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ABSTRACT
Internet services can provide a wealth of functionality, yet
their usage raises privacy, security and integrity concerns
for users. This is caused by a lack of guarantees about what
is happening on the server side. As a worst case scenario,
the service might be subjected to an insider attack. We
use remote attestation of the server to obtain guarantees
about the programming of the service. On top of that, we
augment Certificate Transparency to distribute information
about which services exist and what they do. Combined,
this creates a platform that allows legacy clients to obtain
security guarantees about Internet services.

CCS Concepts
•Security and privacy → Trusted computing; Soft-
ware security engineering; •Computer systems or-
ganization → Client-server architectures; •Networks →
Cloud computing;

Keywords
Remote attestation; Secure enclaves; Certificate Trans-
parency; Cloud computing

1. INTRODUCTION
End users increasingly perform important computing ac-

tivities online in the cloud. This is convenient for them
but the guarantees they get about those activities are sig-
nificantly reduced from an ideal desktop-computing model
where applications are run on trusted machines, inaccessi-
ble to adversaries, using software installed and maintained
by knowledgeable trusted personnel known to the end user.
On well-managed desktop machines, users can be confident
that the software they use is the version they expect, with
known behavior and mechanisms to prevent unauthenticated
access to their data and unauthorized modification to the
software itself.
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Cloud services typically do not provide similar guarantees,
which raises privacy, security and integrity concerns. Who
will have access to my data, intentionally or unintentionally?
Will the service continue to work properly tomorrow? Can
the service read my data and use it for purposes I didn’t
have in mind? Will my data still exist in the same form
tomorrow? Could a malicious system administrator at the
service read or modify my data? If a system administrator’s
credentials are breached, could an attacker gain access to
my data? For current Internet services, the answers to these
questions are often unsatisfying.

On the other hand, cloud services provide many benefits
that desktop users don’t get. Cloud services provide avail-
ability through redundancy and replication and they remove
the burden of maintenance from the user. In addition, the
sheer number of available services seems to be surpassing
the number of applications available on the desktop.

The ideas presented in this paper aim to combine benefits
from the cloud-based service model with some of the guar-
antees with which desktop computer users are familiar. We
focus especially on defending against insider attacks. For
instance, the insider might be a malicious system adminis-
trator, a system administrator whose credentials have been
compromised, or even a government order that compels the
service to provide access to user data [15]. In addition, we
define a policy-based mechanism that allows users to choose
which security properties they expect in a secure service.

Our basic approach is to use transparency to deter unau-
thorized access. We use hardware support for sealed storage
to ensure that user data is stored in encrypted form, and not
directly accessible by insiders. Then, we build mechanisms
to ensure that insiders cannot modify or introduce backdoors
into the software without detection. Our design makes use
of recent advances in security technology such as hardware-
supported remote attestation and Certificate Transparency.
Services store a hash of the software that they are running in
a public audit log, and (conceptually) clients verify that the
server is running code that matches a hash in the public au-
dit log. This means that insiders cannot make undetectable
changes to the server-side code; at least in principle, any
such changes can be detected through examination of the
public audit log. One challenge is how to ensure that these
servers can be used from legacy clients, such as existing web
browsers. We show how to achieve this goal by building on
Certificate Transparency.

We claim the following contributions:
Insider attack protection We show how to build In-

ternet services that are unalterable secure services. Such
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services provide integrity and confidentiality of computation
and user data, are secure against insider attacks, and their
functionality can be remotely verified.

Policy and update mechanism Although we de-
scribe services as unalterable, in fact, updates will often
be desirable to fix bugs, improve usability or security or
add functionality. Also, instances of a secure service should
not be locked to a single platform. We demonstrate how
these goals can be achieved, without user-visible downtime
for updates, and without compromising security or privacy.
Finally, secure services may—under policy control specified
by a user—be authorized to collaborate with other user
secure services while preserving the security promises; we
show how this can be done as well.

Legacy client support In a manner similar to the way
Certificate Transparency protects against CAs secretly is-
suing bad certificates, Attestation Transparency protects
against service providers secretly changing the services they
provide. This transparency provides a public record link-
ing domain names to service implementations. Today’s TLS
clients immediately reap the benefits of the transparency
framework, except in some cases when they are the victim
of a targeted attack involving misissued certificates.

In the following section we review existing building blocks
we use to build our framework. We provide a high-level
overview of the paper in §3. In §4 we discuss the design of
unalterable secure services while §5 describes how we aug-
ment Certificate Transparency to allow verification of these
services. We evaluate our design in §6 and elaborate on po-
tential use cases in §7. We then wrap up with related work
in §8 and the conclusion (§9).

2. BACKGROUND

2.1 Secure Enclaves
We define a secure enclave as an isolated process, executed

on a platform that provides confidentiality and integrity of
code and data as well as sealing and attestation. In general,
these technologies allow initializing an isolated and perhaps
encrypted block of memory with a known program. Access
to application memory is restricted by hardware and exter-
nal access to the software is similarly restricted to identified
entry points into the code. The software loaded in an enclave
is also measured1, allowing the hardware to attest to an-
other party that the expected software was properly loaded
and initialized and that the enclave software is isolated from
other software running on the computer. The platform also
provides a way to encrypt data so that the encrypted data
can only be decrypted by this particular instance of the code
running on this particular hardware. Different technologies
provide such secure enclaves, including Intel SGX [4, 27],
IBM SecureBlue++ [8], TPM-based Flicker [26], and per-
haps ARM Trustzone [38].

2.1.1 Attestation primitive
Attestation is a mechanism that allows software to make

statements that can be verified remotely by communicating
parties, using attested statements. When talking about se-
cure enclaves, some hardware-based root of trust, H, will

1A measurement is typically a cryptographic hash of the
software as loaded together with any configuration informa-
tion which may affect the software behavior.

attest that it is running a program with identity (measure-
ment) I. In order for such a program to communicate with
the outside world securely, it will need an encryption key K,
and a way to securely announce to the outside world that it
controls that key. Attestation provides such a mechanism:
the hardware makes a statement of the form2

A(I,K) = � H says “H runs I which says

[K speaks for I]”� .

Platforms providing secure enclaves often provide ways for
an entity I1 to endorse a particular program with identity
I2. For example, I1 might cryptographically sign I2, and
this signature can be verified as part of loading I2. Such an
attestation is of the form

A(I1 : I2,K) = � H says “H runs I2 which says

[K speaks for I2]” and “I1 endorses I2”� .

If the platform can not verify the endorsement itself, a sim-
ilar statement can still be formed by including the endorse-
ment directly, as in

A(I1 : I2,K) = � H says “H runs I2 which says [K

speaks for I2]”� and � I1 says “I1 endorses I2”� .

2.1.2 Sealing and encryption primitives
The general secure enclave concept does not include secure

persistent storage. This is generally solved by using an un-
trusted persistent store and storing data only in encrypted
form. This provides a form of secure persistent storage. We
discuss some limitations of this scheme (such as rollback at-
tacks) in §7.2.

