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Abstract

Random-cluster Dynamics

by

Antonio Blanca-Pimentel

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Alistair Sinclair, Chair

The random-cluster model has been widely studied as a unifying framework for spin systems,

random graphs and electrical networks. The random-cluster model on a graph G = (V ,E) with

parameters p ∈ (0, 1) and q > 0 assigns to each subgraph (V ,A ⊆ E) a probability proportional

to p |A| (1 − p) |E |−|A|qc (A) , where c (A) is the number of connected components in (V ,A). When

q = 1 this model corresponds to the standard bond percolation model. For integer q ≥ 2 the

random-cluster model is closely related to the classical ferromagnetic q-state Ising/Potts model.
When q → 0, the set of weak limits that arise contains the uniform measures over the spanning

trees, spanning forests and connected subgraphs of G.

In this thesis we investigate the dynamics of the random-cluster model. While dynamics for

the Ising/Potts model have been widely studied, random-cluster dynamics have so far largely re-

sisted analysis. We focus on two canonical cases: the case when G is the complete graph on n
vertices, known as the mean-�eld model, and the case whenG is the in�nite 2-dimensional lattice

graph Z2
. Mean-�eld models have historically proven to be a useful starting point in understand-

ing dynamics on more general graphs. In statistical mechanics, however, probabilistic models are

most frequently studied in the setting of in�nite lattice graphs; understanding random-cluster

dynamics in Z2
is thus of foremost importance.

In the �rst part of this thesis we establish the mixing time of Chayes-Machta dynamics in the

the mean-�eld case. For q ∈ (1, 2] we prove that the mixing time is Θ(logn) for all p , pc (q),
where p = pc (q) is the critical value corresponding to the emergence of a “giant” component. For

q > 2, we identify a critical window (ps ,pS ) of the parameterp aroundpc (q) in which the dynamics

undergoes an exponential slowdown. Namely, we prove that the mixing time is Θ(logn) when

p < [ps ,pS] and exp(Ω(
√
n)) when p ∈ (ps ,pS ). We also show that the mixing time is Θ(n1/3) for

p = ps and Θ(logn) for p = pS . In addition, we prove that the Glauber dynamics undergoes a

similar exponential slowdown in (ps ,pS ).
The second part of this thesis focuses on the analysis of the Glauber dynamics of the random-

cluster model in the case where the underlying graph is ann×n box in the Cartesian latticeZ2
. Our

main result is a tight Θ(n2
logn) bound for the mixing time at all values of the model parameter p

except the critical point p = pc (q), and for all values of q ≥ 1.
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Chapter 1

Introduction

The random-cluster model was introduced in the late 1960s by Fortuin and Kasteleyn [20] as a

unifying framework for studying random graphs, spin systems in physics and electrical networks.

The random-cluster model on a �nite graph G = (V ,E) with parameters p ∈ (0, 1) and q > 0

assigns to each subgraph (V ,A ⊆ E) a probability

µG,p,q (A) =
p |A| (1 − p) |E |−|A|qc (A)

ZG,p,q
, (1.1)

where c (A) is the number of connected components in (V ,A) and ZG,p,q is the normalizing con-

stant called the partition function.
Whenq = 1 this model corresponds to the standard bond percolation model on subgraphs ofG,

where each edge appears independently with probability p. For integer q ≥ 2 the random-cluster

model is, in a precise sense, dual to the classical ferromagnetic q-state Potts model. Con�gurations

in the q-state Potts model are assignments of spin values {1, . . . ,q} to the vertices of G. Each

con�guration σ ∈ {1, . . . ,q} |V | is assigned a probability

πG,β,q (σ ) =
eβ

∑
(u,v )∈E 1(σ (u)=σ (v ))

ZG,β,q
,

where β is a model parameter associated with the inverse temperature of the system and ZG,β,q

is the appropriate normalizing constant. The q = 2 case corresponds to the Ising model. If

β is set equal to − ln(1 − p) > 0, then it is straightforward to check that correlations in the

Ising/Potts model correspond to paths in the random-cluster setting. Consequently, the random-

cluster model has allowed the use of sophisticated methods from stochastic geometry, developed

in the study of bond percolation, in the context of spin systems. This has illuminated much of

the physical theory of the ferromagnetic Ising/Potts model. However, the random-cluster model

is not a “spin system” in the usual sense: in particular, the probability that an edge e belongs to A
does not depend only on the dispositions of its neighboring edges but on the entire con�gura-

tion A, since connectivity is a global property.
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At the other extreme, when q → 0, the set of (weak) limits that arise for various choices of

p contains fundamental distributions on G, including the uniform measures over the spanning

trees, spanning forests and connected subgraphs of G.

The random-cluster model is also well de�ned for in�nite graphs. IfG is an in�nite graph and

{Gn} is a sequence of �nite subgraphs ofG such that {Gn} → G, then the random-cluster measure

on G is given by the limit of the sequence of random-cluster measures on {Gn}. In this setting, a

key feature of the model is the presence of the following phase transition: there is a critical value

p = pc (q) such that for p < pc (q) all connected components are �nite w.h.p.
1
, while for p > pc (q)

there is at least one in�nite component w.h.p. The former regime is called the disordered phase,
and the latter is the ordered phase. In �nite graphs pc (q) corresponds to the critical value for the

emergence of a “giant” component of linear size.

Random-cluster dynamics, i.e., Markov chains on random-cluster con�gurations that con-

verge to the random-cluster measure, are of major interest. There are a variety of natural dy-

namics for this model, including the standard Glauber dynamics and the more sophisticated

Swendsen-Wang [48] and Chayes-Machta [10] processes, which have received much attention.

The primary object of study is the mixing time, i.e., the number of steps until the dynamics is

close to its stationary distribution, starting from any initial con�guration. A fundamental ques-

tion is how the mixing time of these dynamics grows as the size of the graph G increases, and in

particular how it relates to the phase transition.

This thesis study these questions in two canonical cases: the case when G is the complete

graph on n vertices, known as the mean-�eld model, and the case when G is the in�nite 2-

dimensional lattice graph Z2
. The mean-�eld random-cluster model may be viewed as the stan-

dard Erdős-Rényi random graph model Gn,p , enriched by a factor that depends on the component

structure. As we shall see, this case is already quite non-trivial; moreover, it has historically

proven to be a useful starting point in understanding the dynamics on more general graphs. In

statistical mechanics, however, probabilistic models are most frequently studied in the setting of

in�nite lattice graphs; understanding random-cluster dynamics in Z2
is thus of foremost impor-

tance.

1.1 Markov chains
Dynamics for spin systems have been widely studied in both statistical physics and computer

science. On the one hand, they provide a Markov chain Monte Carlo algorithm for sampling

con�gurations of the system from the Gibbs distribution; on the other hand, they are in many

cases a plausible model for the evolution of the underlying physical system.

There has been much activity over the past two decades in analyzing dynamics for spin sys-

tems such as the Ising/Potts model, and deep connections have emerged between the mixing

time and the phase structure of the physical model. In contrast, dynamics for the random-cluster

model remain poorly understood. The main reason for this appears to be the fact mentioned

1
We say that an event occurs with high probability (w.h.p.) if it occurs with probability approaching 1 as n → ∞.
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above that connectivity is a global property; this has led to the lack of a precise understanding of

the phase transition, as well as the failure of existing Markov chain analysis tools.

1.1.1 Glauber dynamics
A Glauber dynamics for the random-cluster model is any local Markov chain on con�gurations

that is ergodic and reversible with respect to the measure (1.1), and hence converges to it. For

de�niteness we consider the heat-bath dynamics, which at each step updates one edge of the

current random-cluster con�guration A as follows:

(i) pick an edge e ∈ E uniformly at random (u.a.r.);

(ii) replace A by A ∪ {e} with probability

µG,p,q (A ∪ {e})

µG,p,q (A ∪ {e}) + µG,p,q (A \ {e})
;

(iii) else replace A by A \ {e}.

These transition probabilities can be easily computed:

µG,p,q (A ∪ {e})

µG,p,q (A ∪ {e}) + µG,p,q (A \ {e})
=

{ p
p+q(1−p) if e is a “cut edge” in (V ,A);

p otherwise.

We say e is a cut edge in (V ,A) i� changing the current con�guration of e changes the number of

connected components of (V ,A).

1.1.2 Swendsen-Wang dynamics
The Swendsen-Wang (SW) dynamics [48] is primarily a dynamics for the Ising/Potts model, but it

may alternatively be viewed as a Markov chain for the random-cluster model using a coupling

of these measures due to Edwards and Sokal [17]. The SW dynamics mixes rapidly (i.e., in poly-

nomial time) in some cases where Glauber dynamics are known to mix exponentially slowly.

Consequently, this dynamics has been well studied and is widely used. Given a random-cluster

con�guration (V ,A), a new con�guration is obtained as follows:

(i) assign to each connected component of (V ,A) a color from {1, ...,q} u.a.r.;

(ii) remove all edges;

(iii) add each monochromatic edge independently with probability p.

Note that the SW dynamics is highly non-local as it modi�es the entire con�guration in one

step. Using the Edwards-Sokal coupling, it is straightforward to check that the SW dynamics is

reversible with respect to the random-cluster measure. If the starting con�guration is instead an

Ising/Potts con�guration σ , steps (iii)-(i)-(ii) above, in that order, give the SW dynamics for the

Ising/Potts model.
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1.1.3 Chayes-Machta dynamics
Another non-local Markov chain is the Chayes-Machta (CM) dynamics [10]. Given a random-

cluster con�guration (V ,A), one step of this dynamics is de�ned as follows:

(i) activate each connected component of (V ,A) independently with probability 1/q;

(ii) remove all edges connecting active vertices;

(iii) add each edge connecting active vertices independently with probability p, leaving the rest

of the con�guration unchanged.

