
Algorithms for Identifying Syntactic Errors and Parsing
with Graph Structured Output

Jonathan K. Kummerfeld

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-138
http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-138.html

August 5, 2016



Copyright © 2016, by the author(s).
All rights reserved.

 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.



Algorithms for Identifying Syntactic Errors and Parsing with Graph Structured Output

by

Jonathan Kay Kummerfeld

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Dan Klein, Chair

Professor Marti A. Hearst

Associate Professor Line Mikkelsen

Summer 2016



Algorithms for Identifying Syntactic Errors and Parsing with Graph Structured Output

Copyright 2016

by

Jonathan Kay Kummerfeld



1

Abstract

Algorithms for Identifying Syntactic Errors and Parsing with Graph Structured Output

by

Jonathan Kay Kummerfeld

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Dan Klein, Chair

Representation of syntactic structure is a core area of research in Computational Linguistics,

disambiguating distinctions in meaning that are crucial for correct interpretation of language. De-

velopment of algorithms and statistical models over the past three decades has led to systems that

are accurate enough to be deployed in industry, playing a key role in products such as Google

Search and Apple Siri. However, syntactic parsers today are usually constrained to tree representa-

tions of language, and performance is interpreted through a single metric that conveys no linguistic

information regarding remaining errors.

In this dissertation, we present new algorithms for error analysis and parsing. The heart of

our approach to error analysis is the use of structural transformations to identify more meaning-

ful classes of errors, and to enable comparisons across formalisms. For parsing, we combine a

novel dynamic program with careful choices in syntactic representation to create an efficient parser

that produces graph structured output. Together, these developments allowed us to evaluate the

outstanding challenges in parsing and to address a key weakness in current work.

First, we present a search algorithm that, given two structures, finds a sequence of modifications

leading from one structure to the other. We applied this algorithm to syntactic error analysis, where

one structure is the output of a parser, the other is the correct parse, and each modification corre-

sponds to fixing one error. We constructed a tool based on the algorithm and analyzed variations

in behavior between parsers, types of text, and languages. Our observations shine light on several

assumptions about syntactic errors, showing some to be true and others to be false. For example,

prepositional phrase attachment errors are indeed a major issue, while coordination scope errors do

not hurt performance as much as expected.

Next, we describe an algorithm that builds a parse in one syntactic representation to match a

parse in another representation. Specifically, we build phrase structure parses from Combinatory

Categorial Grammar derivations. Our approach follows the philosophy of CCG, defining specific

phrase structures for each lexical category and generic rules for combinatory steps. The new parse

is built by following the CCG derivation bottom-up, gradually building the corresponding phrase

structure parse. This produced significantly more accurate parses than past work, and enabled us

to compare performance of several parsers across formalisms.



2

Finally, we address a weakness we observed in phrase structure parsers: the exclusion of syntac-

tic trace structures for computational convenience. We present an efficient dynamic programming

algorithm that constructs the graph structure that has the highest score under an edge-factored scor-

ing function. We define a parse representation compatible with the algorithm, and show how certain

linguistic distinctions dramatically impact coverage. We also show various ways to modify the al-

gorithm to improve performance by exploiting properties of observed linguistic structure. This

approach to syntactic parsing is the first to cover virtually all structure encoded in the Penn Tree-

bank.



i

Contents

Contents i

List of Algorithms iv

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Formalism Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Graph Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Contributions of This Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Automatic Error Analysis 9

2.1 Error Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Transformation Classification . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Reranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.2 Out-of-Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Chinese Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Adapting Error Analysis to Chinese . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Chinese Parsing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Chinese-English Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.5 Cross-Parser Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.6 Tagging Error Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Formalism Conversion 39

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



ii

3.1.1 Combinatory Categorial Grammar (CCG) . . . . . . . . . . . . . . . . . . 39

3.1.2 Clark and Curran (2009) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1.3 X. Zhang et al. (2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Parser Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Graph Parsing 49

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Why Graph Structures? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2 Previous Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Overall Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Sketch of Deduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Item Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Example Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3.4 Deduction Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Comparison with Pitler et al. (2013) . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Deduction Rule Definitions and Completeness Proof . . . . . . . . . . . . . . . . . 63

4.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.2 Item Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5.3 Complete Dynamic Program . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.4 Eisner (1996)’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.5 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.6 Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.7 Exterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.8 Both . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.9 Left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.10 Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.11 Neither . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.12 Additional Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6 Algorithm Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.1 Derivational Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Parse Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7.1 Core Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.2 Additional Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.7.3 Head Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Algorithm Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.1 Edge Labels and Spines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.8.2 Ensuring the Graph Contains a Structural Tree . . . . . . . . . . . . . . . . 84



iii

4.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.9.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.9.2 Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.9.3 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10.1 Algorithm Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10.2 Problematic Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.10.3 Parsing Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5 Conclusion 95

A Resources 97

Bibliography 99



iv

List of Algorithms

2.1 Transformation based error classification . . . . . . . . . . . . . . . . . . . . . . 11

4.1 General CKY algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Complete graph parsing dynamic program. . . . . . . . . . . . . . . . . . . . . . 64

4.3 Making I with direct edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Making I , case one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Making I , case two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Making I , case four. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Making I , cases three and five (part one). . . . . . . . . . . . . . . . . . . . . . . 69

4.8 Making I , cases three and five (part two). . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Making I , case six. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Making I , case seven. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.11 Making X with direct edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.12 Making B with direct edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.13 Making B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.14 Making L with direct edges (part one). . . . . . . . . . . . . . . . . . . . . . . . . 74

4.15 Making L with direct edges (part two). . . . . . . . . . . . . . . . . . . . . . . . . 74

4.16 Making L, cases three through eight. . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.17 Making L, cases nine and ten. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.18 Making L, cases one and two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.19 Making N with direct edges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.20 Making N , cases three and four. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.21 Making N , cases seven and eight. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.22 Rules that could create crossing arcs. . . . . . . . . . . . . . . . . . . . . . . . . 85

4.23 Online Primal Subgradient with ℓ1 or ℓ2 regularization, sparse updates . . . . . . . 87

4.24 Full dynamic program with rules unseen in training boxed and colored. . . . . . . 91

4.25 Pruned dynamic program, including only rules observed in the training set, includ-

ing tighter parent constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



v

List of Figures

1.1 Dependency, constituency, and categorial forms of the sentence Ellen enjoys running. . 2

1.2 Parse representations for graph structures. . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Error analysis example: PP attachment. . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Error analysis example: Coordination. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Error analysis example: NP attachment. . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Error analysis example: Clause attachment. . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Error analysis example: VP attachment. . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Error analysis example: Adverb and adjective modifier attachment. . . . . . . . . . . . 16

2.7 Error analysis example: Unary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 Error analysis example: Different label. . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Error analysis example: Single word phrase. . . . . . . . . . . . . . . . . . . . . . . . 17

2.10 Error analysis example: Parenthetical attachment. . . . . . . . . . . . . . . . . . . . . 18

2.11 Error analysis example: Missing parenthetical. . . . . . . . . . . . . . . . . . . . . . . 18

2.12 Error analysis example: NP internal structure. . . . . . . . . . . . . . . . . . . . . . . 19

2.13 Error analysis example: NP internal structure (Chinese). . . . . . . . . . . . . . . . . 32

2.14 Error analysis example: Adverb and adjective modifier attachment (Chinese). . . . . . 32

2.15 Error analysis example: Word sense confusion (Chinese). . . . . . . . . . . . . . . . . 33

2.16 Error analysis example: Verb taking wrong arguments (Chinese). . . . . . . . . . . . . 33

3.1 An example of CCG and PTB parses with nodes covering crossing spans. . . . . . . . 40

3.2 An example function application during CCG to PTB conversion. . . . . . . . . . . . 42

3.3 Heatmaps comparing gold conversion accuracy, CCG native evaluation, and converted

evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Venn diagram of graph space by properties . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 An example derivation using our graph parsing deduction rules. . . . . . . . . . . . . 56

4.3 Overall picture of deduction rule definitions. . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 I deduction rules, case one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 I deduction rules, case two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6 I deduction rules, cases three and five. . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 I deduction rules, case four. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



vi

4.8 I deduction rules, case seven. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.9 I deduction rules, case six. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.10 Excluded B deduction rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.11 B structural pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 B deduction rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.13 L deduction rules, cases three through eight. . . . . . . . . . . . . . . . . . . . . . . . 61

4.14 L deduction rules, cases one and two. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.15 L deduction rules, cases nine and ten. . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.16 N deduction rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.18 Parse representations for graph structures. . . . . . . . . . . . . . . . . . . . . . . . . 80

4.19 Examples of graph structured syntactic phenomena. . . . . . . . . . . . . . . . . . . . 82

4.20 Examples of problematic graph structured syntactic phenomena. . . . . . . . . . . . . 83

A.1 Parse error visualization example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



vii

List of Tables

2.1 PARSEVAL results on WSJ section 23 for the parsers we consider. . . . . . . . . . . . 20

2.2 Breakdown of errors on section 23 for the Charniak parser with self-trained model and

reranker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Average number of bracket errors per sentence due to the top ten error types. . . . . . . 23

2.4 Average number of bracket errors per sentence for a range of K-best list lengths using

the Charniak parser with reranking and the self-trained model. . . . . . . . . . . . . . 25

2.5 Variation in size and contents of the domains we consider. . . . . . . . . . . . . . . . . 27

2.6 Average number of node errors per word for a range of domains. . . . . . . . . . . . . 28

2.7 Breakdown of errors in Chinese parsing. . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Error breakdown for a range of parsers on the PCTB. . . . . . . . . . . . . . . . . . . 36

2.9 The most frequently confused POS tag pairs in Chinese parsing. . . . . . . . . . . . . 37

3.1 Example rules from Clark and Curran (2009). . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Types of operations in instructions in our CCG to PTB conversion. . . . . . . . . . . . 42

3.3 Example instructions for our CCG to PTB conversion. . . . . . . . . . . . . . . . . . 44

3.4 PARSEVAL Precision, Recall, F-Score, and exact sentence match for converted gold

CCG derivations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 F-scores on section 23 for PTB parsers and CCG parsers with their output converted

by our method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Number of sentences in the training set that are of each structure type. . . . . . . . . . 92

4.2 Coverage improvements for parts of our graph representation. . . . . . . . . . . . . . 93



viii

Acknowledgments

Every doctorate is a long journey, developing new understanding of the universe and yourself.

I’ve had an incredible group of people helping and supporting me on my path.

First, my adviser, Dan Klein. Completing a doctorate is about learning many new skills, and

Dan taught me all of them, either explicitly through guidance or implicitly through the example he

set of how to do great research, present your work, run a group, teach, and more.

Next, I’d like to recognise the time and effort my committee put into their extremely thoughtful

and detailed comments on this thesis. As a result, every chapter explains the work more clearly

and fully, and more effectively draws connections with other research.

I have also been fortunate to work with fantastic people. As well as my adviser, the research

presented here involved three key collaborators: Daniel Tse, David Hall, and James Curran. Your

expertise was crucial, on everything from explaining Chinese syntax to showing how to squeeze as

much content into a paper as possible.

Beyond my main collaborators, I have been assisted immensely by conversations with everyone

who has been a part of the Berkeley NLP group during my PhD: Jacob Andreas, Mohit Bansal,

Taylor Berg-Kirkpatrick, David Burkett, Greg Durrett, Daniel Fried, Dave Golland, David Hall,

Nikita Kitaev, Percy Liang, Dominick Ng, Adam Pauls, Max Rabinovich, and Mitchell Stern. In

particular, I am grateful to Greg, who I met at the Berkeley visit day, spent most of my degree

working (literally) alongside, and have immense respect for as both a researcher and a friend.

Another form of support was provided by the General Sir John Monash Foundation, which

connected me to an incredible group of Australians pursuing exciting careers across every field. I

was also supported by grants with the Berkeley Security group, which gave me valuable experience

working on a multi-disciplinary team with fascinating data.

Yet another form of support came from the circle of friends that I was a part of in Berkeley.

In hindsight, I was incredibly lucky when I mailed the rest of the incoming students and asked

if anyone wanted to live in a large house together. Not only did you become some of my closest

friends, but our home became the centre of a larger group of friends that had many great adventures

together. I will miss the community we formed, but am sure that our connection will be just as strong

every time we are together again.

Looking back further, I want to acknowledge the people who were role models for me when I

chose to follow the academic path. There are too many people to name here, including research

advisers on undergraduate projects across computer science, chemistry, and physics, everyone at

the JHU workshop, and my friends who started down the doctoral path before me. One group I

would like to specifically mention is my family. Each of you inspire me in different ways, and all

of you have encouraged and supported me my entire life.

Finally, along the way I found more than just interesting ideas and great friends. I met my now-

fiancée, Ellen. You have been supportive, patient, generous, and many more positive adjectives.

Thank you.



1

Chapter 1

Introduction

Communication is a fundamental part of human society, enabling the transfer of information be-

tween people. Textual language in particular is found throughout our daily lives; when asking a

question, we type it into a search engine and usually read an answer from either Wikipedia or discus-

sions between other people; to find out what is happening in the world we read newspapers or listen

to a newsreader; for entertainment we read stories, listen to podcasts, or watch TV shows (virtually

all of which contain dialogue); and for personal communication we write electronic messages in a

variety of formats. One of the keys to all of this communication is the use of structure to convey

meaning. Part of this structure is visible–by convention you are looking at this page from top to

bottom and left to right, treating each connected component of ink (or light) as a character, combin-

ing a sequence of characters into words, and so on to progressively larger levels of structure. The

focus of this dissertation, syntax, is the mostly invisible structure that exists somewhere between

characters and sentences. People are able to identify syntactic structure by drawing on knowledge

from a range of sources, and in the process they discard a vast array of alternative interpretations

for a given utterance. In the past century, artificial symbolic processing by machines has advanced

dramatically, to the point where computers can start to engage in textual communication, both un-

derstanding what people have written and writing back. Approaching human-level communication

will require systems to resolve syntactic ambiguities in text, either explicitly with an interpretable

syntactic structure or implicitly with some other intermediate representation.

Over the past two decades there has been rapid development in systems for the syntactic pars-

ing task, where the input is a single sentence and the output is a structure that encodes syntactic

relationships between words in the sentence. This development has largely been driven by new

statistical methods for constructing models from resources manually labeled with syntactic struc-

tures by linguists. In addition to variations in statistical and engineering approaches, research has

explored various syntactic representations. These representations are based on different linguistic

theories, each with a body of research going into its design. These theories vary in several ways:

what form is used to encode syntax, what distinctions in structure are meaningful or not (and so rep-

resented or not), and what distinctions fall within syntax (and so represented here, or in downstream

processing).

In this thesis, we present new algorithms that extend the capabilities of various systems related



CHAPTER 1. INTRODUCTION 2

EllenROOT enjoys running

nsubj

nsubj

xcomp

root

Ellen enjoys running

*-1

NP VP

S

NP-1 VP

S

Ellen

NP
enjoys

(S\NP )/(S\NP )
running

S\NP

S\NP

S

Figure 1.1: Dependency, constituency, and categorial forms of the sentence Ellen enjoys running.

Visualizations used here are in the style of Nivre et al. (2016, dependency), Bies et al. (1995,

constituency) and Steedman (2000, categorial).

to syntax. Together, these three areas of development show how we can go beyond the standard

approach to parsing research, considering new challenges and ways to approach them. The first

area of research we consider is how the community evaluates automatic syntactic parsers to under-

stand their strengths and weaknesses. We propose a two-stage algorithm that searches for a set

of transformations that will correct a parse, then classifies each transformation into one of several

error types. Using the algorithm, we compare parse errors for a range of systems, a range of text

domains, and two languages. The second aspect of syntax we consider is conversion between two

different linguistic formalisms, which enables comparison of different parsers, and provides greater

flexibility for projects where the parser is part of a larger pipeline. Our system uses a bottom-up

approach that is more flexible and more effective than previous work. Finally, we explore how

to extend parsing algorithms beyond tree structured output. Existing algorithms need the tree con-

straint to be efficient, but the standard way to apply the constraint has been to discard structure for

a range of phenomena, such as wh-movement, passivization, and fronting. We introduce a new

algorithm that can efficiently find the max or sum over all possible graph structures for a sentence,

scored with an edge-factored model. We also define a new parse representation that is compatible

with the algorithm and deterministically convertable into the Penn Treebank (PTB) style. Together,

our algorithm and representation are able to produce parses that cover virtually all forms of struc-

ture in the Penn Treebank, providing a more complete expression of the structure of sentences for

downstream processing.

1.1 Syntax

One of the core research areas in linguistics is syntax, the study of processes that determine word

order in sentences. For the purposes of this thesis, it is important to understand a few general

properties of the syntactic theories we consider. Each theory encodes relationships between words

using structure, but the form of those structures varies considerably. Figure 1.1 shows how the



CHAPTER 1. INTRODUCTION 3

sentence Ellen enjoys running is represented in the three syntactic formalisms we use.

In the leftmost case, which uses dependency grammar (DG; Tesnière 1959), each edge indicates

a relationship between two words. The label expresses the type of dependency, out of 40-50 types

(Marneffe and Manning 2008; Nivre et al. 2016). The arrow points from the word that is the

dependent / child to the word that is the head / parent1. The dashed edge is often excluded in order

to make the edges form a tree (a structure where every word has exactly one parent and the edges

from one connected structure).

The middle case, which uses Government and Binding Theory (GB; Chomsky 1981), has a

hierarchical phrase structure. Each symbol is a constituent, capturing the idea that the set of words

beneath it constitute a single functional unit. Constituents are linked together to form larger con-

stituents according to rules. This figure also shows a null element in between enjoys and running,

which is used to encode the relationship between Ellen and running. As with the dashed edge in the

dependency case, the null element is often removed from this structure to make it a tree.

The rightmost case, categorial grammar (Ajdukiewicz 1935), also has a hierarchical structure,

but uses complex lexical categories that are then combined according to a small set of inference

rules. This particular example uses Combinatory Categorial Grammar (CCG; Steedman 2000),

a variant in which combinatory logic is used to construct both syntactic and semantic forms in

parallel. Immediately beneath each word is its lexical category, which can either by an atomic

symbol, or a complex structured combination of symbols. A small set of generic combinators

define how pairs of adjacent categories can be combined. Along with the syntactic derivation,

CCG builds up a lambda expression denoting the semantic structure of the sentence (not shown

in this figure). One interesting property of the formalism is that a sentence can have multiple

different derivations with the same semantic representation. This ability to have different structures

encode the same meaning is a form of derivational or spurious ambiguity2. Note that unlike the

previous two approaches, here the connection between Ellen and running is retained while keeping

the structure a tree. This is possible because the relation has been threaded through the tree via the

categories.

While syntactic formalisms are used in a variety of ways, our focus is on the automatic pro-

duction of syntactic structures by computer programs. These programs take a sentence as input,

consider possible structures and return the one that is best according to some scoring model3. Indi-

vidually considering every possible structure for a sentence is infeasible as the number of possible

parses is exponential in the length of the sentence. One way to avoid this issue is to perform an

approximate search that incrementally builds the parse, maintaining only a few options at any given

point. However, if the part of the optimal structure that is built first scores poorly, then it may drop

out of the list of options, and so there is no guarantee of finding the optimal parse. Alternatively,

we can maintain optimality at the cost of model flexibility, constraining the model so that the score

for a parse is the sum of scores for each of its components. This work follows the second approach,

which enables dynamic programming methods, where the larger problem (find the optimal parse) is

1The direction of the arrow is a convention we are following from linguistics. Note that this is the reverse of the

convention in graph theory.
2Steedman (ibid.) explores the possibility that this ambiguity could encode variations in prosody.
3The sentence is assumed to be grammatical–a parse is always returned.



CHAPTER 1. INTRODUCTION 4

decomposed into independent sub-problems (find the optimal parse for part of the sentence) whose

solutions can be used to solve the original problem (take the best solution from one half of the

sentence and combine it with the best solution from the other half). The specific form of dynamic

programming applied to the task of finding optimal parses structures is the CKY algorithm (Kasami

1966; Younger 1967; Cocke 1969).

1.2 Error Analysis

The standard resource for parsing research is the Wall Street Journal section of the Penn Treebank

(Marcus et al. 1993), a collection of one million words of text from 1989 issues of the Wall Street

Journal that have been annotated by experts with syntactic structure in a GB style. The standard

measure of constituent parser performance is the F-Score, the harmonic mean of precision4 and

recall5 on labeled nodes in the parse. Performance on WSJ section 23 has exceeded 90 F1 (Petrov

and Klein 2007), and 92 F1 when using self-training and reranking (Charniak and Johnson 2005;

McClosky et al. 2006a). While these results give a useful measure of overall performance, they

provide no information about the nature, or relative importance, of the remaining errors.

Broad investigations of parser errors beyond the PARSEVAL metric (Black et al. 1991) have

either focused on specific parsers, e.g., (Collins 2003), or have involved conversion to DG (Carroll

et al. 1998; King et al. 2003). In all of these cases, the analysis has not taken into consideration

how a set of errors can have a common cause, e.g., a single mis-attachment can create multiple

node errors.

In the first part of the thesis, we propose a new method of error classification using tree trans-

formations. Errors in the parse tree are repaired using subtree movement, node creation, and node

deletion. Each step in the process is then associated with a linguistically meaningful error type,

based on factors such as the node that is moved, its siblings, and parents. Using our method we

analyze the output of thirteen constituency parsers on newswire. Some of the frequent error types

that we identify are widely recognized as challenging, such as prepositional phrase (PP) attachment.

However, other significant types have not received as much attention, such as attachment of clauses,

adjective phrases, and adverb phrases. We also investigate where reranking and self-training im-

prove parsing, and where performance decreases when parsing out-of-domain text. Previously,

these were all analyzed only in terms of their impact on F-score.

1.3 Formalism Conversion

As shown above, there are many ways of expressing syntactic structure. Extensive work has gone

into converting the Penn Treebank to other formalisms, such as HPSG (Miyao et al. 2004), LFG

(Cahill et al. 2008), LTAG (Xia 1999), and CCG (Hockenmaier 2003), These conversions are com-

plex processes that render linguistic phenomena in formalism-specific ways. Tools for the reverse

4 Number of correct nodes in the output structure, divided by the total number of nodes it has.
5 Number of correct nodes in the output structure, divided by the number of nodes in the gold structure.



CHAPTER 1. INTRODUCTION 5

process, converting back to the PTB, enable performance comparisons between parsers based on

the two formalisms, and provide more options for researchers and developers building pipelines in

which parsing is only one step. However, the reversal is difficult, as the original conversion may

have lost information or smoothed over inconsistencies in the corpus. Clark and Curran (2009)

developed a CCG to PTB auto-conversion tool that treats the CCG derivation as a phrase struc-

ture tree and applies hand-crafted rules to every pair of categories that combine in the derivation.

Because their approach does not exploit the generalizations inherent in the CCG formalism, they

must resort to ad-hoc rules over non-local features of the CCG constituents being combined (when

a fixed pair of CCG categories correspond to multiple PTB structures). Even with such rules, they

correctly auto-convert only 39.7% of gold CCGbank derivations.

In the second chapter, we describe an auto-conversion method that assigns a set of bracket

instructions to each word based on its CCG category, then follows the CCG derivation, applying

and combining instructions at each combinatory step to build a phrase structure tree. This requires

specific instructions for each category (not all pairs), and generic operations for each combinator.

Unlike Clark and Curran (ibid.)’s approach, we require no rules that consider non-local features of

constituents, which enables the possibility of simple integration with a CKY-based parser.

Our approach perfectly auto-converts 51.4% of sentences, an 11.7% (absolute) improvement

over Clark and Curran (ibid.). On the remaining sentences our auto-conversion generally handles

most of the sentence correctly, but makes mistakes on some clause spans and rare spans such as

QPs, NXs, and NACs. Many of these errors are inconsistencies in the original PTB annotations

that are not recoverable. Applying our tool to the output of several CCG parsers, we are able to

compare them with standard PTB parsers, showing that their accuracy falls within the middle of

the performance range of well known systems. Our auto-conversion tool is easy to use and more

effective than prior work, providing a convenient means of getting PTB-style output from a CCG

parser.

1.4 Graph Parsing

In Section 1.1 we saw that while parse structures can be graphs and discontinuous, removing some

edges in the dependency parse, or the traces in the Government and Binding structure, can make

the structures into projective trees. Whether these edges are included in our grammar impacts the

class of formal languages we are generating (Chomsky 1956). The trees are entirely within the

context-free class, while the graphs are in the context-sensitive class. There are a range of well

known polynomial time algorithms for parsing in the context-free class (Kasami 1966; Younger

1967; Cocke 1969; Earley 1970; Lang 1974), but parsing of context-sensitive grammars is PSPACE

complete (Kuroda 1964; Savitch 1970). Fortunately, human language appears to fall into a class

somewhere in between these two, which researchers have attempted to characterize using mildly-

context-sensitive grammars (Weir and Joshi 1988) and range concatenation grammars (Boullier

1998). In general, work on these intermediate classes has been in conjunction with the development

of new formalisms6.

6 For example, CCG falls into the mildly-context-sensitive class.



CHAPTER 1. INTRODUCTION 6

In the Penn Treebank, the traces are distinguished from the core projective tree structure, and

are used to represent control structures, wh-movement and more. Traces are indicated using nodes

in the parse that do not span any words (null elements) and numbers to indicate a connection with

another node in the parse (co-indexation, with the null element getting a reference index and the

other node getting an identity index). By varying the null element used, different forms of move-

ment can be indicated. The list below describes all of the null elements used in the treebank, though

only the first two can be assigned reference indexes (Bies et al. 1995):

• *T* – Trace of non-argument movement, including parasitic gaps

• (NP *) – Trace of argument movement, arbitrary PRO, and controlled PRO

• 0 – Null complementizer, including null wh-operator

• *U* – Unit

• *?* – Placeholder for ellipsed material

• *NOT* – Anti-placeholder in template gapping

• *RNR* – Pseudo-attach: right node raising

• *ICH* – Pseudo-attach: interpret constituent here

• *EXP* – Pseudo-attach: expletive

• *PPA* – Pseudo-attach: permanent predictable ambiguity

However, most parsers and the standard evaluation metric ignore these edges and all null ele-

ments, focusing entirely on the tree structure. By leaving out parts of the structure, they are not

explicitly representing all of the relations in the sentence. These aspects of syntax are excluded not

because of disagreements regarding theory, but rather because of the computational challenge of

including them. Unfortunately, this means that downstream tasks such as question answering have

to make do with the more limited structure, e.g., in Who enjoys running? the link between who and

running is not present in the tree structure.

While there has been work on capturing some parts of this extra structure, it has generally

either been through post-processing on trees (Johnson 2002; Jijkoun 2003; Campbell 2004; Levy

and Manning 2004; Gabbard et al. 2006), or has only captured a limited set of phenomena via

grammar augmentation (Collins 1997; Dienes and Dubey 2003; Schmid 2006; Cai et al. 2011). In

both cases phenomena such as shared argumentation are completely ignored. Similarly, most work

on the Abstract Meaning Representation (Banarescu et al. 2015), has removed edges to turn all

structures into trees.

In the final chapter, we propose a new parse representation and a new algorithm that can ef-

ficiently consider almost all observed syntactic phenomena. Our representation is an extension

of TAG-based tree representations (Shen et al. 2007; Carreras et al. 2008), modified to represent



CHAPTER 1. INTRODUCTION 7

ROOT NPSBJ

Sarah

S VP

told

NP

Rebecca

-

to

S VP VP

run

NPSBJ

Sarah told Rebecca to run

*1 VP

NPSBJ VP

NP1 S

NPSBJ VP

S

(b)

(a)

Figure 1.2: Parse representations for graph structures: (a) constituency (b) ours.

graphs and designed to maximize coverage under a new class of graphs. Our algorithm extends a

non-projective tree parsing algorithm (Pitler et al. 2013) to graph structures, with improvements to

avoid derivational ambiguity.

Our representation, shown in Figure 1.2b, consists of complex tags composed of non-terminals,

and edges indicating attachment. In this form, traces can create problematic structures such as

directed cycles, but we show how careful choice of head rules can minimize such issues.

Our algorithm runs in time O(n4) under a first-order model. We also introduce extensions that

ensure parses contain a directed projective tree of non-trace edges. We implemented a proof-of-

concept parser with a basic first-order model, which scored 88.3 on the standard evaluation metric

(F1 on trees), and recovered a range of trace types. Together, our representation and algorithm form

an inference method that can cover 97.7% of sentences, far above the coverage of projective tree

algorithms (46.8%).

