

3. DIS mode of operation must be configured at boot-up in order to decide whether the
non-root nodes join an existing DODAG in an active or passive manner [p115]. How-
ever this feature seems quite unnecessary as it requires the addition of many extra
parameters such as the number of DIS messages to be sent and the interval between
them. Instead, all implementations could follow either active probing or passive listen-
ing to reduce the overall complexity.

4. The control messages sent out by RPL (DIO and DIS) are equivalent to IPv6 Router
Advertisements (RA) and IPv6 Router Solicitation (RS) messages defined in IPv6
Neighbor Discovery (RFC4861). In order to reduce the protocol overhead, it would
be more e�cient to use the existing control messages instead of defining new ones
specifically for RPL. This would also increase the degree of interoperability.

5. None of the RPL studies analyzed in this thesis implement Local DODAGs and Float-
ing DODAGs. They are a redundant feature that can be removed from the specifica-
tion.

6. Although security is an important feature for routing in LLNs, RPL’s security mech-
anisms are not used in any of the discussed RPL implementations. This leads to the
conclusion that security as a feature must be given further thought by the ROLL-WG
to better suit LLN applications and the capabilities of resource constrained nodes. The
security features specified in RPL are largely redundant and unused and therefore can
be removed.

7.3 Under-specification of standards document

1. RPL does not specify the process by which a router obtains a key from an authenti-
cation authority in order to join an authenticated RPL instance to securely operate in
the authenticated mode [p17]. It also does not clarify where the key should be obtained
from.
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2. The details of how an ingress router maps a packet to a particular RPL instance is not
specified in the standards document. The document deals with only a single instance
[p102].

3. While dealing with DAO inconsistencies, a node that receives a packet with the Forwarding-
Error bit set may attempt to send it to an alternate parent after the expiration of a
user-defined implementation specific timer. No extra details about this timer are given
in the specification [p104].

4. The specification does not provide a full description of the generation of DODAGs
specifically designed for multicast or the details of operating RPL for multicast [p104].

5. Exactly when a DODAG root increments the DODAGVersionNumber is implementa-
tion dependent and out of scope for this specification [p70]. Hence it is unclear whether
a global repair happens periodically, or is triggered by a specific event. This decision
a↵ects performance as incrementing the version number often decreases stability of the
routing algorithm.

6. The method of coordination between virtual roots is unspecified [p70]. Although the
specification allows the existence of virtual DODAG roots, there is no clear method for
communication or coordination between them. This would require the specification of
new types of control messages, which would only increase the control tra�c overhead.

7. The specification states that after hearing a change of DODAG version number from
parents through DIO, a node may choose to migrate to this new version at any point in
time. However, this implementation decision plays a role in performance. No guidelines
are given regarding the value of this variable quantity.

8. The specification also does not state how much preference should be given to staying
in the same DODAG once your preferred parent has detached from the DODAG. This
is an important consideration since link breakage is a very common scenario in LLNs
and nodes must have guidelines about what to do once the parent is no longer a part
of the DODAG.

9. The RFC does not give an exhaustive list of events that count as inconsistencies and
can cause the Trickle timer to reset [p74]. The RFC only mentions that the timer
must be reset when a new DIS message is received (with some restrictions) and when
an inconsistency or loop is detected. Additionally, it provides implementers with the
flexibility to design more events that could reset the timer. According to [37], it was
found that Trickle timer intervals and the number of their resets heavily a↵ected the
amount of overhead spent to maintain the DODAG. Hence this is again a case where
flexibility is provided at the cost of performance.

10. The selection of DAO parent set is implementation and OF specific [p78]. It is not
necessary that the DAO parent has to be the same as the preferred parent. This again



CHAPTER 7. NEED FOR A NEW STANDARD 50

causes extra implementation complexity. The document does not specify how DAO
parents are chosen.

11. The number of retransmissions of a DAO message with the ‘K’ flag set (but have
not received a DAO-ACK in response) and the interval between these retransmissions
is implementation specific [p80]. This again a↵ects performance and needs better
definition.

12. DAO transmission scheduling when a DAO with updated information needs to be sent
out is implementation dependent. This uses a DelayDAO timer which has a default
DAO delay defined in the RFC, but the timer calculation itself is unspecified [p83].
Proper DelayDAO selection can optimize the transmission of DAO messages upwards.
The specification suggested that DelayDAO should be inversely proportional to the
rank. That way, each node sends only one DAO message upwards during a triggered
update, starting from the leaf nodes [p84]

13. Triggering DAO updates by incrementing DAO Trigger Sequence Number (DTSN) field
in DIO messages is implementation dependent. In non-storing mode, it is usually the
DODAG root that independently increments DTSN, triggering updates from the entire
DODAG. In storing mode, a parent may increment its DTSN, triggering DAO updates
only from immediate children. However in general, any parent node may increment
DTSN at any point in time depending on implementation-specific guidelines [p84]. The
exhaustive list of events that trigger a parent to increment the DTSN is not specified,
and again a↵ects performance and control tra�c.

7.4 Known Issues

1. For loop detection and avoidance, RPL relies on forwarding the RPLInstanceID through
the Packet Information Option (PIO) which is inserted into the IPv6 hop-by-hop op-
tion header. This adds to the already large size of the control message and increases
the risk of L2 fragmentation.

2. According to [77], candidate neighbors that advertise an OF incompatible with the set
of OFs specified by the policy functions are ignored [p107]. Hence, this leads to a lot of
interoperability issues since non-standardized OF metrics can be defined by any RPL
user.

3. The current documentation does not support routing outside the current instance. It
states that it can be done by putting extra checks and measures in place, such as strict
ordering of instance IDs.

4. RPL imposes special requirements on the root node. The root is required to initiate the
creation of a DODAG by sending out DIO messages. It is also required for configuration
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and management. Additionally, the root is required for P2P routing in both storing
and non-storing mode. It might also need to act as the border if the participating nodes
use a link-local address. However, the root acts as a single point of failure. Though the
RFC gives some specification for floating DODAGs that can continue operating if the
root fails, this is not always possible. To function as the root of a floating DODAG, a
node has to have extra provisions in terms of processing and memory, which might be
unused under normal mode of operation.

