DFS-Perf: A Scalable and Unified Benchmarking
Framework for Distributed File Systems

Rong Gu
Qianhao Dong
Haoyuan Li
Joseph Gonzalez
Zhao Zhang
Shuai Wang
Yihua Huang
Scott Shenker
lon Stoica
Patrick P. C. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-133
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-133.html

July 27, 2016

Copyright © 2016, by the author(s).
Al rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Acknowledgement

This research is supported in part by DHS Award HSHQDC-16-3-00083,
NSF CISE Expeditions Award CCF-1139158, DOE Award SN10040 DE-
SC0012463, and DARPA XData Award FA8750-12-2-0331, and gifts
from Amazon Web Services, Google, IBM, SAP, The Thomas and Stacey
Siebel Foundation, Apple Inc., Arimo, Blue Goji, Bosch, Cisco, Cray,
Cloudera, Ericsson, Facebook, Fujitsu, HP, Huawei, Intel, Microsoft, Pivotal,
Samsung, Schlumberger, Splunk, State Farm and VMware.

DFS-Perf: A Scalable and Unified Benchmarking Framework for
Distributed File Systems

Rong Gu', Qianhao Dong!, Haoyuan Li?, Joseph Gonzalez?, Zhao Zhang?,

Shuai Wang!, Yihua Huang!, Scott Shenker?, Ion Stoica?, Patrick P. C. Lee3

' National Key Laboratory for Novel Software Technology, Nanjing University

2University of California, Berkeley

3The Chinese University of Hong Kong

Submission Type: Research

Abstract

A distributed file system (DFS) is a key component of vir-
tually any cluster computing system. The performance of
such system depends heavily on the underlying DFS de-
sign and deployment. As a result, it is critical to char-
acterize the performance and design trade-offs of DF-
Ses with respect to cluster configurations and real-world
workloads. To this end, we present DFS-Perf, a scalable,
extensible, and low-overhead benchmarking framework
to evaluate the properties and the performance of various
DFS implementations. DFS-Perf uses a highly parallel
architecture to cover a large variety of workloads at dif-
ferent scales, and provides an extensible interface to in-
corporate user-defined workloads and integrate with vari-
ous DFSes. As a proof of concept, our current DFS-Perf
implementation includes several built-in benchmarks and
workloads, including machine learning and SQL applica-
tions. We present performance comparisons of four state-
of-the-art DFS designs, namely Alluxio, CephFS, Glus-
terFS, and HDFS, on a cluster with 40 nodes (960 cores).
We demonstrate that DFS-Perf can provide guidance on
existing DFS designs and implementations, while adding
5.7% overhead.

1 Introduction

We have witnessed the emergence of parallel program-
ming frameworks (e.g., MapReduce [21]], Dremel [30],
Spark [139}140]) and distributed data stores (e.g., BigTable
[17], Dynamo [22], PNUTS [19]], HBase [6]) for en-
abling sophisticated and large-scale data processing and
analytic tasks. Such distributed computing systems of-
ten build atop a distributed file system (DFS) (e.g.,
Lustre [16], Google File System [24], GlusterFS [26],
CephFS [37], Hadoop Distributed File System (HDFS)
[33], Alluxio (formerly Tachyon) [29]) for scalable and

reliable storage management. A typical DFS stripes data
across multiple storage nodes (or servers), and also adds
redundancy to the stored data (e.g., by replication or era-
sure coding) to provide fault tolerance against node fail-
ures.

There have been a spate of DFS proposals from both
academia and industry. These proposals have inherently
distinct performance characteristics, features, and design
considerations. When putting a DFS in use, users need
to decide the appropriate configurations of a wide range
of design features (e.g., fine-grained reads, file backup,
access controls, POSIX compatibility, load balance, etc.),
which in turn affect the perceived performance and func-
tionalities (e.g., throughput, fault tolerance, security, ex-
ported APIs, scalability, etc.) of the upper-layer distrib-
uted computing systems. In addition, the characteristics
of processing and storage workloads are critical to the
development and evaluation of file system implementa-
tions [33], yet they often vary significantly across deploy-
ment environments. All these concerns motivate the need
of comprehensive DFS benchmarking methodologies to
systematically characterize the performance and design
trade-offs of general DFS implementations with regard to
cluster configurations and workloads.

Building a comprehensive DFS benchmarking frame-
work is non-trivial, and it should achieve two main de-
sign goals. First, it should be scalable, such that it can
run in a distributed environment to support stress-tests
for various DFS scales. It should incur low measurement
overheads in benchmarking for accurate characterization.
Second, it should be extensible, such that it can easily
include general DFS implementations for benchmarking
for fair comparisons. It should also support both popu-
lar and user-customized workloads to address various de-
ployment environments.

This paper proposes DFS-Perf, a scalable and exten-
sible DFS benchmarking framework designed for com-

Table 1: Comparison of distributed storage benchmark frameworks

Benchmark Extend to any | Contain workloads | Support to plug | Provide app trace | Can run without Support various | Is aimed to
Frameworks targeted DFS | from real world in new workload | analysis utility computing framework | parallel model benchmark DFS
TestDFSIO /

NNBench No No No No No No Yes

IOR No No No No No No Yes

YCSB Yes No Yes No Yes Yes No

AMPLab Big . .)

Data Benchmark No Yes Yes No Yes No No

DES-Perf Yes Yes Yes Yes Yes Yes Yes

prehensive performance benchmarking of general DFS
implementations. Table |l summarizes the key features
of DFS-Perf compared with existing distributed stor-
age benchmarking systems (see Section [3] for details).
DFS-Perf is designed as a distributed system that sup-
ports different parallel test modes at node, process, and
thread levels for scalability. It also adopts a modular
architecture that can benchmark large-scale deployments
of general DFS implementations and workloads. As a
proof-of-concept, DFS-Perf currently incorporates built-
in workloads of machine learning and SQL query ap-
plications. Our DFS-Perf implementation is now open
sourced at http://pasa-bigdata.nju.edu.cn/
dfs—perf/).

We first review today’s representative DFS imple-
mentations (Section [2) and existing DFS benchmarking
methodologies (Section [3). We then make the following
contributions.

1. We present the design of DFS-Perf, a highly scalable
and extensible benchmarking framework (Section [)
that supports various DFS implementations and big
data workloads, including machine learning and SQL
workloads (Section[5).

2. We use DFS-Perf to evaluate the performance char-
acteristics of four widely deployed DFS implemen-
tations, Alluxio, CephFS, GlusterFS, and HDFS, and
show that DFS-Perf incurs minimal (i.e., 5.7%) over-
head (Section [6)).

3. We report our experiences of using DFS-Perf to iden-
tify and resolve performance bugs of current DFS im-
plementations (Section[7).

2 DFS Characteristics

Existing DFS implementations are generally geared to-
ward achieving scalable and reliable storage management,
yet they also make inherently different design choices for
their target applications and scenarios. In this section,
we compare four representative open-source DFS imple-
mentations, namely Alluxio [1} 29]], CephFS [37], Glus-
terFS [5) 26]], and HDFES [7, [33]. We review their dif-
ferent design choices, which also guide our DFS-Perf de-

sign. Table 2] summarizes the key characteristics of the
four DFS implementations.

