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Abstract 
 
 
 

Interactive Exploration on Large Genomic Datasets 
 

by 
 

Eric Tu 
 

Master of Science in Electrical Engineering and Computer Science 
 

University of California, Berkeley 
 

Professor David Patterson, Chair 
 
 

The prevalence of large genomics datasets has made the the need to explore this data more 
important. Large sequencing projects like the 1000 Genomes Project [1], which reconstructed the 
genomes of 2,504 individuals sampled from 26 populations, have produced over 200TB of 
publically available data. Meanwhile, existing genomic visualization tools have been unable to 
scale with the growing amount of larger, more complex data. This difficulty is acute when 
viewing large regions (over 1 megabase, or 1,000,000 bases of DNA), or when concurrently 
viewing multiple samples of data. While genomic processing pipelines have shifted towards 
using distributed computing techniques, such as with ADAM [4], genomic visualization tools 
have not.  
 
In this work we present Mango, a scalable genome browser built on top of ADAM that can run 
both locally and on a cluster. Mango presents a combination of different optimizations that can 
be combined in a single application to drive novel genomic visualization techniques over 
terabytes of genomic data. By building visualization on top of a distributed processing pipeline, 
we can perform visualization queries over large regions that are not possible with current tools, 
and decrease the time for viewing large data sets.  Mango is part of the Big Data Genomics 
project at University of California-Berkeley [25] and is published under the Apache 2 license. 
Mango is available at https://github.com/bigdatagenomics/mango
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1. Introduction 
 
Genome visualization tools enable users such as clinicians and researchers to gain insight into 
genomic data through a visual interface, a more intuitive alternative to bioinformatics command-
line tools. 
 
Genomic data takes many different forms, such as alignment data (short snippets of DNA output 
by sequencer machines), variant data (areas of the genome where the genetic makeup of a person 
differs from the population average), and annotation data (interesting areas on the genome such 
as the nucleotide bases coding for a gene). All these data types are referenced by their location 
on the genome. Visualizations can take the form of both aggregated/summary statistics when 
looking at large regions, or an in depth look at data objects when looking at small regions. 
 
Ideally, genomic visualizations can provide a powerful means of discovering underlying trends 
in genomic data. During variant interpolation analysis, for example, a user wants to find 
correlations between variations in a person’s genetic makeup to the physical expression of traits 
in that person.  
 
Visualization can serve as a way to propose hypotheses during variant interpolation. Typical 
workflow involves starting with a hypothesis, viewing the data to see if the data supports that 
hypothesis, then using the result of the visualization to iteratively refine and ask better questions 
about the data. Through this analytic workflow, users can arrive at a meaningful conclusion.  
 
Another use case for genomic visualization is in the callset refinement stage of the GATK 
(Figure 1) [18], the current most commonly used pipeline for genomic analysis. The GATK is 
split into three stages: preprocessing of raw sequencing data, variant discovery from that 
analysis-ready sequencing data, and refinement of the variants discovered. The analysis to refine 
the variant callset is currently done using command line tools, using text transformation Unix 
utilities such as sed and awk run over terabyte-sized genomic datasets. Visualization can provide 
a much more natural means of viewing and stringing together filters on data to uncover the 
important genetic variants in the data.  
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Figure 1. The Genome Analysis Toolkit, the most commonly used genomic pipeline [26]. 
Genomic visualization can improve analysis in the callset refinement stage. 
 
To better describe different tools within the space, we start by defining four desirable criteria. 
 
Functionality: What a user can use a visualization tool for? A wide variety of genomic data types 
exist, as do storage formats for those data types. Because genomic data is highly complex, users 
may want to filter by several different fields at once or recompute data through the tool itself. We 
define a visualization tool with high functionality as one that supports many different operations 
on different types of common data formats. 
 
Intuitiveness: How visually informative and usable is the tool? Genomic visualization tools 
attempt to leverage the number of pixels on a screen to strike a balance between simple visual 
representation and robust conveyance of information. For example, viewing a megabase (Mb) of 
a chromosome can be visually overwhelming if each base is displayed. An open question in the 
research area is how to create visually meaningful that summarize many different dimensions or 
data.  
 
Performance: How responsive is the tool to user input? In modern web applications response 
times must be subsecond to be considered interactive. Typically, a delay of 500ms results in 
decreased user activity and discovery of trends in the data [2].  
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Scalability: Can a tool support genome datasets of 100’s to 100,000’s of samples? How does a 
tool scale to both the storage needed to store genome datasets, and the computation needed to 
perform analysis over these datasets? 
 
