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Abstract

Reducing Faulty Executions of Distributed Systems

by

Robert Colin Butler Scott

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Scott Shenker, Chair

When confronted with a buggy execution of a distributed system—which are com-
monplace for distributed systems software—understanding what went wrong requires
significant expertise, time, and luck. As the first step towards fixing the underlying bug,
software developers typically start debugging by manually separating out events that are
responsible for triggering the bug (signal) from those that are extraneous (noise).

In this thesis, we investigate whether it is possible to automate this separation pro-
cess. Our aim is to reduce time and effort spent on troubleshooting, and we do so by
eliminating events from buggy executions that are not causally related to the bug, ideally
producing a “minimal causal sequence” (MCS) of triggering events.

We show that the general problem of execution minimization is intractable, but we
develop, formalize, and empirically validate a set of heuristics—for both partially instru-
mented code, and completely instrumented code—that prove effective at reducing execu-
tion size to within a factor of 4.6X of minimal within a bounded time budget of 12 hours.
To validate our heuristics, we relay our experiences applying our execution reduction
tools to 7 different open source distributed systems.
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Chapter 1

Introduction

Even simple code can contain bugs (e.g., crashes due to unexpected input). But the de-
velopers of distributed systems face additional challenges, such as concurrency, asyn-
chrony, and partial failure, which require them to consider all possible ways that non-
determinism might manifest itself. The number of event orderings a distributed system
may encounter due to non-determinism grows exponentially with the number of events
in the execution. Bugs are therefore commonplace in distributed systems software, since
developers invariably overlook some unanticipated event orderings amid the exponential
number of orderings they need to consider.

Software developers discover bugs in several ways. Most commonly, they find them
through unit and integration tests. These tests are ubiquitous, but they are limited to cases
that developers anticipate themselves. To uncover unanticipated cases, semi-automated
testing techniques such as randomized concurrency testing (where sequences of message
deliveries, failures, etc. are injected randomly into the system) are effective. Finally, de-
spite pre-release testing, bugs may turn up once the code is deployed in production.

The last two means of bug discovery present a significant challenge to developers: the
system can run for long periods before problems manifest themselves. The resulting exe-
cutions can contain a large number of events, most of which are not relevant to triggering
the bug. Understanding how a trace containing thousands of concurrent events lead the
system to an unsafe state requires significant expertise, time,1 and luck.

Faulty execution traces can be made easier to understand if they are first reduced, so
that only events that are relevant to triggering the bug remain. In fact, software devel-
opers often start troubleshooting by manually performing this reduction; they identify (i)
which events in the execution caused their system to arrive at the unsafe state, and (ii)

1Developers spend a significant portion of their time debugging (49% of their time according to one
study [69]), especially when the bugs involve concurrency (70% of reported concurrency bugs in [43] took
days to months to fix).
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which events are irrelevant (and can be ignored).

Since developer time is typically much more costly than machine time, automated re-
duction tools for sequential test cases [24, 136, 127] have already proven themselves valu-
able, and are routinely applied to bug reports for software projects such as Firefox [1],
LLVM [79], and GCC [42]. In this dissertation, we argue the following:

Thesis statement: It is possible to automatically reduce faulty executions of dis-
tributed systems.

We primarily focus on faulty executions generated in an automated test environment.
However, we also illustrate how one might reduce production executions.

We seek to provide execution reduction tools that leave developers of distributed sys-
tems with a ‘minimal causal sequence’ of triggering events, which are necessary and suf-
ficient for triggering the bug. We claim that the greatly reduced size of the trace makes it
easier for the developer to figure out which code path contains the underlying bug, allow-
ing them to focus their effort on the task of fixing the problematic code itself. As far as we
know, we are the first to show how to provide execution reduction tools for distributed
and concurrent systems without needing to analyze the code.

1.1 Challenges

Distributed executions have two distinguishing features. Most importantly, input events
(e.g., failures) are interleaved with internal events (e.g., intra-process message deliveries)
of concurrent processes. Execution reduction algorithms must therefore consider both
which input events and which (of the exponentially many) event interleavings (“sched-
ules”) are likely to be necessary and sufficient for triggering the bug. Our main contribu-
tion throughout this dissertation is a set of techniques for searching through the space of
event schedules in a timely manner; these techniques are inspired by our understanding
of how practical systems behave.

Distributed systems also frequently exhibit non-determinism (e.g., since they make
extensive use of wall-clock timers to detect failures). To reduce executions consistently
and reliably, we need to find ways to cope with this non-determinism.

We address these challenges from two perspectives.

1.1.1 Execution Reduction without Application-Layer Interposition

In chapter 3, we pose the following question:
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Can we automatically reduce executions without making any assumptions about the
language or instrumentation of the software under test?

The key advantage of this ‘blackbox’ approach to execution reduction is that it allows
us to avoid the (often substantial) engineering effort required to instrument and com-
pletely control all the sources of non-determinism in distributed systems. A blackbox
execution reduction tool can be applied easily to a wide range of systems without much
effort.

Rather than analyzing the code (which would violate our blackbox requirement), we
experiment with different executions and observe how the system behaves as a result. If
we find an execution that is shorter than the original and still triggers the same bug, we
can then ignore any of the events that we did not include from the original execution.
We continue experimenting with shorter executions until we know that we cannot make
further progress on reducing the size of the execution.

We develop our blackbox execution reduction techniques in the context of software-
defined networking (SDN) control software (explained in chapter 2.3). In lieu of
application-layer interposition, we interpose on a standard protocol used by all SDN con-
trol software: OpenFlow [87].

We develop an intuitive heuristic for choosing which event interleavings to explore:
we know that the original execution triggered the bug, so, when exploring modified exe-
cutions we should try to stay as close as possible to the original execution’s causal depen-
dencies. The mechanism we develop to implement this heuristic involves dynamically
inferring whether events we expect to show up (from the original execution) will in fact
show up in modified executions.

Without perfect interposition, we need to find ways to mitigate the effects of non-
determinism while we experimentally explore event interleavings. Through case studies,
we discover an effective set of mitigation strategies involving careful wall-clock spacing
between events, and replaying non-deterministic executions multiple times.

1.1.2 Execution Reduction with Application-Layer Interposition

Our investigation in chapter 3 focuses narrowly on one kind of distributed system, and,
without complete control over the execution, the heuristics we develop there leave room
for improvement. In chapter 4, we identify a computational model that allows us to
cleanly reason about new reduction heuristics. We also apply these heuristics successfully
to several types of distributed systems besides SDN control software.

The computational model we identify—the actor model—encapsulates all sources of
non-determinism from the network in a small number of interposition points. This makes
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it easy for us to gain (nearly) perfect control over the execution of events in actor-based
distributed systems. With this control in place, it is theoretically possible to simply enu-
merate all possible schedules, execute each one, and pick the smallest execution that trig-
gers the bug. The space of all possible schedules is intractably large however, which leads
to our main question:

How can we maximize reduction of trace size within bounded time?

Our approach is to carefully prioritize the order in which we explore the schedule
space. We prioritize schedules that are shorter than the original, and that we believe
will be likely to retrigger the invariant violation (since retriggering the invariant violation
allows us to make progress on reducing the execution).

For any prioritization function we choose, an adversary could construct the program
under test, or even just the initial execution, so that our our prioritization function does
not make any reduction progress within a limited time budget.

Fortunately, the systems we care about in practice are not constructed by adversaries.
They exhibit certain program properties, or constraints on their computational structure,
that we can take advantage of when designing our prioritization functions. We choose
our prioritization functions based on our understanding of these program properties.

Drawing from what we learned in chapter 3, the main program property we leverage
states that if one schedule triggers a bug, schedules that are “similar” in their causal struc-
ture should have a high probability of also triggering the bug. Translating this intuition
into a prioritization function requires us to address our second challenge:

How can we reason about the similarity or dissimilarity of two distinct executions?

We develop a hierarchy of equivalence relations between events, and show that sys-
tematically exploring schedules that are close to the original execution yield significant
gains in reduction over the previous heuristics described in chapter 3. We implement
these heuristics and use them to find and reduce several bugs in two very different types
of distributed systems: the Raft consensus protocol and the Spark data analytics engine.

1.2 Outline and Previously Published Work

The remainder of this dissertation proceeds as follows. We provide background on the
existing test case reduction algorithms we build upon in chapter 2. In chapter 3 we design
and evaluate execution reduction strategies that do not assume application-layer interpo-
sition. In chapter 4 we identify a deterministic (yet practically relevant) computational
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model for distributed systems, and show how to effectively reduce executions of systems
that adhere to that more refined model. We discuss how both of these approaches re-
late to previous literature in chapter 5, and we comment on avenues for future work and
conclude in chapter 6.

Chapter 3 revises published material from [104]. Chapter 4 revises published material
from [103].
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Input: T8 s.t. T8 is a sequence of externals, and test(T8) = 8. Output: T ′
8
= ddmin(T8) s.t. T ′

8
v T8,

test(T ′
8
) = 8, and T ′

8
is minimal.

ddmin(T8) = ddmin2(T8, ∅) where

ddmin2(T
′
8
, R) =


T ′

8
if |T ′

8
| = 1 (“base case”)

ddmin2

(
T1, R

)
else if test(T1 ∪R) = 8 (“in T1”)

ddmin2

(
T2, R

)
else if test(T2 ∪R) = 8 (“in T2”)

ddmin2

(
T1, T2 ∪R

)
∪ ddmin2

(
T2, T1 ∪R

)
otherwise (“interference”)

where 8 denotes an invariant violation, T1 < T ′
8
, T2 < T ′

8
, T1 ∪ T2 = T ′

8
, T1 ∩ T2 = ∅, and

|T1| ≈ |T2| ≈ |T ′
8
|/2 hold.

Figure 2.1: Delta Debugging Algorithm from [135]. v and < denote subsequence rela-
tions. TEST is defined in Algorithm 2.

Chapter 2

Background Material

2.1 Delta Debugging

Delta debugging is an algorithm for reducing test cases [135, 136]. The inputs to delta
debugging are a test input (e.g., an HTML file) that triggers a bug, a function for sepa-
rating out the components of the test input (e.g. individual HTML tags, or individual
ASCII characters), and a test runner (e.g., a script that starts a browser process, feeds in
the test HTML page to the browser, and finally checks whether the browser exhibited a
bug or not). Delta debugging seeks to reduce the size of the test input to a “minimal”
counterexample (a subset of the original test case) that still triggers the bug.1

1By “minimal”, we do not mean global minimality, since finding a globally minimal subset is intractable
(it is equivalent to enumerating the powerset of the original test case). Delta debugging instead seeks to
produce a 1-minimal subset, meaning that no single component of the subset can be removed while still
triggering the bug.
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Step Input Components TEST
1 e1 e2 e3 e4 · · · · 4

2 · · · · e5 e6 e7 e8 4

3 e1 e2 · · e5 e6 e7 e8 4

4 · · e3 e4 e5 e6 e7 e8 8

5 · · e3 · e5 e6 e7 e8 8 (e3 found)
6 e1 e2 e3 e4 e5 e6 · · 8

7 e1 e2 e3 e4 e5 · · · 4 (e6 found)
Result · · e3 · · e6 · ·

Table 2.1: Example execution of Delta Debugging, taken from [135]. ‘·’ denotes an ex-
cluded input component (external event), 8 denotes an invariant violation, and 4 denotes
lack of an invariant violation.

Delta debugging works by experimenting with different subsets of the original test
case. Each experiment involves feeding a subset of the original test case to the test runner
and checking whether the bug is still triggered. If the bug is still triggered, we know that
the components of the original test case that are not part of the subset are not necessary
for triggering the bug, and we can therefore ignore them. Delta debugging continues
experimenting with subsets until it knows that it has reached a 1-minimal result.

The simplest approach for selecting subsets of the original test case would be to re-
move one component at a time. Delta debugging does better in the average case by split-
ting the components in a fashion similar to binary search. We show a detailed specifica-
tion of the delta debugging simplification algorithm (the simple version [135] that we use
in this paper) in Figure 2.1.

For illustration, consider the execution of delta debugging shown in Table 2.1. The
original test case is a sequence of components e1, e2, e3, e4, e5, e6, e7, e8 that, when executed
by the test runner, results in an invariant violation 8. Delta debugging first checks the left
half of the components. The bug is not triggered (as reported by the test runner ‘TEST’),
so delta debugging then tries the right half of the components. Again, the bug is not
triggered, so delta debugging recurses, splitting the components into fourths instead of
halves. Whenever the invariant violation 8 is triggered, delta debugging knows that the
components not included in that subset can be ignored from then on. Delta debugging
continues trying to find which components are not necessary for triggering the invari-
ant violation. After the 7th experiment, delta debugging knows that it has reached a
1-minimal result, and produces the output e3, e6.

To be guaranteed to produce 1-minimal outputs, the version of delta debugging that
we employ [135] makes three assumptions about inputs: monotonicity, unambiguity, and
consistency. Inputs that violate monotonicity may contain components that “undo” the
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invariant violation triggered by the MCS, and may therefore exhibit inflated MCSes. In-
puts that violate unambiguity may exhibit multiple MCSes; delta debugging will return
one of them. The most important assumption is consistency, which requires that the test
outcome can always be determined, i.e., that each subset chosen by delta debugging is
semantically valid.

In this dissertation, we guarantee neither monotonicity nor unambiguity. We do how-
ever codify domain knowledge in order to ensure that each subset chosen by delta de-
bugging is semantically valid. By guaranteeing consistency, we can use a simple version
of delta debugging [135] that does not consider subset complements. The version of delta
debugging that considers subset complements [136] has the advantage that it is guar-
anteed to produce 1-minimal output even in the face of inconsistency, but it incurs an
additional factor of n in worst-case runtime complexity.

The delta debugging algorithm we use terminates in Ω(log n) invocations of the test
runner in the best case, and O(n) invocations in the worst case, where n is the number of
inputs in the original trace [135]. If it is difficult to ensure consistency, one could employ
the more expensive version of delta debugging, which terminates in O(n2) invocations in
the worst case [136].

2.2 Dynamic Partial Order Reduction

Delta debugging is designed for sequential test cases. In a concurrent environment, the
behavior of a software system depends not only on its inputs (e.g., commands from the
user or failure events), but also on interleavings of internal events (e.g., the order of reads
and writes to shared memory, as determined by a thread scheduler). To properly reduce
executions of concurrent systems, we therefore need to consider both the input events
(which can be considered together as a sequential collection of components to be reduced
by delta debugging), and the interleavings of internal events.

The key source of concurrency in a distributed system is the network. In response to
external (input) events, processes send messages to each other over the network, which
may (in the case of a fully asynchronous network) be arbitrarily reordered or delayed by
the network before they are delivered to their destination.

If we precisely control when the network delivers each message (as we do in chap-
ter 4), we can systematically explore the space of possible event interleavings. For a given
sequence of input (external) events, there is a finite number of possible event interleavings
(assuming a maximum bound on the number of message deliveries in the execution). We
could thus enumerate every possible event interleaving for each input subset chosen by
delta debugging, and report back to delta debugging whether any one of those interleav-
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Algorithm 1 The original depth-first version of Dynamic Partial Order Reduction
from [35]. last(S) denotes the configuration reached after executing S; next(κ,m) denotes
the state transition (message delivery) where the message m is processed in configuration
κ;→S denotes ‘happens-before’; pre(S, i) refers to the configuration where the transition
ti is executed; dom(S) means the set {1, . . . , n}; S.t denotes S extended with an additional
transition t.

Initially: EXPLORE(∅)
procedure EXPLORE(S)

κ← last(S)
for each message m ∈ pending(κ) do

if ∃i = max({i ∈ dom(S)|Si is dependent and may be coenabled with next(κ,m) and i 6→S m}):
E ← {m′ ∈ enabled(pre(S, i))|m′ = m or ∃j ∈ dom(S) : j > i and m′ = msg(Sj) and j →S m}
if E 6= ∅:

add any m′ ∈ E to backtrack(pre(S, i))
else

add all m ∈ enabled(pre(S, i)) to backtrack(pre(S, i))
if ∃m ∈ enabled(κ):

backtrack(κ)← {m}
done← ∅
while ∃m ∈ (backtrack(κ) \ done) do

add m to done
EXPLORE(S.next(κ,m))

ings triggered the invariant violation. Unfortunately, this approach is wildly intractable:
the number of possible event interleavings is factorial in the number of events.

As others have observed [44], many events occurring in a schedule (event interleav-
ing) are commutative, i.e., the system arrives at the same configuration regardless of the
order events are applied. For example, consider two events e1 and e2, where e1 is a mes-
sage from process a to be delivered to process c, and e2 is a message from process b to be
delivered to process d. Assume that both e1 and e2 are co-enabled, meaning they are both
pending at the same time and can be executed in either order. Since the events affect a
disjoint set of nodes (e1 changes the state at c, while e2 changes the state at d), executing e1
before e2 causes the system to arrive at the same state it would arrive at if we had instead
executed e2 before e1. e1 and e2 are therefore commutative. This example illustrates a
form of commutativity captured by the happens-before relation [68]: two message deliv-
ery events a and b are commutative if they are concurrent, i.e. a 6→ b and b 6→ a, and they
affect a disjoint set of nodes.2

Partial order reduction (POR) [44, 35] is a well-studied technique for pruning commu-
tative schedules from the search space. In the above example, given two schedules that

2Stronger forms of commutativity may hold if events cannot possibly be causally unrelated to each
other, for example when a distributed algorithm is stateless. Inferring such cases of commutativity would
require understanding of application semantics; in contrast, happens-before commutativity is independent
of the application.
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only differ in the order in which e1 and e2 appear, POR would only explore one sched-
ule. Dynamic POR (DPOR) [35] is a refinement of POR: at each step, it picks a pending
message to deliver, dynamically computes which other pending events are not concur-
rent with the message it just delivered, and sets backtrack points for each of these, which
it will later use (when exploring other non-equivalent schedules) to try delivering the
pending messages in place of the message that was just delivered.

We show the original depth-first version of Dynamic Partial Order Reduction in Algo-
rithm 1. We use DPOR as the basis for our execution reduction strategies in chapter 4; we
modify it to explore the schedule space in a prioritized order.

Our modified DPOR algorithm uses a priority queue rather than a (recursive) stack,
and tracks which schedules it has explored in the past. Tracking which schedules we
have explored in the past is necessary to avoid exploring redundant schedules (an ar-
tifact of our non depth-first exploration order, to be explained later in chapter 4). The
memory footprint required for tracking previously explored schedules continues grow-
ing for every new schedule we explore. Because we assume a fixed time budget though,
we typically exhaust our time budget well before we run out of memory.

There are a few desirable properties of the unmodified DPOR algorithm that we want
to maintain, despite our prioritized exploration order:

Soundness: any executed schedule should be valid, i.e. possible to execute on an unin-
strumented version of the program starting from the initial configuration.

Efficiency: the happens-before partial order for every executed schedule should never be
a prefix of any other partial orders that have been previously explored.

Completeness: when the state space is acyclic, the strategy is guaranteed to find every
possible safety violation.

Because we experimentally execute each schedule, soundness is easy to ensure (we
simply ensure that we do not violate TCP semantics if the application assumes TCP,
and we make sure that we cancel timers whenever the application asks to do so). Im-
proved efficiency is the main contribution of partial order reduction. The last property—
completeness—holds for our modified version of DPOR so long as we always set at least
as many backtrack points as depth-first DPOR.

2.3 Software Defined Networking

In chapter 3 we evaluate our blackbox execution reduction techniques on software-
defined networking (SDN) control software. Here we provide background on the SDN
architecture, and the types of bugs one might encounter in an SDN network.
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Figure 2.2: The SDN Stack: state layers are on the left, code layers are in the center, and
example bugs are on the right. Switches and routers are at the bottom layer of the stack.

SDN is a type of network architecture, designed to simplify network management.
It achieves simplicity by factoring the control plane of the network into a hierarchy of
abstractions. At the highest layer of abstraction, network operators specify policies for
the network. Layers beneath translate these high-level policies into low-level, policy-
compliant packet forwarding behavior.

We depict the layers of the SDN control plane in Figure 2.2. State layers hold a rep-
resentation of the network’s configuration, while code layers implement logic to maintain
the mapping between two state layers. State changes propagate in two directions: policy
changes from above map to configurations (i.e., forwarding entries) of lower layers, while
network events from below, such as link failures, map to view changes above.

At the highest layer are “control applications” (e.g., OpenStack Quantum [93]) that
specify routing, access control, or quality of service policies by configuring the logical
view. The logical view is a simplified, abstract representation of the network (often a
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single logical switch) designed to make it easy for the control application to specify poli-
cies. The network hypervisor maps the configuration of the logical entities to one or more
physical entities in the physical view. The physical view has a one-to-one correspon-
dence with the physical network, and it is the job of the network operating system (e.g.,
Onix [66], NOX [46]) to configure the corresponding network devices through a protocol
such as OpenFlow [87]. Finally, the firmware in each network device maps forwarding
tables to hardware configuration.