Architecture. Alluxio, CephFS, and HDFS adopt a cen-
tralized master-slave architecture, in which a master node
manages all metadata and coordinates file system opera-
tions, while multiple (slave) nodes store the actual file
data. CephFS and HDFS also support multiple distrib-
uted master nodes to avoid a single point of failure. On
the other hand, GlusterFS adopts a decentralized architec-
ture, in which all metadata and file data is scattered across
all storage nodes through the distributed hash table (DHT)
mechanism.

Storage Style. CephFS, GlusterFS, and HDFS build
on disk-based storage, in which persistent block devices
(e.g., hard disks). On the other hand, Alluxio is memory-
centric, and uses memory as the primary storage backend.
It also supports hierarchical storage which aggregates the
pool of different storage resources such as memory, solid-
state disks, and hard disks.

Fault Tolerance. For fault tolerance, CephFS and HDFS
mainly use replication to distribute exact copies across
multiple nodes for fault tolerance. They now also support
erasure coding for more storage-efficient fault tolerance.
GlusterFS implements RAID (which can be viewed as a
special type of erasure coding) at the volume level. In
contrast, Alluxio can leverage its under storage systems,
in the meantime, it can also adopt lineage and checkpoint-
ing mechanisms to keep track of the operational history of
computations.

I/O Optimization. All four DFSes use different strate-
gies to improve the I/O performance. CephFS adopts a
cache tiering mechanism to temporarily cache the recent
read and written data in memory, while GlusterFS follows
a similar caching approach (called I/O cache). On the
other hand, both HDFS and Alluxio enforce data local-
ity in computing frameworks (e.g., MapReduce, Spark,
etc.) to ensure that computing tasks can access data lo-
cally in the same node. In particular, Alluxio supports
explicit multi-level caches due to its hierarchical storage
architecture.

Exposed APIs. All four DFSes expose APIs that can
work seamlessly with Linux FUSE. HDFS and Alluxio
export native APIs and a command line interface (CLI)
that can work independently without third-party libraries.

http://pasa-bigdata.nju.edu.cn/dfs-perf/
http://pasa-bigdata.nju.edu.cn/dfs-perf/

Table 2: Comparison of characteristics of Alluxio, CephFS, GlusterFS, and HDFS

DFS Architecture Storage Style Fault Tolerance I/0 Optimization Exposed APIs
Native API;
. . memory-centric; | . . data locality; FUSE;
Alluxio centralized hier?r/chical lineage and checkpoint multi-level ca}c]hes Hadoop Compatible API;
CLI
. L. . replication; .. FUSE;
CephFS | centralized / distributed disk-based erasure code (op;ional) cache tiering REST-API;
Hadoop Compatible API
GlusterFS decentralized disk-based RAID on the network 1/0 cache FUSE;
REST-API
Native API;
HDFS centralized / distributed disk-based erastligl::((:iiueo(n\;VIP) data locality REFSUSEPI
CLI

In particular, both CephFS and Alluxio have the Hadoop-
compatible APIs and can substitute HDFS for computing
frameworks including MapReduce and Spark.
Discussion. Because of the variations of design choices,
the application scenarios vary across DFS implemen-
tations. GlusterFS, CephFS, and Lustre [13) [16] are
commonly used in high-performance computing environ-
ments. HDFS has been used in big data analytics appli-
cations along with the wide deployment of MapReduce.
Alluxio provides file access at memory speed across clus-
ter computation frameworks. The large variations of de-
sign choices complicate the decision making of practition-
ers when they choose the appropriate DFS solutions for
their applications and workloads. Thus, a unified and ef-
fective benchmarking methodology becomes critical for
practitioners to better understand the performance charac-
teristics and design trade-offs of a DFS implementation.

3 Related Work

Benchmarking is essential for evaluating and reasoning
the performance of systems. Some benchmark suites
(e.g., [11L12]) have been designed for evaluating general
file and storage systems subject to different workloads.
Benchmarking for DFS implementations has also been
proposed in the past decades, such as for single-server net-
work file systems [15]], network-attached storage systems
[25], and parallel file systems (e.g., IOR [10]]). Several
benchmarking suites are designed for specific DFS imple-
mentations, such as TestDFSIO, NNBench, and HiBench
[31L 8, 28] for HDFS. To elaborate, TestDFSIO specifies
read and write workloads for measuring HDFS through-
put; NNBench specifies metadata operations for stress-
testing an HDFS namenode; HiBench supports both syn-
thetic microbenchmarks and Hadoop application work-
loads that can be used for HDFS benchmarking. Instead
of targeting specific DFS implementations, we focus on
benchmarking general DFS implementations.

Some benchmarking suites can be used to characterize
the I/O behaviors of general distributed computing sys-
tems. For example, the AMPLab Big Data Benchmark
[4] issues relational queries for benchmarking and pro-
vides quantitative and qualitative comparisons of analyti-
cal framework systems, and YCSB (Yahoo Cloud Serving
Benchmark) [[14} 20] evaluates the performance of key-
value cloud serving stores. Both benchmark suites are
extensible to include user-defined operations and work-
loads with database-like schemas. The MTC (Many-Task
Computing) envelope [41] characterizes the performance
of metadata, read, and write operations of parallel script-
ing applications. BigDataBench [36]] targets big data ap-
plications such as online services, offline analytics, and
real-time analytics systems, and provides various big data
workloads and real-world datasets. In contrast, DFS-Perf
focuses on file system operations, including both metadata
and file data operations, for general DFS implementa-
tions.

One design consideration of DFS-Perf is on work-
load characterization, which provides guidelines for sys-
tem design optimizations. Workload characterization in
distributed systems has been an active research topic.
To name a few, Yadwadkar et al. [38] identified the
application-level workloads from NFS traces. Chen et
al. [18] studied MapReduce workloads from business-
critical deployments. Harter et al. [27] studied the Face-
book Messages system backed by HBase and HDFS as the
storage layer. Our workload characterization focuses on
DFS-based traces derived from real-world applications.

4 DFS-Perf Design

We present the design details of DFS-Perf. We first pro-
vide an architectural overview of DFS-Perf (Section4.1).
We then explain how DFS-Perf achieves scalability (Sec-
tion[4.2)) and extensibility (Section[4.3).

Slave
Workload

Local Test|
8 K Results
[Y
= =
= =

Master

Configuration
=)
I

Launch slaves and Collect result contexts

‘Slave‘ ‘Slave‘ ‘

Figure 1: DFS-Perf architecture. DFS-Perf adopts a
master-slave model, in which the master contains a
launcher and other tools to manage all slaves. For each
slave, the input is the benchmark configuration, while the
output is a set of evaluation results. Each slave runs multi-
ple threads, which interact with the DFS via the File Sys-
tem Interface Layer.

