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LOW RANK APPROXIMATION OF A SPARSE MATRIX BASED ON
LU FACTORIZATION WITH COLUMN AND ROW TOURNAMENT

PIVOTING

LAURA GRIGORI∗, SEBASTIEN CAYROLS† , AND JAMES W. DEMMEL‡

Abstract. In this paper we present an algorithm for computing a low rank approximation of a
sparse matrix based on a truncated LU factorization with column and row permutations. We present
various approaches for determining the column and row permutations that show a trade-off between
speed versus deterministic/probabilistic accuracy. We show that if the permutations are chosen by
using tournament pivoting based on QR factorization, then the obtained truncated LU factorization
with column/row tournament pivoting, LU CRTP, satisfies bounds on the singular values which have
similarities with the ones obtained by a communication avoiding rank revealing QR factorization.
Experiments on challenging matrices show that LU CRTP provides a good low rank approximation
of the input matrix and it is less expensive than the rank revealing QR factorization in terms of
computational and memory usage costs, while also minimizing the communication cost. We also
compare the computational complexity of our algorithm with randomized algorithms and show that
for sparse matrices and high enough but still modest accuracies, our approach is faster.

Key words. Rank revealing, LU and QR factorizations, column pivoting, minimize communi-
cation

AMS subject classifications. 65F25, 65F20

1. Introduction. In this paper we address the problem of computing a low rank
approximation of a large sparse matrix by using a rank revealing LU factorization.
This problem has numerous and diverse applications ranging from scientific comput-
ing problems such as fast solvers for integral equations to data analytics problems
such as principal component analysis (PCA) or image processing. The singular value
decomposition produces the best rank-k approximation, however it is expensive to
compute. There are a number of less expensive approaches in the literature that ap-
proximate the singular value decomposition of a matrix, such as rank revealing QR
and LU factorizations, or the Lanczos algorithm (see e.g. [8, 34]). In the recent years,
several randomized algorithms have been introduced for this problem that aim at
further decreasing the computational cost while obtaining accurate results with high
probability. For recent surveys, see e.g. [24, 31]. While in this paper we discuss their
usage to compute low rank approximations, there are many other important problems
that require estimating the singular values of a matrix or its rank such as regulariza-
tion, subset selection, and nonsymmetric eigenproblems (a more detailed description
can be found in [5]).

In this paper we focus on sparse LU factorizations that are effective in revealing
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the singular values of a matrix, in terms of both accuracy and speed. For sparse ma-
trices, direct methods of factorization lead to factors that are denser than the original
matrix A. Since the R factor obtained from the QR factorization is the Cholesky fac-
tor of ATA, it is expected that the factors obtained from a QR factorization are denser
than the factors obtained from an LU factorization. Indeed, our focus is on obtaining
a factorization that is less expensive than the rank revealing QR factorization in terms
of computational and memory usage costs, while also minimizing the communication
cost. The communication cost is one of the dominant factors for the performance of
an algorithm on current and future computers [14], and classic algorithms based on
row and/or column permutations are sub-optimal in terms of communication.

We begin by defining rank-revealing factorizations, and surveying prior work, in
order to compare our work to it. Consider first the QR factorization with column
permutations of a matrix A ∈ Rm×n of the form

APc = QR = Q

(
R11 R12

R22

)
, (1.1)

where Q ∈ Rm×m is orthogonal, R11 ∈ Rk×k is upper triangular, R12 ∈ Rk×(n−k),
and R22 ∈ R(m−k)×(n−k). We say that this is a rank revealing factorization (RRQR)
if the column permutation matrix Pc is chosen such that

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤ q(k, n), (1.2)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n) − k, where q(k, n) is a low degree poly-
nomial in n and k, and σ1(A) ≥ . . . ≥ σn(A) are the singular values of A. In other
words, the singular values of R11 approximate well the largest k singular values of A,
while the singular values of R22 approximate well the min(m,n)−k smallest singular
values of A. Without loss of generality, here and in the rest of the paper we assume
that the singular values of A and R are all nonzero. We present in more detail this
factorization in section 2, as well as the strong RRQR factorization introduced in
[23]. For a given k and a parameter f > 1, the results in [23] show that there exists
a permutation Pc such that the factorization in equation (1.1) satisfies not only the
bounds on singular values from inequality (1.2), but also bounds the absolute values
of the elements of R−111 R12. The RRQR factorization was introduced in [20] and the
first algorithm to compute it was introduced in [4]. It is still one of the most used
algorithms nowadays, even though it sometimes fails to satisfy (1.2), for example on
the so-called Kahan matrix [27]. It also only guarantees that the absolute value of
the entries of R−111 R12 is bounded by O(2n). We refer to this algorithm as QRCP,
which is short for QR with Column Pivoting. When these algorithms are executed
in a distributed memory environment, the matrix A is typically distributed over P
processors by using a one-dimensional or two-dimensional (block) cyclic partition-
ing. Finding the column of maximum norm at each step of the factorization as in
QRCP requires a reduction operation among processors, which costs O(logP ) mes-
sages. QRCP exchanges O(k logP ) messages for computing a rank-k approximation,
and if the factorization proceeds until the end, it exchanges O(n logP ) messages. A
lower bound on the number of messages required for computing the QR factorization
of a dense n× n matrix A (under certain hypotheses and when the memory size per
processor is O(n2/P )) [2] is Ω(

√
P ). Hence QRCP is not optimal in terms of the num-

ber of messages exchanged. A communication avoiding RRQR factorization, referred
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to as CARRQR, was introduced in [12]. This factorization selects k linearly indepen-
dent columns by using tournament pivoting which requires only O(logP ) messages.
CARRQR is optimal in terms of communication, modulo polylogarithmic factors, on
both sequential machines with two levels of slow and fast memory and parallel ma-
chines with one level of parallelism, while performing three times more floating point
operations than QRCP. Extensive numerical experiments presented in [12] show that
tournament pivoting reveals the singular values of a matrix with an accuracy close to
the one obtained by QRCP. We will discuss it in more detail in section 2.

In this paper we focus on computing a low rank approximation of a matrix A
and we consider different possible cases in which either the desired rank k is known,
all singular values larger than a tolerance τ need to be approximated, or a gap in
the singular values needs to be identified. We introduce a truncated LU factorization
with column and row permutations which, for a given rank k, has the form

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
, (1.3)

S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12, (1.4)

where A ∈ Rm×n, Ā11 ∈ Rk,k, Ā22 ∈ Rm−k,n−k, and the rank-k approximation matrix
Ãk is

Ãk =

(
I

Ā21Ā
−1
11

)(
Ā11 Ā12

)
=

(
Ā11

Ā21

)
Ā−111

(
Ā11 Ā12

)
. (1.5)

The column and row permutations are chosen such that the singular values of Ā11

approximate the first k singular values of A, while the singular values of S(Ā11)
approximate the last min(m,n) − k singular values of A. For this, the factorization
first selects k “most linearly independent” columns from the matrix A, permutes
them to the leading positions, and then selects k “most linearly independent” rows
from these columns. Depending on the methods used to select columns and rows,
different algorithms can be obtained, with different bounds on the revealed singular
values and on the numerical stability of the truncated LU factorization. The design
space for selecting the k columns and rows can be summarized by the following list
(other possibilities have been proposed, e.g. choosing the k-by-k submatrix of nearly
maximum determinant [33, 32]):

1. Select k linearly independent columns of A (call result B), by using
(a) (strong) QRCP / tournament pivoting using QR,
(b) LU / tournament pivoting based on LU, with some form of pivoting

(column, complete, rook),
(c) randomization: premultiply X = ZA where random matrix Z is short

and wide, then pick k rows from XT , by some method from 2) below,
(d) tournament pivoting based on randomized algorithms to select columns

at each step.
2. Select k linearly independent rows of B, by using

(a) (strong) QRCP / tournament pivoting based on QR on BT , or on QT ,
the rows of the thin Q factor of B,

(b) LU / tournament pivoting based on LU with some form of pivoting (row,
TSLU [22], complete, rook) on B,

(c) tournament pivoting based on randomized algorithms to select rows, or
other suitable randomized algorithms.
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These various approaches show a trade-off between speed versus deterministic / prob-
abilistic accuracy and are presented in order of expected decreasing accuracy. Con-
cerning speed, the selections based on QR are more expensive than those based on
LU, in terms of floating point operations and also memory usage, however they are
expected to provide more accurate approximations of the singular values. The classic
pivoting strategies used in LU and QR factorizations are sub-optimal in terms of com-
munication, while tournament pivoting provides a communication optimal alternative,
with worse theoretical bounds on the approximations of the singular values.

The second formulation of Ãk from (1.5) is called a CUR decomposition (see
[21, 35, 31] and references therein), a popular low rank approximation factorization
in data analytics in which C and R are columns and rows selected from the matrix A,
and Ā−111 , and hence very sparse. In many cases of interest, Ãk is applied to a vector,
and Ā−111 should not be computed, but instead its LU or QR factorization should be
used. The column/row selection design space described above can be used to obtain
such a CUR decomposition. The randomized algorithms reviewed in [31] generally fit
in category (1c) of our design space.

In this design space, we show that LU CRTP, a factorization that uses tourna-
ment pivoting based on QR from part 1a) above and tournament pivoting based on
QR on QT from part 2a) above, is a good choice in terms of both speed and accuracy.
We discuss it in more detail in section 3 and show that LU CRTP allows us not only
to obtain bounds on the approximated singular values, the stability of the LU factor-
ization, but also to minimize communication. The obtained factorization satisfies the
following properties

1 ≤ σi(A)

σi(Ā11)
,
σj(S(Ā11))

σk+j(A)
≤ q(m,n, k), (1.6)

ρl(Ā21Ā
−1
11 ) ≤ FTP (1.7)

for any 1 ≤ l ≤ m − k, 1 ≤ i ≤ k, and 1 ≤ j ≤ min(m,n) − k, where ρl(B)
denotes the 2-norm of the l-th row of B, and FTP is a quantity arising in the bound
on singular values obtained after column tournament pivoting based on QR [12]. If
a binary tree is used during tournament pivoting to select k columns from n, then

FTP ≤ 1√
2k

(n/k)
log2(

√
2fk), and q(m,n, k) =

√
(1 + F 2

TP (n− k))(1 + F 2
TP (m− k)),

where f is a small constant related to the strong RRQR factorization used during
tournament (typically f = 2). The bound on FTP can be regarded as a polynomial
in n for a fixed k and f . For more details see Theorem 3.1. The second inequality
(1.7) is important for bounding element growth in the LU factorization which governs
its numerical stability. All these results are obtained assuming infinite precision, and
they are expected not to hold when the singular values approach machine precision,
and so may be significantly changed by roundoff error.