A key observation is that the purpose of the entire architecture is to translate human
intent to the low-level behavior of the network, and each layer performs one piece of this
translation process. Therefore, at any point in time, every state layer should be correctly
mapped to every other state layer, a property we loosely call “equivalence”.

Errors within the SDN control stack always result in broken equivalence between two or more
layers. For example, a breach of tenant isolation manifests itself as an inconsistency be-
tween a policy specified at the logical view (“Network A should not be able to see network
B’s packets”) and the state of the physical network (“One of the switches is sending pack-
ets to the wrong destination network”). If all state layers are equivalent, but unwanted
behavior persists, it must be the case that the configured policy does not match the oper-
ator’s intent, or hardware beyond the control plane’s view, such as an optical repeater, is
broken.

When the behavior of the network does not match an operator’s intent, the operator
must localize the symptoms to the system components that are responsible. Then, the
operator needs to understand what events (which determine the code path that leads
up to the problem) caused that component to misbehave. In this dissertation we focus
on making it easier for the operator to understand the events caused the component to
misbehave.
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Chapter 3

Reducing Faulty Executions of SDN
Control Software, Without
Application-Layer Interposition

3.1 Introduction

Software-defined networking (SDN) proposes to simplify network management by pro-
viding a simple logically-centralized API upon which network management programs
can be written. However, the software used to support this API is anything but simple:
the SDN control plane (consisting of the network operating system and higher layers) is
a complicated distributed system that must react quickly and correctly to failures, host
migrations, policy-configuration changes and other events. All complicated distributed
systems are prone to bugs, and from our first-hand familiarity with five open source con-
trollers and three major commercial controllers we can attest that SDN is no exception.

When faced with symptoms of a network problem (e.g. a persistent loop) that suggest
the presence of a bug in the control plane software, software developers need to identify
which events are triggering this apparent bug before they can begin to isolate and fix it.
This act of “troubleshooting” (which precedes the act of debugging the code) is highly
time-consuming, as developers spend hours poring over multigigabyte execution traces.1

Our aim is to reduce effort spent on troubleshooting distributed systems like SDN control
software, by automatically eliminating events from buggy traces that are not causally
related to the bug. We seek to produce a “minimal causal sequence” (MCS) of triggering
events.

1Software developers in general spend roughly half (49% according to one study [43]) of their time
troubleshooting and debugging, and spend considerable time troubleshooting bugs that are difficult to
trigger (70% of reported concurrency bugs in [43] took days to months to fix).
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Our goal of reducing execution traces is in the spirit of delta debugging [135], but
our problem is complicated by the distributed nature of control software: our input is
not a single file fed to a single point of execution, but an ongoing sequence of events
involving multiple actors. We therefore need to carefully control the interleaving of events
in the face of asynchrony, concurrency and non-determinism in order to reproduce bugs
throughout the reduction process. In contrast to deterministic replay approaches, we
strive to explore divergent execution paths. Crucially, in this chapter, we aim to reduce
execution traces without making assumptions about the language or instrumentation of
the control software.

In this chapter we demonstrate a troubleshooting system that, as far as we know, is
the first to meet these challenges (as we discuss further in chapter 5). Once our system
reduces a given execution trace to an MCS (or an approximation thereof), the developer
embarks on the debugging process. We claim that the greatly reduced size of the trace
makes it easier for the developer to figure out which code path contains the underlying
bug, allowing them to focus their effort on the task of fixing the problematic code itself.
After the bug has been fixed, the MCS can serve as a test case to prevent regression, and
can help identify redundant bug reports where the MCSes are the same.

Our troubleshooting system, which we call STS (SDN Troubleshooting System), con-
sists of 23,000 lines of Python, and is designed so that organizations can implement the
technology within their existing QA infrastructure (discussed in chapter 3.5); we have
worked with a commercial SDN company to integrate STS. We evaluate STS in two
ways. First and most significantly, we use STS to troubleshoot seven previously un-
known bugs—involving concurrent events, faulty failover logic, broken state machines,
and deadlock in a distributed database—that we found by fuzz testing five controllers
(Floodlight [36], NOX [46], POX [86], Pyretic [40], ONOS [92]) written in three differ-
ent languages (Java, C++, Python). Second, we demonstrate the boundaries of where
STS works well by finding MCSes for previously known and synthetic bugs that span a
range of bug types. In our evaluation, we quantitatively show that STS is able to reduce
(non-synthetic) bug traces by up to 98%, and we anecdotally found that reducing traces
to MCSes made it easy to understand their root causes.

3.2 Background

Network operating systems, the key component of SDN software infrastructure, consist
of control software running on a replicated set of servers, each running a controller in-
stance. Controllers coordinate between themselves, and receive input events (e.g. link
failure notifications) and statistics from switches (either physical or virtual), configura-
tion and policy changes via a management interface, and possibly packets from the dat-
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aplane. In response, the controllers issue forwarding instructions to switches. All input
events are asynchronous, and individual controllers may fail at any time. The controller
instances may communicate with each other over the dataplane network, or use a sepa-
rate dedicated network. In either case, controllers may become partitioned.

The goal of a network control plane is to configure the switch forwarding entries so
as to enforce one or more invariants, such as connectivity (i.e., ensuring that a route ex-
ists between every endpoint pair), isolation and access control (i.e., various limitations
on connectivity), and virtualization (i.e., ensuring that packets are handled in a manner
consistent with what would happen in the specified virtual network). A bug causes an
invariant to be violated. Invariants can be violated because the system was improperly
configured (e.g., the management system [93] or a human improperly specified their goals
to the SDN control plane), or because there is a bug within the SDN control plane itself. In
this chapter we focus on troubleshooting bugs in the SDN control plane after it has been
given a configuration.2

In commercial SDN development, software developers work with a team of QA engi-
neers whose job is to find bugs. The QA engineers exercise automated test scenarios that
involve sequences of external (input) events such as failures or policy changes on large
(software emulated or hardware) network testbeds. If they detect an invariant violation,
they hand the resulting trace to a developer for analysis.

The space of possible bugs is enormous, and it is difficult and time consuming to link
the symptom of a bug (e.g. a routing loop) to the sequence of events in the QA trace (which
includes both the external events and internal monitoring data), since QA traces contain
a wealth of extraneous events. Consider that an hour long QA test emulating event rates
observed in production could contain 8.5 network error events per minute [45] and 500
VM migrations per hour [107], for a total of 8.5 · 60 + 500 ≈ 1000 inputs.

3.3 Problem Definition

We represent the forwarding state of the network at a particular time as a configuration
c, which contains all the forwarding entries in the network as well as the liveness of the
various network elements. The control software is a system consisting of one or more
controller processes that takes a sequence of external network events E = e1→e2→···em
(e.g. link failures) as inputs, and produces a sequence of network configurations C =

c1, c2, . . . , cn.
2This does not preclude STS from troubleshooting misspecified policies (misconfigurations) so long as

test invariants [62] are specified separately.
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An invariant is a predicate P over forwarding state (a safety condition, e.g. loop-
freedom). We say that configuration c violates the invariant if P (c) is false, denoted P (c).

We are given an execution trace L generated by a centralized QA test orchestrator.3

The execution trace L contains a sequence of events
τL = e1→i1→i2→e2→···em→··· ip

which includes external events EL = e1 , e2 ···em injected by the orchestrator, and internal
events IL = i1 , i2 ··· ip triggered by the control software (e.g. OpenFlow messages). The
external events include timestamps {( ek , tk)} recorded from the orchestrator’s clock.

A replay of execution trace L involves replaying the external events EL, possibly
taking into account the occurrence of internal events IL. We denote a replay attempt
by replay(τ). The output of replay is a sequence of forwarding state configurations
CR = ĉ1, ĉ2, . . . , ĉn. Ideally replay(τL) produces the same sequence of network configu-
rations that occurred originally, but as we discuss later this does not always hold.

If the configuration sequence CL = c1, c2, . . . , cn associated with the execution trace L
violated predicate P (i.e.∃ci∈CL

.P (ci)) then we say replay(τ) = CR reproduces that viola-
tion if CR contains another faulty configuration (i.e.∃ĉi∈CR

.P (ĉi)).

The goal of our work is, when given an execution trace L that exhibited an invariant
violation,3 to find a small, replayable sequence of events that reproduces that invariant
violation. Within the context of this chapter, we define a minimal causal sequence (MCS)
to be a sequence τM where the external events EM ∈ τM are a subsequence of EL such that
replay(τM) reproduces the invariant violation, but for all proper subsequences EN of EM

there is no sequence τN such that replay(τN) reproduces the violation. Note that an MCS
is not necessarily globally minimal, in that there could be smaller subsequences of EL that
reproduce this violation, but are not a subsequence of this MCS.

We find approximate MCSes by deciding which events to eliminate and, more im-
portantly, when to inject external events. The key component of this system is a mock
network that can execute replay(). Our focus is on using the mock network to generate
random inputs (shown in Table 3.2), detecting bugs in control software, and then finding
MCSes that trigger them. We describe this process in the next section.

3.4 Approach

Given an execution trace L generated from testing infrastructure,3 our goal is to find an
approximate MCS, so that a human can examine the reduced execution rather than the
full trace. This involves two tasks: searching through subsequences of EL, and decid-

3We discuss how these execution traces are generated in chapter 3.5.
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ing when to inject external events for each subsequence so that, whenever possible, the
invariant violation is retriggered.

3.4.1 Searching for Subsequences

Checking random subsequences of EL would be one viable but inefficient approach to
achieving our first task. We do better by employing the delta debugging algorithm [135], a
divide-and-conquer algorithm for isolating fault-inducing inputs (described in chapter 2).
In our case, we use delta debugging to iteratively select subsequences of EL and replay
each subsequence with some timing T . If the bug persists for a given subsequence, delta
debugging ignores the other inputs, and proceeds with the search for an MCS within this
subsequence. See chapter 2.1 for a detailed explanation of the delta debugging algorithm.

The input subsequences chosen by delta debugging are not always valid. Of the pos-
sible inputs sequences we generate (shown in Table 3.2), it is not sensible to replay a
recovery event without a preceding failure event, nor to replay a host migration event
without modifying its starting position when a preceding host migration event has been
pruned. Our implementation of delta debugging therefore prunes failure/recovery event
pairs as a single unit, and updates initial host locations whenever host migration events
are pruned so that hosts do not magically appear at new locations.4 These two heuris-
tics account for validity of all network events shown in Table 3.2. We do not yet support
network policy changes as events, which have more complex semantic dependencies.5

3.4.2 Searching for Timings

Simply exploring subsequences ES of EL is insufficient for finding MCSes: the timing of
when we inject the external events during replay is crucial for reproducing violations.

Existing Approaches. The most natural approach to scheduling external events is to
maintain the original wall-clock timing intervals between them. If this is able to find
all reduction opportunities, i.e. reproduce the violation for all subsequences that are a su-
perset of some MCS, we say that the inputs are isolated. The original applications of delta
debugging [135] make this assumption (where a single input is fed to a single program),
as well as QuickCheck’s input “shrinking” [24] when applied to blackbox systems like
the synchronous part of telecommunications protocols [8].

We tried this approach for reducing our executions, but were rarely able to reproduce
invariant violations. As our case studies demonstrate (chapter 3.6), this is largely due to

4Handling invalid inputs is crucial for ensuring that the delta debugging algorithm finds a minimal
causal subsequence. See chapter 2.1 for a detailed discussion.

5If codifying the semantic dependencies of policy changes turns out to be difficult, one could just em-
ploy the more expensive version of delta debugging to account for inconsistency [136].
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the concurrent, asynchronous nature of distributed systems; consider that the network
can reorder or delay messages, or that controllers may process multiple inputs simul-
taneously. Inputs injected according to wall-clock time are not guaranteed to coincide
correctly with the current state of the control software.

We must therefore consider the internal events of the control software. To determin-
istically reproduce bugs, we would need visibility into every I/O request and response
(e.g. clock values or network messages), as well as all thread scheduling decisions for
each controller. This information is the starting point for thread schedule reduction tech-
niques, which seek to reduce thread interleavings leading up to race conditions. These
approaches involve iteratively feeding a single input (the thread schedule) to a single en-
tity (a deterministic scheduler) [22, 25, 57], or statically analyzing feasible thread sched-
ules [52].

A crucial constraint of these approaches is that they must keep the inputs fixed; that
is, the controller behavior must depend uniquely on the thread schedule. Otherwise, the
controllers may take a divergent code path. If this occurs some processes might issue a
previously unobserved I/O request, and the replayer will not have a recorded response;
worse yet, a divergent process might deschedule itself at a different point than it did orig-
inally, so that the remainder of the recorded thread schedule is unusable to the replayer
(since the original preemption points may no longer be executed).

By fixing the inputs, these approaches are forced to stay on the original code path, and
are unable to find alternate paths that still trigger the invariant violation. They can only
indirectly reduce inputs by truncating thread executions (i.e. causing them to exit early),
or by removing threads that are entirely extraneous. They consequently strive for a subtly
different goal than ours: reducing thread context switches rather than input events.

With additional information obtained by control flow and data flow analysis [71, 109,
53] however, the inputs no longer need to be fixed. The internal events considered by
these techniques are individual instructions executed by the programs (obtained by in-
strumenting the language runtime), in addition to I/O responses and the thread sched-
ule. With access to the instruction-level execution, they can compute program flow de-
pendencies, and thereby remove input events from anywhere in the trace as long as they
can prove that doing so cannot possibly cause the faulty execution path to diverge.

Although reduction augmented with control flow and data flow analysis is able to
reduce inputs rather than thread context switches, these techniques still do not find al-
ternate executions that trigger the same invariant violation. They are also overly con-
servative in removing inputs (e.g. EFF takes the transitive closure of all possible depen-
dencies [71]) causing them to miss opportunities to remove dependencies that actually
semantically commute.
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Allowing Divergence. Our approach is to dynamically respond to I/O requests during
execution reduction rather than recording all I/O requests and thread scheduling deci-
sions. This has several advantages. Unlike the other approaches, we can find shorter
alternate code paths that still trigger the invariant violation, since we are not constrained
to executing the exact code path from the original run. Previous best-effort execution re-
duction techniques [26, 115] also allow alternate code paths, but do not systematically
consider concurrency and asynchrony.6 We also avoid the runtime overhead of recording
all I/O requests and later replaying them (e.g. EFF incurs roughly 10x slowdown during
replay due to the overhead of code tracing [71]). Lastly, we avoid the extensive effort
required to instrument the control software’s language runtime, needed by the other ap-
proaches to implement a deterministic thread scheduler, interpose on syscalls, or perform
program flow analysis. By avoiding assumptions about the language of the control soft-
ware, we were able to easily apply our system to five different control platforms written
in three different languages.7

Accounting for Interleavings. To reproduce the invariant violation (whenever ES is a su-
perset of an MCS) we try to inject each input event e only after all other events, including
internal events triggered by the control software itself, that precede it in the happens-
before relation [68] from the original execution ({i | i → e }) have occurred [110]. The
intuition behind this heuristic is that we know that the original execution triggered the
invariant violation, so we should strive to stay as close to the causal (happens-before)
structure of the original execution as possible (while we prune subsequences of the exter-
nal events).

The internal events we consider are (a) message delivery events, either between con-
trollers (e.g. database synchronization messages) or between controllers and switches
(e.g. OpenFlow commands), and (b) state transitions within controllers (e.g. a backup node
deciding to become master). Our test orchestrator obtains visibility into (a) by interposing
on all messages within the test environment (to be described in chapter 3.5). It optionally
obtains partial visibility into (b) by instrumenting controller software with a simple in-
terposition layer (to be described in chapter 3.5.2). By virtue of controlling inputs and
message deliveries from a central location, we are able to totally-order the event trace τL.

Note that (in this chapter) we do not have control over the occurrence of internal
events, so we do not attempt to reduce them. Crucially though, we want to ensure that
the ordering of input and internal events during replay() of each subsequence is as close
as possible to the original happens-before relation, so that we can find invariant violations
(reduction opportunities) and report them to the delta debugging procedure as often as

6Park et al.[96] also reproduce multithreaded executions in a best-effort fashion (allowing for alternate
code paths), but do not reduce the execution or consider event modifications.

7Some of the controllers actually comprise multiple languages.
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Internal message Masked values
OpenFlow messages xac id, cookie, buffer id, stats
packet out/in payload all values except src, dst, data
Log statements varargs parameters to printf

Table 3.1: Internal messages and their masked values.

possible. Our test orchestrator therefore uses its interposition on internal messages to
reorder or delay as necessary during replay.

Maintaining the happens-before relation from the original trace (which reproduces the
violation) throughout replay of subsequences of the trace (which may or may not repro-
duce that violation) requires us to address three issues: coping with syntactic differences
in internal events across runs, handling internal events from the original execution that
may not occur after pruning, and dealing with new internal events that were not observed
at all in the original execution.

Functional Equivalence. Internal events may differ syntactically when replaying a subse-
quence of the original execution trace. For example, consider sequence numbers, which
are incremented by one for every message sent or received. When replaying a subse-
quence of the external events, the sequence numbers of internal messages may all differ
in value from the original execution.

We observe that many internal events are functionally equivalent, in the sense that they
have the same effect on the state of the system with respect to triggering the invariant
violation (despite syntactic differences). For example, flow_mod messages may cause
switches to make the same change to their forwarding behavior even if their transaction
ids differ.

We leverage this observation by defining masks over semantically extraneous fields
of internal events.8 We only need to define these masks once (in our case, we only define
them once for the OpenFlow protocol), and we can then programmatically apply our
defined masks during execution reduction from there on out.

We show the OpenFlow header fields we mask in Table 3.1. We consider an internal
event i′ observed in the replay equivalent (in the sense of inheriting all of its happens-
before relations) to an internal event i from the original execution trace if and only if all
unmasked fields have the same value and i occurs between i′’s preceding and succeeding
inputs in the happens-before relation.

Handling Absent Internal Events. Some internal events from the original execution trace
8One consequence of applying masks is that bugs involving masked fields are outside the purview of

our approach.
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Input Type Implementation
Switch failure/recovery TCP teardown
Controller failure/recovery SIGKILL
Link failure/recovery ofp_port_status
Controller partition iptables
Dataplane packet injection Network namespaces
Dataplane packet drop Dataplane interposition
Dataplane packet delay Dataplane interposition
Host migration ofp_port_status
Control message delay Controlplane interposition
Non-deterministic TCAMs Modified switches

Table 3.2: Input types currently supported by STS.

that causally “happen before” some external input may be absent when we replay a sub-
sequence of that execution. For instance, if we prune an (external) link failure event, then
the corresponding link failure notification message will never arise.

We handle this possibility by attempting to “infer” the presence of expected internal
events before we replay each external event subsequence. Our algorithm (called PEEK())
for inferring the presence of internal events is depicted in Figure 3.1. The algorithm in-
jects each input, records a checkpoint9 of the network and the control software’s state,
allows the system to proceed up until the following input (plus a small time ε), records
the observed events, and matches the recorded events with the functionally equivalent
internal events observed in the original trace.10

Handling New Internal Events. The last possible change induced by pruning is the oc-
currence of new internal events that were not observed in the original execution trace.
New internal events indicate that there are multiple possibilities for where we might in-
ject the next input event. Consider the following case: if i2 and i3 are internal events
observed during replay that are both in the same equivalence class as a single event i1
from the original run, we could inject the next input after i2 or after i3.

In the general case it is always possible to construct two state machines (programs
under test) that lead to differing outcomes: one that only leads to the invariant violation
when we inject the next input before a new internal event, and another only when we
inject after a new internal event. In other words, to be guaranteed to traverse any existing
suffix through the program under test’s state machine that leads to the invariant violation,
we must recursively branch, trying both possibilities for every new internal event. This

9We discuss the implementation details of checkpointing in 3.5.3.
10In the case that, due to non-determinism, an internal event occurs during PEEK() but does not occur

during replay, we time out on internal events after ε seconds of their expected occurrence.
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Algorithm 3.4.1: PEEK(events)

procedure PEEK(input subsequence)
inferred← [ ]
for ei in subsequence

checkpoint system
inject ei

∆← |ei+1.time− ei.time|+ ε
record events for ∆ seconds
matched← original events & recorded events
inferred← inferred+ [ei] +matched
restore checkpoint

return (inferred)

Figure 3.1: PEEK determines which internal events from the original sequence occur for a
given subsequence.

implies an exponential number of possibilities to be explored in the worst case (we discuss
this intractability more formally in chapter 4).

Exponential search over these possibilities is not a practical option. In this chapter, our
heuristic is to simply ignore new internal events (keeping them pending in the network
and never delivering them), always injecting the next input when its last expected prede-
cessor either occurs or times out. This ensures that we always find suffixes through the
state machine that contain a subset of the (equivalent) original internal events, but leaves
open the possibility of finding divergent suffixes that lead to the invariant violation.