Encrypting data in such a way that only a particular in-
stance of a secure enclave can access it is called sealing.
Generally, this is achieved by using a symmetric encryption
key derived from both the program and hardware identity.
The sealing operation turns the message m into the sealed
text s = Eseal(m), while unsealing is m = Dseal(s).

In this paper we also use authenticated encryption, written
c = E(K,m) and m = D(K, c).

2.2 Intel Software Guard Extensions
Intel Software Guard Extensions (SGX) [4, 17, 19, 27] are

a recently announced hardware technology and instruction
set extension providing secure enclaves. A special set of in-
structions can measure and encrypt a memory region before
transferring execution control to it. The trusted computing
base of SGX-based secure enclaves encompasses only the
processor hardware, its microcode and the enclave image it-
self. In particular, the operating system is not part of the
TCB. Data stored in memory regions belonging to the en-
clave is encrypted before it leaves the processor, so that the
memory bus is also not part of the TCB. The security of
this system is predicated on the correct functioning of the
processor hardware and the SGX instruction set.

2.2.1 Attestation
SGX-enabled hardware can generate reports: integrity-

protected statements about the enclave generated by the
hardware:

Reportlocal = MAC (Ienclave‖Isigner‖Duser) .

2Following the Taos language [39].
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The MAC key is different for each processor and private to
the enclave that requested the report—only that enclave on
the same processor can verify the report. Ienclave is the mea-
surement of the code of the enclave the report is generated
of and Isigner is the public key that was used to sign that en-
clave before loading it. Duser is an arbitrary value that can
be specified by the enclave when requesting the attestation
report. This can be used to bind data to the attestation.

A special secure enclave provided by Intel, called the quot-
ing enclave, can replace the MAC with a signature:

Reportremote = Sign (Ienclave‖Isigner‖Duser) .

The signature private key is private to the processor and
cannot be used improperly or for any purpose. The corre-
sponding public key is published by the vendor, and a third
party can use it to verify that the report was created by
actual Intel hardware.

2.2.2 Sealed storage
A special instruction can generate an enclave-specific seal-

ing key. The key is derived as

Kderived = H (Ienclave‖Kdevice‖ . . .)

where Kdevice is a hardware-embedded secret unique to this
device. The enclave can use this key to encrypt data which
can only be decrypted by the same enclave running the same
code on the same hardware.

A different key can also be derived as Kderived =
H (Isigner‖Kdevice‖ . . .). This key can be used to transfer
data between enclaves running on the same hardware that
were signed by the same public key. In this work, we don’t
use this key since it gives too much control to the signer.

2.3 Certificate Transparency
The Certificate Transparency (CT) framework [22], as the

name implies, aims to provide transparency to the issuance
of TLS certificates. CT makes all legitimate TLS certificates
a matter of public record, making it trivial to identify misis-
sued certificates. The framework consists of several parts.

Public append-only logs A CT log server maintains
a log of all certificates submitted to it. The log is structured
as a Merkle tree which allows efficient verification of addi-
tions to the log. When submitting a certificate to the log
server, the server will return a Signed Certificate Timestamp
(SCT). The SCT is a promise that the server will include the
certificate in the log within a certain time limit, the maxi-
mum merge delay. The SCT can be used as proof to other
parties that a certificate is part of the public record.

Monitors A monitor watches one or more CT log
servers for suspicious changes. For example, a domain owner
might know that all its certificates are issued by a particular
CA. If a certificate for their domain issued by a different CA
appears in a log, the monitor raises an alarm. The admin-
istrator can then act upon that alarm, e.g., by demanding
the revocation of the phony certificate.

Auditors An auditor watches one or more CT log
servers for consistency. It checks that the Merkle tree is
updated consistently and that certificates are included as
promised by SCTs. If it detects any inconsistency, it raises
an alarm. The CT log owner will then need to explain the
discrepancy or risk being shut down.

Browsers Once the CT framework is fully operational,
TLS clients such as browsers can demand proof from TLS

servers that the server’s certificate appears in a log. TLS
servers can provide this proof in the form of SCTs. If a
certificate does not appear in the logs, that is suspicious,
and the client can choose to abort the connection attempt.

3. OVERVIEW
We want application service providers on the Internet to

be able to host secure services. These services must be able
to store and handle user data securely. By secure, we mean
that the data’s confidentiality and integrity is preserved, in
the face of attacks within the scope of the threat model
set forth below, which includes insider attacks. While we
cannot absolutely prevent insiders from violating security,
the transparency mechanism guarantees that such violations
will be publicly detectable.

Users of a secure service must be able to verify that their
client is connected to a specific service that is known to pro-
vide those security properties. Legacy clients must be sup-
ported: users must be able to obtain most of the security
benefits without installing special software. Beyond legacy
clients there must be an incremental deployment path. Per-
formance loss compared to insecure services should be min-
imal. Services must also be updateable, and the security
properties must be maintained in the update process.

3.1 Threat model
We assume the server hosting the service uses some secure

enclave technology that prevents the adversary from access-
ing the code and data running in the enclave. We allow
adversaries all the capabilities of an active network attacker
as well as full control over non-enclave software running on
the computer hosting the service (e.g., for SGX enclaves, this
includes control over the operating system). For instance,
an insider might add malicious software, or service provider
personnel might accidentally misconfigure the service; these
are included in the threat model. The adversary also has the
ability to run its own servers mimicking real services. We
assume the user’s client is secure and cannot be tampered
with. The threat model is depicted in Figure 1.

Availability is out of scope for this paper. If a malicious
insider wishes to destroy all user data or deny access to the
service, they can do so.

3.2 Design overview
The basic idea is to run all of the service code—including

TLS session establishment, request handling, and storage—
in an enclave on the server. This provides isolation and
ensures that even insiders on the server cannot tamper with
the running code or memory of the service. Also, we use
sealed storage to prevent malicious insiders from reading or
modifying data stored by the service on persistent storage:
effectively, all data is encrypted before it leaves the enclave.

User

Client Internet

Server

Secure
enclave

Admin

Figure 1: Secure service threat model. The shaded
areas may be controlled by the adversary.
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The user connects to the server, using TLS to establish a
secure channel between the client and server. We use remote
attestation to allow the user to verify what code is running in
the enclave: secure hardware on the server provides a signed
statement indicating what code has been loaded into the
enclave. A fully attestation-aware client would then use this
attestation to verify that the server is running the expected
code.

We also show how legacy clients can access the server and
gain a subset of the security guarantees. Legacy clients also
connect to the server via TLS. Conveniently, the TLS pro-
tocol is widely supported and provides a secure channel to
the server, while verifying the authenticity of that server.
As is usual for TLS, the client checks that the server’s TLS
certificate is valid and authenticates the server using the
public key found in this certificate. Our system extends the
guarantees provided by this authentication step by further
constraining the use of the private key.

In particular, a secure service runs inside a secure enclave
and it will generate its TLS private key there. The TLS
private key will never leave the enclave in unencrypted form;
it is stored using sealed storage, so that only the enclave can
retrieve it. Thus, even insiders cannot learn the service’s
TLS private key.