It is easy to check that this dynamics is reversible with respect to (1.1) [10]. For integer q, the CM

dynamics is a close cousin of the Swendsen-Wang dynamics. However, the SW dynamics is only

well-de�ned for integer q, while the random-cluster model makes perfect sense for all q > 0. The

CM dynamics, which is feasible for any real q ≥ 1, was introduced precisely in order to allow for

this generalization.

1.2 Phase transition

1.2.1 Mean-�eld phase transition
The phase transition for the mean-�eld random-cluster model is already well understood [7, 40].

It is natural here to re-parameterize by setting p = λ/n; the phase transition then occurs at the

critical value λ = λc (q) given by

λc (q) =



q for 0 < q ≤ 2;

2

(
q−1

q−2

)
log(q − 1) for q > 2.

For λ < λc (q) all components are of size O (logn) w.h.p., while for λ > λc (q) there is a unique

giant component of size θrn, where θr = θr (λ,q) is the largest x > 0 satisfying the equation

e−λx = 1 −
qx

1 + (q − 1)x
. (1.2)

This phase transition is analogous to that in Gn,p corresponding to the appearance of a “giant”

component of linear size. Indeed, when q = 1 equation (1.2) becomes e−λx = 1−x whose positive

solution speci�es to the size of the giant component in Gn,p .

1.2.2 Phase transition in Z2

As mentioned earlier, the random-cluster measure is well de�ned for the in�nite 2-dimensional

lattice graph Z2
as the limit of the sequence of random-cluster measures on n × n square regions



CHAPTER 1. INTRODUCTION 5

Λn of Z2
as n goes to in�nity. Recent breakthrough work of Be�ara and Duminil-Copin [3] for

the in�nite measure in Z2
established that, for all q ≥ 1, the phase transition occurs at

p = pc (q) =

√
q

√
q + 1

;

hence, for p < pc (q) all components are �nite w.h.p., and for p > pc (q) there is an in�nite

component w.h.p. It was also established in [3] that for p < pc (q) the model exhibits “decay

of connectivities”, i.e., the probability that two vertices lie in the same connected component

decays to zero exponentially with the distance between them. This property is analogous to the

classical “decay of correlations” that has long been known for the Ising model (see, e.g., [41]).

1.3 Results

1.3.1 Mean-�eld dynamics
In Chapter 3 of this thesis we analyze the mixing time of the CM and Glauber dynamics for the

mean-�eld random-cluster model; the results in Chapter 3 appeared in [5]. Our �rst result shows

that the CM dynamics reaches equilibrium very rapidly for all non-critical values of λ and all

q ∈ (1, 2].

Theorem 1.1. For any q ∈ (1, 2], the mixing time of the mean-�eld CM dynamics is Θ(logn) for
all λ , λc (q).

To state our results for q > 2, we identify two further critical points, λs (q) and λS (q), with the

property that λs (q) < λc (q) < λS (q). (The de�nitions of these points are somewhat technical

and can be found in Chapter 2.) We show that the CM dynamics mixes rapidly for λ outside the

“critical” window (λs , λS ), and exponentially slowly inside this window. We also establish the

mixing time at the critical points λs and λS .

Theorem 1.2. For any q > 2, the mixing time τCM

mix
of the mean-�eld CM dynamics satis�es:

τCM

mix
=




Θ(logn) if λ ∈ (λs , λS];

Θ(n1/3) if λ = λs ;

eΩ(
√
n) if λ < (λs , λS ).

As a byproduct of the results above we deduce new bounds for the mixing time of the mean-�eld

heat-bath dynamics for all q > 1.
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Theorem 1.3. For any q ∈ (1, 2], the mixing time τHB

mix
of the mean-�eld heat-bath dynamics is

Õ (n4) for all λ , λc (q). Moreover, for q > 2 we have

τHB

mix
=




Õ (n4) if λ ∈ (λs , λS];

Õ (n4+1/3) if λ = λs ;

eΩ(
√
n) if λ < (λs , λS ).

(The Õ notation hides polylogarithmic factors.)

We now provide an interpretation of these results. When q > 2 the mean-�eld random-

cluster model exhibits a �rst-order phase transition, which means that at criticality (λ = λc ) the

ordered and disordered phases mentioned earlier coexist [40], i.e., each contributes about half

of the probability mass. Phase coexistence suggests exponentially slow mixing for most natural

dynamics, because of the di�culty of moving between the phases. Moreover, by continuity we

should expect that, within a constant-width interval around λc , the e�ect of the non-dominant

phase (ordered below λc , disordered above λc ) will still be felt, as it will form a second mode (local

maximum) for the random-cluster measure. This leads to so-called metastable states near that

local maximum from which it is very hard to escape, so slow mixing should persist throughout

this interval. Intuitively, the values λs , λS mark the points at which the local maxima disappear.

A similar phenomenon was captured in the case of the Potts model by Cu� et al. [13]. Our results

make the above picture for the dynamics rigorous for the random-cluster model for all q > 2;

notably, in contrast to the Potts model, in the random-cluster model metastability a�ects the

mixing time on both sides of λc . For q ≤ 2, the model exhibits a second-order phase transition and

there is no phase existence; hence, metastable states are not present and there is no slow mixing

window.

We provide next some brief remarks about our mean-�eld techniques. Both our upper and

lower bounds on the mixing time of the CM dynamics focus on the evolution of the one dimen-

sional random process given by the size of the largest component. A key ingredient in our analysis

is a function that describes the expected change, or “drift”, of this random process at each step;

the critical points λs and λS discussed above arise naturally from consideration of the zeros of

this drift function.

For our upper bounds, we construct a multiple-phase coupling of the evolution of two arbi-

trary con�gurations; this coupling is similar in �avor to that used by Long et al. [38] for the SW

dynamics for q = 2, but there are signi�cant additional complexities in that our analysis has to

identify the “slow mixing” window (λs , λS ) for q > 2, and also has to contend with the fact that in

the CM dynamics only a subset of the vertices (rather than the whole graph, as in SW) are active

at each step.

For our exponential lower bounds we use the drift function to identify the metastable states

mentioned earlier from which the dynamics cannot easily escape. For both upper and lower

bounds, we have to handle the sub-critical and super-critical cases, λ < λc and λ > λc , separately

because the structure of typical con�gurations di�ers in the two cases.
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For the heat-bath dynamics we use a recent surprising development of Ullrich [50, 51], who

showed that the mixing time of the heat-bath dynamics on any graph di�ers from that of the

SW dynamics by at most a poly(n) factor. Thus the previously known bounds for SW translate

to bounds for the heat-bath dynamics for integer q. By adapting Ullrich’s technology to the CM

setting, we are able to obtain a similar translation of our results and establish Theorem 1.3.

Remark. In Theorem 1.1 we leave open the mixing time of the CM dynamics for q ∈ (1, 2] and

λ = λc . However, in the �nal version of [5], which is currently in preparation, we show that the

mixing time when q ∈ (1, 2) and λ = λc is also Θ(logn). This con�rms a conjecture of Machta

[22]. Moreover, it shows that in this regime the CM dynamics does not su�er from a critical

slowdown, a very atypical behavior among dynamics of physical systems.

1.3.2 Glauber dynamics in Z2

In Chapter 4 we explore the consequences of Be�ara-Duminil-Copin’s structural result for the

dynamics of the model whenG is an n×n square region Λn of Z2
and q ≥ 1; the results in Chapter

4 appeared in [6]. We prove the following tight theorem:

Theorem 1.4. For any q ≥ 1, the mixing time of the Glauber dynamics for the random-cluster
model on Λn ⊂ Z

2 is Θ(n2
logn) at all values of p , pc (q).

Theorem 1.4, as stated, holds for the random-cluster model with so-called “free” boundary con-

ditions (i.e., there are no edges in Z2 \Λn). In fact, as a consequence of our proof, it also holds

for the case of “wired” boundary conditions (in which all vertices on the external face of Λn are

connected).

The main component of our result is the analysis of the sub-critical regime p < pc ; the result

for the super-critical regime p > pc follows from it easily by self-duality of Z2
and the fact that

pc is exactly the self-dual point [3]. Our sub-critical upper bound analysis makes crucial use of

the exponential decay of connectivities for p < pc established recently by Be�ara and Duminil-

Copin [3], as discussed earlier. This analysis is reminiscent of similar results for spin systems

(such as the Ising model), in which exponential decay of correlations has been shown to imply

rapid mixing [42]. However, since the random-cluster model exhibits decay of connectivities

rather than decay of correlations, we need to rework the standard tools used in these contexts.

In particular, we make three innovations.

First, the classical notion of “disagreement percolation” [4], which is used to bound the speed

at which in�uence can propagate in Z2
under the dynamics, has to be extended to take account

of the fact that in the random-cluster model in�uence spreads not from vertex to vertex but

from cluster to cluster. Second, we need to translate the decay of connectivities in the in�nite

volume Z2
(as proved in [3]) to a stronger “spatial mixing” property in �nite volumes Λn, with

suitable boundary conditions around the external face; in doing this we use the machinery devel-

oped by Alexander in [1], but adapted to hold for arbitrary (not just integer) q and for a suitable

class of boundary conditions that we call “side-homogeneous” (see Section 4.1 for a de�nition).

Finally, while we follow standard recursive arguments in relating the mixing time in Λn to that
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in smaller regions Λn′ for n′ � n, our approach di�ers in its sensitivity to the boundary condi-

tions on the smaller regions: previous applications for spin systems have typically required rapid

mixing to hold in Λn′ for arbitrary boundary conditions, while in our case we require it to hold

only for side-homogeneous conditions. This aspect of our proof is actually essential because the

random-cluster model does not exhibit spatial mixing for arbitrary boundary conditions (see Sec-

tion 4.3); our de�nition of side-homogeneous conditions is motivated by the fact that they are

both restricted enough to allow spatial mixing to hold, and general enough to make the recursion

go through. Our lower bound proof uses technology from analogous results for spin systems of

Hayes and Sinclair [28], again adapted to the random-cluster setting.

1.4 Related work
The random-cluster model has been the subject of extensive research in both the applied proba-

bility and statistical physics communities, which is summarized in the book by Grimmett [26].