1.5 Contributions of This Dissertation

Our contributions are a set of novel algorithms and experimental results and analysis using those al-

gorithms. First, we define a new algorithm for error analysis of constituency parsing output, which

provides a more intuitive breakdown of error types than previous approaches. We implement the

algorithm and use it to give insight into current parsing effectiveness, considering a wide range of

systems, multiple domains, and two languages. Second, we present a new algorithm for transform-

ing CCG derivations into GB parses. Our approach is significantly more accurate than previous

work and has desirable algorithmic properties. Finally, we describe the first algorithm for inference

over the space of GB graph structures. Previous work compromised by leaving out important as-

pects of the syntactic representation in order to satisfy constraints of their parsing algorithms. We



CHAPTER 1. INTRODUCTION 8

show how to efficiently implement the algorithm, and discuss results and remaining challenges.



9

Chapter 2

Automatic Error Analysis

Preliminary versions of parts of this chapter appeared as Kummerfeld, D. Hall, et al. (2012) and

Kummerfeld, Tse, et al. (2013).

Constituency parser performance is primarily interpreted through a single metric, F-score on

WSJ section 23, that conveys no linguistic information regarding the remaining errors. In this

chapter, we describe a new error analysis method that classifies errors within a set of linguistically

meaningful types using transformations that repair groups of errors together. We use this analysis

to answer a range of questions about parser behavior, including what linguistic constructions are

difficult for state-of-the-art parsers, what types of errors are being resolved by rerankers, what types

are introduced when parsing out-of-domain text, and how the challenges change for Chinese.

2.1 Error Classification

The standard metric for parsing is:

F1 =
2 ∗ precision ∗ recall

precision + recall

=
2 ∗ |matching nodes|

|nodes in predicted parse|+ |nodes in true parse|

This is a robust metric that gives a sense of overall parser performance, but a single number

cannot provide linguistically meaningful intuition for the source of remaining errors. Since the

metric is defined in terms of nodes, one natural direction for analysis is to break down the errors by

node type. Unfortunately, that approach is not particularly informative, as a single attachment error

can cause multiple node errors, without a clear link between the two once aggregated. For example,

in Figure 2.1 there is a PP attachment error that causes seven bracket errors (extra S, NP, PP, and

NP, missing S, NP, and PP). Determining that these correspond to a PP attachment error from just

the labels of the missing and extra nodes is difficult. Additionally, once an aggregate count of node



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 10

S

VP

VP

S

NP

PP

NP

PP

in 1986

NP

NNP

Applied

IN

of

NP

chief executive officer

VBN

named

VBD

was

NP

PRP

He

(a) Parser output

S

VP

VP

PP

in 1986

S

NP

PP

NP

NNP

Applied

IN

of

NP

chief executive officer

VBN

named

VBD

was

NP

PRP

He

(b) Gold parse

Figure 2.1: Incorrect PP Attachment in 1986 is too low. Bold, boxed nodes are either extra

(marked in red in the parser output) or missing (marked in blue in the gold parse).



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 11

Algorithm 2.1 Transformation based error classification

U = initial set of node errors

Sort U by the depth of the error in the parse, deepest first

G = ∅ Transformation stage (Section 2.1.1)

for all errors e ∈ U do

t = argmax
t ∈ transformations

errors repaired by t

g = new error group

Correct e as specified by t
for all errors f that t corrects do

Remove f from U
Insert f into g

Add g to G

for all groups g ∈ G do Classification stage (Section 2.1.2)

Classify g based on properties of the group

errors is made, different types of errors may contribute to the same count, for example mistakes

in PP attachment and coordination could both contribute to the count of incorrect NP nodes. In

contrast, the approach we describe below takes into consideration the relations between node errors,

grouping them into linguistically meaningful sets.

We classify node errors in two phases. First, we find a set of transformations that convert the

output parse into the gold parse (Section 2.1.1). Second, each transformation is classified as one of

several error types (Section 2.1.2). Pseudocode for our method is shown in Algorithm 2.1.

2.1.1 Transformations

Our algorithm finds a path from the parser output to the gold parse, where states are parse structures

and steps are transformations. We define three general types of transformations:

Create node takes a set of nodes that are siblings and places them under a new node.

Delete node removes a node and re-attaches its children where it was.

Move nodes takes a node and moves it either up or down within the parse, with the constraint that

it must not make the structure discontinuous. If this move leads to the creation of a unary

production between two non-terminals of the same type, also remove one of them.

The first two of these are straightforward, to demonstrate the third we will describe the move

transformation that fixes the errors in Figure 2.1. The PP node spanning in 1986 is too low in the

parser output (top half of the figure). We will make a move transformation, moving the PP up to be



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 12

a child of the VP. By moving the PP, the extra nodes cover a shorter span of text and three of them

now match the three missing nodes (shown in the bottom half of the figure). The remaining extra

node is the lowest extra NP, which was originally over Applied in 1986. After in 1986 moves up,

an NP to NP unary production is left behind, and so one of the NPs is deleted.

Once a transformation is performed, all of the nodes that were fixed are placed in a single group

and information about the nearby parse structure before and after the transformation is recorded.

This recording is necessary, since subsequent changes may alter the surrounding structure in ways

that impact the classification process described in the next section.

With this definition of states and transformations, a range of standard search algorithms are

available to us. We considered search algorithms with guarantees for finding the shortest path,

but found they were prohibitively slow. Instead, we find a path by applying a greedy bottom–

up approach, iterating through the errors in the parse, deepest first. Fortunately, on the shorter

sentences for which finding the optimal path was feasible, we found that the greedy approach had

no substantial impact on results. This is the case because in many sentences a single correction will

fix the parse and in cases with multiple errors they are often in disjoint sections of the parse.

2.1.2 Transformation Classification

We began with a large set of node errors, in the first stage they were placed into groups, one group

per transformation used to get from the automatically generated parse to the gold parse. Now we

classify each group as one of the error types below. The ideal set of error classes would consider

each group of incorrect constituents and show how their function has been misinterpreted by the

parser, but it is difficult to define simple rules for such a classification. In future work it would be

interesting to build statistical models for classifying errors, using expert analysis of parse errors

to train the system. In the meantime, the approach we took was to construct general rules that

classify errors mainly by the category of the nodes being moved and their surrounding context. We

developed our rules by running the system with no classification, then progressively adding rules

to decrease the number of unclassified errors. In the process of adding rules we also inspected

observed classifications to check that they were correct, amending the rules if necessary.

PP Attachment (Figure 2.1)

Any case in which the transformation involved moving a Prepositional Phrase, or the incorrect

bracket is over a PP, e.g.,

He was (VP named chief executive officer of (NP Applied (PP in 1986)))

where (PP in 1986) should modify the entire VP, rather than just Applied.

Coordination (Figure 2.2)

Cases in which a conjunction is an immediate sibling of the nodes being moved, or is the leftmost

or rightmost node being moved, e.g.,

(NP A 16% drop (PP for (NP (NP Mannesmann AG) and (NP Dresdner AG’s 10% decline))))



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 13

NP

PP

NP

NP

Dresdner AG’s 10% decline

CC

and

NP

Mannesmann AG

IN

for

NP

A 16% drop

(a) Parser output

NP

NP

Dresdner AG’s 10% decline

CC

and

NP

PP

NP

Mannesmann AG

IN

for

NP

A 16% drop

(b) Gold parse

Figure 2.2: Coordination and Dresdner AG’s 10% decline is too low.

where the conjunction and second NP should be at the top level, between A 16% drop for Mannes-

mann AG and Dresdner AG’s 10% decline.

NP Attachment (Figure 2.3)

Several cases in which NPs had to be moved, particularly for mistakes in appositive constructions

and incorrect attachments within a verb phrase, e.g.,

The bonds (VP go (PP on sale (NP Oct. 19)))

where Oct. 19 should be an argument of go.

Clause Attachment (Figure 2.4)

Any group that involves movement of some form of S node, e.g.,

intends (S (VP to (VP restrict the RTC to ... (SBAR unless the agency ...))))

where the SBAR should be modifying intends, rather than the lower VP.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

1
4

VP

NP

NN

today

NP

VBG

appearing

NP

another new ad

VBD

wrote

(a) Parser output

VP

NP

VP

NP

NN

today

VBG

appearing

NP

another new ad

VBD

wrote

(b) Gold parse

Figure 2.3: NP Attachment today is too high, it

should be the argument of appearing, rather than

wrote.

VP

S

VP

VP

SBAR

unless the agency …

NP

the RTC to …

VB

restrict

TO

to

VBZ

intends

(a) Parser output

VP

SBAR

unless the agency …

S

VP

VP

NP

the RTC to …

VB

restrict

TO

to

VBZ

intends

(b) Gold parse

Figure 2.4: Clause Attachment unless the agency receives specific

congressional authorization is attaching too low.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 15

NP

VP

using fetal tissue

PP

NP

NN

research

IN

of

NP

federal financing

(a) Parser output

NP

PP

NP

VP

using fetal tissue

NP

NN

research

IN

of

NP

federal financing

(b) Gold parse

Figure 2.5: VP Attachment using fetal tissue should modify research, not financing.

VP Attachment (Figure 2.5)

When the correction involves moving a VP, e.g.,

(NP (NP federal financing) (PP of research) (VP using fetal tissue))

where the VP should modify research, not financing.

Adverb and Adjective Modifier Attachment (Figure 2.6)

Cases involving incorrectly placed adjectives and adverbs, including errors corrected by mode

movement and errors requiring only creation of a node, e.g.,

(NP (ADVP even more) severe setbacks)

where there should be an extra ADVP node over even more severe.

Unary (Figure 2.7)

Mistakes involving unary productions that are not linked to a nearby error such as a matching extra

or missing node, e.g.,

(SINV (VP following) is a breakdown of major market activity)

where the VP should have an S above it. In this particular example we can see how not modeling

traces may be hurting performance–the S is intended to span both the VP and a null NP that is

co-indexed with a breakdown of major market activity.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

1
6

VP

ADVP

ahead of time

S

VP

VP

PP

about it

VB

think

TO

to

VBD

had

(a) Parser output

VP

S

VP

VP

ADVP

ahead of time

PP

about it

VB

think

TO

to

VBD

had

(b) Gold parse

Figure 2.6: Adverb and Adjective Modi-

fier Attachment ahead of time is too high, it

should modify think, not had.

SINV

NP

PP

of major market activity

NP

a breakdown

VBZ

is

VP

VBG

Following

(a) Parser output

SINV

NP

NP

PP

of major market activity

NP

a breakdown

VBZ

is

S

VP

VBG

Following

(b) Gold parse

SINV

NP-SBJ-1

NP

PP

of major market activity

NP

a breakdown

VBZ

is

S-ADV

VP

VBG

Following

NP-SBJ

-NONE-

*-1

(c) Gold parse with traces and function tags

Figure 2.7: TwoUnary errors: a missing S and a missing NP. The third parse

is the PTB parse before traces and function tags are removed, included here

to show the distinction between the two NPs in the production.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 17

PP

ADVP

RB

ago

NNS

years

CD

two

IN

Unlike

(a) Parser output

PP

NP

RB

ago

NNS

years

CD

two

IN

Unlike

(b) Gold parse

Figure 2.8: Different Label two

years ago should be an NP rather than

an ADVP.

NP

NN

company

ADJP

JJ

US-based

DT

a

(a) Missing node in parser output

PP

NP

10 am

IN

after

ADVP

RB

Shortly

(b) Extra node in parser output

Figure 2.9: SingleWord Phrase Two examples, one

in which the parser missed a node spanning a single

word, and one in which it had an extra node.

Different label (Figure 2.8)

In many cases a node is present in the parse that spans the correct set of words, but has the wrong

label, in which case we group the two node errors, (one extra, one missing), as a single error, e.g.,

(PP Unlike (ADVP two years ago))

where the ADVP should be an NP.

Single word phrase (Figure 2.9)

Node errors that span a single word, e.g.,

(PP (ADVP Shortly) after 10 a.m.)

where the ADVP should not be present. We include checks to ensure this is not linked to another

error, such as one part of a set of internal noun phrase errors.

Parenthetical Attachment (Figure 2.10)

When a parenthetical node modifies at the wrong level, e.g.,

(NP other forms (PP of (NP housing (PRN (such as low-income)))))

where the parenthetical should be higher.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

1
8

NP

PP

NP

PRN

(such as low-income)

NP

NN

housing

IN

of

NP

other forms

(a) Parser output

NP

PRN

(such as low-income)

PP

NP

NN

housing

IN

of

NP

other forms

(b) Gold parse

Figure 2.10: Parenthetical Attachment The parenthetical

should be higher.

S

…,NP

one official

VP

VBZ

explains

,ADVP

RB

Moreover

(a) Parser output

S

…PRN

SINV

,NP

one official

VP

VBZ

explains

,

ADVP

RB

Moreover

(b) Gold parse

Figure 2.11: Missing Parenthetical , explains one official,

should be a parenthetical.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 19

PP

NP

NNS

months

CD

siz

IN

about

IN

Within

(a) Parser output

PP

NP

NNS

months

QP

CD

siz

IN

about

IN

Within

(b) Gold parse

Figure 2.12: NP Internal Structure about six should form a QP.

Missing Parenthetical (Figure 2.11)

When a parenthetical is entirely missing, e.g.,

(S Moreover, explains one official, …)

where there should be a PRN around , explains one official,.

NP Internal Structure (Figure 2.12)

While most NP structure is not annotated in the PTB, there is some use of ADJP, NX, NAC and

QP nodes. We form a single group for each NP that has one or more errors involving these types

of nodes, e.g.,

(PP Within (NP about six months))

should have a QP over about six.

Other There is a long tail of other errors. Some could be placed within the categories above, but

would require far more specific rules.

Working from only a raw list of node errors in a parse, it would be difficult to determine errors

like those described above. Even for error types that can be measured by counting node errors

or rule production errors, our approach has the advantage that we identify groups of errors with a

single cause. For example, what appears as a missing unary production may correspond to an extra

bracket that contains a node that attached incorrectly. By grouping node errors and classifying each

group as a single mistake, we are able to more precisely characterize the mistakes a parser makes.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 20

System P R F Exact Speed

Enhanced Training / Systems

Charniak S & R (SR) 92.44 91.70 92.07 44.87 1.8

Charniak Re-ranking (R) 91.78 91.04 91.41 44.04 1.8

Charniak Self-trained (S) 91.16 90.89 91.02 40.77 1.8

Standard Parsers

Berkeley 90.30 89.81 90.06 36.59 4.2

Charniak 89.88 89.55 89.71 37.25 1.8

SSN 89.96 88.89 89.42 32.74 1.8

BUBS 88.57 88.43 88.50 31.62 27.6

Bikel 88.23 88.10 88.16 32.33 0.8

Collins-3 87.82 87.50 87.66 32.22 2.0

Collins-2 87.77 87.48 87.62 32.51 2.2

Collins-1 87.29 86.90 87.09 30.35 3.3

Stanford Lexicalized (L) 86.35 86.49 86.42 27.65 0.7

Stanford Unlexicalized (U) 86.48 85.09 85.78 28.35 2.7

Table 2.1: PARSEVAL results on WSJ section 23 for the parsers we consider. The columns are

precision, recall, F-score, exact sentence match, and speed (sentences / sec). Coverage was left out

as it was above 99.8% for all parsers.

2.2 Results

We used sections 00 and 24 of the WSJ section of the PTB as development data while constructing

the transformation and error group classification methods. All of our examples in text come from

these sections as well, but for all tables of results we ran our system on section 23. We chose to run

our analysis on section 23 as it is the only section we are sure was not used in the development of

any of the parsers, either for tuning or feature development. Our evaluation is entirely focused on

the errors of the parsers, so unless there is a particular construction that is unusually prevalent in

section 23, we are not revealing any information about the test set that could bias future work.

Our evaluation is over a wide range of PTB constituency parsers and their variants from the past

twenty years. For all parsers we used the publicly available version, with the standard parameter

settings.

Berkeley (Petrov, Barrett, et al. 2006; Petrov and Klein 2007). An unlexicalised parser with a

grammar constructed with automatic state splitting.

Bikel (2004) Implementation of Collins (1997).



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 21

BUBS (Bodenstab et al. 2011; Dunlop et al. 2011). A ‘grammar-agnostic constituent parser,’

which uses a Berkeley Parser grammar, but parses with various pruning techniques to improve

speed, at the cost of accuracy.

Charniak (2000) A generative parser with a maximum entropy-inspired model. We also use the

reranker (-R; Charniak and Johnson 2005), and the self-trained model (-S; McClosky et al. 2006a).

Collins (1997) A generative lexicalized parser, with three models, a base model, a model that

uses subcategorization frames for head words, and a model that takes into account traces.

SSN (Henderson 2003, 2004) A statistical left-corner parser, with probabilities estimated by a

neural network.

Stanford (Klein and Manning 2003a,b) We consider both the unlexicalised PCFG parser (-U)

and the lexicalized factored parser (-L), which combines the PCFG parser with a lexicalized depen-

dency parser.

Table 2.1 shows the standard performance metrics, measured on section 23 of the WSJ, using

all sentences. Speeds were measured using a Quad-Core Xeon CPU (2.33GHz 4MB L2 cache)

with 16GB of RAM. These results clearly show the variation in parsing performance, but they do

not show which constructions are the source of those variations.

Our system enables us to answer questions about parser behavior that could previously only

be probed indirectly. We demonstrate its usefulness by applying it to a range of parsers (here), to

reranked K-best lists of various lengths (§ 2.2.1), and to output for out-of-domain parsing (§ 2.2.2).

First, in Table 2.2, we focus on a detailed error breakdown for the best system we consider,

the Charniak parser with a self-trained model and with reranking of the top fifty candidate parses

produced by the parser (Charniak 2000; Charniak and Johnson 2005; McClosky et al. 2006a). For

each of our error types, the table shows how many times it occurred in the 2,416 sentences in WSJ

section 23 of the PTB (Occurrences), the total number of nodes involved in the groups that were

classified as each error type (Nodes Involved), and the ratio between the two (Nodes / Occurrences).

The ratios show that some errors typically cause only a single node error, where as others, such

as coordination, generally cause several. This means that considering counts of error groups would

over-emphasize some error types, e.g., single word phrase errors are second most important by

number of groups, but seventh by total number of node errors (not counting ‘Unclassified’, which

corresponds to many different errors).

In Table 2.3 we consider the breakdown of parser errors on WSJ section 23. The shaded area of

each bar indicates the frequency of parse errors (i.e., empty means fewest errors). The area filled

in is determined by the average number of node errors per sentence that are attributed to that type

of error. The average number of node errors per sentence for a completely full bar is indicated

by the bottom row (Worst), and the value for a completely empty bar is indicated by the top row



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 22

Nodes

Error Type Occurrences Involved Ratio

PP Attachment 846 1455 1.7

Single Word Phrase 490 490 1.0

Clause Attachment 385 913 2.4

Adverb and Adjective Modifier Attachment 383 599 1.6

Different Label 377 754 2.0

Unary 347 349 1.0

NP Attachment 321 597 1.9

NP Internal Structure 299 352 1.2

Coordination 209 557 2.7

Unary Clause Label 185 200 1.1

VP Attachment 64 159 2.5

Parenthetical Attachment 31 74 2.4

Missing Parenthetical 12 17 1.4

Unclassified 655 734 1.1

Table 2.2: Breakdown of errors on section 23 for the Charniak parser with self-trained model and

reranker. Errors are sorted by the number of times they occur. Ratio is the average number of node

errors caused by each error we identify (i.e., Nodes Involved / Occurrences).

(Best). We use counts of node errors to make the contributions of each error type to F-score more

interpretable.

As expected, PP attachment is the largest contributor to errors, across all parsers. Coordination

is surprisingly low on the list (6th) given how significant the problem is considered in the commu-

nity (McClosky et al. 2006b). This appears to indicate that parsers are better at coordination than

at PP attachment, but the raw counts do not take into consideration the relative frequency of the

two decisions. We can get a sense of how frequent these decisions are by counting CCs and PPs in

sections 02–21 of the treebank: 16,844 and 95,581 respectively. These counts are only an indicator

of the number of decisions as the nodes can be used in ways that do not involve a decision. Taking

into consideration the 6:1 ratio of decisions, the 4:1 ratio of errors is less surprising, and instead

supports the belief that coordination scope ambiguity is very difficult. However, it does appear that

improvements in coordination accuracy will have a limited impact on our performance metrics.

One surprisingly common error involves unary productions. Looking at the breakdown by unary

type we found that clause labeling (S, SINV, etc) accounted for a large proportion of the errors.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

2
3

PP Clause Diff Mod NP 1-Word NP

Parser F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.60 0.38 0.31 0.25 0.25 0.23 0.20 0.14 0.14 0.50

Charniak-RS 92.07

Charniak-R 91.41

Charniak-S 91.02

Berkeley 90.06

Charniak 89.71

SSN 89.42

BUBS 88.63

Bikel 88.16

Collins-3 87.66

Collins-2 87.62

Collins-1 87.09

Stanford-L 86.42

Stanford-U 85.78

Worst 1.12 0.61 0.51 0.39 0.45 0.40 0.42 0.27 0.27 1.13

Table 2.3: Average number of bracket errors per sentence due to the top ten error types. For instance, Stanford-U produces

output that has, on average, 1.12 bracket errors per sentence that are due to PP attachment. The scale for each column is indicated

by the Best and Worst values.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 24

By comparing the performance of the three Collins parsers, which were released in 1997, with

more recent systems we can see where performance has and has not changed over the past fifteen

years. There has been improvement across the board, but in some cases, e.g., clause attachment

errors and different label errors, the change has been more limited (24% and 29% reductions re-

spectively). It is difficult to know why these ambiguities are more difficult, but three possibilities

are: (1) annotation errors may be more prevalent, making the potential for improvement vary, (2)

they pose fundamental difficulties for the community’s overall approach to parsing, (3) there may

be biases in our automatic classification scheme. We investigated the breakdown of the different

label errors by label, but no particular cases of label confusion stand out, and we found that the

most common cases remained the same between Collins and the top results. Overall, it seems that

these error types may have been unintentionally neglected in research and could be a productive

area for future investigation.

It is also interesting to compare pairs of parsers that share aspects of their architecture. One

such pair is the Stanford parser, where the factored parser combines the unlexicalised parser with

a lexicalized dependency parser. The main sources of the 0.64 gain in F-score are PP attachment

and coordination.

Another interesting pair is the Berkeley parser and the BUBS parser, which uses a Berkeley

grammar, but improves speed by pruning. The pruning methods used in BUBS are particularly

damaging for PP attachment errors and unary errors.

Various comparisons can be made between Charniak parser variants (Charniak, Charniak-S,

Charniak-R, and Charniak-RS). We discuss the reranker below (-R). For the self-trained model

(Charniak-S), McClosky et al. (2006a) performed some error analysis, considering variations in

F-score depending on the frequency of tags such as PP, IN and CC in sentences. Here we see gains

on all error types, though particularly for clause attachment, modifier attachment and coordination,

which fits with their observations.

2.2.1 Reranking

The standard dynamic programming approach to parsing limits the range of features that can be

employed. One way to deal with this issue is to use a two-stage process. First, a modified version

of the parser produces the top K parses (rather than just the 1-best). Then, a model with more

sophisticated features chooses the best parse from the K-best list (Collins 2000). While re-ranking

has led to gains in overall performance (Charniak and Johnson 2005), there has been limited analysis

of how effectively rerankers are using the list of parses they are ranking. Recent work has explored

this question in more depth, but focusing on how variation in inference and model parameters

impacts performance on standard metrics (Huang 2008; Ng, Honnibal, et al. 2010; Auli and Lopez

2011; Ng and Curran 2012). We will explore the question from the perspective of observed errors,

considering the potential for improvement using only the n-best list of parses, and how many errors

a re-ranker actually avoids.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

2
5

PP Clause Diff Mod NP 1-Word NP

System K F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.08 0.04 0.08 0.05 0.06 0.04 0.08 0.04 0.04 0.11

1000 98.30

100 97.54

50 97.18

Oracle 20 96.40

10 95.66

5 94.61

2 92.59

1000 92.07

100 92.08

50 92.07

Charniak 20 92.05

10 92.16

5 91.94

2 91.56

1 91.02

Worst 0.66 0.43 0.33 0.26 0.28 0.26 0.23 0.16 0.19 0.60

Table 2.4: Average number of bracket errors per sentence for a range of K-best list lengths using the Charniak parser with

reranking and the self-trained model. The oracle results are determined by taking the parse in each K-best list with the highest

F-score.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 26

In Table 2.4 we present a breakdown over error types for the Charniak parser, using the self-

trained model and reranker. For both the top half and bottom half of the table, we first used the

Charniak parser to create K-best lists of varying length (indicated by the K column). In the top

half, we chose the parse from the list that has the highest F-score (this is an oracle because to do it

we use the correct answer, which we have for this data)1. In the bottom half, we let the Charniak

and Johnson (2005) reranker select the parse from the list, with no gold information. The table has

the same columns as Table 2.3, but the ranges on the bars now reflect the min and max for these

sets.

While there is improvement on all errors when using the reranker, there is very little additional

gain beyond the first 5-10 parses (this may be easier to see by rotating the page containing the ta-

ble). Even for the oracle results, most of the improvement occurs within the first 5-10 parses. The

limited utility of extra parses for the reranker may be due to the importance of the base parser output

probability feature (which, by definition, decreases within the K-best list). Another possibility is

that there is less useful variation further down the K-best list. The utility is higher for the oracle,

but we do not see greater improvement further down the list because those parses will be combina-

tions of a set of variations in the parse that change the model probability only slightly, rather than

providing useful variation.

Interestingly, the oracle performance considerably improves across all error types, even at the

2-best level. This indicates that the base parser model is not particularly biased against particular

error types, as if it were we would expect that fixing it would require going further down the list of

parses given as options. Focusing on the rows for K = 2 we can also see two interesting outliers.

The PP attachment improvement of the oracle is considerably higher than that of the reranker,

particularly compared to the differences for other errors, suggesting that the reranker lacks the

features necessary to make the decision better than the parser. The other interesting outlier is NP

internal structure, which continues to make improvements for longer lists, unlike the other error

types.

2.2.2 Out-of-Domain

Parsing performance drops considerably when shifting outside of the domain a parser was trained

on (Gildea 2001). Previously, Clegg and Shepherd (2005) evaluated parsers qualitatively on node

types and rule productions, while Bender et al. (2011) designed a Wikipedia test set to evaluate

parsers on dependencies representing ten specific linguistic phenomena.

To provide a deeper understanding of the errors arising when parsing outside of the newswire

domain, we analyze performance of the Charniak parser with reranker and self-trained model on

the eight parts of the Brown corpus (Marcus et al. 1993), and two parts of the Google Web corpus

(Petrov and McDonald 2012). Table 2.5 shows statistics for the corpora. The variation in average

sentence lengths skew the results for errors per sentence. To handle this we divide by the number of

1 This result is not the absolute best possible result, as F-score does not factor over sentences and so it may be

better to make slightly different choices. However, this is a close approximation.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 27

Corpus Description Sentences Av. Length

WSJ 23 Newswire 2416 23.5

Brown F Popular 3164 23.4

Brown G Biographies 3279 25.5

Brown K General 3881 17.2

Brown L Mystery 3714 15.7

Brown M Science 881 16.6

Brown N Adventure 4415 16.0

Brown P Romance 3942 17.4

Brown R Humor 967 22.7

Google Web Blogs 1016 23.6

Google Web E-mail 2450 11.9

Table 2.5: Variation in size and contents of the domains we consider. The variation in average

sentence lengths skews the results for errors per sentences, and so in Table 2.6 we consider errors

per word.

words to determine the results in Table 2.6, rather than by the number of sentences, as in previous

figures.

There are several interesting features in the table. First, on the Brown datasets, while the general

trend is towards worse performance on all errors, NP internal structure is a notable exception and

in some cases PP attachment and unaries are as well.

In the other errors we see similar patterns across the corpora, except humor (Brown R), on

which the parser is particularly bad at coordination and clause attachment. This makes sense, as

the colloquial nature of the text includes more unusual uses of conjunctions, for example here no

mistake is a phrase that is unlikely to be in the WSJ, and if it were, would probably be preceded by

a verb like make:

She was a living doll and no mistake – the ...

Comparing the Brown corpora and the Google Web corpora, there are much larger divergences.

We see a particularly large decrease in NP internal structure. Looking at some of the instances of

this error, it appears to be largely caused by incorrect handling of structures such as URLs and

phone numbers, which do not appear in the PTB2. There are also some more difficult cases, for

example:

... going up for sale in the next month or do .

where or do is a QP. The typographical error of do instead of two is extremely difficult to handle

for a parser trained only on well-formed text.