The existence of a rank revealing LU factorization has been proven by Pan in [33],
who shows that there are permutation matrices Pr, Pc such that the factorization from
(1.3) satisfies

1 ≤ σk(A)

σmin(Ā11)
,
σmax(S(Ā11))

σk+1(A)
≤ k(n− k) + 1. (1.8)

The existence of a stronger LU factorization has been proven by Miranian and Gu
in [32], which in addition to (1.6) and (1.7) also upper bounds ||Ā−111 Ā12||max by
a low degree polynomial in k, n and m. Our bounds from (1.6) are slightly worse
than those from (1.8) and also slightly worse than those obtained by CARRQR for
which q(m,n, k) =

√
1 + F 2

TP (n− k) (see Theorem 2.3 for more details). A better
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bound than (1.7) can be obtained by using strong QRCP for 2a) above, in which
case ||Ā21Ā

−1
11 ||max ≤ f , similar to the LU factorization with panel rank revealing

pivoting from [29]. All those better bounds are obtained by algorithms that require
more computation and/or more communication, while our algorithm provides a good
trade-off between speed and accuracy.

Once the first k singular values of A are approximated, it might be the case that
subsequent singular values need to be computed. One example is when the algorithm
is used to compute a low rank approximation and no gap has been identified in the
singular values. Then the block LU factorization algorithm continues recursively on
S(Ā11) until a rank K (which is a multiple of k) has been determined. Some of the
previous bounds become exponential, where the exponent is the number of steps of
tournament pivoting, K/k, for more details see Theorem 3.2. But in practice the
algorithm is effective in revealing the spectrum of A and provides a good low rank
approximation.

In section 4 we discuss the cost of our truncated LU factorization for the case when
the rank k is known, first for matrices with arbitrary sparsity structure and then for
matrices with small separators. A sparse LU factorization with partial pivoting or
a sparse QR factorization would first reorder the columns of the matrix to reduce
fill (based on the structure of ATA in the case of the QR factorization), and then
would perform the LU or QR factorization. In the case of the QR factorization, the
sparsity pattern of the R factor does not depend on row permutations, but depends
on column permutations. When the factorization needs to be performed with column
pivoting, since the column pivoting depends on the numerical values of the matrix A,
reordering the columns of A before the factorization is not useful for the classic QRCP
factorization. However, this order is important for tournament pivoting, since it can
reduce the fill-in during the QR factorization of subsets of columns. For matrices
with arbitrary sparsity structure, an upper bound on the number of flops required by
one tournament pivoting based on QR factorization to choose k columns, executed
sequentially, which dominates the cost of our algorithm, is O(k2nnz(A)). When the
algorithm is executed in parallel on P processors, an upper bound on the number of

flops is O(k2 nnz(A)
P log n

k ) and the number of messages exchanged is O(logP ). Given
the assumptions we make to derive the bounds on the number of flops, we expect that
these bounds are pessimistic.

For comparison, one of the most efficient randomized algorithms for computing
a low rank approximation of a sparse matrix is due to Clarkson and Woodruff [7].
For an n × n matrix A, it computes a rank-k approximation which satisfies ||A −
LDWT ||F ≤ (1 + ε)||A − Ak||F , where L and W are of dimension n × k, D is of
dimension k × k, and Ak is the best rank-k approximation. This algorithm requires
O(nnz(A)) + Ō(nk2ε−4 + k3ε−5) flops, where Ō(f) = f · logO(1)(f). By ignoring the
constants in the asymptotic O() notation, if ε is chosen such that nnz(A) ≤ Ō(nε−4),
or after rearranging, ε ≤ 1

(
nnz(A)

n )1/4
, our algorithm is faster than the randomized

approach, while also being deterministic. For example, if ε = 0.5 or ε = 0.1, then our
algorithm is faster if the average number of nonzeros per column of A is smaller than
16 or 104 respectively. We note that even for a fixed ε, comparing the theoretical
bounds on accuracy of the two algorithms is difficult, since we bound the error of
the approximated singular values, while Clarkson and Woodruff bound the Frobenius
norm of the error of the low rank approximation. A meaningful comparison of the
accuracy of the two algorithms should include varying ε and comparing the results on
matrices from different applications. This remains future work.

5



In section 5 we present experimental results which compare LU CRTP with results
obtained by using the singular value decomposition and QRCP. On a set of selected
matrices that were used in previous papers on rank revealing factorizations, we show
that our factorization algorithm approximates well the singular values of the matrix
A. The ratio of the absolute values of the singular values of the block A11 to the
corresponding singular values of A is at most 13 (except for a difficult matrix, the
devil’s stairs, for which this ratio is 27). We also compare the number of nonzeros
in the low rank approximation obtained by our algorithm with respect to a low rank
approximation obtained by using QRCP or LU with partial pivoting. For the same
rank, we obtain a factor of up to 208x fewer nonzeros with respect to QRCP, and in
some cases fewer nonzeros than LU with partial pivoting.

2. Background. In this section we review some of the factorizations and their
properties that will be used in our rank revealing LU factorization. We focus in
particular on rank revealing and strong rank revealing QR and LU factorizations.

2.1. Notation. We use Matlab notation. Given two matrices A ∈ Rm×n and
B ∈ Rm×k, the matrix C ∈ Rm×(n+k) obtained by putting the two matrices next
to each other is referred to as C = [A, B]. Given two matrices A ∈ Rm×n and
B ∈ Rk×n, the matrix C ∈ R(m+k)×n obtained by putting A on top of B is referred
to as C = [A; B]. The submatrix of A formed by rows i to j and columns l to k
is referred to as A(i : j, l : k). The element in position (i, j) of A is referred to as
A(i, j). Very often, when a matrix is partitioned into a block matrix, we give the
dimensions of a few blocks and we assume the reader can deduce the dimensions of
the remaining blocks. Given a matrix A partitioned as A = [A00, . . . , AT,0], we refer
to the sub-matrices A00 to AT,0 as A0:T,0. Similar notation is used for a block matrix
with multiple rows.

The absolute values of the matrix A are referred to as |A|. The max norm is
defined as ||A||max = maxi,j |Aij |. We refer to the 2-norm of the j-th row of A as
ρj(A), the 2-norm of the j-th column of A as χj(A), and the 2-norm of the j-th row
of A−1 as ωj(A) .

2.2. Rank revealing QR factorizations. Consider first the QR factorization
with column permutations of a matrix A ∈ Rm×n of the form

APc = QR = Q

(
R11 R12

R22

)
, (2.1)

where Q ∈ Rm×m is orthogonal, R11 ∈ Rk×k is upper triangular, R12 ∈ Rk×(n−k),
and R22 ∈ R(m−k)×(n−k). We say that this factorization is rank revealing if

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤ q(k, n), (2.2)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)−k, where q(k, n) is a low degree polynomial
in k and n. Note that definitions of a rank revealing factorization as given in [26, 6]
bound only σmax(R11) and σmin(R22) with respect to the singular values of A, so
that our definition is stricter. The two following theorems recall the properties of a
strong rank revealing QR factorization [23].

Theorem 2.1. (Gu and Eisenstat [23]) Let A be an m × n matrix and let
1 ≤ k ≤ min(m,n). For any given parameter f > 1, there exists a permutation Pc
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such that

APc = Q

(
R11 R12

R22

)
, (2.3)

where R11 is k × k and(
R−111 R12

)2
i,j

+ ω2
i (R11)χ2

j (R22) ≤ f2, (2.4)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ n− k.
The inequality (2.4) defining a strong rank revealing factorization allows to bound

the singular values of R11 and R22 as in a rank revealing factorization, while also upper
bounding the absolute values of R−111 R12.

Theorem 2.2. (Gu and Eisenstat [23]) Let the factorization in Theorem 2.1
satisfy inequality (2.4). Then

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + f2k(n− k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k, .
The communication avoiding RRQR factorization, referred to as CARRQR [12],

computes a rank revealing factorization by using a block algorithm that selects k
columns at each iteration, permutes them to be the leading columns, computes k
steps of a QR factorization with no pivoting, and then proceeds recursively on the
trailing matrix. The k columns are selected by using tournament pivoting as described
later in this section. It is shown in [12] that CARRQR computes a factorization as in
equation (2.3) and a permutation Pc that satisfies

χ2
j

(
R−111 R12

)
+ (χj (R22) /σmin(R11))

2 ≤ F 2
TP , for j = 1, . . . , n− k. (2.5)

Here FTP depends on k, f , n, the shape of reduction tree used during tournament
pivoting, and the number of iterations of CARRQR. The following theorem, which is
a relaxed version of Theorem 2.1, shows that CARRQR reveals the rank in a similar
way to strong RRQR factorization, for more details see [12].

