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Abstract

Contextual Visual Recognition from Images and Videos

by

Georgia Gkioxari

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Jitendra Malik, Chair

Object recognition from images and videos has been a topic of great interest in the com-
puter vision community. Its success directly impacts a wide variety of real-world applications;
from surveillance and health care to self-driving cars and online shopping.

Objects exhibit organizational structure in their real-world setting (Biederman et al. ,
1982). Contextual reasoning is part of human’s visual understanding and has been mod-
eled by various e↵orts in computer vision in the past (Torralba, 2001). Recently, object
recognition has reached a new peak with the help of deep learning. State-of-the-art object
recognition systems use convolutional neural networks (CNNs) to classify regions of interest
in an image. The visual cues extracted for each region are limited to the content of the region
and ignore the contextual information from the scene. So the question remains, how can we
enhance convolutional neural networks with contextual reasoning to improve recognition?

Work presented in this manuscript shows how contextual cues conditioned on the scene
and the object can improve CNNs’ ability to recognize di�cult, highly contextual objects
from images. Turning to the most interesting object of all, people, contextual reasoning is
a key for the fine-grained tasks of action and attribute recognition. Here, we demonstrate
the importance of extracting cues in an instance-specific and category-specific manner tied
to the task in question. Finally, we study motion which captures the change in shape and
appearance in time and is a way to extract dynamic contextual cues. We show that coupling
motion with the complementary signal of static visual appearance leads to a very e↵ective
representation for action recognition from videos.
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Chapter 1

Introduction

Consider Figure 1.1 (left). The grand goal of object recognition in computer vision is to
build a system that accurately recognizes the scene, the objects that participate in it, their
state and attributes, their 3D configuration as well as their a↵ordances. The desired output
is shown in Figure 1.1 (right).

Visual recognition is a popular task among computer vision researchers. Its success is
tied to a variety of real-world applications, from surveillance and health care to self-driving
cars and e-commerce. To enable its progress, the computer vision community has defined
gold standards for visual recognition, including image classification, where the task is to
predict whether an object is present in the image, and object detection, where the task is to
predict the location and type of all objects in the image. Beyond generic objects, there has
been a lot of focus on tasks directly related to people, such as action recognition, where here
the goal is to recognize the actions performed by people in images or videos, and attribute
classification, which aims to characterize people appearance features.

Accord D

Street Scene

Bag F

Bench E!
with 3D model 

Person B!
looking at C

Person C!
playing Accord D!
sitting on Bench E!
with bag F

Person A!
walking away !
carrying 3 bags
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with bag F
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carrying 3 bags

Figure 1.1: The ideal recognition system. Left: An image of a scene Right: The desired
output of an object recognition system. Source: Jitendra Malik



CHAPTER 1. INTRODUCTION 2

1.1 Contextual Object Recognition

Objects exhibit organizational structure within their real world settings. Biederman et al. [1]
identify five classes of relations among an object and its environment. Those classes are

• Interposition. Objects interrupt their background

• Support. Objects rest on surfaces

• Probability. Objects tend to be found in some scenes and not others

• Position. Given an object is probable in a scene, it often is found in some positions
and not others

• Familiar size. Objects have a limited set of size relations with other objects

In their work, Biederman et al. quantified the importance of those relations by showing
subjects examples of scenes which violated one or more of the afore mentioned classes. An
example is shown in Figure 1.2, which is a scene showing a positional violation.

In computer vision, there has been a lot of e↵ort to build object recognition systems
which incorporate contextual reasoning by modelling the relationships of objects with their
environment. The most prominent of such works is by Torralba [14]. In [14], an object is
described as O = {o,x, �} while the contextual information is captured by vC . The object
likelihood P (O |vC) is decomposed into three terms

P (O |vC) = P (� |x, o,vC) · P (x | o,vC) · P (o |vC) (1.1)

The meaning of these three terms is

• P (o |vC). The most likely object types given the context information

• P (x | o,vC). The most likely locations of object type o given the context information

• P (� |x, o,vC). The most likely scales of object type o in location x given the context
information

The location and size relations of objects in a scene are visualized in the work by Oliva
and Torralba [2] as reproduced in Figure 1.3. Each square shows a reference object (in red)
and its typical occurrences of neighboring objects of a target category (in yellow) drawn
from the LabelMe dataset of annotated objects [15]. From these figures, it is very obvious
that objects tend to co-occur with other objects under a strict set of rules regarding their
relative size and location.



CHAPTER 1. INTRODUCTION 3

Figure 1.2: An example of a positional violation of objects in a scene. Source: Biederman
et al. [1]

1.2 Part-based Object Recognition

Orthogonal to the context derived from the scene and in an e↵ort to explain objects and their
intricate shapes, objects have been regarded to be comprised of a set of simpler and smaller
parts. Nevatia and Binford [16] model the anatomic parts of an object with generalized
cylinders to explain the shape and appearance of the object, as seen in Figure 1.4 (left).

For object recognition, part-based models aim at recognizing the parts, a presumably
easier task, and their spatial configuration in order to predict the location and identity of
the whole. Fischler and Elschlager [17] introduce pictorial structures, which aim to recognize
an object in an image given its part-based description and a metric of goodness of matching.
Figure 1.4 (right) shows an example of a part-based description for the face. Felzenszwalb
and Huttenlocher [18] presented a probabilistic framework for the same problem, which
they called Pictorial Structure Model (PSM). In its original formulation, body parts were
represented as rectangles and their spatial relations were captured by tree-structured graphs.
The tree-structure of PSM makes inference on location, scale and orientation of the body
parts exact and e�cient.
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Figure 1.3: Measuring dependencies between objects. The distribution of locations, sizes
and shapes of a target object (shown in yellow) conditioned on the presence of a reference
object (shown in red), drawn from the LabelMe dataset. Source: Oliva & Torralba [2].

Figure 1.4: Part-based Object Recognition. Left: Generalized cylinders are used to model
the anatomic parts of an object in order to explain its shape and appearance. Right: A part-
based description of a face. The various parts, e.g. eyes, nose, and their spatial configuration
are explicitly defined in order to holistically describe the face.
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Figure 1.5: CNNs for digit recognition. The input image is being processed through a
hierarchy of local convolutions, non-linear activation functions and pooling. A classifier is
trained to predict whether the input image belongs to one of 10 classes.

1.3 Visual Recognition with Convolutional Neural
Networks

Convolutional Neural Networks (CNNs) have dominated the field of object recognition today.
CNNs apply a hierarchy of operations to an input image. These operations are comprised of
local convolutions and non-linear activation functions. As a result, CNNs embed an image
into a feature space which is learned by optimizing a task-specific objective function.

LeCun et al. [19] applied CNNs for the task of digit recognition back, as shown in Fig-
ure 1.5. Since then, and with the arrival of big data, CNNs have shown unprecedented
performance for a variety of computer vision tasks, such as image classification [20], object
detection [5] and semantic segmentation [21].

In this thesis, we show how contextual and part-based reasoning can be coupled with CNNs
in order to build recognition engines which detect objects in complex real-world scenes and
predict people’s actions and attributes. We will show the e↵ectiveness of using contextual
cues, information that is not explicitly captured by feed forward CNNs, and how those cues
can be mined automatically from the data.
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Chapter 2

Contextual Object Recognition

In natural scenes, objects do not occur by themselves. They exhibit great organizational
structure, both in how they interact with each other as well as the scene. There is consider-
able evidence that humans make use of these regularities and that context is a very important
cue for visual recognition in natural settings [1, 2]. Current object detection systems fail to
capture such cues and rely solely on local appearance. In this chapter, we present an e↵ort
to derive the necessary contextual cues, using spotlight channels, conditioned on an object
in question.

2.1 Related Work on Object Detection

There have been several studies in computer vision attempting to formalize context [14, 22,
23, 24, 25, 26]. Currently the dominant approaches to visual recognition are based on neural
networks, so we turn specifically to the use of context in such frameworks. In a classification
setting, where one just has to declare what objects are present in an image, not where they
are, this is relatively straightforward. On the ImageNet classification challenge, ever since
2012, the leading approaches [20, 9, 27] compute features over the entire image, and then
output a set of labels corresponding to objects present in the image. Implicitly context is
being used in the features computed at the di↵erent layers of the network, and if the network
declares that a boat is present in the image it could do so using both features from the boat
or the surrounding water. The network draws no distinction between object and context, as
it is simply trained to minimize a loss function based on the label prediction error. Context
is being exploited, without ever being made explicit.

However in the case of detection, where it is not enough for the computer to declare that
the image contains a boat, but also needs to output a bounding box around the boat, the
use of context has proved to be much more challenging. One of the earliest e↵orts in the
post 2012 era to do object detection based on neural networks was OverFeat [28], where
the authors tried to regress to the bounding box coordinates from the features computed
on the whole image. This obviously implicitly uses context, but it does not work as com-
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petitively as the R-CNN approach [5] which has since come to dominate the field of object
detection. In R-CNN (Region-based Convolutional Neural Network), the starting point is a
set of region proposals (to be precise, the rectangular bounding boxes associated with these
proposals), which are putative guesses of the pixel supports of the di↵erent objects. Features
are computed on these bounding boxes and the softmax score output by the network is used
to decide whether the box corresponds to one of the objects of interest or background. Typ-
ically this is accompanied by a regression stage where a (hopefully) better bounding box is
predicted, also based on neural network features. Since the original R-CNN paper, various
refinements have been introduced, notably SPPNet [29] and Fast R-CNN [4]. In MultiBox
[30], an approach contemporary to R-CNN, a network is trained to predict the locations of
the bounding boxes which are subsequently classified, instead of using precomputed bottom-
up region proposals. However, what is common in all those approaches is that the features
on the object are responsible for the assignment of the object category. One may ask why
this works better than OverFeat, which in principle has more information. It seems that
region proposals provide an attention focusing mechanism, directly telling the network about
the most relevant features - those on the object - which help localize the object accurately
and thus improve performance on the detection task.

Various ad hoc ways have been proposed to add contextual features in an R-CNN like
pipeline. For example features computed on the whole scene could be used, or features on
a box which is centered on the object proposal box but is k times its size (e.g. [31]). One
might add several such boxes displaced by varying amounts to provide for some diversity
in the context. Indeed several such approaches have been tried in the literature. However
we find these approaches intellectually unsatisfying, as they make arbitrary choices. One
really should be learning rather than hand designing the support regions on which to collect
context. But how?

2.2 The Spotlight Network

Spotlight networks operate at the image level and condition on a region’s shape and location
within the image. This is complementary to R-CNN based approaches, which zoom-in at
the objects and disregard the rest of the image. However, resolution is important for tasks
like object recognition and is explicitly used by R-CNN models, unlike Spotlight Networks.
In order to make most of the information provided, we couple spotlight networks with R-
CNN. In particular, we build a two stream network comprised of a spotlight network and a
R-CNN, as shown in Figure 2.1. The two streams are fused at the penultimate layer, whose
activations are combined and fed into a softmax classifier.

2.2.1 Spotlight Channel

Spotlight networks are designed to exploit the contextual information conditioned on a region
in question. Assume r is a region (a bounding box in our case) of image I. We define a
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Figure 2.1: Tower architecture for recognizing objects in context. The Spotlight Network
(top stream) takes as input the whole image along with the spotlight channel, which indicates
the region of interest.The Region Network (bottom stream) is network, such as fast R-CNN,
which classifies the region solely from its content. The two networks are combined at the
penultimate layer, which is followed by the final classification layer.

binary spotlight channel for region r as

Sb
r(x, y) = s · [(x, y) 2 r] (2.1)

where [P ] is the Iverson bracket notation for a boolean statement P and s is a scalar
(The value of s is chosen to ensure that the features computed from spotlight channels are in
the same dynamic range as the output of the previous neural network layer). This channel
highlights the region of reference, while it masks out the background. Another variant used
in our experiments is the distance transform of Sr, defined as

Sdt
r (x, y) = s · d((x, y), r) (2.2)

where d is a signed distance function. A variety of choices are possible, but we use two
channels corresponding to distances along the x- and y-axes. The channel is zero inside the
region of reference and provides explicit information of the distance of the background pixels
from the region.

Spotlight networks are neural networks which use the spotlight channels in various pre-
defined stages of their architecture. Assume l is such a layer somewhere in a network and
i(l; I) is the activation of the previous layer with image I as the input to the network. The



CHAPTER 2. CONTEXTUAL OBJECT RECOGNITION 9

output activation of layer l is given by o(l; I) = fl(i(l; I)) where fl is the transformation in
layer l. In a spotlight network the output of layer l is conditioned on the region, as follows

o(l; I, r) = fl({i(l; I), Sr}) (2.3)

where the spotlight channels Sr are appended to the channels of activation i(l; I).
To be more concrete, assume l = conv4 1 of the VGG16 network as defined in [9].