When the service is first created, it publishes its TLS pub-
lic key in an attested statement proving that the enclave was
launched with a certain code and that that code generated
the key. Legacy clients not built with Attestation Trans-
parency in mind won’t be able to verify these attestations,
but the key idea of our system is that another party can
do so on their behalf. Because the attestations are pub-
lic, anyone can check what code the service will run, that
the code is secure, that it will never reveal its TLS private
key, and that it protects itself adequately from malicious
insiders. This allows word to spread through out-of-band
channels that the service is trustworthy. For instance, an
expert might inspect the code published by good.com and
determine that it is trustworthy and will never leak its TLS
private key; inspect the attestation and TLS certificate and
determine that the TLS keypair was generated by this en-
clave, and the public part is in the TLS certificate; and then
spread the word that good.com can be trusted.

Of course, a malicious insider at good.com could always
take down the secure service and replace it with malicious
code, running outside an enclave. An attestation-aware
client could detect this (because the attestation will change),
but a legacy client could not. However, this attack is de-
tectable. To mount such an attack, the insider would need
to generate a TLS keypair and get a new certificate issued
for it (because legacy clients expect to connect over TLS),
and hand the new private key to the malicious code. This
is detectable because it triggers issuance of a new certificate
for good.com. In particular, we use Certificate Transparency
to detect issuance of new certificates. In our design, secure
services publicly commit to always publish a new attestation
any time they update the service or obtain a new certificate.
Thus, issuance of a new certificate without a corresponding
published attestation indicates an attack or error. Crucially,
because all of this information is public, anyone can mon-
itor the published information and detect these situations,
providing transparency.

Because our design focuses on transparency about what
code the service will run, we call it Attestation Transparency.

……………...

www.

www.

TLS Connection

Secure Enclave

Server

Certificate request &

Attested statement

www.

Certification

Authority

Certificate

Transparency log

Attestation

Transparency log

User

Transparency

log monitor

TLS

Cert

TLS private key

1.

2(a)

2(b)

3.

4.

5(a)

5(b)

Figure 2: Overview of Attestation Transparency. (1)
The secure service emits the certificate request and attested
statement. (2) The attested statement and certificate are
submitted to the Attestation and Certificate Transparency
logs. (3) The secure service receives the certificate produced
by the CA. (4) The user can now establish a regular TLS
connection with the secure service. (5) The transparency log
monitor independently monitors the transparency logs for
possible violations.

It extends Certificate Transparency to allow publishing these
independently-auditable attestations. Legacy clients can
rely on Certificate Transparency to ensure that attacks will
be publicly detectable, while future attestation-aware clients
can verify attestations themselves.

A diagram of the entire system is shown in Figure 2.

3.3 Policy model
To verify that a secure service will act “as promised”, the

user must verify that (a) the service code correctly imple-
ments the intended behavior and (b) no other program on
the same computer will be able to interfere with the opera-
tion of the service code or observe its memory. The mecha-
nisms described below allow a service to prove to a user what
service code will execute on the server enclave. Thus, in
principle, a user could examine all of the code and convince
themselves that it will act “as expected” and will provide all
the desired security guarantees. However, in practice few
users will be able to do this: code analysis is expensive and
beyond the capabilities of most end users.

To address this challenge, we provide several flexible
mechanisms to enable users to verify that the service code
will meet their needs (§5.3). One option is that the user
may rely on a cryptographically signed statement from the
secure service developer naming both the service identity
and the (user comprehensible) promised behavior. Since the
developer can produce the implementation corresponding to
the identity, it can be verified by third parties or used as
a basis for legal recourse in the case the service does not,
in fact, conform to the promised behavior. Alternatively, a
user can rely on either an authority (for example, in the case
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of an enterprise service, the enterprise “IT” department) or
an auditor to decide which services are trustworthy. The
authority cryptographically signs a statement representing
that the service code conforms with expected behavior in all
respects. These can be securely and automatically checked
if so designated. Alternatively, a user may rely on a set of
reviewers of the secure service code who cryptographically
sign such statements. Reviewers might have different mo-
tivations, some altruistic and some self-serving. Further, a
user may employ policy rules to automatically determine
if the specified behaviors are adequate. For example, the
user may insist that the EFF examine the service and cer-
tify that it meets a designated privacy policy, and that a
consumer agency or a product reviewer also sign a confor-
mance statement, and that the developer be one of a named
set of developers that the user feels comfortable with. There
are other alternatives that ensure compliance with the user’s
needs and relieve the user of the need to conduct extensive
reviews themselves.

Usually, a user will use the same policy model to decide
whether an update meets those same specified needs and,
if it does, whether user data accessible to previous versions
can be made available to subsequent versions.

4. SECURE SERVICE DESIGN
This section presents the architecture we use to implement

unalterable secure services. Unalterable here means that the
functionality of the service cannot be changed. This allows
a client of the service to view the service as an extension of
the client itself and not just a third-party program subject
to the whims of another entity.

Our architecture runs services inside a secure enclave as
well as to encourage secure software development. To reduce
the attack surface, the architecture presents a limited inter-
face to the programmer that should be sufficient for Internet
services, and the interface is implemented in a memory-safe
and type-safe language, Rust.3

4.1 Secure service interface
In our architecture (Figure 3), only the CPU and the code

inside the secure enclave are trusted. The secure enclave
has no input/output capabilities and relies on an untrusted
driver for (insecure) access to the outside world. to commu-
nicate with the outside world. The untrusted driver is part
of the host operating system and provides persistent storage
(e.g., via C Standard I/O Streams), networking (e.g., via
BSD sockets), and inter-process communication (e.g., via
stdin/stdout/stderr). On top of this, the secure enclave li-
brary implements encrypted networking using TLS (e.g., us-
ing a standard TLS library), encrypted and sealed storage,
attestation, and IPC. Software developers use these secure
primitives to write their secure service. The secure enclave
library and application code together form the secure en-
clave.

Secure networking Secure networking is provided us-
ing TLS. The secure client interface allows connecting to an
Internet address using TLS and verifying the connection us-
ing default methods (per RFC 5280 [13] and RFC 6125 [32]).
There is also an option to connect to another secure service
running in an enclave and have it attest to the secure channel
parameters. The client will then verify that the attestation

3Available at https://github.com/jethrogb/secserv/.

Table 1: Secure storage types

Benefit

Sealed

Keyed
Both

Protect against blanket access after breach X X
Protect against offline attack versus weak user key X X
Recover data after hardware failure X

is valid and matches the expected server enclave identity.
The secure server interface will listen on a specified port
and accept TLS connections from clients. This is the main
communication mechanism for a service using our architec-
ture. There is also an option to accept connections from
clients that are themselves running in an enclave and have
that client identify itself and attest to the secure channel
parameters.

Secure storage The secure storage interface allows the
application to store persistent data safely. The interface
provides access to different data objects identified by their
name or path, while using an encrypted storage backend.
There are three possible keying schemes for encrypting the
data before storage: using the sealing key, a user key, or
both (encrypted with a user key, then sealed). The different
schemes have different benefits as shown in Table 1. In case
of a breach—e.g., due to a faulty update (see §5.3), or a
code bug—using sealing only, in its simplest form, is inade-
quate. Further, sealing—in its simplest form—is hardware-
dependent and any sealed data is lost after a hardware fail-
ure. Using a per-user key based on the user’s password
enables password-guessing attacks if the password is weak.
This is of particular concern since in addition to online at-
tacks via the normal service authentication mechanism that
all Internet services have to deal with, in our model an ad-
versary can perform offline attacks on the stored data.