A central open problem was to rigorously establish the phase transition in Z2
at pc (q) =

√
q/(
√
q + 1), though this was not achieved until 2012 by Be�ara and Duminil-Copin [3]. The

continuity (or “order”) of this phase transition is still not fully understood: it is conjectured to be

continuous of second order for q ≤ 4 and discontinuous of �rst order for q > 4 [26]. This conjec-

ture has only been veri�ed for largeq ≥ 25.72 by Laanait et al. [35] and in a recent development by

Duminil-Copin, Sidoravicius and Tassion for 1 ≤ q ≤ 4 [14]. The much simpler mean-�eld phase

transition was established by Bollobás, Grimmett and Janson [7]. A more detailed description of

this phase transition was later provided by Luczak and Łuczak [40].

Thanks to decades of research, Ising/Potts model dynamics are well understood in many set-

tings. For example, the Glauber dynamics for the Ising model on Z2
is essentially completely un-

derstood: at all parameter values below the critical point βc , the mixing time in Λn is O (n2
logn),

while above βc it is exp(Ω(n)) (see [41] for a comprehensive treatment, and also [39] for the

behavior at βc ).
Analogous results for the q-state Potts model for β < βc follow from the random-cluster

results of Be�ara and Duminil-Copin [3] and Alexander [2], combined with the earlier work of

Martinelli, Olivieri and Schonmann [42] relating spatial mixing to mixing times. Very recently,

Gheissari and Lubetzky [24] use the results of Duminil-Copin, Sidoravicius and Tassion [14] to

establish the mixing time at the critical point βc . They show that the mixing time is at most

polynomial in n for q = 3, at most quasi-polynomial for q = 4 and exp(Ω(n)) for q > 4, the latter

assuming the expected (but not yet established) discontinuity of the phase transition for q > 4.

Gheissari and Lubetzky also prove an exponential lower bound when q > 1 and β > βc .
All the mixing time bounds above for the Ising/Potts model indirectly provide bounds for

random-cluster dynamics. The comparison technology developed by Ullrich [51, 50, 49] allows

bounds for the Glauber dynamics of the Ising/Potts models to be translated to the SW dynamics,

and then again to the random-cluster dynamics. This leads, for example, to an upper bound of

O (n6
log

2 n) on the mixing time of the random-cluster Glauber dynamics in Λn ⊂ Z
2
, at all values

p , pc (q) for all integer q ≥ 2.
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This approach has several limitations. First, the comparison method invokes linear algebra,

and hence su�ers an inherent penalty of at least Ω(n4) in the mixing time bound. Second, the

comparison method also yields no insight into the actual behavior of the random-cluster dynam-

ics, so, e.g., it is unlikely to illuminate the connections with phase transitions. Finally, since it

relies on comparison with the Ising/Potts models, this analysis applies only for integer values

of q, while the random-cluster model is de�ned for all positive values of q.

Glauber dynamics for the mean-�eld Ising/Potts model has been studied thoroughly (see, e.g.,

[36, 13]). The mean-�eld SW dynamics has also received much attention, and its mixing time is

now fully understood. For q = 2, Long, Nachmias, Ning and Peres [38], building on earlier work

of Cooper, Dyer, Frieze and Rue [12], showed that the mixing time is Θ(1) for λ < λc , Θ(logn) for

λ > λc , and Θ(n1/4) for λ = λc . Recent work of Galanis, Štefankovič and Vigoda [21], independent

of our work and published at around the same time, provides a similarly comprehensive treatment

of the SW mixing time for q ≥ 3. Indeed, they proved the equivalent of our Theorem 1.2 for

the SW dynamics. The �rst studies of the q ≥ 3 case were due to Huber [30] and Gore and

Jerrum [25]. All these bounds were established for the SW dynamics in the framework of the

Ising/Potts model, but they apply also to the random-cluster version of the dynamics. However,

as mentioned earlier, the relevance of the SW dynamics in the random-cluster setting is limited

to the special case of integer q.

Finally, we mention relevant results on the dynamics in other graphs. For the d-dimensional

torus, Borgs et al. [8, 9] proved exponential lower bounds for the mixing time of the SW dynamics

for p = pc (q) and q su�ciently large. Ge and Štefankovič [23] provide a polynomial bound on

the mixing time of the Glauber dynamics on graphs with bounded tree-width. Very recently, Guo

and Jerrum [27] proved that both the random-cluster Glauber dynamics and the SW dynamics

mix in polynomial time on any graph in the special case q = 2.

1.5 Bibliographic Notes
The results in this thesis were derived in collaboration with my advisor Alistair Sinclair, who I

thank for allowing the inclusion of our coauthored work. Most of these results have already been

published in [5] and [6].
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Chapter 2

Probabilistic Preliminaries

In this chapter we gather a number of standard de�nitions and background results in probability

theory that we will refer to repeatedly in Chapters 3 and 4. Proofs are provided for those results

that are not readily available elsewhere.

2.1 Concentration bounds
Theorem 2.1 (Cherno� Bounds). Let X1, ...,Xk be independent Bernoulli random variables. Let
X =

∑
i Xi and µ = E[X ]; then for any δ ∈ (0, 1),

Pr[|X − µ | > δµ] ≤ 2 exp

(
−
δ 2µ

4

)
.

Theorem 2.2 (Hoe�ding’s Inequality). Let X1, ...,Xk be independent random variables such that
Pr[Xi ∈ [ai ,bi]] = 1. Let X =

∑
i Xi and µ = E[X ]; then for any δ > 0,

Pr[|X − µ | > δ ] ≤ 2 exp
*
,
−

2δ 2∑k
i=1

(bi − ai )2
+
-
.

Theorem 2.3 ([43], Theorem 2.7). LetX1, ...,Xk be independent random variables such that |Xi | ≤

B for all i . Let X =
∑

i Xi , µ = E[X ] and σ 2 = Var(X ); then for any δ > 0,

Pr[X > µ + δ ] ≤ exp

(
−

δ 2

2σ 2 + δB

)
.

2.2 Mixing time
Let P be the transition matrix of a �nite, ergodic Markov chain M with state space Ω and station-

ary distribution π . Let

τmix(ε ) := max

z∈Ω
min

t

{
| |P t (z, ·) − π (·) | |TV ≤ ε

}
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where | | · | |TV denotes total variation distance. The mixing time of M is given by τmix := τmix(1/4).
It is well-known that τmix(ε ) ≤ dlog

2
ε−1e τmix for any positive ε < 1/2 (see, e.g., [37, Ch. 4.5]).

A (one step) coupling of the Markov chain M speci�es for every pair of states (Xt ,Yt ) ∈ Ω2
a

probability distribution over (Xt+1,Yt+1) such that the processes {Xt } and {Yt }, viewed in isolation,

are faithful copies of M , and if Xt = Yt then Xt+1 = Yt+1. The coupling time is de�ned by

Tcoup = max

x ,y∈Ω
min

t
{Xt = Yt |X0 = x ,Y0 = y}.

For any δ ∈ (0, 1), the following standard inequality (see, e.g., [37]) provides a bound on the

mixing time:

τmix ≤ min

t

{
Pr[Tcoup > t] ≤ 1/4

}
≤ O

(
δ−1

)
·min

t

{
Pr[Tcoup > t] ≤ 1 − δ

}
. (2.1)

2.3 Random graphs
Let Gd be distributed as a G (n,p = d/n) random graph where d > 0. We say that d is bounded

away from 1 if there exists a constant ξ such that |d − 1| ≥ ξ . Let L (Gd ) denote the largest

component of Gd and let Li (Gd ) denote the size of the i-th largest component of Gd . (Thus,

L1(Gd ) = |L (Gd ) |.) In our proofs we will use several facts about the random variables Li (Gd ),
which we gather here for convenience. We provide proofs for those results that are not available

in the random graph literature.

Lemma 2.4 ([38], Lemma 5.7). Let I (Gd ) denote the number of isolated vertices inGd . If d = O (1),
then there exists a constant C > 0 such that Pr[I (Gd ) > Cn] = 1 −O

(
n−1

)
.

Lemma 2.5. If d = O (1), then L2(Gd ) < 2n11/12 with probability 1 − O
(
n−1/12

)
for su�ciently

large n.

Proof. If d ≤ 1 + n−1/12
, then by Theorem 5.9 in [38] (with A2 = c−1

logn and ϵ = n−1/12/2),

L1(Gd ) < 2n11/12
with probability 1 − O (n−1). When d > 1 + n−1/12

we bound L2(Gd ) using

Theorem 5.12 in [33]. Observe that this result applies to the random graph modelG (n,M ) where

an instance GM is chosen u.a.r. from the set of graphs with n vertices and M edges. The G (n,p)

and G (n,M ) models are known to be essentially equivalent when M ≈
(
n
2

)
p and we can easily

transfer this result to our setting.

Let Md be the number of edges inGd and I :=
[(

n
2

)
p −

√
8dn logn,

(
n
2

)
p +

√
8dn logn

]
; a Cher-

no� bound implies

Pr[L2(Gd ) > n2/3
] ≤

∑
m∈I

Pr[L2(Gm ) > n2/3
] Pr[Md =m] +O (n−1).

Let s = m − n/2 as in [33]; since d > 1 + n−1/12
, then s ≥ n11/12

4
for m ∈ I and n su�ciently large.

Theorem 5.12 in [33] implies that Pr[L2(Gm ) > n2/3
] = O (n−1/12); thus, L2(Gd ) < 2n11/12

with

probability 1 −O (n−1/12). �
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Lemma 2.6 ([12], Lemma 7). If d < 1 is bounded away from 1, then L1(Gd ) = O (logn) with
probability 1 −O

(
n−1

)
.

For d > 1, let β = β (d ) be the unique positive root of the equation

e−dx = 1 − x . (2.2)

(Note that this equation has a positive root i� d > 1; see, e.g., [33].)