According to the VGG16 architecture, the input to conv4 1 is a 28x28x256 matrix. The
convolutional layer has 512 weight filters each of shape 3x3x256. Subsequently, the output
of conv4 1 is a 28x28x512 matrix, since the 2D convolutions are of stride 1. Assume we
inject a binary spotlight channel as well as distance transform channels in both x- and y-
direction. Thus the spotlight channels to be injected are of shape 28x28x3. The resulting
spotlight network at conv4 1 has an input shape of 28x28x259 and 512 weight filters of shape
3x3x259, while the shape of the output is unchanged. If l is convolutional this is equivalent to
adding a bias image to the output activations, one for each output channel. The bias image is
the result of a 2D convolution between the spotlight channels and the corresponding weight
filter. When convolutional layers are followed by ReLU layers (as is the case in most network
architectures), adding a bias image allows for the threshold of the ReLUs to vary at every
location and this allows the activations to pass depending on their location as well as their
value.

2.2.2 The Tower Network

Spotlight networks process an image conditioned on a region by using the spotlight channels,
as explained above. This allows them to exploit the context provided by the whole image
with reference to the region in question. On the other hand, R-CNN focuses exclusively on
the content of the region. The input to R-CNN is a cropped and warped region, with some
predefined context padding. Zooming in the object is a property that spotlight networks
do not share since the classification happens at the image level. There is a way to couple
spotlight networks with R-CNN, as shown in Figure 2.1. The Tower Network combines the
activations from the spotlight network and the R-CNN at the penultimate layer, where the
activations are concatenated and fed into the final scoring layer.

2.3 Experiments

In this section we quantify the e↵ectiveness of spotlight networks. We report results on the
task of object detection on the very challenging MS COCO dataset and compare di↵erent
variants of spotlight networks, in an e↵ort to better understand the di↵erent choices of the
architecture. Finally, we show examples of detections and directly compare them to a pure
region network.
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Dataset and Metrics. We evaluate the spotlight networks on the very challenging MS
COCO dataset [32], which consists of 120K images labelled with 80 object categories. For a
more detailed analysis of the dataset, we refer readers to the dataset’s webpage. We report
Average-Precision (AP) for each category at an intersection-over-union threshold of 0.5; a
prediction is correct if it overlaps more than 0.5 with a ground truth object.

Architecture. For our experiments, we use as a base network a 16-layer CNN (VGG16) as
defined in [9]. This network achieves great performance on image classification [9] and object
detection [4]. For region proposals, we use MCG object proposals [33] and only evaluate the
top 2000 regions per image.

2.3.1 Variants of Spotlight Networks

The variants of spotlight networks include di↵erent choices of injection layers as well as the
type of spotlight channels to be injected. We compare the performance of di↵erent variants
on the task of object classification.

Learning Details. We initialize the main layers with a pre trained model for the ImageNet
classification task, while the weights corresponding to the spotlight channels are randomly
sampled from a zero-mean gaussian distribution with standard deviation of 0.1. We use a
learning rate of 0.001, and a batch size of 60. We sample 50% of the regions to be positive,
with an overlap more than 0.5 with a ground truth region. The input image is resized to
224x224.

We quantify the performance of spotlight networks on the task of object classification. In
this task we consider the ground truth object boxes, as provided by [32], and classify them
as belonging to an object or the background. Table 2.1 shows the average AP achieved by
variants of spotlight networks on ground truth regions on the MS COCO validation set. The
first column indicates the type of spotlight channels used, the second column the layers of
VGG16 in which those channels are injected, the third column reports mean AP. We noticed
that an injection early on in the network caused the learning to ignore the spotlight channel,
thus regressing to image classification, while an injection at the final convolutional block
had a faster convergence rate. In terms of performance, an injection of all types of spotlight
channels at three di↵erent layers of the network seemed to perform best.

Figure 2.2 shows examples of predictions made by the spotlight network, where spotlight
channels are injected in three di↵erent stages of the network, namely conv3 1, conv4 1,
conv5 1. The first column shows the image fed into the network. The second column shows
the binary spotlight channel which is injected in the above mentioned layers, indicating the
region of interest. The third column shows the top-3 predictions made by the spotlight
network. Notice that even though the visual input into the network is the same for all three
examples, the network conditions on the spotlight channels to predict the correct object
categories, which can be regarded as a proof of concept that the spotlight representation is

www.mscoco.org
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type of spotlight channels layers of injection mAP (%)

binary conv5 1 55.9

dt conv5 1 52.7

binary, dt conv3 1, conv4 1, conv5 1 58.9

Table 2.1: Mean AP on ground truth regions of the validation set of MS COCO for three dif-
ferent variants of spotlight networks.binary anddt denote the binary and distance transform
version of the spotlight channels.

used successfully by the system. If the network was to ignore the spotlight channels identical
predictions would be produced for all three cases.

For the rest of our experiments, we use the spotlight network which utilizes both binary
and distance transform spotlight channels injected in three intermediate layers, i.e. conv3 1,
conv4 1, conv5 1, of the VGG16 network.

2.3.2 Tower Network

For the task of object detection, we train a tower network as shown in Figure 2.1. We use
the VGG16 architecture for both streams of the network. The fc7 feature maps from the two
streams are concatenated and fed into the final fully connected layer, which outputs scores
for every class.

Learning Details The spotlight network takes as input the whole image, resized to
224x224, and the corresponding spotlight channels constructed for the object proposal r.
Fast R-CNN takes as input the image and the region r, which is used to pool the corre-
sponding feature activations in pool5. We initialize the main layers with weights from an
ImageNet model, while the weight filters for the spotlight channels are drawn from a gaus-
sian distribution. We use a learning rate of 0.001 and a batch size of 30. We select 25% of
positive examples per batch.

2.3.2.1 Classifying Ground Truth Regions

We first evaluate our tower network on ground truth boxes to show its e↵ectiveness in classi-
fying highly contextual objects and compare our approach to purely region based techniques,
in an e↵ort to disentangle from the hard task of object localization.

Table 2.2 shows the average AP achieved by various networks on ground truth regions
on the validation set of MS COCO. Our tower architecture classifies ground truth regions
with 78% mean AP, improving over the fast R-CNN baseline by 9%. There are a few useful
observations that emerge from this experiment. Noticeably, R-CNN performs quite poorly.
The reason for this might be that the context padding (= 16 pixels) or the square warping
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Figure 2.2: Activations of a Spotlight Network. The first column shows the input image. The
second column shows the spotlight channel of a region in question. The channel is injected
at three di↵erent layers of the network. The third column shows the top 3 predictions made
by the network.

Method Fast R-CNN [4] R-CNN [5] Tower Network (%)

mAP (%) 68.7 48.7 78.0

Table 2.2: Mean AP on ground truth regions of the validation set of MS COCO for fast
R-CNN [4], R-CNN [5] and our tower network.

is not appropriate for the MS COCO dataset. There is a variety of parameter choices made
in the original R-CNN work that should be revisited for the MS COCO dataset, since it is a
dataset of drastically di↵erent statistics than the PASCAL VOC dataset. On the contrary,
fast R-CNN performs significantly better than R-CNN. We believe this is due to the fact
that fast R-CNN implicitly uses context through the receptive fields of the activations, from
which many categories on MS COCO can benefit.
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Method Frisbee Tie Bas. Glove Cup Fork Keyboard Mouse Microwave Toaster mAP (%)

Fast R-CNN [4] 59.1 28.0 33.1 30.3 18.7 54.5 39.8 60.5 15.4 39.2

Tower Network 63.2 30.5 39.8 38.6 21.2 57.3 46.2 65.3 20.6 40.1

Table 2.3: AP (%) for object detection on the validation set of MS COCO. We compare
our tower network with fast R-CNN and report the AP for the categories that improved the
most compared to fast R-CNN.

Figure 2.3 shows predictions made by R-CNN and our tower network for the same region
side by side. The first column shows the image and the region in question. The second column
shows the top-3 predictions made by R-CNN, while the third column from the tower. The
examples showcase how objects which are hard to classify based purely on the content of the
region, become easier when context is used through spotlight channels.

2.3.2.2 Object Detection on MS COCO

The task of object detection requires to accurately localize all objects in an image. We
evaluate our architecture on this task and directly compare to fast R-CNN.

Learning Details. Fast R-CNN was trained with a batch size of 500, with 25% of the
examples belonging to the foreground. Our tower network was trained with 30 examples per
batch (out of which 25% are foreground regions).

Table 2.3 shows the results on the validation set of MS COCO. The average improvement
in AP is small. This is due to the fact that many categories, such as animals and vehicles do
not show an improved performance. When the performance is broken down into categories,
we observe big gains on the order of 6% for cup, mouse, toaster, microwave, baseball glove
and of the order of 3% for tie, suitcase, fork, knife, potted plant, keyboard. All of those
categories have strong ties with the context that surrounds them, and thus benefit from a
contextual model, as expected. We show the AP for a few categories for proof.
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Object Proposal R-CNN predictions Tower predictions

background  0.3 
toilet              0.2 
tie                   0.106

tie                   0.98 
background  0.015 
snowboard    0.000

background  0.94 
book               0.006 
cup                  0.005

bottle              0.79 
book               0.064 
background   0.056

background   0.95 
potted plant  0.015 
umbrella        0.003

potted plant   0.98 
background   0.016 
brocolli           0.000

background   0.58 
potted plant  0.336 
vase                0.034

vase                0.35 
potted plant  0.295 
background   0.253

elephant        0.29 
potted plant  0.165 
background   0.132

horse              0.89 
cow                 0.068 
elephant         0.019

Object Proposal R-CNN predictions Tower predictions

toothbrush  0.3 
background 0.236 
person          0.079

toothbrush  0.27 
spoon           0.149 
bottle            0.125

chair              0.27 
background 0.264 
cup                0.226

cup                0.45 
background 0.216 
chair              0.135

background  0.48 
knife              0.136 
scissors         0.125

knife               0.57 
background  0.216 
spoon            0.129

potted plant  0.47 
background   0.412 
vase                0.069

potted plant  0.74 
background   0.259 
vase                0.000

sink                 0.23 
car                   0.224 
background   0.194

car                   0.99 
truck                0.006 
background   0.001

Object Proposal R-CNN predictions Tower predictions

person           0.94 
background  0.049 
refrigerator   0.004

person           0.99 
background  0.008 
chair              0.001

background  0.55 
toothbrush   0.172 
bottle             0.099

toothbrush    0.52 
bottle              0.164 
knife               0.078

toilet               0.44 
background   0.38 
sink                 0.078

toilet               0.58 
background   0.3 
sink                0.061

person           0.76 
bed                0.114 
teddy bear    0.047

person           0.91 
bed                0.044 
teddy bear    0.019

background   0.57 
book               0.175 
truck               0.110

bus                  0.6 
truck               0.366 
background  0.032

Object Proposal R-CNN predictions Tower predictions

background  0.99 
bench            0.006 
boat               0.002

background 0.73 
sink               0.111 
bench           0.072

vase              0.5 
background 0.211 
potted plant 0.123

vase              0.97 
background 0.021 
potted plant 0.005

background  0.49 
person           0.216 
cup                 0.038

person           0.76 
background  0.214 
dining table  0.016

bowl                0.74 
cup                  0.116 
background   0.047

bowl                0.91 
cup                  0.058 
background   0.020

background   0.90 
kite                  0.022 
umbrella        0.012

background    0.4 
car                   0.271 
truck               0.091

Figure 2.3: Predictions made by our Tower Network compared to R-CNN. The first column
shows the image and the region in question (shown with a red rectangle). The second and
third column show the top-3 predictions made by R-CNN and the tower, respectively.
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Chapter 3

Action and Attribute Recognition

When people interact with their environment certain common patterns appear that are very
distinctive for that particular type of interaction. For example, when people play the guitar,
the way they interact with the instrument and their pose is very characteristic for that action.
Or when people are running, their placement in the scene, their interaction with other people
in the scene and their pose and appearance are indicative of that action. This is more evident
for attributes. People who wear glasses all share the same mode of appearance resulting from
the presence of glasses. Same holds true for people who wear shorts, they share the same
appearance in their upper leg area resulting from the presence of the same clothing item.

In order to successfully predict people’s actions or attributes, recognition engines need
to capture class-characteristic modes of appearance. One way to do so is to hand-define
regions of interest which are likely to contain informative cues. An example of such areas
are parts, such as head or legs. Localizing areas which are relevant for the task in question
should make it easier to identify patterns of appearance necessary for recognition.