Attestation The attestation interface allows a secure
enclave to have the hardware attest to a key. It can also
verify that attested statements match a certain identity and
extract the key that was attested to.

IPC Services may use inter-process communication,
e.g., for inputting configuration data and logging. Since
this channel is not secure, no sensitive information should
be logged through this channel, and it must not be used
for configuration that changes the security properties of the
service. Instead, such configuration needs to be part of the
enclave measurement.

4.2 Secure server

Untrusted
driver

Enclave
library

Application
code

Secure enclave

Operating system

CPUStorageNetwork

Figure 3: Secure service architecture. The shaded
blocks are not trusted.
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Using the primitives defined in the previous section, we
can build an unalterable secure service. Keeping the private
key K−1

server of a TLS server in sealed storage and never ex-
porting the key outside the enclave ensures only a particular
secure enclave instance can have access to it. This means
that when one establishes a TLS connection with a server
that uses that Kserver to authenticate its key exchange, the
server endpoint is guaranteed to terminate inside the en-
clave.

Since the private key should never exist outside the en-
clave, it must be generated inside the enclave. The key setup
procedure for the secure service enclave is shown in Figure 4.
Input and output happens through the IPC channel.

All the service’s static content (e.g., for a website, im-
ages and layout elements) must be included in the server
binary that will be measured upon enclave startup. All dy-
namic/user content must be stored in secure storage.

4.2.1 Horizontal scaling
Once one instance of a service is running, another instance

can connect to it and they can both verify that they’re in-
stances of the same program. After the verification, sensi-
tive information can be shared (over a secure channel estab-
lished using a secure key-exchange protocol). Any kind of
distributed service can be supported this way.

4.2.2 Multiple enclaves
A service might consist of multiple parts, for example a

database server and an application server. The enclaves
should validate each other’s identity and establish a secure
channel between the two. There are at least two secure ways
to implement this.

Consider an enclave A that accepts connections from
clients and provides controlled access to information based
on the client’s identity. A second enclave B wants to use en-
clave A’s service and has fixed A’s identity in its loaded and
measured code. Enclaves A and B establish a secure channel
and both attest to their parameters. Enclave B can verify
A’s attestation and see that the identity matches what is
expected. Enclave A can verify B’s attestation and provide
B access to the information B is authorized to access.

If both enclaves must verify each other’s identity using em-
bedded identities, there is a chicken-and-egg problem. Since
the identity of a program changes when including a differ-
ent identity, it’s not possible for both programs to have the
other’s identity fixed in its code. Also, it’s not secure to rely
upon a system administrator to sign the identities of the two
enclaves, since an insider could falsely sign the identity of a
malicious enclave. One solution is to combine multiple pro-
grams into a single one with multiple operating modes. Now
the same solution used for horizontal scaling can be applied.

4.2.3 Updates
When a service is updated, its persistent data will need to

be updated too. Data encrypted with a user-dependent key
can be used directly by the newer version. However, since
the new service identity will be different from the previous
version, all data stored in sealed storage is lost. Sealed data
will need to be moved to the new version before the old
version can be retired.

A secure channel will need to be established between the
old and the new version, see §5.3.1 for details on the authen-
tication of this channel. Once the channel is established,

Begin

Valid private key
in sealed storage?

Valid certificate
in sealed storage?

Start listening
TLS server

Generate &
store private key

Input & store
certificate

Output certificate
signing request

no

yes

no
yes

Figure 4: Key management.

the old version can unseal the data in question and send it
across. The new version receives the data and immediately
puts it in sealed storage. If there is too much data to be
transferred over the secure channel, instead that data should
be encrypted with an enclave-generated secret key. The key
itself can then be stored in sealed storage and transferred
for updates.

5. CLIENT VERIFICATION OF SECURE
SERVICES

The previous section described how to construct a secure
service. This section will explain how a client connecting to
such a service can verify that service.

Consider the simple scenario in which the server sends an
attestation A(Ienclave) to the client as part of establishing
a secure channel. The client will need to verify both the
attestation and the identity. As a straw-man proposal, en-
vision a service provider distributing a client program that
includes a fixed identity and can verify attestations expected
for a particular service. This would require users to install
a different client per service they want to use. Additionally,
since the identity is fixed in the client, service updates would
also require a client update.

A more general client could contain the logic to be able to
verify all possible attestation mechanisms, as well as main-
tain a list of all acceptable identities. Done naively, this
would be worse logistically, since now a new client needs to
be distributed for every service update.

5.1 Attestation Transparency
Instead of creating this new verification mechanism that

clients would need to implement, we build a verification
mechanism on top of an existing mechanism that clients al-
ready know how to use: Public-Key Infrastructure. Under
our proposed scheme, all the client needs to do to trust the
secure service is verify the TLS server certificate using stan-
dard existing methods.

Our scheme, called Attestation Transparency, is an ex-
tension of the Certificate Transparency framework [22].
Remember that in our unalterable secure service model,
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demonstrating posession of K−1
server by an entity implies that

it is a secure service instance. The core idea of Attesta-
tion Transparency is that a secure service provider pub-
lishes (once) in the Attestation Transparency log an attested
statement A(Ienclave,Kserver). With this, they announce to
the world that an entity possessing K−1

server is an instance
of Ienclave. The secure service provider also obtains a valid
TLS server certificate for Kserver through normal means and
inputs it into the enclave. The certificate binds a Common
Name (CN) to the key Kserver, and the published attested
statement binds that to the identity Ienclave. When a client
establishes a TLS connection with the enclave, it verifies
the certificate and the enclave uses its K−1

server to sign the
key exchange, after which the client has established a secure
channel with the enclave. The whole process is depicted in
Figure 2 on page 4.

An Attestation Transparency monitor performs a similar
function to a Certificate Transparency monitor. The AT
monitor continuously watches the CT logs for certificates is-
sued to the CN identifying the secure service it is interested
in. Once a new certificate with public key K is logged, the
monitor checks the AT logs to see if any attested statements
A(I,K) with that same key K exist. If such an attested
statement does exist, the monitor checks whether the iden-
tity I is valid for that service. If the identity is invalid, or no
attested statement was found in the log, the monitor raises
the alarm.

To prevent spamming, an AT log might require proof of
existence of a valid certificate in the CT logs before accepting
statements for submission. As such, there can be a short
period of time where a certificate will exist in the CT logs
without a corresponding statement in the AT logs. Monitors
will need to take this into account and choose an appropriate
wait time (e.g. two maximum merge delays) before raising
the alarm. This wait time is the maximum time during
which clients could be vulnerable to attack, before it could
be noticed.