Lemma 2.7. Let G̃dn be distributed as a G (n + m,dn/n) random graph where |m | = o(n) and
lim

n→∞
dn = d . Assume 1 < dn = O (1) and dn is bounded away from 1 for all n ∈ N. Then,

(i) L2(G̃dn ) = O (logn) with probability 1 −O
(
n−1

)
.

(ii) For A = o(logn) and su�ciently large n, there exists a constant c > 0 such that

Pr[|L1(G̃dn ) − β (d )n | > |m | +A
√
n] ≤ e−cA

2

. (2.3)

Proof. Part (i) follows immediately from Lemma 7 in [12]. For Part (ii), let M = n + m and

dM = dnM/n. By Lemma 11 in [12], there exists a constant c > 0 such that

e−cA
2

≥ Pr[|L1(G̃dn ) − β (dM )M | > A
√
M]

≥ Pr[|L1(G̃dn ) − β (dM )n | > |β (dM )m | +A
√
M]

≥ Pr[|L1(G̃dn ) − β (d )n | > |β (d )n − β (dM )n | + |β (dM )m | +A
√
M].

Now, since dM → d , by continuityβ (dM ) → β (d ) as n → ∞. Therefore, for a su�ciently large n,

Pr[|L1(G̃dn ) − β (d )n | > |β (dM )m | + 3A
√
n] ≤ e−cA

2

and the result follows since β (dM ) ≤ 1. �

Lemma 2.8. Let G̃dn be distributed as a G (n + m,dn/n) random graph where limn→∞ dn = d
and |m | = o(n). Assume 1 < dn = O (1) and dn is bounded away from 1 for all n ∈ N. Then,
Var(L1(G̃dn )) = Θ(n), and for any desired constant α > 0 and su�ciently large n, we have

β (d ) (n +m) − 2nα ≤ E[L1(G̃dn )] ≤ β (d ) (n +m) + 2nα .

Proof. Let M = n +m and dM = dnM/n. Observe that G (n +m,dn/n) = G (M,dM/M ) and thus

Theorem 5 from [11] implies that Var(L1(G̃dn )) = Θ(M ) = Θ(n). Also by Theorem 5 from [11],

we have

β (dM )M − n
α ≤ E[L1(G̃dn )] ≤ β (dM )M + n

α

for any desired constant α . Since dM → d , by continuity β (dM ) → β (d ) as n → ∞. Therefore, for

a su�ciently large n, β (d ) (n +m) − 2nα ≤ E[L1(G̃dn )] ≤ β (d ) (n +m) + 2nα , as desired. �
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Lemma 2.9. Consider aGdn random graph where limn→∞ dn = d . Assume 1 < dn = O (1) and dn is
bounded away from 1 for all n ∈ N. Then, for any constant ε ∈ (0, 1) there exists a constant c (ε ) > 0

such that, for su�ciently large n,

Pr[|L1(Gdn ) − β (dn )n | > εn] ≤ e−c (ε )n .

Proof. This result follows easily from Lemma 5.4 in [38]. Let a1 and a2 be constants such that

d ∈ (γ1,γ2). Since {dn} → d, there exists N ∈ N such that dn ∈ (γ1,γ2) for all n > N .

By Lemma 5.4 in [38] (with A = ε
√
n), there exist constants c1(ε ), c2(ε ) > 0 such that

Pr[L1(Gγ1
) < β (γ1)n − εn] ≤ exp(−c1(ε )n) and Pr[L1(Gγ2

) > β (γ2)n + εn] ≤ exp(−c2(ε )n). By

monotonicity β (γ2) > β (dn ) > β (γ1), and by continuity we can choose γ1 and γ2 su�ciently close

to each other such that |β (γ2) − β (γ1) | < ε . Observe also that L1(Gγ2
) � L1(Gdn ) � L1(Gγ1

), where

� indicates stochastic domination
1
. Thus,

e−c1 (ε )n ≥ Pr[L1(Gγ1
) < β (γ1)n − εn]

≥ Pr[L1(Gdn ) < β (γ1)n − εn]

≥ Pr[L1(Gdn ) < β (dn )n − 2εn]

and similarly,

e−c2 (ε )n ≥ Pr[L1(Gγ2
) > β (γ2)n + εn]

≥ Pr[L1(Gdn ) > β (γ2)n + εn]

≥ Pr[L1(Gdn ) > β (dn )n + 2εn].

Hence, there exist a constant c (ε ) such that Pr[|L1(Gdn ) − β (dn )n | > εn] ≤ e−c (ε )n. �

Lemma 2.10. Assume d is bounded away from 1. If d < 1, then L1(Gd ) = O (
√
n) with probability

1 − e−Ω(
√
n) . If d > 1, then L2(Gd ) = O (

√
n) with probability 1 − e−Ω(

√
n) .

Proof. When d < 1 the result follows immediately from Lemma 6 in [25]. When d > 1, by

Lemma 2.9, L1(Gd ) ∈ I = [(β (d ) − ε )n, (β (d ) + ε )n] with probability 1 − e−Ω(n)
. Conditioning on

L1(Gd ) =m, by the discrete duality principle (see, e.g., [29]) the remaining subgraph is distributed

as aG (n−m,d/n) random graph which is sub-critical form ∈ I and ε su�ciently small. Therefore

as for d < 1, L2(Gd ) = O (
√
n) with probability 1 − e−Ω(

√
n)

as desired. �

Lemma 2.11. Assume d is bounded away from 1. If d < 1, then
∑

i≥1
Li (Gd )

2 = O (n) with proba-
bility 1 −O

(
n−1

)
. If d > 1, then

∑
i≥2

Li (Gd )
2 = O (n) with probability 1 −O

(
n−1

)
.

Proof. When d < 1 the result follows by Chebyshev’s inequality from Theorem 1.1 in [32]. When

d > 1 the result follows from the discrete duality principle as in Lemma 2.10. �

1
For distributions µ and ν over a partially ordered set Γ, we say that µ stochastically dominates ν if

∫
д dν ≤∫

д dµ for all increasing functions д : Γ → R.
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2.3.1 Random graphs near the critical regime
Lemma2.12 ([38], Theorem 5.9). LetG be distributed as aG (n, 1+ε

n ) random graph. For any positive
constant ρ ≤ 1/10, there exist constants C ≥ 1 and c > 0 such that if ε3n ≥ C , then

Pr[|L1(G ) − 2εn | > ρεn] = O (e−cε
3n ).

Lemma 2.13 ([38], Theorem 5.12). Let G be distributed as a G (n, 1−ε
n ) random graph with ε > 0.

Then, E[

∑
i≥1

Li (G )2] = O (nε ).

Lemma 2.14 ([38], Theorem 5.13). Let G be distributed as a G (n, 1+ε
n ) random graph with ε > 0

and ε3n ≥ 1 for large n. Then, E[

∑
i≥2

Li (G )2] = O (nε ).

Lemma 2.15. Let G be distributed as a G (n, 1+ε
n ) random graph with ε > 0 and ε3n ≥ 1 for large

n. Then, E[L1(G )2] = O (nε ) +O (ε2n2).

Proof. Follows from Corollary 5.10 in [38]. �

Lemma 2.16. For any d > 0, E[

∑
i≥2

Li (Gd )
2
] = O (n4/3).

Proof. Ifd ≤ 1−n−1/3
(resp., d ≥ 1+n−1/3

) the result follows from Lemma 2.13 (resp., Lemma 2.14).

If d ∈ (1−n−1/3, 1+n−1/3), by monotonicity it is enough to show that E[L1(Gd ) +
∑

i≥2
Li (Gd )

2
] =

O (n4/3) when d = 1 + n−1/3
. This follows from Lemmas 2.14 and 2.15. �

Lemma 2.17. Let G be distributed as a G (n, 1+ε
n ) random graph with ε ∈ (−cn−1/3, cn−1/3), where

c > 0 is a constant independent of n. Then, for any constant a > 0, there exists r = r (a, c ) such that
Pr[L1(G ) ≥ an2/3

] ≥ r .

Proof. This is a direct corollary of Theorem 5.20 in [33], which establishes this fact for the random

graph model G (n,M ). �

2.4 Binomial coupling
In our coupling constructions we will use the following fact about the coupling of two binomial

random variables.

Lemma 2.18. LetX andY be binomial random variables with parametersm and r , where r ∈ (0, 1)
is a constant. Then, for any integer y > 0, there exists a coupling (X ,Y ) such that for a suitable
constant γ = γ (r ) > 0,

Pr[X − Y = y] ≥ 1 −
γy
√
m
.

Moreover if y = a
√
m for a �xed constant a, then γa < 1.
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Proof. This lemma is a slight generalization of Lemma 6.7 in [38] and, like that lemma, follows

from a standard fact about symmetric random walks. Wheny = Θ(
√
m) the result follows directly

from Lemma 6.7 in [38], so we assume y <
√
m which will simplify our calculations.

Let X1, ...,Xm,Y1, ...,Ym be Bernoulli i.i.d’s with parameter r . Let X =
∑m

i=1
Xi , Y =

∑m
i=1

Yi ,
and Dk =

∑k
i=1

(Xi − Yi ). We construct a coupling for (X ,Y ) by coupling each (Xk ,Yk ) as follows:

1. If Dk , y, sample Xk+1 and Yk+1 independently.

2. If Dk = y, set Xk+1 = Yk+1.

Clearly this is a valid coupling since X and Y are both binomially distributed.

If Dk = y for any k ≤ m, then X − Y = y. Therefore, Pr[X − Y = y] ≥ Pr[Mm ≥ y] where

Mm = max{D0, ...,Dm}. Observe that while Dk , y, {Dk } behaves like a (lazy) symmetric random

walk. The result then follows from the following fact:

Fact 2.19. Let ξ1, ..., ξm be i.i.d such that Pr[ξi = 1] = Pr[ξi = −1] = w and Pr[ξi = 0] = 1 − 2w .
Let Sk =

∑k
i=1

ξi and Mk = max{S1, ..., Sk }. Then, for any positive integer y <
√
m, there exists a

constant γ = γ (w ) > 0 such that

Pr[Mm ≥ y] ≥ 1 −
γy
√
m
.