In this chapter, we design deep part-based models for the task of action recognition and
attribute classification to quantify the importance of parts in fine-grained recognition tasks
when using CNNs. Subsequently, we move beyond parts and focus on building a system
which identifies areas of interest in an instance-specific and class-specific manner, which we
call R⇤CNN. R⇤CNN does not rely on hand-designed areas, such as parts, but it is able to
recover them automatically if necessary. The success of R⇤CNN lies on Multiple-Instance
Learning with CNNs. 1

3.1 Related Work on Action and Attribute
Recognition

Part-based Methods. Part-based approaches using low-level features have been success-
ful for a variety of computer vision tasks. DPMs [36] capture di↵erent aspects of an object

1
The work presented here is based on published work in [34, 10, 35].
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using mixture components and deformable parts, leading to good performance on object
detection and attribute classification [37]. Similarly, poselets [38, 39, 40, 41, 6, 42] are an
ensemble of models that capture parts of an object under di↵erent viewpoints and have been
used for object detection, action and attribute classification and pose estimation. Pictorial
structures and its variants [18, 17, 43] explicitly model parts of objects and their geometric
relationship in order to accurately predict their location.

Even more recently, a number of methods incorporate HOG-based parts into deep models,
showing significant improvements. Zhang et al. [13] use HOG-poselet activations and train
CNNs, one for each poselet type, for the task of attribute classification. They show a large
improvement on the task compared to HOG-based approaches. However, their approach
includes a number of suboptimal choices. They use pre-trained HOG poselets to detect
parts and they train a “shallow” CNN (by today’s standards) from scratch using a relatively
small dataset of 25k images.

In the same vein, Branson et al. [44] tackle the problem of bird species categorization
by first detecting bird parts with a HOG-DPM and then extracting CNN features from
the aligned parts. They experimentally show the superiority of CNN-based features to
hand-crafted representations. However, they work from relatively weak HOG-DPM part
detections, using CNNs solely for classification purposes. Switching to the person category,
HOG-DPM does not generate accurate part/keypoint predictions as shown by [41], and thus
cannot be regarded as a source for well aligned body parts.

Zhang et al. [45] introduce part-based R-CNNs for the task of bird species classification.
They discover parts of birds from region proposals and combine them for classification. They
gain from using parts and also from fine-tuning a CNN for the task starting from ImageNet
weights. However, region proposals are not guaranteed to produce parts. Most techniques,
such as [46], are designed to generate candidate regions that contain whole objects based on
bottom-up cues. While this approach works for birds, it may fail in general as parts can be
defined arbitrarily in an object and need not be of distinct color and texture with regard to
the rest of the object.

Action Recognition. Maji et al. [6] train action specific poselets and for each instance
create a poselet activation vector that is classified using SVMs. They capture contextual
cues in two ways: they explicitly detect objects using pre-trained models for the bicycle,
motorbike, horse and tvmonitor categories and exploit knowledge of actions of other people
in the image. Hoai et al. [8] use body-part detectors and align them with respect to the parts
of a similar instance, thus aligning their feature descriptors. They combine the part based
features with object detection scores and train non-linear SVMs. Khosla et al. [47] densely
sample image regions at arbitrary locations and scales with reference to the ground-truth
region. They train a random forest classifier to discriminate between di↵erent actions. Prest
et al. [48] learn human-object interactions using only action labels. They localize the action
object by finding recurring patterns on images of actions and then capture their relative
spatial relations. The aforementioned approaches are based on hand-engineered features
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such as HOG [49] and SIFT [50].
Turning to deep architectures, Oquab et al. [7] use a CNN on ground-truth boxes for the

task of action classification, but observe a small gain in performance compared to previous
methods. Hoai [11] uses a geometrical distribution of regions placed in the image and in
the ground-truth box and weights their scores to make a single prediction, using fc7 features
from a network trained on the ImageNet-1k dataset [51].

Attribute Classification. Bourdev et al. [52] use HOG-based poselets to localize parts
of instances in images. They train a SVM classifiers on poselet activations and more hand-
crafted features (e.g. skin color) to predict appearance features of people, such as wears
hat or is female. Zhang et al. [13] take a similar approach, using HOG-based poselets to
localize people’s parts, but train CNN classifiers, one for each poselet, for the task. They
combine the output of all CNNs externally by training a linear SVM classifier to make a
single prediction.

3.2 Deep Part-based Action and Attribute
Recognition

We develop a part-based system, leveraging convolutional network features, and apply it to
attribute and action classification. Figure 3.1 gives an outline of our approach. We compute
CNN features on a set of bounding boxes associated with the instance to classify. One of
these bounding boxes corresponds to the whole instance and is either provided by an oracle
or comes from a person detector. The other bounding boxes (three in our implementation)
come from poselet-like part detectors.

Our part detectors are a novel “deep” version of poselets. We define three human body
parts (head, torso, and legs) and cluster the keypoints of each part into several distinct
poselets. Traditional poselets [38, 39] would then operate as sliding-window detectors on
top of low-level gradient orientation features, such as HOG [49]. Instead, we train a sliding-
window detector for each poselet on top of a deep feature pyramid, using the implementation
of [53]. Unlike HOG-based poselets, our parts are capable of firing on di�cult to detect
structures, such as sitting versus standing legs. Also, unlike recent deep parts based on
bottom-up regions [45], our sliding-window parts can span useful, but inhomogeneous regions,
that are unlikely to group together through a bottom-up process (e.g. bare arms and a t-
shrit).

Another important aspect of our approach is task-specific CNN fine-tuning. We show that
a fine-tuned holistic model (i.e. no parts) is capable of matching the attribute classification
performance of the part-based PANDA system [13]. Then, when we add parts our system
outperforms PANDA. This result indicates that PANDA’s dramatic improvement from parts
comes primarily from the weak holistic classifier baseline used in their work, rather than from
the parts themselves. While we also observe an improvement from adding parts, our marginal
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Figure 3.1: Schematic overview of our overall approach. (a) Given an R-CNN person de-
tection (red box), we detect parts using a novel, deep version of poselets. (b) The detected
whole-person and part bouding boxes are input into a fine-grained classification engine to
produce predictions for actions and attributes.

gain over the holistic model is smaller, and the gain becomes even smaller as our network
becomes deeper. This observation suggests a possible trend: as more powerful convolutional
network architectures are engineered, the marginal gain from explicit parts may vanish.

As a final contribution, we show that our system can operate “without training wheels.”
In the standard evaluation protocol for benchmarking attributes and actions [52, 54], an
oracle provides a perfect bounding box for each test instance. While this was a reasonable
“cheat” a couple of years ago, it is worth revisiting. Due to recent substantial advances in
detection performance, we believe it is time to drop the oracle bounding box at test time.
We show, for the first time, experiments doing just this; we replace ground-truth bounding
boxes with person detections from a state-of-the-art R-CNN person detector [5]. Doing so
only results in a modest drop in performance compared to the traditional oracle setting.

3.2.1 Deep Part Detectors

Figure 3.2 schematically outlines the design of our deep part detectors, which can be viewed
as a multi-scale fully convolutional network. The first stage produces a feature pyramid by
convolving the levels of the gaussian pyramid of the input image with a 5-layer CNN, similar
to Girshick et al. [53] for training DeepPyramid DPMs. The second stage outputs a pyramid
of part scores by convolving the feature pyramid with the part models.

3.2.1.1 Feature pyramid

Feature pyramids allow for object and part detections at multiple scales while the correspond-
ing models are designed at a single scale. This is one of the oldest “tricks” in computer vision
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Figure 3.2: Schematic overview of our part detectors. (a) A gaussian pyramid is build from
an input image. (b) Each level of the pyramid is fed into a truncated SuperVision CNN.
(c) The output is a pyramid of pool5 feature maps. (d) Each level of the feature pyramid is
convolved with the part models. (e) The output is a pyramid of part model scores

and has been implemented by sliding-window object detection approaches throughout the
years [38, 36, 28, 55].

Given an input image, the construction of the feature pyramid starts by creating the
gaussian pyramid for the image for a fixed number of scales and subsequently extracting
features from each scale. For feature extraction, we use a CNN and more precisely, we use a
variant of the single-scale network proposed by Krizhevsky et al. [20]. More details can be
found in [53]. Their software is publicly available and we build on their implementation.

3.2.1.2 Designing Part models

We design models to capture parts of the human body under a particular viewpoint and pose.
Ideally, part models should be (a) pose-sensitive, i.e. produce strong activations on examples
of similar pose and viewpoint, (b) inclusive, i.e. cover all the examples in the training set,
and (c) discriminative, i.e. score higher on the object than on the background. To achieve
all the above properties, we build part models by clustering the keypoint configurations of all
the examples in the training set and train linear SVMs on pool5 features with hard negative
mining.

We model the human body with three high-level parts: the head, the torso and the legs.
Even though the pose of the parts is tied with the global pose of the person, each one has it
own degrees of freedom. In addition, there is a large, yet not infinite due to the kinematic
constraints of the human body, number of possible part combinations that cover the space
of possible human poses.

We design parts defined by the three body areas, head (H), torso (T ) and legs (L).

Assume t 2 {H, T, L} and K(i)
t the set of 2D keypoints of the i-th training example cor-

responding to part t. The keypoints correspond to predefined landmarks of the human
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body. Specifically, KH = {Eyes, Nose, Shoulders}, KT = {Shoulders, Hips} and for KL =
{Hips, Knees, Ankles}.

For each t, we cluster the set of K(i)
t , i = 1, ..., N , where N is the size of the training set.

The output is a set of clusters Ct = {cj}Pt
j=1, where Pt is the number of clusters for t, and

correspond to distinct part configurations

Ct = cluster
⇣
{K(i)

t }Ni=1

⌘
. (3.1)

We use a greedy clustering algorithm, similar to [40]. Examples are processed in a random
order. An example is added to an existing cluster if its distance to the center is less than ✏,
otherwise it starts a new cluster. The distance of two examples is defined as the euclidean
distance of their normalized keypoint distributions. For each cluster c 2 Ct, we collect the M
closest cluster members to its center. Those form the set of positive examples that represent
the cluster. From now on, we describe a part by its body part type t and its cluster index
j, with cj 2 Ct, while St,j represents the set of positive examples for part (t, j).

Figure 3.3 (left) shows examples of clusters as produced by our clustering algorithm with
✏ = 1 and M = 100. We show 4 examples for each cluster example. We use the PASCAL
VOC 2012 train set, along with keypoint annotations as provided by [38], to design and train
the part detectors. In total we obtain 30 parts, 13 for head, 11 for torso and 6 for legs.

3.2.1.3 Learning Part Models

For each part (t, j), we define the part model to be the vector of weights wt,j which when
convolved with a feature pyramid gives stronger activations near the ground-truth location
and scale (right most part of Figure 3.2).

One could view the whole pipeline shown in Figure 3.2 as a fully convolutional model
and thus one could train it end-to-end, optimizing the weights of the CNN for the pool5
feature extraction and the weights of the part models jointly. We choose to simplify the
problem by decoupling it. We use the publicly available ImageNet weights of the CNN [5]
to extract pool5 feature pyramids. Subsequently, we train linear SVMs for the part models.
For each part (t, j) we train a linear SVM with positives from St,j to obtain model weights
wt,j 2 R8⇥8⇥256. We use hard negative mining from images of no people to train the model.

Figure 3.3 (right) shows the top few detections of a subset of parts on PASCAL VOC val
2009 set. Each row shows activations of a di↵erent part, which is displayed at the left side
of the same row.

Evaluation of part models. We quantify the performance of our part detectors by com-
puting the average precision (AP) - similar to object detection PASCAL VOC - on val 2009.
For every image, we detect part activations at all scales and locations which we non-maximum
suppress with a threshold of 0.3 across all parts of the same type. Since there are available
keypoint annotations on the val set, we are able to construct ground-truth part boxes. A
detection is marked as positive if the intersection-over-union with a ground-truth part box is
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Figure 3.3: Examples of clusters for the three body areas, head, torso and legs (left) and
their top few detections on PASCAL VOC val 2009 (right). The first two rows correspond
to cluster examples for head, the following two for torso and the last two for legs.
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AP (%) � = 0.2 � = 0.3 � = 0.4 � = 0.5

Head 55.2 51.8 45.2 31.6

Torso 42.1 36.3 23.6 9.4

Legs 34.9 27.9 20.0 10.4

Table 3.1: AP for each part type on PASCAL VOC val 2009. We evaluate the part activations
and measure AP for di↵erent thresholds of intersection-over-union.

more than �. In PASCAL VOC, � is set to 0.5. However, this threshold is rather strict for
small objects, such as our parts. We report AP for various values of � for a fair assessment
of the quality of our parts. Table 3.1 shows the results.

Mapping parts to instances. Since our part models operate independently, we need to
group part activations and link them to an instance in question. Given a candidate region
box in an image I, for each part t we keep the highest scoring part within box

j⇤ = argmax
j

max
(x,y)2box

wt,j ⇤ F(x,y)(I), (3.2)

where F(x,y)(I) is the point in feature pyramid for I corresponding to the image coordi-
nates (x, y). This results in three parts being associated with each box, as shown in Figure 3.1.
A part is considered absent if the score of the part activation is below a threshold, here the
threshold is set to �0.1.