Two popular genome browsers are the UCSC Genome browser [6] and the Integrated Genomics 
Viewer [3]. We begin by briefly summarizing features of these browsers in terms of the four 
criteria above.  
 

1.1 UCSC Genome Browser 
 
The UCSC Genome browser [6] (Figure 2) is available as a web service, and offers access to a 
database of sequence data and annotations for over 40 species. Users can also upload their own 
files and view them through the web service. The UCSC Genome browser can be thought as a 
catalog of curated genomic data.  
 
Functionality: The UCSC Genome browser contains a large number of tracks that can display 
many types of gene annotations from different sources on the same screen at once. These tracks 
may include expression, gene, sequencing, and regulation information. These tracks are 
precomputed previously, and from a preselected list of data, and clicking on objects in the tracks 
takes users to a new web page containing detailed information on that webpage. 
 
Intuitiveness: The UCSC Genome browser utilizes a “track view” of genomic data, where all 
genomic data is aligned along a one-dimensional genomic axis. Information such as the reference 
genome, sequenced reads, variants, and genomic features are displayed as horizontal tracks, or 
rows, aligned along a genomic coordinate axis. Users navigate through their data by moving 
along the genomic axis, moving left or right, and zooming in and out of regions of interest. 
Tracks are selected from a predefined menu, which toggles these tracks on and off. 
 
Performance: The UCSC Genome browser is implemented as a web service. Its views, while 
static, return within a few seconds, displaying different amount of objects based on the range of 
the region. For catalog-esque browsers like the UCSC Genome browser, computation and 
bandwidth is limited servicing data from a MySQL database. 
 
Scalability: The UCSC Genome browser supports viewing curated datasets, and users can upload 
datasets up to 500MB in size. Larger datasets require users to upload data into their own web 
servers, and hook into the UCSC Genome browser. Visualizations are precomputed, and data is 
serviced from a traditional MySQL database, which does not scale to user requests in interactive 
latencies. 
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Figure 2. UCSC Genome Browser [6]. Shown here are multiple tracks of catalogued information 
overlayed over the same genomic coordinates. 

1.2 Integrated Genomics Viewer 
 
The Integrated Genomics Viewer [3] (Figure 3), is a desktop application that allows visualization 
of a wide variety of data formats. Researchers use the results of experiments to verify data and 
analyze trends.  
 
Functionality: IGV allows users to load data from common legacy genomics formats. The tool 
concurrently displays many fields of the type of data being displayed, as opposed to the approach 
taken with the UCSC Genome browser, where the fields/information of the data object are 
obtained by viewing separate web pages. These different genomics formats can be viewed side-
by-side and navigated concurrently.  
 
Intuitiveness: IGV, like the UCSC Genome browser, displays data in tracks. However, unlike the 
UCSC Genome Browser, each individual interaction does not yield a refresh to a different web 
page. Instead, IGV allows interactive panning of the data. Interactions typically involve panning 
on small regions less than 1,000 base pairs (bp), and zooming in and out at higher resolutions. 
Different information is displayed at different resolutions. 
 
Performance: IGV implements a special multiresolution format to scale to the size of the data 
being displayed. This multiresolution format allows quick zooming and panning of data, which 
can contain multiple samples, but must be computed via an external command line tool. 
However, high resolution views of the data are limited to regions of a few thousand bases, with 
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variant data being displayed at regions less than 1,000 bp, and alignment data being displayed at 
regions less than 40,000 bp. Ultimately, for applications like IGV, computation and storage is 
limited by the power of the computer being run on. Performance of this tool will be further 
explored in the evaluation section of this report. 
 
Scalability: IGV is a single node application, so storage and computation resources are limited to 
those of a given node. While IGV can load in any dataset that fits on local disk, the browser 
hangs and crashes when fetching regions of very large files (>100GB). These issues are 
heightened when concurrently loading and viewing multiple large files. 
 
 
  
 

 
Figure 3. Integrated Genome Browser. Shown here are overlapping snippets of DNA (reads) and 
the reference nucleotide bases compared in tracks over the same genomic coordinates. 
 
While genomic visualization is a research area in and of itself, the current tools that perform 
visualizations have similar shortcomings, namely performance. These visualization tools are 
intended for a single computer environment and lack computational resources to provide 
interactive speeds.  
 