Proof. This is a well-known fact about symmetric random walks, so we just sketch one way of

proving it. By the re�ection principle, Pr[Mm ≥ y] ≥ 2 Pr[Sm > y] (see, e.g., [23]) and by the Berry-

Esséen inequality, | Pr[Sm > k
√

2wm] − Pr[N > k]| = O (m−1/2) where N is a standard normal

random variable (see, e.g., [18]). The result follows from the fact that 2 Pr[N > k] ≥ 1−

√
2

πk . �

To complete the proof the lemma, apply Fact 2.19 with w = r (1 − r ). �

2.5 Hitting time estimates
We will require the following hitting time estimates.

Lemma 2.20. Consider a stochastic process {Zt } such that Zt ∈ [−n,n] for all t ≥ 0. Assume
Z0 > a for some a ∈ [−n,n] and let T = min{t > 0 : Zt ≤ a}. Suppose that if Zt > a, then
E[Zt+1 − Zt |Ft ] ≤ −A, where A > 0 and Ft is the history of the �rst t steps. If also E[T ] < ∞, then
E[T ] ≤ 4n/A.

Proof. Let Yt = Z 2

t − 4nZt − 2nAt . A standard calculation reveals that E[Yt+1 − Yt |Ft ] ≥ 0 for all

t < T ; i.e., {Yt∧T } with t ∧ T := min{t ,T } is a submartingale. Moreover, T is a stopping time,

E[T ] < ∞, and |Yt+1 −Yt | is bounded for all t ≥ 0. Thus, the optional stopping theorem (see, e.g.,

[15]) implies

5n2 − 2nAE[T ] ≥ E[YT ] ≥ E[Y0] ≥ −3n2.

Hence, E[T ] ≤ 4n/A, as desired. �
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Corollary 2.21. Consider a stochastic process {Zt } such that Zt ∈ [0,n] for all t ≥ 0. Assume
Z0 ∈ [a,b] for some a,b ∈ [0,n] and let T = min{t > 0 : Zt < [a,b]}. Suppose that if Zt ∈ (a,b),
then E[Zt+1 −Zt | Ft ] ≤ −A, where A > 0 and Ft is the history of the �rst t steps. If also E[T ] < ∞,
then T ≤ 4κn/A and ZT ≤ a with probability at least 1 −

Z0

b −
1

κ for any κ > 0.

Proof. Proceeding exactly as in the proof Lemma 2.20 we can show that E[T ] ≤ 4n/A. Hence,

Markov’s inequality implies that Pr[T ≥ 4κn/A] ≤ 1/κ. Moreover, {Zt∧T } with t ∧T := min{t ,T }
is a supermartingale, and thus by the optional stopping theorem we have

Z0 ≥ E[ZT ] ≥ b Pr[ZT > b].

Hence, Pr[ZT < a] ≥ 1 − Z0/b. The result follows by a union bound. �

Lemma 2.22. Let {Zt } be a stochastic process such that Z0 ∈ [0,αM] where M > 0 and α ∈ (0, 1).
Suppose that if Zt ∈ [0,M], then Zt+1 ≤ Zt − D + Yt+1 where D > 0 and Y1,Y2, ... are independent
random variables satisfying:

(i) E[Yt ] ≤
D
κ ;

(ii) Var(Yt ) ≤
MD
C ; and

(iii) |Yt | ≤ M
C ,

with κ > 1 and C > 0. Then, there exists T ≤ 2κ
κ−1

αM
D such that ZT < 0 with probability at least

1 − 2 exp

(
− ακ

5κ−1
C
)
.

Proof. Let T̃ := min{t ≥ 0 : Zt < [0,M]}, T̂ :=
βM
D and T := min{T̃ , T̂ }, where β := 2κα

κ−1
. Since

Pr[ZT ≥ 0] = Pr[ZT > M] + Pr[ZT ∈ [0,M]], (2.4)

it is su�cient to bound from above each term in the right hand side of (2.4). Observe that Zt ∈

[0,M] for all t < T , and so

ZT ≤ Z0 − DT + ST ≤ (α − β )M + ST ,

where ST :=
∑T

i=1
Yi . Hence,

Pr[ZT > M] ≤ Pr[ST > (1 − α + β )M] ≤ max

t≤T̂
Pr[St > (1 − α + β )M]

= max

t≤T̂
Pr

[
St >

βM

κ
+ (1 + α )M

]

≤ max

t≤T̂
Pr[St > E[St ] + (1 + α )M]

≤ exp
*
,
−

(1 + α )2M2

2T̂ MD
C + (1 + α )M

2

C

+
-

≤ exp

(
−

(1 + α )2

2β + 1 + α
C

)
, (2.5)



CHAPTER 2. PROBABILISTIC PRELIMINARIES 17

where in the fourth inequality we used the fact that E[St ] ≤
Dt
κ ≤

βM
κ , and the �fth follows from

Theorem 2.3.

We next bound Pr[ZT ∈ [0,M]]. Note that ZT ∈ [0,M] only if Zt ∈ [0,M] for all t ∈ [0, T̂ ].

But if Zt ∈ [0,M] for all t ∈ [0, T̂ ), we have

ZT̂ ≤ Z0 − DT̂ + ST̂ ≤ (α − β )M + ST̂ .

Thus, let AT be the event that Zt ∈ [0,M] for all t ∈ [0, T̂ ). Then,

Pr[ZT ∈ [0,M]] = Pr[ZT̂ ∈ [0,M],AT ]

≤ Pr

[
ST̂ ≥ (β − α )M,AT

]

≤ Pr

[
ST̂ ≥ (β − α )M

]

= Pr

[
ST̂ ≥

βM

κ
+ αM

]

≤ Pr

[
ST̂ ≥ E[ST̂ ] + αM

]

≤ exp
*
,
−

(αM )2

2T̂ MD
C + α

M2

C

+
-

≤ exp

(
−

α2

2β + α
C

)
, (2.6)

where the second to last inequality follows from Theorem 2.3.

Plugging (2.5) and (2.6) into (2.4), we get

Pr[ZT < 0] ≥ 1 − exp

(
−

α2

2β + α
C

)
− exp

(
−

(1 + α )2

2β + 1 + α
C

)
≥ 1 − 2 exp

(
−

α2

2β + α
C

)
= 1 − 2 exp

(
−

ακ

5κ − 1

C
)
.

Hence, there exists τ ≤ 2κ
κ−1

αM
D such that Zτ < 0 with probability 1 − 2 exp

(
− ακ

5κ−1
C
)
. �

Lemma 2.23. Let {Zt } be a stochastic process in the interval [−M,M] such that Z0 ∈ [−A,A].
Suppose that for Zt ∈ [−A,A], we have:

(i) −C ≤ E[Zt+1 − Zt | Ft ] ≤ C ,

(ii) Var(Zt+1 | Ft ) ≥ σ
2,

(iii) Pr[|Zt+1 − Zt | > L | Ft ] ≤ ε ,

where Ft is the history of the �rst t steps,A,C,L,M > 0 and ε ∈ (0, 1). Then, there exits τ < 4κ (A+L)2

σ 2

such that, for any κ > 0,

Pr[Zτ < −A/2] ≥
A − Z0

2A + L
−

4(A + L)

M
−

1

κ
,

provided σ 2 ≥ 8κ ·max{εM2,C (A + L)2/A}.
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Proof. Let Yt = Zt − At where At :=
∑t

k=1
E[Zk − Zk−1 | Fk−1] for all t ≥ 1 and A0 = 0; Yt + At is

called the Doob decomposition of {Zt }, and it is a standard fact that {Yt } is a martingale.

Let T̃ := min{t ≥ 0 : Yt < [−A,A]}, T̂ :=
4κ (A+L)2

σ 2
and T := T̃ ∧ T̂ := min{T̃ , T̂ }. Let

Wt = Y 2

t − σ
2t . Given Ft , At+1 is deterministic, so Var(Yt+1 | Ft ) = Var(Zt+1 | Ft ) ≥ σ 2

. Hence,

E[Wt+1 | Ft ] ≥ Wt whenever t < T ; i.e., Wt∧T is a submartingale. Since the stopping time T is

bounded (by T̂ ), the optional stopping theorem implies

Z 2

0
=W0 ≤ E[WT ] = E[Y 2

T ] − σ 2
E[T ],

and thus E[T ] ≤
E[Y 2

T ]

σ 2
. It follows from (i) that ZT −CT̂ ≤ YT ≤ ZT +CT̂ , so

E[T ] ≤
E[Z 2

T ] + 2CT̂ E[|ZT |] + (CT̂ )2

σ 2
. (2.7)

LetHt+1 be the event that, given Ft , |Zt+1 − Zt | ≤ L and letH =
⋂T

k=1
Hk . By assumption, if

Zt ∈ [−A,A] then Pr[¬Ht+1] ≤ ε . Hence,

Pr[¬H ] = Pr

[⋃T

k=1

(¬Hk )
]
= Pr

[⋃T

k=1

(
¬Hk∧T̃

)]
≤ Pr

[⋃T̂

k=1

(
¬Hk∧T̃

)]
≤ εT̂ ,

where the last inequality follows from a union bound. This inequality implies:

E[Z 2

T ] ≤ E[Z 2

T | H ] + εT̂M2 ≤ (A + L)2 + εT̂M2, and

E[|ZT |] ≤ E[|ZT | | H ] + εT̂M ≤ A + L + εT̂M .

Plugging these bounds into (2.7), we get

E[T ] ≤
(A + L)2 + εT̂M2 + 2CT̂ (A + L + εT̂M ) + (CT̂ )2

σ 2
.