Theorem 2.3. Assume that there exists a permutation Pc for which the QR
factorization

APc = Q

(
R11 R12

R22

)
, (2.6)

where R11 is k × k and satisfies (2.5). Then

1 ≤ σi(A)

σi(R11)
,
σj(R22)

σk+j(A)
≤
√

1 + F 2
TP (n− k), (2.7)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− k.
In this work we use only one step of tournament pivoting, which corresponds to

one iteration of CARRQR. We refer to this factorization as QR TP(A,k) and Algo-
rithm 1 details its computation. A more detailed description of how this algorithm
can be implemented in a parallel environment can be found in [12]. Tournament piv-
oting selects k columns from the matrix A by using a reduction tree. It first divides
the matrix A into n/(2k) subsets of columns and at the leaves of the reduction tree, it

7



selects from each subset k columns by using (strong) rank revealing QR factorization.
At each node of the subsequent levels of the reduction tree, a new matrix is formed
by adjoining next to each other the two subsets of candidate columns selected by its
children. A new set of k candidate columns is selected by using (strong) rank reveal-
ing QR factorization. The columns selected at the root of the reduction tree are the
final columns selected by tournament pivoting. The factorization from Theorem 2.3,
which satisfies inequality (2.5), is obtained by permuting those columns to the first
k positions. We note that in our experimental results as well as in those reported
in [12], we use QRCP for the selection of k columns at each node of the reduction
tree. However the bounds on FTP are obtained by using strong rank revealing QR
factorization.

We present in the following picture a binary tree based tournament pivoting that
selects k columns from A. In this example, the matrix A is partitioned into 4 subsets
of columns, A = [A00, A10, A20, A30]. At the leaves of the reduction tree, for each
subset of columns A0j , f(A0j) selects k columns by using strong rank revealing QR
factorization of A0j . Then at each node of the reduction tree, a new matrix Aij is
obtained by adjoining the columns selected by the children of the node, and f(Aij)
selects k columns by using strong rank revealing QR factorization of Aij .

A00 A10 A20 A30

↓ ↓ ↓ ↓
f(A00) f(A10) f(A20) f(A30)

↘ ↙ ↘ ↙
f(A01) f(A11)

↘ ↙
f(A02)

The flat tree based QR with tournament pivoting is presented in the following
picture.

A00 A10 A20 A30

↓

��)

������) ���������)

f(A00)

↓
f(A01)

↓
f(A02)

↓
f(A03)

Corollary 2.4. (Corollaries 2.6 and 2.7 from [12]) The selection of k columns
of the m × n matrix A using QR with binary tree based tournament pivoting reveals
the rank of A in the sense of Theorem 2.3, with bound

FTP−BT ≤
1√
2k

(√
2fk

)log2(n/k)

=
1√
2k

(n/k)
log2(

√
2fk) (2.8)

If tournament pivoting uses a flat tree, then the bound becomes

FTP−FT ≤
1√
2k

(√
2fk

)n/k
. (2.9)
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Algorithm 1 QR TP (A,k): Select k linearly independent columns from a matrix A
by using QR factorization with binary tree based tournament pivoting

1: Input A ∈ Rm×n, number of columns to select k
2: Output Pc such that (APc)(:, 1 : k) are the k selected columns
3: Partition the matrix A = [A00, . . . , An/k,0], where Ai0 ∈ Rm×2k, i = 1, . . . n/(2k)

// Assume n is a multiple of 2k
4: for each level in the reduction tree j = 0 to log2 n/(2k)− 1 do
5: for each node i in the current level j do
6: if j = 0 (at the leaves of the reduction tree) then
7: Ai0 is the i-th block of 2k columns of A
8: else Form Aij by putting next to each other the two sets of k column

candidates selected by the children of node j
9: end if

10: Select k column candidates by computing Aij = Q1R1 and then computing

a RRQR factorization of R1, R1Pc2 = Q2

(
R2 ∗

∗

)
11: if j is the root of the reduction tree then
12: Return Pc such that (APc)(:, 1 : k) = (AijPc2)(:, 1 : k)
13: else Pass the k selected columns, APc2(:, 1 : k) to the parent of i
14: end if
15: end for
16: end for

In the case of a binary tree, the bound in (2.8) can be regarded as a polynomial in n in
general for a fixed k and f . The bound (2.9) obtained for a flat tree is exponential in
n, however is a rapidly decreasing function of k. Even if this suggests that the singular
values approximated by the factorization might be far from the singular values of A,
the extensive numerical experiments performed in [12] show that both binary tree and
flat tree are effective in approximating the singular values of A.

2.3. Orthogonal matrices. Consider an orthogonal matrix Q ∈ Rm×m and its
partitioning as

Q =

(
Q11 Q12

Q21 Q22

)
(2.10)

where Q11 ∈ Rk×k. The QR TP factorization of (Q11;Q21)
T

leads to the following
factorization

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(2.11)

where S(Q̄11) = Q̄22 − Q̄21Q̄
−1
11 Q̄12 = Q̄−T22 (see [33], proof of Theorem 3.7). This

factorization satisfies the following bounds

ρj(Q̄21Q̄
−1
11 ) ≤ FTP , (2.12)

1

q2(k,m)
≤ σi(Q̄11) ≤ 1, (2.13)

for all 1 ≤ i ≤ k, 1 ≤ j ≤ m − k, where q2(k,m) =
√

1 + F 2
TP (m− k). FTP is

the bound obtained from QR with tournament pivoting, given in equation (2.8) for a
binary tree and in equation (2.9) for a flat tree.
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The singular values of Q̄11 are also bounded in Lemma 3.4 from [33]. In that
paper, vol(Q̄11) is the absolute value of the determinant of Q̄11. It is a local µ-
maximum in Q if for all neighboring sub-matrices Q′ which differ from Q̄11 in exactly
one column or one row, µ · vol(Q̄11) ≥ vol(Q′), for some µ ≥ 1. The permutation
Pr is chosen in [33] such that vol(Q̄11) is a local µ-maximum in Q and q2(k,m) =√

1 + k(m− k)µ2.
By using the properties of the CS decomposition of an orthogonal matrix, we also

have that σmin(Q̄11) = σmin(Q̄22).

3. LU CRTP: Block LU factorization with column/row tournament
pivoting. In this section we describe the algebra of our low rank approximation fac-
torization based on LU decomposition with column/row tournament pivoting. There
are two different cases that we consider here, in the first the rank k of the approxi-
mation is known, in the second the rank K of the approximation is to be determined
while computing the factorization. We also discuss the numerical properties of our LU
factorization. We present bounds on the singular values of the obtained factors with
respect to the original matrix A. In addition we also discuss the backward stability
of the LU factorization.

3.1. Rank-k approximation, when k is known. We consider first the case in
which the rank k is known. Given a matrix A ∈ Rm×n, we are seeking a factorization
of the form

Ā = PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
(3.1)

where

S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12. (3.2)

The permutation matrices Pr, Pc are chosen such that Ā11 approximates well the
largest k singular values of A, while Ā22 approximates well the smallest n−k singular
values. If this factorization is run to completion, that is if S(Ā11) is factored by using
the same procedure and the factorization obtained is P ′rAP

′
c = LU , then it is known

that the stability of the factorization depends on the ratio ||L̂||max||Û ||max/||A||max,
where L̂ and Û are the computed factors. For more details see [15], and also [29].
We make the assumption that ||L̂||max||Û ||max ≈ ||L||max||U ||max, i.e. that roundoff
does not change the norms of the L and U factors very much, and in the following we
are interested in bounding ||L||max and ||U ||max. For this the elements of |Ā21Ā

−1
11 |

need to be bounded.
The algorithm selects the first k columns by using QR factorization with tourna-

ment pivoting on the matrix A (see Algorithm 1),

APc = Q

(
R11 R12

R22

)
=

(
Q11 Q12

Q21 Q22

)(
R11 R12

R22

)
where Q ∈ Rm×m, Q11, R11 ∈ Rk×k. As discussed in section 2.2, R11 reveals the
largest k singular values of A, while R22 reveals the smallest n − k singular values
of A. However, with respect to the factorization in (3.1), we want Ā11 to reveal the
largest k singular values of A and S(Ā11) the smallest n− k singular values of A. For
this, we select k rows from the first k columns of Q by using QR with tournament
pivoting on Q(:, 1 : k)T and obtain the factorization,

PrQ =

(
Q̄11 Q̄12

Q̄21 Q̄22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)
(3.3)
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where

S(Q̄11) = Q̄22 − Q̄21Q̄
−1
11 Q̄12 = Q̄−T22 . (3.4)

such that ρj(Q̄21Q̄
−1
11 ) = ρj(Ā21Ā

−1
11 ) ≤ FTP , for all 1 ≤ j ≤ m− k, is upper bounded

as in equation (2.12), and the singular values of Q̄11 and Q̄22 are bounded as in
equation (2.13) (see section 2.3). This will allow us to show that Ā11 and S(Ā11)
reveal the singular values of A.

By applying the column and row permutations on the matrix A we obtain the
desired factorization,

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Q̄11 Q̄12

S(Q̄11)

)(
R11 R12

R22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
(3.5)

where

Q̄21Q̄
−1
11 = Ā21Ā

−1
11 ,

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22.

A similar derivation has been used by Pan in [33] to prove the existence of a rank re-
vealing LU factorization. However, this derivation was not used in the rank revealing
algorithms introduced in that paper. Indeed computing Pc by using a classic algo-
rithm like QRCP would require computing R22, and hence R22 could be used in the
subsequent steps instead of computing an LU factorization and its Schur complement
S(Ā11). In addition, the derivation in [33] does not bound ||A21A

−1
11 ||max, which is

important for the numerical stability of the LU factorization.
We present the LU factorization with column/row tournament pivoting obtained

by the above procedure, which we refer to as LU CRTP (A, k) in Algorithm 2. The
first step of the algorithm (line 3) selects k columns by using QR with tournament
pivoting on A. This factorization computes strong RRQR factorizations of subsets
of 2k columns, but it never computes the complete QR factorization that was used
to derive the algebra in equation (3.5). Once the QR factorization of the selected k
columns from tournament pivoting is computed in step 4, k rows are selected by using
tournament pivoting on Q(:, 1 : k)T in step 5. The row and column permutations are
applied to A and Q in step 6.