Both IGV and UCSC Genome Browser require data to be viewed at very high resolution, making 
it difficult to explore course trends in data. Technical limitations force tools to compromise 
features for latency. When loading large regions, IGV takes several seconds to load information, 
and hangs when loading multiple files at once.  
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These technical limitations constrain genomic data exploration. A lack of low resolution views of 
data means that users must already know what to look for. Given the large expanse of a genome, 
getting lost in nonsensical data is a real issue. Even if a user does know where to look, current 
genome browsers provide basic statistics and display the data, but don’t allow ad-hoc analyses to 
further explore a dataset. Any additional filter or data transformations need to be done outside 
the genome browser on the source files and reloaded back in.  
 
As a result, popular genome browsers are meant for referencing or checking work, and often 
only display curated datasets. To achieve acceptable latencies, browsers must preprocess data 
and precompute summary statistics or tiled views of data. Other tools such as iobio [8] use 
streaming and sampling techniques that limit the type of computation that can be performed and 
may limit the accuracy of the visualization. There is no room for ad-hoc analysis.  
 
Furthermore, the amount of genomic data produced is only increasing. Large sequencing projects 
such as the Department of Veterans Affairs’ Million Veterans Project [7] expects to generate 
over three orders of magnitude more data than the 1000 Genomes Project [1].  

2. Motivation 
 
The question then, is to ask whether these technical limitations, namely low latency 
computations on very large datasets, have been solved before in other areas.  
 
Cluster computing frameworks are able to scale to large datasets. Iterative batch processing 
systems such as MapReduce, Hadoop, and Spark [9, 12, 13] distribute parallel tasks on a cluster 
with fault tolerance. Query execution engines such as Cloudera’s Impala [11] provide a SQL 
interface on top of Hadoop to quickly run read-mostly queries on a distributed dataset.  
  
Scientific systems such as ADAM [4] use these types of frameworks (Spark) on commodity 
hardware to accelerate genomic analyses, demonstrating a 28X speedup over non-distributed 
genomic pipelines. ADAM also uses commodity formats such as Apache Parquet [5], a columnar 
store, and Apache Avro [10], a commodity schema and data serialization system, to minimize 
storage of large genomic datasets on disk. 
 
Given the applicability of big data technologies to scientific systems, we believe the same 
technologies can be applied to scientific visualization systems.  
 
However, existing big data analytics are not optimized for interactive data exploration, with big 
data analytics consisting of summary statistics from large scale batch jobs, not low latency 
queries. While users want to glean as much insight into data as possible, there is not much notion 
of visually exploring data in an application setting, with visualizations typically being summaries 
of a long-running jobs (Figure 4).  
 
This workflow is not interactive, a direct result of computing frameworks which are not 
optimized for serving data to visualization applications. Big data visualizations focus on 
reporting large scale results from batch cluster computing frameworks, but do not focus on 
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interactive latencies. This long latency is because the large batch operations run are often 
compute/write heavy, as opposed to read-heavy.  
 
Interactive queries on business intelligence, read-heavy workloads exist, such as with Impala 
[11] or SparkSQL [14], but none were built for the needs of a visualization application, which 
requires more user interaction than displaying a static representation of a computed result. Most 
visualizations reside in a notebook form factor, such as in Hue [15] (Figure 4), and are made 
with primarily data reproducibility in mind, not data exploration. 
 

 
 
Figure 4: Apache Hue. Summary chart for the salaries of different occupations. 
 
Meanwhile, exploratory data visualizations provide low latencies with high user interaction, but 
typically reflect a static dataset, and do not scale. These datasets are small (typically a CSV file), 
but typically highly complex in interaction, and differ from big data workloads, which are large 
but focus more on summary graphs. Tools such as Tableau [16], and visualizations built on top 
of D3.js [17], allow trends to be discovered within data through building custom visualizations. 
Figures 5 and 6 show custom visualizations developed using these tools. These visualizations 
help users raise hypotheses about data and enable further investigation through additional 
interaction beyond an initial static view. 
 
Users typically performing exploratory data analysis do not know what they are looking for and 
are able to sift through the dataset at interactive speeds, as opposed to big data workloads, where 
users are looking at summary statistics and are unable to dig further without running a high 
latency job. This subsecond interactive speed is necessary to allow for meaningful user 
exploration, with complex interactions such as brushing and linking, and panning and zooming. 
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With increased interactions, a delay of even 500ms results in decreased user activity and less 
effective discovery of data trends [2].  
 
The differences then, between exploratory data visualizations and big data analytics can be 
thought of as the tradeoff between specialized visualizations on small datasets, and generalized 
computation on large datasets. 
 