=
(A + L)2

σ 2
+

2CT̂ (A + L)

σ 2
+

(CT̂ )2

σ 2
+
εT̂M (M + 2CT̂ )

σ 2
(2.8)

≤
(A + L)2

σ 2
+

(A + L)2

σ 2
+

(A + L)2

4σ 2
+

(A + L)2

σ 2
,

≤
13(A + L)2

4σ 2
,

where the last three terms in the right-hand side of (2.8) are bounded using the fact that σ 2 ≥

8κ max{εM2,C (A + L)2/A}. For ease of notation we set R :=
13(A+L)2

4σ 2
. Then, Markov’s inequality

implies

Pr [T ≥ κR] ≤
1

κ
. (2.9)

We next bound the probability that YT ≤ A. Since the stopping timeT is bounded, by optional

stopping E[YT ] = Y0 = Z0. Hence,

Z0 = E[YT | H ] Pr[H ] + E[YT | ¬H ] Pr[¬H ],
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and

E[YT | H ] = Z0 + Pr[¬H ](E[YT | H ] − E[YT | ¬H ])

≤ Z0 + 2εT̂ (M +A + L),

since M +A ≥ YT ≥ −(M +A) and Pr[¬H ] ≤ εT̂ . By Markov’s inequality, we have

Pr[YT ≥ A | H ] = Pr[YT +A + L ≥ 2A + L | H ] ≤
Z0 + 2εT̂ (M +A) +A + L

2A + L
. (2.10)

Observe that

Pr[YT ≤ A] ≥ Pr[YT ≤ A | H ] Pr[H ] ≥ Pr[YT < A | H ](1 − εT̂ ),

so (2.10) together with the facts that σ 2 ≥ 8κεM2
and L ≤ 2M imply

Pr[YT ≤ A] ≥
A − Z0

2A + L
−

2εT̂ (M +A)

2A + L
− εT̂ ≥

A − Z0

2A + L
−

4(A + L)

M
. (2.11)

Now, (2.9), (2.11) and a union bound imply that

Pr [T < κR, YT ≤ A] ≥
A − Z0

2A + L
−

4(A + L)

M
−

1

κ
.

Since T̂ = 4κ (A+L)2

σ 2
> κR, we get that T < κR only if T = T̃ . Hence,

Pr [T < κR, YT ≤ A] = Pr

[
T̃ < κR, YT̃ ≤ A

]
= Pr

[
T̃ < κR, YT̃ < −A

]
.

Finally, observe that if YT̃ < −A, then ZT̃ < −A +CT̃ and since σ 2 ≥
8κC (A+L)2

A , we have that

ZT̃ < −A/2 as desired. �

Lemma 2.24. Let {Zt } be a stochastic process in the interval [0,M]. Suppose that for some α ∈ (0, 1)
and D > 0, E[Zt+1 |Ft ] ≤ (1 − α )Zt + D, where Ft is the history of the �rst t steps. If M > 2D/α ,
then there exists c = c (α ) andT ≤ c log(αM/2D) such that ZT < 4D/α with probability at least 1/2.

Proof. Let T = dlogb (αM/2D)e, where b = 2/(2 − α ). (Note that T > 0 since M > 2D/α .) If

Zt ≤ 2D/α for any t ≤ T , we are done. Otherwise,

E[ZT ] ≤ (1 − α/2)TM ≤ 2D/α ,

and by Markov’s inequality ZT < 4D/α with probability at least 1/2. Hence, there exists t ≤ T
such that Zt < 4D/α with probability at least 1/2, as desired. �
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Chapter 3

Dynamics for the mean-�eld
random-cluster model

3.1 Preliminaries

3.1.1 The random-cluster model
Recall from the Introduction that the mean-�eld random-cluster model exhibits a phase transition

at λ = λc (q) (see [7]): in the sub-critical regime λ < λc the largest component is of size O (logn),
while in the super-critical regime λ > λc there is a unique giant component of size ∼θrn, where

θr = θr (λ,q) is the largest x > 0 satisfying the equation

e−λx = 1 −
qx

1 + (q − 1)x
. (3.1)

(Note that, as expected, this equation is identical to (2.2) when q = 1, and θr (λ,q) < β (λ) for all

q > 1.) The following is a more precise statement of this fact.

Lemma 3.1 ([7]). Let G be distributed as a mean-�eld random-cluster con�guration where λ > 0

and q > 1 are constants independent of n. If λ < λc , then L1(G ) = O (logn) w.h.p. Moreover, if
λ > λc , then w.h.p. L2(G ) = O (logn) and |L1(G ) − θrn | = O (nω−1(n)) for some sequence ω (n)
satisfying ω (n) → ∞.

More accurate versions of this result can readily be obtained by combining the techniques from [7]

with stronger error bounds for random graph properties [31]. We will use the following version

in our proofs which we defer to Section 3.1.2.

Corollary 3.2. If λ > q, then |L1(G ) − θrn | = O (n8/9) w.h.p.

3.1.2 Drift function
As indicated in the Introduction, our analysis relies heavily on understanding the evolution of

the size of the largest component under the CM dynamics. To this end, for �xed λ and q let ϕ (θ )
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be the largest x > 0 satisfying the equation

e−λx = 1 −
qx

1 + (q − 1)θ
. (3.2)

Note this equation corresponds to (2.2) for a G
((
θ + 1−θ

q

)
n, λ/n

)
random graph, so

ϕ (θ ) = β

(
λ(1 + (q − 1)θ )

q

)
. (3.3)

Thus, ϕ is well-de�ned when λ(1 + (q − 1)θ ) > q. In particular, ϕ is well-de�ned in the interval

(θmin, 1], where θmin = max

{
(q − λ)/λ(q − 1), 0

}
.

We will see in Section 3.2 that for a con�guration with a unique “large” component of size

θn, the expected “drift” in the size of the largest component will be determined by the sign of the

function

f (θ ) = θ − ϕ (θ ). (3.4)

When f (θ ) > 0 the drift is negative and f (θ ) < 0 corresponds to a positive drift. Thus, let

λs = max{λ ≤ λc : f (θ ) > 0 ∀θ ∈ (θmin, 1]} and,

λS = min{λ ≥ λc : f (θ ) (θ − θr ) > 0 ∀θ ∈ (θmin, 1]}.

Intuitively, λs and λS are the maximum and minimum values, respectively, of λ for which the

drift in the size of the largest component is always in the required direction (i.e., towards 0 in the

sub-critical case and towards θrn in the super-critical case). The following lemma, which we will

prove shortly, reveals basic information about the quantities λs and λS .

Lemma 3.3. For q ≤ 2, λs = λc = λS = q; and for q > 2, λs < λc < λS = q.

For integer q ≥ 3, λs corresponds to the threshold βs in the mean-�eld q-state Potts model at

which the local (Glauber) dynamics undergoes an exponential slowdown [13]. In fact, a change

of variables reveals that λs = 2βs for the speci�c mean-�eld Potts model normalization in [13].

In Figure 3.1 we sketch f in its only two qualitatively di�erent regimes: q ≤ 2 and q > 2. The

following are useful facts about the functions ϕ and f which in most cases follow easily from

their de�nitions.

Fact 3.4.

(i) ˆθ ∈ (θmin, 1] is a �xed point of ϕ if and only if ˆθ is a solution of (3.1).

(ii) ϕ is continuous, di�erentiable, strictly increasing and strictly concave in (θmin, 1].

(iii) 2(q−1)
q > ϕ′(θ ) >

q−1

q for all θ ∈ (θmin, 1].

Fact 3.5.
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λ<λs

λ>λs

f(θ)

θ
θr(λ, q)

1

(a) q ≤ 2

λ<λs

λs<λ < λS

λ>λS

f(θ)

θ
θr(λ, q)

1

(b) q > 2

λ=λs=λc

f(θ)

θ1

(c) q ≤ 2

λ=λs

λ=λS

f(θ)

θθ∗

θr(λ, q)

1

(d) q > 2

Figure 3.1: Sketches of the function f .

(i) f is continuous, di�erentiable and strictly convex in (θmin, 1].

(ii) f (θr ) = 0, f (1) > 0 and f ′(θ ) < 1/q for all θ ∈ (θmin, 1].

(iii) Let f (θ+min) = limθ→θmin f (θ ); then sgn( f (θ+min)) = sgn(q − λ).

Observe that if
ˆθ is a zero of f , then

ˆθ is a �xed point of ϕ and consequently a root of equation

(3.1). Lemma 2.5 from [7] dissects the roots of equation (3.1) and hence identi�es the roots of f
in (θmin, 1].

Fact 3.6. The roots of the function f in (θmin, 1] are given as follows:

• When q ≤ 2:
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– if λ ≤ λc , f has no positive roots; and

– if λ > λc , f has a unique positive root.

• When q > 2, there exists λmin < λc such that:

– if λ < λmin, f has no positive roots;

– if λ = λmin, f has a unique positive root;

– if λmin < λ < q, f has exactly two positive roots; and

– if λ ≥ q, f has a unique positive root.

The following three lemmas provide bounds for the drift of the size of the largest component

under CM steps and are thus crucial for establishing its mixing time.

Lemma 3.7. If λ < λs , then for all θ ∈ (θmin, 1] there exists a constant δ > 0 such that f (θ ) ≥ δ .

Lemma 3.8. For λ = λs , let θ ∗ be the unique zero of the function f . Then:

(i) There exists positive constants δ1,δ2,δ3 such that for all θ ∈ (θmin, 1], we have

δ1(θ − θ
∗)2 − δ2(θ − θ

∗)3 ≤ f (θ ) ≤ δ3(θ − θ
∗)2 + δ2(θ − θ

∗)3.

(ii) The function f is decreasing in the interval (θmin,θ
∗) and increasing in (θ ∗, 1).

(iii) If |θ −θ ∗ | ≥ ξ1 for some positive constant ξ1, then there exists a positive ξ2 such that f (θ ) > ξ2.

Lemma 3.9. Let λ > λS = q. Then,

(i) For all and θ ∈ (θmin, 1], if θ > θr , then θ ≥ ϕ (θ ) ≥ θr and if θ < θr , then θ ≤ ϕ (θ ) ≤ θr .