Recap. We combine the above heuristics to replay the execution for each external event
subsequence chosen by delta debugging: we compute functional equivalency for each
internal event intercepted by our interposition layer, we invoke PEEK() to infer absent
internal events, and with these inferred causal dependencies we replay the subsequence,
waiting to inject each input until each of its (functionally equivalent) predecessors have
occurred while allowing unexpected messages through immediately.

3.4.3 Complexity

The delta debugging algorithm terminates after Ω(log n) invocations of replay in the
best case, and O(n) in the worst case, where n is the number of inputs in the original
trace [135]. Each invocation of replay takes O(n) time (one iteration for PEEK() and one it-
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eration for the replay itself), for an overall runtime of Ω(n log n) best case and O(n2) worst
case replayed inputs.

The runtime can be decreased by parallelizing delta debugging: speculatively replay-
ing subsequences in parallel, and joining the results. Storing periodic checkpoints of the
system’s state throughout testing can also reduce runtime, as it allows us to replay start-
ing from a recent checkpoint rather than the beginning of the trace.

3.5 Systems Challenges

Thus far we have assumed that we are given a faulty execution trace, generated by a net-
work testbed. We now provide an overview of how we use a testbed to obtain execution
traces, and then describe our system for reducing them.

Obtaining Traces. All three of the commercial SDN companies that we know of employ a
team of QA engineers to fuzz test their control software on network testbeds, as depicted
in Figure 3.2. This fuzz testing infrastructure consists of the control software under test,
the network testbed (which may be software or hardware), and a centralized test orches-
trator that chooses input sequences, drives the behavior of the testbed, periodically checks
invariants, and manages log files. When a bug is discovered, a QA engineer triages it and
then sends logs to a software developer for further troubleshooting.

We do not have access to such a QA testbed, and instead built our own. Our testbed
mocks out the control plane behavior of network devices in lightweight software switches
and hosts (with support for minimal data plane forwarding). We then run the control soft-
ware on top of this mock network and connect the software switches to the controllers.
The mock network manages the execution of events from a single location, which allows
it to record a serial event ordering. This design is similar to production software QA
testbeds, and is depicted in Figure 3.3. One distinguishing feature of our design is that
the mock network interposes on all communication channels, allowing it to delay, drop,
or reorder messages as needed to induce failure modes that might be seen in real, asyn-
chronous networks.

We use our mock network to perform testing on controllers to find bugs. Most com-
monly we generate random input sequences based on event probabilities that we assign
(cf. chapter 3.6.8), and periodically check the network for invariant violations.11 We also
sometimes run the mock network interactively, where we manually direct each event that
mock network injects. Interactive mode is useful for examining the state of the network
and developing an intuition for how to to induce event orderings that we believe may

11We currently support the following invariants: (a) all-to-all reachability, (b) loop freeness, (c) blackhole
freeness, (d) controller liveness, and (e) POX ACL compliance.
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Figure 3.2: Typical QA testbed. A centralized test orchestrator injects inputs and checks
invariants

trigger bugs.

Reducing Executions. After discovering an invariant violation of interest, we apply delta
debugging to reduce the recorded trace. We use the testing infrastructure itself to replay()

the events for each of delta debugging’s external event subsequences. During replay()

the mock network enforces event orderings according to the heuristics we developed in
chapter 3.4. It enforces event orderings by buffering any message it receives through
interposition, and carefully scheduling the messages that it allows to be delivered. To
account for internal events that the mock network does not interpose on (e.g., internal
events within a controller that do not involve message sends), the mock network waits a
certain period of time between injecting each external event.

Consider the following example of how the mock network performs event scheduling:
if the original trace included a link failure preceded by the arrival of a heartbeat message
from the controller, during replay() the mock network waits until it observes a function-
ally equivalent ping probe to arrive, allows the probe through, then tells the switch to fail
its link.

STS is our implementation of this system. STS is implemented in more than 23,000
lines of Python in addition to the Hassel network invariant checking library [62]. STS also
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Figure 3.3: STS runs mock network devices, and interposes on all communication chan-
nels.

optionally makes use of Open vSwitch [97] as an interposition point for messages
sent between controllers. We have made the code for STS publicly available at ucb-
sts.github.com/sts.

Integration With Existing Testbeds. In designing STS we aimed to make it possible for
engineering organizations to implement the technology within their existing QA test in-
frastructure. Organizations can add delta debugging to their test orchestrator, and op-
tionally add interposition points throughout the testbed to control event ordering during
replay. In this way they can continue running large scale networks with the switches,
middleboxes, hosts, and routing protocols they had already chosen to include in their QA
testbed.

We avoid making assumptions about the language or instrumentation of the software
under test in order to facilitate integration with preexisting software. Many of the heuris-
tics we describe below are approximations that might be made more precise if we had
more visibility and control over the system, e.g. if we could deterministically specify the
thread schedule of each controller.

http://ucb-sts.github.com/sts
http://ucb-sts.github.com/sts
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3.5.1 Coping with Non-Determinism

Non-determinism in the execution of concurrent processes stems from several sources:
differences in system call return values, process scheduling decisions (which can even
affect the result of individual instructions, such as x86’s interruptible block memory in-
structions [30]), and asynchronous signal delivery. These sources of non-determinism can
affect whether STS is able to reproduce the original bug during replay.

Most testing systems, such as the QA testing frameworks we are trying to improve,
do not mitigate non-determinism. STS’s main approach to coping with non-determinism
is to replay each subsequence chosen by delta debugging multiple times. If the non-
deterministic bug occurs with probability p, we can (assuming that non-determinism is an
i.i.d. random variable) model the probability12 that we will observe it within r replays as
1−(1−p)r. This exponential works strongly in our favor; for example, even if the original
bug is triggered in only 20% of replays, the probability that we will not trigger it during
an intermediate replay is approximately 1% if we replay 20 times per subsequence.13

3.5.2 Mitigating Non-Determinism

When non-determinism acutely impacts replay, one might seek to prevent non-
determinism altogether. However, this often involves significant engineering effort and
substantial runtime overheads. In this chapter, we investigate whether we can success-
fully reduce executions without fully controlling non-determinism.

In lieu of complete control over non-determinism, we place STS in a position to record
and replay all network events in serial order, and ensure that all data structures within
STS were unaffected by randomness. For example, we avoid using hashmaps that hash
keys according to their memory address, and sort all list return values.

In some cases, a small amount of interposition on the controller software can be bene-
ficial. Routing the gettimeofday() syscall through STS helps ensure timer accuracy.1415

When sending data over multiple sockets, the operating system exhibits non-determinism
in the order it schedules I/O operations. STS optionally ensures a deterministic order of
messages by multiplexing all sockets onto a single true socket. On the controller side
STS currently adds a shim layer atop the control software’s socket library,16 although this

12This probability could be improved by guiding the thread schedule towards known error-prone inter-
leavings [95, 96].

13See chapter 3.6.5 for an experimental evaluation of this model.
14When the pruned trace differs from the original, we make a best-effort guess at what the return values

of these calls should be. For example, if the altered execution invokes gettimeofday() more times than
we recorded in the initial run, we interpolate the timestamps of neighboring events.

15Only supported for POX and Floodlight at the moment.
16Only supported for POX at the moment.
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could be achieved transparently with a libc shim layer [41].

Controllers also go through internal state transitions that do not involve message
sends (which STS already interposes on). With a small amount of interposition on the
control software’s logging library however, STS can gain gain visibility into the most rel-
evant internal state transitions. This interposition15 works as follows: whenever a control
process executes a log statement, which often indicates that an important state transition
is about to take place, we notify STS. Such coarse-grained visibility into internal state
transitions does not handle all cases, but we find it suffices in practice.17 We can also
optionally use logging interposition as a synchronization barrier, by blocking the process
when it executes crucial logging statements until STS explicitly tells the process that it
may proceed.

If blocking was enabled during recording, we force the control software to block at
internal state transition points again during replay until STS gives explicit acknowledg-
ment.

3.5.3 Checkpointing

To efficiently implement the PEEK() algorithm depicted in Figure 3.1 we assume the abil-
ity to record checkpoints (snapshots) of the state of the system under test. We currently
implement checkpointing for the POX controller18 by telling it to fork() itself and sus-
pend its child, transparently cloning the sockets of the parent (which constitute shared
state between the parent and child processes, since the socket state is managed by the ker-
nel), and later resuming the child. This simple mechanism does not work for controllers
that use other shared state such as disk. To handle other shared state one could checkpoint
processes within lightweight Unix containers [76]. For distributed controllers, one would
also need to implement a consistent cut algorithm to account for in-flight messages when
taking the snapshot [19], which is available in several open source implementations [6].

If developers do not choose to employ checkpointing, they can use our implementa-
tion of PEEK() that replays all inputs from the beginning of the execution, thereby increas-
ing replay runtime by a factor of n. Alternatively, they can avoid PEEK() and solely use
the event scheduling heuristics described in chapter 3.5.4.

Beyond its use in PEEK(), snapshotting has three advantages. As mentioned in chap-
ter 3.4.3, only considering events starting from a recent checkpoint rather than the begin-
ning of the execution decreases the number of events to be reduced. By shortening the
replay time, checkpointing coincidentally helps cope with the effects of non-determinism,
as there is less opportunity for divergence in timing. Lastly, checkpointing can improve

17We discuss this limitation further in chapter 3.5.7.
18We only use the event scheduling heuristics described in chapter 3.5.4 for the other controllers.
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the runtime of delta debugging, since many of the subsequences chosen throughout delta
debugging’s execution share common input prefixes.

3.5.4 Timing Heuristics

We have found a number of heuristics useful for ensuring that invariant violations are
consistently reproduced during replay. These heuristics may be used alongside or instead
of PEEK(). We evaluated the effectiveness of these heuristics using visualization tools
(described in chapter 3.5.5) to compare replay executions with and without the heuristics
enabled.

Event Scheduling. If we had perfect visibility into the internal state transitions of con-
trol software, we would be able to systematically explore the space of possible non-
deterministic choices. Unfortunately this level of interposition is difficult to obtain for
general software systems. Instead, we develop a few heuristics for accounting for inter-
nal events that we do not interpose on.

We find that keeping the wall-clock spacing between replay events close to the
recorded timing helps (but does not alone suffice) to ensure that invariant violations are
consistently reproduced. When replaying events, we sleep() between each event for
the same duration that was recorded in the original trace, less the time it takes to replay
each event. Accounting for the extra time it takes to replay events is especially important
when we time out on internal events, or when input events take a long time to inject.

Whitelisting keepalive messages. We observed during some of our experiments that the
control software incorrectly inferred that links or switches had failed during replay, when
it had not done so in the original execution. Upon further examination we found in these
cases that LLDP and OpenFlow echo packets periodically sent by the control software
were staying in STS’s buffers too long during replay, such that the control software would
time out on them. To avoid these differences in timing we added an option to always pass
through keepalive messages that mitigates the issue. The limitation of this heuristic is that
it cannot be used on bugs involving keepalive messages.

Whitelisting dataplane events. Dataplane forward/drop events constitute a substantial
portion of overall events. However, for many of the controller applications we are inter-
ested in, dataplane forwarding is only relevant insofar as it triggers control plane events
(e.g. host discovery). We find that allowing dataplane forward events through by default,
i.e. never timing out on them during replay, can greatly decrease skew in wall-clock tim-
ing.

Using logging statements as barriers. We also experimented with using logging state-
ments within control software to manipulate its execution speed, for use in the rare cases
in which we observed high variability in the controllers’ response time. Our technique
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is to cause our logging interposition layer to block the entire controller process each time
it issues a logging statement until STS gives it explicit permission to proceed. We found
that some care is needed to deal with unexpected state transitions, since the controller
process will block indefinitely until STS gives it acknowledgment. We currently turn this
heuristic off by default.

3.5.5 Debugging Tools

Throughout our experimentation with STS, we often found that reduced event traces
alone were insufficient to pinpoint the root causes of bugs. We therefore implemented
a number of complementary debugging tools within STS, which we use along with Unix
utilities to help us complete the final stage of debugging. We illustrate their use in chap-
ter 3.6.

OFRewind. STS supports an interactive replay mode similar to OFRewind [123] that
allows troubleshooters to query the state of the network throughout replay, filter subsets
of the events, check additional invariants, and even induce new events that were not part
of the original event trace. Similar to OFRewind, we do not run concurrent controller
processes while the user is interactively performing replay, since proper replay across
concurrent processes requires precise timing. Instead, STS replays the exact OpenFlow
commands from the original trace to the switches, and creates mock TCP connections
that drop any messages sent to the controllers.

Packet Tracing. Especially for SDN controllers that react to flow events, we found it use-
ful to trace the path of individual packets throughout the network. STS includes tracing
instrumentation similar to NetSight [50] for this purpose.

OpenFlow Reduction. The OpenFlow commands sent by controller software are often
somewhat redundant. For example, controllers may override routing entries, allow them
to expire, or periodically flush the contents of flow tables and later repopulate them.
STS includes a tool for filtering out such redundant messages and displaying only those
commands that are directly relevant to triggering invalid network configurations.

Event Visualization. Understanding the timing of messages and internal state transitions
is a crucial part of troubleshooting distributed systems. STS includes two visualization
tools designed to aid with this task. First, we include a tool to visualize space-time dia-
grams [68] of event traces. Second, we include a tool to visually highlight event ordering
differences between multiple event traces, which is especially useful for comparing the
behavior of intermediate delta debugging replays in the face of acute non-determinism.
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3.5.6 Scaling and Parallelization

When reducing very large event traces we found that the garbage collector for our mock
network often became overwhelmed (causing the process to slow down substantially) af-
ter replaying several subsequences, since each replay could occupy gigabytes of memory
with many small objects. After observing this behavior, we modified STS to fork a process
(either local or remote) for each subsequence chosen by delta debugging, and gather the
results of the replay via RPC; the OS cleans up the forked process, eliminating garbage
collection overhead. As an added benefit, this architectural change allows us to support
parallelized delta debugging across multiple cores or machines.

3.5.7 Limitations

Having detailed the specifics of our approach we now clarify the scope of our technique’s
use.

Partial Visibility. Our event scheduling algorithm assumes that it has visibility into the
occurrence of all relevant internal events. For some controllers this may involve substan-
tial instrumentation effort beyond pre-existing log statements, though as we show in our
evaluation, most bugs we encountered can be reduced without perfect visibility.

Non-determinism. Non-determinism is pervasive in networking. When non-
determinism is present STS (i) replays multiple times per subsequence, and (ii) employs
software techniques for mitigating non-determinism, but it may nonetheless output a
non-minimal causal sequence. In the common case this is still better than what devel-
opers had before, since developers generally do not have tools for reproducing non-
deterministic bugs. In the worst case STS leaves the developer where they started: an
unpruned execution trace.

Lack of Guarantees. Due to partial visibility and non-determinism, we do not provide
guarantees on MCS minimality.

Troubleshooting vs. Debugging. Our technique is a troubleshooting tool, not a debug-
ger; by this we mean that our approach helps identify and localize inputs that trigger
erroneous behavior, but it does not directly identify which line(s) of code cause the error.

Bugs Outside the Control Software. Our goal is not to find the root cause of individual
component failures in the system (e.g. misbehaving routers, link failures). Instead, we
focus on how the distributed system as a whole reacts to the occurrence of such inputs.

Interposition Overhead. Performance overhead from interposing on messages may pre-
vent STS from reducing bugs triggered by high message rates.19 Similarly, STS’s design
may prevent it from reducing extremely large traces, as we evaluate in chapter 3.6.

19Although this might be mitigated with time warping [47].
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Bug Name Topology Runtime (s) Input Size MCS Size MCS helpful?

N
ew

ly
Fo

un
d

Pyretic loop 3 switch mesh 266.2 36 2 Yes
POX premature PacketIn 4 switch mesh 249.1 102 2 Yes
POX in-flight blackhole 2 switch mesh 641.1 46 7 Yes
POX migration blackhole 4 switch mesh 1796.0 29 3 Yes
NOX discovery loop 4 switch mesh 4990.9 150 18 Indirectly
Floodlight loop 3 switch mesh 27930.6 117 13 Yes
ONOS distributed database locking 2 switch mesh N/A 1 1 N/A

K
no

w
n Floodlight failover bug 2 switch mesh - 202 2 Yes

ONOS master election 2 switch mesh 6325.2 30 3 Yes
POX load balancer error checking 3 switch mesh 2396.7 106 24 (N+1) Yes

Sy
nt

he
ti

c

Null pointer on rarely used codepath 20 switch FatTree 157.4 62 2 Yes
Overlapping flow entries 2 switch mesh 115.4 27 2 Yes
Delicate timer interleaving 3 switch mesh N/A 39 39 No
Algorithm misimplementation 3 switch mesh 525.2 40 7 Indirectly
Multithreaded race condition 10 switch mesh 36967.5 1596 2 Indirectly
Memory leak 2 switch mesh 15022.6 719 30 (M) Indirectly
Memory corruption 4 switch mesh 145.7 341 2 Yes

Table 3.3: Overview of Case Studies.

Globally vs. Locally Minimal Input Sequences. Our approach is not guaranteed to find
the globally minimal causal sequence from an input trace, since this involves enumer-
ating the powerset of EL (a O(2n) operation). The delta debugging algorithm we em-
ploy does (assuming deterministic executions) provably find a locally minimal causal
sequence [135], meaning that if any input from the sequence is pruned, no invariant vio-
lation occurs.

Correctness vs. Performance. We are primarily focused on correctness bugs, not perfor-
mance bugs.

Bugs Found Through Fuzzing. We generate bugs primarily through fuzz testing, not by
finding them in operational traces. There is a substantial practical hurdle in instrumenting
operational systems to produce execution traces that can be injected into our system, as
discussed in chapter 3.7.

Scaling. Our discussions with companies with large SDN deployments suggest that scal-
ing to the size of the large execution traces they collect will be a substantial challenge. On
the other hand, the fact that these execution traces are so large makes the need for finding
MCSes even more acute.

3.6 Evaluation

We first demonstrate STS’s viability in troubleshooting real bugs. We found seven new
bugs by fuzz testing five open source SDN control platforms: ONOS [92] (Java), POX [86]
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(Python), NOX [46] (C++), Pyretic [40] (Python), and Floodlight [36] (Java), and debugged
these with the help of STS. Second, we demonstrate the boundaries of where STS works
well and where it does not by finding MCSes for previously known and synthetic bugs
that span a range of bug types encountered in practice.

Our ultimate goal is to reduce developer effort spent on troubleshooting bugs. As
this is difficult to measure,20 since developer skills and familiarity with code bases dif-
fers widely, we instead quantitatively show how well STS reduces execution traces, and
qualitatively relay our experience using MCSes to debug the newly found bugs.

We show a high-level overview of our results in Table 3.3, and illustrate in de-
tail how STS found MCSes in the rest of this section. Interactive visualizations and
replayable event traces for all of these case studies are publicly available at ucb-
sts.github.com/experiments.

3.6.1 New Bugs

Pyretic Loop. We discovered a loop when fuzzing Pyretic’s hub module, whose purpose
is to flood packets along a minimum spanning tree. After reducing the execution (runtime
in Figure 3.4a), we found that the triggering event was a link failure at the beginning of
the trace followed some time later by the recovery of that link. After roughly 9 hours
over two days of examining Pyretic’s code (which was unfamiliar to us), we found what
we believed to be the problem in its logic for computing minimum spanning trees: it
appeared that down links weren’t properly being accounted for, such that flow entries
were installed along a link even though it was down. When the link recovered, a loop
was created, as the flow entries were still in place. The loop seemed to persist until Pyretic
periodically flushed all flow entries.

We filed a bug report along with a replayable MCS to the developers of Pyretic. They
found after roughly five hours of replaying the trace with STS that Pyretic told switches
to flood out all links before the entire network topology had been learned (including the
down link). By adding a timer before installing entries to allow for links to be discovered,
the developers were able to verify that the loop no longer appeared. A long term fix for
this issue is currently being discussed by the developers of Pyretic.

POX Premature PacketIn. We discovered this bug accidentally During a particular
fuzzing run, the l2_multi module failed unexpectedly with a KeyError. The initial
trace had 102 input events, and STS reduced it to an MCS of 2 input events as shown in
Figure 3.4b.

We repeatedly replayed the MCS while adding instrumentation to the POX code. The
root cause was a race condition in POX’s handshake state machine. The OpenFlow stan-

20We discuss this point further in chapter 3.7.

http://ucb-sts.github.com/experiments
http://ucb-sts.github.com/experiments
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dard requires a 2-message handshake. Afterwards, the switch is free to send arbitrary
messages. POX, however, requires an additional series of message exchanges before con-
sidering the switch fully connected and notifying the application modules of its presence
via a SwitchUp event.