The computation of L21 in step 7 requires special attention. In infinite precision,
Ā21Ā

−1
11 = Q̄21Q̄

−1
11 , however this might not be the case in finite precision. Due

to round-off error, the computation of Q̄21Q̄
−1
11 is numerically more stable than the

computation of Ā21Ā
−1
11 . In the sparse case, not only the numerical values differ, but

also Q̄21Q̄
−1
11 has more nonzeros than Ā21Ā

−1
11 . This is because Q̄11 and Q̄21 are denser

than Ā11 and Ā21. The additional nonzeros correspond to exact cancellations and they
are due to round-off errors. In our numerical experiments we observe that they have
very small values. We do not investigate further this issue in this paper and we use
a heuristic in which we first compute L21 = Ā21Ā

−1
11 and we check if ||Ā21Ā

−1
11 ||max

is small. In all our experimental results, this is indeed the case, and ||Ā21Ā
−1
11 ||max

is at most 1.49. We do not exclude the possibility that ||Ā21Ā
−1
11 ||max can be large,

in particular for nearly singular matrices. In this case, one should compute Q̄21Q̄
−1
11
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and possibly drop the elements smaller than a certain threshold. We again do not
investigate this aspect further in the paper. We note that Algorithm 1 selects the
columns and the rows that can be used in a CUR decomposition, in which case step
7 can be omitted.

Algorithm 2 LU CRTP(A, k): rank-k truncated LU factorization with column/row
tournament pivoting of a matrix A

1: Input A ∈ Rm×n, target rank k
2: Output permutation matrices Pr, Pc, rank-k truncated factorization LkUk, factor
Rk, such that (APc)(1 : k) = QkRk,

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Ā21Ā
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
,

Lk =

(
I

Ā21Ā
−1
11

)
=

(
I
L21

)
, Uk =

(
Ā11 Ā12

)
,

where Lk ∈ Rm×k, Uk ∈ Rk×n, Rk ∈ Rk×k, and the remaining matrices have
corresponding dimensions.
Note that S(Ā11) is not computed in the algorithm.

3: Select k columns by using QR with tournament pivoting on A, Algorithm 1,

Pc ← QR TP (A, k)
4: Compute the thin QR factorization of the selected columns,

(APc)(:, 1 : k) = QkRk, where Qk ∈ Rm×k and R ∈ Rk×k
5: Select k rows by using QR with tournament pivoting on QTk ,

Pr ← QR TP (QTk , k)
6: Let

Ā = PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
, PrQk =

(
Q̄11

Q̄21

)
7: Compute

L21 = Q̄21Q̄
−1
11 = Ā21Ā

−1
11 (see discussion in the text)

In the following theorem we show that the LU CRTP (A, k) factorization reveals
the singular values of A, and in addition also bounds element growth in the LU
factorization.

Theorem 3.1. Let A be an m × n matrix. The LU CRTP (A, k) factorization
obtained by using Algorithm 2,

Ā = PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
I

Q̄21Q̄
−1
11 I

)(
Ā11 Ā12

S(Ā11)

)
(3.6)

where

S(Ā11) = Ā22 − Ā21Ā
−1
11 Ā12 = Ā22 − Q̄21Q̄

−1
11 Ā12, (3.7)

satisfies the following properties

ρl(Ā21Ā
−1
11 ) = ρl(Q̄21Q̄

−1
11 ) ≤ FTP , (3.8)

||S(Ā11)||max ≤ min

(
(1 + FTP

√
k)||A||max, FTP

√
1 + F 2

TP (m− k)σk(A)

)
(3.9)
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1 ≤ σi(A)

σi(Ā11)
,
σj(S(Ā11))

σk+j(A)
≤ q(m,n, k), (3.10)

for any 1 ≤ l ≤ m − k, 1 ≤ i ≤ k, and 1 ≤ j ≤ min(m,n) − k. Here FTP
is the bound obtained from QR with tournament pivoting, as in Corollary 2.4, and
q(m,n, k) =

√
(1 + F 2

TP (n− k)) (1 + F 2
TP (m− k)).

Proof. The left part of equation (3.10) is satisfied for any permutation matrices
Pr, Pc by the interlacing property of singular values. The factorization from equation
(3.6) can be written as in equation (3.5), where

Ā11 = Q̄11R11, (3.11)

S(Ā11) = S(Q̄11)R22 = Q̄−T22 R22. (3.12)

The permutation Pc and the R factor from equation (3.5) are obtained by using
QR with tournament pivoting, and the singular values of R11 satisfy the bounds
from equation (2.7). The row permutation Pr and Q̄11 are obtained by using QR
with tournament pivoting, and as discussed in section 2.3, the singular values of Q̄11

satisfy the bounds from equation (2.13). We obtain

σi(Ā11) ≥ σmin(Q̄11)σi(R11) ≥ 1

q1(n, k)q2(m, k)
σi(A),

where q1(n, k) =
√

1 + F 2
TP (n− k), q2(m, k) =

√
1 + F 2

TP (m− k). Note that σmin(Q̄11) =
σmin(Q̄22). We also have that

σj(S(Ā11)) = σj(S(Q̄11)R22) ≤ ||S(Q̄11)||2σj(R22) ≤ q1(n, k)q2(m, k)σk+j(A).

By letting q(m,n, k) = q1(n, k)q2(m, k) we obtain the bounds on the singular values
in equation (3.10).

To bound element growth in the L factor, equation (3.8), we note that Ā21Ā
−1
11 =

Q̄21Q̄
−1
11 . As shown in section 2.3, we have that ρl(Ā21Ā

−1
11 ) = ρl(Q̄21Q̄

−1
11 ) ≤ FTP ,

for each row l of Ā21Ā
−1
11 . Element growth in S(Ā11) is bounded as follows.

|S(Ā11)(i, j)| = |Ā22(i, j)− (Ā21Ā
−1
11 )(i, :)Ā12(:, j)|

≤ ||A||max + ||(Ā21Ā
−1
11 )(i, :)||2||Ā12(:, j)||2 ≤ ||A||max + ρi(Ā21Ā

−1
11 )
√
k||A||max

≤ (1 + FTP
√
k)||A||max

In addition, we use the fact that the QR factorization with tournament pivoting
that selects k columns satisfies equation (2.5), and we obtain χj(R22) = ||R22(:, j)||2 ≤
FTPσmin(R11) ≤ FTPσk(A). The absolute value of the element in position (i, j) of
S(Ā11) can be bounded as follows,

|S(Ā11)(i, j)| = |Q̄−T22 (i, :)R22(:, j)| ≤ ||Q̄−122 (:, i)||2||R22(:, j)||2
≤ ||Q̄−122 ||2||R22(:, j)||2 = ||R22(:, j)||2/σmin(Q̄22) ≤ FTP q2(m, k)σk(A).

3.2. Rank-K approximation, when K is to be determined. We consider
now the case when the rank of the approximation needs to be determined during the
factorization. Our factorization determines an overestimation K of the rank such that
the approximated singular values are larger than a tolerance τ . The overestimation K
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is a multiple of k, i.e. K = tk and the rank has a value between (t− 1)k and K = tk.
Another option is to identify a gap in the singular values; we do not discuss this case
here, however the algorithm that we present can be easily adapted.

Given an initial guess of the rank k, the factorization computes one step of a block
LU factorization with column/row tournament pivoting, as described in the previous
section and obtains the factorization from equation (3.1). If the approximated singular
values are all larger or equal than τ , then the factorization continues recursively on the
trailing matrix S(Ā11). We refer to this factorization as LU CRTP (A, k, τ), which is
presented in Algorithm 3. After T steps, we obtain the factorization from equation
(3.13). In the following theorem we give relations between the singular values of the
diagonal blocks Uii, 1 ≤ i ≤ T and the largest K singular values of A, and also
between the singular values of UT+1,T+1 and the smallest n−K singular values of A.
We observe that with respect to the results in Theorem 3.1, the bounds here become
exponential, where the exponent is the number of steps of tournament pivoting, K/k.
An exponentially growing bound cannot be avoided without additional permutations,
since in the special case k = 1, the algorithm reduces to QRCP, where we know
exponential growth is possible.

Theorem 3.2. Suppose we have computed T block steps of LU CRTP (A, k, τ)
factorization by using Algorithm 3, where A ∈ Rm×n and K = Tk. We obtain the
following factorization

PrAPc = LKUK (3.13)

=


I
L21 I

...
...

. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T I




U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT,T+1

UT+1,T+1


where Li+1,j and Uij are k×k for 1 ≤ i, j ≤ T , and UT+1,T+1 is (m−Tk)× (n−Tk).
The following properties are satisfied:

ρl(Li+1,j) ≤ FTP , (3.14)

||UK ||max ≤ min
(

(1 + FTP

√
k)K/k||A||max, q2(m, k)q(m,n, k)K/k−1σK(A)

)
, (3.15)

1∏t−2
v=0 q(m− vk, n− vk, k)

≤
σ(t−1)k+i(A)

σi(Utt)
≤ q(m− (t− 1)k, n− (t− 1)k, k), (3.16)

1 ≤ σj(UT+1,T+1)

σK+j(A)
≤

K/k−1∏
v=0

q(m− vk, n− vk, k), (3.17)

for any 1 ≤ l ≤ k, 1 ≤ i ≤ k, 1 ≤ t ≤ T , and 1 ≤ j ≤ min(m,n) −K. Here FTP
is the bound obtained from QR with tournament pivoting as given in Corollary 2.4,
q2(m, k) =

√
1 + F 2

TP (m− k), and q(m,n, k) =
√

(1 + F 2
TP (n− k)) (1 + F 2

TP (m− k)).

Proof. We consider the first and second step of the block factorization, written
as:

Pr1APc1 =

(
I

L2:T+1,1 I

)(
U11 U1,2:T+1

S(U11)

)
, (3.18)

Pr2S(U11)Pc2 =

(
I

L3:T+1,2 I

)(
U22 U2,3:T+1

S(U22)

)
, (3.19)
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where L2:T+1,1 is the first block column formed by [L21; ...;LT+1,1] from equation
(3.13). Similar notation is used for the other block columns of L or block rows of
U . We bound first the singular values of the obtained factorization. By applying
Theorem 3.1 we have:

1 ≤ σi(A)

σi(U11)
,
σj(S(U11))

σk+j(A)
≤ q(m,n, k), (3.20)

for any 1 ≤ i ≤ k, 1 ≤ j ≤ min(m,n)− k

1 ≤ σi(S(U11))

σi(U22)
,
σj(S(U22))

σk+j(S(U11))
≤ q(m− k, n− k, k), (3.21)

for any 1 ≤ i ≤ k, 1 ≤ j ≤ min(m,n)− 2k.