(ii) For all �xed ε such that θmin < ε < θr , there exists a constant δ = δ (ε ) ∈ (0, 1) such that
δ |θ − θr | ≤ |ϕ (θ ) − θ | for all θ ∈ [ε, 1].

Parts (i) and (ii) also hold for λ = λS = q when q > 2.

Finally, the following fact will also be helpful.

Fact 3.10. If λ > q, then θr > 1 − q/λ.

We provide next the proofs of all the facts and lemmas in this section.

Proof of Lemma 3.3. Since f (1) > 0, by continuity f is strictly positive in (θmin, 1] if and only if

f has no roots in (θmin, 1]. When q ≤ 2, by Fact 3.6, if λ ≤ λc then f has no roots in (θmin, 1],

and if λ > λc then f has a unique root in (θmin, 1]; thus, λs = λc = q. When q > 2, by Fact 3.6,

λs = λmin < λc .
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If λ > q, then f (θ+
min

) < 0 and Fact 3.6 implies that f has a unique root in (θmin, 1]. Hence

f is negative in (θmin,θr ) and positive in (θr , 1] and then λS ≤ q. For q ≤ 2 this readily implies

λs = λc = λS = q. For q > 2, if q > λ > λc , Fact 3.6 implies that f has exactly two positive roots

in (θmin, 1]. Recall that f (θr ) = 0 and let θ ∗ be the other root of f in (θmin, 1]; by the de�nition

of θr , θ
∗ < θr . Moreover, f (1) > 0 and f (θ+

min
) > 0 since q > λ. Therefore, f is positive in

(0,θ ∗) ∪ (θr , 1] and negative in (θ ∗,θr ). If θ < θ ∗, then f (θ ) (θ − θr ) < 0; thus, λS = q. �

Proof of Fact 3.4. Obviously any �xed point of ϕ is also a solution of (3.1). For the other direction,

consider the injective function h(x ) = x
1−e−λx

; if
ˆθ is a root of equation (3.1), then h( ˆθ ) = h(ϕ ( ˆθ ))

and ϕ ( ˆθ ) = ˆθ .

By di�erentiating both sides of (3.2),

ϕ′(θ ) =
q − 1

q
·

(1 − e−λϕ (θ ) )2

1 − e−λϕ (θ ) − λϕ (θ )e−λϕ (θ )

which implies that ϕ is di�erentiable and continuous. Since e−λϕ (θ ) > 1 − λϕ (θ ), then ϕ′(θ ) >
q−1

q , which establishes the lower bound in part (iii), and also implies that ϕ is strictly increasing.

Moreover, it is straightforward to check that
(1−e−x )2

1−e−x−xe−x < 2 for all x > 0; hence ϕ′(θ ) <
2(q−1)

q ,

which completes the proof of part (iii).

Finally to show that f is concave, consider the function

д(x ) =
qx

(q − 1) (1 − e−λx )
−

1

q − 1

− x .

By solving for θ in (3.2), observe that д(ϕ (θ )) = θ − ϕ (θ ) for θ ∈ (θmin, 1]. Therefore,

ϕ′′(θ ) = −д′′(ϕ (θ ))ϕ′(θ ) (1 + д′(ϕ (θ )))−2

and a straightforward calculation shows that д′′ > 0 in (0, 1]. Consequently, ϕ is strictly concave

in (θmin, 1]. �

Proof of Fact 3.5. Parts (i) and (ii) follow immediately from Fact 3.4. For Part (iii), observe that

when λ > q, θmin = 0 and the function ϕ is de�ned at 0; thus, f (θ+
min

) = −ϕ (0) < 0. When λ < q,

θmin = (q − λ)/λ(q − 1) and by continuity, limθ→θmin
ϕ (θ ) = 0; hence, f (θ+

min
) = θmin > 0. �

Proof of Lemma 3.7. If λ < λs , then f (θ ) > 0 for all θ ∈ (θmin, 1] by de�nition. Also, f is contin-

uous in (θmin, 1] and f (θ+
min

) > 0; thus, f must attain a minimum value δ > 0 in (θmin, 1] which

implies the result. �

Proof of Lemma 3.8. Note that f (θ ∗) = 0 and f ′(θ ∗) = 0, since f is di�erentiable and θ ∗ is the

unique global minimum of f . Hence, using Taylor’s expansion

f ′′(θ ∗)

2

(θ−θ ∗)2+
sup ˆθ | f

′′′( ˆθ ) |

6

(θ−θ ∗)3 ≥ f (θ ) ≥
f ′′(θ ∗)

2

(θ−θ ∗)2−
sup ˆθ | f

′′′( ˆθ ) |

6

(θ−θ ∗)3. (3.5)
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To obtain the bounds for f in part (i), we provide absolute bounds for f ′′ and f ′′′. For this let

h(x ) =
qx

λ(q − 1) (1 − e−x )
−
x

λ
−

1

q − 1

.

By solving for θ in (3.2), we get h(λϕ (θ )) = f (θ ) = θ − ϕ (θ ) and ϕ′(θ ) = 1

1+λh′(λϕ (θ )) . Hence,

f ′′(θ ) = −ϕ′′(θ ) =
λ2ϕ′(θ )h′′(λϕ (θ ))

(1 + λh′(λϕ (θ )))2
.

A direct calculation of the derivatives of the function
x

1−e−x reveals the following facts about the

derivatives of h:

(i) h′ is strictly increasing in (0,+∞) and h′ >
q

2λ(q−1) −
1

λ .

(ii) h′′ is strictly decreasing in (0,+∞) and
q

6λ(q−1) > h′′ > 0; and

(iii) h′′′ is negative and bounded in (0,+∞);

As a result, h′′(λϕ (θ )) > h′′(λ), h′(λϕ (θ )) < h′(λ) and 1 + λh′(λϕ (θ )) > 0. Moreover, by Fact 3.4,

we have
2(q−1)

q > ϕ′(θ ) >
q−1

q . Thus,

4λ(q − 1)2

3q2
≥ f ′′(θ ) ≥

λ2(q − 1)h′′(λ)

q(1 + λh′(λ))2
> 0.

Hence, δ1 ≥ f ′′ ≥ δ3 > 0 for a suitable constants δ1 and δ3. A similar argument reveals that

| f ′′′| ≤ δ2 for some constant δ2 > 0. Plugging these bounds into (3.5) and adjusting the constants

we obtain part (i).

For part (ii), observe that f ′′ > 0 and thus f ′ is strictly increasing. Since f ′(θ ∗) = 0, we have

f ′(θ ) < 0 when θ ∈ (θmin,θ
∗) and f ′(θ ) > 0 when θ ∈ (θ ∗, 1). Finally for part (iii), observe that

if θ > θ ∗, then f (θ ) > f (θ ∗ + ξ1) since f is increasing in this interval; hence, part (iii) follows by

taking ξ2 = f (θ ∗ + ξ1). The same argument works when θ < θ ∗. �

Proof of Lemma 3.9. Part (i) follows from the de�nition of λS and the fact that ϕ is increasing in

(θmin, 1]. For the second part, note that he function f is continuous, di�erentiable and convex in

(θmin, 1], so it lies above all of its tangents. From part (i) we know that ε ≤ ϕ (ε ), since ε < θr and,

by Fact 3.6, f has a unique positive root in (θmin, 1] when either λ > q or when λ = q > 2. Hence,

ε < ϕ (ε ) and f (ε ) < 0.

Let T be the line tangent to f at θr . Observe that f ′(θr ) > 0 since f is convex in (θmin, 1]

and f (ε ) < 0. Let M := min{ f ′(θr ),−f (ε )/(θr − ε )}; by Fact 3.5, f ′ < 1/q and so M ∈ (0, 1/q].

Consider the line S (θ ) = M
2
(θ − θr ) and the line R going through the points (0, f (ε )) and (θr , 0).

The slope of R is −f (ε )/(θr −ε ), and the lines S , R andT intersect at (θr , 0). Therefore, S lies above

R in (0,θr ) and below T in (θr , 1]. By convexity, f lies below R in (0,θr ) and above T in (θr , 1].

Thus, S lies above f in (0,θr ) and below f in (θr , 1]. Therefore, if θ < θr then
M
2
(θ −θr ) > θ −ϕ (θ )

and if θ > θr then
M
2
(θ − θr ) < θ − ϕ (θ ). Part (ii) then follows by taking δ = M/2. �
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Proof of Fact 3.10. By solving for λ in (3.1), it is su�cient to show that

q >
1 − x

x
ln

(
1 + (q − 1)x

1 − x

)
= h(x )

for x ∈ [0, 1]. A straightforward calculation shows that h is decreasing in (0,+∞) and that

lim

x→0

h(x ) = q. �

Finally, we can use the results in this subsection to prove Corollary 3.1 stated in the previous

subsection.

Proof of Corollary 3.2. By Lemma 3.2 in [7], L2(G ) = o(n3/4) w.h.p. Conditioning on this event,

independently color each component of G red with probability 1/q. Let Lr denote the size of the

largest red component and nr the total number of red vertices.

Let Γθ be the intersection of the events that L (G ) is colored red and L1(G ) = θn where θn ∈
N. Observe that Pr[Lr = θn | Γθ ] = 1, and by Hoe�ding’s inequality Pr[nr ∈ J | Γθ ] = 1 −

O (n−2) where J :=
[(
θ + 1−θ

q

)
n − ξ ,

(
θ + 1−θ

q

)
n + ξ

]
with ξ =

√
n7/4

logn. Putting these two

facts together,

1

2q
Pr[L1(G ) = θn] ≤ Pr[nr ∈ J | Γθ ] Pr[Γθ ] ≤ Pr[Lr = θn,nr ∈ J ].