4.1 DFS-Perf Architecture

DFS-Perf is designed as a distributed architecture that
runs on top of a DFS that is to be benchmarked. It follows
a master-slave architecture, as shown in Figure E} It has
a single master process to coordinate multiple slave pro-
cesses, each of which issues file system operations to the
underlying DFS. The master consists of a launcher that
schedules slaves to run benchmarks, as well as a set of
utility tools for benchmark management. For example,
one utility tool is the report generator, which collects re-
sults from the slaves and produces performance reports.
Each slave is a multi-threaded process (see Section [4.2)
that can be deployed on any cluster node to execute bench-
mark workloads on a DFS.

Figure 2] illustrates the workflow of executing a bench-
mark in DFS-Perf. First, the master launches all slaves
and distributes test configurations to each of them. Each
slave performs initialization process, such as loading the
configurations and setting up the workspace, and notifies
the master when it completes the initialization process.
When all slaves are ready, the master notifies them to start
executing the benchmark simultaneously. Each slave in-
dependently conducts the benchmark test by issuing a set
of file system operations, including the metadata and file
data operations that interact with the DFS’s master and
storage nodes, respectively. It also collects the perfor-
mance results from its own running context. Finally, after
all slaves issue all file system operations, the master col-
lects the context information to produce a test report.

4.2 Scalability

To achieve scalability, DFS-Perf parallelizes benchmark
executions in a multi-node, multi-process, and multi-
thread manner: it distributes the benchmark execution
through multiple nodes (or physical servers); each node

distribute
1. wait all configurations "I 2. setup |
slaves setup iy getup done L__with conf__;
run test—{ ...
1 3. execute !

| testsuite |

i local test ‘

return local L_.Tesults !
5. generate | test results
1 global report
Master Slave

Figure 2: DFS-Perf workflow. The master launches all
slaves and distributes configurations of a benchmark to
each of them. Each slave sets up and executes the bench-
mark independently. Finally, the master collects the sta-
tistics from all slaves and produces a test report.

can run multiple slave processes, and each slave process
can run multiple threads that execute the benchmarks
independently. The numbers of nodes, processes, and
threads can be configured by the users. Such paralleliza-
tion enables us to stress-test a DFS through intensive file
system operations.

To reduce the benchmarking overhead, we only require
each slave to issue only a total of fwo round-trip commu-
nications with the master, one at the beginning and one at
the end of the benchmark execution (see Figure [2). That
is, DFS-Perf itself does not introduce any communication
to manage how each slave run benchmarks on the DFS.
Thus, the DFS-Perf framework puts limited performance
overhead on the DFS during benchmarking.

4.3 Extensibility

DFS-Perf achieves extensibility in two aspects. First,
DFS-Perf provides a pluggable interface via which users
can add a new DFS implementation to be benchmarked
by DFS-Perf. Second, DFS-Perf provides an interface via
which users can customize specific workloads for their
own applications to run atop the DFS.

4.3.1 Adding a DFS

DFS-Perf provides a general File System Interface Layer
to abstract the interfaces of various DFS implementations.
Each slave process interacts through the File System Inter-
face Layer with the underlying DFS, as shown in Figure[T]

One design challenge of DFS-Perf is to support general
file system APIs. One option is to make the File System
Interface Layer of DFS-Perf POSIX-compliant. But DFS
implementations may not support POSIX APIs, which
are commonly used in local file systems of Linux/UNIX
but may not be suitable for high-performance parallel
I/O [23]. Another option is to deploy Linux FUSE inside

DFS-Perf, as it is supported by a number of DFS imple-
mentations (see Section . However, Linux FUSE adds
additional overheads to distributed file system operations.
Here, we carefully examine the APIs of state-of-the-art
DFS implementations and classify the general file system
APIs into four categories, which cover the most common
basic file operations.

e Session Management: managing DFS sessions, in-
cluding connect and close methods;

e Metadata Management: managing DFS metadata, in-
cluding create, delete, exists, getParent, isDirectory, is-
File, list, mkdir, and rename methods;

o File Attribute Management: managing file attributes,
such as the file path, length, and the access, create, and
modification time;

o File Data Management: the I/O operations that trans-
fer the actual file data. Currently they are via Input-
Stream and OutputStream due to the APIs provided by
supported DFSes.

To elaborate, we abstract a base class called DFS that
realizes the interfaces of above four categories of general
DFS operations. The abstract methods of DFS constitute
the File System Interface Layer in DFS-Perf. To support
a new DFS, users only need to implement those abstract
methods in a new class that inherit the base class DFS.
Users also register the new DFS class into DFS-Perf by
adding an identifier (in the form of a constant number) to
map the new DFS to the implemented class. DFS-Perf dif-
ferentiates the operations of a DFS implementation via a
URL scheme in the form of fs://. Note that users need not
be concerned about the synchronization issues of APIs,
which are handled by DFS-Perf.

Take CephFS as an example. We add a new class named
DFS_Ceph and implement all abstract methods for inter-
acting with CephFS. Our implementation only comprises
less than 150 lines of Java codes. To specify file system
operations with CephFS in a benchmark, users can specify
the operations in the form of ceph.//.

Our current DFS-Perf prototype has implemented the
bindings of several DFS implementations, including
Alluxio, CephFS, GlusterFS, HDFS, as well as the local
file system.

4.3.2 Adding a New Workload

DFS-Perf achieves loose coupling between a workload
and the DFS-Perf execution framework. Users can simply
define a new workload in DFS-Perf by realizing several
base classes and a configuration file, as shown in Table E}
The base classes specify the execution logic and the mea-
surement statistics of a workload, while the configuration
file consists of the settings of a workload, such as the in-
formation about testing data sizes and distributions, the

file numbers and locations, and the 1I/O buffer sizes. All
configurations are described in XML format that can be
easily configured. Each slave process will take both the
base classes and the configuration file of a workload.

Table 3: Components for a workload definition: base
classes and a configuration file.

Sub-Component | Meaning

PerfThread The class that contains all workload
execution logic of a thread.

PerfTaskContext The class that maintains the measure-
ment statistics and running status.

PerfTask The class that keeps all threads and
conducts the initialization and termi-
nation work.

PerfGlobalReport | The class that generates the test report
from all workload contexts.

configure.xml The configuration file that manages
the workload settings in XML format.

S Benchmark Design

A practical DFS generally supports a variety of appli-
cations for big data processing. To demonstrate how
DFS-Perf can benchmark a DFS against big data applica-
tions, we have designed and implemented built-in bench-
marks for two widely used groups of big data applica-
tions, namely machine learning and SQL query applica-
tions. For machine learning, we consider two applica-
tions: KMeans and Bayes, which represent a clustering
algorithm and a classification algorithm, respectively [9].
For SQL queries, we consider three typical query applica-
tions: select, aggregation, and join [32].

5.1 DFS Access Traces of Applications

We first study and design workloads of the five big data
applications based on their access patterns. Tarasov et
al [34] can extract workload models from large 1/O traces,
including I/O size, CPU utilization, memory usage, and
power consumption. However, to sufficiently reflect the
performance of applications, DFS-Perf focuses on the
DFS-related traces, since these traces show how the ap-
plications interact with a DFS. Specifically, we run each
application on Alluxio with a customized Alluxio client,
which records all operations. We then analyze the DFS-
related traces based on the output logs. In our study, the
DFS-related access operations can be divided into four
categories: sequential writes, sequential reads, random
reads, and metadata operations. The first three types of
operations are collectively called data operations. Here, a
sequential read means reading a file sequentially from the
head to the end, while a random read means reading a file
randomly by skipping to different locations.