In this case, the switch was slow in completing the second part of the handshake, caus-
ing the SwitchUp to be delayed. During this window, a PacketIn (LLDP packet) was for-
warded to POX’s discovery module, which in turned raised a LinkEvent to l2_multi,
which then failed because it expected SwitchUp to occur first. We verified with the lead
developer of POX that is a true bug.

This case study demonstrates how even a simple handshake state machine can behave
unexpectedly and in a non-trivial manner that is hard to understand without being able
to repeat the experiment with a reduced trace. Making heavy use of the MCS replay,
a developer unfamiliar with the two subsystems was able to root-cause the bug in ˜30
minutes.
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(a) Pyretic loop.
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(b) POX premature packet-in.
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(c) POX in-flight blackhole.

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20  25

N
um

be
r o

f R
em

ai
ni

ng
 In

pu
ts

Number of Replays Executed

(d) POX migration blackhole.
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(e) NOX discovery loop.
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(f) Floodlight loop.

Figure 3.4: Execution reduction results.

POX In-flight Blackhole. We discovered another bug after roughly 20 runs of ran-
domly generated inputs. We noticed a persistent blackhole while POX was bootstrap-
ping its discovery of link and host locations. There were 46 inputs in the initial trace.
The initial trace was affected by non-determinism and only replayed successfully 15/20
times. We were able to reliably replay it by employing multiplexed sockets, overriding
gettimeofday(), and waiting on POX’s logging messages. STS returned a 7 input MCS
(runtime shown in Figure 3.4c).
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We provided the MCS to the lead developer of POX. Primarily using the console out-
put, we were able to trace through the code and identify the problem within 7 minutes,
and were able to find a fix for the race condition within 40 minutes. By matching the con-
sole output with the code, he found that the crucial triggering events were two in-flight
packets (set in motion by prior traffic injection events): POX first incorrectly learned a
host location as a result of the first in-flight packet showing up immediately after POX
discovered that port belonged to a switch-switch link—apparently the code had not ac-
counted for the possibility of in-flight packets directly following link discovery—and then
as a result the second in-flight packet POX failed to return out of a nested conditional that
would have otherwise prevented the blackholed routing entries from being installed.

POX Migration Blackhole. We noticed after examining POX’s code that there might be
some corner cases related to host migrations. We set up randomly generated inputs, in-
cluded host migrations this time, and checked for blackholes. Our initial input size was
115 inputs. STS produced a 3 input MCS (shown in Figure 3.4d): a packet injection from
a host (‘A’), followed by a packet injection by another host (‘B’) towards A, followed by a
host migration of A. This made it immediately clear what the problem was. After learn-
ing the location of A and installing a flow from B to A, the routing entries in the path
were never removed after A migrated, causing all traffic from B to A to blackhole until
the routing entries expired.

NOX Discovery Loop. Next we tested NOX on a four-node mesh, and discovered a rout-
ing loop between three switches within roughly 20 runs of randomly generated inputs.

Our initial input size was 68 inputs, and STS returned an 18 input MCS. Our approach
to debugging was to reconstruct from the reduced execution trace how NOX should have
installed routes, then compare how NOX actually installed routes. This case took us
roughly 10 hours to debug. Unfortunately the final MCS did not reproduce the bug on
the first few tries, and we suspect this is due to the fact NOX chooses the order to send
LLDP messages randomly, and the loop depends crucially on this order. We instead used
the console output from the shortest subsequence that did produce the bug (21 inputs, 3
more than the MCS) to debug this trace.

The order in which NOX discovered links was crucial: at the point NOX installed
the 3-loop, it had only discovered one link towards the destination. Therefore all other
switches routed through the one known neighbor switch. The links adjacent to the neigh-
bor switch formed 2 of the 3 links in the loop.

The destination host only sent one packet, which caused NOX to initially learn its
correct location. After NOX flooded the packet though, it became confused about its lo-
cation. One flooded packet arrived at another switch that was currently not known to be
attached to anything, so NOX incorrectly concluded that the host had migrated. Other
flooded packets were dropped as a result of link failures in the network and randomly
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generated network loss. The loop was then installed when the source injected another
packet.

ONOS distributed database locking. When testing ONOS, a distributed open-source
controller, we noticed that ONOS controllers would occasionally reject switch attempts
to connect upon initialization. The initial trace was already reduced, as the initial input
was the single event of the switches connecting to the controllers with a particular tim-
ing. When examining the logs, we found that the particular timing between the switch
connects caused both ONOS controllers to encounter a “failed to obtain lock” error from
their distributed graph database. We suspect that the ONOS controllers were attempting
to concurrently insert the same key, which causes a known error. We modified ONOS’s
initialization logic to retry when inserting switches, and found that this eliminated the
bug.

Floodlight loop. Next we tested Floodlight’s routing application. In about 30 minutes,
our fuzzing uncovered a 117 input sequence that caused a persistent 3-node forwarding
loop. In this case, the controller exhibited significant non-determinism, which initially
precluded STS from efficiently reducing the input size. We worked around this by increas-
ing the number of replays per subsequence to 10. With this, STS reduced the sequence to
13 input events in 324 replays and 8.5 hours (runtime shown in Figure 3.4f).

We repeatedly replayed the 13 event MCS while successively adding instrumentation
and increasing the log level each run. After about 15 replay attempts, we found that
the problem was caused by interference of end-host traffic with ongoing link discovery
packets. In our experiment, Floodlight had not discovered an inter-switch link due to
dropped LLDP packets, causing an end-host to flap between perceived attachment points.

While this behavior cannot strictly be considered a bug in Floodlight, the case-study
nevertheless highlights the benefit of STS over traditional techniques: by repeatedly re-
playing a significantly reduced execution, we were able to diagnose the root cause—a
complex interaction between the LinkDiscovery, Forwarding, and DeviceManager mod-
ules.

3.6.2 Known bugs

In addition to our troubleshooting case studies, we evaluate STS’s ability to reduce traces
on a range of bug types, both known and synthetically injected by us.

Floodlight failover bug. We were able to reproduce a known problem in Floodlight’s
distributed controller failover logic [37] with STS. In Floodlight switches maintain one
hot connection to a master controller and several cold connections to replica controllers.
The master holds the authority to modify the configuration of switches, while the other
controllers are in backup mode and do not change the switch configurations. If a link
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fails shortly after the master controller has died, all live controllers are in the backup role
and will not take responsibility for updating the switch flow table. At some point when
a backup notices the master failure and elevates itself to the master role it will proceed
to manage the switch, but without ever clearing the routing entries for the failed link,
resulting in a persistent blackhole.

We ran two Floodlight controller instances connected to two switches, and injected 200
extraneous link and switch failures, with the controller crash and switch connect event21

that triggered the blackhole interleaved among them. We were able to successfully isolate
the two-event MCS: the controller crash and the link failure.

ONOS master election bug. We reproduced another bug, previously reported in earlier
versions and later fixed, in ONOS’s master election protocol. If two adjacent switches are
connected to two separate controllers, the controllers must decide between themselves
who will be responsible for tracking the liveness of the link. They make this decision by
electing the controller with the higher ID as the master for that link. When the master dies,
and later reboots, it is assigned a new ID. If its new ID is lower than the other controllers’,
both will incorrectly believe that they are not responsible for tracking the liveness of the
link, and the controller with the prior higher ID will incorrectly mark the link as unusable
such that no routes will traverse it. This bug depends on initial IDs chosen at random,
and ONOS is not instrumented to support deterministic replay of random values. We
mitigated this inherent non-determinism by replaying each subsequence 5 times. With
this setting, STS was able to reduce the trace to 3 elements.

POX load balancer error checking. We are aware that POX applications do not always
check error messages sent by switches rejecting invalid packet forwarding commands.
We used this to trigger a bug in POX’s load balancer application: we created a network
where switches had only 25 entries in their flow table, and proceeded to continue injecting
TCP flows into the network. The load balancer application proceeded to install entries for
each of these flows. Eventually the switches ran out of flow entry space and responded
with error messages. As a result, POX began randomly load balancing each subsequent
packet for a given flow over the servers, causing session state to be lost. We were able to
reduce the execution for this bug to 24 elements (there were two preexisting auxiliary flow
entries in each routing table, so 24 additional flows made the 26 (N+1) entries needed to
overflow the table). A notable aspect of this MCS is that its size is directly proportional to
the flow table space, and developers would find across multiple fuzz runs that the MCS
was always 24 elements.

21We used a switch connect event rather than a link failure event for logistical reasons, but both can
trigger the race condition.
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3.6.3 Synthetic bugs

Lastly, we injected synthetic bugs across a range of bug types into POX. For space reasons
we only briefly describe these bugs.

Delicate timer interleaving. We injected a crash on a code path that was highly depen-
dent on the interleaving of internal timers triggered within POX. This is a particularly
hard case for STS, since we have little control of internal timers. We were able to trigger
the code path during fuzzing, but were unable to reproduce the bug during replay after
five attempts, and were left with the original 39 input trace. This is the only case where
we were unable to replay trace.

Algorithm misimplementation. We modified POX’s implementation of Floyd-Warshall
to create loops. We noticed that the MCS was inflated by at least two events: a link failure
and a link recovery that we did not believe were relevant to triggering the bug we in-
duced. The final MCS also was not replayable on the first try. We suspect that these prob-
lems may have been introduced by the fact that the routing implementation depended on
the discovery module to find links in the network, and the order in which these links are
discovered is non-deterministic.

Overlapping flow entries. We ran two modules in POX: a capability manager in charge
of providing upstream DoS protection for servers, and a forwarding application. The ca-
pabilities manager installed drop rules upstream for servers that requested it, but these
rules had lower priority than the default forwarding rules in the switch. We were able to
reduce 27 inputs to the two traffic injection inputs necessary to trigger the routing entry
overlap.

Null pointer on rarely used codepath. On a rarely used-code path, we injected a null
pointer exception, and were able to successfully reduce a fuzz trace of 62 events to the
expected conditions that triggered that code path: control channel congestion followed
by decongestion.

Multithreaded race condition. We created a race condition between multiple threads that
was triggered by any packet I/O, regardless of input. With 5 replays per subsequence,
we were able to reduce a 1596 input in 10 hours 15 minutes to a replayable 2 element
failure/recovery pair as an MCS. The MCS itself though may have been somewhat mis-
leading to a developer (as expected), as the race condition was triggered randomly by any
I/O, not just these two inputs events.

Memory leak. We created a case that would take STS very long to reduce: a memory
leak that eventually caused a crash in POX. We artificially set the memory leak to happen
quickly after allocating 30 (M) objects created upon switch handshakes, and interspersed
691 other input events throughout switch reconnect events. The final MCS found after 4
hours 15 minutes was exactly 30 events, but it was not replayable. We suspect this was
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because STS was timing out on some expected internal events, which caused POX to re-
ject later switch connection attempts.

Memory corruption. We simulated a case where the receipt of link failure notification on
a particular port causes corruption to one of POX’s internal data structures. This corrup-
tion then causes a crash much later when the data structure is accessed during the during
corresponding port up. These bugs are often hard to debug, because considerable time
can pass between the event corrupting the data structure and the event triggering the
crash, making manual log inspection or source level debugging ineffective. STS proved
effective in this case, reducing a larger trace to exactly the 2 events responsible for the
crash.

3.6.4 Overall Results & Discussion

We show our overall results in Table 3.3. We note that with the exception of ‘Delicate
timer interleaving’, STS was able to significantly reduce the size of the input traces. As
described in the case studies, we were able to counter some sources of non-determinism
by replaying multiple times per subsequence and adding instrumentation to controllers.

The cases where STS was most useful were those where a developer would have
started from the end of the trace and worked backwards, but the actual root cause lies
many events in the past (e.g. the Memory corruption example). This requires many re-
iterations through the code and logs using standard debugging tools (e.g. source level
debuggers), and is highly tedious on human timescales. In contrast, it was easy to step
through a small event trace and manually identify the code paths responsible for a failure.

Bugs that depend on fine-grained thread-interleaving or timers inside of the controller
are the worst-case for STS. This is not surprising, as they do not directly depend on the
input events from the network, and we do not directly control the internal scheduling
and timing of the controllers. The fact that STS has a difficult time reducing these traces
is itself indication to the developer that fine-grained non-determinism is at play.

3.6.5 Coping with Non-determinism

Recall that STS optionally replays each subsequence multiple times throughout delta de-
bugging to mitigate the effects of non-determinism. We evaluate the effectiveness of this
approach on the reduction of a synthetic non-deterministic loop created by Floodlight.
Table 3.4 demonstrates that the size of the resulting MCS decreases with the number of
replays per subsequence. This suggests that replaying each subsequence multiple times
is effective in coping with non-determinism, at the cost of increased runtime.
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Max replays
per

subsequence

Size of
final
MCS

Total hours

1 65 6.10
2 20 6.37
3 15 7.78
4 12 9.59
5 9 6.38
6 9 11.20
7 9 11.83
8 6 12.35
9 6 11.13

10 6 12.86

Table 3.4: Effectiveness of replaying subsequences multiple times in mitigating non-
determinism.

3.6.6 Instrumentation Complexity

For POX and Floodlight, we added shim layers to the controller software to redirect
gettimeofday(), interpose on logging statements, and demultiplex sockets. For Flood-
light we needed 722 lines of Java to obtain this indirection, and for POX we needed 415
lines of Python.

3.6.7 Scalability

Mocking the network in a single process potentially prevents STS from triggering bugs
that only appear at large scale. We ran STS on large FatTree networks to see where these
scaling limits exist. On a machine with 6GB of memory, we ran POX as the controller, and
measured the time to create successively larger FatTree topologies, complete the Open-
Flow handshakes for each switch, cut 5% of links, and process POX’s response to the
link failures. As shown in Figure 3.5, STS’s processing time scales roughly linearly up to
2464 switches (a 45-pod FatTree). At that point, the machine started thrashing, but this
limitation could easily be removed by running on a machine with >6GB of memory.

Note that STS is not designed for simulating high-throughput dataplane traffic; we
only forward what is necessary to exercise the controller software. In proactive SDN
setups, dataplane events are not relevant for the control software, except perhaps for host
discovery.
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Figure 3.5: Simulation time for bootstrapping FatTree networks, cutting 5% of links, and
processing the controller’s response.

3.6.8 Parameters

Throughout our experimentation we found that STS leaves open several parameters that
need to be set properly in order to effectively find and troubleshoot bugs.

Setting fuzzing parameters. STS’s fuzzer allows the user to set the rates different event
types are triggered at. In our experiments with STS we found several times that we
needed to set these parameters such that we avoided bugs that were not of interest to
developers. For example, in one case we discovered that a high dataplane packet drop
rate dropped too many LLDP packets, preventing the controller from successfully discov-
ering the topology. Setting fuzzing parameters remains an important part of experiment
setup.

Differentiating persistent and transient violations. In networks there is a fundamen-
tal delay between the initial occurrence of an event and the time when other nodes are
notified of the event. This delay implies that invariant violations such as loops or black-
holes can appear before the controller(s) have time to correct the network configuration.
In many cases such transient invariant violations are not of interest to developers. We
therefore provide a threshold parameter in STS for how long a invariant violation should
persist before STS reports it as a problem. In general, setting this threshold depends on
the network and the invariants of interest.

Setting ε. Our algorithm leaves an open question as to what value ε should be set to. We
experimentally varied ε on the POX in-flight blackhole bug. We found for both cases that
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the number of events we timed out on while isolating the MCS became stable for val-
ues above 25 milliseconds. For smaller values, the number of timed out events increased
rapidly. We currently set ε to 100 milliseconds.

In general, larger values of ε are preferable to smaller values (disregarding runtime
considerations), since we can always detect when we have waited too long (viz. when a
successor of the next input has occurred), but we cannot detect when we have timed out
early on an internal event that is in fact going to occur shortly after.

3.7 Discussion

How much effort do MCSes really save? Based on conversations with engineers and our
own industrial experience, two facts seem to hold. First, companies dedicate a substantial
portion of their best engineers’ time on troubleshooting bugs. Second, the larger the trace,
the more effort is spent on debugging, since humans can only keep a small number of facts
in working memory [88]. As one developer puts it, “Automatically shrinking test cases
to the minimal case is immensely helpful” [11].

Will this approach work on all controllers? We make limited assumptions about the con-
troller software in use. Three of the five platforms we investigated were exercised with
STS without any modifications. Limited changes to the controller platforms (e.g. overrid-
ing gettimeofday()) can increase replay accuracy further. In general, we expect STS to
support controllers conforming to OpenFlow 1.0.

Why do you focus on SDN? SDN represents both an opportunity and a challenge. In
terms of a challenge, SDN control software—both proprietary and open source—is in its
infancy, which means that bugs are pervasive.

In terms of an opportunity, SDN’s architecture facilitates the implementation of sys-
tems like STS. The interfaces between components of the system (e.g. OpenFlow for
switches [87] and OpenStack Neutron for management [93]) are well-defined, which is
crucial for codifying functional equivalencies. Moreover, the control flow of SDN control
software repeatedly returns to a quiescent state after processing inputs, which means that
many inputs can be pruned.

In chapter 4, we show the extent to which the ideas embodied in STS are applicable to
other types of distributed systems.

Enabling analysis of production executions. STS does not currently support reduction
of production (as opposed to QA) executions. Production systems would need to include
Lamport clocks on each message [68] or have sufficiently accurate clock synchronization
to obtain a partial (happens-before) ordering of the message deliveries in the execution.
Inputs would also need to need to be logged in sufficient detail for STS to replay a syn-
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thetic version. Finally, without care, a single input event may appear multiple times in
the distributed logs. The most robust way to avoid redundant input events would be to
employ perfect failure detectors [18], which log a failure iff the failure actually occurred.

3.8 Conclusion

SDN’s purpose is to make networks easier to manage. SDN does this, however, by push-
ing complexity into SDN control software itself. Just as sophisticated compilers are hard
to write, but make programming easy, SDN control software makes network management
easier, but only by forcing the developers of SDN control software to confront the chal-
lenges of concurrency, asynchrony, partial failure, and other notoriously hard problems
inherent to all distributed systems.

In this chapter we demonstrated a technique for automatically reducing the inputs re-
sponsible for triggering a given bug, without making assumptions about the language or
instrumentation of the software. We focused specifically on SDN control software here,
but in the next chapter we will show that these execution reduction heuristics are appli-
cable to other distributed systems.
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Chapter 4

Reducing Faulty Executions of
Distributed Systems, With
Application-Layer Interposition

4.1 Introduction

In this chapter, we seek to generalize our investigation from chapter 3 along several di-
mensions. The STS system described in chapter 3 targeted a specific distributed system
(SDN controllers), and focused on reducing input events given limited control over the
execution. Here we target a broader range of systems, define the general problem of ex-
ecution reduction, exercise significantly greater control over the execution, and system-
atically explore the state space. We also articulate new reduction strategies that quickly
reduce input events, internal events, and message contents.

The key enabler that allows us to gain control over the execution is a computational
model—the actor model—that encapsulates all sources of non-determinism in the net-
work in a small number of interposition points. This makes it easy for us to interpose on
practical systems.

With this control in place, it is theoretically possible to simply enumerate all possible
schedules, execute each one, and pick the smallest execution that triggers the bug. The
space of all possible schedules is intractably large however. Our general approach is to
carefully prioritize the order in which we explore the schedule space, with the goal of
quickly finding small executions that still trigger the bug. We design these prioritiza-
tion functions based on our understanding of how programs behave in practice. As we
learned in chapter 3, our key insight is that if one schedule triggers a bug, schedules that
are similar in their causal structure should have a high probability of also triggering the
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bug.

Translating this intuition into a prioritization function requires us reason about the
similarity or dissimilarity of two distinct executions. We develop a hierarchy of equiv-
alence relations between events, and show that systematically exploring schedules that
are close to the original execution yield significant gains in reduction over the previous
heuristics described in chapter 3.

Our tool, Distributed Execution Minimizer (DEMi), is implemented in ∼14,000 lines
of Scala. We have applied DEMi to akka-raft [4], an open source Raft consensus imple-
mentation, and Apache Spark [132], a widely used data analytics framework. Across 10
known and discovered bugs, DEMi produces executions that are within a factor of 1X
to 4.6X (1.6X median) the size of the smallest possible bug-triggering execution, and be-
tween 1X and 16X (4X median) smaller than the executions produced by the previous
state-of-the-art blackbox technique (chapter 3). The results we find for these two very
different systems leave us optimistic that these techniques, along with adequate visibility
into events (either through a framework like Akka, or through custom monitoring), can
be applied successfully to a wider range of systems.

4.2 Problem Statement

We start by introducing a model of distributed systems as groundwork for defining our
goals. As we discuss further in chapter 4.4.2, we believe this model is general enough to
capture the behavior of many practical systems.

4.2.1 System Model

Following [34], we model a distributed system as a collection of N single-threaded pro-
cesses communicating through messages. Each process p has unbounded memory, and
behaves deterministically according to a transition function of its current state and the
messages it receives. The overall system S is defined by the transition function and initial
configuration for each process.