5.2 Incremental deployment — logs
While from the previous description it sounds like the AT

log is separate from the CT log, this is not necessarily the
case. Instead, attested statements can be included in a cer-
tificate as a X.509 Certificate extension.4 The secure service
can output the attested statement in the requested exten-
sions section of its certificate signing request. As Certificate
Transparency is already being deployed, this means Attesta-
tion Transparency does not require any new infrastructure.
We propose minor changes to CT to support AT, along with
an incremental deployment path towards a smoother process
in the future.

5.2.1 Fake attestation certificates
Currently the only data that can be included in the CT

logs are certificates and precertificates.5 To prevent spam,
the only certificates accepted in the logs are those signed by
a known CA.

In order to publish attested statements in the CT logs,

4We have allocated OID arc 1.3.6.1.4.1.4995.1000.4.1 for this
purpose.
5Precertificates are similar to regular certificates, conveying
the same information. However, they are constructed in
such a way that they can’t be used in place of a regular
certificate.

we propose that CT logs also accept (pre)certificates from
an ‘Attestation Authority’ (AA). This is a fake Certification
Authority that only issues pre-certificates and is not trusted
by regular TLS clients. The AA follows a simple proce-
dure: it takes as input a certificate, a Signed Certificate
Timestamp and a certificate signing request that includes a
statement as an extension. The AA verifies the certificate
and SCT and it verifies the CSR includes the same public
key. It will then issue a precertificate with the same Subject
Name and public key, including the statement extension and
a pointer to the real certificate. The AA will only issue one
precertificate per real certificate.

5.2.2 Attested statement log entries
An alternate first step in the deployment process is to

move the Attestation Authority’s responsibilities into the
CT log server. This requires a change in the CT specifica-
tion to add a new entry type for attested statements. The
inputs for the submission procedure will be the same, the
verification and spam protection measures will be the same,
only the output will be an attested statement-type entry in
the CT log as well as an SCT for this entry.

While this setup increases the functionality and complex-
ity of the CT log, it reduces the logistical complexity com-
pared to using an Attestation Authority.

5.2.3 Certificate extensions
It would be much more convenient to just include the

attested statement as an extension in the actual valid end-
entity TLS certificate. This would eliminate the need for
any changes to the current CT system. It would also solve
the issue of a potential delay between the appearance of the
certificate and the attested statement in the logs.

It is currently practically infeasible to obtain certificates
with such an extension. We contacted a total of 9 sub-
sidiaries of the largest 6 Certification Authorities (Comodo,
Symantec Group, Go Daddy Group, GlobalSign, DigiCert,
StartCom) to see if they would issue certificates with this
extension. Of the CAs we contacted, 5 did not respond to
our inquiry or did not understand the request, 3 were un-
able to provide such certificates, and 1 was unsure whether
it would be possible, but if it was, it would cost an additional
US$5,000. We considered (ab)using an existing extension,
but were unable to find a suitable one for the type of data
we’d want to include.

We encourage CAs to support Attestation Transparency
extensions in the future.

5.3 Validating enclave identities
The previous discussion depends on being able to deter-

mine what is a valid enclave identity. This is mostly a matter
of policy, and as such we present a mechanism that supports
different policies. For each service, some entity or a group
of entities—known as the policy administrator—is in charge
of verifying the policy for an enclave identity. The policy
administrator maintains a private key for each service pol-
icy. After verification, the policy administrator signs the
enclave code indicating that the policy was met. For ex-
ample, the EFF could establish a service that audits code
for privacy violations and certify complying code by signing
it. These compliance certificates can be used as an auto-
mated or semi-automated mechanism by client software to
determine whether it trusts the code.
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When a system runs such a signed enclave, it will issue at-
testation statements of the form A(Isigner : Ienclave,Kserver).
An AT monitor will maintain a list of policy administrators
it trusts for a specific CN. Now, the monitor need not itself
verify the enclave identity in an AT log entry, it can instead
rely on a valid signature from the policy administrator.

5.3.1 Handling updates
This mechanism also enables code updates to services by

having an old version of the service check the policy for the
new version. This check is embedded in the code for the old
service, and has undergone the same vetting process as the
rest of the code. The whole process for updating from an
old service S1 to a new service S2 is as follows.

D
S2−−−−−−−−−→ P (1)

When a developer D is ready to update their service, they
will send their binary S2 and optionally documenting mate-
rials to the policy administrator P .

P
SigP (I2)−−−−−−−−−−−−−→ D (2)

The administrator will verify that the new code meets the
policy and sign it.

SP : S2
CSR(K),A(P :I2,K)−−−−−−−−−−−−−−−−−−−−→ CA,AT (3)

The service provider SP will launch the signed enclave S2,
which will output a certificate signing request including the
attested statement. The service provider submits the CSR
to a CA and the attested statement will be published to the
AT logs.

CA
CertCA(K)−−−−−−−−−−−−−−→ SP : S2,CT (4)

CA will sign a certificate. The certificate will be submitted
to the CT logs. With this publication, the policy admin-
istrator has announced to the world that Ienclave conforms
to the policy established by Isigner. The service provider
inputs the certificate into the signed enclave and launches
the service. AT monitors will see the new service with the
new certificate and can use the CT/AT log to verify that
everything is in order.

S2
secure channel←−−−−−−−−−−−−−−−→ S1 (5)

S2 establishes a mutually authenticated secure channel with
S1. Both sides must verify the code identity of the other
side through attestation, as well as check the Certificate
Transparency proofs for their keys. Doing both validates
the service code and ensures that there is a public record
for this particular service instance.

S2
Proof(A(P :I2,K)∈AT )−−−−−−−−−−−−−−−−−−−−−−→ S1 (6)

S2 provides S1—which is configured to accept policy state-
ments from policy administrator P—with proof that an at-
testation A(P : I2,K) appears in the AT logs.

S2
sealed data←−−−−−−−−−−−−−− S1 (7)

S1 will subsequently transfer its sealed data to S2.
The update process can be performed without downtime

for the users. Users can keep using the old version of the
service as long as its certificate is still valid. Once the new
certificate has been obtained and the required publications

in the Transparency logs have been made for the updated
service, it can start accepting connections. From then on,
clients will see the new certificate and Transparency log
proofs, indicating that they are now using the updated ser-
vice.

5.3.2 Enclave policies
A policy shall at least require that the TLS private key

will not be leaked and that updates shall be considered valid
only when accompanied with a proof that they appear in the
Attestation Transparency logs. While a policy administrator
may issue a signed policy statement erroneously, the state-
ment will be ineffective until published. Once published,
others can hold the policy administrator accountable. It is
also important that an entity controlling a Certificate Trans-
parency log signing key must not also be an entity control-
ling a policy signing key. Such an entity would be able to
issue signed policy statements and obtain a signed ‘proof
of inclusion’ from the log without actually publishing the
statement.

Policies can cover a variety of use cases from most trans-
parent to not transparent. Care must be taken when a sin-
gle party has a fair amount of control over what would be
considered a secure service under their policy. Such con-
structions should always be paired with the ability for inde-
pendent entities to verify their claims post facto using trans-
parency. We propose the following policies:

Open-source reproducible builds The software de-
veloper publishes their source code publicly with a mech-
anism for reproducible builds. The same developer doubles
as the policy administrator and builds the binary and signs
it before handing it off to the service provider.