5. Link-Layer Fragmentation of Control Messages
According to [38], application that run in an Advanced Metering Infrastructure (AMI)
network should have small control packets so that it does not lead to the risk of link-
layer fragmentation. IEEE 802.15.4 standard specifies a frame size of 127 octets [27].
Out of this, 25 octets maybe used for frame overhead and 21 octets for link layer
security. This leaves out 81 octets for the layer-2 payload. If the IPv6 compression
mechanisms are used as specified by [31], the compressed IPv6 header occupies a mini-
mum of two octets. This leaves at most 79 octets for L3 payload which includes routing
protocols signals as well application data. If it exceeds this, then it will lead to frag-
mentation.
In order to analyse the size of RPL control messages, a standard DIO was chosen since
it is a very basic control message that is an integral part of DODAG construction and
maintenance. RPL control messages are carried by ICMPv6. The ICMPv6 header
occupies four octets. In the remaining 75 octets, 24 are consumed by the DIO base
objects. Link metrics vary in size depending on the type of metric used. However,
the very basic hop count metric uses eight octets. Hence as a minimum, link metrics
can be assumed to claim eight or more octets from the remaining 51 octets, leaving
43. The DODAG Configuration Object occupies 16 octets, leaving only 27 octets for
the optional Prefix Information Object for address configuration, which consumes a
minimum of 32 octets. Hence this already exceeds the allowed capacity of 79 octets
by five octets and is sure to undergo link-layer fragmentation. The above calculation
only includes configuration of DIO. In case data tra�c is included, then the proba-
bility of fragmentation is increased if non-storing mode is used. In non-storing mode,
the DODAG root a�xes a source route with a fixed overhead of eight octets to every
data packet traveling in the downward direction. Additionally the size of source route
overhead increases depending on the number of entries in the source route. The exact
amount of increase depends on the address length and the number of hops to be tra-
versed. Apart from this, the data packet also includes the data payload, which again
varies in length depending on the nature of information to be communicated. Also,
since the root is responsible for adding the source routing header, the routers within
the DODAG do not know the size of the message in advance. Hence the applications
can’t tailor their data packets to fit within the unfragmented frame before sending
them to the DODAG root for routing down the DODAG.
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6. Link Bi-Directionality
The basic and standard operation of RPL requires the presence of bi-directional links.
This is explicitly called out in the RFC- RPL operations require bidirectional links [p8].
This is because, nodes attach themselves to the DODAG through the receipt of DIO
messages from candidate parents. However, these established links are used for sending
messages from the node to the root, through the preferred parent hence requiring the
link to be bidirectional for the very basic operation. However, in case the link is not
bi-directional and is unidirectional instead (which is a common occurrence in WSNs
and LLNs), RPL does not specify mechanisms to rectify this scenario. RPL also does
not specify any mechanism to check whether a link is unidirectional or bidirectional
before a node joins a DODAG. The RFC does mention that Bidirectional Forward-
ing Detection (BFD) and Neighbor Unreachability Detection (NUD) can be used as
solutions [p8]. However, it also goes on to say that BFD is highly undesirable as it
uses a proactive approach and hence is unsuited for LLNs. NUD is only used in the
event of a transmission failure. Hence if a node tries to reach the DODAG root and
detects (through NUD) that the parent cannot be reached, its only option is to wait
around for another parent which has bidirectional links. Also, if a NUD indicates “no
forward progress” based on an upper-layer protocol, there is no guarantee that the
problem stems from the preferred parent being unreachable. RPL does not specify
any mechanism to react to such events. Hence in the event of a network containing
unidirectional links, RPL does not adopt either of these two methods (BFD or NUD)
and the router has no standard way of reacting to this situation. This causes delay
and unnecessary energy wastage, as the router continues to try to join the network
through a bidirectional link which possibly doesn’t exist at all.

7. RPL handles the detection of loops in a reactive manner. When a loop is found, the
data packet is bu↵ered at the router and a local repair operation is triggered. However,
since the nodes are resource constrained, there is no guarantee that the given router
has enough memory to store the incoming data packet while trying to find a new
route to the DODAG root. Hence the data packet might be dropped unless the source
retransmits it. RPL does not specify any retransmission mechanisms for this type of
packet loss.

8. RPL does not fully leverage the DAG structure as it provides only a single path to
root. Even though multiple candidate parents are stored by each node, only a single
parent is used for forwarding. This could possibly cause congestion, when forwarding
the integrality of tra�c from the sub-DODAG through a single parent. Additionally
it causes faster energy depletion of the preferred parent.

9. The current specification does not provide any support for broadcasting information.
Only unicast mechanisms to and from the root have been specified, which would be
ine�cient for application scenarios requiring broadcast.
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10. According to the specification, the greatest level of interoperability may be achieved
when all of the nodes in a RPL LLN are cooperating to use the same MOP, OF,
metrics, and constraints [p109]. This renders objective functions and the whole concept
of RPL instances useless, as it only leads to more issues with interoperability. One of
the main goals of designing RPL was to unify the e↵orts made towards creating a
standardized routing protocol for LLNs. Including OFs and RPL instances seems to
be in contradiction with that goal.

11. Among all the studies discussed in this thesis which includes over 25 studies on RPL
implementations, only two of them [37][17] acknowledge implementing RPL on an
actual testbed and testing on hardware. The rest of the studies only test RPL on
simulations, which highlights the implementation complexity of this protocol.

7.5 Types of applications RPL does not cater to

1. RPL does not support applications which require a fixed MTU (Maximum Transmis-
sion Unit). The control message size can vary greatly and RPL does not give any
guarantees on the size. There is not much flexibility with the control message fields
the RFC doesn’t give any specification for compression.

2. RPL is not fully suited for applications where there is a good percentage of P2P
tra�c flow. In applications such as remote control in building automation, almost
30% of the tra�c flows are P2P [44]. Hence using RPL in such an application would
cause high control tra�c overhead, and also cause congestion at the DODAG root and
route stretching. If non-storing mode is used, it might also impose additional memory
requirements on participating routers.

3. RPL does not cater well to a request-response tra�c pattern such as utility metering
[24]. A utility company may want a utility controller to inquire household meters
regarding their consumption. This will require them to send a request and expect
a reply. The controller might also use the network to set or change parameters in
household meters. This would again require a confirmation stating that the change
has been carried out. This is commonly the use case in a load management grid where
individual households maybe required to increase or decrease their energy consumption
depending on the overall load on the grid.