Processes communicate by sending messages over a network. A message is a pair
(p,m), where p is the identity of the destination process, and m is the message value.
The network maintains a buffer of pending messages that have been sent but not yet
delivered. Timers are modeled as messages a process can request to be delivered to itself
at a specified later point in the execution.

A configuration of the system consists of the internal state of each process and the con-
tents of the network’s buffer. Initially the network buffer is empty.
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An event moves the system from one configuration to another. Events can be one of
two kinds. Internal events take place by removing a message m from the network’s buffer
and delivering it to the destination p. Then, depending on m and p’s internal state, p
enters a new internal state determined by its transition function, and sends a finite set
of messages to other processes. Since processes are deterministic, internal transitions are
completely determined by the contents of m and p’s state.

Events can also be external. The three external events we consider are: process starts,
which create a new process; forced restarts (crash-recoveries), which force a process to
its initial state (though it may maintain non-volatile state); and external message sends
(p,m), which insert a message sent from outside the system into the network buffer
(which may be delivered later as an internal event). We do not need to explicitly model
fail-stop failures, since these are equivalent to permanently partitioning a process from
all other processes.

A schedule is a finite sequence τ of events (both external and internal) that can be ap-
plied, in turn, starting from an initial configuration. Applying each event in the schedule
results in an execution. We say that a schedule ‘contains’ a sequence of external events
E = [e1, e2, . . . , en] if it includes only those external events (and no other external events)
in the given order.

4.2.2 Testing

An invariant is a predicate P (a safety condition) over the internal state of all processes at
a particular configuration C. We say that configuration C violates the invariant if P (C) is
false, denoted P (C).

A test orchestrator generates sequences of external events E = [e1, e2, . . . , en], executes
them along with some (arbitrary) schedule of internal events, and checks whether any
invariants were violated during the execution. The test orchestrator records the exter-
nal events it injected, the violation it found, and the interleavings of internal events that
appeared during the execution.

4.2.3 Problem Definition

We are given a schedule τ injected by a test orchestrator,1 along with a specific invariant
violation P observed at the end of the test orchestrator’s execution.

Our main goal is to find a schedule containing a small sequence of external (input)
events that reproduces the violation P . Within the context of this chapter’s formalism,
we redefine a minimal causal sequence (MCS) to be a subsequence of external events

1We explain how we obtain these schedules in chapter 4.4.
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E ′ v E such that there exists a schedule containing E ′ that produces P , but if we were to
remove any single external event e from E ′, there would not exist any schedules shorter2

than τ containing E ′ − e that produce P .3

We start by reducing external (input) events because they are the first level of ab-
straction that developers reason about. Occasionally, developers can understand the root
cause simply by examining the external events.

For more difficult bugs, developers typically step through the internal events of the
execution to understand more precisely how the system arrived at the unsafe state. To
help with these cases, we turn to reducing internal events after the external events have
been reduced. At this stage we fix the external events and search for smaller schedules
that still triggers the invariant violation, for example, by keeping some messages pending
rather than delivering them. Lastly, we seek to shrink the contents (e.g. data payloads) of
external messages.

Note that we do not focus on bugs involving only sequential computation (e.g. in-
correct handling of unexpected input), performance, or human misconfiguration. Those
three bug types are more common than our focus: concurrency bugs. We target concur-
rency bugs because they are the most complex (correspondingly, they take considerably
more time to debug [43]), and because mature debugging tools already exist for sequen-
tial code.

With a reduced execution in hand, the developer begins debugging. Echoing the ben-
efits of sequential test case reduction, we claim that the greatly reduced size of the trace
makes it easier to understand which code path contains the underlying bug, allowing the
developer to focus on fixing the problematic code itself.

4.3 Approach

Conceptually, one could find MCSes by enumerating and executing every possible (valid,
bounded) schedule containing the given external events. The globally minimal MCS
would then be the shortest sequence containing the fewest external events that causes
the safety violation. Unfortunately, the space of all schedules is exponentially large, so
executing all possible schedules is not feasible. This leads us to our key challenge:

How can we maximize reduction of trace size within bounded time?
2We limit the number of internal events to ensure that the search space is finite; any asynchronous

distributed system that requires delivery acknowledgment is not guaranteed to stop sending messages [2],
essentially because nodes cannot distinguish between crashes of their peers and indefinite message delays.

3It might be possible to reproduce P by removing multiple events from E′, but checking all combina-
tions is tantamount to enumerating its powerset. Following [136], we only seek a 1-minimal subsequence
E′ instead of a globally minimal subsequence.
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To find MCSes in reasonable time, we split schedule exploration into two parts. We
start by using delta debugging [136] (explained in chapter 3.4.1), a reduction algorithm
similar to binary search, to prune extraneous external events. Delta debugging works by
picking subsequences of external events, and checking whether it is possible to trigger
the violation with just those external events starting from the initial configuration. We
assume the user gives us a time budget, and we spread this budget evenly across each
subsequence’s exploration.

To check whether a particular subsequence of external events results in the safety vi-
olation, we need to explore the space of possible interleavings of internal events and
external events. We use Dynamic Partial Order Reduction (‘DPOR’, explained in chap-
ter 2.2) to prune this schedule space by eliminating equivalent schedules (i.e. schedules
that differ only in the ordering of commutative events [35]). DPOR alone is insufficient
though, since there are still exponentially many non-commutative schedules to explore.
We therefore prioritize the order in which we explore the schedule space.

For any prioritization function we choose, an adversary could construct the program
under test to behave in a way that prevents our prioritization from making any progress.
In practice though, programmers do not construct adversarial programs, and test orches-
trators do not construct adversarial inputs. We choose our prioritization order according
to observations about how the programs we care about behave in practice.

Our central observation is that if one schedule triggers a violation, schedules that are
similar in their causal structure should have a high probability of also triggering the vio-
lation. Translating this intuition into a prioritization function requires us to address our
second challenge:

How can we reason about the similarity or dissimilarity of two different executions?

We implement a hierarchy of match functions that tell us whether messages from the
original execution correspond to the same logical message from the current execution. We
start our exploration with a single, uniquely-defined schedule that closely resembles the
original execution. If this schedule does not reproduce the violation, we begin exploring
nearby schedules. We stop exploration once we have either successfully found a schedule
resulting in the desired violation, or we have exhausted the time allocated for checking
that subsequence.

External event reduction ends once the system has successfully explored all subse-
quences generated by delta debugging. Limiting schedule exploration to a fixed time
budget allows reduction to finish in bounded time, albeit at the expense of completeness
(i.e., we may not return a perfectly minimal event sequence).
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To further reduce execution length, we continue to use the same schedule exploration
procedure to reduce internal events once external event reduction has completed. Internal
event reduction continues until no more events can be removed, or until the time budget
for execution reduction as a whole is exhausted.

Thus, our strategy is to (i) pick subsequences with delta debugging, (ii) explore the
execution of that subsequence with a modified version of DPOR, starting with a schedule
that closely matches the original, and then by exploring nearby schedules, and (iii) once
we have found a near-minimal MCS, we attempt to reduce the number of internal events.
With this road map in mind, below we describe our execution reduction approach in
greater detail.

4.3.1 Choosing Subsequences of External Events

We model the task of reducing a sequence of external events E that causes an invariant
violation as a function ExtMin that repeatedly removes parts of E and invokes an oracle
(defined in chapter 4.3.2.1) to check whether the resulting subsequence, E ′, still triggers
the violation. If E ′ triggers the violation, then we can assume that the parts of E removed
to produce E ′ are not required for producing the violation and are thus not a part of the
MCS.

ExtMin can be trivially implemented by removing events one at a time from E, in-
voking the oracle at each iteration. However, this would require that we check O(|E|)
subsequences to determine whether each triggers the violation. Checking a subsequence
is expensive, since it may require exploring a large set of event schedules. We there-
fore apply delta debugging [135, 136], an algorithm similar to binary search, to achieve
O(log(|E|)) average case runtime (worst case O(|E|)). The delta debugging algorithm we
use is explained in detail in chapter 3.4.1.

Efficient implementations of ExtMin should not waste time trying to execute invalid
(non-sensical) external event subsequences. We maintain validity by ensuring that forced
restarts are always preceded by a start event for that process, and by assuming that ex-
ternal messages are independent of each other, i.e., we do not currently support external
messages that, when removed, cause some other external event to become invalid. One
could support reduction of dependent external messages by either requiring the user to
provide a grammar, or by employing the O(|E|2) version of delta debugging that consid-
ers complements [136].

4.3.2 Checking External Event Subsequences

Whenever delta debugging selects an external event sequence E ′, we need to check
whether E ′ can result in the invariant violation. This requires that we enumerate and
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check all schedules that contain E ′ as a subsequence. Since the number of possible sched-
ules is exponential in the number of events, pruning this schedule space is essential to
finishing in a timely manner.

As others have observed [44], many events occurring in a schedule are commutative,
i.e., the system arrives at the same configuration regardless of the order events are ap-
plied. As we explained in detail in chapter 2.2, a well-studied algorithm for removing
commutative (equivalent) schedules from the schedule space is Dynamic Partial Order
Reduction (DPOR). We make use of DPOR to efficiently explore the schedule space. We
then implement our scheduling heuristics as modifications to the original DPOR algo-
rithm.

Even when using DPOR, the task of enumerating all possible schedules containing
E as a subsequence remains intractable. Moreover, others have found that naı̈ve DPOR
gets stuck exploring a small portion of the schedule space because of its depth-first ex-
ploration order [75]. We address this problem in two ways: first, as mentioned before, we
limit ExtMin so it spreads its fixed time budget roughly evenly across checking whether
each particular subsequence of external events reproduces the invariant violation. It does
this by restricting DPOR to exploring a fixed number of schedules before giving up and
declaring that an external event sequence does not produce the violation. Second, to
maximize the probability that invariant violations are discovered quickly while explor-
ing a fixed number of schedules, we employ a set of schedule exploration strategies to
guide DPOR’s exploration, which we describe next.

4.3.2.1 Schedule Exploration Strategies

We guide schedule exploration by manipulating two degrees of freedom within DPOR: (i)
we prescribe which pending events DPOR initially executes, and (ii) we prioritize the or-
der backtrack points are explored in. In its original form, DPOR only performs depth-first
search starting from an arbitrary initial schedule, because it was designed to be stateless
so that it can run indefinitely in order to find as many bugs as possible. Unlike the tra-
ditional use case, our goal is to reduce a known buggy execution in a timely manner. By
keeping some state tracking the schedules we have already explored, we can pick back-
track points in a prioritized (rather than depth-first) order without exploring redundant
schedules.

A scheduling strategy implements a backtrack prioritization order. Scheduling strate-
gies return the first violation-reproducing schedule (containing a given external event
subsequence E ′) they find within their time budget. If a scheduling strategy cannot find
a reproducing schedule within its time budget, it returns a special marker ⊥. We design
our key strategy (shown in Algorithm 2) with the following observations in mind:
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Observation #1: Stay close to the original execution. The original schedule provides us
with a ‘guide’ for how we can lead the program down a code path that makes progress
towards entering the same unsafe state. By choosing modified schedules that have causal
structures that are close to the original schedule, we should have high probability of re-
triggering the violation.

We realize this observation by starting our exploration with a single, uniquely defined
schedule for each external event subsequence: deliver only messages whose source, des-
tination, and contents ‘match’ (described in detail below) those in the original execution,
in the exact same order that they appeared in the original execution. If an internal mes-
sage from the original execution is not pending (i.e. sent previously by some actor) at
the point that internal message should be delivered, we skip over it and move to the next
message from the original execution. Similarly, we ignore any pending messages that
do not match any events delivered in the original execution. In the case where multiple
pending messages match, it does not matter which we choose (see Observation #2). We
show an example initial schedule in Figure 4.1.

Matching Messages. A function match determines whether a pending message from a
modified execution logically corresponds to a message delivered in the original execution.
The simplest way to implement match is to check equality of the source, the destination,
and all bytes of the message contents. Recall though that we are executing a subsequence
of the original external events. In the modified execution the contents of many of the
internal messages will likely change relative to message contents from the original exe-
cution. Consider, for example, sequence numbers that increment once for every message
a process receives (shown as the ‘seq‘ field in Figure 4.1). These differences in message
contents prevent simple bitwise equality from finding many matches.

Observation #2: Data independence. Often, altered message contents such as differ-
ing sequence numbers do not affect the behavior of the program, at least with respect
to whether the program will reach the unsafe state. Formally, this property is known as
‘data-independence’, meaning that the values of some message contents do not affect the
system’s control-flow [105, 122].

Some types of message fields obviously exhibit data-independence. Consider authen-
tication cookies. Distributed systems commonly use cookies to track which requests are
tied to which users. However, the value of the cookie is not in itself relevant to how the
distributed system behaves, as long as each user attaches a consistent value to their mes-
sages. This means that two executions with exactly the same users and exactly the same
messages except for the cookie fields can be considered equivalent.

To leverage data independence, application developers can (optionally) supply us
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Figure 4.1: Example schedules. External message deliveries are shown in red, inter-
nal message deliveries in green. Pending messages, source addresses, and destination
addresses are not shown. The ‘B’ message becomes absent when exploring the first sub-
sequence of external events. We choose an initial schedule that is close to the original,
except for the masked ‘seq’ field. The violation is not triggered after the initial schedule
(depicted as 4), so we next match messages by type, allowing us to deliver pending mes-
sages with smaller ‘Term’ numbers. The violation is still not triggered, so we continue
exploring.

with a ‘message fingerprint’ function,4 which given a message returns a string that de-
pends on the relevant parts of the message, without considering fields that should be
ignored when checking if two message instances from different executions refer to the
same logical message. An example fingerprint function might ignore sequence numbers
and authentication cookies, but concatenate the other fields of messages. Message fin-
gerprints are useful both as a way of mitigating non-determinism, and as a way of re-
ducing the number of schedules the scheduling strategy needs to explore (by drawing an
equivalence relation between all schedules that only differ in their masked fields). We do
not require strict data-independence in the formal sense [105]; the fields the user-defined
fingerprint function masks over may in practice affect the control flow of the program,
which is generally acceptable because we simply use this as a strategy to guide the choice

4It may be possible to extract message fingerprints automatically using program analysis or experi-
mentation [116]. Nonetheless, manually defining fingerprints does not require much effort (see Table 4.5).
Without a fingerprint function, we default to matching on message type (Observation #3).
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Algorithm 2 Pseudocode for schedule exploration. TEST is invoked once per external
event subsequence E ′. We elide the details of DPOR for clarity (see chapter 2.2 for a com-
plete description). τ denotes the original schedule; b.counterpart denotes the message
delivery that was delivered instead of b (variable m in the elif branch of STSSCHED);
b.predecessors and b.successors denote the events occuring before and after b when b
was set (τ ′′[0..i] and τ ′′[i+1...τ ′′.length] in STSSCHED).

backtracks← {}
procedure TEST(E ′)

STSSCHED(E ′,τ )
if execution reproduced 8: return 8

while ∃b∈backtracks.b.type=b.counterpart.type ∧
b.fingerprint 6= b.counterpart.fingerprint ∧
time budget for E ′ not yet expired do
reinitialize system, remove b from backtracks
prefix← b.predecessors + [ b ]
if prefix (or superstring) already executed:

continue
STSSCHED(E ′,prefix + b.successors)
if execution reproduced 8: return 8

return 4

procedure STSSCHED(E ′,τ ′)
τ ′′ ← τ ′.remove {e | e is external and e 6∈ E ′}
for i from 0 to τ ′′.length do

if τ ′′[i] is external:
inject τ ′′[i]

elif ∃m∈pending. m.fingerprint = τ ′′[i].fingerprint:
deliver m, remove m from pending
for m′ ∈ pending do

if ¬ commute(m,m′):
backtracks← backtracks ∪ {m′}

of schedules, and can later fall back to exploring all schedules if we have enough remain-
ing time budget.

We combine observations #1 and #2 to pick a single, unique schedule as the initial
execution, defined by selecting pending events in the modified execution that match the
original execution. This stage corresponds to the first two lines of TEST in Algorithm 2.
We show an example initial schedule in Figure 4.1.

Challenge: history-dependent message contents. This initial schedule can be remark-
ably effective, as demonstrated by the fact that we often produces significant reduction
even when we limit it to exploring this single schedule per external event subsequence.
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However, we find that without exploring additional schedules, the MCSes we find still
contain extraneous events: when message contents depend on previous events, and the
messages delivered in the original execution contained contents that depended on a large
number of prior events, the initial schedule will remain inflated because it never includes
“unexpected” pending messages that were not delivered in the original execution yet
have contents that depend on fewer prior events.

To illustrate, let us consider two example faulty executions of the Raft consensus pro-
tocol. The first execution was problematic because all Raft messages contain logical clocks
(“Term numbers”) that indicate which epoch the messages belong to. The logical clocks
are incremented every time there is a new leader election cycle. These logical clocks cannot
be masked over by the message fingerprint, since they play an important role in deter-
mining the control flow of the program.

In the original faulty execution, the safety violation happened to occur at a point where
logical clocks had high values, i.e. many leader election cycles had already taken place.
We knew however that most of the leader election cycles in the beginning of the execution
were not necessary to trigger the safety violation. Execution reduction restricted to only
the initial schedule was not able to remove the earlier leader election cycles, though we
would have been able to if we had instead delivered other pending messages with small
term numbers.

The second execution was problematic because of batching. In Raft, the leader receives
client commands, and after receiving each command, it replicates it to the other cluster
members by sending them ‘AppendEntries’ messages. When the leader receives multiple
client commands before it has successfully replicated them all, it batches them into a
single AppendEntries message. Again, client commands cannot be masked over by the
fingerprint function, and because AppendEntries are internal messages, we cannot shrink
their contents.

We knew that the safety violation could be triggered with only one client command.
Yet execution reduction restricted to only the initial schedule was unable to prune many
client commands, because in the original faulty execution AppendEntries messages with
large batch contents were delivered before pending AppendEntries messages with small
batch contents.

These examples motivated our next observations:

Observation #3: Coarsen message matching. We would like to stay close to the origi-
nal execution (per observation #1), yet the previous examples show that we should not
restrict ourselves to schedules that only match according to the user-defined message fin-
gerprints from the original execution. We can achieve both these goals by considering a
more coarse-grained match function: the type of pending messages. By ‘type’, we mean
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the language-level type tag of the message object, which is available to the RPC layer at
runtime before the message is converted to bits on the wire.

We choose the next schedules to explore by looking for pending messages whose types
(not contents) match those in the original execution, in the exact same order that they
appeared in the original execution. We show an example in Figure 4.1, where any pend-
ing message of type ‘A’ with the same source and destination as the original messages
would match. When searching for candidate schedules, if there are no pending messages
that match the type of the message that was delivered at that step in the original execu-
tion, we skip to the next step. Similarly, we ignore any pending messages that do not
match the corresponding type of the messages from the original execution. This leaves
one remaining issue: how we handle cases where multiple pending messages match the
corresponding original message’s type.

Observation #4: Prioritize backtrack points that resolve match ambiguities. When there
are multiple pending messages that match, we initially only pick one. DPOR (eventually)
sets backtrack points for all other co-enabled dependent events (regardless of type or
message contents). Of all these backtrack points, those that match the type of the corre-
sponding message from the original trace should be most fruitful, because they keep the
execution close to the causal structure of the original schedule except for small ambigui-
ties in message contents.

We show the pseudocode implementing Observation #3 and Observation #4 as the
while loop in Algorithm 2. Whenever we find a backtrack point (pending message) that
matches the type but not the fingerprint of an original delivery event from τ , we replace
the original delivery with the backtrack’s pending message, and execute the events before
and after the backtrack point as before. We also track which schedules we have executed
in the past to avoid redundant exploration.

Backtracking allow us to eventually explore all combinations of pending messages
that match by type. Note here that we do not ignore the user-defined message fingerprint
function: we only prioritize backtrack points for pending messages that have the same
type and that differ in their message fingerprints.

Reducing internal events. Once delta debugging over external events has completed,
we attempt to further reduce the smallest reproducing schedule found so far. Here we
apply delta debugging to internal events: for each subsequence of internal events chosen
by delta debugging, we (i) mark those messages so that they are left pending and never
delivered, and (ii) apply the same scheduling strategies described above for the remaining
events to check whether the violation is still triggered. Internal event reduction continues
until there is no more reduction to be performed, or until the time budget for execution
reduction as a whole is exhausted.
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Observation #5: Shrink external message contents whenever possible. Our last obser-
vation is that the contents of external messages can affect execution length; because the
test environment crafts these messages, it should reduce their contents whenever possi-
ble.