We have that

1

q(m,n, k)
≤ σk+i(A)

σi(S(U11))

σi(S(U11))

σi(U22)
≤ q(m− k, n− k, k), for any 1 ≤ i ≤ k,

and we obtain

1

q(m,n, k)
≤ σk+i(A)

σi(U22)
≤ q(m− k, n− k, k), for any 1 ≤ i ≤ k. (3.22)

We also have

1 ≤ σj(S(U22))

σk+j(S(U11))

σk+j(S(U11))

σ2k+j(A)
≤ q(m,n, k)q(m− k, n− k, k),

for any 1 ≤ j ≤ min(m,n)− 2k, and we obtain

1 ≤ σj(S(U22))

σ2k+j(A)
≤ q(m,n, k)q(m− k, n− k, k). (3.23)

We consider the steps t and t+ 1 of the factorization,

PrtS(Ut−1,t−1)Pct =

(
I

Lt+1:T+1,s I

)(
Utt Ut,t+1:T+1

S(Utt)

)
, (3.24)

Pr,t+1S(Utt)Pc,t+1 =

(
I

Lt+2:T+1,t+1 I

)(
Ut+1,t+1 Ut+1,t+2:T+1

S(Ut+1,t+1)

)
, (3.25)

We suppose that the bounds on singular values at the t-th step of the factorization
satisfy the following relations,

1∏t−2
v=0 q(m− vk, n− vk, k)

≤
σ(t−1)k+i(A)

σi(Utt)
≤ q(m− (t− 1)k, n− (t− 1)k, k),

1 ≤ σj(S(Utt))

σtk+j(A)
≤

t−1∏
v=0

q(m− vk, n− vk, k),

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− tk. In addition by applying Theorem 3.1
to the factorization obtained at the (t+ 1)-th step from equation (3.25), we have:

1 ≤ σi(S(Utt))

σi(Ut+1,t+1)
,
σj(S(Ut+1,t+1))

σk+j(S(Utt))
≤ q(m− tk, n− tk, k), (3.26)

for any 1 ≤ i ≤ k, 1 ≤ j ≤ min(m,n)− (t+ 1)k.
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We have that,

1∏t−1
v=0 q(m− vk, n− vk, k)

≤ σtk+i(A)

σi(S(Utt))

σi(S(Utt))

σi(Ut+1,t+1)
≤ q(m− tk, n− tk, k)(3.27)

1 ≤ σj(S(Ut+1,t+1))

σk+j(S(Utt))

σk+j(S(Utt))

σ(t+1)k+j(A)
≤ q(m− tk, n− tk, k)

t−1∏
v=0

q(m− vk, n− vk, k)(3.28)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n)− (t+ 1)k. We obtain the following bounds
for the (t+ 1) step of block factorization,

1∏t−1
v=0 q(m− vk, n− vk, k)

≤ σtk+i(A)

σi(Ut+1,t+1)
≤ q(m− tk, n− tk, k) (3.29)

1 ≤ σj(S(Ut+1,t+1))

σ(t+1)k+j(A)
≤

t∏
v=0

q(m− vk, n− vk, k)(3.30)

for any 1 ≤ i ≤ k and 1 ≤ j ≤ min(m,n) − (t + 1)k. This proves by induction the
bounds from equations (3.16) and (3.17).

The bound on element growth in LK from equation (3.14) follows from equation
(3.8). The part of the bound from equation (3.15) that bounds ||UK ||max with respect
to ||A||max can be easily obtained, and it has similarities with the bound obtained from
LU with panel rank revealing factorization, see section 2.2.1 in [29]. The part of the
bound of ||UK ||max with respect to the singular values of A is obtained as following.
After the first iteration, by using the second part of the bound from equation (3.9),
we have that ||S(U11)||max ≤ FTP q2(m, k)σk(A). After the second iteration, by using
the second part of the bound from equation (3.9) and equation (3.20), we obtain

||S(U22)||max ≤ FTP q2(m− k, k)σk(S(U11)) ≤ FTP q2(m− k, k)q(m,n, k)σ2k(A).

After the third iteration, by using the second part of the bound from equation (3.9),
we have that ||S(U33)||max ≤ FTP q2(m− 2k, k)σk(S(U22)). By using equation (3.23),
we obtain

||S(U33)||max ≤ FTP q2(m− 2k, k)q(m,n, k)q(m− k, n− k, k)σ3k(A).

The bound from equation (3.15) follows by induction. Note that a tighter bound can
be obtained for each row block of UK , however for simplicity we do not give it here.

Algorithm 3 presents the LU CRTP(A, k, τ) factorization, which can be used
when the rank of the low rank approximation needs to be determined. It can be
easily seen from the bounds obtained in Theorem 3.1 and Theorem 3.2 that the R
factor obtained from the QR factorization of every block of columns provides a slightly
better estimation of the singular values of A than the diagonal blocks of UK . This
is why the algorithm uses the R factor to approximate the singular values of A and
determine the rank K of the approximation.

3.3. A less expensive LU factorization with column tournament pivot-
ing. In this section we present a less expensive LU factorization with column and row
permutations which only satisfies some of the bounds from Theorem 3.1. We present
only one step of the block factorization, in which the desired rank is k, the extension
to a larger rank K is straightforward.
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Algorithm 3 LU CRTP(A, k, τ): rank-K truncated LU factorization with colum-
n/row tournament pivoting of a matrix A, using tolerance τ to identify singular values
large enough to keep in the low rank approximation

1: Input A ∈ Rm×n, k, tolerance τ
2: Output permutation matrices Pr, Pc, rank K, truncated factorization B =
L̃KŨK such that L̃K ∈ Rm×K , ŨK ∈ RK×n

σ̃K−k(A) ≥ τ > σ̃K(A), where σ̃k(A) is K-th singular value of A approximated by the algorithm,

PrAPc = LKUK =


I
L21 I

...
...

. . .

LT1 LT2 . . . I
LT+1,1 LT+1,2 . . . LT+1,T



U11 U12 . . . U1T U1,T+1

U22 . . . U2T U2,T+1

. . .
...

...
UTT UT,T+1

 ,

L̃K = LK(:, 1 : K) ŨK = (1 : K, :)

Note that UT,T+1 is not updated during the last iteration.
3: Ā = A
4: for T = 1 to n/k do
5: j = (T − 1)k + 1, K = j + k − 1
6: Determine row/column permutations by using Algorithm 2,

[Prk , Pck , Lk, Uk, Rk]← LU CRTP (Ā(j : m, j : n), k)

7: PrT =

(
I

Prk

)
, PcT =

(
I

Pck

)
, where I is (j − 1)× (j − 1)

8: Ā = PrAPc, LK = PrLKPc, UK = PrUKPc, Pr = PrTPr, Pc = PcPcT
9: UK(j : K, j : n) = Uk, LK(j : m, j : K) = Lk

10: for i = 1 to k do σ̃j+i−1(A) = σi(Rk) endfor
11: if σ̃K(A) < τ then
12: Return L̃K = LK(:, 1 : K), ŨK = (1 : K, :),K, Pr, Pc
13: else
14: Update the trailing matrix,

Ā(K + 1 : m,K + 1 : n) = Ā(K + 1 : m,K + 1 : n)− LkUk.
15: end if
16: end for

We refer to this factorization as LU CTP, LU with column tournament pivoting.
Given A ∈ Rm×n, the factorization selects k columns by using QR factorization with
tournament pivoting on the matrix A. The factorization obtained is the following

APc =

(
Ac11 Ac12
Ac21 Ac22

)
= Q

(
R11 R12

R22

)
=

(
Q11 Q12

Q21 Q22

)(
R11 R12

R22

)
where Ac11 ∈ Rk×k, Q ∈ Rm×m, Q11, R11 ∈ Rk×k. Note that the column permutation
is the same as the one used in LU CRTP (A, k). However the row permutation is
obtained by computing LU with partial pivoting of the first k columns of APc. To
reduce communication, LU with tournament pivoting can be used to select the k rows
[22], or when necessary for more stability LU with tournament pivoting on the first k
columns of Q [13],

Pr

(
Ac11
Ac21

)
=

(
L11

L21

)
U11,
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where L11, U11 are of dimension k × k. The obtained LU factorization is

PrAPc =

(
Ā11 Ā12

Ā21 Ā22

)
=

(
L11

L21 I

)
=

(
U11 U12

S(Ā11)

)
,

where S(Ā11) = Ā22 − L21U12. Note that this factorization does not lower bound
the singular values of Q11, and this prevents us from bounding the singular values of
Ā11 and S(Ā11) with respect to the singular values of A. However, as we will see in
the experimental results, in practice this factorization approximates well the singular
values of A.

4. Complexity analysis of QR factorization with tournament pivoting.
The selection of k columns by using QR factorization with tournament pivoting domi-
nates the cost of the rank-k approximation factorization from Algorithm 2. We analyze
in this section the cost of QR factorization with tournament pivoting for matrices with
arbitrary sparsity structure, in terms of fill in the factors Q and R obtained during
tournament, floating point operations, as well as interprocessor communication for
the parallel version of the algorithm. Given the assumptions we make in our analysis,
we expect that these bounds are loose. We then consider matrices whose column
intersection graphs have small separators and obtain tighter bounds for the fill in the
factors Q and R. In both cases, our analysis is based on a column permutation of the
matrix which allows us to bound the fill.

Analyzing the cost of the low rank approximation factorization when the rank
K needs to be determined, Algorithm 3, is a more difficult problem that we do not
address in this paper. Tournament pivoting could potentially select the most dense k
columns, and predicting an upper bound on the fill that occurs in the Schur comple-
ment can be very pessimistic.