Independent audit The software developer hands
their source code to an independent auditor. The auditor
vets the secure service and describes the security properties
the service has in a policy. It will sign the binary and publish
the policy. When, later, the developer submits an updated
version of the software, the auditor checks whether it meets
the security requirements per the established policy.
As an extension to this scheme, an independent auditor
could maintain several standard policies. For example they
might have a ‘secure IMAP service’ policy. Anyone will be
able to write software that adheres to the policy, and the au-
ditor can verify and sign all such software. This effectively
creates an interoperable system of secure IMAP services,
where data can be transferred from one service to the other
while maintaining the security properties.

Self-published with legal obligations The software
developer hands their source code to a publisher. The pub-
lisher builds the binary and signs it before handing it off to
the service provider. The publisher also promises (e.g. by
incorporating a clause in their terms and conditions) that
enclaves they sign exhibit certain properties.

Enterprise-local audit An enterprise might maintain
a set of policies for secure services it runs internally. They
can have an internal audit team that vets service updates.
This way they can have the benefits of protection from in-
sider attacks as well as local control.

5.4 Incremental deployment — clients
We present an incremental deployment path for Attesta-

tion Transparency that makes it immediately useful for to-
day’s clients while improving security guarantees for future
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clients.
Current clients Initially, clients without Certificate

Transparency support will benefit from the existence of the
CT/AT ecosystem, as independent entities can monitor the
published certificates and statements. However, there are no
guarantees for such clients and targeted attacks are possible.
While the CT logs might include a valid certificate for some
domain, a client without CT support can be presented with
a valid certificate that does not appear in the logs, and the
client would be none the wiser.

Clients supporting Certificate Transparency
Once clients support Certificate Transparency, a process
which is already in motion, they will get most of the benefits
of Attestation Transparency as well. Suppose a service
has subscribed to our secure service paradigm, promising
to publish in the AT log in conjunction with the CT log.
Then, by checking the Signed Certificate Timestamps when
setting up a connection, a client can be sure that the server
published its attestation if it has one. A user still needs
to rely on manual verification or word-of-mouth to know
whether a particular service at a particular domain is in
fact a secure service.

Clients supporting Attestation Transparency A
client that can check the attested statements will be able to
indicate to the user that it is in fact connected to a secure
service.

Clients supporting remote attestation Clients
supporting remote attestation get even stronger guarantees
than those just supporting Certificate Transparency. With
remote attestation, a client can verify that the server they
are connected to is actually running inside a secure enclave.
This is helpful in case a server’s TLS private key got leaked
inadvertently. A third party could run a modified service
with the TLS private key thus impersonating the secure
service under the previous three mechanisms. When using
remote attestation directly, this third party could not
produce a correct attestation if the service were modified.

6. EVALUATION
Since Intel SGX is not yet available at the time of writ-

ing,6 we performed our evaluation by implementing secure
services on top of CloudProxy [25]. CloudProxy provides an
abstraction over security primitives similar to the ones Intel
SGX provides. A current implementation is available using
Linux with a hardware root-of-trust based on the Trusted
Platform Module (TPM) interface. This implementation
has a much larger TCB than pure SGX would have, in-
cluding the bootloader, the CloudProxy hypervisor, and the
entire OS kernel.7

We do two case studies on secure services to evaluate
developer effort and performance loss. First, to see how
difficult programming with our secure service paradigm
would be, we implemented a secure web server “from
scratch.”Second, we molded an existing web application
stack into our secure service model to test the performance
loss incurred. The original CloudProxy technical report [25]
includes further performance measurements. We do expect

6Hardware with SGX is currently available in both Core and
Xeon E3 processors, but Intel had yet to release the required
additional software support.
7The OS kernel could be significantly reduced or even re-
placed by a small run-time library but we have not done
this.

slightly better performance on CloudProxy than we would
see on real SGX hardware, since there is no runtime mem-
ory encryption overhead. All our tests were performed on
an Intel NUC 5i5MYHE with Intel Core i5-5300 processor,
8GB RAM and a Samsung 850 EVO SSD, running Ubuntu
15.04 with a Linux 4.0.7 kernel.

6.1 File hosting service
We implemented the secure service interface in a memory-

safe and type-safe but fast language, Rust [31]. The interface
library is designed in a way that makes it easy to swap out
different parts (such as OpenSSL for another TLS library or
CloudProxy bindings for an SGX runtime).

On top of that we implemented an HTTPS server that
runs a simple file storage service. A user can login using a
username and password. They can then upload files which
will be encrypted with a key derived from their password.
Users can later retrieve these files by logging in again. The
webserver is entirely self-contained—the binary includes all
HTML, JavaScript, CSS and images that are going to be
served to the user.

The webserver itself is 425 SLOC of Rust and 168 SLOC
of HTML/JavaScript/CSS plus the jQuery framework and
the Bootstrap theme. The interface library is 983 SLOC
of Rust, plus an additional 262 SLOC of Rust and 1154
SLOC of C/C++ for the CloudProxy bindings. In addition,
the webserver and library pull in an additional 59000 SLOC
of Rust for statically linked dependencies. These numbers
represent an upper bound on the actual number of lines as
they include inline unit tests and feature-gated code that is
not compiled—such as 18000 lines in unused Windows API
bindings, and 5000 lines in an unused HTTP/2 implementa-
tion. The CloudProxy bindings pull in another 17000 SLOC
of C/C++ for statically linked dependencies in addition to
libprotobuf. We link to OpenSSL and common system li-
braries as well.8

6.2 Web forum
While the goal of this paper is not to show that legacy

applications can be ported to our architecture—others have
already shown similar results [6]—we do want to show that
the architecture is fit for running large and complex Internet
services. We mold an existing web server stack consisting of
Apache, PHP, SQLite and phpBB to fit in our secure service
architecture using CloudProxy and Linux OS features. The
insecure filesystem, networking and IPC are provided as nor-
mal by the OS. Secure storage and attestation is provided
by a small set of binaries that provide access to the Cloud-
Proxy interface. Secure networking is provided by Apache’s
mod ssl and the keying interface by OpenSSL. Database en-
cryption is provided by SQLCipher, [41] an enhanced version
of SQLite that encrypts the on-disk files using AES. The
database encryption key itself is stored in sealed storage.

To make the web stack measurable, all files (binaries, sys-
tem libraries, web content, etc.) are bundled into a sin-
gle bootstrap binary. The bootstrap binary creates a new
root filesystem namespace—isolating this process’s view of
the filesystem from the rest of the system—from an empty
RAM-disk and fills it with the bundled files. It then starts
an initialization script that sets up the keys according to

8To be precise: libz, libdl, libpthread, libm, libstdc++,
libgcc s, libc.
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Figure 5: Cumulative Distribution Functions of the
processing times for 3 different phpBB setups. For
each line, n = 1692.

Figure 4 as well as the database encryption key and then
launches the Apache web server. The bundle is about 76MB.

We measure the performance of three related web forum
setups to see the effect encryption and the CloudProxy plat-
form have. The first setup, plain is a vanilla Apache, PHP,
SQLite and phpBB installation. The second, encrypted,
swaps out SQLite for SQLCipher. The final setup, en-
crypted+CloudProxy, runs the aforementioned bundled mea-
sured web stack.