In the case when an oracle gives ground-truth bounding boxes at test time, one can refine
the search of parts even further. If box is the oracle box in question, we retrieve the k nearest
neighbor instances i = {i1, ..., ik}from the training set based on the L2-norm of their pool5

feature maps F (·), i.e. F (box)TF (boxij )

||F (box)||·||F (boxij )||
. If Kij are the keypoints for the nearest examples,

we consider the average keypoint locations Kbox = 1
K

Pk
j=1 Kij to be an estimate of the

keypoints for the test instance box. Based on Kbox we can reduce the regions of interest for
each part within box by only searching for them in the corresponding estimates of the body
parts.

3.2.2 Experiments

In this section we investigate the role of parts for fine-grained classification tasks. We focus on
the tasks of action classification (e.g. running, reading, etc.) and attribute classification (e.g.
male, wears hat, etc.). Figure 3.4 schematically outlines our approach at test time. We start
with the part activations mapped to an instance and forward propagate the corresponding
part and instance boxes through a CNN. The output is a fc7 feature vector for each part
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as well as the whole instance. We concatenate the feature vectors and classify the example
with a linear SVM, which predicts the confidence for each class (action or attribute).

3.2.2.1 System Variations

For each task, we consider four variants of our approach in order to understand which design
factors are important.

No parts. This approach is our baseline and does not use part detectors. Instead, each
instance is classified according to the fc7 feature vector computed from the instance bounding
box. The CNN used for this system is fine-tuned from an ImageNet initialization, as in [5],
on jittered instance bounding boxes.

Instance fine-tuning. This method uses our part detectors. Each instance is classified
based on concatenated fc7 feature vectors from the instance and all three parts. The CNN
used for this system is fine-tuned on instances, just as in the “no parts” system. We note that
because some instances are occluded, and due to jittering, training samples may resemble
parts, though typically only the head and torso (since occlusion tends to happen from the
torso down).

Joint fine-tuning. This method also uses our part detectors and concatenated fc7 feature
vectors. However, unlike the previous two methods we fine-tune the CNN jointly using
instance and part boxes from each training sample. During fine-tuning the network can be
seen as a four-stream CNN, with one stream for each bounding box. Importantly, we tie
weights between the streams so that the number of CNN parameters is the same in all system
variants. This design explicitly forces the CNN to see each part box during fine-tuning.

3-way split. To test the importance of our part detectors, we employ a baseline that
vertically splits the instance bounding box into three (top, middle, and bottom) in order to
simulate crude part detectors. This variation uses a CNN fine-tuned on instances.

3.2.2.2 Action Classification

We focus on the problem of action classification as defined by the PASCAL VOC action
challenge. The task involves predicting actions from a set of predefined action categories.

Learning details. We train all networks with backpropagation using Ca↵e [56], starting
from the ImageNet weights, similar to the fine-tuning procedure introduced in [5]. A small
learning rate of 10�5 and a dropout ratio of 50% were used. During training, and at test
time, if a part is absent from an instance then we use a box filled with the ImageNet mean
image values (i.e. all zeros after mean subtraction). Subsequently, we train linear SVMs,
one for each action, on the concatenated fc7 feature vectors.
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Figure 3.4: Schematic overview of our approach for fine grained classification using parts. (a)
We consider regions of part activations. (b) Each part is forward propagated through a CNN.
(c) The output is the fc7 feature vector for each input. (d) The features are concatenated
and fed into linear SVM classifiers. (e) The classifiers produce scores for each class.

Context. In order to make the most of the context in the image, we rescore our predictions
by using the output of R-CNN [5] for the 20 PASCAL VOC object categories and the presence
of other people performing actions. We train a linear SVM on the action score of the test
instance, the maximum scores of other instances (if any) and the object scores, to obtain a
final prediction. Context rescoring is used for all system variations on the test set.

Results. Table 3.2 shows the result of our approach on the PASCAL VOC 2012 test set.
These results are in the standard setting, where an oracle gives ground-truth person bounds
at test time. We conduct experiments using two di↵erent network architectures: a 8-layer
CNN as defined in [20], and a 16-layer as defined in [9]. Ours (no parts) is the baseline
approach, with no parts. Ours is our full approach when we include the parts. For the
8-layer network, we use the CNN trained on instances, while for the 16-layer network we
use the CNN trained jointly on instances and their parts based on results on the val set
(Table 3.3). For our final system, we also present results when we add features extracted
from the whole image, using a 16-layer network trained on ImageNet-1k (Ours (w/ image
features)). We show results as reported by action poselets [6], a part-based approach, using
action specific poselets with HOG features, Oquab et al. [7], Hoai [8] and Simonyan and
Zisserman [9], three CNN-based approaches on the task. The best performing method by [9]
uses a 16- and 19-layer network. Their 16-layer network is equivalent to Ours (no parts) with
16 layers, thus the additional boost in performance comes from the 19-layer network. This is
not surprising, since deeper networks perform better, as is also evident from our experiments.
From the comparison with the baseline, we conclude that parts improve the performance.
For the 8-layer CNN, parts contribute 3% of mAP, with the biggest improvement coming
from Phoning, Reading and Taking Photo. For the 16-layer CNN, the improvement from
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AP (%) CNN layers Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

Action Poselets [6] - 59.3 32.4 45.4 27.5 84.5 88.3 77.2 31.2 47.4 58.2 55.1

Oquab et al. [7] 8 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai [8] 8 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3

Simonyan & Zisserman [9] 16 & 19 89.3 71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 84.0

Ours (no parts) 8 76.2 47.4 77.5 42.2 94.9 94.3 87.0 52.9 66.5 66.5 70.5

Ours 8 77.9 54.5 79.8 48.9 95.3 95.0 86.9 61.0 68.9 67.3 73.6

Ours (no parts) 16 84.7 62.5 86.6 59.0 95.9 96.1 88.7 69.5 77.2 70.2 79.0

Ours 16 83.7 63.3 87.8 64.2 96.0 96.7 88.9 75.2 80.0 71.5 80.7

Ours (w/ image features) 16 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Table 3.2: AP on the PASCAL VOC 2012 Actions test set. The first three rows show results
of two other methods. Action Poselets [6] is a part based approach using HOG features,
while Oquab et al. [7], Hoai [8] and Simonyan & Zisserman [9] are CNN based approaches.
Ours (no parts) is the baseline approach of our method, when only the ground truth box
is considered, while Ours is the full approach, including parts. All approaches use ground
truth boxes at test time.

parts is smaller, 1.7 % of mAP, and the actions benefited the most are Reading, Taking
Photo and Using Computer. The image features capture cues from the scene and give an
additional boost to our final performance.

Table 3.3 shows results on the PASCAL VOC action val set for a variety of di↵erent
implementations of our approach. Ours (no parts) is the baseline approach, with no parts,
while Ours (3-way split) uses as parts the three horizontal splits comprising the instance
box. Ours (joint fine-tuning) shows the results when using a CNN fine-tuned jointly on
instances and parts, while Ours (instance fine-tuning) shows our approach when using a
CNN fine-tuned on instances only. We note that all variations that use parts significantly
outperform the no-parts system.

We also show results of our best system when ground-truth information is not available at
test time Ours (R-CNN bbox). In place of oracle boxes we use R-CNN detections for person.
For evaluation purposes, we associate a R-CNN detection to a ground-truth instance as
following: we pick the highest scoring detection for person that overlaps more than 0.5 with
the ground truth. Another option would be to define object categories as “person+action”
and then just follow the standard detection AP protocol. However, this is not possible
because not all people are marked in the dataset (this is true for the attribute dataset as
well). We report numbers on the val action dataset. We observe a drop in performance, as
expected due to the imperfect person detector, but our method still works reasonably well
under those circumstances. Figure 3.5 shows the top few predictions on the test set. Each
block corresponds to a di↵erent action.

3.2.2.3 Attribute Classification

We focus on the problem of attribute classification, as defined by [52]. There are 9 di↵erent
categories of attributes, such as Is Male, Has Long Hair, and the task involves predicting
attributes, given the location of the people. Our approach is shown in Figure 3.4. We use
the Berkeley Attributes of People Dataset as proposed by [52].
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AP (%) CNN layers Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

Ours (no parts) 8 76.5 44.7 75.0 43.3 90.0 91.6 79.2 53.5 66.5 61.4 68.2

Ours (3-way split) 8 79.0 44.4 77.8 46.9 91.5 93.1 83.1 59.3 67.3 64.4 70.7

Ours (instance fine-tuning) 8 77.2 48.4 79.0 49.5 92.4 93.8 80.9 60.4 68.9 64.0 71.5

Ours (joint fine-tuning) 8 75.2 49.5 79.5 50.2 93.7 93.6 81.5 58.6 64.6 63.6 71.0

Ours (no parts) 16 85.4 58.6 84.6 60.9 94.4 96.6 86.6 68.7 74.9 67.3 77.8

Ours (instance fine-tuning) 16 85.1 60.2 86.6 63.1 95.6 97.4 86.4 71.0 77.6 68.3 79.1

Ours (joint fine-tuning) 16 84.5 61.2 88.4 66.7 96.1 98.3 85.7 74.7 79.5 69.1 80.4

Ours (R-CNN bbox) 8 67.8 46.6 76.9 47.3 85.9 81.4 71.5 53.1 61.2 53.9 64.6

Ours (R-CNN box) 16 79.4 63.3 86.1 64.4 93.2 91.9 80.2 71.2 77.4 63.4 77.0

Table 3.3: AP on the PASCAL VOC 2012 Actions val set of our approach. Ours (no parts)
is our approach without parts. Ours (3-way split) is our approach when parts are defined as
the three horizontal splits comprising an instance box. Ours (joint fine-tuning) uses a CNN
fine-tuned jointly on the instances and the parts, while Ours (instance fine-tuning) uses a
single CNN fine-tuned just on the instance box. All the above variations of our approach
use ground truth information at test time as the object bound. Ours (R-CNN bbox) uses
R-CNN detections for person.
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Figure 3.5: Top action predictions on the test set. Di↵erent blocks correspond to di↵erent
actions.
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AP (%) CNN layers Is Male Has Long Hair Has Glasses Has Hat Has T-Shirt Has Long Sleeves Has Shorts Has Jeans Has Long Pants mAP

PANDA [13] 5 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0

Ours (no parts) 8 87.5 80.4 43.3 77.0 61.5 86.4 88.5 88.7 98.2 79.1

Ours (3-way split) 8 89.3 82.2 51.2 84.0 60.1 87.4 88.3 89.2 98.2 81.1

Ours (instance fine-tuning) 8 89.9 83.5 60.5 85.2 64.3 89.0 88.6 89.1 98.2 83.1

Ours (joint fine-tuning) 8 91.7 86.3 72.5 89.9 69.0 90.1 88.5 88.3 98.1 86.0

Ours (no parts) 16 93.4 88.7 72.5 91.9 72.1 94.1 92.3 91.9 98.8 88.4

Ours (instance fine-tuning) 16 93.8 89.8 76.2 92.9 73.3 94.4 92.3 91.8 98.7 89.3

Ours (joint fine-tuning) 16 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5

Ours (R-CNN bbox) 8 84.1 77.9 62.7 84.5 66.8 84.7 80.7 79.2 91.9 79.2

Ours (R-CNN bbox) 16 90.1 85.2 70.2 89.8 63.2 89.7 83.4 84.8 96.3 83.6

Table 3.4: AP on the test set of the Berkeley Attributes of People Dataset. All approaches
on the top use ground truth boxes for evaluation. Ours (no parts) is the baseline approach
with no parts. Ours (3-way split) is a variant of our approach, where parts are defined as the
three horizontal splits comprising an instance box. Ours (instance fine-tuning) uses a CNN
fine-tuned on instance boxes, while Ours (joint fine-tuning) uses a CNN fine-tuned jointly
on instances and parts. We also show the e↵ectiveness of our approach Ours (R-CNN bbox),
when no ground truth boxes are given at test time.

Learning details. Similar to the task of action classification, we separately learn the
parameters of the CNN and the linear SVM. Again, we fine-tune a CNN for the task in
question with the di↵erence that the softmax layer is replaced by a cross entropy layer (sum
of logistic regressions).

Results. Table 3.4 shows AP on the test set. We show results of our approach with and
without parts, as well as results as reported by Zhang et al. [13], the state-of-the-art on
the task, on the same test set. With an 8-layer network, parts improve the performance
of all categories, indicating their impact on attribute classification. Also, a network jointly
fine-tuned on instances and parts seems to work significantly better than a CNN trained
solely on the instance boxes. In the case of a 16-layer network, joint fine-tuning and instance
fine-tuning seem to work equally well. The gain in performance from adding parts is less
significant in this case. This might be because of the already high performance achieved by
the holistic network. Interestingly, our 8-layer holistic approach matches the current state-
of-the-art on this task, PANDA [13] showcasing the importance of deeper networks and good
initialization.