In this report, we aim to combine the two, providing the power and scalability of big data 
analytics with the interactivity of exploratory data visualizations in the context of genomics. In 
doing so, we can address all four desirable criteria of genomic visualizations proposed in Section 
1. Commonly used big data technologies allow easier development of features, which can 
improve functionality. Exploratory data visualizations increase intuitiveness by showing more 
informative views and interactions with data. Big data technologies improve performance by 
latency through faster distributed computation. Finally, big data technologies provide scalability, 
enabling support for very large datasets. 
 
  

 
Figure 5: Tableau. This figure shows a brushing and linking interaction, where any interaction 
on one of the three custom data visualizations will be reflected on the other two. 
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Figure 6: The custom visualizations used in D3.js. Each box represents a different style of 
visualization on a different dataset. 
 

3. Architecture 
 

3.1 Architecture Summary 
 
We build Mango on top of the ADAM stack [4]. ADAM provides a set of core APIs to bring in 
genomic data into commodity big data technologies, storing data on disk using Parquet [5]. On 
top of this base, we build optimizations for accessing highly selective subregions of data with 
low latency and intelligent caching to materialize likely viewed regions of data prior to user 
request. All these services have a frontend that contains interactive user-facing genomic 
visualizations, built on lightweight web technologies such as D3.js [17]. 
 
We build on top of ADAM for practicality and extensibility.  A user who already has datasets on 
a machine or cluster can simply point Mango to the data and start using it. Because Parquet is the 
main building block, Mango also easily plugs into the Hadoop [12] ecosystem, which supports 
Parquet as the default columnar storage format. This format can be transferred to other Hadoop 
based pipelines other than ADAM. 
 
Although the Spark platform was not initially intended for handling low-latency visualization 
workloads, maintaining the ability to integrate visualization into an existing ecosystem allows us 
to utilize the same genomic algorithms provided by ADAM in a unified environment. From a 
usability standpoint, we believe building on top of Spark simplifies development of genomic 
visualizations because we are able to combine both pipelined workloads and visualization 
workloads with the same language and frameworks.   
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3.2 ADAM Summary 
 
ADAM is a distributed genomics analysis pipeline that provides a well supported platform upon 
which to build genomic visualization. ADAM [4] uses Apache Avro [10] to clearly define data 
schemas, which are stored on disk in Apache Parquet [5]. Genomic data is then loaded into 
ADAM, which leverages Spark’s distributed execution [13] and fault tolerance to perform 
computation.  
 
As Figure 7 shows, ADAM uses a “narrow waist” of schemas to segregate an application's use of 
genomic formats from underlying data distribution mechanisms. ADAM supports both legacy 
genomic formats (e.g., VCF, BED, SAM, BAM [19]) and Parquet formats, and provides a toolkit 
to convert between the two. While Parquet formats reduce end-to-end computation cost 63% 
(utilizing Amazon EC2 compute) compared to legacy formats, support for legacy formats is 
important to bridge the worlds of genomics to big data systems. 
 
Parquet is an important building block of Mango. We make extensive use of Parquet predicates 
and projections to only read in the fields and blocks of data we need to display. Legacy formats 
used in existing genome browsers do not have such support for predicates and projections. 
Parquet also allows for significant compression of data on disk, offering about 1.25x 
compression on gzipped BAM files and 1.66x compression on gzipped VCF files.  
 
These files are loaded via ADAM APIs into Spark RDDs, resilient distributed datasets, upon 
which genomic algorithms can be run. Specifically, these algorithms correspond to the 
preprocessing stage of the GATK pipeline (Figure 1).   
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Figure 7: ADAM Stack of different open source technologies 
 

3.3 Mango Stack 
 
Mango also utilizes a stack-oriented model, as Figure 8 shows. The elements of the stack are put 
into three functional groups: Cluster, server/master node, and end host/client. Mango supports 
modularity in its visualization and optimizations, allowing different levels of the stack to be 
replaced or used in existing genomic pipelines. For example, while Mango provides novel 
visualizations, these can be swapped out in favor of different frontend options. 
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Figure 8. Mango Stack. The elements (boxes) are put into three functional groups shown on the 
left: Cluster, server/master node, and end host/client. The technologies used to build the stack 
elements are shown on the right. 
 

3.3.1 Cluster 
The cluster group includes the ADAM core and Parquet, combined with data access 
optimizations. Our primary contribution at the cluster layer is the implementation of the Interval 
RDD, a version of Spark's resilient distributed dataset (RDD) optimized for two-dimensional 
range queries, and a caching layer called Lazy Materialization. 
 