For each setup, we load a small real forum dataset with 21
users, 94 topics and about 1300 initial posts. We then run
a set of workers that access the forum over HTTPS simul-
taneously. Each user gets their own worker. Each worker
selects a random topic they want to post to and performs
the following procedure: login, navigate to the appropri-
ate topic listing, visit the topic, go to the last page, go to
the reply screen, and post a reply. Each topic is visited 6
times in total. We measure the aggregate time it takes to
complete each topic-posting procedure from login to post.
We perform the entire test procedure 3 times, for a total of
3 · 6 · 94 = 1692 measurements per setup total.

The average processing time for the plain version is µ =
1.671s (σ = 0.693). For the encrypted version µ = 1.731s
(σ = 0.633) and for the encrypted+CloudProxy version µ =
1.738s (σ = 0.646). The encrypted/encrypted+CloudProxy
setups are about 4% slower than the plain version. There
is no significant difference between the encrypted and
encrypted+CloudProxy setups (Two-sample Kolmogorov-
Smirnov test, p > 0.73). The CDFs in Figure 5 show
that all requests in the encrypted setups are just slightly
slower than in the plain version, as opposed to the tim-
ing distribution being completely different. It also clearly
shows the lack of difference between the encrypted and en-
crypted+CloudProxy setups, either setup being faster than
the other at different percentiles.

7. DISCUSSION

7.1 Possible applications
The previous case studies are examples of possible appli-

cations of this technology, but many more exist. We discuss
some.

7.1.1 Browser-based cryptographic systems
One of the arguments against doing in-browser cryptogra-

phy using JavaScript is its poor auditability [23,30]. Even if
a user assures themselves of the quality of the cryptographic
system by carefully inspecting a page’s DOM tree, there is no
guarantee the server will send you the exact same page the
next time you visit it. With an Attestation Transparency-
supported secure service, a user does get that guarantee. Be-
cause the logic for sending HTTP responses is fixed within
the unalterable secure service’s identity, a client will receive
the same script every time. This in combination with the
Web Crypto API [34] brings us closer to being able to do
browser-based crypto properly and securely.

7.1.2 Bootstrapping secure web applications
In the web application world, many production updates

are pushed out every day. Having to go through the up-
date process and requesting a new TLS certificate every time
might not be practical. It is not necessary, however, to in-
clude an entire website within the secure enclave.

Instead, one can create a small core web page at a well-
known URL (e.g. https://example.com) that will load fur-
ther web content. Even untrusted content (e.g. from not-
audited.example.com) can be included when using a tech-
nique such as HTML5 privilege separation [3]. The small
core is secure and verified and provides only security func-
tionality to the web application, which should require in-
frequent changes. The untrusted part of the website can
be developed and updated frequently as normal, while not
being able to cause harm because of the privilege separation.

Including static external content, e.g. from Content De-
livery Networks, is supported securely through the recent
Subresource Integrity draft [2]. Websites can include a hash
with a URL on an external resource which will be checked
by the browser.

Including dynamic external content is trickier. If an ex-
ternal site is known to be a secure service defined in this
paper, verifying its known public key should be sufficient to
ensure the safety of loading its contents. The Subresource
Integrity mechanism could be extended to allow public key
pinning on an external resource.

7.1.3 Encrypted e-mail storage server
An e-mail provider could run their SMTP/IMAP stack as

two separate secure services. The IMAP server, storing the
user’s e-mails, will maintain an internal directory of users
and corresponding encryption keys. Only the user will have
access to their e-mails which are encrypted at rest. The
SMTP server, when receiving mail for a local user, will ob-
tain the local public key for that user from the IMAP server
and encrypt the received message before handing it to the
IMAP server for storage.

This setup provides secure encrypted e-mail storage for
legacy IMAP clients including the inability of an insider to
obtain the user’s e-mails or credentials. Additionally, an
SMTP client could verify the server’s identity before sub-
mitting mail, making sure that the e-mail will get delivered
to a secure mailbox.

7.2 Limitations and open research questions
The research in this paper does not address availability

questions at all. Denial of service is a valid attack that an
adversary might perform. Worse, destruction of user data is
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also possible. In order to get the cloud environment closer
to the desktop model, these issues need to be resolved.

Secure enclaves don’t keep any presistent state. As such
enclaves can’t know whether the untrusted party it’s relying
one for data storage is returning the most recent version
of its encrypted state. This attack against the freshness of
data is called a rollback attack. Generic solutions for this
problem—such as Memoir [28]—exist and can be applied to
the design proposed in this paper.

In order for a user to be able to fully trust a ‘secure web
application’ as defined in the previous section, they need
to know that the data they see or the input they provide
is handled securely. The current web hardly provides such
mechanisms. JavaScript and CSS on a page can arbitrarily
change page elements to re-order information, capture user
input, or even read cross-origin data [36]. More research
effort is needed to provide the user with a secure and trust-
worthy user interface on the web.

The security of our system relies on an adversary not being
able to break in to the secure enclave. Even if the hardware
is infallible—which it isn’t—a simple software bug could leak
sensitive information or provide an attacker with code ex-
ecution capabilities. Bugs are exacerbated by being com-
pletely transparent about the code running on a machine.
The transparency makes it much easier for an attacker to
automate exploitation of known vulnerabilities. We propose
using only safe languages such as Rust to write secure ser-
vices, but even then there is no guarantee against compiler
bugs or developer errors. Further guarantees could be ob-
tained by using formal methods.

While SGX in theory provides good isolation, in practice it
might have security flaws. In addition, SGX does not aim to
protect against side-channel attacks [21]. The operating sys-
tem is in an excellent position to mount side-channel attacks
as well as Iago attacks [11]. SGX also has software compo-
nents that are critical to its security, which might be more
easily compromised than the hardware [14]. Compromise of
SGX on the system running the secure service provides an
attacker with access similar to that of directly compromising
the secure service. But, even if SGX is broken, future sys-
tems might provide better secure enclave functionality that
can be used for the secure service design in this paper.

7.3 Adoption
Previous Trusted Computing approaches have not seen

much practical use. Our scheme differs from most ap-
proaches in that the required hardware and software sup-
port is only needed on the server side. A single entity can
decide to adopt our approach and make it happen without
being dependent on their customer’s hardware or software
choices.

Some service providers may be reluctant to adopt our
scheme. However, we believe there is motivation to strongly
consider it. The ITIF has predicted that the U.S. cloud
computing industry could lose up to $35 billion by 2016 due
to loss of trust in the post-Snowden era [18]. Forrester Re-
search has predicted that losses could eventually be up to
$180 billion [35]. Our scheme provides a mechanism that
partially addresses these trust concerns.

8. RELATED WORK
Our work builds on the development of several important

advancements.

An early line of research strove to verify the integrity of a
known system stack. This was important since malicious or
unreliable system software would certainly prevent the se-
cure operation of even well written applications which were
themselves safe. The AEGIS system [5] proposed verify-
ing the entire stack by having a chain of integrity checks
where each step in the boot process verifies the next before
proceeding. This work has been extended to protect other
critical software like BIOS code which, if corrupted, presents
the application developer with insurmountable barriers for
safe operations. Parno et al. provide an overview [29] of the
relevant techniques and research in this area.