2The corpus contains articles from 1989, pre-dating public internet access.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

2
8

PP Clause Diff Mod NP 1-Word NP

Corpus F-score Attach Attach Label Attach Attach Co-ord Span Unary aInt.a Other

Best 0.022 0.016 0.013 0.011 0.011 0.010 0.009 0.006 0.005 0.021

WSJ 23 92.07

Brown-F 85.91

Brown-G 84.56

Brown-K 84.09

Brown-L 83.95

Brown-M 84.65

Brown-N 85.20

Brown-P 84.09

Brown-R 83.60

Google Web Blogs 84.15

Google Web Email 81.18

Worst 0.040 0.035 0.053 0.020 0.034 0.023 0.046 0.009 0.029 0.073

Table 2.6: Average number of node errors per word for a range of domains using the Charniak parser with reranking and the

self-trained model. We use per word error rates here rather than per sentence as there is great variation in average sentence

length across the domains, skewing the per sentence results.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 29

For e-mail there is a substantial drop on single word phrases. Breaking the errors down by

label we found that the majority of the new errors are missing or extra NPs over single words. Here

the main problem appears to be temporal expressions, though there also appear to be a substantial

number of errors that are also at the POS level, such as when NNP is assigned to ta in this case:

... let you know that I ’m out ta here !

Some of these issues, such as URL handling, could be resolved with suitable training data.

Other issues, such as ungrammatical language and unconventional use of words, pose a greater

challenge.

2.3 Chinese Parsing

Aspects of Chinese syntax result in a distinctive mix of parsing challenges. However, the contri-

bution of individual sources of error to overall difficulty is not well understood. We conduct a

comprehensive automatic analysis of error types made by Chinese parsers, covering a broad range

of error types for large sets of sentences, enabling the first empirical ranking of Chinese error types

by their performance impact. To accommodate error classes that are absent in English, we augment

the system to recognize Chinese-specific parse errors. To understand the impact of part-of-speech

tagging errors on different error types, we also performed a part-of-speech ablation experiment, in

which particular confusions are introduced in isolation. By analyzing the distribution of errors in

the system output with and without gold part-of-speech tags, we are able to isolate and quantify the

error types that can be resolved by improvements in POS tagging accuracy. Our analysis shows

that improvements in tagging accuracy can only address a subset of the challenges of Chinese syn-

tax. Further improvement in Chinese parsing performance will require research addressing other

challenges, in particular, determining coordination scope.

2.3.1 Background

A decade of Chinese parsing research, enabled by the Penn Chinese Treebank (PCTB; Xue et al.

2005), has seen Chinese parsing performance improve from 76.7 F1 (Bikel and Chiang 2000) to

84.1 F1 (Qian and Liu 2012). While recent advances have focused on understanding and reducing

the errors that occur in segmentation and part-of-speech tagging (Forst and Fang 2009; Jiang et al.

2009; Qian and Liu 2012), a range of substantial issues remain that are purely syntactic.

The closest previous work is the detailed manual analysis performed by Levy and Manning

(2003). While their focus was on issues faced by their factored PCFG parser (Klein and Manning

2003b), the error types they identified are general issues presented by Chinese syntax in the PCTB.

They presented several Chinese error types that are rare or absent in English, including noun/verb

ambiguity, NP-internal structure and coordination ambiguity due to pro-drop. They attributed some

of these differences to treebank annotation decisions and others to meaningful differences in syn-

tax, suggesting that closing the English-Chinese parsing gap demands techniques beyond those

currently used for English. Based on this analysis they considered how to modify their parser to



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 30

capture the information necessary to model the syntax within the PCTB. However, as noted in their

final section, their manual analysis of parse errors in one hundred sentences only covered a portion

of a single parser’s output, limiting the conclusions they could reach regarding the distribution of

errors in Chinese parsing.

2.3.2 Adapting Error Analysis to Chinese

Our analysis builds on the system described in Sections 2.1.2 and 2.1.1, which finds the shortest

path from the system output to the gold annotations, then classifies each transformation step into

one of several error types. When directly applied to Chinese parser output, the system placed over

27% of the errors in the catch-all ‘Other’ type. Many of these errors clearly fall into one of a small

set of error types, motivating an adaptation to Chinese syntax.

To adapt the system to Chinese, we developed a new version of the second stage of the system,

which assigns an error category to each transformation step.

To characterize the errors the original system placed in the ‘Other’ category, we looked through

one hundred sentences, identifying error types generated by Chinese syntax that the existing sys-

tem did not account for. With these observations we were able to implement new rules to catch

the previously missed cases, leading to the set shown in Table 2.7. To ensure the accuracy of our

classifications, we alternated between refining the classification code and looking at affected clas-

sifications to identify issues. We also periodically changed the sentences from the development set

we manually checked, to avoid over-fitting.

Where necessary, we also expanded the information available during classification. For exam-

ple, we use the structure of the final gold standard parse when classifying errors that are a byproduct

of sense disambiguation errors.

2.3.3 Chinese Parsing Errors

Table 2.7 presents the errors made by the Berkeley parser. Below we describe the error types that

are either new in this analysis, have had their definition altered, or have an interesting distribution.

In all of our results we follow the same approach as earlier, presenting the number of bracket

errors (missing or extra) attributed to each error type. As discussed in Section 2.2, for the purpose

of understanding the cause of the remaining performance gap, bracket counts are more informative

than a direct count of each error type, because the impact on PARSEVAL F-score varies between

errors, e.g., a single attachment error can cause 20 bracket errors, while a unary error causes only

one.

NP-Internal Structure (Figure 2.13)

The PCTB annotates more NP-internal structure than the PTB. We assign this error type when a

transformation involves words whose parts of speech in the gold parse are one of: CC, CD, DEG,

ETC, JJ, NN, NR, NT and OD.

We investigated the errors that fall into the NP-internal category and found that 49% of the errors

involved the creation or deletion of a single pre-terminal phrasal bracket. These errors arise when a



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 31

Error Type Brackets % of total

NP-internal structure* 6019 22.70%

Coordination 2781 10.49%

Verb taking wrong args* 2310 8.71%

Unary 2262 8.53%

Adverb and adjective modifier attachment 1900 7.17%

One word span 1560 5.88%

Different label 1418 5.35%

Unary A-over-A 1208 4.56%

Wrong sense/bad attachment* 1018 3.84%

Noun boundary error* 685 2.58%

VP attachment 626 2.36%

Clause attachment 542 2.04%

PP attachment 514 1.94%

Split verb compound* 232 0.88%

Scope error* 143 0.54%

NP attachment 109 0.41%

Other 3186 12.02%

Table 2.7: Errors made when parsing Chinese. Values are the number of bracket errors attributed

to that error type. The values shown are for the Berkeley parser, evaluated on the development set.

* indicates error types that were added or substantially changed as part of the adaptation to Chinese.

parser proposes a parse in which POS tags (for instance, JJ or NN) occur as siblings of phrasal tags

(such as NP), a configuration used by the PCTB bracketing guidelines to indicate complementation

as opposed to adjunction (Xue et al. 2005).

Adverb and Adjective Modifier Attachment (Figure 2.14)

Incorrect modifier scope caused by modifier phrase attachment level. This is less frequent in Chi-

nese than in English: while English VP modifiers occur in pre- and post-verbal positions, Chinese

only allows pre-verbal modification.

Wrong Sense / Bad Attachment (Figure 2.15)

This applies when the head word of a phrase receives the wrong POS, leading to an attachment

error. This error type is common in Chinese because of POS fluidity, e.g., the well-known Chinese

verb/noun ambiguity often causes mis-attachments that are classified as this error type.

In Figure 2.15, the word投资 invest has both noun and verb senses. While the gold standard

interpretation is the relative clause firms that Macau invests in, the parser returned an NP interpre-

tation Macau investment firms.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 32

NP

NP

NN

教练
coach

NP

NP

NN

⼥⾜
soccer

NP

NN

国家
national

(a) Parser output

NP

NN

教练
coach

NN

⼥⾜
soccer

NN

国家
national

(b) Gold parse

Figure 2.13: NP Internal Structure This

should be a flat structure.

VP

QP

VP

夺得⾦牌
win gold

QP

第三次
third time

ADVP

连续
in a row

(a) Parser output

VP

VP

夺得⾦牌
win gold

QP

QP

第三次
third time

ADVP

连续
in a row

(b) Gold parse

Figure 2.14: Modifier Attachment 连续 in a

row should modify only第三次 third time.

Verb taking wrong args (Figure 2.16)

This error type arises when a verb (e.g.,扭转 reverse) is hypothesized to take an incorrect argu-

ment (布什 Bush instead of地位 position). Note that this also covers some of the errors that were

classified as NP Attachment for English, changing the distribution for that type.

Unary

For mis-application of unary rules we separate out instances in which the two brackets in the pro-

duction have the the same label (A-over-A). This case is created when traces are eliminated, a

standard step in evaluation. More than a third of unary errors made by the Berkeley parser are of

the A-over-A type. This can be attributed to two factors: (i) the PCTB annotates non-local depen-

dencies using traces, and (ii) Chinese syntax generates more traces than English syntax, such as

pro-drop, the omission of arguments where the referent is recoverable from discourse (Guo et al.

2007). However, for parsers that do not return traces they are a benign error.

Noun boundary error

In this error type, a span is moved to a position where the POS tags of its new siblings all belong to



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 33

NP

NP

NP

企业
firm

NP

投资
invest

NP

澳⻔
Macau

(a) Parser output

CP

NP

企业
firm

IP

VP

投资
invest

NP

澳⻔
Macau

(b) Gold parse

Figure 2.15: Sense Confusion By treating

投资 invest as a noun, the parser forms an

NP about a type of firm, rather than a clause

about action by Macau.

CP

NP

地位
position

IP

DEC

的

VP

NP

布什
Bush

VV

扭转
reverse

(a) Parser output

VP

NP

NP

地位
position

DNP

DEG

的

NP

布什
Bush

VV

扭转
reverse

(b) Gold parse

Figure 2.16: Verb Taking Wrong Arguments

The verb takes the argument布什 Bush too early,

before it has been bound with地位 position.

the list of NP-internal structure tags which we identified above, reflecting the inclusion of additional

material into an NP.

Split verb compound

The PCTB annotations recognize several Chinese verb compounding strategies, such as the serial

verb construction (规划建设 plan [and] build) and the resultative construction (煮熟 cook [until] done),

which join a bare verb to another lexical item. We introduce an error type specific to Chinese, in

which such verb compounds are split, with the two halves of the compound placed in different

phrases.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 34

Scope error

These are cases in which a new span must be added to more closely bind a modifier phrase (ADVP,

ADJP, and PP), e.g.,

(IP (ADVP仅 Only) (NP去年 last year,) (NP中国银⾏ Bank of China) …),

where the ADVP should modify the first NP only, which can be indicated by adding an NP to form

(NP (ADVP仅 Only) (NP去年 last year)).

PP attachment

This error type is rare in Chinese, as adjunct PPs are pre-verbal. It does occur near coordinated

VPs, where ambiguity arises about which of the conjuncts the PP has scope over. Whether this

particular case is PP attachment or coordination is debatable; we follow the approach above and

label it PP attachment.

2.3.4 Chinese-English Comparison

It is difficult to directly compare error analysis results for Chinese and English parsing because of

substantial changes in the classification method, and differences in treebank annotations.

As described in the previous section, the set of error categories considered for Chinese is very

different to the set of categories for English. Even for some of the categories that were not substan-

tially changed, errors may be classified differently because of cross-over between two categories

(e.g., between Verb Taking Wrong Arguments and NP Attachment).

Differences in treebank annotations also present a challenge for cross-language error compari-

son. The most common error type in Chinese, NP-internal structure, is rare in the English results,

but the datasets are not comparable because the PTB has much more limited NP-internal structure

annotated than the PCTB. Further characterization of the impact of annotation differences on errors

is beyond the scope of this work.

Three conclusions that can be made are that (i) coordination is a more common issue in Chinese,

but remains difficult in both languages, (ii) PP attachment is a much greater problem in English,

and (iii) substantial challenges are posed by the higher frequency of syntactic structures generating

traces and null-elements in Chinese compared to English.

2.3.5 Cross-Parser Analysis

Table 2.7 showed the error types and their distribution for a single Chinese parser. Here we confirm

that these are general trends, by showing that the same pattern is observed for several different

parsers on the PCTB 6 dev set.3 We include results for a range of parsers:

ZPAR (Y. Zhang and Clark 2009). A transition-based parser.

3 We use the standard data split suggested by the PCTB 6 file manifest. As a result, our results differ from those

previously reported on other splits.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 35

Berkeley (Petrov, Barrett, et al. 2006; Petrov and Klein 2007). The same unlexicalised split-

merge parser described in Section 2.2, but trained on Chinese instead of English. Here we also

consider the product-parser version, which uses the same algorithm, but scoring with the product of

multiple grammars trained with different random seeds (Petrov 2010). This variation leads to mod-

els that are different enough to combine productively similarly to system combination approaches.

We label the product parser as Berk-2, as opposed to Berk-1.

Bikel (Bikel and Chiang 2000). A lexicalized parser.

Stanford (Klein and Manning 2003a,b; Levy and Manning 2003). The same parsers described

in Section 2.2, but trained on Chinese instead of English.

These parsers represent a variety of parsing methods, though exclude some recently developed

parsers that are not publicly available (Xiong et al. 2005; Qian and Liu 2012).

Comparing the two Stanford parsers in Table 2.8, the factored model provides clear improve-

ments on sense disambiguation, but performs slightly worse on coordination.

We run the Berkeley product parser with only two grammars because we found, in contrast

to the English results (Petrov 2010), that further grammars provided limited benefits. Comparing

its performance with the standard Berkeley parser, it seems that the diversity in the grammars only

assists certain error types. Most of the improvement in score is due to reductions in four categories:

NP Internal Structure, Verb Arguments, Modifier Attachment, and Clause Attachment. Meanwhile,

there is no improvement in two categories (Unary and Wrong Sense), and a slight decrease in three

(One-Word Spans, Different Label, VP Attachment). It is difficult to confidently say why some

errors are reduced and others are not, but it does imply that there are systematic biases that cannot

be avoided by training slightly different models.



C
H
A
P
T
E
R
2
.
A
U
T
O
M
A
T
IC

E
R
R
O
R
A
N
A
L
Y
S
IS

3
6

NP Verb Mod. 1-Word Diff Wrong Noun VP Clause PP

System F1 Int. Coord Args Unary Attach Span Label Sense Edge Attach Attach Attach Other

Best 1.54 1.25 1.01 0.76 0.72 0.21 0.30 0.05 0.21 0.26 0.22 0.18 1.87

Berk-G 86.8

Berk-2 81.8

Berk-1 81.1

ZPAR 78.1

Bikel 76.1

Stan-L 76.0

Stan-U 70.0

Worst 3.94 1.75 1.73 1.48 1.68 1.06 1.02 0.88 0.55 0.50 0.44 0.44 4.11

Table 2.8: Error breakdown for the development set of PCTB 6. The area filled in for each bar indicates the average number

of bracket errors per sentence attributed to that error type, where an empty bar is no errors and a full bar has the value indicated

in the bottom row. The parsers are: the Berkeley parser with gold POS tags as input (Berk-G), the Berkeley parser (Berk-1;

Petrov, Barrett, et al. 2006; Petrov and Klein 2007), the Berkeley product parser with two grammars (Berk-2; Petrov 2010),

ZPAR Y. Zhang and Clark (2009), the Bikel parser (Bikel and Chiang 2000), the Stanford Factored parser (Stan-L; Klein and

Manning 2003b; Levy and Manning 2003), and the Stanford Unlexicalized PCFG parser (Stan-U; Klein and Manning 2003a).



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 37

Confused tags Errors ∆ F1

VV NN 1055 -2.72

DEC DEG 526 -1.72

JJ NN 297 -0.57

NR NN 320 -0.05

Table 2.9: The most frequently confused POS tag pairs. Each ∆ F1 is relative to Berk-G.

2.3.6 Tagging Error Impact

The challenge of accurate POS tagging in Chinese has been a major part of several recent papers

(Forst and Fang 2009; Jiang et al. 2009; Qian and Liu 2012). The Berk-G row of Table 2.8 shows

the performance of the Berkeley parser when given gold POS tags.4 While the F1 improvement is

unsurprising, for the first time we can clearly show that the gains are only in a subset of the error

types. In particular, tagging improvement will not help for two of the most significant challenges:

coordination scope errors, and verb argument selection.

To see which tagging confusions contribute to which error reductions, we adapt the POS abla-

tion approach of Tse and Curran (2012). We consider the POS tag pairs shown in Table 2.9. To

isolate the effects of each confusion we start from the gold tags and introduce the output of the

Stanford tagger whenever it returns one of the two tags being considered.5 We then feed these

“semi-gold” tags to the Berkeley parser, and run the fine-grained error analysis on its output.

VV/NN This confusion has been consistently shown to be a major contributor to parsing errors

(Levy and Manning 2003; Qian and Liu 2012; Tse and Curran 2012), and we find a drop of over

2.7 F1 when the output of the tagger is introduced. We found that while most error types have

contributions from a range of POS confusions, verb/noun confusion was responsible for virtually

all of the noun boundary errors corrected by using gold tags.

DEG/DEC This confusion between the relativizer and subordinator senses of the particle的 de

is the primary source of improvements on modifier attachment when using gold tags.

NR/NN and JJ/NN Despite their frequency, these confusions have little effect on parsing perfor-

mance. Even within the NP-internal error type their impact is limited, and almost all of the errors

do not change the logical form.

4We used the Berkeley parser as it was the best of the parsers we considered. Note that the Berkeley parser

occasionally prunes all of the parses that use the gold POS tags, and so returns the best available alternative. This leads

to a POS accuracy of 99.35%, which is still well above the parser’s standard POS accuracy of 93.66%.
5We introduce errors to gold tags, rather than removing errors from automatic tags, isolating the effect of a single

confusion by eliminating interaction between tagging decisions.



CHAPTER 2. AUTOMATIC ERROR ANALYSIS 38

2.4 Summary

The single F-score objective over brackets or dependencies obscures important differences between

statistical parsers. For instance, one or many mismatched brackets could be caused by a single

attachment error.

In Section 2.1, we presented a novel transformation-based methodology for evaluating parsers

that categorizes errors into linguistically meaningful types. Using this approach, we presented the

first detailed examination of the errors produced by a wide range of constituency parsers for English

and Chinese. We found that PP attachment and clause attachment are the most challenging construc-

tions in English, while coordination turns out to be less problematic than previously thought. We

also noted interesting variations in error types for parser variants.

We investigated the errors resolved in reranking, and introduced by changing domains. We

found that the Charniak reranker improved most error types, but made little headway on improving

PP attachment. Changing domain has an impact on all error types, except NP internal structure.

We also quantified the relative impacts of a comprehensive set of error types in Chinese parsing.

Our analysis has shown that while improvements in Chinese POS tagging can make a substantial

difference for some error types, it will not address two high-frequency error types: incorrect verb

argument attachment and coordination scope. The frequency of these two error types is also unim-

proved by the use of products of latent variable grammars. These observations suggest that resolv-

ing the core challenges of Chinese parsing will require new developments that suit the distinctive

properties of Chinese syntax.

We released our system so that future constituent parsers could be evaluated using our method-

ology (see Appendix A). Our analysis provides new insight into the development of parsers over

the past two decades, and the challenges that remain.



39

Chapter 3

Formalism Conversion

A preliminary version of this chapter appeared as Kummerfeld, Klein, et al. (2012).

In the previous chapter, we explored error analysis of PTB parser output, developing a new tool

and applying it to understand the mistakes systems make. However, not all parsers are designed

to produce PTB-style phrase structure parses; many have been developed for other grammar for-

malisms. In our effort to understand the relative performance of different parsers, we turned to the

task of automatic parse conversion to enable comparison of systems across formalisms.

In this chapter, we propose an improved, bottom-up method for converting one syntactic rep-

resentation, CCG, into another, PTB. In contrast with past work (Clark and Curran 2009), which

used simple rules based on category pairs, our approach follows the generalizations of CCG, assign-

ing richer rules to individual categories and defining general methods of combining them for each

of the CCG combinators. Our conversion preserves more sentences under round-trip conversion

(51.1% vs. 39.6%) and is more robust. In particular, unlike past methods, ours does not require

ad-hoc rules over non-local features, and so could be integrated into a parser.

3.1 Background

There has been extensive work on converting parser output for evaluation, e.g., Lin (1998) and

Briscoe et al. (2002) proposed using underlying dependencies for evaluation. There has also been

work on conversion to phrase structure, from dependencies (Xia and Palmer 2001; Xia, Rambow,

et al. 2009) and from lexicalized formalisms, e.g., HPSG (Matsuzaki and Tsujii 2008) and TAG

(Chiang 2000; Sarkar 2001). Our focus is on CCG to PTB conversion (Clark and Curran 2009).

3.1.1 Combinatory Categorial Grammar (CCG)

The lower half of Figure 3.1 shows a CCG derivation (Steedman 2000) in which each word is as-

signed a category, and combinatory rules are applied to adjacent categories until only one remains.

Categories can be atomic, e.g., the N assigned to magistrates, or complex functions of the form re-

sult / arg, where result and arg are categories and the slash indicates the argument’s directionality.



CHAPTER 3. FORMALISM CONVERSION 40

Italian

N/N
magistrates

N
labeled

((S[dcl]\NP )/NP )/NP
his

NP [nb]/N
death

N
a

NP [nb]/N
suicide

N

PRP$ NN DT NN

NP NP

SJJ NNS VBD

NP VP

S

N NP [nb] NP [nb]

NP (S[dcl]\NP )/NP

S[dcl]\NP

S[dcl]

Figure 3.1: An example of CCG and PTB parses with nodes covering crossing spans: his death a

suicide (PTB) and labeled his death (CCGbank).

Combinators define how adjacent categories can combine. Figure 3.1 uses function application,

where a complex category consumes an adjacent argument to form its result, e.g., S[dcl]\NP com-

bines with the NP to its left to form an S[dcl]. More powerful combinators allow categories to

combine with greater flexibility.

We cannot form a PTB tree by simply relabeling the categories in a CCG derivation for two rea-

sons. First, the mapping from categories to phrase labels is many-to-many, so it would be difficult

to determine the correct label (though other researchers have tried, as discussed in Section 3.1.3).

Second, there are some spans that occur only in the CCG derivation and others that occur only in

the PTB parse, e.g., in Figure 3.1 there is a node for his death a suicide in PTB but not CCG, and

vice versa for labeled his death. This second issue is particularly difficult because in some cases,

including the example given, the differing nodes in the two parses cover spans of the sentence that

cross1. These differences are the result of conscious decisions made in the construction of CCG-

bank, in many cases enabling the derivation to encode extra dependencies that are either implicit

or expressed via traces in the PTB.

1This means a local insertion or deletion of a node cannot make the necessary changes, there would have to be

several simultaneous changes to go from one structure to the other.



CHAPTER 3. FORMALISM CONVERSION 41

Categories Schema

N create an NP

((S[dcl]\NP )/NP )/NP create a VP

N/N + N place left under right

NP [nb]/N + N place left under right

((S[dcl]\NP )/NP )/NP + NP place right under left

(S[dcl]\NP )/NP + NP place right under left

NP + S[dcl]\NP place both under S

Table 3.1: Example C&C-Conv lexical and rule schemas.

3.1.2 Clark and Curran (2009)

Clark and Curran (ibid.), hereafter C&C-Conv, assign a schema to each leaf (lexical category) and

rule (pair of combining categories) in the CCG derivation. The PTB tree is constructed from the

CCG bottom-up, creating leaves with lexical schemas, then merging/adding sub-trees using rule

schemas at each step.

The schemas for Figure 3.1 are shown in Table 3.1. These apply to create NPs over magistrates,

death, and suicide, and a VP over labeled, and then combine the trees by placing one under the other

at each step, and finally create an S node at the root.

C&C-Conv has sparsity problems, requiring schemas for all valid pairs of categories — at a

minimum, the 2853 unique category combinations found in CCGbank. Clark and Curran (ibid.)

create schemas for only 776 of these, handling the remainder with approximate catch-all rules.

C&C-Conv only specifies one simple schema for each rule (pair of categories). This appears

reasonable at first, but frequently causes problems, e.g.,:

(N/N)/(N/N) + N/N
(1) “more than” + “30”

(2) “relatively” + “small”

Here either a QP bracket (1) or an ADJP bracket (2) should be created. Since both examples

involve the same rule schema, C&C-Conv would incorrectly process them in the same way. To

combat the most glaring errors, C&C-Conv manipulates the PTB tree with ad-hoc rules based on non-

local features over the CCG nodes being combined — an approach that cannot be easily integrated

into a parser.

These disadvantages are a consequence of failing to exploit the generalizations that CCG com-

binators define. We return to this example below to show how our approach does exploit those

generalizations and thereby handles both cases correctly.

3.1.3 X. Zhang et al. (2012)

X. Zhang et al. (ibid.) considered a statistical approach to conversion from CCG to PTB. Their

system works by classifying each step in the CCG derivation as either being a PTB node or being



CHAPTER 3. FORMALISM CONVERSION 42

((S\NP)/NP)/NP NP

f a

(S\NP)/NP

f a

VP

Figure 3.2: An example function application. Top row: CCG rule. Bottom row: applying instruc-

tion (VP f a).

Symbol Meaning Example Instruction

(X f a) Add an X bracket around functor and argument (VP f a)

{ } Flatten enclosed node (N f {a})

X* Use same label as argument or default to X (S* f {a})

fi Place subtrees (PP f0 (S f1..k a))

Table 3.2: Types of operations in instructions.

a dummy node, to be flattened in the final structure. This approach has the limitation that it cannot

handle sentences where the structure of the CCG derivation is missing nodes that exist in the struc-

ture of the PTB parse, such as the example in Figure 3.1. These cases account for 10% of sentences,

but the method is still fairly effective because they are able to recover most of the structure for such

sentences.

3.2 Our Approach

Our conversion assigns a set of instructions to each lexical category and defines generic operations

for each combinator that combine instructions. Figure 3.2 shows an example of a common form of

instruction (VP f a), which specifies three things:

• Create a new VP node, indicated by the VP and brackets

• Place the PTB parse for the functor under the new node, on the left, indicated by the position

of the f

• Place the PTB parse for the argument under the new node, on the right, indicated by the

position of the a

Table 3.2 shows all of the operators we define. For convenience, in this description we will

refer to the parses coming from the functor and argument as sub-parses. The first operator is the

one described above, though note that it can be more powerful, constructing any set of PTB nodes

indicated with standard bracket notation plus the two markers for the functor and argument. The



CHAPTER 3. FORMALISM CONVERSION 43

{ } operator indicates that a flattened version of that sub-parse should be placed, in the example in

the table the top node in the sub-parse for the argument would be deleted so its children are placed

instead. The * operator takes the label for the new node from the argument sub-parse, e.g., the result

of an S\S1 should correspond to the label of argument 1 (SINV, SBAR, etc, which all appear as S in

CCG). This is necessary because CCGbank uses additional annotations on categories to distinguish

cases that are assigned entirely different labels in the PTB. The final operator enables breaking up

children in a sub-parse and placing them at different locations in the structure being formed. This

only makes sense when creating multiple nodes, a PP and an S in the example, and uses subscripts

to indicate which sub-parse to place where. Finally, complex categories with multiple arguments

are assigned a list of instructions, one per argument.

The lists of rules are processed by following the CCG derivation, taking actions depending on

the type of combinator used:

Lexical Assignment The initial instruction list for a category is taken from our hand-annotated set.

Function Application The next rule in the functor’s list is

applied and any remaining rules in its list are retained as the

new rule set (any rules remaining in the list for the argument

are discarded).

X/Y Y ⇒ X

Y X\Y ⇒ X

Function Composition The unapplied instructions of the

argument are combined with the remaining steps for the

functor.

X/Y Y /Z ⇒ X/Z

Y \Z X\Y ⇒ X\Z

Crossed Composition Only backwards crossed composi-

tion is used (the lower of the two). The new instruction list

is composed of the top rule from the left, followed by all

but the top rule from the right.

X/Y Y \Z ⇒ X\Z
Y /Z X\Y ⇒ X/Z

Type Raising A new list of instructions is taken from our

hand-annotated set. If necessary, the current structure is

flattened to prevent a unary production of identical symbols

being formed when the next instruction is applied.

X ⇒ T/(T\X)

X ⇒ T\(T/X)

Coordination In CCG, coordination is a single step, but for implementation in parsing it is typically

broken into two steps. We follow the derivation, doing the core structural construction in the second

step. The instructions retained after the second step are from the right conjunct.

Functional Substitution These combinators occur rarely in the treebank and are not used in current

parsers, so we do not implement them.