Interval RDD 
We implement a variant of Spark's RDD, called an Interval RDD, that organizes records into an 
interval tree and optimizes overlapping range queries. Performing this type of query in Spark's 
primary abstraction for data (an RDD) currently requires a full scan of data. Consider the query 
which gets all 2-dimensional segments overlapping or contained within the start and end value of 
an interval: 
 

RDD.filter(rec => rec.start < interval.end && rec.end > interval.start) 
 
Even if records are sorted by start value, worst case performance requires all data to be scanned. 
Meanwhile, interval trees provide O(log(n)) search for intervals within a given range. Interval 
trees insert and delete nodes in the same manner as a binary search tree. However, every node in 
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an interval tree stores the maximum value found in its subtree. Therefore, during search, a given 
subtree is only traversed if the range minimum is less than the maximum of the subtree. 
 
Genomic range lookups are a key use case for Interval RDDs. Records are keyed by intervals 
defined over an axis of information. For genomic data, the axis is the location on a chromosome, 
and the key is the tuple of the start and end nucleotide base positions on that chromosome. 
Common use cases for filtering an overlapping range include inspecting sequencing coverage 
over a chromosomal region, visualizing a range of the genome, and comparing different samples 
to a reference genome. 

Lazy Materialization 
To efficiently cache and monitor data being queried by the client, we implement a cache 
manager called Lazy Materialization that enables incremental data fetching and formatting into a 
working set. This working set, which can be an Interval RDD or any Spark primitive, is lazily 
populated with data that is stored in memory. The motivation behind this is a workload common 
to visualization applications—have low latency and access a very selective interval of data to 
visually present to a user.  
 
Lazy Materialization fetches data from storage per query, then uses materialized views to bring 
into memory the immediate region around the queried interval. The layer keeps track of past 
queries and keeps in memory the data associated with them. While initial queries take the 
overhead time to load from storage, future queries on the same interval will instantly return from 
being cached in memory.  
 
In addition, we implement a basic prefetching algorithm to asynchronously fetch and materialize 
data during idle periods of user interaction. After outstanding user requests have been completed, 
the prefetching scheme materializes regions of data to the left and right of the currently viewed 
region into the working set. Parameters for prefetching include 1,000 bp to the left and right of 
the current window for high resolution raw data views and 100,000 bp to the left and right for 
summary statistics.  
 
The motivating factor behind this design is that visualization applications tend to access data in 
localized areas. Because of the coordinate nature of genomic data, users might be interested in a 
particular gene, and will look in the immediate area around that particular gene rather than jump 
around to random locations in the genome.  
 
Lazy Materialization dynamically fetches data depending on what a user requests and does not 
require the entire dataset to be loaded immediately. As opposed to running batch operations or 
transformations over an entire dataset, users are not sure what data they may access over a 
session in a visualization application. By constructing a caching layer that scales to user requests 
in a visualization application with a dynamically constructed working set, we can use only the 
memory and compute resources we need for our workload.  
 

Working Set Primitives 
As mentioned above, the Lazy Materialization structure is either backed by an Interval RDD or a 
Spark primitive. In this project, we use different structures for different types of data.  
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Alignment data is loaded using Interval RDDs. Common operations over alignment data involve 
querying a region for all overlapping two-dimensional segments, and performing computation 
over the data. The Interval RDD tackles both these considerations by respectively storing data in 
an optimized structure, and provides the same rich procedural processing semantics as RDDs 
This means that ADAM’s APIs and algorithms for RDDs can be applied.  
 
Variant data is loaded using DataFrames, introduced in Spark as part of the SparkSQL package 
[14]. DataFrames provide the semantics of relational processing within the Spark ecosystem, 
while providing a query optimizer to speed up simple data access patterns. Because variant data 
is the summary and result of computed alignment data, access patterns are simpler than 
alignment data and fall more in line with declarative queries. 
 
Variants are typically single point mutations, not intervals. In addition, visualization involves 
looking at regions of the genome that have a high frequency of variants. DataFrames are a good 
fit for these two properties: DataFrames provide optimized filter and count operations that can 
quickly query a region of variant data or return a count of how many variants are in that region.  
 

3.3.2 Server/Master Node 
The main function of the data servicing layer is servicing client requests and formatting data into 
JSON for client consumption. 
 
To service data, we use Scalatra [20], which provides a lightweight web application framework 
for Scala. We choose Scalatra because of its simple integration with both the Scala programming 
language, and with frontend technologies. Using a Scala-based framework allows for Scala, 
Spark, and web service code to be written within the same class.  
 