Pencentage
100+

quential write
quential read

80+

60+

401

20+

23%

Kmeans payes ~ selech qregalion join
Benchmarks

Figure 3: Summary of the five applications’ DFS-related
access traces. All of them issue more reads than writes,
and the proportion of sequential and random read is more
balanced in SQL query applications than in machine
learning applications.

5.1.1 Overview of File Operation Traces

We first analyze the access patterns of the benchmarks.
We have collected file operation-related traces, and sum-
marizes the traces of each benchmark in terms of the
percentage of read/write operation counts. Figure [3] il-
lustrates that these workloads all issue more reads than
writes, although they have different read-to-write ratios.
The SQL query workloads have more balanced propor-
tions of sequential reads and random reads than machine
learning workloads. Also, the aggregation application has
the highest percentage of random reads (up to 56%), while
the Bayes application has no random read operation at all.

5.1.2 Machine Learning Benchmarks

We analyze the DFS access traces of the machine learning
benchmarks in detail. Figure 4] and Figure [5|show the de-
tailed traces. The X-axis is the operation sequence num-
ber, each of which corresponds to an operation; the Y-axis
is the data sizes of read and write operations, or times of
metadata operations. For brevity, in each benchmark, we
choose an interval and measure the aggregated operation
size or times in each interval. These measurements are af-
fected by various factors in different benchmarks, but we
can still summarize the access patterns from their trends.

Figure [4] demonstrates the DFS access traces of the
KMeans and Bayes training processes. It is obvious that
these data analytic applications access a DFS in an itera-
tive fashion. A training process contains several itera-
tions, each of which reads a variable size of data (rang-
ing from several kilobytes to several gigabytes). In the
last round, the result determining the size of write opera-
tions is the output. Note that sequential reads appear much
more frequently than random reads.

10omB $7° | [l sequential write
100KB

«» 1008

@

£

= J00uB 570 I scquential read

;100KB
g 1008
(%] '
< 100MB §°
.g100KBi
100B
8. 10 I metadata)

5

0
0 200 400 600 800 1000 1200
Operation Sequence Number (interval = 10)

(a) KMeans

1oom§?° | [sequential write

100KB
g 1008 Ll
o T T T
E 1oome §z | M sequential read
ZZ 100KB]
o 1008
N
D 100mB §2°
S 100KB]
£ 10083
E T T T T T
8 times -metadata
@) 10

5
0
0 500 1000 1500 2000 2500
Operation Sequence Number (interval = 10)
(b) Bayes

Figure 4: Detailed DFS Access Traces of Machine Learn-
ing Benchmarks. (a) The KMeans training process is
iterative. It reads a lot of data in each iteration and writes
more in the end. (b) The Bayes training process can be ob-
viously divided into several sub-processes, each of which
is filled with many sequential reads and few sequential
writes. Note that there is no random read.

5.1.3 SQL Query Benchmarks

We now analyze the DFS access traces of the SQL Query
Benchmarks. Many big data query systems, such as Hive,
Pig, and SparkSQL, convert SQL queries into a series
of MapReduce or Spark jobs. These applications mainly
scan or filter data by sequentially reading data from a DFS
in parallel. Also, they use indexing techniques to locate
values, and hence trigger many random reads to a DFS.
In Figure[5(a), we find that the select benchmark has at
least thousands of times more random reads than sequen-
tial reads. However, the result size is small and thus there
are only few sequential writes. The aggregation bench-
mark is more complex than the select benchmark. As
shown in Figure 5(b)] the aggregation benchmark keeps
reading data and executing the computation logic, and fi-
nally it writes the result to a DFS. The number of the ran-
dom reads is still more than that of sequential reads. Also,
there is an obvious output process due to the large size of
the result. In Figure the whole process of the join
benchmark can be split into several read and write sub-

100MB §2° 100MB §%° — 1oome $7° [[sequential write
100KB I scquential write 100KB I sequential write - 100KB
A I ;v
£ 100mB 57 £ size
! N £ - £ 100MB -
E 100w 57| Il sequential read F 1008 I sequential read F 100KB Il sequential read
— 100KB ; 1008 B 1008
g 1ooe I IS
& B e D s I random read
S “00KB 2 1008 S 100KB
= o8 © 1008 © 1008
g | : : : : g —_ ‘ ‘ o] I naananm
i mes
& " il metadatd] o mj I metadatal o 10 [Il metadata)
5 5
0 0+ ¥ T T ¥ ¥ 0
0 50 100 150 200 250 300 0 200 400 600 800 1000 1200 0 500 1000 1500 2000
Operation Sequence Number (interval =5) Operation Sequence Number (interval = 10) Operation Sequence Number (interval = 10)
(a) Select (b) Aggregation (c) Join

Figure 5: DFS Access Traces of SQL Query Benchmarks. The random read size is always more than the sequential
read size. (a) Select: At about the halfway mark and the end of the whole process, there are sequential writes with
a larger data size. (b) Aggregation: The sequential writes are concentrated at the end of the whole process. (c) Join:
This is the longest process and we can obviously see two sequential write sub-processes.

processes. The read sub-processes are filled with random
reads, while the write sub-processes are mixed with se-
quential reads and sequential writes.

In summary, the SQL query benchmarks generate more
random reads than sequential reads. In addition, the reads
and writes are mixed with a certain ratio which is deter-
mined by the data size.

5.2 Workloads

Based on the collected access traces in Section we
accordingly design five built-in workloads in DFS-Perf to
simulate the distributed I/O characteristics of typical big
data applications. Each workload in DFS-Perf has its con-
figurations and execution logic. The configurations make
the workload flexible to evaluate testing cases with vari-
ous scales and loads, while the execution logic represents
a set of applications or typical cases. The DFS operators
of the workloads include sequential reads, random reads,
sequential writes, and metadata operations. Further, we
support more sophisticated workloads, which have con-
figurable DFS access patterns of real-world typical appli-
cations, such as mixed read/write workloads and iterative
read/write workloads.

Metadata Operations Workload: This workload fo-
cuses on performing metadata operations such as create,
exist, rename, and delete. In metadata-centralized DFS,
e.g., Alluxio and HDFS, this workload can test the perfor-
mance of the saturated metadata node. While in metadata-
decentralized DFS, e.g., GlusterFS, it can perform a stress
test for the correctness and synchronization performance
of the whole cluster. Meanwhile, the number of connec-
tions is configurable, so that we can use this workload to
evaluate the upper limit of concurrency.
Sequential/Random Read/Write Workload: The sim-
ple read and write workloads are to sequentially read and

write a list of files, respectively. As the basic operations
of a file system, they are used to test the throughput of a
DFS. In addition, we provide a random read workload to
represent the indexing access in databases or the search-
ing access in algorithms. This workload randomly skips
a certain length of data and then reads another certain
length of data instead of sequentially reading the whole
file. Note that a DFS usually provides data streams for
reading across the network, and thus the only way for cur-
rent supported DFSes to perform random skips is to cre-
ate a new input stream when skipping backward. How-
ever, DFS-Perf reserves the randomly reading interface
that new DFS can have its own implementation. The write
workload is to write content into new files, so it is also
the data generator of DFS-Perf with the configurable data
sizes and distributions.