A prominent example is akka-raft’s bootstrapping messages. akka-raft processes do
not initially know which other processes are part of the cluster. They instead wait to re-
ceive an external bootstrapping message that informs them of the identities of all other
processes. The contents of the bootstrapping messages (the processes in the cluster) de-
termine quorum size: how many acknowledgments are needed to reach consensus, and
hence how many messages need to be delivered. If the application developer provides us
with a function for separating the components of such message contents, we can reduce
their contents by iteratively removing elements, and checking to see if the violation is still
triggerable until no single remaining element can be removed.

Recap. In summary, we first apply delta debugging (ExtMin) to prune external events.
To check each external event subsequence chosen by delta debugging, we use a stateful
version of DPOR. We first try exploring a uniquely defined schedule that closely matches
the original execution. We leverage data independence by applying a user-defined mes-
sage fingerprint function that masks over certain message contents. To overcome inflation
due to history-dependent message contents, we explore subsequent schedules by choos-
ing backtrack points according to a more coarse-grained match function: the types of
messages. We spend the remaining time budget attempting to reduce internal events,
and wherever possible, we seek to shrink external message contents.

4.3.3 Comparison to Prior Work

We made observations #1 and #2 in chapter 3. In this chapter, we adapt observations #1
and #2 to determine the first schedule we explore for each external event subsequence
(the first two lines of TEST). We refer to the scheduling strategy defined by these two
observations as ‘STSSched’, named after the ‘STS’ system (chapter 3).

STSSched only prescribes a single schedule per external event subsequence chosen by
delta debugging. In this work we systematically explore multiple schedules using the
DPOR framework. We guide DPOR to explore schedules in a prioritized order based on
similarity to the original execution (observations #3 and #4, shown as the while loop in
TEST). We refer to the scheduling strategy used to prioritize subsequent schedules as
‘TFB’ (Type Fingerprints with Backtracks). We also reduce internal events, and shrink
external message contents.
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Programmer-provided Specification Default
Initial cluster configuration -
External event probabilities No external events
Message scheduling discipline UDP
Invariants Uncaught exceptions
Violation fingerprint Match on any violation
Message fingerprint function Match on message type
Non-determinism mitigation Replay multiple times

Table 4.1: Tasks we assume the application programmer completes in order to test and
reduce using DEMi. Defaults of ‘-’ imply that the task is not optional.

4.4 Systems Challenges

We implement our techniques in a publicly available tool we call DEMi (Distributed Ex-
ecution Minimizer) [29]. DEMi is an extension to Akka [3], an actor framework for JVM-
based languages. Actor frameworks closely match the system model in chapter 4.2: actors
are single-threaded entities that can only access local state and operate on messages re-
ceived from the network one at a time. Upon receiving a message an actor performs com-
putation, updates its local state and sends a finite set of messages to other actors before
halting. Actors can be co-located on a single machine (though the actors are not aware of
this fact) or distributed across multiple machines.

On a single machine Akka maintains a buffer of sent but not yet delivered messages,
and a pool of message dispatch threads. Normally, Akka allows multiple actors to exe-
cute concurrently, and schedules message deliveries in a non-deterministic order. We use
AspectJ [65], a mature interposition framework, to inject code into Akka that allows us to
completely control when messages and timers are delivered to actors, thereby linearizing
the sequence of events in an executing system. We currently run all actors on a single
machine because this simplifies the design of DEMi, but execution reduction could also
be distributed across multiple machines to improve scalability.

Our interposition lies above the network transport layer; DEMi makes delivery deci-
sions for application-level (non-segmented) messages. If the application assumes order-
ing guarantees from the transport layer (e.g. TCP’s FIFO delivery), DEMi adheres to these
guarantees during testing and execution reduction to maintain soundness.

Fuzz testing with DEMi. We begin by using DEMi to generate faulty executions. De-
velopers give DEMi a test configuration (we tabulate all programmer-provided specifica-
tions in Table 4.1), which specifies an initial sequence of external events to inject before
fuzzing, the types of external events to inject during fuzzing (along with probabilities
to determine how often each event type is injected), the safety conditions to check (a
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user-defined predicate over the state of the actors), the scheduling constraints (e.g. TCP
or UDP) DEMi should adhere to, the maximum execution steps to take, and optionally
a message fingerprint function. If the application emits side-effects (e.g. by writing to
disk), the test configuration specifies how to roll back side-effects (e.g. by deleting disk
contents) at the end of each execution.

DEMi then repeatedly executes fuzz runs until it finds a safety violation. It starts by
generating a sequence of random external events of the length specified by the configu-
ration. DEMi then injects the initial set of external events specified by the developer, and
then starts injecting external events from the random sequence. Developers can include
special ‘WaitCondition’ markers in the initial set of events to execute, which cause DEMi
to pause external event injection, and deliver pending internal messages at random until
a specified condition holds, at which point the system resumes injecting external events.
DEMi periodically checks invariants by halting the execution and invoking the developer-
supplied safety predicate over the current state of all actors. Execution proceeds until a
predicate violation is found, the supplied bound on execution steps is exceeded, or there
are no more external or internal events to execute.

Once it finds a faulty execution DEMi saves a user-defined fingerprint of the violation
it found (a violation fingerprint might, for example, mark which process(es) exhibited the
violation),5 a totally ordered recording of all events it executed, and information about
which messages were sent in response to which events. Users can then replay the execu-
tion exactly, or instruct DEMi to reduce the execution as described in chapter 4.3.

In Table 4.1 we summarize the various tasks, both optional and necessary, that we
assume programmers complete in order to test and reduce using DEMi.

Mitigating non-determinism. Processes may behave non-deterministically. A process is
non-deterministic if the messages it emits (modulo fingerprints) are not uniquely deter-
mined by the prefix of messages we have delivered to it in the past starting from its initial
state.

The main way we control non-determinism is by interposing on Akka’s API calls,
which operate at a high level and cover most sources of non-determinism. For example,
Akka provides a timer API that obviates the need for developers to read directly from the
system clock.

Applications may also contain sources of non-determinism outside of the Akka API.
We discovered the sources of non-determinism described below through trial and error:
when replaying unmodified test executions, the violation was sometimes not reproduced.

5Violation fingerprints should be specific enough to disambiguate different bugs found during execu-
tion reduction, but they do not need to be specific to the exact state the system at the time of the violation.
Less specific violation fingerprints are often better, since they allow DEMi to find divergent code paths that
lead to the same buggy behavior.
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In these cases we compared discrepancies between executions until we isolated their
source and interposed on it.

akka-raft instrumentation. Within akka-raft, actors use a pseudo random number gener-
ator to choose when to start leader elections. Here we provided a seeded random number
generator under the control of DEMi.

Spark instrumentation. Within Spark, the task scheduler chooses the first value from
a hashmap in order to decide what tasks to schedule. The values of the hashmap are
arbitrarily ordered, and the order changes from execution to execution. We needed to
modify Spark to sort the values of the hash map before choosing an element.

Spark runs threads (‘TaskRunners’) that are outside the control of Akka. These send
status update messages to other actors during their execution. The key challenge with
threads outside Akka’s control is that we do not know when the thread has started and
stopped each step of its computation; when replaying, we do not know how long to wait
until the TaskRunner either resends an expected message, or we declare that message as
absent.

We add two interposition points to TaskRunners: the start of the TaskRunner’s ex-
ecution, and the end of the TaskRunner’s execution. At the start of the TaskRunner’s
execution, we signal to DEMi the identity of the TaskRunner, and DEMi records a ‘start
atomic block’ event for that TaskRunner. During replay, DEMi blocks until the corre-
sponding ‘end atomic block’ event to ensure that the TaskRunner has finished sending
messages. This approach works because TaskRunners in Spark have a simple control
flow, and TaskRunners do not communicate via shared memory. Were this not the case,
we would have needed to interpose on the JVM’s thread scheduler.

Besides TaskRunner threads, the Spark driver also runs a bootstrapping thread that
starts up actors and sends initialization messages. We mark all messages sent during the
initialization phase as ‘unignorable’, and we have DEMi wait indefinitely for these mes-
sages to be sent during replay before proceeding. When waiting for an ‘unignorable’ mes-
sage, it is possible that the only pending messages in the network are repeating timers.
We prevent DEMi from delivering infinite loops of timers while it awaits by detecting
timer cycles, and not delivering more timers until it delivers a non-cycle message.

Spark names some of the files it writes to disk using a timestamp read from the system
clock. We hardcode a timestamp in these cases to make replay deterministic.

Akka changes. In a few places within the Akka framework, Akka assigns IDs using
an incrementing counter. This can be problematic during execution reduction, since the
counter value may change as we remove events, and the (non-fingerprinted) message
contents in the modified execution may change. We fix this by computing IDs based on
a hash of the current callstack, along with task IDs in case of ambiguous callstack hashes.
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We found this mechanism to be sufficient for our case studies.

Stop-gap: replaying multiple times. In cases where it is difficult to locate the cause
of non-determinism, good reduction can often still be achieved simply by configuring
DEMi to replay each schedule multiple times and checking if any of the attempts triggered
the safety violation.

Blocking operations. Akka deviates from the computational model we defined in chap-
ter 4.2 in one remaining aspect: Akka allows actors to block on certain operations. For ex-
ample, actors may block until they receive a response to their most recently sent message.
To deal with these cases we inject AspectJ interposition on blocking operations (which
Akka has a special marker for), and signal to DEMi that the actor it just delivered a mes-
sage to will not become unblocked until we deliver the response message. DEMi then
chooses another actor to deliver a message to, and marks the previous actor as blocked
until DEMi decides to deliver the response.

4.4.1 Limitations

Safety vs. liveness. We are primarily focused on safety violations, not liveness or perfor-
mance bugs.

Non-Atomic External Events. DEMi currently waits for external events (e.g. crash-
recoveries) to complete before proceeding. This may prevent it from finding bugs in-
volving finer-grained event interleavings.

Limited scale. DEMi is currently tied to a single physical machine, which limits the scale
of systems it can test (but not the bugs it can uncover, since actors are unaware of coloca-
tion). We do not believe this is fundamental.

Shared memory & disk. In some systems processes communicate by writing to shared
memory or disk rather than sending messages over the network. Although we do not
currently support it, if we took the effort to add interposition to the runtime system (as
in [109]) we could treat writes to shared memory or disk in the same way we treat mes-
sages. More generally, adapting the basic DPOR algorithm to shared memory systems
has been well studied [126, 35], and we could adopt these approaches.

Non-determinism. Mitigating non-determinism in akka-raft and Spark required effort on
our part. We might have adopted deterministic replay systems [30, 41, 74, 134] to avoid
manual instrumentation. We did not because we could not find a suitably supported
record and replay system that operates at the right level of abstraction for actor systems.
Note, however that deterministic replay alone is not sufficient for execution reduction:
deterministic replay does not inform how the schedule space should be explored; it only
allows one to deterministically replay prefixes of events. Moreover, reducing a single
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deterministic replay log (without exploring divergent schedules) yields executions that
are orders of magnitude larger than those produced by DEMi, as we discuss in chapter 5.

Support for production traces. DEMi does not currently support reduction of production
executions. DEMi requires that execution recordings are complete (meaning all message
deliveries and external events are recorded) and partially ordered. Our current imple-
mentation achieves these properties simply by testing and reducing on a single physical
machine.

To support recordings from production executions, it should be possible to capture
partial orders without requiring logical clocks on all messages: because the actor model
only allows actors to process a single message at a time, we can compute a partial order
simply by reconstructing message lineage from per-actor event logs (which record the
order of messages received and sent by each actor). Crash-stop failures do not need to be
recorded, since from the perspective of other processes these are equivalent to network
partitions. Crash-recovery failures would need to be recorded to disk. Byzantine failures
are outside the scope of our work.

Recording a sufficiently detailed log for each actor adds some logging overhead, but
this overhead could be modest. For the systems we examined, Akka is primarily used as
a control-plane, not a data-plane (e.g. Spark does not send bulk data over Akka), where
recording overhead is not especially problematic.

4.4.2 Generality

We distinguish between the generality of the DEMi artifact, and the generality of our
scheduling strategies.

Generality of DEMi. We targeted the Akka actor framework for one reason: thanks to
the actor API (and to a lesser extent, AspectJ), we did not need to exert much engineering
effort to interpose on (i) communication between processes, (ii) blocking operations, (iii)
clocks, and (iv) remaining sources of non-determinism.

We believe that with enough interposition, it should be possible to sufficiently con-
trol other systems, regardless of language or programming model. That said, the effort
needed to interpose could certainly be significant.

One way to increase the generality of DEMi would be to interpose at a lower layer (e.g.
the network or syscall layer) rather than the application layer. This has several limitations.
First, some of our scheduling strategies depend on application semantics (e.g. message
types) which would be difficult to access at a lower layer. Transport layer complexities
would also increase the size of the schedule space. Lastly, some amount of application
layer interposition would still be necessary, e.g. interposition on user-level threads or
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Bug Name Bug Type Initial Provenance STSSched TFB Optimal NoDiverge
raft-45 Akka-FIFO, reproduced 2160 (E:108) 2138 (E:108) 1183 (E:8) 23 (E:8) 22 (E:8) 1826 (E:11)
raft-46 Akka-FIFO, reproduced 1250 (E:108) 1243 (E:108) 674 (E:8) 35 (E:8) 23 (E:6) 896 (E:9)
raft-56 Akka-FIFO, found 2380 (E:108) 2376 (E:108) 1427 (E:8) 82 (E:8) 21 (E:8) 2064 (E:9)
raft-58a Akka-FIFO, found 2850 (E:108) 2824 (E:108) 953 (E:32) 226 (E:31) 51 (E:11) 2368 (E:35)
raft-58b Akka-FIFO, found 1500 (E:208) 1496 (E:208) 164 (E:13) 40 (E:8) 28 (E:8) 1103 (E:13)
raft-42 Akka-FIFO, reproduced 1710 (E:208) 1695 (E:208) 1093 (E:39) 180 (E:21) 39 (E:16) 1264 (E:43)
raft-66 Akka-UDP, found 400 (E:68) 392 (E:68) 262 (E:23) 77 (E:15) 29 (E:10) 279 (E:23)
spark-2294 Akka-FIFO, reproduced 1000 (E:30) 886 (E:30) 43 (E:3) 40 (E:3) 25 (E:1) 43 (E:3)
spark-3150 Akka-FIFO, reproduced 600 (E:20) 536 (E:20) 18 (E:3) 14 (E:3) 11 (E:3) 18 (E:3)
spark-9256 Akka-FIFO, found (rare) 300 (E:20) 256 (E:20) 11 (E:1) 11 (E:1) 11 (E:1) 11 (E:1)

Table 4.2: Overview of case studies. “E:” is short for “Externals:”. The ‘Provenance’, ‘STSS-
ched’, and ‘TFB’ techniques are pipelined one after another. ‘Initial’ minus ‘TFB’ shows overall
reduction; ‘Provenance’ shows how many events can be statically removed; ‘STSSched’ minus
‘TFB’ shows how our new techniques compare to the previous state of the art (chapter 3); ‘TFB’
minus ‘Optimal’ shows how far from optimal our results are; and ‘NoDiverge’ shows the size
of reduced executions when no divergent schedules are explored (explained in chapter 5).

blocking operations.

Generality of scheduling strategies. At their core, distributed systems are just concurrent
systems (with the additional complexities of partial failure and asynchrony). Regardless
of whether they are designed for multi-core or a distributed setting, the key property we
assume from the program under test is that small schedules that are similar to original
schedule should be likely to trigger the same invariant violation. To be sure, one can
always construct adversarial counterexamples. Yet our results for two very different types
of systems leave us optimistic that these scheduling strategies are broadly applicable.

4.5 Evaluation

Our evaluation focuses on two key metrics: (i) the size of the reproducing sequence found
by DEMi, and (ii) how quickly DEMi is able to make reduction progress within a fixed
time budget. We show a high-level overview of our results in Table 4.2. The “Bug Type”
column shows two pieces of information: whether the bug can be triggered using TCP
semantics (denoted as “FIFO”) or whether it can only be triggered when UDP is used;
and whether we discovered the bug ourselves or whether we reproduced a known bug.
The “Provenance” column shows how many events from the initial execution remain after
statically pruning events that are concurrent with the safety violation. The “STSSched”
column shows how many events remain after checking the initial schedules prescribed by
our prior work (chapter 3) for each of delta debugging’s subsequences. The “TFB” column
shows the final execution size after we apply our techniques (‘Type Fingerprints with
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Bug Name STSSched TFB Total
raft-45 56s (594) 114s (2854) 170s (3448)
raft-46 73s (384) 209s (4518) 282s (4902)
raft-56 54s (524) 2078s (31149) 2132s (31763)
raft-58a 137s (624) 43345s (834972) 43482s (835596)
raft-58b 23s (340) 31s (1747) 69s (2087)
raft-42 118s (568) 10558s (176517) 10676s (177085)
raft-66 14s (192) 334s (10334) 348s (10526)
spark-2294 330s (248) 97s (78) 427s (326)
spark-3150 219s (174) 26s (21) 254s (195)
spark-9256 96s (73) 0s (0) 210s (73)

Table 4.3: Runtime of execution reduction in seconds (total schedules executed). spark-
9256 only had unignorable events remaining after STSSched completed, so TFB was not
necessary.

Backtracks’), where we direct DPOR to explore as many backtrack points that match the
types of original messages (but no other backtrack points) as possible within the 12 hour
time budget we provided. Finally, the “Optimal” column shows the size of the smallest
violation-producing execution we could construct by hand. We ran all experiments on a
2.8GHz Westmere processor with 16GB memory.

Overall we find that DEMi produces executions that are within a factor of 1X to 4.6X
(1.6X median) the size of the smallest possible execution that triggers that bug, and be-
tween 1X and 16X (4X median) smaller than the executions produced by our previous
technique (STSSched). STSSched is effective at reducing external events (our primary
reduction target) for most case studies. TFB is significantly more effective for reducing
internal events (our secondary target), especially for akka-raft. Replayable executions for
all case studies are available at github.com/NetSys/demi-experiments.

We create the initial executions for all of our case studies by generating fuzz tests
with DEMi (injecting a fixed number of random external events, and selecting internal
messages to deliver in a random order) and selecting the first execution that triggers the
invariant violation with ≥300 initial message deliveries. Fuzz testing terminated after
finding a faulty execution within 10s of minutes for most of our case studies.

For case studies where the bug was previously known, we set up the initial test con-
ditions (cluster configuration, external events) to closely match those described in the
bug report. For cases where we discovered new bugs, we set up the test environment to
explore situations that developers would likely encounter in production systems.

As noted in the introduction, the systems we focus on are akka-raft [4] and Apache
Spark [132]. akka-raft, as an early-stage software project, demonstrates how DEMi can
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Figure 4.2: Reduction pace for raft-58b. Significant progress is made early on, then
progress becomes rare.

aid the development process. Our evaluation of Spark demonstrates that DEMi can be
applied to complex, large scale distributed systems.

Reproducing Sequence Size. We compare the size of the reduced executions produced
by DEMi against the smallest fault-inducing executions we could construct by hand (in-
teractively instructing DEMi which messages to deliver). For 6 of our 10 case studies,
DEMi was within a factor of 2 of optimal. There is still room for improvement however.
For raft-58a for example, DEMi exhausted its time budget and produced an execution
that was a factor of 4.6 from optimal. It could have found a smaller execution without
exceeding its time budget with a better schedule exploration strategy.

Reduction Pace. To measure how quickly DEMi makes progress, we graph schedule size
as a function of the number of executions DEMi tries. Figure 4.2 shows an example for
raft-58b. The other case studies follow the same general pattern of sharply decreasing
marginal gains.

We also show how much time (# of replays) DEMi took to reach completion of STSS-
ched and TFB in Table 4.3.6 The time budget we allotted to DEMi for all case studies was
12 hours (43200s). All case studies except raft-56, raft-58a, and raft-42 reached completion
of TFB in less than 10 minutes.

Qualitative Metrics. We do not evaluate how execution reduction helps with program-
6It is important to understand that DEMi is able to replay executions significantly more quickly than

the original execution may have taken. This is because DEMi can trigger timer events before the wall-clock
duration for those timers has actually passed, without the application being aware of this fact (cf. [47])
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mer productivity. Data on how humans do debugging is scarce; we are aware of only one
study that measures how quickly developers debug reduced vs. non-reduced traces[48].
Nonetheless, since humans can only keep a small number of facts in working mem-
ory [88], execution reduction seems generally useful. As one developer puts it, “Auto-
matically shrinking test cases to the minimal case is immensely helpful”[11].

4.5.1 Raft Case Studies

Our first set of case studies are taken from akka-raft [4]. akka-raft is implemented in 2,300
lines of Scala excluding tests. akka-raft has existing unit and integration tests, but it has
not been deployed in production. The known bugs we reproduced had not yet been fixed;
these were found by a recent manual audit of the code.