Table 3.4 also shows the e↵ectiveness of our best model, namely the jointly fine-tuned
16-layer CNN, when we use R-CNN detections instead of ground truth boxes on the Berkeley
Attributes of People test set. Figure 3.7 shows the top few predictions on the test set. Each
block corresponds to a di↵erent attribute. Figure 3.6 shows top errors for two of our lowest
performing attribute classes.
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Figure 3.6: Top errors of classification for two of the attribute categories, Has Glasses (top)
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Figure 3.7: Top attribute predictions on the test set. Each block corresponds to a di↵erent
attribute
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3.3 R⇤CNN

Part-based models predefine the regions of interest a model attends to. However, when
people perform actions there is a variety of cues, spanning outside of the appearance of the
human body, that are informative about the action. For example, they might include the
interaction with objects, or with other subjects or even with the scene. A visual recognition
system should be able to attend to the cues necessary to make a prediction, by learning to
mine those informative cues in an instance-specific and class-specific manner.

In order to achieve this, we define a model that attends to two regions: one is the whole
instance, the person that is to be classified, and the other one is the auxiliary cue, which
the model selects automatically from the image to assist with the prediction. Formally, we
adapt the Region-based Convolutional Network method (RCNN) [5] to use more than one
region when making a prediction. We call our method R⇤CNN.

3.3.1 Architecture

In R⇤CNN, we have a primary region that contains the person in question and a secondary
region that automatically discovers contextual cues. How do we select the secondary region?
In other words, how to we decide which region contains information about the action being
performed? Inspired by multiple-instance learning (MIL) [57, 58] and Latent SVM [36], if I
is an image and r is a region in I containing the target person, we define the score of action
↵ as

score(↵; I, r) = w↵
P · �(r; I) + max

s2R(r;I)
w↵

S · �(s; I), (3.3)

where �(r; I) is a vector of features extracted from region r in I, while w↵
P and w↵

S are the
primary and secondary weights for action ↵ respectively. R(r; I) defines the set of candidates
for the secondary region. For example, R(r; I) could be the set of regions in the proximity
of r, or even the whole set of regions in I. Given scores for each action, we use a softmax to
compute the probability that the person in r is performing action ↵:

P (↵|I, r) = exp(score(↵; I, r))P
↵02A exp(score(↵0; I, r))

. (3.4)

The feature representation �(·) and the weight vectors w↵
P and w↵

S in Equation 3.3 are
learned jointly for all actions ↵ 2 A using a CNN trained with stochastic gradient descent
(SGD). We build on the Fast RCNN implementation [4], which e�ciently processes a large
number of regions per image. Figure 3.8 shows the architecture of our network.

Given an image I, we select the primary region to be the bounding box containing the
person (knowledge of this box is given at test time in all datasets). Bottom up region pro-
posals form the set of candidate secondary regions. For each action ↵, the most informative
region is selected through the max operation and its score is added to the primary (Equa-
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Figure 3.8: Schematic overview of our approach. Given image I, we select the primary region
to be the bounding box containing the person (red box) while region proposals define the
set of candidate secondary regions (green boxes). For each action ↵, the most informative
secondary region is selected (max operation) and its score is added to the primary. The
softmax operation transforms scores into probabilities and forms the final prediction.

tion 3.3). The softmax operation transforms scores into estimated posterior probabilities
(Equation 3.4), which are used to predict action labels.

We build on Fast RCNN (FRCN) [4]. In FRCN, the input image is up-sampled and
passed through the convolutional layers. An adaptive max pooling layer takes as input the
output of the last convolutional layer and a list of regions of interest (ROIs). It outputs a
feature map of fixed size (e.g. 7⇥ 7 for the 16-layer CNN by [9]) specific to each ROI. The
ROI-pooled features are subsequently passed through the fully connected layers to make
the final prediction. This implementation is e�cient, since the computationally intense
convolutions are performed at an image-level and are subsequently being reused by the ROI-
specific operations.

The test-time operation of FRCN is similar to SPPnet [29]. However, the training algo-
rithm is di↵erent and enables fine-tuning all network layers, not just those above the final
ROI pooling layer, as in [29]. This property is important for maximum classification accuracy
with very deep networks.

In our implementation, we extend the FRCN pipeline. Each primary region r of an
image I predicts a score for each action ↵ 2 A (top stream in Figure 3.8). At the same
time, each region within the set of candidate secondary regions R(r; I) independently makes
a prediction. These scores are combined, for each primary region r, by a max operation over
r’s candidate regions (bottom stream in Figure 3.8).

We define the set of candidate secondary regions R(r; I) as

R(r; I) = {s 2 S(I) : overlap(s, r) 2 [l, u]}, (3.5)

where S(I) is the set of region proposals for image I. In our experiments, we use Selective
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Search [46]. The lower and upper bounds for the overlap, which here is defined as the
intersection over union between the boxes, defines the set of the regions that are considered
as secondary for each primary region. For example, if l = 0 and u = 1 then R(r; I) = S(I),
for each r, meaning that all bottom up proposals are candidates for secondary regions.

3.3.2 Learning

We train R⇤CNN with stochastic gradient descent (SGD) using backpropagation. We adopt
the 16-layer network architecture from [12], which has been shown to perform well for image
classification and object detection.

During training, we minimize the log loss of the predictions. If P (↵ | I, r) is the softmax
probability that action ↵ is performed in region r in image I computed by Equation 3.4,
then the loss over a batch of training examples B = {Ii, ri, li}Mi=1 is given by

loss(B) = � 1

M

MX

i=1

logP (↵ = li | Ii, ri), (3.6)

where li is the true label of example ri in image Ii.
Rather than limiting training to the ground-truth person locations, we use all regions

that overlap more than 0.5 with a ground-truth box. This condition serves as a form of
data augmentation. For every primary region, we randomly select N regions from the set
of candidate secondary regions. N is a function of the GPU memory limit (we use a Nvidia
K40 GPU) and the batch size.

We fine-tune our network starting with a model trained on ImageNet-1K for the image
classification task. We tie the weights of the fully connected primary and secondary layers
(fc6, fc7), but not for the final scoring models. We set the learning rate to 0.0001, the batch
size to 30 and consider 2 images per batch. We pick N = 10 and train for 10K iterations.
Larger learning rates prevented fine-tuning from converging.

Due to the architecture of our network, most computation time is spent during the initial
convolutions, which happen over the whole image. Computation does not scale much with
the number of boxes, contrary to the original implementation of RCNN [5]. Training takes
1s per iteration, while testing takes 0.4s per image.

3.3.3 Experiments

We demonstrate the e↵ectiveness of R⇤CNN on action recognition from static images on the
PASCAL VOC Actions dataset [54], the MPII Human Pose dataset [59] and the Stanford
40 Actions dataset [60].

3.3.3.1 Control Experiments

We experiment with variants of our system to show the e↵ectiveness of R⇤CNN on the
PASCAL VOC Action dataset. The PASCAL VOC Action dataset consists of 10 di↵erent
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actions, Jumping, Phoning, Playing Instrument, Reading, Riding Bike, Riding Horse, Run-
ning, Taking Photo, Using Computer, Walking as well as examples of people not performing
some of the above action, which are marked as Other. The ground-truth boxes containing
the people are provided both at train and test time. During test time, for every example we
estimate probabilities for all actions and compute AP.

The variants, which are baselines for our final system R⇤CNN, are as follows:

• RCNN. As a baseline approach we train Fast R-CNN for the task of action classifi-
cation. This network exploits only the information provided from the primary region,
which is defined as the ground-truth region.

• Random-RCNN. We use the ground-truth box as a primary region and a box ran-
domly selected from the secondary regions. We train a network for this task similar to
R⇤CNN with the max operation replaced by rand

• Scene-RCNN. We use the ground-truth box as the primary region and the whole
image as the secondary. We jointly train a network for this task, similar to R⇤CNN,
where the secondary model learns action specific weights solely from the scene (no max
operation is performed in this case)

• R⇤CNN (l, u). We experiment with various combinations of values for the only free
parameters of our pipeline, namely the bounds (l, u) of the overlaps used when defining
the secondary regions R(r; I), where r is the primary region

• R⇤CNN (l, u, nS). In this setting, we use nS > 1 secondary regions instead of one.
The secondary regions are selected in a greedy manner. First we select the secondary
region s1 exactly as in R⇤CNN. The i-th secondary region si is selected via the max
operation from the set R(r; I)\R(s1; I)\ ...\R(si�1; I), where r is the primary region.

The Random- and Scene- settings show the value of selecting the most informative region,
rather than forcing the secondary region to be the scene or a region selected at random,
respectively

Table 3.5 shows the performance of all the variants on the val set of the PASCAL VOC
Actions. Our experiments show that R⇤CNN performs better across all categories. In partic-
ular, Phoning, Reading, Taking Photo perform significantly better than the baseline approach
and Scene-RCNN. Riding Bike, Riding Horse and Running show the smallest improvement,
probably due to scene bias of the images containing those actions. Another interesting ob-
servation is that our approach is not sensitive to the bounds of overlap (l, u). R⇤CNN is
able to perform very well even for the unconstrained setting where all regions are allowed
to be picked by the secondary model, (l = 0, u = 1). In our basic R⇤CNN setting, we use
one secondary region. However, one region might not be able to capture all the modes of
contextual cues present in the image. Therefore, we extend R⇤CNN to include nS secondary
regions. Our experiments show that for nS = 2 the performance is the same as with R⇤CNN
for the optimal set of parameters of (l = 0.2, u = 0.75).
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AP (%) Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

RCNN 88.7 72.6 92.6 74.0 96.1 96.9 86.1 83.3 87.0 71.5 84.9

Random-RCNN 89.1 72.7 92.9 74.4 96.1 97.2 85.0 84.2 87.5 70.4 85.0

Scene-RCNN 88.9 72.5 93.4 75.0 95.6 98.1 88.6 83.2 90.4 71.5 85.7

R⇤CNN (0.0, 0.5) 89.1 80.0 95.6 81.0 97.3 98.7 85.5 85.6 93.4 71.5 87.8

R⇤CNN (0.2, 0.5) 88.1 75.4 94.2 80.1 95.9 97.9 85.6 84.5 92.3 71.6 86.6

R⇤CNN (0.0, 1.0) 89.2 77.2 94.9 83.7 96.7 98.6 87.0 84.8 93.6 70.1 87.6

R⇤CNN (0.2, 0.75) 88.9 79.9 95.1 82.2 96.1 97.8 87.9 85.3 94.0 71.5 87.9

R⇤CNN (0.2, 0.75, 2) 87.7 80.1 94.8 81.1 95.5 97.2 87.0 84.7 94.6 70.1 87.3

Table 3.5: AP on the PASCAL VOC Action 2012 val set. RCNN is the baseline approach,
with the ground-truth region being the primary region. Random-RCNN is a network trained
with primary the ground-truth region and secondary a random region. Scene-RCNN is
a network trained with primary the ground-truth region and secondary the whole image.
R⇤CNN (l, u) is our system where l, u define the lower and upper bounds of the allowed
overlap of the secondary region with the ground truth. R⇤CNN (l, u, nS) is a variant in
which nS secondary regions are used, instead of one.

AP (%) CNN layers Jumping Phoning Playing Instrument Reading Riding Bike Riding Horse Running Taking Photo Using Computer Walking mAP

Oquab et al. [7] 8 74.8 46.0 75.6 45.3 93.5 95.0 86.5 49.3 66.7 69.5 70.2

Hoai [11] 8 82.3 52.9 84.3 53.6 95.6 96.1 89.7 60.4 76.0 72.9 76.3

Gkioxari et al. [10] 16 84.7 67.8 91.0 66.6 96.6 97.2 90.2 76.0 83.4 71.6 82.6

Simonyan & Zisserman [12] 16 & 19 89.3 71.3 94.7 71.3 97.1 98.2 90.2 73.3 88.5 66.4 84.0

R⇤CNN 16 91.5 84.4 93.6 83.2 96.9 98.4 93.8 85.9 92.6 81.8 90.2

Table 3.6: AP on the PASCAL VOC Action 2012 test set. Oquab et al. [7] train an 8-layer
network on ground-truth boxes. Gkioxari et al. [10] use part detectors for head, torso, legs
and train a CNN. Hoai [11] uses an 8-layer network to extract fc7 features from regions
at multiple locations and scales. Simonyan and Zisserman [12] combine a 16-layer and a
19-layer network and train SVMs on fc7 features from the image and the ground-truth box.
R⇤CNN (with (l = 0.2, u = 0.75)) outperforms all other approaches by a significant margin.