Mixed Read/Write Workload: In general, the read-to-
write ratio varies across applications. This workload is
composed of a mixture of read and write workloads with
a configurable ratio. It resembles the real-world applica-
tions with heavy reads (e.g., hot data storage like online
videos) or heavy writes (e.g., historical data storage like
trading information). In addition, mixed read and write
workloads are often used to evaluate the cache and evic-
tion performance of a hierarchical DFS.

Iterative Read/Write Workload: The iterative comput-
ing pattern is often found in large-scale graph computing
and machine learning problems [39]. This workload rep-
resents the applications in which the output of the former
iteration is the input to the next one. Specifically, we pro-
vide two modes called Shuffle and Non-Shuffle for data
accesses. In Shuffle mode, each slave process reads data
from other nodes; in the Non-Shuffle mode, each slave
process only reads the files written by itself, which keeps
data locality.

Irregular Massive Access Workload: Many applications

have complex read or write patterns, like web servers.
The features that we simulate with these applications are
randomization and concurrency. In this irregular massive
access workload, files are read or written randomly and
concurrently. It can reflect the throughput performance of
a DFS cluster close to a real-world situation. Moreover,
similar to the iterative workload, this workload also has
both Shuffle and Non-Shuffle modes.

5.3 Automatic Workload Generator

In addition to the built-in workloads, DFS-Perf provides
users a tool called the Workload Generator that can gen-
erate specific workloads automatically. Similar to Sec-
tion [5.1] DFS-Perf provides each supported DFS with
a wrapped client implementation that can record all the
DFS-related operations. And with a few extra configu-
rations, applications are able to access DFSes with these
customized clients. In this way, the workload generator
can collect and analyze the DFS-related access traces and
statistics for an application that runs on a DFS.

Figure [6] shows how the workload generator works.
First, it traces the DFS-related behaviors of the application
and logs the intermediate information. It then analyzes the
information to produce both the DFS-related statistics and
traces. The statistics contain the statistical numbers such
as the operation times, total data size, etc. With these sta-
tistics, the user can further configure the built-in work-
loads to match their behaviors to the application. On the
other hand, the traces consist of all exact behavior rec-
ords that represent how the application interacts with the
underlying DFS. With these traces, DFS-Perf can gener-
ate a new workload which completely replays the DFS-
related behaviors of the application, even on different par-
allel modes. In summary, the workload generator provides
customized workloads for DFS-Perf to match the charac-
teristics of real-world applications, so as to measure the
pure DFS performance or to compare the performance of
different DFS implementations for the same application.

6 Evaluation

In this section, we present evaluation results for us-
ing DFS-Perf to benchmark several representative imple-
mentations, including Alluxio, CephFS, GlusterFS, and
HDFS. The highlights are:

e The characteristics of different DFS implementations
have considerable impact on the performance. For ex-
ample, the centralized and decentralized architectures
significantly influence the metadata performance. Fault
tolerance and I/O optimization characteristics can lead
to various degrees of performance gains by orders of

magnitude (Section[6.2).

DFS-related statistics

o read/write times
e read/write ratio
¢ data size

o,
&
Y,
®

The Built-in
Workload

Customized
Workload

Application

trace and

Trace Tool
analyze

je| A
DFS-related traces G(\G(a

open ...
read ...
write ...

Figure 6: The Workload Generator collects DFS-related
statistics and traces for an application that runs on a DFS.
It outputs built-in workloads that are configurable, or cus-
tomized workloads that match the application.

e DFS-Perf is scalable to evaluate the performance upper-
bounds of a DFS using different parallel modes. For
the evaluated DFS, the throughput difference between
the multi-process and multi-thread modes can reach
1.7x (Section[6.3).

e DFS-Perf has an overhead (about 5.7%), which en-
sures reliable benchmarking performance results. On
the other hand, TestDFSIO (another DFS benchmark-
ing tool) shows an increasing overhead (nearly 20%) as
the concurrency degree increases (Section [6.4).

6.1 Experimental Setup

We conduct our experiments on a cluster with one master
node and 40 slave nodes. The master has two Intel Xeon
E5-2660v2 CPUs with total 20 cores (40 hyper-thread
cores), while each slave node has two Intel Xeon E5-
2620v2 CPUs with total 12 cores (24 hyper-thread cores).
In total, the cluster contains 40 nodes with 960 hyper-
thread cores for processing file data operations. Each node
has 64 GB DDR3 memory and 6 TB SAS RAIDO hard
disk. All these nodes are connected with 1 Gb/s Ethernet.
Each node runs RHEL 7.0 with Linux 3.10.0, Ext4 file
system, and Java 1.7.0.

We deploy Alluxio 1.1.1, CephFS 0.94.6, Glus-
terFS 3.5.6, Hadoop HDFS 2.7.0, and our DFS-Perf on
all nodes. The Ceph MDS (Metadata Server) runs on the
master node and each slave node has a Ceph OSD (Object
Storage Device) Daemon. For GlusterFS, each slave node
runs both the client and server processes, and we config-
ure it with FUSE. HDFS runs the NameNode daemon on
the master node and the DataNode daemon on each slave
node. Alluxio runs the Master daemon on the master node
and the Worker daemon on each of slave nodes. Each
Alluxio Worker is configured to have 32 GB RAMFS, ac-
counting for a total of 1280 GB memory across all slave
nodes.

Alluxio is a memory speed virtual distributed file sys-

Metadata Performance (ops/sec)
6M

4M+

2M+

20K+
15K+
10K+

5K+

\,00"’\?5 O c,e@“vsca\\ﬁ“’"?&:)\f\‘)?‘5

Figure 7: Metadata operation performance, in terms of
number of operations per second. For LocalFS, the per-
formance is measured on a single node, while for each
DEFS, the performance is measured on the whole cluster.

tem that allows users to explicitly access data from/to dis-
tributed memory in Alluxio’s space or the underlying file
system which is HDFS in our deployment. The perfor-
mance of accessing underlying file system by Alluxio is
similar to the performance of accessing underlying file
system itself. In practice, users mainly reside data in
Alluxio’s space when using Alluxio. Therefore, we eval-
uate the performance of Alluxio memory operation in the
following experiments. We also take the local file system,
denoted as LocalF'S, for comparison.