4.1. Matrices with arbitrary sparsity structure. We discuss now the case
of an arbitrary sparse matrix A ∈ Rm×n. Let di be the number of nonzeros in column
i of A, nnz(A) =

∑n
i=1 di. We permute the matrix columns such that d1 ≤ . . . ≤ dn.

Consider QR TP with a flat tree. As explained in section 2.2, the matrix A is
partitioned into n/k blocks of columns as A = [A00, . . . , An/k,0]. At the first step
of tournament pivoting, the matrix A01 = [A00, A10] is formed, and k columns are
selected by computing the QR factorization of A01, followed by a rank revealing
factorization of the R factor. At the subsequent steps, a new matrix Aij is formed
with the previously selected k columns and a block Ai0 of unvisited columns of A.
From this matrix, k new columns are selected by using QR factorization followed by
rank revealing factorization of the R factor. Given that k is small, we ignore in the
following the cost of the rank revealing factorization of the R factors.

At the first step of reduction, the matrix A01 formed by the first 2k columns of A
has at most

∑2k
i=1 di rows (with equality when the sets of column indices are disjoint

and each row has only one nonzero). By considering this matrix dense, nnz(A01) ≤
2k
∑2k
i=1 di and the number of flops required to compute its QR factorization is at

most 8k2
∑2k
i=1 di. The selected k columns have at most

∑2k
i=k+1 di nonzeros and

form a matrix with at most
∑2k
i=k+1 di rows. The matrix formed at the second step of

tournament pivoting has at most
∑3k
i=k+1 di rows, at most 2k

∑3k
i=k+1 di nonzeros, and

its QR factorization requires at most 8k2
∑3k
i=k+1 di. These bounds are asymptotically

attainable if A has the following nonzero structure: the first d1−1 rows have a nonzero
only in the first column, while the d1-th row has nonzeros in the first and the second
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column. The following d1 − 2 rows have a nonzero in the second column, while the
(d1 + d2 − 1)-th row has nonzeros in the second and the third column. The nonzero
structure of the following rows follows the same pattern.

We consider the following costs associated with QR TP: nnzmax(QR TPFT )
refers to the maximum number of nonzeros of the Q and R factors over all the QR
factorizations computed during tournament pivoting, nnztotal(QR TPFT ) refers to
the sum of the number of nonzeros of all the Q and R factors used during tournament
pivoting, and flops(QR TPFT ) refers to the total number of flops computed. Note
that nnzmax(QR TPFT ) reflects the memory needs of QR TP, since once k columns
are selected, the corresponding factors Q and R can be discarded before proceeding
to the following step of tournament pivoting. We obtain,

nnzmax(QR TPFT ) ≤ 4dnk
2 (4.1)

nnztotal(QR TPFT ) ≤ 2k

(
2k∑
i=1

di +

3k∑
i=k+1

di + . . .+

n∑
i=n−2k+1

di

)
≤

≤ 4k

n∑
i=1

di = 4nnz(A)k, (4.2)

flops(QR TPFT ) ≤ 16nnz(A)k2, (4.3)

We discuss now the case when QR TP is executed in parallel by using a binary tree
of depth log(n/k), where 2k ≤ n/P . We consider a column cyclic distribution of the
matrix on P processors, and we assume that n/P columns with a total of nnz(A)/P
nonzeros are stored on each processor. We also make the reasonable assumption
that k is small enough such that

∑n
i=n−2k+1 di ≤ nnz(A)/P . At each step of the

reduction, the matrix Aij has 2k columns and at most
∑n
i=n−2k+1 di rows, and each

processor executes log(n/k) QR factorizations of such matrices. The cost of QR TP
per processor is

nnzmax(QR TPBT ) ≤ 2k

n∑
i=n−2k+1

di ≤ 2
nnz(A)

P
k (4.4)

nnztotal(QR TPBT ) ≤ 2k(

n∑
i=n−2k+1

di) log
n

k
≤ 2

nnz(A)

P
k log

n

k
, (4.5)

flops(QR TPBT ) ≤ 8k2(

n∑
i=n−2k+1

di) log
n

k
≤ 8

nnz(A)

P
k2 log

n

k
. (4.6)

Given our assumption that the matrices used during tournament pivoting have only
one nonzero per row, these bounds are loose.

In terms of interprocessor communication, it can be easily seen that during tour-
nament pivoting, the processors exchange logP messages. Each messages has at most∑n
i=n−2k+1 di words, for a total of (

∑n
i=n−2k+1 di) logP ≤ 2kdn logP words commu-

nicated on the critical path of parallel QR TP.

4.2. Graphs with small separators. Given a matrix A ∈ Rm×n, the struc-
ture of its Q and R factors can be modeled by using the column intersection graph
G∩(A). We consider that at each iteration of the QR factorization, one Householder
reflection is used to annihilate the elements below the diagonal. The Householder
matrix H which stores the Householder vectors can be used to implicitly represent
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Q. Its structure can also be modeled by G∩(A). The graph G∩(A) is the undirected
graph of ATA (we ignore numerical cancellations), has n vertices (one for each column
of A), and an edge between two vertices if the corresponding columns of A have a
nonzero in a same row. The filled column intersection graph of A [17], G+

∩ (A), is the
graph of the Cholesky factor L of ATA and hence it is also the graph of the R factor
of the QR factorization. Both the structure of Q and R can be expressed in terms of
paths in the column elimination tree of A, T∩(A), which is a depth-first spanning tree
of G+

∩ (A). For simplicity, we consider that G∩(A) is connected. The nonzero column
indices of a row i of Q correspond to vertices that belong to the path in T∩(A) going
from the vertex corresponding to the first nonzero in row i of A to the root of the tree
[18]. Similar definition holds for the last m− n rows of H.

We consider here the case when the column intersection graph belongs to a class
S of graphs with small separators, that are closed under the subgraph relation (that
is if G is in S and G1 is a subgraph of G, then G1 is also in S). We focus on the class
S of graphs that are nλ separable, λ < 1. These graphs have a separator S with cnλ

vertices, c > 0, whose removal disconnects the graph into two graphs A and B, each
with less than 2/3n vertices. There are many example of graphs with good separators.
For example, structured grids in d dimensions are nd−1/d-separable, planar graphs are
n1/2 separable. For more detailed discussions see e.g. [30].

We recall first results established in [19] on the number of nonzeros in the factors
R, Q, as well as the Householder vectors H used during the QR factorization of
A. These results are obtained by using a reordering of the matrix A based on nested
dissection [16], which partitions the graph into two disjoint subgraphs and a separator,
and continues recursively the same procedure on the two subgraphs. In the analysis,
we consider that c and λ are fixed. We focus first on graphs which are

√
n-separable.

Theorem 4.1 (Theorem 1 from [19]). Let A be an m× n matrix of full column
rank, such that G∩(A) is a member of a

√
n-separable class of graphs. Then there

exists a column permutation P such that the matrices Q, R, and H in the thin QR
factorization of AP satisfy the following bounds: nnz(R) = O(n log n), nnz(Q) =
O(m

√
n), nnz(H) = O(n log n + (m − n)

√
n). These results are based on the fact

that every row of Q has at most O(
√
n) nonzeros, the first n rows of H are a subset

of the structure of the rows of R, while the last m−n rows of H have at most O(
√
n)

nonzeros each.

Let A ∈ Rm×n be a matrix whose column intersection graph G∩(A) belongs to
the class of

√
n-separable graphs, closed under the subgraph relation. As in the case

of arbitrary matrices, we let di be the number of nonzeros in column i of A and we
consider that A was permuted such that d1 ≤ . . . ≤ dn. We make the same assumption
as before that kdn ≤ nnz(A)/P ≤ ndn/P . In the case of QR with tournament
pivoting based on a flat tree, the matrix formed at the first step of tournament A01

has 2k columns of A and has at most
∑2k
i=1 di rows that have nonzero elements. Given

that we consider a class of graphs closed under the subgraph relation, the graph of a
submatrix Aij formed by 2k columns, G(Aij), has 2k vertices and satisfies the (2k)1/2

separator theorem. We obtain that at the first step of tournament pivoting, the QR
factorization of the current matrix A01 leads to factors that have nnz(R) = O(k log k),

nnz(Q) ≤ O(
√
k
∑2k
i=1 di), and nnz(H) ≤ O(k log k + (

∑2k
i=1 di − k)

√
k). Since each

row of H has at most O(
√
k) nonzeros, computing the QR factorization of A01 costs at

most O(k3/2
∑2k
i=1 di) flops. By summing over the n/k QR factorizations used during

tournament pivoting and by using the same approach as for matrices with arbitrary
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sparsity structure, the cost of QR TP is

nnzmax(QR TPFT ) ≤ O(dnk
3/2), (4.7)

nnztotal(QR TPFT ) ≤ O(nnz(A)
√
k), (4.8)

flops(QR TPFT ) ≤ O(nnz(A)k3/2). (4.9)

These bounds are smaller than the bounds for matrices with arbitrary sparsity struc-
ture from (4.1), (4.2), and (4.3) by a factor of O(

√
k). We discuss now the case when

QR TP is executed in parallel using a binary reduction tree as before. The reduc-
tion tree used during tournament pivoting has depth log(n/k), and each processor
executes log(n/k) QR factorizations of matrices Aij with 2k columns and at most∑n
i=n−2k+1 di ≤ 2kdn rows that have at least one nonzero. Each such QR factoriza-

tion can be computed in at most O(k3/2
∑n
i=n−2k+1 di) flops. The cost of QR TP per

processor is

nnzmax(QR TPBT ) ≤ O(
√
k

n∑
i=n−2k+1

di) ≤ O(dnk
3/2) ≤ O(

nnz(A)

P

√
k), (4.10)

nnztotal(QR TPBT ) ≤ O(
√
k(

n∑
i=n−2k+1

di) log
n

k
) ≤ O(

nnz(A)

P

√
k log

n

k
), (4.11)

flops(QR TPBT ) ≤ O(k3/2(

n∑
i=n−2k+1

di) log
n

k
) ≤ O(

nnz(A)

P
k3/2 log

n

k
).(4.12)

These costs are O(
√
k) smaller than the corresponding costs from (4.4), (4.5), and

(4.6) obtained for matrices with arbitrary sparsity structure.