3.3.3.2 Performance on PASCAL VOC

We compare R⇤CNN to other approaches on the PASCAL VOC Action test set. Table 3.6
shows the results. Oquab et al. [7] train an 8-layer network on ground-truth boxes. Gkioxari
et al. [10] use part detectors for head, torso, legs and train a CNN on the part regions and
the ground-truth box, as described in Section 3.2. Hoai [11] uses an 8-layer network to
extract fc7 features from regions at multiple locations and scales inside the image and and
the box and accumulates their scores to get the final prediction. Simonyan and Zisserman
[12] combine a 16-layer and a 19-layer network and train SVMs on fc7 features from the
image and the ground-truth box. R⇤CNN (with (l = 0.2, u = 0.75)) outperforms all other
approaches by a substantial margin. R⇤CNN seems to be performing significantly better for
actions which involve small objects and action-specific pose appearance, such as Phoning,
Reading, Taking Photo, Walking. More interestingly, R⇤CNN outperforms our own part-
based approach described in Section 3.2, validating the claim that predefining the regions of
interests for fine-grained tasks is suboptimal.
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Figure 3.9: Top predictions on the PASCAL VOC Action test set. The instance in question
is shown with a red box, while the selected secondary region with a green box. The nature
of the secondary regions depends on the action and the image itself. Even within the same
action category, the most informative cue can vary.

Visualization of secondary regions Figure 3.9 shows examples from the top predictions
for each action on the test set. Each block corresponds to a di↵erent action. Red highlights
the person to be classified while green the automatically selected secondary region. For
actions Jumping, Running and Walking the secondary region is focused either on body parts
(e.g. legs, arms) or on more instances surrounding the instance in question (e.g. joggers).
For Taking Photo, Phoning, Reading and Playing Instrument the secondary region focuses
almost exclusively on the object and its interaction with the arms. For Riding Bike, Riding
Horse and Using Computer it focuses on the object, or the presence of similar instances and
the scene.

Interestingly, the secondary region seems to be picking di↵erent cues depending on the
instance in question. For example in the case of Running, the selected region might highlight
the scene (e.g. road), parts of the human body (e.g. legs, arms) or a group of people
performing the action, as shown in Figure 3.9.
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Figure 3.10 shows erroneous predictions for each action on the val set (in descending
score). Each block corresponds to a di↵erent action. The misclassified instance is shown in
red and the corresponding secondary region with green. For Riding Bike and Riding Horse,
which achieve a very high AP, the mistakes are of very low score. For Jumping, Phoning
and Using Computer the mistakes occur due to confusions with instances of similar pose.
In addition, for Playing Instrument most of the misclassifications are people performing in
concert venues, such as singers. For Taking Photo and Playing Instrument the presence of
the object seems to be causing most misclassifications. For Running and Walking they seem
to often get confused with each other as well as with standing people (an action which is not
present explicitly in the dataset).

3.3.3.3 Performance on MPII Human Pose Dataset

The MPII Human Pose dataset contains 400 actions and consists of approximately 40,000
instances and 24,000 images. The images are extracted from videos from YouTube. The
training set consists of 15,200 images and 22,900 instances performing 393 actions. The
number of positive training examples per category varies drastically [3]. The amount of
training data ranges from 3 to 476 instances, with an average of 60 positives per action.
The annotations do not include a ground-truth bounding box explicitly, but provide a point
(anywhere in the human body) and a rough scale of the human. This information can be
used to extract a rough location of the instance, which is used as input in our algorithm.

R⇤CNN vs. RCNN We split the training set into train and val sets. We make sure that
frames of the same video belong to the same split to avoid overfitting. This results in 12,500
instances in train and 10,300 instances in val. We train the baseline RCNN network and
R⇤CNN. We pick (l = 0.2, u = 0.5) due to the large number of region proposals generated
by [46] (on average 8,000 regions per image).

On the val set, RCNN achieves 16.5% mean AP while R⇤CNN achieves 21.7% mean AP,
across all actions. Figure 3.11 shows the performance on MPII val for RCNN and R⇤CNN.
On the left, we show a scatter plot of the AP for all actions as a function of their training
size. On the right, we show the mean AP across actions belonging to one out of three
categories, depending on their training size.

The performance reported in Figure 3.11 is instance-specific. Namely, each instance is
evaluated. One could evaluate the performance at the frame-level (as done in [3]), i.e. classify
the frame and not the instance. We can generate frame-level predictions by assigning for
each action the maximum score across instances in the frame. That yields 18.2% mean AP
for RCNN and 23% mean AP for R⇤CNN.

Comparison with Published Results In [3], various approaches for action recognition
are reported on the test set. All the approaches mentioned use motion features, by using
frames in the temporal neighborhood of the frame in question. The authors test variants
of Dense Trajectories (DT) [61] which they combine with pose specific features. The best
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Figure 3.10: Top mistakes on the PASCAL VOC Action val set. The misclassified instance
is shown in red, while the selected secondary region in green.
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Figure 3.11: Performance on MPII val for RCNN (blue ) and R⇤CNN (brown). Left: AP
(%) for all actions as a function of their training size (x-axis). Right: Mean AP (%) for
three discrete ranges of training size (x-axis).

performance on the test set is 5.5% mean AP (frame-level) achieved by the DT combined
with a pose specific approach.

We evaluate R⇤CNN on the test set and achieve 26.7% mAP for frame-level recognition.
Our approach does not use motion, which is a strong cue for action recognition in video,
and yet manages to outperform DT by a significant margin. Evaluation on the test set is
performed only at the frame-level.

Figure 3.12 shows the mean AP across actions in a descending order of training size. This
figure allows for a direct comparison with the published results, as shown in Figure 1(b) in
[3].

Figure 3.13 shows some results on the test set. We highlight the instance in question
with red, and the secondary box with green. The boxes for the instances were derived from
the point annotations (some point on the person) and the rough scale provided at train and
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Figure 3.12: Mean AP (%) on MPII test for R⇤CNN across actions in descending order of
their training size. A direct comparison with published results, as shown in Figure 1(b) in
[3], can be drawn.

test time. The predicted action label is overlaid in each image.
Even though R⇤CNN outperforms DT, there is still need of movement to boost perfor-

mance for many categories. For example, even though the MPII dataset has a many examples
for actions such as Yoga, Cooking or food preparation and Video exercise workout, R⇤CNN
performs badly on those categories (1.1% mean AP). We believe that a hybrid approach
which combines image and motion features, similar to [62, 63], would perform even better.

3.3.3.4 Performance on Stanford 40 Actions Dataset

We run R⇤CNN on the Stanford 40 Actions dataset [60]. This dataset consists of 9532
images of people performing 40 di↵erent actions. The dataset is split in half to comprise
the training and test split. Bounding boxes are provided for all people performing actions.
R⇤CNN achieves an average AP of 90.9% on the test set, with performance varying from
70.5% for texting message to 100% for playing violin. Figure 3.14 shows the AP performance
per action on the test set. Training code and models are publicly available.
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Figure 3.13: Predictions on the MPII test set. We highlight the person in question with a
red box, and the secondary region with a green box. The predicted action label is overlaid.

AP (%) CNN layers Is Male Has Long Hair Has Glasses Has Hat Has T-Shirt Has Long Sleeves Has Shorts Has Jeans Has Long Pants mAP

PANDA [13] 5 91.7 82.7 70.0 74.2 49.8 86.0 79.1 81.0 96.4 79.0

Gkioxari et al. [10] 16 92.9 90.1 77.7 93.6 72.6 93.2 93.9 92.1 98.8 89.5

RCNN 16 91.8 88.9 81.0 90.4 73.1 90.4 88.6 88.9 97.6 87.8

R⇤CNN 16 92.8 88.9 82.4 92.2 74.8 91.2 92.9 89.4 97.9 89.2

Table 3.7: AP on the Berkeley Attributes of People test set. PANDA [13] uses CNNs trained
for each poselet type. Gkioxari et al. [10] detect parts and train a CNN jointly on the whole
and the parts. RCNN is our baseline approach based on FRCN. Both RCNN and R⇤CNN do
not use any additional part annotations at training time. [10] and R⇤CNN perform equally
well, with the upside that R⇤CNN does not need use keypoint annotations during training.

3.3.3.5 Performance on Berkeley Attributes of People Dataset

Finally, we show that R⇤CNN can also be used for the task of attribute classification. On the
Berkeley Attributes of People dataset [52], which consists of images of people and their at-
tributes, e.g. wears hat, is male etc, we train R⇤CNN as described above. The only di↵erence
is that our loss is no longer a log loss over softmax probabilities, but the cross entropy over
independent logistics because attribute prediction is a multi-label task. Table 3.7 reports
the performance in AP of our approach, as well as other competing methods. Figure 3.15
shows results on the test set. From the visualizations, the secondary regions learn to focus
on the parts that are specific to the attribute being considered. For example, for the Has
Long Sleeves class, the secondary regions focus on the arms and torso of the instance in
question, while for Has Hat focus is on the face of the person.
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Figure 3.14: AP (%) of R⇤CNN on the Stanford 40 dataset per action. Performance varies
from 70.5% for texting message to 100% for playing violin. The average AP across all actions
achieved by our model is 90.9%.
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Figure 3.15: Results on the Berkeley Attributes of People test set. We highlight the person in
question with a red box, and the secondary region with a green box. The predicted attribute
is overlaid.
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Chapter 4

Action Recognition From Videos

Action recognition from still images is an ill-defined task. For example, it is very di�cult to
accurately recognize if a person is walking vs. standing from a single image. Actions take
their meaning in time. Motion captures the patterns and change in shape of objects as they
interact with their environment, thus providing more information about the scene.

In this chapter, we will explore the impact of motion for the task of action recognition.
Our e↵ort focuses on combining motion and spatial cues with CNNs, inspired by the human
vision system and, in particular, the two-streams hypothesis [64]. The ventral pathway
(“what pathway”) in the visual cortex responds to shape, color and texture while the dorsal
pathway (“where pathway”) responds to spatial transformations and movement. We use
convolutional neural networks to computationally simulate the two pathways. The first
network, spatial-CNN, operates on static cues and captures the appearance of the actor and
the environment. The second network, motion-CNN, operates on motion cues and captures
patterns of movement of the actor and the object (if any) involved in the action. Both
networks are trained to discriminate between the actors and the background as well as
between actors performing di↵erent actions.

In particular, we focus on the task of action detection from videos. Here the goal is
to localize the action in space across all frames of the video. This is contrary to action
classification, where the task is to classify a video with an action label, without localizing
it. The distinction between action detection and classification is similar to the one between
object detection and image classification, in the single image case.1

4.1 Related Work on Action Recognition from Videos

There has been a fair amount of research on action recognition. We refer to [65, 66, 67] for
recent surveys in the field. For the task of action classification, recent approaches use features
based on shape (e.g. HOG [49], SIFT [50]) and motion (e.g. optical flow, MBH [68]) with
high order encodings (e.g. Bag of Words, Fischer vectors) and train classifiers (e.g. SVM,

1
The work presented here is based on published work in [63].
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decision forests) to make action predictions. More specifically, Laptev et al. [69] extract local
features at spatio-temporal interest points which they encode using Bag of Words and train
SVM classifiers. Wang et al. [70] use dense point trajectories, where features are extracted
from regions which are being tracked using optical flow across the frames, instead of fixed
locations on a grid space. Recently, the authors improved their approach [61] using camera
motion to correct the trajectories. They estimate the camera movement by matching points
between frames using shape and motion cues after discarding those that belong to the humans
in the frame. The big relative improvement of their approach shows that camera motion has
a significant impact on the final predictions, especially when dealing with real world video
data. Jain et al. [71] make a similar observation.

Following the impressive results of deep architectures, such as CNNs, on the task of
handwritten digit recognition [19] and more recently image classification [20] and object
detection in images [5], attempts have been made to train deep networks for the task of action
classification. Jhuang et al. [72] build a feedforward network which consists of a hierarchy
of spatio-temporal feature detectors of predesigned motion and shape filters, inspired by the
dorsal stream of the visual cortex. Taylor et al. [73] use convolutional gated RBMs to learn
features for video data in an unsupervised manner and apply them for the task of action
classification. More recently, Ji et al. [74] build 3D CNNs, where convolutions are performed
in 3D feature maps from both spatial and temporal dimensions. Karpathy et al. [75] explore
a variety of network architectures to tackle the task of action classification on 1M videos.
They show that operating on single frames performs equally well than when considering
sequences of frames. Simonyan & Zisserman [62] train two separate CNNs to explicitly
capture spatial and temporal features. The spatial stream operates on the RGB image while
the temporal stream on the optical flow signal. The two stream structure in our network for
action detection is similar to their work, but the crucial di↵erence is that their network is for
full image classification while our system works on candidate regions and can thus localize
the action. Also, the way we do temporal integration is quite di↵erent since our work tackles
a di↵erent problem.