4. RPL does not cater to emergency scenarios where there is a high data tra�c in the
network. In case of an emergency, a number of messages might be sent out causing
congestion at the DODAG root. It also causes delay and possible packet loss [68].
RPL doesn’t specify any mechanism of dealing with data packet loss. Additionally
the nodes are resource constrained so even bu↵ering them to wait for the network to
become decongested would not be possible.
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5. RPL cannot be used for topologies with a long chain-like structure that contains paths
of length greater than eight (if raw IPv6 is used) or 64 (while using IPv6 address
compression [31]), while being used in non-storing mode. The source routing header
can be a maximum of 136 octets which includes an eight octet long header. An IPv6
address is 16 octets long. Hence no more than eight can be accommodated unless
address compression is used. If the addresses are compressed, then the path length
may not exceed 64.

6. In the current specification there is no support provided for broadcast. RPL only
supports unicast to and from the DODAG root. In case broadcast is required, the root
has to deliver the data to all nodes, which is very ine�cient.

7. RPL is not suitable for WSNs that contain sensor nodes that can harvest ambient
energy from the environment. Such networks are a possible solution for sustaining
sensor networks for decades without maintenance, since they can recharge on their
own using ambient energy. However in [47], it was found that energy-harvesting sensor
networks running RPL produce 40-45% lower goodput than battery-operated sensor
networks as the harvesters drop thousands of packets due to critical nodes running out
of energy at the same time.

7.6 Features that would benefit RPL

1. RPL nodes should ideally leverage the DAG topology by maintaining multiple paths
to the DAG root, rather than choosing a single preferred parent. Additionally, there
could be multiple Downward routes to the node as well, rather than having a single
DAO parent. The DAG structure provides more routing redundancy than a DODAG,
and is more useful in LLN scenario where links are not reliable and fail often.

2. Nodes within an LLN are not homogeneous in terms of on-board resources. Hence
depending on the capability of the node, it should be allowed to operate under storing
or non-storing mode, as highlighted in works such as Hydro [13]. Forcing all nodes to
operate under non-storing mode because of the constraints of a few nodes within the
network unnecessarily leads to route stretch and routing delay. Additionally, nodes
may not always have the capability to store local routing tables, as resources can vary
over time depending on application requirements.

7.7 Has RPL succeeded or failed

From this section, it is clear that RPL as a routing standard for low-power and lossy networks
has a lot of standing issues that need to be addressed. As far as the design is concerned, it
is evident that there are a lot of redundant features that are neither deployed in real-world
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implementations, nor have any real use cases in the WSN scenario. Such additional fea-
tures only increase the implementation complexity of RPL rendering it unusable for small
resource-constrained nodes. Additionally the standards document has a lot of underspeci-
fication, which leads to a wide variety of implementation choices. These choices not only
adversely a↵ect performance, they also give rise to non-interoperable implementations that
go against the very basic design ideology of creating such a routing standard. Finally, RPL
is not suited for a number of WSN and LLN scenarios, as highlighted in the specific works
in Section 7.3. Overall, RPL was headed in the right direction towards unifying the e↵orts
in developing a standard routing protocol for WSNs and LLNs. It includes a highly com-
prehensive feature-set. However, the ambitious nature of the specification and inclusion of
a number of redundant features render it highly complex and quite unsuitable for resource-
constrained environments. Hence as a verdict, RPL is not entirely successful in solving the
complex routing challenges posed by LLNs.
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Chapter 8

RPL-Lite

8.1 Introduction

This chapter provides a specification for RPL-Lite, a lightweight routing protocol based on
the RPL routing standard.

8.1.1 Design Principles

RPL-Lite was designed with the objective to overcome the drawbacks and eliminate the com-
plexities of the RPL routing standard specified in RFC6550 proposed by the IETF ROLL
WG. A network may contain and run only a single instance of RPL-Lite, where all nodes
obey the same routing objective. OFs are also eliminated from the RPL-Lite specification.
All implementations of RPL-Lite follow the same objective, which is reducing the net energy
consumption by following the ETX metric (MRHOF). The quantitative comparison between
these two metrics is out of scope for this specification and is left as future work.

RPL-Lite expects an external mechanism to be triggered during the parent selection
phase in order to verify link properties and neighbor reachability. It cannot operate in an
environment that does not contain bidirectional links. In a general fashion, a detection
mechanism that is reactive to tra�c is favored in order to minimize the cost of monitoring
links that are not being used.

RPL-Lite follows RPL’s mechanism of disseminating information over the dynamically
formed network topology using a Trickle timer [43]. This dissemination enables minimal
configuration in the nodes and allows nodes to operate mostly autonomously.

RPL-Lite uses IPv6 Neighbor Discovery (RFC4861) [45] information such as the Router
Advertisements (RA) and Router Solicitations (RS), and IPv6 Inverse Neighbor Discovery
(RFC3122) messages such as Inverse Neighbor Discovery Solicitations (INDS) Inverse Neigh-
bor Discovery Advertisements (INDA) for topology formation. Link Layer acknowledgements
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are used to indicate receipt of destination advertisement messages. Protocol-specific ACKs
are eliminated.

RPL-Lite retains the concept of global repairs, which is basically a reboot operation where
each node is disassociated from all neighbors and made to rejoin the network as if it were
a new node. RPL-Lite also retains local repairs. However, it does not provide an exhaus-
tive list of events that trigger either of these repairs and leaves it as an implementation choice.

RPL-Lite does not have floating DAGs or local DAGs. Every time a node needs to com-
municate with another peer, a new route is installed either through the DAG root or through
a common ancestor.

RPL-Lite also does not support security mechanisms, and relies on external mechanisms
such as header encryption or application layer security for secure applications.

8.1.2 Expectations of Link-Layer Type

In compliance with the layered architecture of IP, RPL-Lite does not rely on any particular
features of a specific link-layer technology. RPL-Lite is designed to be able to operate over
a variety of di↵erent link layers, including ones that are constrained, potentially lossy, or
typically utilized in conjunction with highly constrained host or router devices, such as but
not limited to, low-power wireless or PLC (Power Line Communication) technologies.

8.2 Protocol Overview

The aim of this section is to describe RPL-Lite in the spirit of RFC4101 [59]. Protocol
details can be found in the further sections.