By using the same reasoning, these results can be extended to graphs with larger
separators. Consider that G∩(A) belongs to the class of nλ-separable graphs, with
1/2 < λ < 1, closed under the subgraph relation. Nested dissection leads to the
following bounds of the factors obtained from QR factorization [19], nnz(R) = O(n2λ),
nnz(Q) = O(mnλ), nnz(H) = O(n2λ+(m−n)nλ). A path in the column elimination
tree G∩(A) going from its leaves to its root is formed by the vertices of a separator
obtained at each level of nested dissection, and hence its length is O(nλ). We deduce
that the number of nonzeros in each row of Q and in the last m− n rows of H is at
most O(nλ). We obtain the following bounds for QR TP:

nnzmax(QR TPFT ) = nnzmax(QR TPBT ) ≤ O(dnk
λ+1) ≤ O(

nnz(A)

P
kλ)(4.13)

nnztotal(QR TPFT ) ≤ O(nnz(A)kλ) (4.14)

flops(QR TPFT ) ≤ O(nnz(A)kλ+1) (4.15)

nnztotal(QR TPBT ) ≤ O(
nnz(A)

P
kλ log

n

k
) (4.16)

flops(QR TPBT ) ≤ O(
nnz(A)

P
kλ+1 log

n

k
) (4.17)

We note again that these bounds are smaller than their counterparts in section 4.1
by factors O(k1−λ).
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5. Experimental results. In this section we present experimental results which
show that LU CRTP provides a good low rank approximation in terms of both ac-
curacy and speed. We discuss first the accuracy of LU CRTP by comparing the
approximation of the singular values obtained by our truncated LU factorization with
the singular values obtained by SVD. In all the tests, the matrix is first permuted by
using COLAMD (column approximate minimum degree) [10] followed by a postorder
traversal of its column elimination tree.

5.1. Numerical accuracy. We use a set of 16 challenging matrices which are
often used for testing rank revealing algorithms. These matrices are generated in
Matlab, they are of size 256× 256, and their description can be found in Table 5.1. A
more detailed description can be found in [12]. Experiments are carried out in double
precision in Matlab 2015a.

No. Matrix Description

1 Baart Discretization of the 1st kind Fredholm integral equation [25].
2 Break1 Break 1 distribution, matrix with prescribed singular values [3].
3 Break9 Break 9 distribution, matrix with prescribed singular values [3].
4 Deriv2 Computation of second derivative [25].
5 Devil The devil’s stairs, a matrix with gaps in

its singular values, see [36] or [12].
6 Exponential Exponential Distribution, σ1 = 1, σi = αi−1 (i = 2, . . . , n),

α = 10−1/11 [3].
7 Foxgood Severely ill-posed test problem of the 1st kind Fredholm

integral equation used by Fox and Goodwin [25].
8 Gravity 1D gravity surveying problem [25].
9 Heat Inverse heat equation [25].

10 Phillips Phillips test problem [25].
11 Random Random matrix A = 2* rand(n) - 1 [23].
12 Shaw 1D image restoration model [25].
13 Spikes Test problem with a ”spiky” solution [25].
14 Stewart Matrix A = U Σ VT + 0.1 σm * rand(n), where σm

is the smallest nonzero singular value [36].
15 Ursell Integral equation with no square integrable solution [25].
16 Wing Test problem with a discontinuous solution [25].

Table 5.1
Test matrices generated in Matlab.

Figure 5.1 displays the evolution of singular values obtained by SVD and their ap-
proximation obtained by LU CRTP for two matrices, Exponential and Foxgood.
The value of k in LU CRTP(A, k, τ) from Algorithm 3 is 16. However, the algorithm
does not stop at k, but continues the factorization recursively until completion and
hence approximates all the singular values of A. The approximated singular values
correspond to the diagonal elements of the R factor of each block of k columns ob-
tained from a tournament. In addition, the figure also displays the results obtained
by QRCP and those obtained when the column and row permutations are determined
by using QRCP instead of tournament pivoting, referred to as LU CRQRCP. We note
that the singular values are well approximated by the three algorithms, and the re-
sults obtained by LU CRQRCP and LU CRTP are almost superimposed. The usage
of tournament pivoting instead of QRCP to select columns and rows in a block LU
factorization does not lead to loss of accuracy in our experiments. The same behavior
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Fig. 5.1. Evolution of the singular values computed by SVD and approximated by QRCP,
LU CRQRCP (LU with column and row pivoting based on QRCP), and LU CRTP (LU with column
and row tournament pivoting).

is observed for the remaining matrices in the set from Table 5.1, and the results can
be found in the Appendix, Figure 7.1.

Figure 5.2 displays the ratios of the approximated singular values with respect
to the singular values for the 16 matrices in our set, summarized by the minimum,
maximum, and mean values of the ratios |Ri,i|/σi(A). Three different methods are
tested, QRCP, LU CRTP, and LU CTP. The last method, LU CTP, corresponds to
the cheaper factorization described in section 3.3 in which only the column permuta-
tion is selected by using tournament pivoting based on QR, while the row permutation
is based on LU with partial pivoting. The bars display the results obtained when the
algorithm is truncated at K = 128, and the red lines display the results obtained
when the factorization runs almost to completion, it is truncated at K = n − k. In
the results all singular values smaller than machine precision, ε, are replaced by ε. For
the very last k columns, the ratios are slightly larger, and we do not include them in
the results, since they are not relevant for a low rank approximation. These results
show that the mean is very close to 1. On average, the approximated singular values
are very close to the singular values computed by SVD. For the matrices in our set,
except devil’s stairs, the ratio is between 0.08 and 13.1 for LU CRTP and between
0.08 and 17.5 for LU CTP. For the devil’s stairs, a more challenging problem for rank
revealing factorizations, the maximum ration for LU CRTP is 27 and the maximum
ratio for LU CTP is 26.

5.2. Performance. We discuss first the performance of our algorithm by com-
paring the number of nonzeros in the factors of LU CRTP with respect to the num-
ber of nonzeros in the factors of QRCP and LU with partial pivoting. As mentioned
earlier, for all the factorizations, the columns of the matrix were first permuted by
using COLAMD followed by a postorder traversal of its column elimination tree. The
number of nonzeros in the factors gives not only the memory usage of these factor-
izations, but also a good indicator of their expected performance. We use several
larger square sparse matrices obtained from the University of Florida Sparse Matrix
Collection [11]. Table 5.2 displays the name of the matrices, their number of column-
s/rows (Size), their number of nonzeros (Nnz), and their field of application. Some of
the matrix names are abbreviated. The matrix tsopf rs corresponds to the matrix
tsopf rs b39 c30 in the collection, parab fem corresponds to parabolic fem,
while mac econ corresponds to mac econ fwd500.

Table 5.3 displays the results obtained for the first 10 matrices from Table 5.2

23



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|R
i,i

|/σ
i

10 -1
10 0
10 1

QRCP Mean
Min
Max
n-k

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|R
i,i

|/σ
i

10 -1
10 0
10 1
10 2 LU-CRTP Mean

Min
Max
n-k

Matrices
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

|R
i,i

|/σ
i

10 -1
10 0
10 1
10 2 LU-CTP Mean

Min
Max
n-k

Fig. 5.2. Comparison of approximations of singular values obtained by LU CRTP, LU CTP,
and QRCP for the matrices described in Table 5.1. Here k = 16 and the factorization is truncated
at K = 128 (bars) or K = 240 (red lines) .

No. Matrix Size Nnz Problem description

17 orani678 2529 90158 Economic
18 gemat11 4929 33108 Power network sequence
19 raefsky3 21200 1488768 Computational fluid dynamics
20 wang3 26064 177168 Semiconductor device
21 onetone2 36057 222596 Frequency-domain circuit simulation
22 tsopf rs 60098 1079986 Power network
23 rfdevice 74104 365580 Semiconductor device
24 ncvxqp3 75000 499964 Optimisation
25 mac econ 206500 1273389 Economic
26 parab fem 525825 3674625 Computational fluid dynamics
27 atmosmodd 1270432 8814880 Fluid dynamics
28 circuit5M dc 3523317 14865409 Circuit simulation

Table 5.2
Sparse matrices from University of Florida collection [11].

when a rank K approximation is computed, where K varies from 128 to 1024. The
initial rank k = 16. Matlab is used for these experiments, and there was not enough
memory to obtain results for the last matrices in Table 5.2. The second column,
nnz A(:, 1 : K), displays the number of nonzeros in the first K columns of A, once
it was permuted as explained previously. The fourth column, nnz QRCP

nnz LU CRTP , displays
the ratio of the number of nonzeros of QRCP with respect to the number of nonzeros
of LU CRTP. The last column displays nnz LU CRTP

nnz LUPP , the ratio of the number of
nonzeros of LU CRTP with respect to LU with partial pivoting. For QRCP, we count
the number of nonzeros in the first K columns of the Householder vectors H plus the
number of nonzeros in the first K rows of the R factor. For LU CRTP and LUPP we
count the number of nonzeros in the firstK columns of L and the firstK rows of U . For
LU CRTP we ignore the number of nonzeros created during tournament pivoting since
the memory requirements are small compared to the memory requirements displayed
in Table 5.3.
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Name nnz A(:, 1 : K) Rank K nnz QRCP
nnz LU CRTP

nnz LU CRTP
nnz LUPP

orani678 7901 128 17.87 3.30
55711 512 6.18 8.85
71762 1024 4.86 11.01

gemat11 1232 128 2.1 2.2
4895 512 3.3 2.6
9583 1024 11.5 3.2

raefsky3 7872 128 1.25 2.26
31248 512 1.07 4.18
63552 1024 1.06 6.58

wang3 896 128 3.0 2.1
3536 512 2.9 2.1
7120 1024 2.9 1.2

onetone2 4328 128 36.0 2.8
9700 512 73.5 1.1

17150 1024 108.5 0.3

tsopf rs 4027 128 2.57 1.90
5563 512 0.83 2.41
7695 1024 0.61 2.13

rfdevice 633 128 10.0 1.1
2255 512 82.6 0.9
4681 1024 207.2 0.9

ncvxqp3 1263 128 2.87 1.21
5067 512 3.50 1.01

10137 1024 3.83 0.53

mac econ 384 128 - 0.34
1535 512 - 0.19
5970 1024 - 0.11

parab fem 896 128 - 0.5
3584 512 - 0.3
7168 1024 - 0.2

Table 5.3
Comparison of number of nonzeros of LU with partial pivoting, QRCP, and LU CRTP. A dash

in the table indicates that there was not enough memory to run QRCP to completion.