Additionally, we vary the instructions assigned based on the POS tag in 32 cases, and for the

word not, to recover distinctions not captured by CCGbank categories alone. In 52 cases the later

instructions depend on the structure of the argument being picked up, often to capture different

handling of adverbial and adjectival phrases. For the non-combinatory binary and unary rules in



CHAPTER 3. FORMALISM CONVERSION 44

Category Instruction set

N (NP f)

N/N1 (NP f {a})

NP [nb]/N1 (NP f {a})

((S[dcl]\NP3)/NP2)/NP1 (VP f a)

(VP {f} a)

(S a f)

Table 3.3: Instruction sets for the categories in Figure 3.1.

CCGbank we define twenty-eight special instruction sets.

For the example from the previous section we begin by assigning the instructions shown in Ta-

ble 3.3. Some of these can apply immediately as they do not involve an argument, e.g., magistrates

has (NP f), producing:

NP

NNS

magistrates

A slightly more complicated instruction is applied to Italian: (NP f {a}). This creates a new

NP bracket, inserts the functor’s tree, and flattens and inserts the argument’s tree, producing:

NP

NNS

magistrates

JJ

Italian

Similar operations apply for the other NPs, followed by a unary rule, mapping N to NP . We

handle this by applying one of the special cases for non-combinatory unary operations in CCGbank.

The next three steps all involve instructions from the verb’s list. The verb takes three arguments,

and so has three instructions applied as follows:

VP

NP

NN

death

PRP$

his

VBD

labeled

VP

NP

NN

suicide

DT

a

NP

NN

death

PRP$

his

VBD

labeled

S

VP

NP

NN

suicide

DT

a

NP

NN

death

PRP$

his

VBD

labeled

NP

NNS

magistrates

JJ

Italian



CHAPTER 3. FORMALISM CONVERSION 45

Length ≤ 40 All lengths

System Data P R F Sent. P R F Sent.

C&C-Conv
00 94.39 95.85 95.12 42.1 93.67 95.37 94.51 39.6

23 94.04 95.44 94.73 41.9 93.95 95.33 94.64 39.7

Zhang, et al. (2012)
00 97.09 95.40 96.24 – 96.92 94.82 95.86 –

23 96.69 94.79 95.73 – 96.67 94.77 95.71 –

This work
00 96.98 96.77 96.87 53.6 96.69 96.58 96.63 51.1

23 96.57 96.21 96.39 53.8 96.49 96.11 96.30 51.4

Table 3.4: PARSEVAL Precision, Recall, F-Score, and exact sentence match for converted gold

CCG derivations.

The final tree in this case is almost correct but omits the S bracket around the two NPs on the

right. To fix it we could have modified labeled’s second instruction to move his death under a new

S via the final symbol in Table 3.2. However, for this particular construction the PTB annotations

are inconsistent, and so we cannot recover without introducing more errors elsewhere.

Our approach naturally handles our QP vs. ADJP example from the previous section because

the two cases have different lexical categories:

than ((N/N)/(N/N))\(S[adj]\NP )

relatively (N/N)/(N/N)

This lexical difference means we can assign different instructions to correctly recover the QP

and ADJP nodes, whereas C&C-Conv applies the same schema in both cases because after the first

function application for than, the category becomes the same as the category for relatively.

3.3 Evaluation

Using sections 00-21 of the treebanks, we hand-crafted instructions for 527 lexical categories, a

process that took under 100 hours, and includes all the categories used by the C&C parser. There

are 647 further categories and 35 non-combinatory binary rules in sections 00-21 that we did not

annotate. For unannotated categories, we use the instructions of the result category with an added

instruction.

Table 3.4 compares our approach with C&C-Conv and X. Zhang et al. (2012) on gold CCG

derivations. The results shown are as reported by EVALB (Black et al. 1991) using the Collins

(1997) parameters. Our approach leads to increases over C&C-Conv on all metrics of at least 1.1%,

and increases exact sentence match by over 11% (both absolute).

Many of the remaining errors relate to missing and extra clause nodes and a range of rare struc-

tures, such as QPs, NACs, and NXs. The only other prominent errors are single word spans, e.g.,

extra or missing ADVPs. Many of these errors are unrecoverable from CCGbank, either because

inconsistencies in the PTB have been smoothed over or because they are genuine but rare construc-

tions that were lost.



CHAPTER 3. FORMALISM CONVERSION 46

Figure 3.3: For each sentence in the treebank, we plot the converted parser output against gold

conversion (top), the original parser evaluation against gold conversion (left), and the converted

parser output against the original parser evaluation against (right). A diagonal line indicating x = y
is also included. Top: Most points lie below the diagonal, indicating that the quality of converted

parser output (y) is upper bounded by the quality of conversion on gold parses (x). Left: No clear

correlation is present, indicating that the set of sentences that are converted best (on the far right),

are not necessarily easy to parse. Right: In general, accuracy on the native metric is correlated with

accuracy after conversion.



CHAPTER 3. FORMALISM CONVERSION 47

3.3.1 Parser Comparison

When we convert the output of a CCG parser, the PTB trees that are produced will contain errors

created by our conversion as well as by the parser. In this section we are interested in comparing

parsers, so we need to factor out errors created by our conversion.

One way to do this is to calculate a projected score (Proj), as the parser result over the oracle

result, but this is a very rough approximation. Another way is to evaluate only on the 51% of sen-

tences for which our conversion from gold CCG derivations is perfect (Clean). However, even on

this set our conversion introduces errors, as when the parser output differs from the gold derivation,

it may contain categories that are harder to convert.

Parser F-scores are generally higher on Clean, which could mean that this set is easier to parse,

or it could mean that these sentences don’t contain annotation inconsistencies, and so the parsers

aren’t incorrect for returning the true parse (as opposed to the one in the PTB). To test this distinc-

tion we look for correlation between conversion quality and parse difficulty on another metric. In

particular, Figure 3.3 (bottom left) shows CCG labeled dependency performance for the C&C parser

vs. CCGbank conversion PARSEVAL scores. The lack of a strong correlation, and the spread on

the line x = 100, supports the theory that these sentences are not necessarily easier to parse, but

rather have fewer annotation inconsistencies.

In the top plot, the y-axis is PARSEVAL on converted C&C parser output. Conversion quality

essentially bounds the performance of the parser. The few points above the diagonal are mostly

short sentences on which the C&C parser uses categories that lead to one extra correct node (a

common case is ADVP v ADJP). The main constructions on which parse errors occur, e.g., PP

attachment, are rarely converted incorrectly, and so we expect the number of errors to be cumulative.

The bottom right plot shows three noteworthy properties, (1) in general the two evaluation metrics

are correlated, (2) the CCG evaluation is slightly harsher, with fewer points below the diagonal line

than above it2, (3) there are many cases on the far right, where the CCG evaluation is perfect, but

conversion mistakes mean the PTB score is not perfect. Some sentences are higher in the right plot

than the left because there are distinctions in CCG that are not always present in the PTB, e.g., the

argument-adjunct distinction.

Table 3.5 presents F-scores for three PTB parsers and three CCG parsers (with their output

converted by our method). One interesting comparison is between the PTB parser of Petrov and

Klein (2007) and the CCG parser of Fowler and Penn (2010), which use the same underlying parser.

The performance gap is partly due to structures in the PTB that are not recoverable from CCGbank,

but probably also indicates that the split-merge model is less effective in CCG, which has far more

symbols than the PTB.

It is difficult to make conclusive claims about the performance of the parsers. As shown earlier,

Clean does not completely factor out the errors introduced by our conversion, as the parser output

may be more difficult to convert, and the calculation of Proj only roughly factors out the errors.

However, the results do suggest that the performance of the CCG parsers is somewhere between

the Stanford and Petrov parsers.

2This is consistent with prior work, and the fact that CCG makes some additional distinctions, such as between

arguments and adjuncts.



CHAPTER 3. FORMALISM CONVERSION 48

Sentences Clean All Proj

Converted gold CCG

CCGbank 100.0 96.3 –

Converted CCG

Clark and Curran (2007) 90.9 85.5 88.8

Fowler and Penn (2010) 90.9 86.0 89.3

Auli and Lopez (2011) 91.7 86.2 89.5

Native PTB

Klein and Manning (2003a) 89.8 85.8 –

Petrov and Klein (2007) 93.6 90.1 –

Charniak and Johnson (2005) 94.8 91.5 –

Table 3.5: F-scores on section 23 for PTB parsers and CCG parsers with their output converted by

our method. Clean is only on sentences that are converted perfectly from gold CCG (51%). All is

over all sentences. Proj is a projected F-score (All result / CCGbank All result).

3.4 Summary

By exploiting the generalized combinators of the CCG formalism, we developed a new method

of converting CCG derivations into PTB-style trees. Our system is more effective than previous

work, increasing exact sentence match by more than 11% (absolute), and can be directly integrated

with a CCG parser. The system is available online, see Appendix A.



49

Chapter 4

Graph Parsing

Parses in the Penn Treebank (Marcus et al. 1993) are graph structured, but parsers are typically

restricted to tree structures for efficiency and modeling reasons. All except one of the parsers

considered in Chapter 2 produce trees, which is why we did not consider the non-tree components

of structure in our analysis. The frequency of this deficiency provides strong motivation for the

goal of this chapter: to construct an efficient parser for graph structures.

We propose a new representation and algorithm for a restricted class of graph structures that are

flexible enough to cover almost all treebank structures, yet are restricted enough to admit learning

and inference that is almost as efficient as for trees. In particular, we consider directed, acyclic,

one-endpoint-crossing graph structures, which cover most dislocation, shared argumentation, and

similar tree-violating linguistic phenomena. We describe how to convert phrase structure parses,

including traces, to our new representation, in a reversible manner. Our dynamic program uniquely

decomposes structures, is sound and complete with respect to a subset of the class of one-endpoint-

crossing graphs, and covers 97.7% of the Penn English treebank. We also implement a proof-of-

concept parser that recovers a range of null elements and trace types.

The algorithm is a new general-purpose parsing approach that could be applied more broadly

than the specific use we consider for our experiments. To clearly separate the definition of the

algorithm and our specific use of it, we start by defining the algorithm in Sections 4.2 through 4.6,

then show how it can be applied to Penn Treebank parsing in Section 4.7.

4.1 Background

Before discussing the motivation for this work and the previous work in this area, we need to

mention several concepts from discrete mathematics:

Graph A set of vertices and edges. Here each word is a vertex, plus a root vertex not associated

with any word.



CHAPTER 4. GRAPH PARSING 50

Tree A graph in which every pair of vertices are connected by a unique path (ignoring direction-

ality on edges).

Cycle A sequence of edges that begin and end at the same vertex (here we only allow traversal

of edges in the direction indicated by the edge).

Projective The linear order of words allows us to define an additional concept: projectivity. A

projective graph can be drawn in a two dimensional half-plane with the vertices on the edge of the

plane and without any edges crossing.

One-EndpointCrossing Pitler et al. (2013) defined a space of tree structures named one-endpoint

crossing (one-EC). To be in the space, every edge in the tree must obey the one-EC property. The

property states that for a given edge e, all the edges that cross e must share an endpoint (treating

the edges as undirected).

We generalize Pitler et al. (ibid.)’s definition of one-endpoint crossing trees to graphs. The

one-EC property remains the same, we just relax the requirement that the edges form a tree. To

enable efficient parsing we will further restrict the space we consider, not covering a few specific

one-endpoint-crossing structures. In practice, these structures are rarely observed in the PTB, and

when they do occur it is usually due to where punctuation attaches.

Figure 4.1 shows the space of graphs divided up based on these properties. Note that by only

using subsets of the rules in our algorithm, we could restrict the space of structures we generate

to the projective DAG space, the projective tree space, or the one-EC tree space. Additionally,

versions of these spaces with undirected edges could be easily handled with the same approach we

apply.

4.1.1 Why Graph Structures?

Non-projectivity is important in syntax for representing many structures, to the point where Chom-

sky identifies it as a distinguishing feature of syntax, called displacement (Chomsky 2000). For the

purpose of phrase structure representations, adding non-projective links means we are also creating

graphs, as adding any edge to a tree will create a graph. These examples show some of the ways in

which these extra edges are needed to encode the structure of the sentence:

• Null infinitive subject Bob wants to teach, here Bob is both wanting and teaching, but in a

tree Bob can only have one parent, and so can’t be linked to both.

• Wh-movementWhen should Bob teach?, here the tree would not have a connection between

when and teach.

• Gapping I saw Judy in Sydney and Bob in Berkeley, here the tree would either lack edges

indicating the conjunction of Judy and Bob or lack edges indicating their connections to saw.



CHAPTER 4. GRAPH PARSING 51

Tree
Projective

One-EC

DAG

Graphs

Figure 4.1: Venn diagram showing the space of graphs divided into the properties we consider.

DAG stands for Directed Acyclic Graph. Our algorithm is able to produce structures in the blue

hatched region while the standard parsing approach only produces structures in the blue and red

cross-hatched region. Pitler et al. (2013)’s algorithm produces structures in the overlap of the Tree

region and the one-EC region. Regions are not scaled to reflect the actual number of possible

structures of each type.

• Fronting Hard though the journey may be, here the word hard will not be linked to be in the

tree.

Section 1.4 presented the full set of null elements used in the Penn Treebank, which cover a

wide range of phenomena. The annotation guide for the Penn Treebank (Bies et al. 1995) provides

detailed descriptions of all of these structures as well as examples drawn from the data.

4.1.2 Previous Algorithms

As discussed in Section 1.4, a range of algorithms have been developed for efficient parsing of

projective trees. This efficiency comes from the ability to break the projective tree down into

independent pieces. Since no edge can be crossed, every edge defines a division of the tree into

two parts, inside and outside the edge, i.e., one piece that includes all of the structure linking words

between the two ends of the edge, and another piece for all other words.

Inference over the space of all non-projective graph parses is intractable, but in practice almost

all parses are covered by well-defined subsets of this space. For dependency parsing, recent work

has defined algorithms for inference within various subspaces (Gómez-Rodrı́guez and Nivre 2010;

Pitler et al. 2013). We build upon these algorithms and adapt them to constituency parsing. For

constituency parsing, a range of alternative formalisms have been developed, starting with Gener-

alized Phrase Structure Grammar (Gazdar et al. 1985), which used features and slash categories



CHAPTER 4. GRAPH PARSING 52

Algorithm 4.1 General CKY algorithm.

Initialize with an empty parse item for each position in the sentence

for each possible width, from 1 to the length of sentence do

for each span1mark of that width do

Create items by combining existing, smaller, items

Create items by adding structure to items with this span

to encode traces. Further work built on these ideas, forming what was later described as mildly-

context sensitive grammar formalisms, including LFG (Kaplan and Bresnan 1982), LTAG (Joshi

and Schabes 1997), and CCG (Steedman 2000).

Our representation is similar to LTAG-Spinal (Shen et al. 2007), but has the advantage that it

can be converted back into the PTB representation. Recently, dependency parsers have been used

to assist in constituency parsing, which has involved varying degrees of representation design, but

only for trees (J. Hall, Nivre, and Nilsson 2007; J. Hall and Nivre 2008; Fernández-González and

Martins 2015; Kong et al. 2015).

Previous work on parsing traces and other null elements in the PTB has taken two general ap-

proaches. The first broadly effective system was Johnson (2002), which post-processed the output

of a parser, inserting extra elements. This was effective for some types of structure, such as null

complementizers, but had difficulty with long distance dependencies. One challenge for a post-

processing system is that it must deal with parser mistakes–Johnson’s system F-score was 7 points

higher on gold trees than on parser output.

The other common approach has been to expand the grammar, threading a trace through the tree

structure on the non-terminal symbols. Collins (1997)’s third model used this approach to recover

wh-traces, while Cai et al. (2011) used it to recover null pronouns, and others have used it for a

range of movement types (Dienes and Dubey 2003; Schmid 2006). All of these approaches have

the disadvantage that each additional trace dramatically expands the grammar.

4.2 Overall Algorithm

Our algorithm falls into the dynamic programming class, and specifically the type defined by

Kasami (1966), Younger (1967), and Cocke (1969). Algorithm 4.1 shows a pseudocode outline

of the CKY algorithm.

This algorithm works by exploiting the constraint that the larger problem (find the optimal parse)

can be decomposed into independent sub-problems (find the optimal parse for part of the sentence)

whose solutions can be combined to solve the original problem (combine the best solution from

one span with the best solution from another span). To turn this into a specific algorithm we need

to specify:

• What types of items can exist

1A continuous range, e.g., from 1 to 4 would be a span of width 3



CHAPTER 4. GRAPH PARSING 53

• How items can be combined

• How structure can be added to an item

The second and third of these needs can be described by deduction rules. Most of this chapter

will be concerned with the definition of these deduction rules and the properties we are able to

achieve by our choices.

4.3 Sketch of Deduction Rules

In this section we begin with an introduction to build intuition, then define the item types (§ 4.3.2),

work through an example (§ 4.3.3), and sketch the deduction rules for our algorithm (§ 4.3.4). In

Section 4.4, we discuss how it differs from Pitler et al. (2013)’s tree parsing algorithm, and in Sec-

tion 4.5 we provide the complete details of the algorithm definition and proof. Eventually we will

show how we can support directed, labeled edges, and labeled words, but to simplify the presenta-

tion of the algorithm we first focus on deduction rules for undirected, unlabeled edges and ignore

word labels.

The intuition for the items is that they are either a continuous

span of the sentence, going from one word to another (shown

with a line, intentionally without internal structure):

w3 w4 w5 w6

Or a span plus a point outside the span: w3 w4 w5 w6 w7 w8

Whether a word in the item has

edges, and whether the item can

be modified to give it an edge,

depends on its location:

Has Can get

Location Example edges? edges?

Within a span w4, w5 Yes No

At the ends of the span w3, w6 Maybe Yes

Between the span and
w7 No No

the exterior point

At the exterior point w8 Yes Yes

We start out with spans going between each pair of words,

with no structure:
w3 w4

Our goal is to form a span that covers

the entire sentence:
w0 w1 w2 w3 w4 w5 w6 w7 w8

For items that are just a span, we can create an edge between

the endpoints. An edge added like this is not crossed in the

final, complete parse for the sentence.

w3 w4



CHAPTER 4. GRAPH PARSING 54

For items with an exterior point we gain the option to create

edges going between the exterior point and either end of the

span. In the top and middle cases, the edge being added will

be crossed at some point later on in the derivation. In the

bottom case, the edge being added will cross one or more

existing edges.

w3 w4 w5 w6 w7

w3 w4 w5 w6 w7

w3 w4 w5 w6 w7

The intuition for the deduction rules is that they combine

two or three items with adjacent spans to create a new item.

By carefully deciding which combinations are permitted and

which are not, we are able to provide guarantees about the

final structure.

w3 w4 w5

↓

w3 w4 w5

Crucially, our items are defined by a small number of values, such as the start and end points

of the span, rather than their full internal structure. During parsing we only need to store the best

structure corresponding to each item, not every structure. That means the time complexity of our al-

gorithm depends on the number of possible items (polynomial complexity), rather than the number

of structures (exponential complexity).

4.3.1 Notation

We use p, q, etc to refer to word positions. To indicate ranges we use [pq], [pq), (pq], or (pq), where

the bracket variations indicate inclusion, [], or exclusion, (), of the endpoint. To indicate an edge

we use two points without brackets, e.g., pq. To define a class of edges we either use a point and a

set connected by a dash, e.g., o–(pq), or two sets connected by a dash, e.g., (ps)–(sq).

4.3.2 Item Types

As shown above and in Figure 4.2, our items start and end on words, fully covering the gaps in

between2. We use six item types, differing in the type of edge crossing they contain:

p q
I , Interval A span in which all points in (pq) have a parent in [pq],
and no edges will exist that go between (pq) and points outside [pq].

o
X , Exterval (an external point + an Interval) An interval plus a

single edge between o and either p or q, where o is outside [pq].

2 This is the inverse of the conventional constituency parsing approach where items fully cover words and end in

the gaps between words. The idea can be traced back to Eisner (1996).



CHAPTER 4. GRAPH PARSING 55

B, Both An interval [pq] and a point o. o–(pq) edges may be crossed

by p–(pq) or q–(pq) edges, and at least one crossing of each type

occurs. o–(pq) edges may not be crossed by (pq)–(pq) edges.

L, Left Same as B, but o–(pq) edges may only be crossed by p–(pq)
edges.

R, Right Same as L, but with edges crossed by q–(pq) edges rather

than p-(pq) edges.

N , Neither An interval and a point, with at least one o–(pq) edge.

o–(pq) edges can only be crossed by pq, not other [pq]–[pq] edges.

4.3.3 Example Derivation

Figure 4.2 presents a derivation of a sentence with crossing edges, showing examples of several

deduction rules. In the next section, we define the deduction rules from a top-down perspective to

easily show how well they cover the space of structures. To build intuition, here we describe the

example bottom-up and with more conventional deductive reasoning notation.

We initialize with items of width one, placing an item between each

pair of words. ∅ 7→ I0,1

Our main loop from Algorithm 4.1 considers each width and

combines items, then adds structure. We start with items of width

one, which cannot be formed by combination. We can add edges

though, such as the We–like edge, and the like–ROOT edge. Note,

in the second case the edge creates an Exterval, and the edge will

eventually be crossed.

I1,2 ∧ pq1,2 7→ I1,2
I0,1 ∧ op0,2 7→ X0,1

In the next step we consider items of width two. We can form an

item of width two by combining items either side of to. I2,3 ∧ I3,4 7→ I2,4

From (3) to (4) we are still considering items of width two, but now

adding edges, such as We–run. This edge would not be part of a tree

parse, and will be crossed in our complete parse.
I2,4 ∧ oq1,4 7→ X2,4

Next, a width four item is formed by combining items either side of

run. This creates a Neither item, as there is an uncrossed edge from

the external point to within the span. Note that we can determine it

is an N with only limited information about the internal structure of

the items being combined.

X2,4 ∧ I4,6 7→ N2,6



CHAPTER 4. GRAPH PARSING 56

ROOT We like to run fast .

I0,1 I1,2 I2,3 I3,4 I4,5 I5,6
(1) Initialize

X0,1 I1,2 I3,4 I4,5
(2) Add edges

I2,4 I4,6
(3) Combine

X2,4
(4) Add edges

N2,6
(5) Combine

N2,6
(6) Add edges

I0,6
(7) Combine

Figure 4.2: An example derivation using our graph parsing deduction rules.

Going from (5) to (6) we introduce our first crossing of edges. The

new edge, .–like, crosses the edge added two steps ago. N2,6 ∧ qp2,6 7→ N2,6

Finally, we combine three items to form the complete

derivation. X0,1 ∧ I1,2 ∧N2,6 7→ I0,6



C
H
A
P
T
E
R
4
.
G
R
A
P
H
P
A
R
S
IN
G

5
7

Item type?

None needed Fig. 4.12 Fig. 4.16
Symmetric

with L

Fig. 4.4

Fig. 4.5

Fig. 4.6 Fig. 4.7 Fig. 4.8 Fig. 4.9

Fig. 4.13

Fig. 4.14 Fig. 4.15

YesNo

YesNo

No Yes

No Yes No Yes

I X B L R

No

N

No Yes

Yes

Figure 4.3: Our algorithm defines a unique decomposition for any structure. This chart shows how we define the decompositions

that involve multiple items (as opposed to removing a single edge, such as in X cases). Each rectangle poses a questions, using

the black structure to express what is known, and the dashed blue edge to ask the question: is such an edge present or not?

Leaves of the chart are labeled with the section in the text that gives the decomposition for that case.



CHAPTER 4. GRAPH PARSING 58

4.3.4 Deduction Rules

One set of deduction rules is concerned with removing direct edges between the points p, q, and

o in each item. These are straightforward, so we leave them for the full derivation in Section 4.5.

The other type of deduction rules, which we sketch below, involve decomposing an item into parts.

To make the deduction rules manageable, we define only some constraints explicitly, and then

use code to enumerate all options and enforce additional constraints. Here we describe the explicit

constraints and the reasoning behind them.

When parsing, we simply have a list of valid rules and consider any way of combining items

that satisfies a rule. To define the rules, we need to consider each of our item types and define

a unique decomposition into smaller pieces. Figure 4.3 gives an overview of the distinctions we

make in order to define each type of decomposition. For some item types, such as X , every possible

structure can be broken down into pieces in the same way. For others, such as L, how the item is

broken down depends on some properties of its structure. Below we work through each path in

Figure 4.3, specifying the questions more precisely and then providing the decomposition.

Interval

Is there a p–(pq) edge?

No, then split at p+ 1:

I

I
p p+ 1 q

Figure 4.4: I deduction rules,

case one.

Yes, then consider ps, the longest p–(pq) edge.

Do any edges cross ps?

No, then split at s:

I

I
p s q

Figure 4.5: I deduction rules,

case two.

Yes, then consider the set of edges C, that cross ps. If |C| > 1, let t be the common endpoint of all

edges in C (they must have a common endpoint to satisfy the one-EC property for ps). If |C| = 1,

let t be the endpoint outside ps.



CHAPTER 4. GRAPH PARSING 59

Is s < t and are there any s–(tq) edges?

Yes s < t, no s–(tq) edges (in this case it is also possible that t = q, in which case there is no [tq]
item):

B, L, R or N

I

I
p ts q

Figure 4.6: I deduction rules,

cases three and five.

Yes s < t, and yes there are s–(tq) edges:

R or N

I
L, N or X

p ts q

Figure 4.7: I deduction rules,

case four.

Now consider s > t. In this case C > 1 by construction. Are there any p–(ts) edges?

No:

R, N or X

I

N
p t s q

Figure 4.8: I deduction rules,

case seven.

Yes:

I

L or N

N
p t s q

Figure 4.9: I deduction rules,

case six.

Exterval

No decomposition rules are needed, as the removal of the op or oq edge leaves behind an Interval.

Both

Consider the case when o is to the right (the case when o is to the left is symmetrical). Consider

psp, the longest p–(pq) edge.



CHAPTER 4. GRAPH PARSING 60

Does psp cross any q–(pq) edges?

Yes:

R, N or X

X ′

L, N or X
p sp sq q o

Figure 4.10: Excluded B de-

duction rule

The extra edges shown must be present because of the definition of B items and the one-EC

property. The X ′ is a slight variation on our X , since it has both sqo and spo. We do not include this

rule because it would be O(n5), and this specific structure is almost never observed in the treebank.

Now consider the alternative, when psp does not cross any q–(pq) edges. In this case the possibili-

ties follow a pattern:

. . .

Figure 4.11: B structural pat-

tern

Does the pattern go all the way to the right, as shown in the last case?

Yes:

We cannot define a simple decomposition of the structure using

our item types. By eliminating this case we restrict ourselves

to a subset of one-endpoint-crossing graphs. This does not

decrease treebank coverage.

No, then use the end of the edge crossing pattern as s and decompose the item as:

L or N

R or N
p s q o

Figure 4.12: B deduction rule.

The dashed edges are required for the N items, but not the L items. Below we describe how to

check that the chaining pattern is present in an L, but in practice we avoid it entirely by requiring

the L to have the edge ps, with no loss in coverage.



CHAPTER 4. GRAPH PARSING 61

Left and Right

These are defined symmetrically. Consider the o–(pq) edges in anL. Use the edge oswith s furthest

from p to define the split point.

Is os crossed by any p–(pq) edges?

No:

L or N

I
p s q o

Figure 4.13: L deduction rules,

cases three through eight.

Yes, then is os the only o–(pq) edge?

No:

L or N

N
p s q o

Figure 4.14: L deduction rules,

cases one and two.

Yes:

X

L or N
p s q o

Figure 4.15: L deduction rules,

cases nine and ten.

We also have to track whether there are multiple edges or only a single o–(pq) edge, to avoid

derivational ambiguity in the I decomposition. The first two cases lead to multiple such edges,

while the third case will only have one.

We could also track the chaining property discussed in the previous section. The property is

only true in the following cases: when the edge pq is present, when an X is combined with an L
that has the property, and when an X is combined with an N that has the pq edge.

Neither

Consider the o–(pq) edges. Use the edge os with s furthest from o to define the split point. The

case with o to the left is symmetrical to the case with o on the right, which is:

I

N or X
p s q o

Figure 4.16: N deduction rule.

Again, we need to track whether there are multiple o–pq edges. When a sub-item is an X there

is only one o–(pq) edge, and when it is an N there is more than one.



CHAPTER 4. GRAPH PARSING 62

4.4 Comparison with Pitler et al. (2013)

Our algorithm is based on Pitler et al. (ibid.), which had the crucial ideas of one-endpoint crossing,

isolated crossing regions, and a complete decomposition. Our changes give several overall benefits:

• We extend to graph structures, which introduces particular challenges for the B item type.

• We avoid derivational ambiguity, where a single parse can be decomposed in multiple ways.

• Changes that give new intuition about how the algorithm works, by being able to give guar-

antees about whether edges will be crossed at the time they are created.