Approaches designed for the task of action classification use feature representations that
discard any information regarding the location of the action. However, there are older
approaches which are figure centric. Efros et al. [76] combine shape and motion features to
build detectors suitable for action recognition at low resolution and predict the action using
nearest neighbor techniques, but they assume that the actor has already been localized.
Schüldt et al. [77] build local space-time features to recognize action patters using SVM
classifiers. Blank et al. [78] use spatio-temporal volume silhouettes to describe an action
assuming in addition known background. More recently, per-frame human detectors have
been used. Prest et al. [79] propose to detect humans and objects and then model their
interaction. Lan et al. [80] learn spatio-temporal models for actions using figure-centric
visual word representation, where the location of the subject is treated as a latent variable
and is inferred jointly with the action label. Raptis et al. [81] extract clusters of trajectories
and group them to predict an action class using a graphical model. Tian et al. [82] extend
the deformable parts model, introduced by [36] for object detection in 2D images, to video
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using HOG3D feature descriptors [83]. Ma et al. extract segments of the human body and
its parts based on color cues, which they prune using motion and shape cues. These parts
serve as regions of interest from which features are extracted and subsequently are encoded
using Bag of Words. Jain et al. [84] produce space-time bounding boxes, starting from
super-voxels, and use motion features with Bag of Words to classify the action within each
candidate. Wang et al. [85] propose a unified approach to discover e↵ective action parts
using dynamical poselets and model their relations.

4.2 Action Tubes

Our goal is to build models which can localize and classify actions in video. Figure 4.1
outlines our approach. Inspired by the recent advances in the field of object detection in
images [5], we start by selecting candidate regions and use convolutional networks (CNNs)
to classify them. Motion is a valuable cue for action recognition and we utilize it in two
ways. We use motion saliency to eliminate regions that are not likely to contain the action.
This leads to a big reduction in the number of regions being processed and subsequently
in compute time. Additionally, we incorporate kinematic cues to build powerful models
for action detection. Figure 4.2 shows the design of our action models. Given a region,
appearance and motion cues are used with the aid of convolutional neural networks to make
a prediction. Predictions from all the frames of the video are linked to produce consistent
detections in time. We call the linked predictions in time action tubes.

4.2.1 Regions of Interest

Given a frame, the number of possible regions that contain the action is enormous. However,
the majority of these candidates are not descriptive and can be eliminated without loss in
performance. There has been a lot of work on generating useful region proposals based
on color, texture, edge cues ([46, 86]). We use selective search [46] on the RGB frames to
generate approximately 2K regions per frame. Given that our task is to localize the actor,
we discard the regions that are void of motion, using the optical flow signal. As a result, the
final regions we consider are those that are salient in shape and motion. One could use more
complicated techniques, such as action saliency detectors trained on human eye fixations and
low level cues [87].

Our motion saliency algorithm is extremely simple. We view the normalized magnitude
of the optical flow signal fm as a heat map at the pixel level. If R is a region, then fm(R) =
1
|R|

P
i2R fm(i) is a measure of how motion salient R is. R is discarded if fm(R) < ↵.

For ↵ = 0.3, approximately 85% of boxes are discarded, with a loss of only 4% in recall
on J-HMDB, for an overlap threshold of 0.5. Despite the small loss in recall, this step
is of great importance for the algorithm’s time complexity. It takes approximately 11s to
process an image with 2K boxes, with the majority of the time being consumed in extracting
features for the boxes (for more details see [5]). This means that a video of 100 frames
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Figure 4.1: An outline of our approach. (a) Candidate regions are fed into action specific
classifiers, which make predictions using static and motion cues. (b) The regions are linked
across frames based on the action predictions and their spatial overlap. Action tubes are
produced for each action and each video.

would require 18min to process! This is prohibitive, especially for a dataset of thousands of
videos. Eliminating regions which are unlikely to contain the action reduces the compute
time significantly.

4.2.2 Action Specific Classifiers

We use discriminative action classifiers on spatio-temporal features to make predictions for
each region. The features are extracted from the final layer of the CNNs which are trained
to discriminate among di↵erent actions as well as between actions and the background. We
use a linear SVM with hard negative mining to train the final classifiers. Figure 4.2 shows
how spatial and motion cues are combined and fed into the SVM classifier.

4.2.2.1 CNNs for Action Detection

We train two Convolutional Neural Networks for the task of action detection. The first
network, spatial-CNN, takes as input RGB frames and captures the appearance of the actor
as well as cues from the scene. The second network, motion-CNN, operates on the optical
flow signal and captures the movement of the actor. Spatio-temporal features are extracted
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Figure 4.2: We use action specific SVM classifiers on spatio-temporal features. The features
are extracted from the fc7 layer of two CNNs, spatial-CNN and motion-CNN, which were
trained to detect actions using static and motion cues, respectively.

by combining the output from the intermediate layers of the two networks. Action specific
SVM classifiers are trained on the spatio-temporal features and are used to make predictions
at the frame level. Figure 4.2 schematically outlines the procedure. Subsequently, we link
the detections in time to produce temporarily consistent action predictions, which we call
action tubes.

We train spatial-CNN and motion-CNN similar to R-CNN [5]. Regions of interest are
computed at every frame of the video, as described above. At train time, the regions which
overlap more than 50% with the ground truth are considered as positive examples, and the
rest are negatives. The networks are carefully initialized to avoid overfitting.

The architecture of spatial-CNN and motion-CNN is identical and follows [20] and [88].
Assume C(k, n, s) is a convolutional layer with kernel size k ⇥ k, n filters and a stride of
s, P (k, s) a max pooling layer of kernel size k ⇥ k and stride s, N a normalization layer,
RL a rectified linear unit, FC(n) a fully connected layer with n filters and D(r) a dropout
layer with dropout ratio r. The architecture of our networks follows: C(7, 96, 2) � RL �
P (3, 2) � N � C(5, 384, 2) � RL � P (3, 2) � N � C(3, 512, 1) � RL � C(3, 512, 1) � RL �
C(3, 384, 1)�RL�P (3, 2)�FC(4096)�D(0.5)�FC(4096)�D(0.5)�FC(|A|+ 1). The
final fully connected layer has number of outputs as many as the action classes plus one
for the background class. During training a softmax loss layer is added at the end of the
network.
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Network details. The architecture of our CNNs is inspired by two di↵erent network
designs, [20] and [88]. Our network achieves 17% top-5 error on the ILSVRC-2012 validation
set for the task of classification.

Weight initialization. Proper initialization is a key for training CNNs, especially in the
absence of data.
spatial-CNN: We want spatial-CNN to accurately localize people performing actions in 2D
frames. We initialize spatial-CNN with a model that was trained on the PASCAL VOC 2012
detection task, similar to [5]. This model has learned feature representations necessary for
accurately detecting people under various appearance and occlusion patterns, as proven by
the high person detection AP reported on the VOC2012 test set.
motion-CNN: We want motion-CNN to capture motion patterns. We train a network on
single frame optical flow images for the task of action classification. We use the UCF101
dataset (split 1) [89], which contains 13320 videos of 101 di↵erent actions. Our single frame
optical flow model achieves an accuracy of 72.2% on split 1, similar to 73.9% reported by
[62]. The 1.7% di↵erence can be attributed to the di↵erences in the network’s architectures.
Indeed, the network used in [62] yields 13.5% top-5 error on the ILSVRC-2012 validation set,
compared to the 17% top-5 error achieved by our network. This model is used to initialize
motion-CNN when trained on smaller datasets, such as UCF Sports and J-HMDB.

Processing of input data. We preprocess the input for each of the networks as follows
spatial-CNN: The RGB frames are cropped to the bounds of the regions of interest, with
a padding of 16 pixels, which is added in each dimension. The average RGB values are
subtracted from the patches. During training, the patches are randomly cropped to 227⇥227
size, and are flipped horizontally with a probability of 0.5.
motion-CNN: We compute the optical flow signal for each frame, according to [90]. We
stack the flow in the x-, y-direction and the magnitude to form a 3-dimensional image, and
scale it by a constant (s = 16). During training, the patches are randomly cropped and
flipped.

Parameters. We train spatial-CNN and motion-CNN with backpropagation, using Ca↵e
[56]. We use a learning rate of 0.001, a momentum of 0.9 and a weight decay of 0.0005. We
train the networks for 2K iterations. We observed more iterations were unnecessary, due to
the good initialization of the networks.

4.2.2.2 Training Action Specific SVM Classifiers

We train action specific SVM classifiers on spatio-temporal features, which are extracted from
an intermediate layer of the two networks. More precisely, given a region R, let �s(R) and
�m(R) be the feature vectors computed after the 7th fully connected layer in spatial-CNN and
motion-CNN respectively. We combine the two feature vectors �(R) = [�s(R)T �m(R)T ]T
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to obtain a spatio-temporal feature representation for R. We train SVM classifiers w↵ for
each action ↵ 2 A, where ground truth regions for ↵ are considered as positive examples
and regions that overlap less than 0.3 with the ground truth as negative. During training,
we use hard negative mining.

At test time, each region R is a associated with a score vector score(R) = {wT
↵�(R) :

↵ 2 A}, where each entry is a measure of confidence that action ↵ is performed within the
region.

4.2.3 Linking Action Detections

Actions in videos are being performed over a period of time. Our approach makes decisions
on a single frame level. In order to create temporally coherent detections, we link the results
from our single frame approach into unified detections along time.

Assume two consecutive frames at times t and t + 1, respectively, and assume Rt is a
region at t and Rt+1 at t + 1. For an action ↵, we define the linking score between those
regions to be

s↵(Rt, Rt+1) = wT
↵�(Rt) +wT

↵�(Rt+1) + � · ov(Rt, Rt+1) (4.1)

where ov(R, R̂) is the intersection-over-union of two regions R and R̂ and � is a scalar. In
other words, two regions are strongly linked if their spatial extent significantly overlaps and
if they score high under the action model.

For each action in the video, we seek the optimal path

R̄⇤
↵ = argmax

R̄

1

T

T�1X

t=1

s↵(Rt, Rt+1) (4.2)

where R̄↵ = [R1, R2, ..., RT ] is the sequence of linked regions for action ↵. We solve the
above optimization problem using the Viterbi algorithm. After the optimal path is found,
the regions in R̄⇤

↵ are removed from the set of regions and Equation 4.2 is solved again. This
is repeated until the set of regions is empty. Each path from Equation 4.2 is called an action
tube. The score of an action tube R̄↵ is defined as S↵(R̄↵) =

1
T

PT�1
t=1 s↵(Rt, Rt+1).

4.3 Experiments

We evaluate our approach on two widely used datasets, namely UCF Sports [91] and J-
HMDB [92]. On UCF sports we compare against other techniques and show substantial
improvement from state-of-the-art approaches. We present an ablation study of our CNN-
based approach and show results on action classification using our action tubes on J-HMDB,
which is a substantially larger dataset than UCF Sports.
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Datasets. UCF Sports consists of 150 videos with 10 di↵erent actions. There are on aver-
age 10.3 videos per action for training, and 4.7 for testing (The split was proposed by [80]).
J-HMDB contains about 900 videos of 21 di↵erent actions. The videos are extracted from
the larger HMDB dataset [93], consisting of 51 actions. Contrary to J-HMDB, UCF Sports
has been widely used by scientists for evaluation purposes. J-HMDB is more interesting and
should receive much more attention than it has in the past.

Metrics. To quantify our results, we report Average-Precision at a frame level, frame-AP,
and at the video level, video-AP. We also plot ROC curves and measure AUC, a metric
commonly used by other approaches. None of the AP metrics have been used by other
methods on this task. However, we feel they are informative and provide a direct link
between the tasks of action detection and object detection in images.

• frame-APmeasures the area under the precision-recall curve of the detections for each
frame (similar to the PASCAL VOC detection challenge [54]). A detection is correct if
the intersection-over-union with the ground truth at that frame is greater than � and
the action label is correctly predicted.

• video-AP measures the area under the precision-recall curve of the action tubes pre-
dictions. A tube is correct if the mean per frame intersection-over-union with the
ground truth across the frames of the video is greater than � and the action label is
correctly predicted.

• AUC measures the area under the ROC curve, a metric previously used on this task.
An action tube is correct under the same conditions as in video-AP. Following [82],
the ROC curve is plotted until a false positive rate of 0.6, while keeping the top-3
detections per class and per video. Consequently, the best possible AUC score is 60%.