8.2.1 Topologies

This section describes the basic RPL-Lite topologies that maybe formed, and the rules by
which these are constructed, i.e., the rules governing the DAG formation.

8.2.1.1 Constructing Topologies

RPL-Lite organizes a topology as a Directed Acyclic Graph (DAG) where there is one DAG
per sink. A RPL-Lite network comprises a single DAG with its components connected by
a transit network. If there are multiple sinks per DAG, then it is expected that the roots
are federated by a common backbone, such as a transit link. The details of how the roots
communicate among each other or how they are federated is out of scope for this specification.



CHAPTER 8. RPL-LITE 58

8.2.1.2 RPL-Lite Identifiers

Unlike RPL, RPL-Lite does not use DAGIDs. A node in a network has no necessity to know
which DAG it is part of, as long as there is a neighbor through which it can send packets.
Hence RPL-Lite eliminates the use of InstanceID and DAG ID. The only identifiers used are
Rank and Version Number. Rank establishes a partial order over a DAG, defining individual
node positions with respect to any one of the DAG roots. Version Number specifies the
version of the DAG that the node is a part of, in order to maintain consistency during global
repairs. The Version Number is incremented every time a global repair takes place.

8.2.1.3 RPL-Lite DAGs

A network running RPL-Lite contains one or more DAG roots, each of which provide routes to
certain destination prefixes. These roots may operate independently, or they may coordinate
over a network that is not necessarily as constrained as an LLN. A network running RPL-
Lite comprises a single DAG with a single or multiple roots. If there are multiple roots, then
these roots must be federated by a common back-bone such as a transit link.

8.2.2 Upward Routes and DAG Construction

RPL-Lite provisions routes Up towards DAG roots, forming a DAG optimized according
to the MRHOF Objective Function. RPL-Lite nodes construct and maintain these DAGs
through IPv6 Router Advertisement (RA) messages.

8.2.2.1 Objective Function

The Objective Function (OF) defines how RPL-Lite nodes select and optimize routes. An
OF defines how nodes translate one or more metrics and constraints, which are themselves
defined in RFC6551 [33], into a value called Rank, which also approximates the node’s
distance from the DAG root. An OF also defines how nodes select their parents. Based
on past studies, it was found that majority of RPL implementations chose MRHOF over
OF0, because ETX was able to take link metrics into account instead of choosing a path
purely based on hop-count. Although min-hop metric was simplistic and eliminated a lot
of implementation complexities as well as simplified loop avoidance, ETX was chosen as it
suited the LLN scenario better. ETX was able to minimize energy consumption by choosing
paths with lower retransmissions. Since there is only one OF used, the Objective Code Point
(OCP) field is eliminated from node advertisements.

8.2.2.2 DAG Repair

In RPL-Lite, A DODAG root institutes a global repair operation by incrementing the
DAGVersionNumber. This initiates a new DAG Version. Nodes in the new DAG version
can choose a new position whose rank is not constrained by their Rank within the old DAG
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version. However, since global repairs are costly and often unnecessary, Global Repairs are
retained as an optional feature in RPL-Lite. Implementations can choose to disregard this
feature by always maintaining a DAGVersionNumber of zero. During a repair, nodes are
disconnected and cannot perform routing until they reattach to a DAG.

RPL-Lite also supports mechanisms that may be used for local repair within the DAG.
Local repairs maybe triggered when a routing loop or inconsistency is discovered by a non-
root node. This is fixed by poisoning the one-hop and optionally two-hop neighbors, and
de-attaching from the DAG.

An exhaustive list of events that trigger local and global repairs is out of scope for this
specification.

8.2.2.3 Security

RPL-Lite does not support security mechanisms, and relies on external mechanisms such as
application-layer security or header encryption for the specific needs of secure applications.
None of the implementations of RPL studied in this thesis include security features. Although
security is an important aspect of routing in LLNs, it is not necessary in a majority of LLN
applications and must be further researched for ease of implementation and simplicity.

8.2.2.4 Administrative Preference

An implementation/deployment may specify that some DAG roots should be used over others
through an administrative preference. Administrative preference o↵ers a way to control
tra�c and engineer DAG formation in order to better support application requirements or
needs.

8.2.2.5 Data-Path Validation and Loop Detection

The loop-detection mechanism used by RPL-Lite is the same passive strategy used by RPL,
wherein loops are not detected until there is data to transmit. The rank of a node is
transmitted along with a data packet in the RPL Packet Information. An inconsistency
between the routing decision for a packet (Upward or Downward) and the Rank relationship
between the two nodes indicates a possible loop. On receiving such a packet, a node institutes
a local repair operation.

8.2.2.6 Distributed Algorithm Operation

A high-level overview of the distributed algorithm, which constructs the DAG, is as follows:

• Some nodes are configured to be DAG roots, with associated DAG configurations.



CHAPTER 8. RPL-LITE 60

• Nodes advertise their presence, routing cost and related metrics by sending a link-local
multicast RA message to all-RPL-nodes.

• Nodes listen for RAs and use their information to select new DAG parents, or to
maintain existing parents, according to the Rank of their neighbors.

• Nodes provision routing table entries, for the destinations specified by the RA message,
via their DAG parents in the DAG version. Nodes that decide to join a DAG can
provision one or more DAG parents as the next hop for the default route and a number
of external routes.

8.2.3 Downward Routes and Destination Advertisement

RPL-Lite uses IPv6 Inverse Neighbor Discovery Advertisement messages (INDA) messages
to establish Downward routes. INDA messages are an optional feature that can be used for
applications that require point-to-multipoint (P2MP) or point-to-point (P2P) tra�c. RPL-
Lite supports three modes of Downward tra�c: Storing (fully stateful), Non-Storing (fully
source routed) and Hybrid (a combination of stateful and source-routed). Any given DAG
running RPL-Lite has the ability to support both storing and non-storing mode through the
hybrid mode, depending on the capacity of each node. In the pure Non-Storing only case,
the packet will travel all the way to a DAG root before traveling Down. In the Storing only
case, the packet may be directed Down towards the destination by a common ancestor of the
source and the destination prior to reaching a DAG root. In the hybrid case, each node can
operate in either storing or non-storing mode depending on its capacity. The packet travels
up the DAG until one of two scenarios occur:

• The packet reaches the DAG root because:

1. Either all the nodes along the way were operating under non-storing mode and
kept forwarding the packet to the parent or

2. The nodes along the way that were operating under storing mode did not have
the destination their sub-DAG

Once the root is reached, a source route is attached and the packet gets forwarded in
the DOWN direction until the destination is reached.