• A somewhat more concise overall algorithm definition, mainly due to our use of a combina-

tion of templates and code to generate the final rules.

• Separation of merging items from edge creation.

Below we provide some specific notes on where changes occurred and why.

Intuition The clean division of cases between edges that will be crossed and those that will not

be is partially due to choices we made in the definition of the deduction rules; it does not hold for

Pitler et al. (ibid.)’s algorithm.

Items We have one entirely new item type, the Exterval, and we have added requirements for

the later items. Specifically, while the allowed crossings are the same, we add the requirement that

at least one crossing of the specified type exists (this is also reflected in the renaming of their LR
item to B). These changes are necessary to avoid derivational ambiguity when a structure falls into

multiple classes. Enforcing these difference involves changes throughout the deduction rules.

Interval One source of ambiguity in their algorithm arises when an edge is crossed by only one

other edge. The ambiguity is in the choice of the second split point, t, which could be either end of

the crossing edge in their derivation. In that circumstance we require it to be the endpoint further

from p (see the discussion after Figure 4.5).

Both The difficult cases we discuss do not come up in their algorithm. This is due to a combina-

tion of (1) the tree constraints they apply, (2) the need to form a complete structure, and (3) use of

directed edges. For the normal B case, the choice of split point is a source of derivational ambiguity

in their algorithm.

Left and Right Our decomposition of this item differs from theirs in several ways because of our

decision to separate edge creation and item combination, and because we need to track if there are

multiple edges to the external point.



CHAPTER 4. GRAPH PARSING 63

Neither As for L and R, our decomposition differs because of our altered definition of N , and

the need to track if there are multiple edges to the external point.

4.5 Deduction Rule Definitions and Completeness Proof

Above we provided only a sketch of the algorithm, here we explain the full derivation. For complete-

ness, some of the content is repeated. When showing the possible deduction rules for each item

type we show figures that indicate the required characteristics in each case. In the figures black

solid curves indicate edges that must exist, and red dotted curves are edges that are not allowed,

either by construction or due to constraints.

4.5.1 Notation

To indicate a range we use [pq], [pq), (pq], or (pq), where the bracket variations indicate inclusion,

[], or exclusion, (), of the endpoint. We also use [pq] to indicate a span without an external point, and

[pq.o] to indicate a span with external point o. To indicate edges we either use two points without

brackets, e.g., pq, a point and a set connected by a hyphen, e.g., o–(pq), or two sets connected by a

hyphen, e.g., (ps)–(sq).

4.5.2 Item Types

We use six item types, differing in the type of edge crossing they contain. Each consists of a span,

[pq] and an optional point outside the span, o, either to the left or right:

I - Interval A span in which all points in (pq) have a parent in [pq], and no edges exist that go

from outside [pq] to points in (pq).

X - Exterval (an external point + an Interval) An interval plus exactly one of the edges op or

oq, where o is outside [pq].

N - Neither An interval [pq] and a point o, with a least one o–(pq) edge. o–(pq) edges can be

crossed by the edge pq, but not by any other [pq]–[pq] edge.

L - Left Same as N , but o–(pq) edges may be crossed by p–(pq) edges. Also, such a crossing

occurs at least once.

R - Right Same as L, but with o–(pq) edges crossed by q–(pq) edges rather than p-(pq) edges.

B - Both Same as L, but o–(pq) edges may also be crossed by q–(ps) edges, and at least one

crossing of each type occurs.



CHAPTER 4. GRAPH PARSING 64

Algorithm 4.2 Complete graph parsing dynamic program.

L
:
[ijx .X .X IJ ]← max

A[x j] L[ijx .X .X IJ ]

L
:
[ijx .X .X IJ ]← max

A[j x] L[ijx .X .X IJ ]

L[ijx JX IX IJ ]← max

A[j i] L[ijx JX IX IJ ]

L[ijx JX IX IJ ]← max

A[i j] L[ijx JX IX IJ ]

R
:
[ijx .X .X IJ ]← max

A[x i] R[ijx .X .X IJ ]

R
:
[ijx .X .X IJ ]← max

A[i x] R[ijx .X .X IJ ]

R[ijx JX IX IJ ]← max

A[j i] R[ijx JX IX IJ ]

R[ijx JX IX IJ ]← max

A[i j] R[ijx JX IX IJ ]

I[ij F I]← max

A[i j] I[ij F I]

I[ij J F ]← max

A[j i] I[ij J F ]

N
::
[ijx .X .X IJ ]← max

A[x i] N [ijx .X .X IJ ]

N
::
[ijx .X .X IJ ]← max

A[i x] N [ijx .X .X IJ ]

N
::
[ijx .X .X IJ ]← max

A[x j] N [ijx .X .X IJ ]

N
::
[ijx .X .X IJ ]← max

A[j x] N [ijx .X .X IJ ]

N [ijx JX IX IJ ]← max

A[j i] N [ijx JX IX IJ ]

N [ijx JX IX IJ ]← max

A[i j] N [ijx JX IX IJ ]

X[ijx .X .X F ]← max

A[x i] I[ij . .]

X[ijx .X .X IJ ]← max

A[i x] I[ij . .]

X[ijx .X .X F ]← max

A[x j] I[ij . .]

X[ijx .X .X IJ ]← max

A[j x] I[ij . .]

B· [ijx F IX IJ ]← max

A[i j] B· [ijx F IX IJ ]

·B[ijx JX F IJ ]← max

A[j i] ·B[ijx JX F IJ ]

I[ij F I]← max

I[i i+1 F F ] I[i+1 j F F ]
maxk∈(i,j)

I[ik F I] I[kj . .]
BLRN · [ikj F IJ IK] I[kj . .]
maxl∈(k,j){

RN · [ikl F IL IK] I[kl . .] ·LNX[ljk .K . L.]
BLRN · [ikl F IL IK] I[kl . .] I[lj . .]

maxl∈(i,k){
I[il F .] ·LN [lki .I .I F ] ·N

::
[kjl JL K. K.]

RNX· [ilk F .K IL] I[lk . .] ·LN
:::

[kjl .L . K.]

I[ij j F ]← maxk∈(i,j)

I[ik F .] I[kj J F ]
I[ik F .] ·BLRN [kji JI F KJ ]
maxl∈(i,k){

RNX· [ilk F .K .L] I[lk . .] ·LN [kjl JL F KJ ]
I[il F .] I[lk . .] ·BLRN [kjl JL F KJ ]

maxl∈(k,j){
N
::
· [ikl KF IL .K] RN · [klj .J .J F ] I[lj . F ]

RN
:::
· [ikl F .L .K] I[kl . .] ·LNX[ljk .K F LJ ]

L
:
[ijx JX IX IJ ]← maxk∈(i,j)

LN [ikx .X .X IK] ·N [kji JI KI KJ ]
LN [ikx .X .X IK] ·N [kji JI KI KJ ]
L[ikx .X .X IK] I[kj . .]
L[ikx .X .X IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]

L. [ijx JX IX IJ ]← maxk∈(i,j){
X[ikx .X .X F ] ·LN [kji .I .I KJ ]
X[ikx .X .X IK] ·LN [kji .I .I KJ ]

B· [ijx F IX IJ ]← maxk∈(i,j)
LN · [ikx F IX IK] R· [kjx . .X .J ]
LN · [ikx F IX IK] N · [kjx J. KX .J ]
LN · [ikx F IX IK] N · [kjx J. KX .J ]

·B[ijx JX F IJ ]← maxk∈(i,j)
·L[ikx .X . I.] ·RN [kjx JX F KJ ]
·N [ikx KX I. I.] ·RN [kjx JX F KJ ]
·N [ikx KX I. I.] ·RN [kjx JX F KJ ]

N
::
[ijx JX IX IJ ]← maxk∈(i,j)
·N [ikx KX IX IK] I[kj . .]
·N [ikx KX IX IK] I[kj . .]
I[ik . .] N · [kjx JX KX KJ ]
I[ik . .] N · [kjx JX KX KJ ]

N. . [ijx JX IX IJ ]← maxk∈(i,j)
·X[ikx .X .X IK] I[kj . .]
·X[ikx .X .X IK] I[kj . .]
I[ik . .] X· [kjx .X .X KJ ]
I[ik . .] X· [kjx .X .X KJ ]

R
:
[ijx JX IX IJ ]← maxk∈(i,j)

N · [ikj KJ IJ IK] RN [kjx .X .X KJ ]
N · [ikj KJ IJ IK] RN [kjx .X .X KJ ]
I[ik . .] R[kjx .X .X KJ ]
I[ik . .] R[kjx .X .X KJ ]
I[ik . .] N [kjx JX KX KJ ]
I[ik . .] N [kjx JX KX KJ ]
I[ik . .] N [kjx JX KX KJ ]
I[ik . .] N [kjx JX KX KJ ]

R. [ijx JX IX IJ ]← maxk∈(i,j){
RN · [ikj .J .J IK] X[kjx .X .X F ]
RN · [ikj .J .J IK] X[kjx .X .X KJ ]



CHAPTER 4. GRAPH PARSING 65

4.5.3 Complete Dynamic Program

Figure 4.2 shows the templates for the complete dynamic program. The notation used is as follows:

Edges are A[p c], where p and c are the parent and child positions.

Items are T [lrx pl pr px], where each part is:

• T is the type of item, with multiple letters indicating any one of those types are allowed.

• ·T and T · indicates the position of the external point relative to the item’s span (left or right

respectively).

• T. indicates that an item has only one edge from the external point into the span, while T
:

indicates that there is more than one such edge.

• l, r, and x are labels that indicate the position of the left end of the span, the right end, and

the external point, respectively.

• pl, pr, and px are expressions that indicate the parents of the left end of the span, the right

end of the span, and the external point.

• The parent expressions can be an explicit need for a link, either direct, indirect, or none, e.g.,

I , i, and F . They can also be the complement of such an expression, e.g., I , or if they can be

any value a . is used.

Note, since we are considering graphs, two points could be linked both directly and indirectly.

We track parent information to know about parents of items, and existence of specific edges. If

both an indirect link and a direct link are present, the state records a direct link.

4.5.4 Eisner (1996)’s Algorithm

This work and Pitler et al. (2013)’s algorithm both extend upon the ideas first described by Eisner

(1996). Eisner’s algorithm is an O(n3) dynamic program for projective dependency tree parsing.

If the reader is familiar with Eisner’s algorithm, then this definition of it using our notation may

help build intuition for our algorithm:



CHAPTER 4. GRAPH PARSING 66

Arc creation rules:

I[pq F P ]← max

A[p q] I[pq F F ] p q

I[pq Q F ]← max

A[q p] I[pq F F ] p q

Binary composition rules:

I[pq F F ]← max
I[p p+1 F F ] I[p+1 q F F ]

maxs∈(p,q){
I[ps F P ] I[sq F F ]

p p+ 1 q

p s q

I[pq F p]← maxs∈(p,q)
I[ps F P ] I[sq F F ]

p s q

I[pq q F ]← maxs∈(p,q)
I[ps F F ] I[sq Q F ]

p s q

To be specific, this is a version of the algorithm in which the structure is built from the outside

in3, and where arc creation is separated out into an independent step4. A projective graph parsing

algorithm can be formed by changing the boxed blue parts to be P (upper left), Q (lower left), and

. (right). These rules are all present in our algorithm as well, they correspond to the rules that only

use intervals.

Eisner’s algorithm has been formulated in several different ways that share the same core idea,

but structure the deduction rules slightly differently. One well-known formulation was presented

by Eisner and Smith (2005). Their items are slightly different, with their triangle items going from

on one word to between two words (whereas ours are always from on one word to on another word).

However, we can roughly relate the inference rules as follows, where some of our rules take place

in two steps in their rules:

+
corresponds to the third binary rule, or half of the

second binary rule.

+
corresponds to the fourth binary rule, or half of

the first binary rule.

+
corresponds to half of the first two binary rules,

plus either of the arc creation rules.

Another connection to make at this point is with the CFG version of Eisner’s algorithm, pre-

sented by Johnson (2007). It is probably not possible to perform a similar transformation on the

algorithm we propose, though in Section 4.9 we discuss similar challenges in terms of correctly

computing inside and outside scores as are raised in Section 4 of Johnson (ibid.).

3 Alternatives are from the inside out, always left to right, or always right to left.
4 Arc creation could be combined into the binary step, though for a first-order model there should be an independent

search for the best arc over each span, so that complexity is O(n3 + an2) rather than O(an3), where a is the number

of arc types.



CHAPTER 4. GRAPH PARSING 67

4.5.5 Initialization

To start, an item is added for every position p in the sentence, except the last one. The items are:

I[p p+1 F F ]

If any type of word label is being used, an item must be inserted for every pair of possible labels.

4.5.6 Interval

The first way we subdivide into cases is based on whether there is a direct edge linking the two

ends of the item.

Direct Edges Present

p q

This covers two possible structures, one with the edge going from p to q and one with the edge

going from q to p. In both cases, the other end must have a parent state of F , as otherwise we would

have a directed cycle. We can break these cases down into the edge, plus the item beneath it:

Algorithm 4.3 Making I with direct edges.

I[pq F P ]← maxA[p q] I[pq F P ]
I[pq Q F ]← maxA[q p] I[pq Q F ]

If we were only considering trees then we would constrain the sub-item to be I[pq F F ].

No Direct Edges Present

First consider the case when p does not have a parent in this item (the case when it does is symmet-

rical to the case when q has a parent, which is covered by this case).

If there are no p–(pq) edges, then this can be broken into two intervals, splitting at p + 1. The

second item has an F because p+ 1 must get a parent from somewhere.

Algorithm 4.4 Making I , case one.

I[p p+1 F F ] I[p+1 q F F ]

If p–(pq) edges do exist, consider the longest such edge, ps. Consider the set C, of edges that

cross ps (i.e., (ps)–(sq)). Depending on the size of the set C we get different decompositions.



CHAPTER 4. GRAPH PARSING 68

|C| = 0
p s q

In this case there are no p–(sq] edges, because of how s was chosen. There are no (ps)–(sq]
edges, because in this case |C| = 0. Therefore we can break this case down into two intervals. The

left interval contains a direct edge from the left end to the right end. The right interval can have a

range of options for parent sets, which we leave undefined in the template, to be constrained later

using the general rules.

Algorithm 4.5 Making I , case two.

I[ps F P ] I[sq . .]

|C| = 1
p s t q

Here we have made a choice, placing t outside of ps. Placing it inside would also lead to a valid

set of deduction rules, but allowing both creates an ambiguity.

In this case there are no (ps)–(st) edges by construction, and there are no (st)–(tq] edges, as

they would violate the one-EC property for the edge ending at t. We subdivide this into two cases,

depending on whether there is an s–(tq) edge.

|C| = 1
Edge present p s t q

In this case we have an item [ps.t], because |C| = 1 means there are no further [ps)–(sq) edges.

The edge with an endpoint at t could be crossed by an s–(ps) edge, but not by a p–(ps) edge, as

that would violate the one-EC property. This means [ps.t] is either an N or and R, and in either

case will have the edge ps.

We also have an interval, [st], because any (st)–(tq) edges would violate the one-EC property

for the edge with an endpoint at t, and there are no (st)–(ps) edges by construction.

The third item is [tq.s], for reasons already given (in terms of what edges are allowed). This

cannot be an R or B because that would violate the one-EC property for the s–(tq) edge. If there

is only one s–(tq] edge, and it is sq, then this item is an X . Otherwise it will be either an L or N ,

depending on whether the s–(tq) edge is crossed by a t–(tq) edge. If st or ts exists, we attribute it

to the middle sub-item (it could come from any of them, so this avoids a spurious ambiguity).

Algorithm 4.6 Making I , case four.

RN · [pst F PT PS] I[st . .] ·LNX[tqs .S . T .]



CHAPTER 4. GRAPH PARSING 69

|C| = 1
No edge p s t q

By the same argument as above, we have an item [ps.t], and no (st)–(tq) edges. Since we don’t

have any s–(tq) edges, the third item is now an interval, [tq]. [st] is still an interval, by the same

argument as above. The first item is less restricted than before, it could be am L, R, or N . It cannot

be a B because there is only one (ps)–t edge. In this case it’s also possible that t = q, in which

case there is no third item (it would have width 0).

Algorithm 4.7 Making I , cases three and five (part one).

LRN · [psq F PQ PS] I[sq . .]
LRN · [pst F PT PS] I[st . .] I[tq . .]

|C| > 1
Outside p s t q

This is the first of two cases where |C| > 1, distinguished by the position of t, either inside

or outside of ps. Following an argument similar to the one above, we get the same derivation as

shown in Algorithms 4.6 and 4.7, the only differences is that [ps.t] must contain at least two t–(ps)
edges, and as a result the left item could be a B now.

Algorithm 4.8 Making I , cases three and five (part two).

B· [psq F PQ PS] I[sq . .]
B· [pst F PT PS] I[st . .] I[tq . .]

|C| > 1
Inside p t s q

In this case there are no (pt)–(ts) edges, as they would violate the one-EC property for the

edges in C. There are also no (pt)–(sq) edges, as they would violate the one-EC property for ps.

As in the previous case there are two decomposition options, this time depending on whether there

is a p–(ts) edge.

|C| > 1
Inside

Edge present p t s q



CHAPTER 4. GRAPH PARSING 70

In this case there are no (pt)–(ts] edges, and no (ts)–(sq] edges, because they would violate the

one-EC property for the edges in C. There are also no (pt)–[sq] edges, because they would violate

the one-EC property for the p–(ts) edges. There are no p–(sq] edges by construction. This means

the left item is [pt], the middle item is [ts.p], and the right item is [sq.t]. The left item is an I . The

middle item can be an L or N , but an R would violate the one-EC property for the p–(ts) edge.

The right item must be an N with multiple edges from the external point to the interior of the span.

Any other option would violate the one-EC property for edges in C.

Additional constraints are added to ensure direct ts and pt edges can occur in only one of the

items. Also, sq cannot occur, as it would violate the one-EC property for edges in C.

Algorithm 4.9 Making I , case six.

I[pt F .] ·LN [tsp .P .P F ] ·N
::
[sqt QT S. S.]

|C| > 1
Inside

No edge p t s q

This case is similar to the case above, with most of the argument still holding. The difference

is that with the constraint of no edges as shown, [ts] is an I . Meanwhile, there can be s–(pt) edges.

Again, we add extra constraints to ensure the direct ts edge can only occur in one item.

Algorithm 4.10 Making I , case seven.

RNX· [pts F .S PT ] I[ts . .] ·LN
:::

[sqt .T . S.]

4.5.7 Exterval

In this case we simply need to remove the edge from o to the span and we will have an interval. Let

the external point be to the right of the span (having it on the left is symmetrical). The two general

structures are as follows, with the dashed lines indicating that a pq edge may or may not be present,

and the small square indicating the external point:

p q o

p q o



CHAPTER 4. GRAPH PARSING 71

The way the other deduction rules are structured, we never encounter the case where both of

the solid edges are present. We always remove the solid edges first, leaving the dashed edge (if

present) for the interval decomposition. Since this is the only edge with an endpoint at O we also

know there are no indirect connections between o and p or q. There are four possibilities in total,

depending on which direction the edge goes in:

Algorithm 4.11 Making X with direct edges.

X[pqo .O .O F ]← maxA[o p] I[pq . .]
X[pqo .O .O PQ]← maxA[p o] I[pq . .]
X[pqo .O .O F ]← maxA[o q] I[pq . .]
X[pqo .O .O PQ]← maxA[q o] I[pq . .]

4.5.8 Both

The way we decomposed the Interval case has implications for the range of possible Both structures.

Specifically, it can only come up in two ways:

B· [psq F PQ PS]
·B[pqo QO F PQ]

The B item is not involved in any further decompositions, so these are the only cases we need

to consider. As in the Interval case, we start by separating out cases with direct edges and those

without.

Direct Edges Present

In this case we have two possible structures, with additional edges shown as required by the defini-

tion of a B item:

p q o

o p q

In each case we remove the p–q edge.



CHAPTER 4. GRAPH PARSING 72

Algorithm 4.12 Making B with direct edges.

B· [pqo F PO PQ]← maxA[p q] B· [pqo F PO PQ]
·B[pqo QO F PQ]← maxA[q p] ·B[pqo QO F PQ]

No Direct Edges Present

Consider the case when o is to the right of the span (the case when o is to the left of the span

is symmetrical). Consider the longest p–(pq) edge. There are two general cases, depending on

whether this edge crosses any q–(pq) edges.

Crossing

p sq sp q o

The dashed edges must be present because this is a B. They must end at sp and sq because

otherwise they would violate the one-EC property for either psp or qsq. Once those edges are set,

the one-EC property blocks the following edge types: o-(pq), q-(psq), p-(spq), (psq)-(spq), [psq)-
(sqsp), (sqsp)-(spq]. This means it can be decomposed into three items, [psq.sp], [sqsp.o], [spq.sq].
The left of these cannot be an L, as that would violate one-EC for sp–(psq) edges, but it can be an

R or N . Similarly, the right item cannot be an R, but can be an L or N . The middle item would be

an X , but with a modification to our definition to allow edges from both sp and sq to o.

No Crossing

p s q o

The way we choose the split point in this case will mean we need to track an extra bit of infor-

mation for L items. If no (ps)–(sq) edge exists, then s is the split point. If an edge does exist, the

one-EC property will mean there is only one o–(ps) edge and these two edges share an endpoint:

p t q o

Again, there will be two possibilities, either there are no (pt)–(tq) edges, in which case we use

t as the split point, or there are such edges, in which case the pattern continues:

p u q o



CHAPTER 4. GRAPH PARSING 73

p v q o

Eventually this chain of crossing edges will either stop in the middle, or cross the edge shown

between q and (pq). In the second case it must have the following structure, or otherwise it would

have a one-EC violation for reasons symmetrical to the constraints that started the chain:

p q o

. . .

In this final case, we cannot define a simple decomposition of the structure using the item types

we consider. By not covering this case we lose completeness for the space of one-endpoint-crossing

graphs. However, as in the problematic O(n5) case, this is rarely observed in the treebank.

Returning to the case where the chain of crossing edges ends earlier, we use that as the split

point and have two items, [ps.o] and [sq.o]. The left item must have at least one crossing of an edge

o-(ps) and an edge p-(ps), but there cannot be a crossing between o-(ps) and any edge (ps)-(ps) as

that would violate the definition of a B. Therefore the left item is either an L or an N with an edge

ps. Similarly, the right item is either an N with an edge sq, or an R. In order to avoid a spurious

ambiguity, we also need to ensure that the left item has the chaining property discussed above. If

the left item is an N , it does, as the edge ps provides a suitable split point. For an L we need to

track whether the property is true or not. In practice we avoid the chaining pattern entirely, using

the constraint that L must also contain the edge ps, with no loss in coverage. For completeness, we

show how to track the chaining property in the following section.

Algorithm 4.13 Making B.

B· [pqo F PO PQ]← maxs∈(p,q)
LN · [pso F PO PS] R· [sqo . .O .Q]
LN · [pso F PO PS] N · [sqo Q. SO .Q]
LN · [pso F PO PS] N · [sqo Q. SO .Q]

·B[pqo QO F PQ]← maxs∈(p,q)
·L[pso .O . P .] ·RN [sqo QO F SQ]
·N [pso SO P. P .] ·RN [sqo QO F SQ]
·N [pso SO P. P .] ·RN [sqo QO F SQ]



CHAPTER 4. GRAPH PARSING 74

4.5.9 Left

The other decompositions, and the way we will structure this one, enable us to constrain the possible

direct edges for L items. Specifically, there is never a po edge. To make this the case there will

be instances later in this section where the decomposition provides a choice where an edge could

come from one of two sub-items. We will make that choice to ensure this property (no po edges)

remains true.

p q o

First we have a rule to remove the qo edge. For L items we also have to track whether there are

multiple o–(pq) edges. Adding this edge guarantees that there are multiple such edges.

Algorithm 4.14 Making L with direct edges (part one).

L
:
[pqo .O .O PQ]← maxA[o q] L[pqo .O .O PQ]

L
:
[pqo .O .O PQ]← maxA[q o] L[pqo .O .O PQ]

Once that edge is removed we are either left with an L that has no direct edges, or one with

the dashed edge above. Note, if the dashed edge is present, then the chaining property from the

previous section is true. Next are rules to remove that edge:

Algorithm 4.15 Making L with direct edges (part two).

L[pqo QO PO PQ]← maxA[q p] L[pqo QO PO PQ]
L[pqo QO PO PQ]← maxA[p q] L[pqo QO PO PQ]

Now we are considering an L with no direct edges (as indicated by the red dotted lines):

p q o

We will be dividing it into two pieces. To determine the split point, consider the o–(pq) edges.

For these edges, let s be the endpoint furthest from p. Using this definition we have that there are

no edges o–(sq], There are also no edges (ps)–(sq) by the definition of L. Therefore we can divide

the item into [ps.o] and [sq.p]. To determine the type of these two regions, consider whether or not

os is crossed.



CHAPTER 4. GRAPH PARSING 75

Not

Crossed
p s q o

By construction, there are no [ps)–(sq] edges, and so [sq.p] is actually the interval [sq]. For the

left part of the item, consider whether there is a crossing between p–(ps) edges and o–(ps) edges.

If such a crossing exists, [ps.o] is an L. Otherwise, it is an N . The N case occurs when the only

edge crossing the o–(pq) edges is an edge ps, which ends inside (pq), making the complete item an

L, but does not once we split at s.

Algorithm 4.16 Making L, cases three through eight.

L[pso .O .O PS] I[sq . .]
L[pso .O .O PS] I[sq . .]
N [pso SO PO PS] I[sq . .]
N [pso SO PO PS] I[sq . .]
N [pso SO PO PS] I[sq . .]
N [pso SO PO PS] I[sq . .]

In all six of these rules, the chaining property from the previous section is not present. We know

this because there is no crossing between edges in the I items and edges in the N or L items, and

so no edge ending at q can be part of a chain of crossing edges starting at p.

Single

Crossing
p s q o

Consider the case when os is the only o–(pq) edge. Here, the first sub-item is an X , [ps.o]. For

the second sub-item, all p–(s, q] edges will be crossed by os and so cannot be crossed by q–(sq)
edges. If there is an s–(sq) edge that crosses a p–(sq) edge then this sub-item is an L, otherwise it

is an N . Also, the item being split in this case can be marked as containing only one edge from the

external point into the span.

Algorithm 4.17 Making L, cases nine and ten.

X[pso .O .O F ] ·LN [sqp .P .P SQ]
X[pso .O .O PS] ·LN [sqp .P .P SQ]

Both of these rules could produce items with the chaining property. If the right item is an L and

it has the chaining property, then the final item will have it too. This is because we know the chain

must start at s, and so the X effectively adds one link to the chain. In the case of an N item, the

chaining property will be true if the N contains the pq edge, and false otherwise.



CHAPTER 4. GRAPH PARSING 76

Multiple

p s q o

Consider the case when os is not the only o–(pq) edge. If there is an o–(ps) edge that is crossed

by a p–(ps) edge then ps.o is an L. Otherwise, [ps.o] is an N (being an R is not possible as by

definition, no (pq)–(pq) edge can cross a (pq)–o edge). For the second half, all p–(sq) edges are

going to cross two or more o–(ps] edges, and so the one-EC property means they cannot be crossed

by any [sq]–[sq] edges. Therefore, [sq.p] is an N .

Algorithm 4.18 Making L, cases one and two.

LN [pso .O .O PS] ·N [sqp QP SP SQ]
LN [pso .O .O PS] ·N [sqp QP SP SQ]

In these cases the chaining property is false. The chain cannot exist because the multiple (pq)–o
edges limit the crossing that can occur within the span (any edge crossing the longest p–(pq) edge

would violate the one-EC property).

4.5.10 Right

Defined symmetrically to L.

4.5.11 Neither

Here we have the most flexibility in direct edges, though the structure of the decompositions means

that we never have the case of both op and oq at the same time.

p q o

p q o

As in the L case, we remove the op or oq edge first, then the pq edge. The definition of an N
item also means that any N that has an op or oq edge also meets the criteria of having two o–[pq]
edges.



CHAPTER 4. GRAPH PARSING 77

Algorithm 4.19 Making N with direct edges.

N
::
[pqo .O .O PQ]← maxA[x i] N [pqo .O .O PQ]

N
::
[pqo .O .O PQ]← maxA[i x] N [pqo .O .O PQ]

N
::
[pqo .O .O PQ]← maxA[x j] N [pqo .O .O PQ]

N
::
[pqo .O .O PQ]← maxA[j x] N [pqo .O .O PQ]

N [pqo QO PO PQ]← maxA[j i] N [pqo QO PO PQ]
N [pqo QO PO PQ]← maxA[i j] N [pqo QO PO PQ]

p q o

Now we can consider the case with no direct edges. As for L, we will define the split point

based on the o–(pq) edges. The split point will be the endpoint furthest from o (i.e., leftmost or

rightmost in (pq), depending on which side o is on)5. The two sides are symmetrical, so we will

only show the case with o to the right here. There are two cases, depending on how many edges

are in the o–(pq) set.

|o–(pq)| > 1
p s q o

There are no (ps)–(sq) edges by definition, and no o–[ps) edges by construction. Therefore

[ps] is an I . There are two o–[sq) edges, and neither is crossed by a (pq)–(pq) edge by definition,

therefore [sq.o] is an N .