We note that for smaller matrices, LU CRTP leads to a factor of up to 17 times
fewer nonzeros than QRCP for orani678. Larger improvement with respect to QRCP
is observed for onetone2 and rfdevice, up to a factor of 207. As one can expect,
LU CRTP leads to up to 11 times more nonzeros than LUPP. We were not able to
run QRCP for the last two matrices in Table 5.3 due to memory consumption. We
also observe that for the last four matrices, LU CRTP has fewer nonzeros than LUPP.
This means that the columns selected by tournament pivoting generate less fill-in than
those selected before the factorization by using COLAMD and postorder traversal of
the elimination tree as used in LUPP. This is something that we do not expect to
happen in general.

We discuss now the parallel performance of LU CRTP. There are routines for
computing the QRCP factorization of a dense matrix as in LAPACK or ScaLAPACK,
or for computing the QR factorization of a sparse matrix, as the multifrontal SPQR
software of Tim Davis [9]. However there is no library available for computing in par-
allel a sparse rank revealing factorization. We present in this paper the performance
of LU CRTP(A, k) (Algorithm 2), which given a rank k, computes a rank-k approx-
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imation and produces a CUR factorization as presented in (1.5). The main step of
this algorithm is to select k columns from the matrix A by using tournament pivoting
based on QR. We do not have yet a parallel implementation of LU CRTP(A, k, τ)
which computes all the singular values larger than a parameter τ , as given in Algo-
rithm 3, this remains future work. Table 5.5 reports runtimes for tournament pivoting
based on QR, which selects k = 256 columns from the input matrix. We use in these
tests the last larger matrices from our set in Table 5.2. The results are obtained on
Edison, a Cray XC30 supercomputer at NERSC, formed by nodes with 2 x 12-core
Intel “Ivy Bridge” processors. We run as many MPI processes per node as cores.
Tournament pivoting uses a binary tree. At each step the selection of k columns
from 2k columns is performed by first calling SPQR [9], and then calling the QRCP
dGEQP3 routine from Lapack [1] (as implemented in MKL) on the R factor obtained
from SPQR. SPQR reorders the matrix by using Metis [28].

Table 5.4 presents the breakdown of the times required for selecting k = 256
columns using P = 32 MPI processes. The second column displays the time required
for reordering each matrix by using COLAMD followed by a postorder traversal of its
column elimination tree. The third column displays the time required for selecting k
columns from 2k columns by calling SPQR and DGEQP3. The runtimes are shown on
three rows, the first row displays the minimum runtime, the second row displays the
average runtime, while the last row displays the maximum runtime among processors.
These statistics are computed over all calls to SPQR and DGEQP3 performed during
tournament pivoting. The fourth column displays the time required for selecting k
columns locally on each processor from the matrix of size m × n/P that it owns.
Each processor uses a binary tree based tournament pivoting. As for the previous
column, we display first the minimum runtime, then the average runtime, and finally
the maximum runtime among processors. The last column displays the time required
for selecting the final k columns from the sets of k columns selected locally on each of
the P processors. The binary tree used by tournament pivoting among processors has
depth logP . Our implementation uses a reduction like operation in which the result
is available only on one processor, namely processor 0. The number of processors
involved at each level of the reduction is halved. Hence we display only the maximum
runtime obtained on processor 0 that owns the result and is the root of the reduction
tree.

These results show that selecting k columns from 2k columns can be performed
efficiently. However, for a same matrix, the time spent in SPQR can vary considerably.
For example for mac ecom, SPQR varies between 0.06 seconds and 22.71 seconds,
and takes on average 3.26 seconds. This results in load imbalance during tournament
pivoting both in the first steps performed locally on each processor and in the last
logP steps that involve communication. Essentially most of the time is spent in
SPQR. We note that the time spent in the selection of k columns locally can be
further reduced by using a flat tree. Our future work will focus on this aspect as well
as on desiging a load balanced tournament pivoting.

Table 5.5 presents the runtime of binary tree based tournament pivoting when
increasing the number of cores from 32 to 1024. For the matrices in our test set,
the algorithm is scalable up to 1024 cores. For example, selecting 256 columns from
parab fem requires only 5 secs on 1024 cores. The runtime decreases only slightly
when the number of processors is larger than 1024. This is because the number of
columns at the leaves approaches 2k and most of the time is spent in the reduction tree.
However more parallelism is possible by choosing a smaller k, updating the trailing
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Tournament pivoting
Matrix COLAMD Matrix m× 2k on each processor among processors

+etree SPQR DGEQP3 SPQR DGEQP3 SPQR DGEQP3

0.06 0.01 180.97 0.33
mac econ 3.26 0.02 246.65 0.36

0.52 22.71 0.02 361.84 0.39 3.37 0.08

0.20 0.01 54.66 0.94
parab fem 0.24 0.02 79.88 1.03

0.56 0.29 0.07 103.49 1.13 1.06 0.07

0.48 0.01 183.36 2.17
atmosmodd 0.92 0.02 236.69 2.39

3.35 4.96 0.02 483.61 2.63 2.50 0.05

1.36 0.01 623.09 6.26
circuit5M dc 1.59 0.02 664.68 6.85

4.18 1.84 0.03 749.20 7.99 7.15 0.08
Table 5.4

Runtime in seconds of tournament pivoting for selecting k = 256 columns on P = 32 MPI
processes. The time is divided between the time required for reordering (COLAMD + etree), the time
required for selecting k columns from n/P columns locally on each processor, and the time required
for selecting k columns from the sets of columns selected by each processor (the last logP steps of
tournament pivoting). For each matrix, the third and the fourth columns display on different rows
minimum, average, and maximum runtimes obtained among different processors. The last column
displays only the maximum runtime obtained among different processors.

Matrix Number MPI processes
32 64 128 256 512 1024 2048

mac econ 367 183 118 83 57 19 12

parab fem 106 65 36 22 15 5 4

atmosmodd 488 269 163 83 52 29 18

circuit5M dc 771 367 196 109 69 44 37
Table 5.5

Runtime in secs for selecting k = 256 columns using tournament pivoting based on QR.

matrix and performing more applications of tournament pivoting until the desired low
rank approximation is obtained. In this case, k becomes a tuning parameter.

6. Conclusions and future work. In this paper we have introduced LU CRTP,
a block LU factorization based on column and row permutations for computing a low
rank approximation of a sparse matrix. The selection of columns and rows at each
step of the block factorization uses tournament pivoting based on QR. The experi-
mental results show that LU CRTP provides a good trade-off between accuracy and
speed. The approximated singular values are on avergage very close to the singular
values computed by SVD, and in the worst case, are within a factor of 10. On 1024
cores of a Cray XC30 computer, the algorithm computes a rank-256 approximation
in 5 seconds for a matrix of size 525825× 525825 (parab fem).
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7. Appendix. In this section we discuss in more detail the numerical accuracy
of LU CRTP, the block LU factorization with column and row permutations.

Figure 7.1 displays the ratios of singular values approximated by three different
methods to the singular values as computed by SVD for all the matrices in our set
from Table 5.1. The three different methods are QRCP, LU with column and row
pivoting based on QRCP (referred to as LU CRQRCP), and LU with column and row
tournament pivoting, LU CRTP. We note that the results obtained by LU CRTP are
very close to the results obtained by LU CRQRCP. In other words, the columns and
rows selected by tournament pivoting in the block LU factorization lead to results
comparable to those obtained by selecting columns and rows using QRCP.
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Fig. 7.1. Comparison of approximations of singular values obtained by LU CRTP,
LU CRQRCP, and QRCP with respect to the singular values computed by SVD. The test matri-
ces are described in Table 5.1. Here k = 16 and the factorization is truncated at K = 128 (bars) or
it runs to completion (red lines) .

The evolution of the singular values obtained by SVD and their approximations
obtained by LU CRTP and LU CTP (the less expensive variant described in section
3.3) for different matrices from Table 5.1 is displayed in figures 7.2 and 7.3.

We discuss now the numerical accuracy of the factors L and U produced by
LU CRTP(A, k, τ) (Algorithm 3) on the set of matrices described in Table 5.2. The
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Fig. 7.2. Evolution of the singular values computed by SVD and approximated by QRCP,
LU CRTP (LU with column and row tournament pivoting), and LU CTP (LU with column tourna-
ment pivoting and row pivoting based on partial pivoting).

algorithm stops after computing an approximation of rank K = 1024, and k varies
from 16 to 128. The obtained factorization PrAPc = LKUK is the factorization from
equation (3.13). The results in Table 7.1 display the growth factor of the factorization

defined as gW =
maxi,j,k|a(k)

i,j |
maxi,j |ai,j | , where a

(k)
i,j denotes the entry in position (i, j) of A after k
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Fig. 7.3. Evolution of the singular values computed by SVD and approximated by QRCP,
LU CRTP (LU with column and row tournament pivoting), and LU CTP (LU with column tourna-
ment pivoting and row pivoting based on partial pivoting).

iterations. The table also displays different norms of the factors LK and UK and their
inverses. The last column displays the backward error of the block LU factorization
||PrAPc−LU ||F

||A||F , when the factorization is run until the end. The results show that the

obtained factorization is very stable, the growth factor gW is equal to 1, backward
error varies from 10−16 to 10−24.
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