Wobber et al. describe how in the Taos operating sys-
tem they treat code (represented, say, as a cryptographic
hash) as a first class security principal which can be authen-
ticated [39]. This enabled distributed programs to establish
an authentication and authorization model that was as rich
and reliable as that for a single program running in batch
mode on a single machine. It is not always desirable to
attest directly to code principals, as software can change
frequently and can exist in many different configurations.
Property-based attestation [12] aimed to solve this by us-
ing properties of software, instead of the software itself, as
security principals.

Since secure distributed computing relied on increasingly
well studied and accepted cryptographic mechanisms, re-
searchers sought a key management mechanism that al-
lowed remote verification of program identity and isolation
properties of program elements running on widely dispersed
machines. Trusted computing primitives combining a dis-
crete security chip [37] coupled with processor features [20]
provided the necessary underlying capabilities. Brannock
et al. propose a Secure Execution Environment [9] with
properties similar to our secure enclave. The CloudProxy
Tao [25] is a consolidated execution environment imple-
mented recursively at each layer of software (VMM, OS,
Linux process, container, plug-in) that programmers could
generally use without extensive training using existing pro-
gramming tools. The relentless march towards cloud com-
puting made these capabilities more critical since cloud data
centers are widely dispersed, employ powerful insiders who,
absent these capabilities can access or control keys and un-
detectably change code running security critical services, vi-
tiating many of the hoped for benefits of scale and elastic-
ity. These new primitives allowed the safe operation of well
written programs on computers that also ran untrustworthy
applications written by adversaries.

Researchers recognizing that even with the foregoing ad-
vances, large TCBs made security difficult to assure and
maintain and thus attempted to minimize the footprint to
help ensure that security guarantees could be credibly met.
To remedy this, Hawblitzel et al. propose a system using
Ironclad Apps [16] for secure remote computations by for-
mally verifying the entire server stack. Flicker [26] empha-
sized application of the Trusted Computing primitives on
small services within an application isolating them from the
rest of the application and the operating system; for exam-
ple, Flicker enclaves were well suited as a virtual Hardware
Security Module or as an authentication enclave that used
a long term secret; the security model ensured that the OS,
other applications and other portions of the same application
could not get private key material. However, it was shown
that Intel Trusted Execution Technology, which Flicker is
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based on, is not secure [40].
Various other systems were proposed to marry cloud com-

puting with trusted computing, such as Self-service Cloud
Computing [10], Cryptography-as-a-Service [7], and My-
Cloud [24]. These systems focused on providing trust in the
cloud hypervisor to a customer of the cloud service provider,
not on providing trust of Internet services to users of those
services.

SGX [19] employed specialized hardware for this same
purpose and also encrypted enclave memory in DRAM thus
protecting from an adversary with system bus access. Sev-
eral recent works employ SGX to protect cloud service com-
ponents. Haven [6] employed SGX to run MS SQL Server
entirely in a secure enclave. Clients of that database server
could benefit from the Attestation Transparency Framework
to verify the server they’re connecting to. VC3 [33] imple-
ments secure MapReduce operations for the Hadoop dis-
tributed computation platform using SGX.

Attacks on PKI [1] threatened the trustworthiness of co-
dependent services which can benefit from the execution
flexibility of cloud computing and the vast quantity of com-
munity curated data. This prompted the development of
Certificate Transparency [22] to highlight misissued certifi-
cates.

9. CONCLUSION
In this paper we have shown how to build secure services

and how to enable clients to verify those services. This
brings to clients the benefits of the cloud—including scal-
ability, availability, elasticity, maintainability—while guard-
ing against principal attacks (e.g. from insiders) that make
cloud usage worrisome.

We have presented a system enabling flexible policy op-
tions to let users meaningfully choose security properties.
Policies can be established by anyone, including software de-
velopers, auditors, independent organizations and communi-
ties. The policies are enforced through a compulsory trans-
parency mechanism that brings malicious intent to light.
This deters bad actors since they can be easily identified for
purposes of legal action or reputation damage.

We have extended the certificate transparency model to
code, providing a technical mechanism for users to rely
on the security principal which ultimately ensures secu-
rity properties—code. In addition, we provide flexible trust
models that allow any user to meaningfully adduce behavior
guarantees from actual implementations. We demonstrate
that resulting systems can be nearly as efficient and scal-
able as existing services and provide strong protection from
mischievous providers, foreign governments and sloppy cloud
data center operations.

All proposed mechanisms include incremental deployment
paths which make our techniques usable now for present-
day clients, whereas future deployment will increase secu-
rity guarantees. In conclusion, we have presented a flexible,
practical mechanism to build secure Internet services.

10. ACKNOWLEDGEMENTS
We thank Jon McCune and our anonymous reviewers for

their feedback. This work was supported by Intel through
the ISTC for Secure Computing, AFOSR under MURI
award FA9550-12-1-0040, and NSF under CCF-0424422.

11. REFERENCES
[1] Comodo, DigiNotar Attacks Expose Crumbling

Foundation of CA System. ThreatPost, 2011. URL:
https://threatpost.com/090211/75609.

[2] D. Akhawe, F. Marier, F. Braun, and J. Weinberger.
Subresource Integrity. W3C working draft, W3C, July
2015. URL: http://www.w3.org/TR/SRI/.

[3] D. Akhawe, P. Saxena, and D. Song. Privilege
Separation in HTML5 Applications. In 21st USENIX
Security Symposium, pages 429–444. USENIX, Aug.
2012.

[4] I. Anati, S. Gueron, S. Johnson, and V. Scarlata.
Innovative Technology for CPU Based Attestation and
Sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for
Security and Privacy, 2013.

[5] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A
secure and reliable bootstrap architecture. In IEEE
Symposium on Security and Privacy, pages 65–71,
1997.

[6] A. Baumann, M. Peinado, and G. Hunt. Shielding
Applications from an Untrusted Cloud with Haven. In
11th USENIX Symposium on Operating Systems
Design and Implementation, pages 267–283. USENIX
Association, Oct. 2014.

[7] S. Bleikertz, S. Bugiel, H. Ideler, S. Nürnberger, and
A.-R. Sadeghi. Client-controlled
cryptography-as-a-service in the cloud. In Proceedings
of the 11th International Conference on Applied
Cryptography and Network Security, pages 19–36,
2013.

[8] R. Boivie and P. Williams. SecureBlue++: CPU
support for secure execution. Technical report, IBM
Research Report, 2013.

[9] K. Brannock, P. Dewan, F. McKeen, and
U. Savagaonkar. Providing a Safe Execution
Environment. Intel Technology Journal, 13(2):36–51,
2009.

[10] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and
V. Ganapathy. Self-service cloud computing. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pages 253–264, 2012.

[11] S. Checkoway and H. Shacham. Iago attacks: Why the
system call api is a bad untrusted rpc interface. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 253–264.
ACM, 2013.

[12] L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R.
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