6.2 DFS Benchmarking

We apply the built-in workloads in DFS-Perf (Section[5.2)
to benchmark different DFS implementations, so as to ex-
amine how different DFS characteristics affect the perfor-
mance. For the multi-thread mode, as each slave has 24
hyper-thread cores, each node runs one process with 24
threads. The performance results are illustrated in Fig-
ures [7]to[T11

Metadata Operations. Figure [/|illustrates the metadata
performance, in terms of the number of operations per
second. As expected, LocalFS outperforms others in the
metadata performance, since its metadata operations run
in single-node memory without any network or disk inter-
action. In particular, for DFS metadata operations, we
observe that the centralized metadata management can
achieve an up to around 30x speedup than the decentral-
ized one. GlusterFS has low metadata performance since
its decentralized metadata management needs to synchro-
nize metadata information over the cluster. CephFS has
the worst performance although it is metadata-centralized,
because the Ceph MDS only handles metadata requests
and all metadata is stored in several Ceph OSDs on dif-
ferent nodes. In contrast, Alluxio and HDFS achieve
higher metadata performance than GlusterFS since they
both store and manage metadata in a centralized approach.
Sequential/Random Read/Write. Figure [§] shows the

Read/Write Throughput (MB/s)

V) Write

B Sequentially Read
E=— Randomly Read

600K 4
500K 4
400K
300K+
200Ky

Alluxio CephFS

Figure 8: Sequential/random read/write throughput. This
is the total throughput of the entire cluster.

total throughput results of sequential/random read/write
operations. We have cleared the OS buffer cache before
each test to precisely evaluate the performance of each op-
eration. We observe that the memory-centric DFS imple-
mentations can achieve higher throughput than the disk-
based ones by more than 100x. Specifically, Alluxio
reads and writes faster than others since all its opera-
tions are in local memory. For the read/write throughput,
Alluxio is about two orders of magnitude faster than other
storage systems. In addition, the fault tolerance mecha-
nism has significant impact on the performance. To main-
tain fault tolerance, CephFS, GlusterFS, and HDFS need
to replicate data across the cluster, while Alluxio has the
option to leverage lineage and checkpoint.

Mixed Read/Write. Figure [9] shows the respective read
and write throughput subject to different read-to-write
ratios. We did not explicitly clear the page cache before
each operation to better simulate the real scenarios for the
following workloads. CephFS and HDFS show that the
read throughput increases and the write throughput de-
creases when the write ratio rises. In GlusterFS, both the
write and read operations affect the I/O cache regardless
of the read-to-write ratio, so the read-to-write ratio is not
the major factor to affect the throughput. Alluxio shows
an increasing read throughput as the write ratio rises but
its write throughput degrades.

Iterative Read/Write. We now consider the iterative
workloads, and the performance results are shown in Fig-
ure[I0] Compared the Shuffle and Non-Shuffle modes, data
locality can lead to tens to even hundreds times of perfor-
mance improvement. The read throughput of HDFS in
Non-Shuffle mode increases by 70x of the Shuffle mode,
while this value of Alluxio is more than 100x. However,
for CephFS and GlusterFS, they distribute files instead of
storing files locally, so their throughput is limited by the
network.

In addition, Alluxio in the Non-Shuffle mode reads and
writes data through local memory at the same time, which
means the read and write may influence each other. This
leads to a lower write throughput than in the Shuffle mode.
However, Alluxio still outperforms others in writes since

Average Read Throughput (MB/s)

1,000 726.5 20W-80R
800] 6319 B 50W-50R
600149 E=80W-20R »”
400+
200+

CephF:

(a) Read

GlusterFS

Average Write Throughput (MB/s)
314.2

7] 20w-80R
B 50W-50R
BE= sow-20rR

Alluxio CephFS GlusterFS HDFS

(b) Write

Figure 9: Mixed read/write throughput. This is the average throughput of each thread.

Average Read/Write Throughput (MB/s)
500+

] Write
o0

R
pletotetetsl]

Alluxio CephFS GlusterFS

(a) Shuffle

Average Read/Write Throughput (MB/s)

%
0o%e%s

X%

o

%
R

o

o
%
o

X
o

%

%

o

o

‘,
o
%

o5

oo

s

X

o

;
%
o
R

%

o

o

%
tetutetetet
o
%
o

o
o

%

o

.
Catote%e%tatotdiettatototetetetototete%
3
.

00
%
%
o

o
o

%
o
%

o

o

o

%
o

o
o

‘,
%

o

o

%

%

%
o

o

o

o

o5

Alluxio

CephFS
(b) Non-Shuffle

GlusterFS

Figure 10: Iterative read/write throughput in (a) Shuffle Mode and (b) Non-Shuffle Mode. This is the average through-

put of each thread.

it does not transfer data over network.
Irregular Massive Access.

Finally, Figure shows the throughput of irregular
massive access. Compared with the iterative workload,
this irregular massive workload has similar results. In
Shuffle mode, all the operations are limited by the net-
work, except the write operation of Alluxio. And in Non-
Shuffle mode, the read throughput of Alluxio and HDFS
increases by about 100 due to their data locality. In ad-
dition, the read throughput of Alluxio in Figure [[1(b)]is
about 50% higher than that in Figure [I0(b)] because the
multi-level caches in Alluxio work better for irregular ac-
cess than the sequentially iterative access.

6.3 Scalability

In this subsection, we evaluate the scalability of DFS-Perf
by comparing its performance in multi-thread and multi-
process parallel modes. We choose the throughput re-
sults of Alluxio and HDFS as the representative examples.
First, we run the workloads from 1 to 48 threads or pro-
cesses on a single node. Then the same workloads are run
from 1 to 40 nodes, either in 24 threads or 24 processes
(24 is the hyper-threading upper limit). The speedup per-
formance is shown in Figure[T2}

In multi-node mode, the throughput of HDFS is limited

10

by the cluster network bandwidth, while Alluxio achieves
near-linear scalability because it accesses data from local
memory. The experimental results in Figure [12] also indi-
cate that DFS-Perf has good scalability performance. Fur-
thermore, this experiment can also be used for performing
stress tests in a scalable way to detect the bottleneck of a
DEFS.

Meanwhile, for the multi-process and multi-thread
modes, we find that their behaviors are similar. The
throughput grows with the increase of the concurrency,
until the concurrency degree reaches 24, i.e., the hyper-
threading upper limit in each of our machines. When the
concurrency degree goes beyond the hyper-threading up-
per limit, the throughput performance stays the same or
even decreases a bit. In addition, HDFS performs better
in the multi-thread mode (about 1.5x) while Alluxio per-
forms better in the multi-process mode (about 1.7x) on a
single node.

6.4 Framework Overhead

In this subsection, we evaluate the overhead of the DFS-
Perf framework for benchmarking. The overhead may
come from the few communications between DFS-Perf
Master and Slaves, and the extra statistics collecting step.
And we need to know how much the overhead impacts the

Average Read/Write Throughput (MB/s)

600+ Write
400 355.0

300+

200+

(a) Shuffle
Figure 11: Irregular massive access throughput in (a) Shuffle Mode and (b) Non-Shuffle Mode. This is the average

throughput of each thread.