Algorithm 4.20 Making N , cases three and four.

I[ps . .] N · [sqo QO SO SQ]
I[ps . .] N · [sqo QO SO SQ]

|o–(pq)| = 1
p s q o

5 Note that we could have used the point closest to o and also formed a valid set of deduction rules, though slightly

different from the ones shown here. Choices like this make impact parsing efficiency by determining which structures

are competing on which beams, but should not change accuracy. Characterizing the space of algorithms similar to this

one is an interesting question beyond the scope of this work.



CHAPTER 4. GRAPH PARSING 78

The reasoning for [ps] is the same as above. For [sq.o] we only have one o–[sq] edge, namely

os, and so this is an X .

Algorithm 4.21 Making N , cases seven and eight.

I[ps . .] X· [sqo .O .O SQ]
I[ps . .] X· [sqo .O .O SQ]

4.5.12 Additional Constraints

The description above gives the complete decomposition, additional general rules are used to deter-

mine the specific rule set. They are enforced by the code that converts the templates into all valid

deduction rules:

• Items cannot contain cycles. This also implies that every item must have at least one point

without a parent.

• When combining two items, any points that will end up in the middle of the new span must

have a parent in one of the items being combined.

Both of these can be enforced in the rule creation because we have the complete set of parent

connections present in the definition of what combinations are allowed.

4.6 Algorithm Properties

4.6.1 Derivational Ambiguity

One key difference between our algorithm and the original one-endpoint-crossing algorithm pre-

sented by Pitler et al. (2013) is that we avoid spurious ambiguity in the ways a parse can be decom-

posed. Most of the cases in which this ambiguity arises in Pitler et al. (ibid.)’s algorithm are due to

symmetry that is not explicitly broken. For example, the choice of t in the description of Intervals.

We resolved these issues by breaking such cases of symmetry, and altering the definitions of the

items to ensure they cannot represent equivalent structures. By avoiding derivational ambiguity we

reduce the search space, and enable efficient summing over the space.

4.6.2 Complexity

We will define the complexity in terms of:

• n, the number of words in a sentence.

• e, the number of edge types in the model.

• s, the number of word labels, e.g., Part-of-Speech tags, in the model.



CHAPTER 4. GRAPH PARSING 79

Unlabeled Structure We can determine the complexity by considering how many different ways

the deduction rules can apply. For the ternary rules, the left end could be one of O(n) words, the

right end could be one of O(n) words, and each of the two split points could be one of O(n) words,

giving O(n4) overall. The precise number is smaller, since if we choose word p as the left end

then we have n − p choices for the first split point, and similarly for the other two points, but the

asymptotic complexity remains the same. Similarly, for binary rules with an external point there

are four positions (left, right, split, external), and so the complexity is O(n4). The other rules have

fewer possible instantiations, and so do not impact the overall complexity. This means the overall

complexity is O(n4).

Edge labels Since our algorithm separates edge creation and item combination, these only impact

the edge creation step. There are O(n3) possible items (left end, right end, external point), each of

which could have up to six edges (two directions, between any pair of three points). However, that

over counts drastically, since the same edge can appear in many different items. Instead we can

compute all edge scores for each pair of words and store the best option. That gives a complexity of

O(en2), where there are n possible left endpoints, n possible right endpoints, and e possible labels.

Together with the complexity of combinations from above, we get O(n4 + en2).

Word labels Following the same logic as above, we can update the two terms in our complexity.

In both cases the same logic follows, except now there are sn options for each position, rather

than n, this is because we need to consider word–label combinations rather than just words. This

changes the complexity to O(s4n4 + es2n2)

Depending on the number of edge types, the number of word labels, and the average length of

sentences, either the first or second term could dominate the complexity. We will see in the next

section that to formulate constituency parsing in a way compatible with our algorithm we will end

up with e and s both around a thousand6, making full enumeration of the dynamic program too

slow in practice. We resolve this issue through several types of pruning, described in Section 4.9.3.

Finally, it is also worth noting that there is an important constant in the complexity, relating to

the number of rules. For any set of split points there are multiple items that could be combined.

Once our templates are expanded to show the possible state combinations there are 49,292 rules.

However, at the end of Section 4.9.3 we will also see how the number of rules can be drastically

reduced, to 158, with almost no loss in coverage.

4.7 Parse Representation

Our algorithm relies on the assumption that we can process the dependents to the left and right of

a word independently, then combine the two halves. This means we need lexicalized structures,

6 While there are less than fifty Part-of-Speech tags in the Penn Treebank, we will be using word labels to do much

more in our representation.



CHAPTER 4. GRAPH PARSING 80

(a) Standard PTB struc-

ture.

Sarah told Rebecca to run

*1 VP

NPSBJ VP

NP1 S

NPSBJ VP

S

(b) Lexicalized PTB

structure.

Sarah told Rebecca to run

*1 VP

NPSBJ VP

NP1 S

NPSBJ VP

S

(c) Our representation.

ROOT NPSBJ

Sarah

S VP

told

NP

Rebecca

-

to

S VP VP

run

NPSBJ

Figure 4.18: Parse representations for graph structures.

which the PTB does not provide. To address this issue, we define a new representation in which

each non-terminal symbol is associated with a specific word (the head). Unlike dependency parsing,

we retain all the information required to reconstruct the constituency parse.

Our representation is based on Carreras et al. (2008)’s tree representation, with three key differ-

ences: (1) we encode all non-terminals explicitly, rather than implicitly through adjunction opera-

tions, which can cause ambiguity in their structure, (2) we add representations of null elements and

co-indexation, (3) we modify the head rules to avoid problematic structures.

4.7.1 Core Structure

Figure 4.18 shows a comparison of the standard PTB representation, a lexicalized version of the

PTB, and our representation. The changes we make are motivated by constraints imposed by our

algorithm. Specifically, the algorithm only allows two types of structure to be built: word labels,



CHAPTER 4. GRAPH PARSING 81

and edges between pairs of words. In contrast, the standard PTB representation has structural

components that do not fit directly into either labels or edges, for example, the S at the top in (a)

is not associated with any particular word (and so cannot be a label) and is not associated with a

particular pair of words either (and so cannot be an edge).

We address this issue by lexicalizing the PTB, as shown in (b). Going from (a) to (b), all we

have done is shift some of the non-terminal symbols left or right; the connectivity is the same, and

so the structure is the same. These shifts associate each non-terminal symbol with a specific word,

it’s head. For example, the S mentioned above is associated with told, indicated by the fact that it

is now directly above told.

Going from (b) to (c), we are pushing non-terminals down to be directly above their head, and

adjusting the lines to suit that change. Diagonal lines in (b) become curved lines in (c); these will

be the edges in our algorithm. The direction of the curved lines indicates which way was up in (b).

Vertical lines in (b) become horizontal lines in (c); together with the non-terminals these become

special symbols called spines. We will discuss how the null element is handled in Section 4.7.2.

Aside from lexicalization, which adds information (the choice of head), this process has only

pushed around notation without changing the structure. However, we now have the structure for-

mulated as two components. Every word is assigned a spine, and every word is the child of one

non-trace edge. Together, these form the base tree structure of the parse.

Spines Shown in black immediately above each word, a spine is the ordered set of non-terminals

that the word is the head for, e.g., S-NP for told. If a symbol occurs more than once in a spine, we

use indices to distinguish between instances.

Edges A link between two words, with a label indicating: (1) the top of the child’s spine, and

(2) the symbol that it connects to in the parent’s spine7. In our figures the arcs show their label by

starting and ending at the appropriate symbols.

Avoiding Adjunction Ambiguity

Carreras et al. (2008) use r-adjunction to add additional non-terminals to spines. This introduces

ambiguity, because edges modifying the same spine from different sides may not have a unique

order of application. We resolve this issue by using more articulated spines that have the complete

set of non-terminals. The potential drawback of our approach is that coverage of spines is more

limited by the training set than their approach. In practice, coverage is high, with 99.93% of spines

in the development set observed in the training set.

4.7.2 Additional Structure

The base tree representation described above does not cover null elements or co-indexation, and so

only fully represents 26.6% of sentences.

7 In practice we also indicate the sibling symbol, i.e., the symbol preceding the parent in the parent’s spine. This

is redundant for representing the structure, but is helpful for modeling.



CHAPTER 4. GRAPH PARSING 82

cakes Charlie baked *T*1

NP

0 NPSBJ VP

WHNP1 S

NP SBAR

NP

NP NP

cakes

NPSBJ

Charlie

SBAR (WHNP 0) S VP

baked

NP

(a) Null to null

cooked soup today and curry yesterday

NP1 NPTMP,2 NP=1 NPTMP,=2

VP VP

VP

VP VP NP NPTMP - VP NP NPTMP

cooked soup today and curry yesterday

= =

(b) Gapping

Figure 4.19: Examples of syntactic phenomena. Dashed edges are traces, solid edges are structural.

Some edges are fainter to more clearly show the key edges for each case.

Null Elements The Penn Treebank contains a range of null elements, indicating structures such

as the trace of movement, PRO, and null complementizers. These elements do not span any words,

so do not have a head word. For example, in Figure 4.18 there is a null element that represents the

missing subject of the infinitive.

We represent null elements in our structure in two ways. If the null element has a reference

index, shown as a subscript in our figures, we represent the null element as part of an edge, as

described below. Otherwise, we insert it into a spine, as shown for the null element and its parent

WHNP in Figure 4.19a.

Co-indexation The treebank represents movement with index pairs on null elements and non-

terminals, e.g., *1 and NP1 in Figure 4.20a. To represent co-indexation we create extra edges, one

for each index, going from the null element to the non-terminal. The edge is labeled to indicate the

type of trace and null element. There are three special cases of co-indexation:

(1) The treebank uses a chain of indexes to represent the case of a non-terminal that links to

multiple null elements. We represent this case with multiple edges, all starting at the non-terminal

and ending at each of the different null positions.

(2) It is possible for a trace edge to have the same start and end points as a non-trace edge. We

restrict this situation to allow at most one base edge, one trace edge, and one chain edge at the same

time. This decreases edge coverage in the training set by 0.012%.

(3) In some cases the non-terminal does not span any words, but instead contains another null

element, e.g., the WHNP in Figure 4.19a. For these we generate an edge, but reverse the direction.

This reversal is necessary to avoid creating a loop in the structure. In Figure 4.19a we show a



CHAPTER 4. GRAPH PARSING 83

companies linked *1 to ...

NP VP

NP1 VP

NP

NP NP

companies

VP

linked

-

to

VP

...

NP

(a) Cycle

Page was named *1 CEO of Google today

NP NP

S ADJP

VP

NP1 VP

S

ROOT NP S VP VP S NP ADJP

Page was named CEO of Google today

NP

(b) Not One-Endpoint Crossing

Figure 4.20: Examples of problematic structures. Dashed edges are traces, solid edges are struc-

tural. The edges that are problematic are shown in a darker color.

special case where the trace edge links two positions in the same spine. We represent this as part

of the spine, rather than as an edge.

Gapping For parallel constructions the treebank co-indexes arguments that are fulfilling the same

roles, as shown in Figure 4.19b. These are distinct from the previous cases because neither index is

on a null element. We considered two approaches for these cases: (1) add edges from the repetition

to the first occurrence (shown in Figure 4.19b), (2) add edges from the repetition to the parent

of the first occurrence, e.g., the left VP in Figure 4.19b. The second approach produces more

structures that fall within the graph space we consider and explicitly represents all predicates, but

only implicitly captures the original treebank structure.

4.7.3 Head Rules

To construct the spines we use head rules that consider the type of a non-terminal and its children.

In many cases different head word options represent more syntactic or semantic aspects of the

span. When parsing trees, any set of head rules will generate a valid structure. For graphs, the

head rules can have a major impact on properties of the final structure. Two particular properties

that are relevant to our algorithm are whether cycles are present, and whether the edges obey the

one-endpoint crossing property.

Cycles One example of cycles was mentioned in the previous section, but they can occur when-

ever a trace edge is added, e.g., between companies and linked in Figure 4.20a. Starting from

Carreras et al. (2008)’s head rules, we made modifications to avoid most cycles. For example, in



CHAPTER 4. GRAPH PARSING 84

a subordinate clause consisting of a Wh-noun phrase (WHNP) and a declarative clause (S), we

switched the head to be the S. Often the WHNP has a trace to within the S, so making it the head

would create a cycle.

One-Endpoint Crossing The dark edges in Figure 4.20b show an example of how head rules

can impact this property. The trace edge from Page to CEO of Google does not satisfy the one-EC

property because it is crossed by two edges with no endpoints in common. By switching the head

rule for VPs to use a child VP rather than an auxiliary, we can resolve this case.

4.8 Algorithm Extensions

To handle our representation, we extend the core algorithm described above to support labels on

edges and labels on words (spines). Additionally, we can constrain the search space to structures

containing a projective tree of non-trace edges.

4.8.1 Edge Labels and Spines

Edge labels can be added by calculating either the sum or max over edge types when adding each

edge, and recording the chosen edge in the back reference for the state. Spines must be added

to the state definition, specifying a label for each visible word (p, q and o). This state expansion

is necessary to ensure agreement when combining items. Carreras et al. (2008)’s projective tree

parser uses a similar approach, while Pitler et al. (2013)’s algorithm is for dependency parsing and

so does not consider spines.

4.8.2 Ensuring the Graph Contains a Structural Tree

The algorithm above constrains the space of graph structures, but does not say anything about the

edge types being combined. In practice, we are only interested in parses that are composed of trace

edges plus a projective tree of structural edges. Since prior work focused on trees, not graphs,

support for this constraint has not previously been explored.

To ensure every point gets one and only one structural parent, we add booleans to the state,

indicating whether p, q and o have structural parents. When adding edges, a structural edge can not

be added if a point already has a structural parent. When combining items, no point can receive

more than one structural parent, and points that will end up in the middle of the span must have

exactly one. Together, these constrains ensure we have a tree.

To ensure the tree is projective we need to prevent structural edges from crossing. Crossing

edges are introduced in two ways, and in both we can avoid structural edges crossing by tracking

whether there are structural o–[pq] edges.



CHAPTER 4. GRAPH PARSING 85

When creating edges

Every time we add a pq edge in the N , L, R and B items we create a crossing with all o–(pq)
edges. We do not create a crossing with edges oq or op, but our ordering of edge creation means

these are definitely not present when we add a pq edge, so tracking structural o–[pq] edges gives us

the information we need.

We set the boolean for structural o–[pq] edges to true if it is currently true or we are creating a

structural op or oq edge, and false otherwise.

Algorithm 4.22 Rules that could create crossing arcs.

RN · [ikl F IL IK] I[kl . .] ·LNX[ljk .K . L.] RNX· [ilk F .K .L] I[lk . .] ·LN [kjl JL F KJ ]
I[il F .] ·LN [lki .I .I F ] ·N

::
[kjl JL K. K.] N

::
· [ikl KF IL .K] RN · [klj .J .J F ] I[lj . F ]

RNX· [ilk F .K IL] I[lk . .] ·LN
:::

[kjl .L . K.] RN
:::
· [ikl F .L .K] I[kl . .] ·LNX[ljk .K F LJ ]

LN [ikx .X .X IK] ·N [kji JI KI KJ ] N · [ikj KJ IJ IK] RN [kjx .X .X KJ ]
LN [ikx .X .X IK] ·N [kji JI KI KJ ] N · [ikj KJ IJ IK] RN [kjx .X .X KJ ]
X[ikx .X .X F ] ·LN [kji .I .I KJ ] RN · [ikj .J .J IK] X[kjx .X .X F ]
X[ikx .X .X IK] ·LN [kji .I .I KJ ] RN · [ikj .J .J IK] X[kjx .X .X KJ ]

When combining items

We never introduce a crossing when making a B, or in any rule that combines a set of items with

only one non-I . That leaves the rules shown in Figure 4.22.

While in general there is the potential that an o–[pq] boolean might be true because of an op or

oq edge that does not participate in a crossing, the way we have chosen to set the parent constraints

above means this is not the case. Instead, all o–[pq] edges in each pair of items will cross, and

so knowing whether any o–[pq] edge is structural is sufficient to determine whether a structural

crossing is occurring.

4.9 Implementation

While the core algorithm is fully described in the previous sections, and has desirable asymptotic

speed properties, a simple implementation would be slow. Here we describe the additional design

decisions needed to enable efficient parsing and modern training methods. Each section below

describes one component of the system, its optimizations and the motivation behind them.

4.9.1 Model

We use a discriminative model, which assigns scores to parses using a linear combination of weights.

Each weight corresponds to some feature of the parse and input data, e.g., the spine being added

is NP and the word to the left is the. Our features are based on the set defined by McDonald et al.

(2005).



CHAPTER 4. GRAPH PARSING 86

4.9.2 Learning

We train with an online primal subgradient approach (Ratliff et al. 2007) as described in Kummer-

feld, Berg-Kirkpatrick, et al. (2015). We compute the subgradient of the margin objective on each

instance by performing a structured loss-augmented decode, then uses these instance-wise subgra-

dients to optimize the global objective using AdaGrad (Duchi et al. 2011) with either L1 or L2

regularization. To improve speed, we use sparse updates and batch processing, as described below.

Batches

Instead of updating the model with subgradients calculated for single sentences, we consider the

sum over a small number of sentences (a batch). In each pass through the training data we make

fewer updates to our model, but each update is based on a more accurate subgradient. This has the

advantage that we can parse all of the sentences in the batch in parallel. Since most of our time is

spent in parsing, this can produce improvements proportional to the number of CPU cores available.

In practice, memory is also a constraint, and CPU utilization is limited by memory bandwidth and

possibly memory management by the Java Virtual Machine.

Sparse Updates

Not every weight contributes to the score of every parse, but the simplest implementation of Ada-

Grad modifies every weight in the model when doing an update. To save time, we distinguish

between two different types of update. When the subgradient for a weight is nonzero, we apply

the usual update. When the subgradient for a weight is zero, we apply a numerically equivalent

update later, at the next time the weight is queried. This saves time, as we only touch the weights

corresponding to the (usually sparse) nonzero directions in the current batch’s subgradient. The

update that occurs later saves time overall because we can combine more than one update together

in a simple closed form calculation. Algorithm 4.23 gives pseudocode for our implementation.

Sparse updates do add some memory and computation costs. First, when accessing weights and

applying the delayed updates, we need to use synchronization to ensure an exact update. Second,

we need to use memory to track the last time each weight was updated and to provide a lock for

each weight (used for synchronization).

If we are willing to give up exactness we can avoid the synchronization delay by applying

a lock-free approach similar to Recht et al. (2011). Our approach is shown in lines 30 to 33 of

Algorithm 4.23. To perform an update we first read all the relevant variables (weight, gradient

sum, update time), then calculate the new weight. Before saving the new weight, we check to see

if the time of the last update (uf ) is now equal to the current time (n). If it does, we do nothing

and continue. If it doesn’t, then we set the new update time, then update the weight (that order is

important). If multiple threads are applying an update simultaneously then the race to do the update

can play out in a few ways. Since the update time is changed before the weight is changed, and all

threads are updating to the same new time, we can guarantee that any thread that gets through the

time check will be doing the correct update (the worry is that the thread read an inconsistent set of

values). If the time has changed then either another thread already did the work, in which case all



CHAPTER 4. GRAPH PARSING 87

Algorithm 4.23 Online Primal Subgradient with ℓ1 or ℓ2 regularization, sparse updates

1: Parameter: iters Number of iterations

2: Parameter: C Regularization constant (10−1 to 10−8)

3: Parameter: η Learning rate (100 to 10−4)

4: Parameter: δ Initializer for q (10−6)

5: w = 0 Weight vector

6: q = δ Cumulative squared gradient

7: u = 0 Time of last update for each weight [sparse updates only]

8: n = 0 Number of updates so far [sparse updates only]

9: for iter ∈ [1, iters] do
10: for batch ∈ data do

11: g = 0 Sum of gradients from loss-augmented decodes

12: for (xi, yi) ∈ batch do

13: y = argmaxy′∈Y (xi)
[SCORE(y′) + L(y′, yi)] Loss-augmented decode

14: g += (f(y)− f(yi)) Update the active features

15: q += g2 Add the element-wise square of the subgradient

16: n += 1
17: for f ∈ g where gf ̸= 0 do Over all features if not doing sparse updates

18: wf = UPDATE-ACTIVE(wf , gf , qf )

19: uf = n

20: function UPDATE-ACTIVE(w, g, q) The AdaGrad update

21: [ℓ2] return
w
√
q−ηg

ηC+
√
q

22: [ℓ1] d = |w − η√
q
g| − η√

q
C

23: [ℓ1] return sign(w − η√
q
g) ·max(0, d)

24: function UPDATE-CATCHUP(w, q, t) A single update equivalent to a series of AdaGrad

25: [ℓ2] return w
( √

q

ηC+
√
q

)t

updates where the weight’s subgradient was zero

26: [ℓ1] return sign(w) ·max(0, |w| − ηC√
q
t

27: function SCORE(y′) Compute w⊤f(y′), but if doing sparse updates, then
28: s = 0 for each weight, apply an update to catch up on the

29: for f ∈ f(y′) do steps in which the gradient for that weight was zero

30: nw = UPDATE-CATCHUP(wf , qf , n− uf )

31: if uf ̸= n then For parallel decoding, this enables updates without

32: uf = n locking. In some cases, an old weight will be used,

33: wf = nw but wf will not be updated incorrectly.

34: s += wf

35: return s

Note: To implement without the sparse update, use SCORE = w⊤f(y′), and run the update loop over all features. Also,

for comparison, to implement the perceptron, remove the sparse update and use UPDATE-ACTIVE = return w + g.



CHAPTER 4. GRAPH PARSING 88

is well, or another thread has set uf , but not wf , in which case we may continue with an old version

of the weight. That slight possibility of using an old weight turns out to not be an issue. We found

that avoiding locks did not impact accuracy, but also did not substantially impact speed.

Loss Function

In loss-augmented decoding, we find the parse with the highest score when adding the loss of the

parse to the model score. In this context, loss is a measure of the difference between a given parse

and the correct parse. To efficiently find the top scoring parse in this case we need the loss function

to decompose in a way that matches our dynamic program.

The performance metric we want to optimize, F-score, cannot be decomposed. The simplest

alternative would be to use the number of incorrect arcs, as we can adjust the score when adding an

arc based on whether the arc is correct or not. For parsing without traces that would be fine, as we

are making a fixed number of decisions: one arc and spine per word (i.e., the denominator of the

metric we are optimizing is constant). However, when parsing with traces, if there is supposed to

be a trace and we leave it out, the mistake is not penalized by the number-of-incorrect-arcs metric.

Instead we use hamming distance, the number of incorrect arcs plus the number of missing arcs.

As above, incorrect arcs are easy to account for. For missing arcs, we must be careful to count each

mistake exactly once. We can be certain an arc will not be created when a deduction rule is applied

that leaves one of the ends in the middle of a span (e.g., when two items are combined the middle

point is now in the middle of the span produced). To avoid counting twice (once for each end) we

have a few options:

• When combining two halves that would lead to double counting, subtract off to avoid it (at

the point of combination we have all the information needed to do so)

• Assign half to each end

• Only count on one end (options include the left end, the right end, the parent, or the child)

In our system we use the first approach.

4.9.3 Inference

The core contributions of this entire chapter is the inference algorithm presented in Section 4.5.

The core idea behind the algorithm is to constrain the space to consider so that it can be explored

efficiently, while still covering the structures observed in language. Here we describe modifications

at various scales that improve speed by pruning the space further.

State beams

In each cell of the chart we use a beam, discarding items based on their Viterbi inside score. We

ensure diversity by dividing each beam into a collection of sub-beams. In all three passes, the sub-

beams separate items based on their type (N , L, etc), and the parents of each position in the item.



CHAPTER 4. GRAPH PARSING 89

This subdivision enables us to avoid considering most incompatible items. The pass with spines

also includes one of the spines in the sub-beam definition for the same reason. We tuned the beam

size to prevent the gold structure being pruned in training, with values falling between 100 and

2000.

Cube pruning

We apply the standard cube pruning approach when doing binary and ternary compositions (Chiang

2007). Since we are using sub-beams to determine which items are compatible, we use a heap

of sub-cubes during composition. Using fine sub-beams to avoid comparing incompatible items

means that there are many of these sub-cubes, and so we also prune entire sub-cubes based on the

score of their top item. Again, we tuned how far through the cube we go when combining items by

increasing the value until gold structures were not being pruned in training, with the value ranging

from 500 to 8000.

Coarse to Fine Pruning

Rather than parsing immediately with the full model we use several passes with progressively richer

structure (Goodman 1997):

1. Projective parser without traces or spines, and simultaneously a trace classifier

2. Non-projective parser without spines, and simultaneously a spine classifier

3. Full structure

Each pass prunes using max-marginals from the preceding pass and scores from the preceding

classifier. The third pass also prunes spines that are not consistent with at least one unpruned edge

from the second pass.

Inside–Outside Calculations

There are two general algorithm classes for parsing that our algorithm can be used within: Viterbi

and Inside–Outside. The first of these finds the optimal structure for a sentence under a given model

and in the process determines the optimal substructure for every span of the sentence. While that

is sufficient for parsing, it does not provide the information we need for pruning. Instead we use

the inside–outside algorithm, which computes for every item either the sum or max over all parses

that include that item.

When using our algorithm with a model that only places weights on the edges, calculation of

the scores is straightforward. Each edge exists in only one place in the derivation, between the item

without it and the item with it. Once spines are introduced the situation changes because we would

like to score them in all of the items they appear in. This scoring is important for the beams and

cube pruning to be effective; if we only scored spines in one of the items they appear in there would

be many ties.



CHAPTER 4. GRAPH PARSING 90

For the projective algorithm case each spine is introduced in exactly two items in the derivation,

and so we can simply assign half the score to each. For the non-projective version the spine may ap-

pear in more locations because it needs to be introduced when we add external points. To correctly

calculate the score, and also have effective pruning, we add the complete score every time the spine

is introduced and then subtract the score when two items with a spine in common are combined.

Algorithm rule pruning

Many structures that can be generated by our dynamic program are not seen in the data we consider.

To improve speed, we leave out all rules that are not used in the derivation of sentences in the

training set8. Of the 49,292 specific rules in the algorithm, only 158 are needed to generate all

sentences in the training set. Narrowing down to these does have implications for coverage, but

looking at the development set we found only one rule in one parse that was not in the set of 158.

Figure 4.24 shows the complete dynamic program from Figure 4.2, but with rules that can be

completely eliminated boxed and colored blue. We can see several properties:

• B items are never created.

• L and R items are always immediately combined with other items to create an I .

• The external point can be a parent or child when an X is created, but additional edges always

have it as the parent, and are only added in N items, not L or R items.

Pruning the rules in this way further constrains the space of structures that can be formed to some

subset of one-endpoint cross graphs. This subset more closely describes the structures observed in

language. Unfortunately, it is difficult to characterize this space. Figure 4.25 shows the remaining

rules, with further constraints on parents based on the observed rules (these were hard to show

in Figure 4.24). One description of the space is that it is the set of structures generated by the

deduction rules in Figure 4.25, but that is not particularly satisfying. In particular, it may be the

case that this set of rules is impacted by variations such as the choice of head rules.

While this pruning opens new questions about the space of structures in parsing, for our pur-

poses it is primarily a way of improving speed. The drastic reduction in rules leads to a substantial

improvement in the time required for parsing.

4.10 Results

4.10.1 Algorithm Coverage

Table 4.1 divides sentences in the training set of the treebank by structure type and whether a

directed cycle is present or not. Structures that are recoverable using our algorithm are bolded.

8 Note, this pruning occurs after the parses have been modified to be one-EC structures, i.e., trace edges that created

cycles or made non-one-EC crossings have been removed.



CHAPTER 4. GRAPH PARSING 91

Algorithm 4.24 Full dynamic program with rules unseen in training boxed and colored.