• The packet never reaches the DAG root because:

1. All the nodes along the way from the source to the DAG root were operating
under non-storing mode but one of them happened to be the desired destination,
hence the packet forwarding was stopped or

2. On its way to the DAG root, the packet encountered a node that operated under
storing mode and the desired destination happened to be in the sub-DAG of that
node, and hence the packet got forwarded to the sub-DAG of that node instead
of UP towards the DAG root.
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8.2.4 Rank Properties

The Rank of a node is a scalar representation of the location of that node within a DAG
Version. The generic properties it must exhibit remain the same as that defined in RFC6550
for RPL. Rank comparisons and Rank relationships also remain the same for RPL-Lite.
Since the entire network follows a single OF, each node has only a single rank, as opposed
to RPL where each node has multiple ranks depending on the number of RPL instances it
is a part of.

8.2.5 Loop Detection, Avoidance and Recovery

RPL-Lite tries to avoid creating loops when undergoing topology changes by maintaining
strict ordering of Ranks. It includes Rank-based data-path validation mechanisms for de-
tecting loops when they do occur. In practice, this means that RPL-Lite guarantees neither
loop-free path selection nor tight delay convergence times, but it can detect and repair a loop
as soon as it is used. RPL-Lite uses this loop detection to ensure that packets make forward
progress within the DAG and trigger local repairs when necessary. Once a node has joined a
DAG, RPL-Lite disallows greediness in order to prevent resulting instabilities in the DAG.
To recover from count-to-infinity scenarios, RPL-Lite allows DAG roots to initiate Global
Repairs by incrementing the DAG Version Number.

8.2.5.1 DAG Loops

A DAG loop may occur when a node detaches from the DAG and reattaches to a device
in its prior sub-DAG. In particular, this may happen when RA messages are missed. This
type of loop may possibly be encountered when using some local repair mechanisms. When
a loop is detected by a non-root node, a local repair is triggered. When a loop is detected
by a root node, a global repair is optionally triggered.

8.2.5.2 DA Loops

A DA inconsistency happens when a router has a Downward route that was previously
learned from an INDA message via a child, but that Downward route is not longer valid in
the child. With DA inconsistency loop recovery, a packet can be used to recursively explore
and clean up the obsolete DA states along a sub-DAG.

8.3 Tra�c Flows Supported by RPL-Lite

Just like RPL, RPL-Lite supports three basic tra�c flows: multipoint-to-point (MP2P),
point-to-multipoint (P2MP), and point-to-point (P2P).
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8.3.1 Multipoint-to-Point Tra�c

The destinations of MP2P flows are designated nodes that have some application significance,
such as providing connectivity to the larger Internet or core private IP network. RPL-Lite
supports MP2P tra�c by allowing MP2P destinations to be reached via DAG roots.

8.3.2 Point-to-Multipoint Tra�c

RPL-Lite supports P2MP tra�c by providing mechanisms that provisions Down routes to-
ward destinations (prefixes, addresses, or multicast groups), and away from roots. These
mechanisms in combination with link layer acknowledgements can update routing tables as
the underlying DAG topology changes.

8.3.3 Point-to-Point Tra�c

RPL-Lite DAGs provide a basic structure for point-to-point (P2P) tra�c. For a RPL-Lite
network to support P2P tra�c, a root must be able to route packets to a destination.
Nodes within the network may also have routing tables towards destinations. A packet flows
towards a root until it reaches an ancestor that has a known route to the destination. In the
most constrained case (when nodes cannot store routes), that common ancestor may be the
DAG root. In other cases, it may be a node closer to both the source and destination. RPL-
Lite also supports the case where a P2P destination is a ‘one-hop’ neighbor. An optional
optimization involves storing ‘two-hop’ neighbors to reduce routing overhead when P2P
communication is the dominant tra�c pattern within the network.

8.4 RPL-Lite Control Messages

RPL-Lite defines control message structures in a slightly di↵erent manner than RPL. As
specified earlier in this document, RPL’s control messages are ICMPv6 messages identified
by a code and composed of a base that depends on that code, as well as a series of options.
RPL-Lite also uses ICMPv6 messages. However the specific messages are structured as
options to IPv6 Neighbor Discovery Base objects and IPv6 Inverse Neighbor Discovery Base
objects. The basic format of the option is shown in Figure 8.1. The ‘type’ field must be set

Figure 8.1: IPv6 Neighbor Discovery and IPv6 Inverse Neighbor Discovery Option Format
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to a special ‘RPL’ type, that is yet undefined. In this document, this type is referred to as
RPL-TYPE. The ‘length’ field must be set to the length of the entire options field. The rest
of the fields can be used for specific RPL fields.

8.4.1 RPL-Lite Equivalents of RPL Control Messages

The RPL-Lite equivalents for RPL control messages are detailed in this section.

8.4.1.1 DAG Information Solicitation Messages

DIS messages are completely eliminated. Instead, RPL-Lite uses IPv6 Router Solicitations
with a RPL option set in order to solicit RPL control information from nodes that are part
of the RPL network.

8.4.1.2 DAG Information Advertisement Messages for Upward Routes

A more compact form of DIO messages are added as an option to RAs and perform the
equivalent function of RPL DIOs. Mainly, the RPLInstanceID, DODAGID, MOP, DTSN
and Grounded/Floating fields are removed from the RPL DIO Base object since they are
unused in RPL-Lite. The message format used in RPL-Lite can be found in Figure 8.2. Here

Figure 8.2: IPv6 Neighbor Discovery Option for RPL-Lite DIO

the type field corresponds to RPL-TYPE. The length field must contain a value of 4. The
rank is the 16-bit rank of the node that sends the RA, which is calculated according to the
OF. In case the node is not part of a RPL-Lite network, then the rank field is set to infinity,
which in this case corresponds to 0xFFFF. The Version Number is an 8-bit field indicating
the current version og the DAG. In the event of a Global Repair, a DAG root increments
the version number and immediately propagates this update through an IPv6 RA with the
RPL-Lite DIO option.