Average Read/Write Throughput (MB/s)

6001 574.3 Wiits
500 B Read
400+

300 2

200+
159

104
54

(b) Non-Shuffle

Throughput (MB/s) Throughput (MB/s) Throughput (MB/s) Throughput (MB/s)
20K+ +Allux?o Regd 20K+ —a— Alluxio Read 600K +Allux?0 Regd 600K/ +Allux?o RE_ad
—— Alluxio Write —eo— Alluxio Write }—4———a. —— Alluxio Write —&— Alluxio Write
15K | —=— HDFS Read 15K | e HDE&Read —=— HDFS Read —=— HDFS Read
—e— HDFS Write —e— HOFS Write 400K | —*— HDFS Write 400K{L—*— HDFS Write
10K+ 10K+
5K | %—;EE*‘ sk 200K/ 200K
200 2001 2K7 2K3
100 l@t——"——o——= 100 jpo———o—>— M/./,/ﬁ—*—* /__—»—0—1

0 4 8 1216 20 24 28 32 36 40 44 48
of processes

(b) Single-Node Multi-Process

0
0 4 8 1216 20 24 28 32 36 40 44 48
of threads

(a) Single-Node Multi-Thread

(c) Multi-Node Multi-Thread

10 15 20 25 30 35 40
of nodes

(d) Multi-Node Multi-Process

T T r T T T T 0
10 15 20 25 30 35 40 0

of nodes

0 |
0 5 5

Figure 12: Scalability of DFS-Perf. In single-node we take the value of 1 process x 1 thread as the baseline and in
multi-node we take the value of one node as the baseline. (a) single-node multi-thread. (b) single-node multi-process.
(c) multi-node, each node is in 16 threads. (d) multi-node, each node is in 16 processes.

Read Throughput (MB/s) Write Throughput (MB/s)

Exact

O exect B OFs-Pert

B8 DFS-Perf

Alluxio Alluxio

CephFS GlusterFS HDFS CephFS

(a) Read Comparison (b) Write Comparison

Figure 13: Comparisons between the Exact and DFS-Perf.
(a) Read Throughput. (b) Write Throughput.

performance and whether it will get higher when scaling
out.

For comparison, we hard-coded a lightweight tool that
directly reads and writes DFS to gather the exact through-
put performance metric without any impact on the bench-
marking framework itself, namely Exact in Figure[I3]and
Figure @ First, we measure the overhead of the DFS-
Perf framework by comparing its performance with the
exact performance. As shown in Figure [I3] DFS-Perf
only has 5.7% (3% - 7%) difference on average.

Then, we compare the overhead of DFS-Perf with Test-
DFSIO, a built-in test tool of HDFS. For fair comparisons,

11

Read Throuahout (MB!/ Write Throughput (MB/s) &
ead Throughpu s N - i
2500 - ghput (MBs) $o 700 Exact o, S
Exact 'S o 500 | BB DFs-Pert D
B OFS-Perf o &0 E== TestDFSIO | &
2000 | E5 TestDFSIO 500
1500+ 4004
10001 300
200
500+ 1004
0 04

2 4 8 2 4 8

of processes/mappers # of processes/mappers

(a) Read Comparison (b) Write Comparison

Figure 14: Comparisons of the Exact, DFS-Perf and Test-
DFSIO. (a) Read Throughput. (b) Write Throughput.

we conduct these experiments on the same DFS, a sin-
gle node HDFS. Both DFS-Perf and TestDFSIO are con-
figured with the same number of processes or mappers.
Figure [I4] reveals that DFS-Perf has less overhead and
achieves more accurate results than TestDFSIO. Moreo-
ver, DFS-Perf has a stable difference (about 6.6% on read
and 4.4% on write), but TestDFSIO has an increasing
difference as the concurrency gets higher (from 9.9% to
12.7% on read and from 6.3% to 19.2% on write). The
reason is that TestDFSIO relies on the MapReduce frame-

work, a general parallel processing platform, in which
more mappers consume more system and network re-
sources than the DFS-Perf implementation.

7 Experience

We discovered several performance issues in DFS while
using DFS-Perf to evalute them. We have contributed
some of our patches to open source communities. For
example, the DFS-Perf sequential read benchmark has
detected that, in Alluxio, there exists critical overhead
in the open and close steps when many clients access
the file metadata concurrently [3]. Another example is
that DFS-Perf helped us detect a memory statistics bug
in Alluxio [2]. The statistics are important for moni-
toring and allocating the storage space in Alluxio. This
bug only takes effect when multiple users read the same
in-memory file concurrently. Thus, the sequential utility
tools and unit tests in Alluxio can hardly capture it. Be-
cause of DFS-Perf’s multi-thread and multi-process test-
ing mechanism, we detected the bug easily. In addition,
the alluxio-perf module in Alluxio is derived from our
DFS-Perf work and now has become an important perfor-
mance benchmarking tool of the Alluxio project.

8 Conclusion

A distributed file system is a key component of virtually
any cluster computing system. We believe that compre-
hensive performance evaluation of various DFS imple-
mentations is important. In this paper, we present DFS-
Perf, a benchmarking framework that can be designed for
evaluating the performance of various DFS implementa-
tions. DFS-Perf is scalable and general enough to adapt
to various parallel and distributed environments. Also, it
is extensible that users can add new workloads and plug
in new DFS backends. We have also designed and im-
plemented a group of representative workloads with the
file access patterns summarized from the real-world ap-
plications. Moreover, DFS-Perf includes an extensible
workload generator that enables users to customize spe-
cific workloads automatically. We have conducted exten-
sive experiments to evaluate state-of-the-art DFS imple-
mentations using DFS-Perf. Based on the evaluations, we
discussed the critical factors that impact the performance
of DFS. The experimental results also demonstrate that
DFS-Perf has good scalability performance and negligi-
ble overhead (5.7% on average).

References

[1] Alluxio. http://alluxio.org/.

12

[2] Alluxio bug fix of the memory usage sta-
tistics. https://github.com/Alluxio/
alluxio/pull/354.

(3]

Alluxio scalability issue in reading from under
fs. https://alluxio.atlassian.net/
browse/ALLUXIO-257.

[4] AMPLab Big Data Benchmark. https://

amplab.cs.berkeley.edu/benchmark/\
(3]
(6]
(7]

GlusterFS. http://www.gluster.org/.
HBase. http://hbase.apache.org/.

HDEFS Architecture. http://
hadoop.apache.org/docs/r2.7.0/
hadoop—-project—dist/hadoop—hdfs/
HdfsDesign.htmll

[8] HiBench. https://github.com/

intel-hadoop/HiBench.
[9]
[10]

Mahout. http://mahout.apache.org/.

Parallel filesystem I/O benchmark. https://

github.com/chaos/ior.

[11] Solaris FileBench. http://filebench.
sourceforge.net/wiki/index.php/

Main_Page.

[12] Storage Performance Council. |http://www.

storageperformance.org/home.

[13] Why use Lustre. https://wiki.hpdd.
intel.com/display/PUB/Why+Use+

Lustre.

[14] YCSB. https://github.com/

brianfrankcooper/YCSB/|.

[15] R. Bodnarchuk and R. Bunt. A synthetic workload
model for a distributed system file server. In Pro-

ceedings of ACM SIGMETRICS, 1991.