Scalatra provides specialized templating styles that provide access to Scala functions and 
compile into HTML. This means that Scala and Spark code can be launched from within a web 
template. 
 
We also implement our bookkeeping structures within this group. Information relating to a user’s 
current session, such as what regions of data he/she has queried for, is stored here, as is the 
information for the locations of different files that are loaded throughout the course of 
application use.  
 

3.3.3 End host/Client 
The end host/client group include front end technologies used to generate visualization. We use 
D3.js, which provides custom visualizations within a frontend environment. D3.js supports 
HTTP requests for JSON data, which provides a simple abstraction upon which to ask for data. 
We currently use HTTP requests as the interface between the server/master node and the end 
host/client.  
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4. Visualization Techniques 
 
Here we describe the client front-end portion provided with Mango and the usefulness of the 
visual elements displayed.  
 
Mango’s first aim is to provide feature parity with IGV. This goal means that Mango supports 
viewing the same type of data as IGV (reads, variants, genomic features/annotations, reference) 
in track format, and can display multiple tracks of data at once.  
 
The main difference comes with what increased performance enables. Mango allows regions 
greater than 40 kbp to be viewed on the fly without precomputation. Because of this expanded 
ability for visualization, we can begin to ask what exactly are meaningful visualizations at low 
resolution views. While Mango can display the same exact data as one would look at in IGV, just 
over a larger region, we dedicated the bulk of this increased performance to computing aggregate 
statistics over data.  
 
This primarily means displaying frequencing/count information. At low resolutions (>40 kbp), 
displaying all records provides little intuition to the user, and will also crash modern web 
browsers, because millions of objects are being displayed at a time. Displaying 
frequencing/count information provides users with an idea of where to look. For alignment data, 
this means regions with a high frequency of mismatching bases (the base on this read differs 
from the base on the reference genome at this position) as Figure 10 shows. For variant data, this 
means regions with a high frequency of non reference/reference variants. (This variant differs 
from the base on the reference genome at this position).  
 
As such, records are not displayed until a user zooms into a high resolution, specifically 1,000 
bases. Individual records are overlaid with colors that that display the mismatching bases on 
reads (Figure 9), and the non ref/ref variants. For reads, users can filter by fields such as mapping 
quality and choose to only look at mismatching bases, insertions/deletions, or the reads 
themselves. For variants, users can filter by the type of variant (ref/ref, ref/alt, alt/alt) as well as 
mapping quality.  
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Figure 9. All reads records being displayed, with colors overlaid for mismatching bases. Near 
the top of the page, the count/frequency of reads at a position is shown, overlaid with the 
count/frequency of mismatching bases. 
 

 
Figure 10. Low resolution view of reads, displaying the count/frequency of reads at a given 
position. Users can zoom in further to regions of interest. 
 
We also strove to improve user intuition with initial interaction. Current tools provide no clearly 
suggested initial interaction with the tools. Users do not know what to look for, and what can be 
looked for first. Mango strives to provide visual cues, through form autocomplete boxes and 
summary visualizations that provide an overview at the data loaded. We do this by visualizing 
genomic metadata, such as sequence dictionaries that provide information about the relative size 
of chromosomes.  

5. Evaluation  
Local experiments to evaluate  parity against single node genome browsers were run on a 2015 
MacBook Pro with a 3.1 GHz Intel Core i7 processor and 16 GB 1867 MHz DDR3 memory.  
Evaluation of Mango in a distributed environment was performed on a 64-node cluster, each 
with Intel E5-2670 2.6 GHz 8 core CPU, 256 GB RAM and 4 1-TB HDFS hard drives. 
 

5.1 Workload Description 
Evaluation criteria described in this section assess query patterns for both variant and alignment 
workloads. Chosen query patterns for genomic data were modeled after typical scientific 
workload trends discovered in a user study of 18 domain scientists in ForeCache [24]. These 
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assumptions model scientific query patterns as an iteration of zooming in and panning across a 
given region of interest. The assumptions made in scientific workload exploration include the 
following:  
 

- Users initially view zoomed out regions of their data and hone in on smaller regions 
during exploration.  

- Users exhibit zooming and panning in a non-random pattern. This feature implies that 
previously viewed regions inform the user of which regions to view next. 

 
Following these assumptions, we constructed separate workloads for both variant and alignment 
data. Figure 11 demonstrates the chosen query patterns for both datasets. 