For full descriptions of each case study, see chapter 4.5.4. The lessons we took away
from our akka-raft case studies are twofold. First, fuzz testing is quite effective for find-
ing bugs in early-stage software. We found and fixed these bugs in less than two weeks,
and several of the bugs would have been difficult to anticipate a priori. Second, debug-
ging unreduced faulty executions would be very time consuming and conceptually chal-
lenging; we found that the most fruitful debugging process was to walk through events
one-by-one to understand how the system arrived at the unsafe state, which would take
hours for unreduced executions.

4.5.2 Spark Case Studies

Spark [7] is a mature software project, used widely in production. The version of Spark
we used for our evaluation consists of more than 30,000 lines of Scala for just the core
execution engine. Spark is also interesting because it has a significantly different commu-
nication pattern than Raft (e.g., statically defined masters).

For a description of our Spark case studies, see chapter 4.5.5. Our main takeaway
from Spark is that for the simple Spark jobs we submitted, STSSched does surprisingly
well. We believe this is because Spark’s communication tasks were all almost entirely
independent of each other. If we had submitted more complex Spark jobs with more
dependencies between messages (e.g. jobs that make use of intermediate caching between
stages) STSSched likely would not have performed as well.

4.5.3 Auxiliary Evaluation

External message shrinking. We demonstrate the benefits of external message shrinking
with an akka-raft case study. Recall that akka-raft processes receive an external bootstrap-
ping message that informs them of the IDs of all other processes. We started with a 9 node
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Without Shrinking With shrinking
Initial Events 360 (E: 9 bootstraps) 360 (E: 9 bootstraps)
After STSSched 81 (E: 8 bootstraps) 51 (E: 5 bootstraps)

Table 4.4: External message shrinking results for raft-45 starting with 9 processes. Mes-
sage shrinking + execution reduction was able to reduce the cluster size to 5 processes.

akka-raft Spark
Message Fingerprint 59 56
Non-Determinism 2 ∼250
Invariants 331 151
Test Configuration 328 445

Table 4.5: Complexity (lines of Scala code) needed to define message fingerprints, mitigate
non-determinism, define invariants, and configure DEMi. Akka API interposition (336
lines of AspectJ) is application independent.

akka-raft cluster, where we triggered the raft-45 bug. We then shrank message contents
by removing each element (process ID) of bootstrap messages, replaying these along with
all other events in the failing execution, and checking whether the violation was still trig-
gered. We were able to shrink the bootstrap message contents from 9 process IDs to 5
process IDs. Finally, we ran STSSched to completion, and compared the output to STSS-
ched without the initial message shrinking. The results shown in Table 4.4 demonstrate
that message shrinking can help reduce both external events and message contents.

Instrumentation Overhead. Table 4.5 shows the complexity in terms of lines of Scala
code needed to define message fingerprint functions, mitigate non-determinism (with
the application modifications described in chapter 4.4), specify invariants, and configure
DEMi. In total we spent roughly one person-month debugging non-determinism.

4.5.4 Full Description of Raft Case Studies

Raft is a consensus protocol, designed to replicate a fault tolerant linearizable log of client
operations. akka-raft is an open source implementation of Raft.

The external events we inject for akka-raft case studies are bootstrap messages (which
processes use for discovery of cluster members) and client transaction requests. Crash-
stop failures are indirectly triggered through fuzz schedules that emulate network parti-
tions. The cluster size was 4 nodes (quorum size=3) for all akka-raft case studies.

The invariants we checked for akka-raft are the consensus invariants specified in Fig-
ure 3 of the Raft paper [91]: Election Safety (at most one leader can be elected in a given
term), Log Matching (if two logs contain an entry with the same index and term, then the
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logs are identical in all entries up through the given index), Leader Completeness (if a log
entry is committed in a given term, then that entry will be present in the logs of the lead-
ers for all higher-numbered terms), and State Machine Safety (if a server has applied a log
entry at a given index to its state machine, no other server will ever apply a different log
entry for the same index). Note that a violation of any of these invariants allows for the
possibility for the system to later violate the main linearizability invariant (State Machine
Safety).

For each of the bugs where we did not initially know the root cause, we started de-
bugging by first reduced the failing execution. Then, we walked through the sequence of
message deliveries in the reduced execution. At each step, we noted the current state of
the actor receiving the message. Based on our knowledge of the way Raft is supposed to
work, we found places in the execution that deviate from our understanding of correct
behavior. We then examined the code to understand why it deviated, and came up with
a fix. Finally, we replayed to verify the bug fix.

The akka-raft case studies in Table 4.2 are shown in the order that we found or repro-
duced them. To prevent bug causes from interfering with each other, we fixed all other
known bugs for each case study. We reported all bugs and fixes to the akka-raft develop-
ers.

raft-45: Candidates accept duplicate votes from the same election term. Raft is specified
as a state machine with three states: Follower, Candidate, and Leader. Candidates attempt
to get themselves elected as leader by soliciting a quorum of votes from their peers in a
given election term (epoch).

In one of our early fuzz runs, we found a violation of ‘Leader Safety’, i.e. two processes
believed they were leader in the same election term. This is a highly problematic situation
for Raft to be in, since the leaders may overwrite each others’ log entries, thereby violating
the key linearizability guarantee that Raft is supposed to provide.

The root cause for this bug was that akka-raft’s candidate state did not detect duplicate
votes from the same follower in the same election term. (A follower might resend votes
because it believed that an earlier vote was dropped by the network). Upon receiving
the duplicate vote, the candidate counts it as a new vote and steps up to leader before it
actually achieved a quorum of votes.

raft-46: Processes neglect to ignore certain votes from previous terms. After fixing the
previous bug, we found another execution where two leaders were elected in the same
term.

In Raft, processes attach an ‘election term’ number to all messages they send. Receiv-
ing processes are supposed to ignore any messages that contain an election term that is
lower than what they believe is the current term.
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akka-raft properly ignored lagging term numbers for some, but not all message types.
DEMi delayed the delivery of messages from previous terms and uncovered a case where
a candidate incorrectly accepted a vote message from a previous election term.

raft-56: Nodes forget who they voted for. akka-raft is written as a finite state machine.
When making a state transition, FSM processes specify both which state they want to
transition to, and which instance variables they want to keep once they have transitioned.

All of the state transitions for akka-raft were correct except one: when the Candidate
steps down to Follower (e.g., because it receives an ‘AppendEntries’ message, indicating
that there is another leader in the cluster), it forgets which node it previously voted for in
that term. Now, if another node requests a vote from it in the same term, it may vote for
a different node than it previously voted for in the same term, later causing two leaders
to be elected, i.e. a violation of Raft’s “Leader Safety” condition. We discovered this by
manually examining the state transitions made by each process throughout the reduced
execution.

raft-58a: Pending client commands delivered before initialization occurs. After ironing
out leader election issues, we started finding other issues. In one of our fuzz runs, we
found that a leader process threw an assertion error.

When an akka-raft Candidate first makes the state transition to leader, it does not
immediately initialize its state (the ‘nextIndex’ and ‘matchIndex’ variables). It instead
sends a message to itself, and initializes its state when it receives that self-message.

Through fuzz testing, we found that it is possible that the Candidate could have pend-
ing ClientCommand messages in its mailbox, placed there before the Candidate transi-
tioned to Leader and sent itself the initialization message. Once in the Leader state, the
Akka runtime will first deliver the ClientCommand message. Upon processing the Client-
Command message the Leader tries to replicate it to the rest of the cluster, and updates
its nextIndex hashmap. Next, when the Akka runtime delivers the initialization self-
message, it will overwrite the value of nextIndex. When it reads from nextIndex later, it
is possible for it to throw an assertion error because the nextIndex values are inconsistent
with the contents of the Leader’s log.

raft-58b: Ambiguous log indexing. In one of our fuzz tests, we found a case where the
‘Log Matching’ invariant was violated, i.e. log entries did not appear in the same order
on all machines.

According to the Raft paper, followers should reject AppendEntries requests from
leaders that are behind, i.e. prevLogIndex and prevLogTerm for the AppendEntries mes-
sage are behind what the follower has in its log. The leader should continue decrementing
its nextIndex hashmap until the followers stop rejecting its AppendEntries attempts.

This should have happened in akka-raft too, except for one hiccup: akka-raft decided
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to adopt 0-indexed logs, rather than 1-indexed logs as the paper suggests. This creates a
problem: the initial value of prevLogIndex is ambiguous: Followers can not distinguish
between an AppendEntries for an empty log (prevLogIndex == 0) an AppendEntries for
the leader’s 1st command (prevLogIndex == 0), and an AppendEntries for the leader’s
2nd command (prevLogIndex == 1 1 == 0). The last two cases need to be distinguishable.
Otherwise followers will not be able to reject inconsistent logs. This corner would have
been hard to anticipate; at first glance it seems fine to adopt the convention that logs
should be 0-indexed instead of 1-indexed.

As a result of this ambiguity, followers were unable to correctly reject AppendEntries
requests from leader that were behind.

raft-42: Quorum computed incorrectly. We also found a fuzz test that ended in a viola-
tion of the ‘Leader Completeness’ invariant, i.e. a newly elected leader had a log that was
irrecoverably inconsistent with the logs of previous leaders.

Leaders are supposed to commit log entries to their state machine when they knows
that a quorum (N/2+1) of the processes in the cluster have that entry replicated in their
logs. akka-raft had a bug where it computed the highest replicated log index incorrectly.
First it sorted the values of matchIndex (which denote the highest log entry index known
to be replicated on each peer). But rather than computing the median (or more specifically,
the N/2+1’st) of the sorted entries, it computed the mode of the sorted entries. This
caused the leader to commit entries too early, before a quorum actually had that entry
replicated. In our fuzz test, message delays allowed another leader to become elected, but
it did not have all committed entries in its log due to the previously leader committing
too soon.

As we walked through the reduced execution, it became clear mid-way through the
execution that not all entries were fully replicated when the master committed its first en-
try. Another process without all replicated entries then became leader, which constituted
a violation of the “Leader Completeness” invariant.

raft-66: Followers unnecessarily overwrite log entries. The last issue we found is only
possible to trigger if the underlying transport protocol is UDP, since it requires reorder-
ings of messages between the same source, destination pair. The akka-raft developers say
they do not currently support UDP, but they would like to adopt UDP in the future due
to its lower latency.

The invariant violation here was a violation of the ‘Leader Completeness’ safety prop-
erty, where a leader is elected that does not have all of the needed log entries.

Leaders replicate uncommitted ClientCommands to the rest of the cluster in batches.
Suppose a follower with an empty log receives an AppendEntries containing two entries.
The follower appends these to its log.
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Then the follower subsequently receives an AppendEntries containing only the first
of the previous two entries (this message was delayed). The follower will inadvertently
delete the second entry from its log.

This is not just a performance issue: after receiving an ACK from the follower, the
leader is under the impression that the follower has two entries in its log. The leader may
have decided to commit both entries if a quorum was achieved. If another leader becomes
elected, it will not necessarily have both committed entries in its log as it should, leading
to a ‘LeaderCompleteness’ violation.

4.5.5 Full Description of Spark Case Studies

Spark is a large scale data analytics framework. We focused our efforts on reproducing
known bugs in the core Spark engine, which is responsible for orchestrating computation
across multiple machines.

We looked at the entire history of bugs reported for Spark’s core engine. We found
that most reported bugs only involve sequential computation on a single machine (e.g.
crashes due to unexpected user input). We instead focused on reported bugs involving
concurrency across machines or partial failures. Of the several dozen reported concur-
rency or partial failure bugs, we chose three.

The external events we inject for Spark case studies are worker join events (where
worker nodes join the cluster and register themselves with the master), job submissions,
and crash-recoveries of the master node. The Spark job we ran for all case studies was a
simple parallel approximation of the digits of Pi.

spark-2294: Locality inversion. In Spark, an ‘executor’ is responsible for performing
computation for Spark jobs. Spark jobs are assigned ‘locality’ preferences: the Spark
scheduler is supposed to launch ‘NODE LOCAL’ tasks (where the input data for the task
is located on the same machine) before launching tasks without preferences. Tasks with-
out locality preferences are in turn supposed to be launched before ‘speculative’ tasks.

The bug for this case study was the following: if an executor E is free, a task may
be speculatively assigned to E when there are other tasks in the job that have not been
launched (at all) yet. Similarly, a task without any locality preferences may be assigned
to E when there was another ‘NODE LOCAL’ task that could have been scheduled. The
root cause of this bug was an error in Spark scheduler’s logic: under certain configura-
tions of pending Spark jobs and currently available executors, the Spark scheduler would
incorrectly invert the locality priorities. We reproduced this bug by injecting random,
concurrently running Spark jobs (with differing locality preferences) and random worker
join events.
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spark-3150: Simultaneous failure causes infinite restart loop. Spark’s master node
supports a ‘Cold-Replication’ mode, where it commits its state to a database (e.g.,
ZooKeeper). Whenever the master node crashes, the node that replaces it can read that
information from the database to bootstrap its knowledge of the cluster state.

To trigger this bug, the master node and the driver process need to fail simultaneously.
When the master node restarts, it tries to read its state from the database. When the driver
crashes simultaneously, the information the master reads from the database is corrupted:
some of the pointers referencing information about the driver are null. When the master
reads this information, it dereferences a null pointer and crashes again. After failing, the
master restarts, tries to recover its state, and crashes in an infinite cycle. The reduced exe-
cution for this bug contained exactly these 3 external events, which made the problematic
code path immediately apparent.

spark-9256: Delayed message causes master crash. We found the following bug through
fuzz testing.

As part of initialization, Spark’s client driver registers with the Master node by re-
peatedly sending a RegisterApplication message until it receives a RegisteredApplication
response. If the RegisteredApplication response is delayed by at least as long as the con-
figured timeout value (or if the network duplicates the RegisterApplication RPC), it is
possible for the Master to receive two RegisterApplication messages for the same client
driver.

Upon receiving the second RegisterApplication message, the master attempts to per-
sist information about the client driver to disk. Since the file containing information about
the client driver already exists though, the master crashes with an IllegalStateException.

This bug is possible to trigger in production, but it will occur only very rarely. The
name of the file containing information has a second-granularity timestamp associated
with it, so it would only be possible to have a duplicate file if the second RegisteredAp-
plication response arrived in the same second as the first response.

4.6 Conclusion

In this chapter, we started by observing that the actor model allows engineers to interpose
on sources of non-determinism in their distributed system with low effort. Then, we
demonstrated that with more complete control over sources of non-determinism, we can
achieve significantly greater reduction in execution size (through systematic exploration
of the space of possible schedules), as well as a cleaner problem formulation. Within the
actor model we articulated new execution reduction strategies that quickly reduce both
input events, internal events, and message contents.
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The results we found from applying our reduction strategies to two actor-based dis-
tributed systems were quite promising, and leave us optimistic that these techniques can
be successfully applied to a wide range of distributed and concurrent systems.
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Chapter 5

Related Work

We start our discussion of related work with the most closely related literature.

5.1 Reduction Techniques

Input Reduction for Sequential Programs. Reduction algorithms for sequentially pro-
cessed inputs are well-studied [136, 24, 99, 121, 16, 48, 20]. These (particularly: delta
debugging) form a component of our solution, but they do not consider interleavings of
internal events from concurrent processes.

Reduction without Interposition. Several tools reduce inputs to concurrent systems
without controlling sources of non-determinism [8, 26, 115, 58, 55]. The most sophisti-
cated of these replay each subsequence multiple times and check whether the violation is
reproduced at least once [55, 25]. Their major advantage is that they avoid the engineer-
ing effort required to interpose. Their drawback, as we found in chapter 3, is that bugs are
often not easily reproducible without interposition. Furthermore, without interposition
these techniques cannot (directly) reduce internal events.

QuickCheck’s PULSE controls the message delivery schedule [25] and supports sched-
ule reduction. During replay, it considers the order messages are sent in, but not message
contents. When it cannot replay a step, it skips it (similar to STSSched), and reverts to
random scheduling once expected messages are exhausted [54]. As the QuickCheck de-
velopers point out, even with PULSE’s interposition, QuickCheck’s reduced counterex-
amples can be large [98]. With more complete exploration of the schedule space their
reduction would likely be improved.

Thread Schedule Reduction. Other techniques seek to reduce thread interleavings lead-
ing up to concurrency bugs [22, 57, 52, 31]. These generally work by iteratively feeding a
single input (mutations of a recorded thread schedule) to a single entity (a deterministic
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thread scheduler). These approaches ensure that the program never diverges from the
control flow of the original schedule (otherwise the recorded I/O responses and context
switch points from the original execution would become useless). Besides reducing con-
text switches, these approaches at best truncate thread executions by having threads exit
earlier than they did in the original execution (thereby shortening the execution trace),
but they cannot remove extraneous events from the middle of the trace.

Although these thread schedule reduction techniques do not explore divergent sched-
ules,1 that constraint is not fundamental. Rather than only considering the original
recorded thread schedule, one could explore new (divergent) schedules, store the newly
recorded I/O responses and context switch points, and replay those recordings determin-
istically later on. Such a system for multicore schedule reduction would be equivalent to
DEMi as we apply it to message passing distributed systems.

Thread Schedule Reduction Augmented with Program Analysis. One can remove
events in the middle of a recorded deterministic replay log by analyzing the program’s
control- and dataflow dependencies and providing a proof that removing those events
will not shift the execution’s context switch points [71, 109, 53, 17, 32, 119]. These tech-
niques do not explore alternate code paths. Program analysis also over-approximates
state reachability (because some conditionals are undecidable or difficult to model; e.g.,
EFF takes the transitive closure of all possible dependencies [71]), disallowing them from
removing dependencies that actually commute.

We compare against thread schedule reduction (without divergence) by configuring
DEMi to reduce as before, but to abort any execution where it detects a previously unob-
served state transition. Column ‘NoDiverge’ of Table 4.2 shows the results, which demon-
strate that divergent executions are crucial to DEMi’s reduction gains for the akka-raft
case studies.

Although previous program analysis papers did not consider exploring alternate code
paths [71, 109, 53, 17, 32, 119], program analysis could be leveraged to help prune DEMi’s
search space. We plan to investigate this idea in future work.

Model Checking. The algorithmic aspects of this dissertation are most closely related to
the model checking literature.

Abstract model checkers convert (possibly concurrent) programs to logical formulas,
find logical contradictions (assertion violations) using solvers, and reduce the logical con-
junctions to aid understanding [23, 63, 84]. Model checkers are very powerful, but they
are typically tied to a single language and assume access to source code, whereas the sys-
tems we target (e.g. Spark) are composed of multiple languages and may use proprietary

1PRES explores divergent schedules for best-effort replay of multithreaded executions, but does not
reduce executions [96].
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libraries.

It is also possible to extract logic formulas from raw binaries [9]. Fuzz testing is sig-
nificantly lighter weight.

If, rather than randomly fuzzing, testers enumerated inputs of progressively larger
sizes, failing tests would be minimal by construction. However, breadth first enumeration
takes very long to get to ‘interesting’ inputs (After 24 hours of execution, our bounded
DPOR implementation with depth bound slightly greater than the optimal trace size still
had not found any invariant violations. In contrast, DEMi’s randomized testing discov-
ered most of our reported bugs within 10s of minutes). Furthermore, reduction is useful
beyond testing, e.g. for simplifying production traces.

Motivated by the intractability of systematic input enumeration, many papers develop
heuristics for finding bugs quickly [117, 89, 90, 125, 15, 111, 38, 72, 75, 95, 28]. We do the
same, but crucially, we are able to use information from previously failing executions
to guide our search. We are also the first to observe that an application’s use of TCP
constrains its schedule space.

As far as we know, we are the first to combine DPOR and delta debugging to reduce
executions. Others have modified DPOR to keep state [128, 130] and to apply heuristics
for choosing initial schedules [70], but these changes are intended to help find new bugs
rather than reduce existing faulty executions.

Program Slicing & Automated Debugging. Program slicing [120] seeks to find a mini-
mal subset of the statements in a program that could possibly affect the outcome of an
assertion. Literature following Weisers’ original program slicing paper goes further to try
to automatically locate the exact line(s) of code or state transitions that are responsible for
a bug, using statistical data [139], test coverage data [56, 124], constraint solving [82], fault
injection [67] and experimentally driven executions of the failing program [27, 108]. Our
goal is to slice the temporal dimension of an execution rather than the code dimension.

Log Comprehension. Model inference techniques summarize log files in order to make
them more easily understandable by humans [33, 13, 12, 14, 80, 81]. Model inference is
complementary, as it does not modify the event logs.

5.2 Debugging for Networked & Concurrent Systems

We end this chapter by discussing literature on the general topic of troubleshooting. For
an in-depth overview of systematic troubleshooting techniques, see our HotSDN publi-
cation [51].

Interposition on blackbox distributed systems. DEMi’s software architecture closely
resembles other automated testing systems for distributed systems [75, 72, 106]. All of
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these tools interpose on timers and message send and receive events. MoDist [75] inter-
poses at the syscall level, whereas SAMC [72] and dBug [106] interpose primarily at the
application layer (similar to DEMi). As we discussed in chapter 4.4.2, interposing at the
application layer has several advantages over interposing at the syscall level, although
syscall level interposition is more broadly applicable.