L
:
[ijx .X .X IJ ]← max

A[x j] L[ijx .X .X IJ ]

L
:
[ijx .X .X IJ ]← max

A[j x] L[ijx .X .X IJ ]

L[ijx JX IX IJ ]← max

A[j i] L[ijx JX IX IJ ]

L[ijx JX IX IJ ]← max

A[i j] L[ijx JX IX IJ ]

R
:
[ijx .X .X IJ ]← max

A[x i] R[ijx .X .X IJ ]

R
:
[ijx .X .X IJ ]← max

A[i x] R[ijx .X .X IJ ]

R[ijx JX IX IJ ]← max

A[j i] R[ijx JX IX IJ ]

R[ijx JX IX IJ ]← max

A[i j] R[ijx JX IX IJ ]

I[ij F I]← max

A[i j] I[ij F I]

I[ij J F ]← max

A[j i] I[ij J F ]

N
::
[ijx .X .X IJ ]← max

A[x i] N [ijx .X .X IJ ]

N
::
[ijx .X .X IJ ]← max

A[i x] N [ijx .X .X IJ ]

N
::
[ijx .X .X IJ ]← max

A[x j] N [ijx .X .X IJ ]

N
::
[ijx .X .X IJ ]← max

A[j x] N [ijx .X .X IJ ]

N [ijx JX IX IJ ]← max

A[j i] N [ijx JX IX IJ ]

N [ijx JX IX IJ ]← max

A[i j] N [ijx JX IX IJ ]

X[ijx .X .X F ]← max

A[x i] I[ij . .]

X[ijx .X .X IJ ]← max

A[i x] I[ij . .]

X[ijx .X .X F ]← max

A[x j] I[ij . .]

X[ijx .X .X IJ ]← max

A[j x] I[ij . .]

B· [ijx F IX IJ ]← max

A[i j] B· [ijx F IX IJ ]

·B[ijx JX F IJ ]← max

A[j i] ·B[ijx JX F IJ ]

I[ij F I]← max

I[i i+1 F F ] I[i+1 j F F ]
maxk∈(i,j)

I[ik F I] I[kj . .]

B LRN · [ikj F IJ IK] I[kj . .]
maxl∈(k,j){

RN · [ikl F IL IK] I[kl . .] · LX N [ljk .K . L.]

B LRN · [ikl F IL IK] I[kl . .] I[lj . .]
maxl∈(i,k) I[il F .] ·LN [lki .I .I F ] ·N

::
[kjl JL K. K.]

RN X· [ilk F .K IL] I[lk . .] · L N
::::

[kjl .L . K.]

I[ij j F ]← maxk∈(i,j)

I[ik F .] I[kj J F ]

I[ik F .] · B LRN [kji JI F KJ ]
maxl∈(i,k){

RNX· [ilk F .K .L] I[lk . .] ·LN [kjl JL F KJ ]

I[il F .] I[lk . .] · BR LN [kjl JL F KJ ]
maxl∈(k,j)

N
::
· [ikl KF IL .K] RN · [klj .J .J F ] I[lj . F ]

RN
:::
· [ikl F .L .K] I[kl . .] ·LNX[ljk .K F LJ ]

L
:
[ijx JX IX IJ ]← maxk∈(i,j)

LN [ikx .X .X IK] ·N [kji JI KI KJ ]
LN [ikx .X .X IK] ·N [kji JI KI KJ ]
L[ikx .X .X IK] I[kj . .]
L[ikx .X .X IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]
N [ikx KX IX IK] I[kj . .]

L. [ijx JX IX IJ ]← maxk∈(i,j){
X[ikx .X .X F ] · L N [kji .I .I KJ ]

X[ikx .X .X IK] · L N [kji .I .I KJ ]

B· [ijx F IX IJ ]← maxk∈(i,j)
LN · [ikx F IX IK] R· [kjx . .X .J ]
LN · [ikx F IX IK] N · [kjx J. KX .J ]
LN · [ikx F IX IK] N · [kjx J. KX .J ]

·B[ijx JX F IJ ]← maxk∈(i,j)
·L[ikx .X . I.] ·RN [kjx JX F KJ ]
·N [ikx KX I. I.] ·RN [kjx JX F KJ ]
·N [ikx KX I. I.] ·RN [kjx JX F KJ ]

N
::
[ijx JX IX IJ ]← maxk∈(i,j)
·N [ikx KX IX IK] I[kj . .]

·N [ikx KX IX IK] I[kj . .]

I[ik . .] N · [kjx JX KX KJ ]

I[ik . .] N · [kjx JX KX KJ ]

N. . [ijx JX IX IJ ]← maxk∈(i,j)
·X[ikx .X .X IK] I[kj . .]
·X[ikx .X .X IK] I[kj . .]
I[ik . .] X· [kjx .X .X KJ ]
I[ik . .] X· [kjx .X .X KJ ]

R
:
[ijx JX IX IJ ]← maxk∈(i,j)

N · [ikj KJ IJ IK] RN [kjx .X .X KJ ]
N · [ikj KJ IJ IK] RN [kjx .X .X KJ ]
I[ik . .] R[kjx .X .X KJ ]
I[ik . .] R[kjx .X .X KJ ]
I[ik . .] N [kjx JX KX KJ ]
I[ik . .] N [kjx JX KX KJ ]
I[ik . .] N [kjx JX KX KJ ]
I[ik . .] N [kjx JX KX KJ ]

R. [ijx JX IX IJ ]← maxk∈(i,j){
R N · [ikj .J .J IK] X[kjx .X .X F ]

R N · [ikj .J .J IK] X[kjx .X .X KJ ]



CHAPTER 4. GRAPH PARSING 92

Algorithm 4.25 Pruned dynamic program, including only rules observed in the training set, includ-

ing tighter parent constraints.

L[ijx JF F IJ ]← max

A[j i] L[ijx F IF IJ ]

L[ijx F IF IJ ]← max

A[i j] L[ijx F IF IJ ]

R[ijx JF F IJ ]← max

A[j i] R[ijx JF F IJ ]

R[ijx F IF IJ ]← max

A[i j] R[ijx F IF IJ ]

N
::
[ijx .X .X IJ ]← max

A[x i] N [ijx FX FX F ]

N
::
[ijx .X .X IJ ]← max

A[x j] N [ijx FX FX F ]

N [ijx JX IX IJ ]← max

A[j i] N [ijx JF F IJ ]

N [ijx JX IX IJ ]← max

A[i j] N [ijx F IX IJ ]

X[ijx .X .X F ]← max

A[x i] I[ij . .]

X[ijx .X .X IJ ]← max

A[i x] I[ij . .]

X[ijx .X .X F ]← max

A[x j] I[ij . .]

X[ijx .X .X IJ ]← max

A[j x] I[ij . .]

I[ij F I]← max

A[i j] I[ij F I]

I[ij J F ]← max

A[j i] I[ij J F ]

I[ij F I]← max

I[i i+1 F F ] I[i+1 j F F ]
maxk∈(i,j)

I[ik F I] I[kj . .]
LRN · [ikj F IJ IF ] I[kj . .]
maxl∈(k,j){

RN · [ikl F IF IK] I[kl F .] ·N [ljk FK F F ]
LRN · [ikl F IF IK] I[kl F .] I[lj . F ]

maxl∈(i,k){
X· [ilk F .F IF ] I[lk F .] ·N

::
[kjl F F l F ]

I[ij j F ]← maxk∈(i,j)
I[ik F F ] I[kj J F ]
I[ik F F ] ·LRN [kji JF F KJ ]
maxl∈(i,k){

RNX· [ilk FF .K F ] I[lk . .] ·LN [kjl JF F KJ ]
I[il F F ] I[lk . F ] ·LN [kjl JF F KJ ]

L. [ijx JX IX IJ ]← maxk∈(i,j){
X[ikx F .X F ] ·N [kji .I F FJ ]
X[ikx F .X IK] ·N [kji .I F FJ ]

R. [ijx JX IX IJ ]← maxk∈(i,j){
N · [ikj F .J IF ] X[kjx .X F F ]
N · [ikj F .J IF ] X[kjx .X F KJ ]

N
::
[ijx JX IX IJ ]← maxk∈(i,j){
·N [ikx FX IX F ] I[kj F .]
I[ik . F ] N · [kjx JX FX F ]

N. . [ijx JX IX IJ ]← maxk∈(i,j)
·X[ikx .X .X IK] I[kj . .]
·X[ikx .X .X IK] I[kj . .]
I[ik . .] X· [kjx .X .X KJ ]
I[ik . .] X· [kjx .X .X KJ ]

Structure Type Acyclic Has a cycle

Projective Tree 46.74% -

Projective Graph 26.37% 0.87%

One-Endpoint Crossing 24.06% 0.37%

Other Graph 1.57% 0.04%

Table 4.1: Number of sentences in the training set that are of each structure type. Structures that

are recoverable using our algorithm are in bold. The acyclic / contains a cycle distinction is disjoint,

but the four types of structures are not. The values shown are the percentage of parses that fall into

that class and not the classes above, i.e., the total for Projective Graphs is 73.11% but 26.37% is

the value shown as that is the number of Projective Graphs that are not also Projective Trees.



CHAPTER 4. GRAPH PARSING 93

Coverage (%)

Approach Sentences Edges

Projective trees without null elements 26.59 96.27

Core representation (4.7.1) 76.69 98.47

+ Head rule changes (4.7.3) 95.76 99.53

+ Null reversal (4.7.2) 97.17 99.59

+ Gapping shift (4.7.2) 97.66 99.60

Table 4.2: Coverage improvements for parts of our representation. Core uses the representation

proposed in this work, with the head rules from Carreras et al. (2008). Edge results are when

removing only the edges necessary to make a parse representable (e.g., removing one edge to break

a cycle).

The structures we consider cover almost all sentences, while projective trees, the standard output

of parsers, account for less than half of sentences.

In Table 4.2 we show the impact of design decisions for our representation. The percentages

indicate how many sentences in the training set are completely recoverable by our algorithm. Each

row shows the outcome of an addition to the previous row, starting from no traces at all, going

to our representation with the head rules of Carreras et al. (2008), then changing the head rules,

reversing null-null edges, and changing the target of edges in gapping. The largest gain comes from

changing the head rules, which is unsurprising since Carreras et al. (ibid.)’s rules were designed for

trees, where any set of rules produce valid structures.

4.10.2 Problematic Structures

To understand what structures are still not covered by our approach we manually inspected twenty

examples that contained a cycle and twenty examples where the structure did not satisfy the one-

endpoint-crossing property. The reason these are a problem is that our algorithm can only generate

graphs that do not contain cycles and that satisfy the one-EC property. Adapting to cycles may

be possible by adjusting the algorithm, further separating the enforcement of parent relations and

the enforcement of connectivity and crossing properties, but this is beyond the scope of this work.

Meanwhile, the one-EC property is a fundamental assumption that we use to construct the algo-

rithm, in the same way that the tree property is an assumption enabling Eisner (1996)’s algorithm.

For the cycles, eleven of the cases related to sentences containing variations of NP said inter-

posed between two parts of a single quote. A cycle was present because the top node of the parse

was co-indexed with a null argument of said while said was an argument of the head word of

the quote, together these edges create a cycle. The remaining cases were all instances of pseudo-

attachment, which the treebank uses to show that non-adjacent constituents are related (Bies et al.

1995). These cases were split between use of Expletive (5) and Interpret Constituent Here (4)

traces9.

9 For Expletive: “When a clausal subject is postposed, expletive it appears in the structural subject position. Char-



CHAPTER 4. GRAPH PARSING 94

For the cases where the parse structure does not satisfy the one-endpoint-crossing property, it

was more difficult to determine trends. The same three cases, Expletive, Interpret Constituent Here,

and NP said accounted for half of the issues. Of the rest, most involved a set of crossing arcs with

no clear way to avoid the crossings by adjusting head rules.

4.10.3 Parsing Performance

We implemented a proof-of-concept system to get preliminary results using this algorithm and rep-

resentation. We used only first-order features, i.e., features do not consider pairs of edges. Code for

both the algorithm and conversion to and from our representation are available (see Appendix A).

First we considered the standard parsing metric for trees. After one training pass through sec-

tions 2–21 of the PTB on sentences up to length 40, we get an F-score of 88.26 on section 22. This

is lower than other systems, including the Carreras et al. (2008) parser, which scores 92.0 on all

sentences. However, our result does show that even with simple features and limited training our

algorithm can parse at a non-trivial level of accuracy.

Speed Pruning thresholds for the arc pass and the trace pruner were tuned to retain 99% of the

gold non-trace edges. With that setting, the first pass prunes all but 0.302% of possible edges, and

53.0% of chart cells. The trace pruner prunes all but 6.0% of traces. The threshold for the spine

pruner is tuned to retain 99.5% of the gold spines, at which level it prunes all but 6.5% of all spines.

With these settings, for sentences up to length 40, it took 4.3 seconds per sentence.

Accuracy For full graph parsing we considered sentences up to length 40 (92.3% of the tree-

bank). On section 22, for unlabeled trace edges, we obtain a precision of 88.3% and a recall of

50.4%. Using Johnson (2002)’s metric, which requires the label and span of the source and target

nodes in the parse to be correct, we get precision 64% and recall 48%. This is lower than Johnson

(ibid.)’s results (73 and 63 on all sentences in section 23). However, given the non-local properties

considered by Johnson’s patterns, it would be difficult for our model to do as well. One potential

future direction is to use a forest reranker to incorporate such features, an option that is feasible for

our approach and would avoid the constrained parser output Johnson’s approach relies on. How-

ever, we have shown that our algorithm can recover trace edges and expect that it can improve with

feature development and longer training.

acteristic of it-extraposition is that the final clause can replace it.” – Section 17 of the PTB annotation guidelines (Bies

et al. 1995).

For Interpret Constituent Here: “Used to indicate a relationship of constituency between elements separated by inter-

vening material. For instance, *ICH*-attach is used in ‘heavy shift’ constructions when the movement results in a

configuration in which it is impossible to attach the constituent to the phrase it belongs with.” – Section 5.4 of the PTB

annotation guidelines (ibid.).



95

Chapter 5

Conclusion

The overall goal of this research has been to push the boundaries of the conventional parsing re-

search methodology that has dominated the field for the two decades. The standard set up, using

the Penn Treebank as training and evaluation data, tree structures as the basis of algorithms, and

PARSEVAL as the evaluation metric, has led to substantial progress. However, this dissertation has

shown how new algorithms for manipulating syntactic structure can go further. Most significantly,

in Chapter 4 we explored parsing with aspects of syntax that are typically ignored for computational

reasons. Our algorithm is the first to incorporate virtually all aspects of structure in the PTB into a

single inference method that is efficient.

An alternative approach to handling these aspects of syntax, explored in prior work, has been

to use representations based on other syntactic theories. Unfortunately, it is difficult to compare

performance of systems producing parses with different representations, and to provide consistent

output across systems for downstream applications. Our novel method of converting from CCG

into PTB-style parses, described in Chapter 3 explores one way to bridge this gap, and improved

significantly over prior work.

In Chapter 2, we described our work on going beyond measurements of performance to more

nuanced analysis of mistakes. Our error analysis method gives a summary of the types of errors

in system output, with categories that are easily interpretable. We applied the technique to a range

of parsers, writing styles, and languages, confirming previously anecdotal claims such as the preva-

lence of prepositional phrase attachment errors.

There are a range of possible extensions for this work. Both the error analysis and conver-

sion systems are designed around trees, and could be extended to cover graph structures. Doing

so would require breaking assumptions built-in to the algorithms, but would be particularly illu-

minating regarding the challenge of long-distance dependencies. There are a several interesting

possibilities for the graph parsing algorithm. In the structure of the chapter presenting the algo-

rithm, the parsing algorithm is kept separate from the definition of the syntactic representation we

use. That choice was intentional, as the algorithm is a general parsing approach that could also

be applied to exciting new resources like the Abstract Meaning Representation. Having non-local

structure available also opens new opportunities for downstream applications. Finally, in the im-

plementation of the algorithm we found that the vast majority of the deduction rules are not needed



CHAPTER 5. CONCLUSION 96

to cover the structures seen in language. This suggests that there may be a property other than

one-endpoint crossing, which could more tightly constrain the space of possible structures while

capturing all observed structures. Characterizing such a space remains a fascinating open question,

and our work on one-endpoint crossing graph parsing provides a great starting point.



97

Appendix A

Resources

All of the systems described in this work have been publicly released under open source licenses:

Error Analysis (Chapter 2)

https://github.com/jkkummerfeld/berkeley-parser-analyser
Two versions of the tool were released. The initial version was the code submitted with the original

paper, which only covered English. The second version supported Chinese and also cleaned up the

codebase and simplified the search process by using more general operations.

The tool also includes a special output format designed to efficiently show parse errors in a

plain-text terminal. Figure A.1 shows an example containing a part-of-speech error and a clause

attachment error (while talking tough should attach higher, modifying trying).

Formalism Conversion (Chapter 3)

https://github.com/jkkummerfeld/berkeley-ccg2pst

Graph Parsing (Chapter 4)

https://github.com/jkkummerfeld/graph-parser
This repository is being actively used for development and has the entire history of the codebase.

https://github.com/jkkummerfeld/berkeley-parser-analyser
https://github.com/jkkummerfeld/berkeley-ccg2pst
https://github.com/jkkummerfeld/graph-parser


APPENDIX A. RESOURCES 98

12 Bracket errors
1 Clause Attachment error
(ROOT

(S
(ADVP

(IN RB So)
(RB far))

(NP Mr. Hahn)
(VP

(VBZ is)
(VP

(VBG trying)
(S (VP (S

(VP
(TO to)
(VP (VP

(VB entice)
(NP Nekoosa)
(PP (PP

(IN into)
(S

(VP
(VP

(S
(VBG negotiating)
(NP a friendly surrender) PP) VP) S) VP)))

(SBAR while talking tough)))))))))))

Figure A.1: Visualization of errors in a text based output format using color. Red indicates extra

nodes in the tree, blue indicates missing nodes, and cyan is used for missing nodes that cross red

nodes.



99

Bibliography

Ajdukiewicz, Kazimierz (1935). “Die syntaktische Konnexität”. In: Studia Philosophica 1, pp. 1–

27 (cit. on p. 3).

Auli, Michael and Adam Lopez (2011). “A Comparison of Loopy Belief Propagation and Dual

Decomposition for Integrated CCG Supertagging and Parsing”. In: Proceedings of the 49th An-

nual Meeting of the Association for Computational Linguistics: Human Language Technologies

(ACL-HLT). url: http://aclweb.org/anthology/P11-1048 (cit. on pp. 24, 48).

Banarescu, Laura, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,

Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider (2015). Abstract Meaning

Representation (AMR) 1.2.2 Specification. Tech. rep. url: https://github.com/amrisi/amr-
guidelines/blob/master/amr.md (cit. on p. 6).

Bender, Emily M., Dan Flickinger, Stephan Oepen, and Yi Zhang (2011). “Parser evaluation over

local and non-local deep dependencies in a large corpus”. In: Proceedings of the 2011 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP). url: http://aclweb.
org/anthology/D11-1037 (cit. on p. 26).

Bies, Ann, Mark Ferguson, Karen Katz, Robert MacIntyre, Victoria Tredinnick, Grace Kim, Mary

Ann Marcinkiewicz, and Britta Schasberger (1995). Bracketing Guidelines for Treebank 2 Style

Penn Treebank Project. Tech. rep. url: http://cs.jhu.edu/~jason/465/hw- parse/
treebank-manual.pdf (cit. on pp. 2, 6, 51, 93, 94).

Bikel, Daniel M. (2004). “Intricacies of Collins’ Parsing Model”. In: Computational Linguistics

30.4, pp. 479–511. url: http://aclweb.org/anthology/J04-4004 (cit. on p. 20).

Bikel, Daniel M. and David Chiang (2000). “Two Statistical Parsing Models Applied to the Chinese

Treebank”. In: Proceedings of the Second Chinese Language Processing Workshop. url: http:
//aclweb.org/anthology/W00-1201 (cit. on pp. 29, 35, 36).

Black, E., S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P. Harrison, D. Hindle, R. Ingria,

F. Jelinek, J. Klavans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and T. Strzalkowski

(1991). “Procedure for quantitatively comparing the syntactic coverage of English grammars”.

In: Proceedings of the workshop on Speech and Natural Language. url: http://aclweb.org/
anthology/H91-1060 (cit. on pp. 4, 45).

http://aclweb.org/anthology/P11-1048
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
https://github.com/amrisi/amr-guidelines/blob/master/amr.md
http://aclweb.org/anthology/D11-1037
http://aclweb.org/anthology/D11-1037
http://cs.jhu.edu/~jason/465/hw-parse/treebank-manual.pdf
http://cs.jhu.edu/~jason/465/hw-parse/treebank-manual.pdf
http://aclweb.org/anthology/J04-4004
http://aclweb.org/anthology/W00-1201
http://aclweb.org/anthology/W00-1201
http://aclweb.org/anthology/H91-1060
http://aclweb.org/anthology/H91-1060


BIBLIOGRAPHY 100

Bodenstab, Nathan, Aaron Dunlop, Keith Hall, and Brian Roark (2011). “Beam-Width Prediction

for Efficient Context-Free Parsing”. In: Proceedings of the 49th Annual Meeting of the Associ-

ation for Computational Linguistics: Human Language Technologies (ACL-HLT). url: http:
//aclweb.org/anthology/P11-1045 (cit. on p. 21).

Boullier, Pierre (1998). Proposal for a Natural Language Processing Syntactic Backbone. Tech.

rep. INRIA Rocquencourt. url: http://hal.archives-ouvertes.fr/docs/00/07/33/47/
PDF/RR-3342.pdf (cit. on p. 5).

Briscoe, Ted, John Carroll, Jonathan Graham, and Ann Copestake (2002). “Relational Evaluation

Schemes”. In: Proceedings of the Beyond PARSEVAL Workshop at the 3rd International Con-

ference on Language Resources and Evaluation, pp. 4–8. url: http://users.sussex.ac.uk/
~johnca/papers/beyond02.pdf (cit. on p. 39).

Cahill, Aoife, Michael Burke, Ruth O’Donovan, Stefan Riezler, Josef van Genabith, and Andy

Way (2008). “Wide-Coverage Deep Statistical Parsing Using Automatic Dependency Structure

Annotation”. In: Computational Linguistics 34.1, pp. 81–124. url: http : / / aclweb . org /
anthology/J08-1003 (cit. on p. 4).

Cai, Shu, David Chiang, and Yoav Goldberg (2011). “Language-Independent Parsing with Empty

Elements”. In: Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies (ACL-HLT). url: http://aclweb.org/antholo
gy/P11-2037 (cit. on pp. 6, 52).

Campbell, Richard (2004). “Using Linguistic Principles to Recover Empty Categories”. In: Pro-

ceedings of the 42nd Annual Meeting on Association for Computational Linguistics (ACL). url:

http://aclweb.org/anthology/P04-1082 (cit. on p. 6).

Carreras, Xavier, Michael Collins, and Terry Koo (2008). “TAG, Dynamic Programming, and the

Perceptron for Efficient, Feature-rich Parsing”. In: Proceedings of the Twelfth Conference on

Computational Natural Language Learning (CoNLL). url: http://aclweb.org/anthology/
W08-2102 (cit. on pp. 6, 80, 81, 83, 84, 93, 94).

Carroll, John, Ted Briscoe, and Antonio Sanfilippo (1998). “Parser Evaluation: a Survey and a

New Proposal”. In: Proceedings of the 1st International Conference on Language Resources

and Evaluation (LREC). url: http://users.sussex.ac.uk/~johnca/papers/lre98.pdf
(cit. on p. 4).

Charniak, Eugene (2000). “A Maximum-Entropy-Inspired Parser”. In: Proceedings of the 1st Meet-

ing of the North American Chapter of the Association for Computational Linguistics (NAACL).

url: http://aclweb.org/anthology/A00-2018 (cit. on p. 21).

Charniak, Eugene and Mark Johnson (2005). “Coarse-to-Fine n-Best Parsing and MaxEnt Discrim-

inative Reranking”. In: Proceedings of the 43rd Annual Meeting of the Association for Compu-

tational Linguistics (ACL). url: http://aclweb.org/anthology/P05-1022 (cit. on pp. 4,

21, 24, 26, 48).

http://aclweb.org/anthology/P11-1045
http://aclweb.org/anthology/P11-1045
http://hal.archives-ouvertes.fr/docs/00/07/33/47/PDF/RR-3342.pdf
http://hal.archives-ouvertes.fr/docs/00/07/33/47/PDF/RR-3342.pdf
http://users.sussex.ac.uk/~johnca/papers/beyond02.pdf
http://users.sussex.ac.uk/~johnca/papers/beyond02.pdf
http://aclweb.org/anthology/J08-1003
http://aclweb.org/anthology/J08-1003
http://aclweb.org/anthology/P11-2037
http://aclweb.org/anthology/P11-2037
http://aclweb.org/anthology/P04-1082
http://aclweb.org/anthology/W08-2102
http://aclweb.org/anthology/W08-2102
http://users.sussex.ac.uk/~johnca/papers/lre98.pdf
http://aclweb.org/anthology/A00-2018
http://aclweb.org/anthology/P05-1022


BIBLIOGRAPHY 101

Chiang, David (2000). “Statistical Parsing with an Automatically-Extracted Tree Adjoining Gram-

mar”. In: Proceedings of the 38th Annual Meeting of the Association for Computational Lin-

guistics (ACL). url: http://aclweb.org/anthology/P00-1058 (cit. on p. 39).

— (2007). “Hierarchical Phrase-Based Translation”. In: Computational Linguistics 33.2, pp. 201–

228. url: http://aclweb.org/anthology/J07-2003 (cit. on p. 89).

Chomsky, Noam (1956). “Three models for the description of language”. In: IRE Transactions on

Information Theory 2.3, pp. 113–124. url: https://chomsky.info/wp-content/uploads/
195609-.pdf (cit. on p. 5).

— (1981). Lectures on government and binding: The Pisa lectures. Walter de Gruyter (cit. on p. 3).

— (2000). New horizons in the study of language and mind. Cambridge University Press (cit. on

p. 50).

Clark, Stephen and James R. Curran (2007). “Wide-Coverage Efficient Statistical Parsing with

CCG and Log-Linear Models”. In: Computational Linguistics 33.4, pp. 493–552. url: http:
//aclweb.org/anthology/J07-4004 (cit. on p. 48).

— (2009). “Comparing the Accuracy of CCG and Penn Treebank Parsers”. In: Proceedings of

the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint

Conference on Natural Language Processing of the AFNLP (ACL). url: http://aclweb.org/
anthology/P09-2014 (cit. on pp. 5, 39, 41).

Clegg, Andrew B. and Adrian J. Shepherd (2005). “Evaluating and integrating treebank parsers on

a biomedical corpus”. In: Proceedings of the ACL Workshop on Software. url: http://aclweb.
org/anthology/W05-1102 (cit. on p. 26).

Cocke, John (1969). Programming Languages and Their Compilers: Preliminary Notes. Tech. rep.

Courant Institute of Mathematical Sciences, New York University. url: http://www.softw
arepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
(cit. on pp. 4, 5, 52).

Collins, Michael (1997). “Three Generative, Lexicalised Models for Statistical Parsing”. In: Pro-

ceedings of the 35th Annual Meeting of the Association for Computational Linguistics (ACL).

url: http://aclweb.org/anthology/P97-1003 (cit. on pp. 6, 20, 21, 45, 52).

— (2000). “Discriminative Reranking for Natural Language Parsing”. In: Proceedings of the Sev-

enteenth International Conference on Machine Learning (ICML). url: http : / / www . cs .
columbia.edu/~mcollins/papers/rerank.ps (cit. on p. 24).

— (2003). “Head-Driven Statistical Models for Natural Language Parsing”. In: Computational

Linguistics 29.4, pp. 589–637. url: http://aclweb.org/anthology/J03-4003 (cit. on p. 4).

Dienes, Pétr and Amit Dubey (2003). “Deep Syntactic Processing by Combining Shallow Meth-

ods”. In: Proceedings of the 41st Annual Meeting of the Association for Computational Linguis-

tics (ACL). url: http://aclweb.org/anthology/P03-1055 (cit. on pp. 6, 52).

Duchi, John, Elad Hazan, and Yoram Singer (2011). “Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization”. In: Journal of Machine Learning Research (JMLR) 12,

http://aclweb.org/anthology/P00-1058
http://aclweb.org/anthology/J07-2003
https://chomsky.info/wp-content/uploads/195609-.pdf
https://chomsky.info/wp-content/uploads/195609-.pdf
http://aclweb.org/anthology/J07-4004
http://aclweb.org/anthology/J07-4004
http://aclweb.org/anthology/P09-2014
http://aclweb.org/anthology/P09-2014
http://aclweb.org/anthology/W05-1102
http://aclweb.org/anthology/W05-1102
http://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
http://www.softwarepreservation.org/projects/FORTRAN/CockeSchwartz_ProgLangCompilers.pdf
http://aclweb.org/anthology/P97-1003
http://www.cs.columbia.edu/~mcollins/papers/rerank.ps
http://www.cs.columbia.edu/~mcollins/papers/rerank.ps
http://aclweb.org/anthology/J03-4003
http://aclweb.org/anthology/P03-1055


BIBLIOGRAPHY 102

pp. 2121–2159. url: http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
(cit. on p. 86).