[16] P.J. Braam and R. Zahir. Lustre: A scalable, high

performance file system, 2002.

[17] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage sys-
tem for structured data. ACM Trans. Comput. Syst.,

26(2):4:1-4:26, 2008.

[18] Y. Chen, S. Alspaugh, and R. H. Katz. Interactive
analytical processing in big data systems: A cross-
industry study of mapreduce workloads. PVLDB,

5(12):1802-1813, 2012.

http://alluxio.org/
https://github.com/Alluxio/alluxio/pull/354
https://github.com/Alluxio/alluxio/pull/354
https://alluxio.atlassian.net/browse/ALLUXIO-257
https://alluxio.atlassian.net/browse/ALLUXIO-257
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
http://www.gluster.org/
http://hbase.apache.org/
http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/r2.7.0/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://github.com/intel-hadoop/HiBench
https://github.com/intel-hadoop/HiBench
http://mahout.apache.org/
https://github.com/chaos/ior
https://github.com/chaos/ior
http://filebench.sourceforge.net/wiki/index.php/Main_Page
http://filebench.sourceforge.net/wiki/index.php/Main_Page
http://filebench.sourceforge.net/wiki/index.php/Main_Page
http://www.storageperformance.org/home
http://www.storageperformance.org/home
https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
https://wiki.hpdd.intel.com/display/PUB/Why+Use+Lustre
https://github.com/brianfrankcooper/YCSB/
https://github.com/brianfrankcooper/YCSB/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277-1288,
2008.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM
Symposium on Cloud Computing, SoCC, Indianapo-
lis, Indiana, USA, June 10-11, pages 143-154, 2010.

J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In 6th Symposium
on Operating System Design and Implementation,
OSDI, San Francisco, California, USA, December
6-8, pages 137-150, 2004.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: amazon’s
highly available key-value store. In Proceedings
of the 21st ACM Symposium on Operating Systems
Principles, SOSP, Stevenson, Washington, USA, Oc-
tober 14-17, pages 205-220, 2007.

P. M. Dickens and J. Logan. Y-lib: a user level li-
brary to increase the performance of MPI-IO in a
lustre file system environment. In Proceedings of the
18th ACM International Symposium on High Per-
formance Distributed Computing, HPDC, Garching,
Germany, June 11-13, pages 31-38, 2009.

S. Ghemawat, H. Gobioff, and S. Leung. The
Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles, SOSP,
Bolton Landing, NY, USA, October 19-22, pages 29—
43,2003.

G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri,
E. Riedel, D. Rochberg, and J. Zelenka. File server
scaling with network-attached secure disks. In Pro-
ceedings of ACM SIGMETRICS, 1997.

Gluster. An Introduction to Gluster Architecture.
White Paper, 2011.

T. Harter, D. Borthakur, S. Dong, A. S. Aiyer,
L. Tang, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Analysis of HDFS under HBase: A face-
book messages case study. In Proceedings of the
12th USENIX conference on File and Storage Tech-
nologies, FAST, Santa Clara, CA, USA, February
17-20, pages 199-212, 2014.

13

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang.
The HiBench benchmark suite: Characterization of
the mapreduce-based data analysis. In Workshops
Proceedings of the 26th International Conference on
Data Engineering, ICDE, Long Beach, California,
USA, March 1-6, pages 41-51, 2010.

H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Sto-
ica. Tachyon: Reliable, memory speed storage for
cluster computing frameworks. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC,
Seattle, WA, USA, November 3-5, pages 1-15, 2014.

S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: interactive analysis of web-scale datasets.
Commun. ACM, 54(6):114-123, 2011.

M. Noll. Benchmarking and stress test-
ing an Hadoop cluster with TeraSort,
TestDFSIO & Co. http://www.

michael-noll.com/blog/2011/04/09/

benchmarking-and-stress—-testing—-an-hadoop-clus

2011.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. De-
Witt, S. Madden, and M. Stonebraker. A comparison
of approaches to large-scale data analysis. In Pro-
ceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD, Provi-
dence, Rhode Island, USA, June 29 - July 2, pages
165-178, 2009.

K. Shvachko, H. Kuang, S. Radia, and R. Chansler.
The Hadoop distributed file system. In IEEE 26th
Symposium on Mass Storage Systems and Technolo-
gies, MSST, Lake Tahoe, Nevada, USA, May 3-7,
pages 1-10, 2010.

V. Tarasov, S. Kumar, J. Ma, D. Hildebrand,
A. Povzner, G. Kuenning, and E. Zadok. Extracting
flexible, replayable models from large block traces.
In Proceedings of the 10th USENIX conference on
File and Storage Technologies, FAST, San Jose, CA,
USA, February 14-17, page 22, 2012.

A. Traeger, E. Zadok, N. Joukov, and C. P. Wright.
A nine year study of file system and storage bench-
marking. Trans. Storage, 4(2):5:1-5:56, 2008.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He,
W. Gao, Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu,
K. Zhan, X. Li, and B. Qiu. Bigdatabench: A
big data benchmark suite from internet services. In
20th IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA, Orlando, FL,
USA, February 15-19, pages 488-499, 2014.

http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench
http://www.michael-noll.com/blog/2011/04/09/benchmarking-and-stress-testing-an-hadoop-cluster-with-terasort-testdfsio-nnbench-mrbench

[37]

[38]

[39]

[40]

[41]

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E.
Long, and C. Maltzahn. Ceph: A scalable, high-
performance distributed file system. In 7th Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI ’06), Seattle, WA, USA, November 6-8,
pages 307-320, 2006.

N. J. Yadwadkar, C. Bhattacharyya, K. Gopinath,
T. Niranjan, and S. Susarla. Discovery of application
workloads from network file traces. In 8th USENIX
Conference on File and Storage Technologies, FAST,
San Jose, CA, USA, February 23-26, pages 183-196,
2010.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Sto-
ica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI,
San Jose, CA, USA, April 25-27, pages 15-28, 2012.

M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker,
and I. Stoica. Discretized streams: fault-tolerant
streaming computation at scale. In ACM SIGOPS
24th Symposium on Operating Systems Principles,
SOSP, Farmington, PA, USA, November 3-6, pages
423-438, 2013.

Z. Zhang, D. S. Katz, M. Wilde, J. M. Wozniak,
and I. T. Foster. MTC envelope: defining the ca-
pability of large scale computers in the context of
parallel scripting applications. In The 22nd Inter-
national Symposium on High-Performance Parallel
and Distributed Computing, HPDC, New York, NY,
USA, June 17-21, pages 37-48, 2013.

14

	Introduction
	DFS Characteristics
	Related Work
	DFS-Perf Design
	DFS-Perf Architecture
	Scalability
	Extensibility
	Adding a DFS
	Adding a New Workload

	Benchmark Design
	DFS Access Traces of Applications
	Overview of File Operation Traces
	Machine Learning Benchmarks
	SQL Query Benchmarks

	Workloads
	Automatic Workload Generator

	Evaluation
	Experimental Setup
	DFS Benchmarking
	Scalability
	Framework Overhead

	Experience
	Conclusion