8.4.1.3 Destination Advertisement Objects for Downward Routes

DAO messages are also eliminated from RPL-Lite. The IPv6 Inverse Neighbor Discovery
Advertisement Message is used instead, to propagate destination information Upward along



CHAPTER 8. RPL-LITE 64

the DAG. Irrespective of whether a node is using storing mode or non-storing mode, this
message is unicast by the child to the preferred parent. If the preferred parent is using
non-storing mode, then the parent forwards this message up along the DAG. If the parent
is using storing mode, then in addition to forwarding the packet upwards, it also records a
route in its own routing table, towards this destination. The IPv6 Inverse Neighbor Discovery
Advertisement Message can be found in Figure 8.3.

Figure 8.3: IPv6 Inverse Neighbor Discovery Advertisement Message

8.4.1.4 Destination Advertisement Acknowledgement Messages

DAO-ACK messages are also eliminated from RPL-Lite. Instead, RPL-Lite uses link-layer
acknowledgements to interpret whether a DAO has been received by the parent or not.

8.4.1.5 Consistency Check Messages

Since RPL-Lite does not define any security primitives, Consistency Check (CC) messages
are also eliminated from the RPL-Lite specification.

8.4.2 RPL-Lite Control Message Options

Similar to RPL, RPL-Lite too allows control messages to carry options. In specific, the DIO
option for ICMPv6 RA messages and the IPv6 Inverse Neighbor Discovery messages (similar
to DAO in RPL) are allowed to carry protocol-specific options. RPL-Lite uses many of the
options defined by RPL, which includes the following:

1. Pad1

2. PadN

3. DAG Metric Container

4. DAG Configuration Option
This option is slightly modified from the RPL DODAG Configuration Option. Many
fields that are used in RPL but not in RPL-Lite are removed. In particular, the
following fields have been removed:
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• Flags

• A

• OCP

The modified version of the Configuration option can be found in Figure 8.4. The
included fields have the same meaning as in the RPL specification in RFC6550.

Figure 8.4: DAG Configuration option for RPL-Lite

5. RPL Target Option

6. RPL Target Descriptor

7. Transit Information
This option is also slightly altered to always include the Parent Address subfield, since
the network may comprise of both storing and non-storing modes.

8. Solicited Information
This option is modified RPL-Lite because the RPlInstanceID and DODAGIDsub-fields
are not a part of RPL-Lite specification. The modified version of the Solicited Infor-
mation option can be found in Figure 8.5.

Figure 8.5: Solicited Information option for RPL-Lite

The following options are not used:
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1. Route Information: This is not used because RFC6550 specifically states [p50] that
this option carries the same information as the IPv6 Neighbor Discovery (ND) RIO as
defined in RFC4191 [16].

2. Prefix Information Option: This option is also removed, because it is the same as IPv6
ND PIO, defined in RFC4861.

8.5 Upward Routes

This section describes how RPL-Lite discovers and maintains upward routes. It describes
the use of IPv6 Router Advertisement messages (RAs) with a special RPL option, which
are used to discover and maintain these routes. It specifies how RPL-Lite generates and
responds to RAs containing the RPL option. It also describes the IPv6 Router Information
Solicitation messages (RSs) which are used to trigger RA transmissions.

Nodes that decide to join a DAG provision at least one DAG parent as a default route
towards the DAG root. This default route enables a packet to be forwarded Upward until it
eventually hits a common ancestor from which it will be routed Downward to the destination.
However, the default route is not always used for upward routes. Tra�c flow is spread in a
round-robin manner among all members of the candidate parent set for reliability and energy
balance. This draws from ideas presented in [76]. If the destination is not in the DAG, then
the DAG root may be able to forward the packet using connectivity to the outside of the
DAG. If the DAG root is unable to forward the packet outside, then it has to drop it. A
node that receives an RA message with RPL option from a parent must update the Rank
field prior to forwarding it to its children.

8.5.1 Upward Route Discovery and Maintenance

Upward route discovery allows a node to join a DAG by discovering neighbors that are
members of the DAG and identifying a set of parents. This process is very similar to RPL’s
Upward route discovery and maintenance. The exact policies for selecting neighbors and
parents is implementation dependent and driven by the OF. This section specifies the set of
rules those policies must follow for interoperability.

8.5.1.1 Neighbors and Parents

RPL-Lite processes four logical sets of link-local nodes.

1. Candidate Neighbor Set: The set of nodes that can be reached via link-local multicast.

2. Parent Set: The restricted subset of candidate neighbor set that has a rank strictly
lesser than the node’s rank.
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3. Preferred Parent Set: Member (or members) of the parent set that are the preferred
next hop in Upward routes.

4. RPL-Lite optionally includes two-hop neighbors for applications that have a predomi-
nance of P2P flows.

A node must not advertise a rank less than or equal to any member of its parent set.

8.5.1.2 DAG Roots

A DAG root advertises a rank of ROOT RANK. In a deployment that uses non-LLN links to
federate a number of LLN roots, it is possible to run RPL-Lite over those non-RPL links and
use one router as a “backbone root”. The backbone root is the virtual root of the DAG and
exposes a Rank of BASE RANK over the backbone. All the LLN roots that are parented
to that backbone root, including the backbone root if it also serves as the LLN root itself,
expose a Rank of ROOT RANK to the LLN. These virtual roots are part of the same DAG
and coordinate other DAG parameters with the virtual root over the backbone. The method
of coordination is out of scope for this specification.

8.5.1.3 Poisoning

The rules for poisoning in RPL-Lite are the same as RPL, and are summarized below:

1. A node poisons routes by advertising a Rank of INFINITE RANK.

2. A node must not have any nodes with a Rank of INFINITE RANK in its parent set.

A node that is unable to retain a non-empty parent set must detach from the DAG and should
immediately advertise this new situation in an RA with Rank set to INFINITE RANK. If
a node receives an RA from one of its DAG parents indicating that the parent has left the
DAG, then that node should also detach and advertise a Rank of INFINITE RANK. The
parent that left the DAG must be removed from the node’s parent set.