4.3.1 Results on UCF Sports

In Figure 4.3 (left) we plot the ROC curve for � = 0.2 (red). In Figure 4.3 (right) we
plot the average AUC for di↵erent values of �. We plot the curves as produced by the
recent approaches, Jain et al. [84], Wang et al. [85], Tian et al. [82] and Lan et al. [80]. Our
approach outperforms all other techniques by a significant margin for all values of �, showing
the most improvement for high values of overlap, where other approaches tend to perform
poorly. In particular, for � = 0.6, our approach achieves an average AUC of 41.2% compared
to 22.0% by [85].

Table 4.1 shows frame-AP (second row) and video-AP (third row) for an interestion-
over-union threshold of � = 0.5. Our approach achieves a mean AP of 68.1% at the frame
level and 75.8% at the video level, with excellent performance for most categories. Running
is the only action for which the action tubes fail to detect the actors (11.7 % video-AP)
, even though our approach is able to localize them at the frame level (54.9% frame-AP).



CHAPTER 4. ACTION RECOGNITION FROM VIDEOS 50

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

itiv
e 

Ra
te

 

 

Ours
Jain et al.
Wang et al.
Tian et al.

0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

IOU threshold

AU
C

 

 

Ours
Jain et al.
Wang et al.
Tian et al.
Lan et al.

Figure 4.3: Performance on UCF Sports. Left: ROC curves on UCF Sports for an
intersection-over-union threshold of � = 0.2. Red shows our approach. We manage to
reach a high true positive rate at a much smaller false positive rate, compared to the other
approaches shown on the plot. Right: AUC on UCF Sports for various values of intersection-
over-union threshold of � (x-axis). Red shows our approach. We consistently outperform
other approaches, with the biggest improvement being achieved at high values of overlap
(� � 0.4).

AP (%) Diving Golf Kicking Lifting Riding Running Skateboarding Swing1 Swing2 Walking mAP

frame-AP 75.8 69.3 54.6 99.1 89.6 54.9 29.8 88.7 74.5 44.7 68.1

video-AP 100 91.7 66.7 100 100 11.7 41.7 100 100 45.8 75.8

Table 4.1: AP on the UCF Sports dataset for an intersection-over-union threshold of � = 0.5.
frame-AP measures AP of the action detections at the frame level, while video-AP measures
AP of the predicted action tubes.

This is due to the fact that the test videos for Running contain multiple actors next to each
other and our simple linking algorithm fails to consistently associate the detections with the
correct actors, because of the proximity of the subjects and the presence of camera motion.
In other words, the action tubes for Running contain the action but the detections do not
always correspond to the same person. Indeed, if we make our evaluation agnostic to the
instance, video-AP for Running is 83.8%. Tracking objects in a video is a very interesting
but rather orthogonal problem to action localization and is beyond the scope of this work.

Figure 4.4 shows examples of detected action tubes on UCF sports. Each block corre-
sponds to a di↵erent video. The videos were selected from the test set. We show the highest
scoring action tube for each video. Red boxes indicate the detections in the corresponding
frames. The predicted label is overlaid.
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Figure 4.4: Examples from UCF Sports. Each block corresponds to a di↵erent video. We
show the highest scoring action tube detected in the video. The red box indicates the region
and the predicted label is overlaid. We show 4 frames from each video. The top example
on the right shows the problem of tracking, while the 4th example on the right is a wrong
prediction, with the true label being Skate Boarding.

4.3.2 Results on J-HMDB

We report frame-AP and video-AP for the 21 actions of J-HMDB. We present an ablation
study of our approach by evaluating the performance of the two networks, spatial-CNN and
motion-CNN. Table 4.2 shows the results for each method and for each action category.

As shown in the ablation study, it is apparent that the combination of spatial and motion-
CNN performs significantly better for almost all actions. In addition, we can make some very
useful observations. There are specific categories for which one signal matters more than the
other. In particular, motion seems to be the most important for actions such as Clap, Climb
Stairs, Sit, Stand and Swing Baseball, while appearance contributes more for actions such
as Catch, Shoot Gun and Throw. Also, we notice that even though motion-CNN performs
on average a bit worse than spatial-CNN at the frame level (24.3% vs. 27.0% respectively),
it performs significantly better at the video level (45.7% vs. 37.9% respectively). This is
due to the fact that the flow frames are not very informative when considered separately,
however they produce a stronger overall prediction after the temporal smoothing provided
by our linking algorithm.

Figure 4.5 shows the AUC for di↵erent values of the intersection-over-union threshold,
averaged over the three splits on J-HMDB. Unfortunately, comparison with other approaches
is not possible on this dataset, since no other approaches report numbers or have source code
available.

Figure 4.7 shows examples of action tubes on J-HMDB. Each block corresponds to a
di↵erent video. The videos are selected from the split 1 test set. We show the highest
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frame-AP (%) brush hair catch clap climb stairs golf jump kick ball pick pour pullup push run shoot ball shoot bow shoot gun sit stand swing baseball throw walk wave mAP

spatial-CNN 55.8 25.5 25.1 24.0 77.5 01.9 05.3 21.4 68.6 71.0 15.4 06.3 04.6 41.1 28.0 09.4 08.2 19.9 17.8 29.2 11.5 27.0

motion-CNN 32.3 05.0 35.6 30.1 58.0 07.8 02.6 16.4 55.0 72.3 08.5 06.1 03.9 47.8 07.3 24.9 26.3 36.3 04.5 22.1 7.6 24.3

full 65.2 18.3 38.1 39.0 79.4 07.3 09.4 25.2 80.2 82.8 33.6 11.6 05.6 66.8 27.0 32.1 34.2 33.6 15.5 34.0 21.9 36.2

video-AP (%)

spatial-CNN 67.1 34.4 37.2 36.3 93.8 07.3 14.4 29.6 80.2 93.9 17.4 10.0 08.8 71.2 45.8 17.7 11.6 38.5 20.4 40.5 19.4 37.9

motion-CNN 66.3 16.0 60.0 51.6 88.6 18.9 10.8 23.9 83.4 96.7 18.2 17.2 14.0 84.4 19.3 72.6 61.8 76.8 17.3 46.7 14.3 45.7

full 79.1 33.4 53.9 60.3 99.3 18.4 26.2 42.0 92.8 98.1 29.6 24.6 13.7 92.9 42.3 67.2 57.6 66.5 27.9 58.9 35.8 53.3

Table 4.2: Results and ablation study on J-HMDB (averaged over the three splits). We report
frame-AP (top) and video-AP (bottom) for the spatial and motion component and their
combination (full). The combination of the spatial- and motion-CNN performs significantly
better under both metrics, showing the significance of static and motion cues for the task of
action recognition.
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Figure 4.5: AUC on J-HMDB for di↵erent values of intersection-over-union threshold (aver-
aged over the three splits).
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Accuracy (%) Wang et al. [70] CNN (1/3 spatial, 2/3 motion) Action Tubes

J-HMDB 56.6 56.5 62.5

Table 4.3: Classification accuracy on J-HMDB (averaged over the three splits). CNN (third
column) shows the result of the weighted average of spatial and motion-CNN on the whole
frames, while Action Tubes (fourth column) shows the result after using the scores of the
predicted action tubes to make decisions for the video’s label.

scoring action tube for each video. Red boxes indicate the detections in the corresponding
frames. The predicted label is overlaid.

Action Classification Our approach is not limited to action detection. We can use the
action tubes to predict an action label for the whole video. In particular, we can predict the
label l for a video by picking the action with the maximum action tube score

l = argmax
↵2A

max
R̄2{R̄↵}

S↵(R̄) (4.3)

where S↵(R̄) is the score of the action tube R̄ as defined by Equation 4.2.
If we use Equation 4.3 as the prediction, our approach yields an accuracy of 62.5%,

averaged over the three splits of J-HMDB. Figure 4.6 shows the confusion matrix.
In order to show the impact of the action tubes in the above result, we create a base-

line model for action classification, similar to [62]. We use spatial and motion-CNNs in a
classification setting, where full frames are used as input instead of regions. The weights of
the CNNs are initialized from networks trained on UCF 101 (split1) for the task of action
classification. We average the class probabilities as produced by the softmax layers of the
CNNs, instead of training SVM classifiers (We observed major overfitting problems when
training SVM classifiers on top of the combined fc7 features). We average the outputs of
spatial- and motion-CNNs, with weights 1/3 and 2/3 respectively, and pick the action label
with the maximum score after averaging the frames of the videos. This approach yields
an accuracy of 56.5% averaged over the three splits of J-HMDB. This compares to 56.6%
achieved by [70]. Table 4.3 summarizes the results for action classification on J-HMDB. It is
quite evident that focusing on the actor is beneficial for the task of video classification, while
a lot of information is being lost when the whole scene is analyzed in an orderless fashion.
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Figure 4.6: The confusion matrix on J-HMDB for the classification task, when using action
tubes to predict a label for each video.
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Figure 4.7: Examples from J-HMDB. Each block corresponds to a di↵erent video. We show
the highest scoring action tube detected in the video. The red box indicates the region and
the predicted label is overlaid. We show 4 frames from each video. The 2nd example on
the left and the two bottom ones on the right are wrong predictions, with true labels being
catch, sit and run respectively.
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Chapter 5

Conclusion

In this thesis, we highlight the importance of contextual reasoning for visual recognition and
propose models which rely on contextual cues in space as well as in time. The basis of our
models is in all cases a convolutional neural network. We show the impact of contextual
information for object detection, action recognition and attribute classification, bringing us
one next closer to the idea recognition engine as shown in Figure 1.1.

Advances in computer vision and object recognition can impact many practical applica-
tions. For example, users should be able to query a system with a question and an image,
e.g. “Where can I buy this shirt?” along with an image of a person wearing the shirt. The
system should be able to parse the question and correctly identify and localize the shirt in
order to retrieve the exact same one from a large database, such as the internet. Similarly,
personalized recommendations can be improved with the help of computer vision. A user’s
pictures in social media, such as Facebook, say a lot about that individual’s interests. A
system that identifies users’ activities and hobbies through their images should be able to
recommend events of interest. Health care and smart surveillance are another example where
the use of computer vision can be impactful.

More importantly, visual recognition is a key component towards home robots. The goal
of home robots is to assist humans in various indoor activities, such as cooking or cleaning.
For instance, in the test case shown in Figure 5.1 the robot is being asked to fetch the mug.
In order for the robot to complete the task successfully it needs to localize the mug in the
scene.

Regarding home robots and personal assistance, teaching robots to perform new tasks is
vital. One possible but rather impractical way would be to collect data and train models for
each task at a time. However, imitation learning or learning by demonstration seem more
promising. For example, there are a few acceptable ways to grasp a mug full of co↵ee or pass
a knife to a person, while maintaining a safe environment for everybody involved. Observing
people perform such actions and interact with others seem the best way to teach a robot the
norms of acceptable motions.

Last but not least, the marriage of robotics and computer vision can lead to even greater
scientific breakthrough far beyond deploying vision for robotic tasks. Today, visual recogni-
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Figure 5.1: Towards home robots. Visual recognition is a key component towards home
robots in order for robots to e�ciently assist users.

tion relies heavily on a huge set of detailed annotated data, while evaluation occurs in the
same domain as training. Moreover, systems learn by merely observing and analyzing data
(passive perception). This is contrary to the way humans develop their visual understanding
of the world. We, as humans, get to interact with the objects in front of us and we are
able to learn new concepts with a few training instances. Robotics o↵ers an environment
that could support active perception. It might be through robotics, that we might achieve
to bridge the gap between human and computational visual recognition.
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[58] O. Maron and T. Lozano-Pérez. A framework for multiple instance learning. In NIPS,
1998.

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/challenges/LSVRC/2012/


BIBLIOGRAPHY 62

[59] Mykhaylo Andriluka, Leonid Pishchulin, Peter Gehler, and Bernt Schiele. 2d human
pose estimation: New benchmark and state of the art analysis. In CVPR, 2014.

[60] Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas Guibas, and
Li Fei-Fei. Human action recognition by learning bases of action attributes and parts.
In ICCV, 2011.

[61] H. Wang and C. Schmid. Action recognition with improved trajectories. In ICCV, 2013.

[62] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recogni-
tion in videos. In NIPS, 2014.

[63] G. Gkioxari and J. Malik. Finding action tubes. 2015.

[64] Melvyn A. Goodale and A. David. Milner. Separate visual pathways for perception and
action. Trends in Neurosciences, 15:20–25, 1992.

[65] J.K. Aggarwal and M.S. Ryoo. Human activity analysis: A review. ACM Computing
Surveys, 2011.

[66] R. Poppe. A survey on vision-based human action recognition. Image Vision Computing,
2010.

[67] D. Weinland, R. Ronfard, and E. Boyer. A survey of vision-based methods for action
representation, segmentation and recognition. Computer Vision and Image Understand-
ing, 2011.

[68] N. Dalal, B. Triggs, and C. Schmid. Human detection using oriented histograms of flow
and appearance. In ECCV, 2006.

[69] I. Laptev, M. Marsza lek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In CVPR, 2008.
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