 
Figure 11. Query zoom levels across variant and alignment data workloads for the nine queries. 
 
For both workloads, queries 7 to 9 indicate panning out of the current view region at high (100 to 
3,000 bp) resolution. 
 
The variant workload, shown in red, is initialized at a 50,000,000 bp region on one chromosome. 
The query zooms in to a region of 1,000 bp (queries 1 through 6), pans (queries 7 and 8), then 
zooms out to 3,000 bp (query 9). The variant workload is tested at lower resolution than 
alignment data. This difference is because variant data summarizes alignment data, and therefore 
displays more information in a smaller number of pixels. 
 
The alignment data workload, as Figure 11 shows in black, has a higher resolution query pattern 
than variant data. Alignment workload starts at 1,000,000 bp as the coarsest level of granularity, 
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and zooms in to 100 bp (queries 1 through 5), then panning (query 6 and 8), and zooming 
(queries 7 and 9). Because alignment data is used to analyze pointwise mutations, the resolution 
for alignment data is often much higher.  
 

5.2 Local Parity 
In this section, we demonstrate local comparison to IGV, the current state of the art genome 
browser. Like Mango, IGV is intended to visualize personal variant and alignment data. For 
variant workloads, we demonstrate latency on a 18-GB variant file from 2504 samples of 
chromosome 20 from the 1000 Genomes Project [1]. For alignment workloads, we demonstrate 
latency on a 318 MB single sample consisting of alignment data from chromosome 20. For both 
workloads, chromosome 20 was chosen due to its availability of medium coverage alignment 
data from 1000 Genomes Project. Chromosome 20 is a smaller chromosome, consisting of only 
62,435,965 bases. 
 

5.2.1 Alignment Data 
Figure 12 shows latency on a single node for an alignment workload against IGV, Mango, and 
Mango without prefetching. Figure 12 illustrates that IGV does not show any data until the 10K 
query, which takes 9,411 ms. Otherwise, IGV provides a constant latency of around 2,000 
milliseconds. Mango without prefetch shows a spike in latency for the 1K Pan query, as this 
query triggers a cache miss and requires retrieving raw data from persistent storage. However, 
there still exists a spike in latency at the 1K Pan query with prefetching enabled. This increase 
may be due to the overlapping between prefetch and user queries, as the preformatting of raw 
alignment data was not yet complete. 
 
In cases for Mango with and without prefetching enabled, there is a dip in latency at the 10K 
query that rises back after the first 1K query. This drop is due to low latency summary statistic 
computation (frequency) being computed from 1M down to 10K. Higher resolution data at 1K 
triggers collecting all data records, a more costly operation.  
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Figure 12. Local response to alignment data workload. IGV begins displaying data at 1K 
resolution. Mango incurs higher initial overhead, but provides the ability to view extremely large 
regions. 

5.2.2 Variant Data 
Figure 13 shows local latency results on the variant workload. Average latency is slightly higher 
compared to a method without prefetching, because the working set of data is larger with 
prefetching. As a result, fetching the same region over the larger working set results in the Spark 
job having to check more blocks of memory for data satisfying the specified predicate. This 
behavior is exacerbated by the unionAll operation in DataFrames, which increases the number of 
tasks when querying on the unioned dataset. This higher prefetch latency is more noticeable 
locally because a local machine has fewer executors than a cluster to distribute the larger number 
of Spark tasks. These issues can potentially be addressed through more intelligent tuning of 
Spark parameters and prefetching sizes (see Section 6.1).  
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Figure 13. Local Variant Workload. IGV begins displaying data at 1K resolution. Mango incurs 
higher initial overhead, but provides the ability to view extremely large regions. 
 

5.3 Horizontal Scalability 
Because there is no explicit comparative software that supports distributed genome browsing, we 
compare Mango in a distributed setting across a variable set of computational resources with and 
without the prefetching mechanism. 
 
Tests on both variant and alignment workloads run against 8, 16, 32, 64, 128, and 256 executors, 
each with 12 GB memory, where we assigned each to one CPU core. 
 

5.3.1 Alignment Data 
Alignment data workload was run against two 250 GB high coverage full genome alignment files 
of samples NA12878 and NA12891 from the 1000 Genomes Project. These two were the largest 
files produced by the 1000 Genomes Project. Results query sample NA12878 across 
chromosome 20. 
 