8.5.2 Node Advertisement Transmission

Nodes transmit RA messages with RPL option using a Trickle timer (RFC6206) in the same
manner as RPL. An RA from a sender with a lesser DAGRank that causes no changes to
the recipient’s parent set, preferred parent, Rank or Version Number should be considered
consistent with respect to the Trickle timer. Inconsistent events include, but are not limited
to forwarding inconsistencies and a node newly joining a DAG.
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8.5.3 Operation as a Leaf Node

A node may attach to a DAG as a leaf node only in situations when a node does not
understand or does not support (policy) the OF. The node may either join the DAG as a leaf
node or may not join the DODAG. A leaf node does not extend DAG connectivity; however,
in some cases, the leaf node may still need to transmit RAs on occasion, in particular, when
the leaf node may not have always been acting as a leaf node and an inconsistency is detected.
A node operating as a leaf node must obey the following rules:

1. Its RAs must advertise a DAGRank of INFINITE RANK.

2. It must suppress RA transmission, unless the RA transmission has been triggered due
to detection of inconsistency when a packet is being forwarded or in response to a
unicast RS message, in which case the RA transmission must not be suppressed.

3. It may transmit unicast INDA messages and multicast INDAs to the ‘one-hop’ or
‘two-hop’ neighborhood.

8.6 Downward Routes

This section describes how RPL-Lite discovers and maintains downward routes. RPL-Lite
constructs and maintains downward routes with IPv6 Inverse Neighbor Discovery Adver-
tisement messages (INDAs). Downward routes support P2MP flows, from the DAG roots
towards the leaves. Downward routes also support P2P flows. P2P messages can flow to-
wards a DAG root or a common ancestor through an Upward route, then away from the
DAG root to a destination through a Downward route. This section describes the three
modes that RPL-Lite may choose for maintaining Downward routes.

8.6.1 Destination Advertisement Parents

To establish Downward routes, nodes send INDA messages Upward. The next-hop desti-
nations of these INDA messages are called “DA parents”. The collection of a node’s DA
parents is called the “DA parent set”. The selection of DA parents is implementation and
Objective Function specific.

1. A node MAY send INDA messages using the all-RPL-nodes multicast address, which
is an optimization to provision one-hop routing.

2. A node’s DA parent set must be a subset of its DAG parent set.

3. The IPv6 source and destination addresses of the INDA message must be a unique-local
or a global address.
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8.6.2 Downward Route Discovery and Maintenance

Destination Advertisement may be configured to be entirely disabled, or operate in either
a Storing, Non-Storing or Hybrid mode, as configured on each individual node. If a node
receives a data packet, the following actions can be taken:

1. If the packet is moving in the ‘Down’ direction and has an attached source route, then
the packet must be forwarded along that route.

2. If the packet is moving in the ‘Down’ direction and the destination has an entry in
the node’s local routing table and no source route is found, then the packet may be
forwarded along that route.

3. If the packet is traveling in the ‘Down’ direction and there is no source route or entry
in the node’s local routing table for that destination then the packet must be dropped.
A ‘Destination Unreachable’ ICMP message may be sent out.

4. If the packet was traveling in the ‘Up’ direction and no entry for the packet’s destination
was found in the node’s local routing table, then the packet is forwarded to the DAG
parent.

5. If the packet was traveling in the ‘Up’ direction and an entry for the packet’s destination
was found in the node’s local routing table, then the packet direction is changed to
indicate ‘Down’ direction, and the node is forwarded in the ’Down’ direction towards
the destination.

6. If the packet is traveling in the ‘Up’ direction and the node does not find an entry for
the destination in its local routing table and also does not have any DAG parents, then
the packet should be dropped. An ICMP error message may be sent out.

All nodes that operate under storing mode store routing table entries for destinations learned
from INDAs. If a packet reaches the DAG root but the root failed to store source routing
information for that destination, then that destination is presumed to be unreachable and
the packet is dropped. An ICMP ‘Host Unreachable’ message may be sent to the sender. A
node that sends a unicast INDA message but does not receive a link-layer acknowledgement
in response may reschedule the INDA message transmission for another attempt, up until an
implementation-specific number of retries. Nodes that operate under non-storing mode must
forward all incoming INDAs towards the DAG root. Nodes that operate in storing mode
may suppress INDA transmissions in the Upwards direction if the incoming INDA message
contains pre-existing routing information.

8.6.3 INDA Transmission Scheduling

Because INDAs flow Upward, receiving a unicast INDA can trigger sending a unicast INDA to
a DA parent. On receiving a unicast INDA message with updated information, a node should
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send a INDA. It should not send this INDA message immediately. It should delay sending
the INDA message in order to aggregate INDA information from other nodes for which it
is a DA parent. A node should delay sending an INDA message with a timer DelayDA.
Receiving an INDA message starts the DelayDA timer. INDA messages received while the
DelayDA timer is active do not reset the timer. When the DelayDA timer expires, the node
sends an INDA. When a node adds another node to its DA parent set, it should schedule an
INDA message transmission. DelayDA’s value and calculation is implementation dependent.
A default value of DEFAULT DA DELAY is configured at boot time is equivalent to the
DEFAULT DAO DELAY value specified in RFC6550. INDAs can be triggered by sending
Inverse Neighbor Discovery Solicitation (INDA) messages, as specified in RFC3122.

8.6.4 Downward Routing Mechanism

In all modes of operation, INDAs are used to report a node’s DA parents to the DAG root.
The DA Parent address is always included in the Transit Information Option, since the net-
work may comprise of nodes operating under both storing and non-storing modes. The DAG
root as well as non-root nodes operating in storing mode can piece together a Downward
route to a node by using DA parent sets from each node in the route. Nodes pack INDAs by
sending a single INDA message with multiple RPL Target options. Each RPL Target option
has its own, immediately following, Transit Information options.

In the fully Non-Storing mode, RPL-Lite routes messages Downward using IP source
routing. In the fully Storing mode, RPL-Lite routes messages Downward by the IPv6 des-
tination address. In the Hybrid mode, a combination of these is used to route packets
Downwards.

The following actions take place upon receipt of an INDA message:

1. If the node is operating under non-storing mode, then no changes are made. The
message is directly forwarded to the DA Parent.

2. If the node operates under storing mode, then it first checks whether the incoming
INDA message causes any change to the set of prefixes advertised by the node. If yes,
then the node propagates this INDA message Upward along the DAG, after making
the required changes in its local routing table. Additionally, it also sends out its own
INDA message advertising the new prefixes.