STS’s software architecture closely resembles other network simulators [49, 112, 118].
Most of these simulators are focused on producing high fidelity performance behaviors,
whereas we designed STS with the intent of providing precise control over event timings
without focusing on performance.

Root Cause Analysis. Without perfect instrumentation, it is often not possible to know
exactly what events are occurring (e.g. which components have failed) in a distributed
system. Root cause analysis [129, 59] seeks to reconstruct those unknown events from
limited monitoring data. Here we know exactly which events occurred, and instead seek
to identify a minimal sequence of events.

Bug Reproduction. Record and replay techniques seek to reproduce a given concurrency
bug [133, 134, 5, 96, 131, 123]. Once a bug has been reproduced, users can step through
the (deterministic) execution and interactively examine the state of the system. Manually
examining long system executions can be tedious, and our goal is to reduce such execu-
tions so that developers find it easier to identify the problematic code through replay or
other means.

Probabilistic Diagnosis. Record and replay systems incur performance overheads at run-
time that can be too prohibitive for production deployments. With the aim of avoiding
the runtime overhead of deterministic replay, probabilistic diagnosis techniques [131, 94,
60] capture carefully selected diagnostic information (e.g. stack traces, thread & message
interleavings) that should have high probability of helping developers find the root cause
of a problem. One key insight underlying these techniques is cooperative debugging: the
realization that even if one does not collect enough diagnostic information from a single
bug report, it is quite likely that the bug will happen more than once so that diagnostic
information can be correlated [73]. We assume more complete runtime instrumentation
(during testing, not in production), but provide exact reproducing scenarios.

Detecting Bugs in Production. Despite our best efforts, bugs invariably make it into
production. Still, we would prefer to discover these issues through means that are more
proactive than user complaints. An old idea is useful here: distributed snapshots [19],
a subset of the events in the system’s execution such if any event e is contained in the
subset, all ‘happens-before’ predecessors of e are also contained in the subset. Distributed
snapshots allow us to obtain a global view of the state of all machines in the system,
without needing to stop the world. Once we have a distributed snapshot in hand, we can



5.2. DEBUGGING FOR NETWORKED & CONCURRENT SYSTEMS 76

check assertions about the state of the overall system (either offline [77] or online [78]).
Within the networking community, research along these lines has focused on verifying
routing tables [62, 61, 85, 64] or forwarding behavior [137, 138]. We focus on reducing
executions leading up to bugs, assuming we already have access to some mechanism for
detecting those bugs.

Instrumentation. Making sense of unstructured diagnostic information pieced together
from a large collection of machines is challenging. The goal of distributed tracing frame-
works is to produce structured event logs that can be easily analyzed to understand per-
formance and correctness bugs. The core idea [21] is simple: have the first machine as-
sign an ID to the incoming request, and attach that ID (plus a pointer to the parent task)
to all messages that are generated in response to the incoming request. Then have each
downstream task that is involved in processing those messages log timing information
associated with the request ID to disk. Propagating the ID across all machines results in a
tree of timing and causality information.

Causal trees can be used2 to: characterize the production workload [10], handle re-
source accounting [114] and ‘what-if’ predictions for resource planning [113], track flows
across administrative domains [39], visualize traces and express expectations about how
flows should be structured [100], monitor performance isolation in a multi-tenant envi-
ronment [83], track the flow of packets through a network [50], and detect performance
anomalies [102]. These use-cases enable developers to understand how, when, and where
the system broke. In contrast, we seek to provide the minimal set of events needed for
the software to violate an invariant.

2See [101] for a comprehensive survey of distributed tracing tradeoffs and use-cases.
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Chapter 6

Concluding Remarks & Future Work

Distributed systems, like most software systems, are becoming increasingly complex over
time. In comparison to other areas of software engineering however, the development
tools that help programmers cope with the complexity of distributed and concurrent sys-
tems are lagging behind their sequential counterparts. Inspired by the obvious utility of
test case reduction tools for sequential executions, we sought to develop execution reduc-
tion techniques for distributed executions.

We investigated two scenarios where execution reduction could be applied to dis-
tributed systems: partially instrumented code, where executions are non-deterministic,
and completely instrumented code, where we tie ourselves to a particular messaging li-
brary in order to precisely control all relevant sources of non-determinism. We applied
our techniques to 7 different distributed systems, and our results leave us optimistic that
these techniques can be successfully applied to a wide range of distributed and concur-
rent systems.

Future Work. We see several directions for future work on execution reduction. Some of
these directions address limitations of the work presented in this dissertation, and others
pose new questions.

• Constrained Computational Models for Program Analysis. Our execution re-
duction strategies are motivated by program properties, or constraints on the com-
putational structure of the practical systems we care about in practice. We have
yet to properly formalize those program properties. Can we formalize those pro-
gram properties, and prove that practical systems exhibit those properties? Within
those constrained computational models, can we prove that our execution reduction
strategies achieve soundness and completeness?

More generally, program analysis for arbitrary Turing machines and arbitrary pro-
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gram properties is typically either undecidable or intractable. The distributed sys-
tems we build in practice however are not adversarial! Can we codify the properties
of practical distributed systems that make them more easily amenable to program
analysis? What program analysis tools can we provide to help alleviate the specific
challenges (e.g. performance variability, concurrency) faced by distributed systems?

We list some of our conjectured program properties here:

Reducibility: Suppose that an invariant is defined over a small subset of each pro-
cesses’ local variables. Suppose further that, upon receiving a single message, each
process will only update some of its local variables, not all of them. Consider reduc-
ing the overall state machine (defined as the cross product of the state machines of
each process) to a machine that only contains state transitions whose updated local
variables are within the domain of the invariant. It is likely that the path through
this machine defined by the events in the original execution will contain loops. We
can remove any events in the original execution that cause the machine to traverse
those loops, and still arrive at the final unsafe state.

Quiescence: If the program p is quiescent – meaning that it is guaranteed to eventu-
ally stop sending messages – then the set of schedules to be explored is finite.

Semi-Quiescence: If the program p is semi-quiescent – meaning that it is quiescent
except for some message type (e.g. heartbeat messages) – then the set of schedules to
be explored is finite if you assume that the non-quiescent component of the program
p is correct.

K-Quiescence: If the program p is k-quiescent – meaning that it is guaranteed to
stop sending messages within k-steps, then the set of schedules to be explored is
bounded.

Commutativity: If some of the events within the schedule space can be reordered
without changing the outcome – i.e. p exhibits some degree of commutativity – then
not all schedules need to be explored, viz. those where the commutative events are
reordered. This is the intuition behind DPOR, but there are other forms of commu-
tativity beyond the happens-before relation considered by DPOR.

Symmetry: Suppose that if we change the labels of some of the processes in the
system, the behavior of the overall system is the same. We could then consider any
executions that only differ in the placement of the labels as equivalent.

Data Independence: If the internal state transitions taken by p in response to exter-
nal messages do not depend on the values (fields) of the external messages, then
schedules with only differing values of the external messages can be considered
equivalent.
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Bounded Edit Distance: Consider the state machine defined as the cross product of
all processes’ state machines. Each edge is labeled with an event. Now consider
all states that exhibit the invariant violation, and the k-shortest paths that lead up
to any of those states. Bounded edit distance states that at least one of those paths
has at most α transitions that were not in the original execution, and the remaining
transitions can be converted to a subsequence of the original execution with at most
β reorderings, where α and β are small constants.

Recency of State: A program p exhibits state recency if whenever the program p
reaches quiescence, its memory footprint is bounded; that is, it forgets about events
from before k steps of reaching quiescence.

Monotonicity: Let fp denote a function that takes a finite sequence of external events
E ′, and returns whether there exists a schedule S ′ containing E ′ that triggers the
violation. A set of external events E is monotonic if whenever fp(E ′) = true, then
for all subsequences E ′′ of E ′, fp(E ′′) = true.

• Improving Upon Our Schedule Exploration Strategies. In this dissertation we de-
signed a small number of heuristics and empirically showed that they are effective.
However, there may be other complementary and effective heuristics. Many of these
new heuristics could in fact fall directly out of our formalization of program prop-
erties. A few examples:

Exploring reorderings of events seems to be less fruitful than exploring unexpected
events. Would it be effective to give DPOR a fixed budget of unexpected events to
explore, and a smaller budget of reordering to explore?

We have noticed that timers (messages sent to the node itself) seem to play a partic-
ularly important role in the control flow of the execution. Would it be effective to
extend fixed budgets to 4 distinct budgets?: one for unexpected timers, one for re-
orderings of timers, one for unexpected messages, and one for reordered messages?

Looking at visualizations of our executions, it becomes clear that there are “clusters”
of events. Within those clusters, there are many happens-before edges, but across
those clusters, there are few happens-before edges. Would either of these heuristics
produce rapid reduction?: (i) prioritize reorderings within clusters before reorder-
ings across clusters, or (ii) prioritize reorderings across clusters before reorderings
within clusters?

The ‘provenance’ of a message—the causal chain of message deliveries that pre-
ceded it—provides potentially useful information to reduction strategies. Can we
cluster and prioritize messages according to their vicinity in the causal graph? Can
we reason a priori about which internal events will not show up as a result of re-
moving prior events?
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• Leveraging Whitebox Visibility. In this dissertation we refrain from analyzing the
code. But our refrain is by no means fundamental; can we apply static and dynamic
analysis to improve our schedule exploration strategies? Can we gain lightweight
visibility into internal state of the processes (e.g., through the invariant checking
function we are already given by the application developer), without needing to tie
ourselves to the details of a particular language or implementation?

• Automatically Learning Schedule Exploration Strategies. The schedule explo-
ration strategies we developed here are designed by hand, based on our personal
experiences debugging and understanding the programs under test. Could we in-
stead have our tool learn appropriate schedule exploration strategies, as it experi-
ments with more and more system behaviors? For example, could we infer a model
of the program’s state machine (a la Synoptic [13, 12]), and use this model to dynam-
ically guide which schedules to explore next? We have already begun investigating
this line of inquiry.

• Synthesizing Message Fingerprints. We currently define our message fingerprints
by manually examining the message formats for all protocols used by the dis-
tributed system. This task may require a substantial amount of effort for some sys-
tems. Is is possible to automatically extract message fingerprints using program
analysis? Or, can we experimentally distinguish between message field values that
are non-deterministically generated, and message field values that are relevant to
triggering invariant violations? (cf. Twitter’s ‘Diffy’ Testing System [116]).

• Providing Hints to Delta Debugging. Delta debugging takes a domain-agnostic
approach to selecting which input events to test (that is, it does not assume any
knowledge of the structure or semantics of the inputs it seeks to reduce). However,
the executions of distributed systems have rich structures (e.g., they are partially
ordered by the happens-before relation). Can we improve delta debugging’s com-
plexity by providing it hints about this causal structure? For example, would we
benefit from coercing delta debugging to split events along minimal cuts through
the happens-before graph? Or, suppose we split events according to their locality or
type rather than their time? Can we statically codify the semantics of input events
to prevent delta debugging from exploring unfruitful event sequences?

• Reducing Production Executions. As we discussed in chapters 3.7 and 4.4, reduc-
ing production executions would require us to overcome several challenges. Can we
obtain sufficient monitoring information from production without incurring pro-
hibitive runtime overheads? Can we identify redundant events recorded in mon-
itoring logs? Can we scale our test environment to match the size of production
environments?
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• Choosing Appropriate Interposition Points. We targeted OpenFlow (in chapter 3)
and the Akka actor framework (in chapter 4) for a simple reason: thanks to the nar-
rowness of these APIs, we did not need to exert much engineering effort to inter-
pose on (i) communication between processes, (ii) blocking operations, (iii) clocks,
and (iv) remaining sources of non-determinism.

We believe that with enough interposition, it should be possible to sufficiently con-
trol other systems, regardless of language or programming model. That said, the
effort needed to interpose could certainly be significant. By choosing appropriate
interposition points, would it be possible to increase the generality and effective-
ness of STS and DEMi, without substantially increasing engineering effort? Can
execution reduction work equally well if applied to a lower layer of the stack (e.g.
the network or syscall layer) rather than the application layer?

• Detecting Bugs. Our ultimate goal should be to prevent bugs from being deployed
in the first place. In a sense, the techniques that we developed are simply strategies
for finding problematic schedules within the intractably large schedule space. Can
we apply these same strategies to improve concurrency testing, before debugging
takes place? Since our scheduling strategies are based on small model property
assumptions, can we build up test cases from small initial executions rather than
generating them randomly? Can we use our knowledge of prior bugs to avoid
finding new but uninteresting bugs that developers will not care to fix?

• Preventing Configuration Errors. Human configuration errors remain the largest
source of production outages. More generally, developers and operators spend a
significant portion of their time and effort dealing with configuration. To what ex-
tent can we design our systems to be autonomous and configuration-free? For the
remainder of knobs we must expose to humans, what can we learn from the HCI
community on how to design configuration interfaces to avoid errors and facilitate
clear reasoning?

• Designing Language Constructs for Safe Asynchronous Programming. Our case
studies have taught us much about the kinds of errors that developers of distributed
systems make. These errors often involve asynchrony and partial failure, which
are fundamental to networked systems. Yet, as our case studies demonstrate, asyn-
chronous programming remains notoriously error prone. To what extent can we au-
tomatically synthesize tricky pieces of asynchronous code? Can we design language
constructs, based on our understanding of these common mistakes, that side-step
the need for developers to reason about the entire combinatorial space of possible
message orderings?
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Going forward, we see a pressing need to bring the state-of-the-art for distributed
systems development tools up to speed with the more well studied and widely used pro-
gramming languages and software engineering tools for sequential programs. We hope
that continued interactions with researchers and practitioners alike will help us bridge
this gap.
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of Software Behavioral Models”. In: ICSE ’08.

[81] Jian-Guang Lou, Qiang Fu, Shengqi Yang, Ye Xu, and Jiang Li. “Mining Invariants
from Console Logs for System Problem Detection”. In: ATC ’10.

[82] M. Jose and R. Majmudar. “Cause Clue Causes: Error Localization Using Maxi-
mum Satisfiability”. In: PLDI ’11.

[83] Jonathan Mace, Peter Bodik, Rodrigo Fonseca, and Madanlal Musuvathi. “Retro:
Targeted Resource Management in Multi-tenant Distributed Systems”. In: NSDI
’15.

[84] Nuno Machado, Brandon Lucia, and Luıs Rodrigues. “Concurrency Debugging
with Differential Schedule Projections”. In: PLDI ’15.

[85] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, P. Brighten God-
frey, and Samuel Talmadge King. “Debugging the Data Plane with Anteater”. In:
SIGCOMM ’11.

[86] James Mccauley. POX: A Python-based OpenFlow Controller. http : / / www .

noxrepo.org/pox/about-pox/.

linuxcontainers.org
http://llvm.org/docs/Bugpoint.html
http://llvm.org/docs/Bugpoint.html
http://www.noxrepo.org/pox/about-pox/
http://www.noxrepo.org/pox/about-pox/


BIBLIOGRAPHY 89

[87] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: Enabling
Innovation in Campus Networks”. In: SIGCOMM CCR ’08.

[88] George A Miller. “The Magical Number Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information”. In: Psychological Review ’56.

[89] Madanlal Musuvathi and Shaz Qadeer. “Iterative Context Bounding for System-
atic Testing of Multithreaded Programs”. In: PLDI ’07.

[90] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam
Arumuga Nainar, and Iulian Neamtiu. “Finding and Reproducing Heisenbugs in
Concurrent Programs”. In: SOSP ’08.

[91] Diego Ongaro and John Ousterhout. “In Search of an Understandable Consensus
Algorithm”. In: ATC ’14.

[92] ON.Lab. Open Networking Operating System. http://onlab.us/tools.html.

[93] OpenStack Neutron. https://wiki.openstack.org/wiki/Neutron.

[94] Sang Min Park. Effective Fault Localization Techniques for Concurrent Software. PhD
Thesis, ’14.

[95] Soyeon Park, Shan Lu, and Yuanyuan Zhou. “CTrigger: Exposing Atomicity Vio-
lation Bugs from their Hiding Places”. In: ASPLOS ’09.

[96] Soyeon Park, Yuanyuan Zhou, Weiwei Xiong, Zuoning Yin, Rini Kaushik, Kyu
H Lee, and Shan Lu. “PRES: Probabilistic Replay with Execution Sketching on
Multiprocessors”. In: SOSP ’09.

[97] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. “Extending Networking into the Virtualization Layer”. In: HotNets ’09.

[98] PULSE Tutorial. http : / / www . erlang - factory . com / upload /

presentations/191/EUC2009-PULSE.pdf.

[99] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun
Yang. “Test-case Reduction for C Compiler Bugs”. In: PLDI ’12.

[100] Patrick Reynolds, Charles Killian, Janet L. Winer, Jeffrey C. Mogul, Mehul A. Shah,
and Amin Vadhat. “Pip: Detecting the Unexpected in Distributed Systems”. In:
NSDI ’06.

[101] Raja R Sambasivan, Rodrigo Fonseca, Ilari Shafer, and Gregory R Ganger. “So, you
want to trace your distributed system? Key design insights from years of practical
experience”. In: CMU Tech Report, ’14.

http://onlab.us/tools.html
https://wiki.openstack.org/wiki/Neutron
http://www.erlang-factory.com/upload/presentations/191/EUC2009-PULSE.pdf
http://www.erlang-factory.com/upload/presentations/191/EUC2009-PULSE.pdf


BIBLIOGRAPHY 90

[102] Raja R Sambasivan, Alice X Zheng, Michael De Rosa, Elie Krevat, Spencer Whit-
man, Michael Stroucken, William Wang, Lianghong Xu, and Gregory R Ganger.
“Diagnosing Performance Changes by Comparing Request Flows”. In: NSDI ’11.

[103] Colin Scott, Aurojit Panda, Vjekoslav Brajkovic, George Necula, Arvind Krishna-
murthy, and Scott Shenker. “Minimizing Faulty Executions of Distributed Sys-
tems”. In: NSDI ’16.

[104] Colin Scott, Andreas Wundsam, Barath Raghavan, Aurojit Panda, Andrew Or,
Jefferson Lai, Eugene Huang, Zhi Liu, Ahmed El-Hassany, Sam Whitlock, H.B.
Acharya, Kyriakos Zarifis, and Scott Shenker. “Troubleshooting Blackbox SDN
Control Software with Minimal Causal Sequences”. In: SIGCOMM ’14.

[105] Ohad Shacham, Eran Yahav, Guy Golan Gueta, Alex Aiken, Nathan Bronson,
Mooly Sagiv, and Martin Vechev. “Verifying Atomicity via Data Independence”.
In: ISSTA’14.

[106] Jiri Simsa, Randy Bryant, and Garth A Gibson. “dBug: Systematic Evaluation of
Distributed Systems”. In: SSV ’10.

[107] Vijayaraghavan Soundararajan and Kinshuk Govil. “Challenges in Building Scal-
able Virtualized Datacenter Management”. In: OSR ’10.

[108] William Sumner and Xiangyu Zhang. “Comparative Causality: Explaining the Dif-
ferences Between Executions”. In: ICSE ’13.

[109] Sriraman Tallam, Chen Tian, Rajiv Gupta, and Xiangyu Zhang. “Enabling Tracing
of Long-Running Multithreaded Programs via Dynamic Execution Reduction”. In:
ISSTA ’07.

[110] G. Tel. Introduction to Distributed Algorithms. Thm. 2.21. Cambridge University
Press, 2000.

[111] Valerio Terragni, Shing-Chi Cheung, and Charles Zhang. “RECONTEST: Effective
Regression Testing of Concurrent Programs”. In: ICSE ’15.

[112] The ns-3 network simulator. http://www.nsnam.org/.

[113] Eno Thereska and Gregory R Ganger. “Ironmodel: Robust Performance Models in
the Wild”. In: SIGMETRICS ’08.

[114] Eno Thereska, Brandon Salmon, John Strunk, Matthew Wachs, Michael Abd-El-
Malek, Julio Lopez, and Gregory R Ganger. “Stardust: Tracking Activity in a Dis-
tributed Storage System”. In: SIGMETRICS ’06.

[115] Joseph Tucek, Shan Lu, Chengdu Huang, Spiros Xanthos, and Yuanyuan Zhou.
“Triage: Diagnosing Production Run Failures at the User’s Site”. In: SOSP ’07.

http://www.nsnam.org/


BIBLIOGRAPHY 91

[116] Twitter Blog. Diffy: Testing Services Without Writing Tests. https : / / blog .
twitter.com/2015/diffy- testing- services- without- writing-

tests.

[117] Rachel Tzoref, Shmuel Ur, and Elad Yom-Tov. “Instrumenting Where it Hurts: An
Automatic Concurrent Debugging Technique”. In: ISSTA ’07.

[118] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff
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