Figure 14 shows latency results from chromosome 20 against the alignment workload. The dip at 
the 10K query and spike at 1K Pan can be explained similarly to the local evaluation by speedup 
from summary statistics and cache miss, respectively. However, cache misses incur a much 
higher cost in a distributed setting due to fetching remotely from HDFS. Iterative addition of 
executors for alignment data shows significant benefit when loading from persistent storage, 
shown in latency reduction in queries 1M and 1K Pan from 8 to 256 executors.  
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Figure 14. Alignment query workload with no prefetching. Increasing the number of executors 
reduces latency.  
 
 
Figure 15 shows the latency results from alignment data with prefetching enabled. With 
prefetching enabled, 1K Pan does not incur real time data fetching from persistent storage, thus 
maintaining close to interactive thresholds.  
 
 

 
Figure 15. Alignment query workload with prefetching. Increasing the number of executors 
reduces latency.  
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5.3.2 Variant Data 
Figures 16 and 17 show latency results for the variant workload without and with prefetching, 
respectively, over the variants for 2,504 people across chromosome 1. This represents worst case 
performance, because this file being queried for is 106 GB, the largest variant file from the 1000 
Genomes Project. 
 
Similarly to the local variant workload, we see a spike in latency in the 1K and 1K Pan queries 
around 9 seconds which are triggered by cache misses. Unlike the alignment record workload, 
variant queries maintain approximately interactive threshold with 16 or more executors, with 
diminishing benefit past 32 executors. Figure 17 demonstrates latency with prefetching enabled. 
Latency for prefetching is greater due to the DataFrame issue previously mentioned, but is less of 
an issue due to having more executors present to handle tasks. 
 
 

 
Figure 16. Variant query workload with no prefetching. There is diminishing benefit past 32 
executors.  
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Figure 17. Variant query workload with prefetching. There is diminishing benefit past 32 
executors. 
 

6. Future Work 

6.1 Advanced Prefetching Mechanisms 
 
Prefetching mechanisms implemented in this report were simple, only fetching regions to the left 
and right of the currently viewed region to speed up panning and zooming interactions. We can 
improve prefetching mechanisms by completing a user study and building a prefetching model 
based on past user interactions. From user-defined data, we can determine the size of the region 
to materialize and the maximum latency allowed for running prefetching jobs. These user 
interactions can be modeled via common visualization prediction algorithms. Hotspot models 
recommend regions that are viewed frequently by other users [22]. Momentum models prefetch 
data with the assumption that a user's next move will be the same as his/her last [23]. Coupled 
with the amount of compute and storage resources given to Mango, we can better determine the 
size and location of prefetched regions. 
 
A second strategy to improve prefetching includes a recommendation model that materializes 
regions of data similar to regions the user has viewed. ForeCache [24] calculates l2 distance 
between data tiles to recommend regions similar to what the user is currently viewing. With a 
genome browser, we can define more specific prediction methods because we do not support 
such a general workload. Such suggestion algorithms would include patterns in insertions, 
deletions, and distribution in mismatch density. 
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6.2 Achieving Interactive Latency 
 
While Mango outperforms existing tools over large regions of data, latencies do not always meet 
the 500ms threshold required for interactive applications. Currently, while a region of data may 
be persisted on a cluster and return quickly when queried, that query still requires a Spark job to 
be run, leading to latency on the order of hundreds of milliseconds. We can avoid this redundant 
request by caching the results of the server at the client. If the data being requested already exists 
in the cache, the application can simply locally access that data without waiting for a round trip 
call to the server. We can implement the same prefetching mechanisms described for the server 
to further improve the utility of a client cache.  
 

6.3 Notebook Form Factor 
Reproducibility is important in scientific analysis. While Mango provides an interactive genome 
browser interface, user interaction is difficult to reproduce. We can extend Mango to a notebook 
form factor that visually displays the result of a query. This form factor requires integration into 
an existing notebook tool such as the Spark notebook [21], which can already perform analysis 
from ADAM.   

7. Conclusion 
 
In this report we presented Mango, a genome browser that leverages distributed computing for 
interactive genomic exploration. Mango scales horizontally, achieving latencies comparable to 
local state of the art browsers on both variant and alignment workloads, while optimizing for 
latency with additional compute resources in a distributed environment.  
 
We demonstrated the optimizations required to accommodate a visualization workload of high 
data selectivity and low latency in a distributed environment. Mango selectively materializes 
data on user request and organizes the data efficiently for future access.  
 
With the rise of available genomic data, it is crucial that clinicians and researchers have 
sufficient tools to interactively analyze their data. Mango brings scalable visualization that will 
enable the necessary speed and features needed to meaningfully explore these increasing 
datasets. 
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