Path Control is implemented in the same manner as RPL, and is not separately explained
here.

8.7 Loop Avoidance and Detection

Loops may form for a number of reasons, e.g., control packet loss. RPL-Lite includes a
reactive loop detection technique that protects from meltdown and triggers repair of broken
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paths. RPL-Lite loop detection uses RPL Packet Information that is transported within the
data packets, relying on an external mechanism such as RFC6553 that places the RPL Packet
Information in an IPv6 Hop-by-Hop option header. The content of RPL Packet Information
is almost the same as that defined for RPL. However, the RPLInstanceID field is removed.
All other fields (Down, Rank-Error, Forwarding-Error, SenderRank) are retained and hold
the same functionality.

8.7.1 DAG Inconsistency and Loop Detection

Similar to RPL’s operation, the DAG is inconsistent if the direction of a packet does not
match the Rank relationship. A receiver detects an inconsistency if it receives a packet with
either:

• the ‘O’ bit set (to Down) from a node of a higher Rank

• the ‘O’ bit cleared (for Up) from a node of a lower Rank

One inconsistency along the path is not considered a critical error and the packet may
continue. However, a second detection along the path of the same packet should not occur
and the packet must be dropped. This process is controlled by the Rank-Error bit associated
with the packet.

8.7.2 DA Inconsistency Detection and Recovery

A DA inconsistency happens when a router has a Downward route that was previously
learned from an INDA message via a child, but that Downward route is not longer valid in
the child. With DA inconsistency loop recovery, a packet can be used to recursively explore
and clean up the obsolete DA states along a sub-DAG. In a general manner, a packet that
goes Down should never go Up again. If DA inconsistency loop recovery is applied, then the
router should send the packet back to the parent that passed it with the Forwarding-Error
‘F’ bit set and the ‘O’ bit left untouched. Otherwise, the router must silently discard the
packet. Upon receiving a packet with a Forwarding-Error bit set, the node must remove
the routing states that caused forwarding to that neighbor, clear the Forwarding-Error bit,
and attempt to send the packet again. The packet may be sent to an alternate neighbor,
after the expiration of a user-configurable implementation-specific timer. If that alternate
neighbor still has an inconsistent DA state via this node, the process will recurse. This node
will set the Forwarding-Error ‘F’ bit, and the routing state in the alternate neighbor will be
cleaned up as well.

8.7.3 Global Repairs

A Global Repair is a network reboot operation where all nodes are detached from the DAG
by incrementing the DAG Version Number. It can be triggered to recover from count to
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infinity scenarios. Only a DAG root may trigger a global repair. In case there are multiple
roots, the root that triggers the repair must propagate the new version number to the other
roots through the backbone transit link prior to disseminating this update to non-root nodes.
Since the Version Number is an 8-bit value, the overflow is handled in a lollipop fashion [54].
Details of this mechanism are described in RFC6550. When a Global Repair takes place, a
node detaches itself from the DAG and discards all routing state associated with the DAG.
All known routes are discarded and the node advertises a rank of INFINITE RANK. This
node now listens for new RA messages and can join a RPL-Lite network as if it were a new
node. Previous rank relationships are invalid. An exhaustive list of actions to be taken upon
triggering a Global Repair are out of scope for this specification. If an implementation does
not support Global Repair, then the root always configures the network with a DAG Version
Number of 0.

8.7.4 Local Repairs

A Local Repair maybe triggered when a non-root node encounters a DAG loop through
Rank-based data path validation mechanisms. These mechanisms are described in detail in
RFC6550. A Local Repair may also be triggered by a root node if a specific implementation
prefers to do so over triggering a Global Repair. In the event of a Local Repair, the node that
triggers the repair detaches itself from the DAG by advertising a Rank of INFINITE RANK.
It also sends route poisoning updates to one-hop neighbors. If two-hop neighbors are stored,
then poisoning updates are sent to them as well. The node may re-attach to the same DAG
if it receives a new RA message, as if it were joining the DAG as a new node. All previous
DAG specific data and routing state is discarded. An exhaustive list of actions to be taken
upon triggering a Local Repair are out of scope for this specification.
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Chapter 9

Conclusion

This thesis studies and analyses the RPL Routing Standard as defined in RFC6550. RPL is
the emerging routing standard for low-power and lossy networks, and was designed by the
IETF ROLL Working Group to cater to the unique routing challenges posed by LLNs. RPL
was designed in order to standardize the various independent and non-interoperable e↵orts
towards creating a routing protocol that would suit a wide variety of LLN scenarios. A
detailed specification of this routing standard can be found in the IETF document RFC6550
[77].

We summarize the RPL routing standard in Chapter 3. A number of research works
have been focused on evaluating this routing protocol against a number of metrics, as we
detail in Chapter 4. RPL has also been compared against similar routing protocols such as
Collection Tree Protocol (CTP) and LOAD, which we have described in further detail in
Chapter 4. Many research groups have attempted to implement and use RPL for specific
WSN scenarios. We discuss open-source and industrial implementations of the RPL rout-
ing standard in Chapter 5. These highlight a few issues with the current routing standard,
such as implementation choices causing non-interoperability. Many research works have been
targeted towards improving RPL to make it more compliant for the WSN scenario. Such
works include developing new routing metrics, supporting broadcast and leveraging the DAG
structure by including multiple routes for redundancy. We discuss these works in Chapter 6.

In Chapter 7, we summarize the drawbacks of the RPL routing standard by dividing
the issues into distinct categories. These categories include redundant and unused features
of RPL, known issues, applications that RPL does not cater to and beneficial features that
were excluded from the specification. Finally in Chapter 8, we provide a comprehensive
specification of RPL-Lite, a new routing standard that addresses many of RPL’s flaws and
provides a simpler and easier to implement routing protocol. RPL-Lite is designed to be
lightweight and easily deployable on real hardware.

As a conclusion, we have proposed an idea for a better routing protocol for LLNs in
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this thesis. In order for RPL-Lite to become a routing standard, it would require further
theoretical and experimental analysis, technical development and implementation studies,
which is future work. We believe that the conceptualization and design overview of RPL-
Lite presented in this thesis is a good starting point for developing a new routing standard
that is suited for LLNs and WSNs.
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