Dunlop, Aaron, Nathan Bodenstab, and Brian Roark (2011). “Efficient Matrix-Encoded Grammars

and Low Latency Parallelization Strategies for CYK”. In: Proceedings of the 12th International

Conference on Parsing Technologies (IWPT). url: http://aclweb.org/anthology/W11-
2920 (cit. on p. 21).

Earley, Jay (1970). “An Efficient Context-free Parsing Algorithm”. In:Communications of the ACM

13.2, pp. 94–102. url: http://doi.acm.org/10.1145/362007.362035 (cit. on p. 5).

Eisner, Jason (1996). “Three New Probabilistic Models for Dependency Parsing: An Exploration”.

In: Proceedings of the 16th International Conference on Computational Linguistics (CoLing).

url: http://www.aclweb.org/anthology/C96-1058 (cit. on pp. 54, 65, 93).

Eisner, Jason and Noah A. Smith (2005). “Parsing with Soft and Hard Constraints on Dependency

Length”. In: Proceedings of the Ninth International Workshop on Parsing Technology (IWPT).

url: http://aclweb.org/anthology/W05-1504 (cit. on p. 66).

Fernández-González, Daniel and André F. T. Martins (2015). “Parsing as Reduction”. In: Proceed-

ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th

International Joint Conference on Natural Language Processing (ACL-IJCNLP). url: http:
//www.aclweb.org/anthology/P15-1147 (cit. on p. 52).

Forst, Martin and Ji Fang (2009). “TBL-Improved Non-Deterministic Segmentation and POS Tag-

ging for a Chinese Parser”. In: Proceedings of the 12th Conference of the European Chapter of

the ACL (EACL). url: http://aclweb.org/anthology/E09-1031 (cit. on pp. 29, 37).

Fowler, Timothy A. D. and Gerald Penn (2010). “Accurate Context-Free Parsing with Combina-

tory Categorial Grammar”. In: Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics (ACL). url: http://aclweb.org/anthology/P10-1035 (cit. on

pp. 47, 48).

Gabbard, Ryan, Mitchell Marcus, and Seth Kulick (2006). “Fully Parsing the Penn Treebank”. In:

Proceedings of the Human Language Technology Conference of the NAACL, Main Conference

(NAACL-HLT). url: http://aclweb.org/anthology/N06-1024 (cit. on p. 6).

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag (1985). Generalized Phrase

Structure Grammar. Harvard University Press (cit. on p. 51).

Gildea, Daniel (2001). “Corpus Variation and Parser Performance”. In: Proceedings of the 2001

Conference on Empirical Methods in Natural Language Processing (EMNLP). url: http://
aclweb.org/anthology/W01-0521 (cit. on p. 26).

Gómez-Rodrı́guez, Carlos and Joakim Nivre (2010). “A Transition-based Parser for 2-planar De-

pendency Structures”. In: Proceedings of the 48th Annual Meeting of the Association for Com-

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
http://aclweb.org/anthology/W11-2920
http://aclweb.org/anthology/W11-2920
http://doi.acm.org/10.1145/362007.362035
http://www.aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/W05-1504
http://www.aclweb.org/anthology/P15-1147
http://www.aclweb.org/anthology/P15-1147
http://aclweb.org/anthology/E09-1031
http://aclweb.org/anthology/P10-1035
http://aclweb.org/anthology/N06-1024
http://aclweb.org/anthology/W01-0521
http://aclweb.org/anthology/W01-0521


BIBLIOGRAPHY 103

putational Linguistics (ACL). url: http : / / aclweb . org / anthology / P10 - 1151 (cit. on

p. 51).

Goodman, Joshua (1997). “Global Thresholding and Multiple-Pass Parsing”. In: Second Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP). url: http://aclweb.
org/anthology/W97-0302 (cit. on p. 89).

Guo, Yuqing, Haifeng Wang, and Josef van Genabith (2007). “Recovering Non-Local Dependen-

cies for Chinese”. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Nat-

ural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL).

url: http://aclweb.org/anthology/D07-1027 (cit. on p. 32).

Hall, Johan and Joakim Nivre (2008). “A Dependency-Driven Parser for German Dependency and

Constituency Representations”. In:Proceedings of theWorkshop on ParsingGerman. url: http:
//www.aclweb.org/anthology/W/W08/W08-1007 (cit. on p. 52).

Hall, Johan, Joakim Nivre, and Jens Nilsson (2007). “A Hybrid Constituency-Dependency Parser

for Swedish”. In: Proceedings of the 16th Nordic Conference of Computational Linguistics

(NODALIDA), pp. 284–287. url: http://dspace.utlib.ee/dspace/bitstream/10062/
2590/1/post-Hall-6.pdf (cit. on p. 52).

Henderson, James (2003). “Inducing History Representations for Broad Coverage Statistical Pars-

ing”. In: Proceedings of the 2003 Human Language Technology Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics (NAACL). url: http://aclweb.
org/anthology/N03-1014 (cit. on p. 21).

— (2004). “Discriminative Training of a Neural Network Statistical Parser”. In: Proceedings of

the 42nd Annual Meeting of the Association for Computational Linguistics (ACL). url: http:
//aclweb.org/anthology/P04-1013 (cit. on p. 21).

Hockenmaier, Julia (2003). “Data and Models for Statistical Parsing with Combinatory Categorial

Grammar”. PhD thesis. School of Informatics, The University of Edinburgh. url: https://
www.era.lib.ed.ac.uk/handle/1842/320 (cit. on p. 4).

Huang, Liang (2008). “Forest Reranking: Discriminative Parsing with Non-Local Features”. In:

Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics: Hu-

man Language Technologies (ACL-HLT). url: http://aclweb.org/anthology/P08-1067
(cit. on p. 24).

Jiang, Wenbin, Liang Huang, and Qun Liu (2009). “Automatic Adaptation of Annotation Standards:

Chinese Word Segmentation and POS Tagging – A Case Study”. In: Proceedings of the Joint

Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference

on Natural Language Processing of the AFNLP (ACL-IJCNLP). url: http://aclweb.org/
anthology/P09-1059 (cit. on pp. 29, 37).

http://aclweb.org/anthology/P10-1151
http://aclweb.org/anthology/W97-0302
http://aclweb.org/anthology/W97-0302
http://aclweb.org/anthology/D07-1027
http://www.aclweb.org/anthology/W/W08/W08-1007
http://www.aclweb.org/anthology/W/W08/W08-1007
http://dspace.utlib.ee/dspace/bitstream/10062/2590/1/post-Hall-6.pdf
http://dspace.utlib.ee/dspace/bitstream/10062/2590/1/post-Hall-6.pdf
http://aclweb.org/anthology/N03-1014
http://aclweb.org/anthology/N03-1014
http://aclweb.org/anthology/P04-1013
http://aclweb.org/anthology/P04-1013
https://www.era.lib.ed.ac.uk/handle/1842/320
https://www.era.lib.ed.ac.uk/handle/1842/320
http://aclweb.org/anthology/P08-1067
http://aclweb.org/anthology/P09-1059
http://aclweb.org/anthology/P09-1059


BIBLIOGRAPHY 104

Jijkoun, Valentin (2003). “Finding Non-local Dependencies: Beyond Pattern Matching”. In: The

Companion Volume to the Proceedings of 41st Annual Meeting of the Association for Computa-

tional Linguistics (ACL). url: http://aclweb.org/anthology/P03-2006 (cit. on p. 6).

Johnson, Mark (2002). “A Simple Pattern-matching Algorithm for Recovering Empty Nodes and

Their Antecedents”. In: Proceedings of the 40th Annual Meeting on Association for Compu-

tational Linguistics. url: http://aclweb.org/anthology/P02- 1018 (cit. on pp. 6, 52,

94).

— (2007). “Transforming Projective Bilexical Dependency Grammars into efficiently-parsable

CFGs with Unfold-Fold”. In: Proceedings of the 45th Annual Meeting of the Association of

Computational Linguistics. url: http://aclweb.org/anthology/P07-1022 (cit. on p. 66).

Joshi, Aravind K. and Yves Schabes (1997). “Handbook of Formal Languages: Volume 3 Be-

yond Words”. In: ed. by Grzegorz Rozenberg and Arto Salomaa. Springer Berlin Heidelberg.

Chap. Tree-Adjoining Grammars, pp. 69–123 (cit. on p. 52).

Kaplan, R. M. and J. Bresnan (1982). “Lexical-Functional Grammar: A Formal System for Gram-

matical Representation”. In: The Mental Representation of Grammatical Relations. Ed. by J.

Bresnan. MIT Press, pp. 173–281. url: http : / / www2 . parc . com / isl / groups / nltt /
papers/kb82-95.pdf (cit. on p. 52).

Kasami, Tadao (1966). An Efficient Recognition and Syntax-Analysis Algorithm for Context-Free

Languages. Tech. rep. University of Illinois at Urbana-Champaign. url: http://hdl.handle.
net/2142/74304 (cit. on pp. 4, 5, 52).

King, Tracy H., Richard Crouch, Stefan Riezler, Mary Dalrymple, and Ronald M. Kaplan (2003).

“The PARC 700 Dependency Bank”. In: Proceedings of the 4th International Workshop on

Linguistically Interpreted Corpora at EACL. url: http://aclweb.org/anthology/W03-
2401 (cit. on p. 4).

Klein, Dan and Christopher D. Manning (2003a). “Accurate Unlexicalized Parsing”. In: Proceed-

ings of the 41st Annual Meeting of the Association for Computational Linguistics (ACL). url:

http://aclweb.org/anthology/P03-1054 (cit. on pp. 21, 35, 36, 48).

— (2003b). “Fast Exact Inference with a Factored Model for Natural Language Parsing”. In: Ad-

vances in Neural Information Processing Systems 15 (NIPS). url: http : / / papers . nips .
cc/paper/2325-fast-exact-inference-with-a-factored-model-for-natural-
language-parsing.pdf (cit. on pp. 21, 29, 35, 36).

Kong, Lingpeng, Alexander M. Rush, and Noah A. Smith (2015). “Transforming Dependencies

into Phrase Structures”. In: Proceedings of the 2015 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies (ACL-HLT).

url: http://www.aclweb.org/anthology/N15-1080 (cit. on p. 52).

Kummerfeld, Jonathan K., Taylor Berg-Kirkpatrick, and Dan Klein (2015). “An Empirical Analysis

of Optimization for Max-Margin NLP”. In: Proceedings of the 2015 Conference on Empirical

http://aclweb.org/anthology/P03-2006
http://aclweb.org/anthology/P02-1018
http://aclweb.org/anthology/P07-1022
http://www2.parc.com/isl/groups/nltt/papers/kb82-95.pdf
http://www2.parc.com/isl/groups/nltt/papers/kb82-95.pdf
http://hdl.handle.net/2142/74304
http://hdl.handle.net/2142/74304
http://aclweb.org/anthology/W03-2401
http://aclweb.org/anthology/W03-2401
http://aclweb.org/anthology/P03-1054
http://papers.nips.cc/paper/2325-fast-exact-inference-with-a-factored-model-for-natural-language-parsing.pdf
http://papers.nips.cc/paper/2325-fast-exact-inference-with-a-factored-model-for-natural-language-parsing.pdf
http://papers.nips.cc/paper/2325-fast-exact-inference-with-a-factored-model-for-natural-language-parsing.pdf
http://www.aclweb.org/anthology/N15-1080


BIBLIOGRAPHY 105

Methods in Natural Language Processing (EMNLP). url: http://aclweb.org/anthology/
D15-1032 (cit. on p. 86).

Kummerfeld, Jonathan K., David Hall, James R. Curran, and Dan Klein (2012). “Parser Showdown

at the Wall Street Corral: An Empirical Investigation of Error Types in Parser Output”. In: Pro-

ceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing

and Computational Natural Language Learning (EMNLP-CoNLL). url: http://aclweb.org/
anthology/D12-1096 (cit. on p. 9).

Kummerfeld, Jonathan K., Dan Klein, and James R. Curran (2012). “Robust Conversion of CCG

Derivations to Phrase Structure Trees”. In: Proceedings of the 50th Annual Meeting of the As-

sociation for Computational Linguistics (ACL). url: http://aclweb.org/anthology/P12-
2021 (cit. on p. 39).

Kummerfeld, Jonathan K., Daniel Tse, James R. Curran, and Dan Klein (2013). “An Empirical

Examination of Challenges in Chinese Parsing”. In: Proceedings of the 51st Annual Meeting of

the Association for Computational Linguistics (ACL). url: http://aclweb.org/anthology/
P13-2018 (cit. on p. 9).

Kuroda, S.-Y. (1964). “Classes of languages and linear-bounded automata”. In: Information and

Control 7.2, pp. 207–223. url: http://www.sciencedirect.com/science/article/pii/
S0019995864901202 (cit. on p. 5).

Lang, Bernard (1974). “Deterministic techniques for efficient non-deterministic parsers”. In: Au-

tomata, Languages and Programming: 2nd Colloquium, University of Saarbrücken July 29–

August 2, 1974. Ed. by J. Loeckx. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 255–

269. url: http://dx.doi.org/10.1007/3-540-06841-4_65 (cit. on p. 5).

Levy, Roger and Christopher D. Manning (2003). “Is it harder to parse Chinese, or the Chinese

Treebank?” In: Proceedings of the 41st Annual Meeting on Association for Computational Lin-

guistics (ACL). url: http://aclweb.org/anthology/P03-1056 (cit. on pp. 29, 35–37).

— (2004). “Deep Dependencies from Context-free Statistical Parsers: Correcting the Surface De-

pendency Approximation”. In: Proceedings of the 42nd Annual Meeting on Association for

Computational Linguistics. url: http://aclweb.org/anthology/P04-1042 (cit. on p. 6).

Lin, Dekang (1998). “A dependency-based method for evaluating broad-coverage parsers”. In:

Natural Language Engineering 4.2, pp. 97–114 (cit. on p. 39).

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz (1993). “Building a Large

Annotated Corpus of English: The Penn Treebank”. In:Computational Linguistics 19.2, pp. 313–

330. url: http://aclweb.org/anthology/J93-2004 (cit. on pp. 4, 26, 49).

Marneffe, Marie-Catherine de and Christopher D. Manning (2008). “The Stanford Typed Depen-

dencies Representation”. In: Coling 2008: Proceedings of the workshop on Cross-Framework

and Cross-Domain Parser Evaluation. url: http://aclweb.org/anthology/W08- 1301
(cit. on p. 3).

http://aclweb.org/anthology/D15-1032
http://aclweb.org/anthology/D15-1032
http://aclweb.org/anthology/D12-1096
http://aclweb.org/anthology/D12-1096
http://aclweb.org/anthology/P12-2021
http://aclweb.org/anthology/P12-2021
http://aclweb.org/anthology/P13-2018
http://aclweb.org/anthology/P13-2018
http://www.sciencedirect.com/science/article/pii/S0019995864901202
http://www.sciencedirect.com/science/article/pii/S0019995864901202
http://dx.doi.org/10.1007/3-540-06841-4_65
http://aclweb.org/anthology/P03-1056
http://aclweb.org/anthology/P04-1042
http://aclweb.org/anthology/J93-2004
http://aclweb.org/anthology/W08-1301


BIBLIOGRAPHY 106

Matsuzaki, Takuya and Jun’ichi Tsujii (2008). “Comparative Parser Performance Analysis across

Grammar Frameworks through Automatic Tree Conversion using Synchronous Grammars”. In:

Proceedings of the 22nd International Conference on Computational Linguistics (Coling). url:

http://aclweb.org/anthology/C08-1069 (cit. on p. 39).

McClosky, David, Eugene Charniak, and Mark Johnson (2006a). “Effective self-training for pars-

ing”. In: Proceedings of the Human Language Technology Conference of the North American

Chapter of the Association for Computational Linguistics (NAACL-HLT). url: http://aclweb.
org/anthology/N06-1020 (cit. on pp. 4, 21, 24).

— (2006b). “Effective Self-Training for Parsing”. In: Proceedings of the Human Language Tech-

nology Conference of the NAACL, Main Conference. url: http://aclweb.org/anthology/
N06-1020 (cit. on p. 22).

McDonald, Ryan, Koby Crammer, and Fernando Pereira (2005). “Online Large-Margin Training

of Dependency Parsers”. In: Proceedings of the 43rd Annual Meeting of the Association for

Computational Linguistics (ACL). url: http://aclweb.org/anthology/P05-1012 (cit. on

p. 85).

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsujii (2004). “Corpus-oriented grammar devel-

opment for acquiring a head-driven phrase structure grammar from the Penn Treebank”. In:

Proceedings of the First international joint conference on Natural Language Processing (IJC-

NLP) (cit. on p. 4).

Ng, Dominick and James R. Curran (2012). “Dependency Hashing for n-best CCG Parsing”. In:Pro-

ceedings of the 50th Annual Meeting of the Association for Computational Linguistics (ACL).

url: http://aclweb.org/anthology/P12-1052 (cit. on p. 24).

Ng, Dominick, Matthew Honnibal, and James R. Curran (2010). “Reranking a wide-coverage

CCG parser”. In: Proceedings of the Australasian Language Technology Association Workshop

(ALTA). url: http://aclweb.org/anthology/U10-1014 (cit. on p. 24).

Nivre, Joakim, Marie-Catherine de Marneffe, Filip Ginter, Yoav Goldberg, Jan Hajic, Christopher

D. Manning, Ryan McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira, Reut Tsarfaty,

and Daniel Zeman (2016). “Universal Dependencies v1: A Multilingual Treebank Collection”.

In: Proceedings of the Tenth International Conference on Language Resources and Evaluation

(LREC 2016). url: http://www.lrec- conf.org/proceedings/lrec2016/pdf/348_
Paper.pdf (cit. on pp. 2, 3).

Petrov, Slav (2010). “Products of Random Latent Variable Grammars”. In: Human Language Tech-

nologies: The 2010 Annual Conference of the North American Chapter of the Association for

Computational Linguistics (NAACL-HLT). url: http://aclweb.org/anthology/N10-1003
(cit. on pp. 35, 36).

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein (2006). “Learning Accurate, Com-

pact, and Interpretable Tree Annotation”. In: Proceedings of the 21st International Conference

http://aclweb.org/anthology/C08-1069
http://aclweb.org/anthology/N06-1020
http://aclweb.org/anthology/N06-1020
http://aclweb.org/anthology/N06-1020
http://aclweb.org/anthology/N06-1020
http://aclweb.org/anthology/P05-1012
http://aclweb.org/anthology/P12-1052
http://aclweb.org/anthology/U10-1014
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2016/pdf/348_Paper.pdf
http://aclweb.org/anthology/N10-1003


BIBLIOGRAPHY 107

on Computational Linguistics and 44th Annual Meeting of the Association for Computational

Linguistics (ACL). url: http://aclweb.org/anthology/P06-1055 (cit. on pp. 20, 35, 36).

Petrov, Slav and Dan Klein (2007). “Improved Inference for Unlexicalized Parsing”. In: Human

Language Technologies 2007: The Conference of the North American Chapter of the Associa-

tion for Computational Linguistics; Proceedings of the Main Conference (NAACL-HLT). url:

http://aclweb.org/anthology/N07-1051 (cit. on pp. 4, 20, 35, 36, 47, 48).

Petrov, Slav and Ryan McDonald (2012). SANCL Shared Task (data from the Google Web Tree-

bank). LDC2012E43 / LDC2012T13. Linguistic Data Consortium. url: https://catalog.
ldc.upenn.edu/LDC2012T13 (cit. on p. 26).

Pitler, Emily, Sampath Kannan, and Mitchell Marcus (2013). “Finding Optimal 1-Endpoint-Crossing

Trees”. In: Transactions of the Association for Computational Linguistics 1, pp. 13–24. url:

http://aclweb.org/anthology/Q13-1002 (cit. on pp. 7, 50, 51, 53, 62, 65, 78, 84).

Qian, Xian and Yang Liu (2012). “Joint Chinese Word Segmentation, POS Tagging and Parsing”.

In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language

Processing and Computational Natural Language Learning (EMNLP-CoNLL). url: http://
aclweb.org/anthology/D12-1046 (cit. on pp. 29, 35, 37).

Ratliff, Nathan, J. Andrew (Drew) Bagnell, and Martin Zinkevich (2007). “(Online) Subgradient

Methods for Structured Prediction”. In: Eleventh International Conference on Artificial Intelli-

gence and Statistics (AIStats). url: http://www.ri.cmu.edu/pub_files/pub4/ratliff_
nathan_2007_3/ratliff_nathan_2007_3.pdf (cit. on p. 86).

Recht, Benjamin, Christopher Re, Stephen Wright, and Feng Niu (2011). “Hogwild: A Lock-Free

Approach to Parallelizing Stochastic Gradient Descent”. In: Advances in Neural Information

Processing Systems 24 (NIPS). url: https://papers.nips.cc/paper/4390- hogwild-
a- lock- free- approach- to- parallelizing- stochastic- gradient- descent.pdf
(cit. on p. 86).

Sarkar, Anoop (2001). “Applying Co-Training Methods to Statistical Parsing”. In: Proceedings

of the Second Meeting of the North American Chapter of the Association for Computational

Linguistics (NAACL). url: http://aclweb.org/anthology/N01-1023 (cit. on p. 39).

Savitch, Walter J. (1970). “Relationships between nondeterministic and deterministic tape com-

plexities”. In: Journal of Computer and System Sciences 4.2, pp. 177–192. url: http://www.
sciencedirect.com/science/article/pii/S002200007080006X (cit. on p. 5).

Schmid, Helmut (2006). “Trace Prediction and Recovery with Unlexicalized PCFGs and Slash

Features”. In: Proceedings of the 21st International Conference on Computational Linguistics

and 44th Annual Meeting of the Association for Computational Linguistics (ACL). url: http:
//aclweb.org/anthology/P06-1023 (cit. on pp. 6, 52).

http://aclweb.org/anthology/P06-1055
http://aclweb.org/anthology/N07-1051
https://catalog.ldc.upenn.edu/LDC2012T13
https://catalog.ldc.upenn.edu/LDC2012T13
http://aclweb.org/anthology/Q13-1002
http://aclweb.org/anthology/D12-1046
http://aclweb.org/anthology/D12-1046
http://www.ri.cmu.edu/pub_files/pub4/ratliff_nathan_2007_3/ratliff_nathan_2007_3.pdf
http://www.ri.cmu.edu/pub_files/pub4/ratliff_nathan_2007_3/ratliff_nathan_2007_3.pdf
https://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
https://papers.nips.cc/paper/4390-hogwild-a-lock-free-approach-to-parallelizing-stochastic-gradient-descent.pdf
http://aclweb.org/anthology/N01-1023
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://www.sciencedirect.com/science/article/pii/S002200007080006X
http://aclweb.org/anthology/P06-1023
http://aclweb.org/anthology/P06-1023


BIBLIOGRAPHY 108

Shen, Libin, Lucas Champollion, and Aravind K. Joshi (2007). “LTAG-spinal and the Treebank”.

In: Language Resources and Evaluation 42.1, pp. 1–19. url: http://link.springer.com/
article/10.1007/s10579-007-9043-7 (cit. on pp. 6, 52).

Steedman, Mark (2000). The Syntactic Process. MIT Press (cit. on pp. 2, 3, 39, 52).

Tesnière, Lucien (1959). Éléments de syntaxe structurale. Klincksieck (cit. on p. 3).

Tse, Daniel and James R. Curran (2012). “The Challenges of Parsing Chinese with Combinatory Cat-

egorial Grammar”. In: Proceedings of the 2012 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT).

url: http://aclweb.org/anthology/N12-1030 (cit. on p. 37).

Weir, David J. and Aravind K. Joshi (1988). “Combinatory Categorial Grammars: Generative Power

and Relationship to Linear Context-Free Rewriting Systems”. In: Proceedings of the 26th An-

nual Meeting of the Association for Computational Linguistics. url: http://www.aclweb.
org/anthology/P88-1034 (cit. on p. 5).

Xia, Fei (1999). “Extracting Tree Adjoining Grammars from Bracketed Corpora”. In: Proceedings

of the Natural Language Processing Pacific Rim Symposium (cit. on p. 4).

Xia, Fei and Martha Palmer (2001). “Converting Dependency Structures to Phrase Structures”. In:

Proceedings of the First International Conference on Human Language Technology Research

(HLT). url: http://aclweb.org/anthology/H01-1014 (cit. on p. 39).

Xia, Fei, Owen Rambow, Rajesh Bhatt, Martha Palmer, and Dipti Misra Sharma (2009). “Towards

a Multi-Representational Treebank”. In: Proceedings of the 7th International Workshop on Tree-

banks and Linguistic Theories (cit. on p. 39).

Xiong, Deyi, Shuanglong Li, Qun Liu, Shouxun Lin, and Yueliang Qian (2005). “Parsing the Penn

Chinese Treebank with Semantic Knowledge”. In: Proceedings of the Second International

Joint Conference on Natural Language Processing (IJCNLP). url: http : / / aclweb . org /
anthology/I05-1007 (cit. on p. 35).

Xue, Nianwen, Fei Xia, Fu-Dong Chiou, and Martha Palmer (2005). “The Penn Chinese TreeBank:

Phrase structure annotation of a large corpus”. In:Natural Language Engineering 11.2, pp. 207–

238 (cit. on pp. 29, 31).

Younger, Daniel H. (1967). “Recognition and parsing of context-free languages in time n3”. In:

Information and Control 10.2, pp. 189–208. url: http://www.sciencedirect.com/scienc
e/article/pii/S001999586780007X (cit. on pp. 4, 5, 52).

Zhang, Xiaotian, Hai Zhao, and Cong Hui (2012). “A Machine Learning Approach to Convert

CCGbank to Penn Treebank”. In: Proceedings of COLING 2012: Demonstration Papers. url:

http://www.aclweb.org/anthology/C12-3067 (cit. on pp. 41, 45).

http://link.springer.com/article/10.1007/s10579-007-9043-7
http://link.springer.com/article/10.1007/s10579-007-9043-7
http://aclweb.org/anthology/N12-1030
http://www.aclweb.org/anthology/P88-1034
http://www.aclweb.org/anthology/P88-1034
http://aclweb.org/anthology/H01-1014
http://aclweb.org/anthology/I05-1007
http://aclweb.org/anthology/I05-1007
http://www.sciencedirect.com/science/article/pii/S001999586780007X
http://www.sciencedirect.com/science/article/pii/S001999586780007X
http://www.aclweb.org/anthology/C12-3067


BIBLIOGRAPHY 109

Zhang, Yue and Stephen Clark (2009). “Transition-Based Parsing of the Chinese Treebank using a

Global Discriminative Model”. In:Proceedings of the 11th International Conference on Parsing

Technologies (IWPT). url: http://aclweb.org/anthology/W09-3825 (cit. on pp. 34, 36).

http://aclweb.org/anthology/W09-3825

	Contents
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Syntax
	Error Analysis
	Formalism Conversion
	Graph Parsing
	Contributions of This Dissertation

	Automatic Error Analysis
	Error Classification
	Transformations
	Transformation Classification

	Results
	Reranking
	Out-of-Domain

	Chinese Parsing
	Background
	Adapting Error Analysis to Chinese
	Chinese Parsing Errors
	Chinese-English Comparison
	Cross-Parser Analysis
	Tagging Error Impact

	Summary

	Formalism Conversion
	Background
	Combinatory Categorial Grammar (CCG)
	Clark-Curran:2009
	zhang-zhao-hui:2012:DEMOS

	Our Approach
	Evaluation
	Parser Comparison

	Summary

	Graph Parsing
	Background
	Why Graph Structures?
	Previous Algorithms

	Overall Algorithm
	Sketch of Deduction Rules
	Notation
	Item Types
	Example Derivation
	Deduction Rules

	Comparison with ec
	Deduction Rule Definitions and Completeness Proof
	Notation
	Item Types
	Complete Dynamic Program
	eisner:1996's Algorithm
	Initialization
	Interval
	Exterval
	Both
	Left
	Right
	Neither
	Additional Constraints

	Algorithm Properties
	Derivational Ambiguity
	Complexity

	Parse Representation
	Core Structure
	Additional Structure
	Head Rules

	Algorithm Extensions
	Edge Labels and Spines
	Ensuring the Graph Contains a Structural Tree

	Implementation
	Model
	Learning
	Inference

	Results
	Algorithm Coverage
	Problematic Structures
	Parsing Performance


	Conclusion
	Resources
	Bibliography