By Lemma 3.1 in [7], conditioned on the red vertex set, the red subgraph is distributed as aG (nr ,p)
random graph, so

1

2q
Pr[L1(G ) = θn] ≤

∑
m∈J

Pr[Lr = θn |nr =m] Pr[nr =m] ≤ max

m∈J
Pr[`(m) = θn]

where `(m) is distributed as the size of the largest component of a G (m,p) random graph. Note

that form ∈ J the random graphG (m,p) is super-critical because λ > q. Since ξ =
√
n7/4

logn, by

(3.3) and Lemma 2.7 with A =
√
n3/4

logn, Pr[|`(m) − ϕ (θ )n | > 2ξ ] = O (n−2). Since λ > q = λS ,

Lemma 3.9(ii) implies that there exists a constant δ ∈ (0, 1) such that |θ −ϕ (θ ) | > δ |θ −θr |. Thus,

if |θ − θr |n > n8/9
, then Pr[L1(G ) = θn] = O (n−2). The result follows by a union bound over all

the positive integer values of θn such that |θ − θr |n > n8/9
and θn ≤ n. �

3.2 Mixing time bounds: proof organization and notation
The following theorem gives our bounds for the mixing time of the CM dynamics in the mean-

�eld random-cluster model.

Theorem 3.11. Consider the CM dynamics for the mean-�eld random-cluster model with param-
eters p = λ/n and q where λ > 0 and q > 1 are constants independent of n. Then,

(i) If λ < λs , then τmix = Θ(logn).
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(ii) If λ = λs and q > 2, then τmix = Θ(n1/3).

(iii) If λ ∈ (λs , λS ) and q > 2, then τmix = eΩ(
√
n) .

(iv) If λ = λS and q > 2, then τmix = Θ(logn).

(v) If λ > λS , then τmix = Θ(logn).

Since λs = λc = λS for 1 < q ≤ 2 and λs < λc < λS for q > 2 (see Lemma 3.3), Theorem 3.11

implies Theorems 1.1 and 1.2 from the Introduction.

The mixing time upper bounds in Theorem 3.11 are proved in Sections 3.3, 3.4, 3.5 and 3.6.

All the lower bounds, including those in part (iii) are derived in Section 3.7. The proof of the

upper bounds is organized as follows. Section 3.3 deals with the λ < λs case; i.e., the sub-critical

regime and part (i) of the theorem. There we also develop a number of tools that will be reused

in the proofs in Sections 3.4, 3.5 and 3.6. In Section 3.4 we establish the upper bounds for the

super-critical regime λ > λS = q; this corresponds to part (v) of the theorem. Finally, in Sections

3.5 and 3.6 we treat the boundary points of the critical window (λs , λS ) for q > 2; this establishes

parts (ii) and (iv) of Theorem 3.11.

The bounds for the mixing time of the mean-�eld heat-bath dynamics in Theorem 1.3 from

the Introduction are derived in Section 3.8 as a by product of Theorem 3.11.

We now introduce some notation that will be used throughout the rest of the chapter. We call

a component large if it contains at least 2n11/12
vertices; otherwise it is small. Following Section

2.3, we will use I (Xt ) for the number of isolated vertices in Xt , L (Xt ) for the largest component

in Xt and Lj (Xt ) for the size of the j-th largest component of Xt . (Thus, L1(Xt ) = |L (Xt ) |.) For

convenience, we will sometimes write θtn for L1(Xt ). Also, we will use Et for the event thatL (Xt )
is activated, and At for the number of activated vertices at time t .

3.3 Mixing time upper bounds: the sub-critical case
In this section we prove our mixing time upper bound for the CM dynamics when 0 < λ < λs
and q > 1. This regime comprises the entire sub-critical regime for 1 < q ≤ 2. This is not true for

q > 2, since λs < λc in this case (see Lemma 3.3); the rest of the sub-critical regime when q > 2,

i.e., λs ≤ λ < λc , is analyzed in Sections 3.5 and 3.7.

We prove the following theorem.

Theorem 3.12. Let q > 1 and 0 < λ < λs . Then, the mixing time of the CM dynamics is O (logn).

We start by describing the main ideas in the proof of Theorem 3.12. The mixing time is bounded

by constructing a coupling of the CM dynamics and bounding its coupling time (see (2.1)). The

coupling will have a “burn-in” period where both copies of the chain evolve independently; the

“burn-in” period consists of two phases. The goal of the �rst phase will be to reach a con�guration

with at most one large component. Using the Gn,p fact we proved in Lemma 2.5, it is straight-

forward to check that this only takes O (logn) steps. The second phase of the burn-in tracks the
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evolution of the largest component in the con�guration. Using the fact that the function f , as

de�ned in (3.4), is strictly positive for λ < λs (see Figure 3.1), we can show that the size of the large

component has a strictly negative drift. Moreover, this drift is Ω(n) in magnitude; thus, after only

O (1) steps, it is unlikely that the large component is still present in the con�guration; in fact, we

will show that every component have size O (logn) with probability Ω(1).
Once the burn-in period concludes, the coupling starts o� from two con�gurations whose

largest components have size O (logn). We also assume that the number of isolated vertices in

each starting con�guration is Ω(n), a property that is satis�ed after the burn-in period w.h.p. Our

coupling will be a composition of two couplings. The �rst one is designed to quickly reach a pair

of con�gurations with the same component structure. This coupling attempts to activate the same

number of vertices from each con�guration in each step. If it succeeds for O (logn) consecutive

steps, then the two �nal con�gurations will have the same component structure with probability

Ω(1). In order to activate the same number of vertices from each con�guration, the idea is to

�rst couple the activation of the components of size two or more in a way that minimizes the

discrepancy in the number of active vertices; then we attempt to correct this discrepancy by

coupling the activation of the isolated vertices using the binomial coupling from Section 2.4.

Since, to some extent, we can control the size of this discrepancy because all the components are

small, we are also able to control the probability of success of the binomial coupling. The �nal

step is a straightforward coupling that starts from two con�gurations with the same component

structure and takes O (logn) steps to couple them. The reminder of this section �eshes out the

above proof sketch.

Theorem 3.12 is a consequence of the following lemmas.

Lemma 3.13. Let q > 1 and λ > 0. For any starting random-cluster con�guration X0, there exists
T = O (logn) such that XT has at most one large component with probability Ω(1).

Lemma 3.14. Let q > 1 and 0 < λ < λs . If X0 has at most one large component, then there exists
T = O (logn) such that L1(XT ) = O (logn) and I (XT ) = Ω(n) with probability Ω(1).

Lemma 3.15. Let q > 1 and 0 < λ < q. Let X0 be a random-cluster con�guration such that
L1(X0) = O (logn) and I (X0) = Ω(n). Suppose the same holds for Y0. Then, there exists a coupling
of the CM steps such that XT and YT have the same component structure after T = O (logn) steps
with probability Ω(1).

Lemma 3.16. Let q > 1 and λ > 0. Let X0 and Y0 be two random-cluster con�gurations with the
same component structure. Then, there exists a coupling of the CM steps such that afterT = O (logn)
steps XT = YT w.h.p.

Proof of Theorem 3.12. Consider two copies {Xt } and {Yt } of the CM dynamics starting from two

arbitrary con�gurations X0 and Y0. We design a coupling (Xt ,Yt ) of the CM steps and show that

Pr[XT = YT ] = Ω(1) for some T = O (logn); the result then follows from (2.1). The coupling

consists of four phases, and each phase is analyzed in one of the lemmas above.

In the �rst phase {Xt } and {Yt } are run independently. Lemma 3.13 establishes that after

O (logn) steps {Xt } and {Yt } each have at most one large component with probability Ω(1). In the
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second phase, {Xt } and {Yt } also evolve independently. Conditioned on the success of the �rst

phase, Lemma 3.14 implies that after O (logn) additional steps, with probability Ω(1), the largest

components in {Xt } and {Yt } have sizes O (logn) and each have Ω(n) isolated vertices.

In the third phase, {Xt } and {Yt } are coupled to obtain two con�gurations with the same com-

ponent structure. By Lemma 3.15, there is a coupling that, conditioned on a successful conclusion

of the second phase, succeeds in reaching two con�gurations with the same component struc-

ture with probability Ω(1) after O (logn) steps. The last phase uses the coupling provided by

Lemma 3.16. Putting all this together, we have that there exists a coupling (Xt ,Yt ) such that, after

T = O (logn) steps, XT = YT with probability Ω(1). �

Lemma 3.13 is proved in Section 3.3.1, Lemma 3.14 in Section 3.3.2, Lemma 3.15 in Section 3.3.4

and Lemma 3.16 in Section 3.3.5. Note that Lemmas 3.13, 3.15 and 3.16 are true for more general

values of λ; i.e., not only for λ < λs . This will be useful later when we analyze the mixing time in

other regimes.

3.3.1 Proof of Lemma 3.13
Proof of Lemma 3.13. Let Bt be the number of new large components created at time t . If At <
2n11/12

, thenBt = 0. Together with Lemma 2.5 this implies that for alla ∈ [0,n], Pr[Bt > 1|Xt ,At =

a] = O (a−1/12). Thus,

E[Bt |Xt ] =

n∑
a=0

E[Bt |Xt ,At = a] Pr[At = a |Xt ]

≤

n∑
a=0

(
Pr[Bt ≤ 1|Xt ,At = a] +

a

2n11/12

Pr[Bt > 1|Xt ,At = a]

)
Pr[At = a |Xt ]

≤ κ,

where κ > 0 is a constant. Let Kt be the number of large components in Xt and let Ct be the

number of activated large components at time t . Then,

E[Kt+1 |Xt ] = Kt − E[Ct |Xt ] + E[Bt |Xt ] ≤ Kt −
Kt

q
+ κ .

Hence, Lemma 2.24 implies that KT ≤ 4κq with probability Ω(1) for someT = O (logn). If at time

T the remaining KT large components become active, then KT+1 ≤ 1 w.h.p. by Lemma 2.5. All

KT components become active simultaneously with probability at least q−4κq
and thus KT+1 ≤ 1

with probability Ω(1), as desired. �

3.3.2 Proof of Lemma 3.14
For ease of notation we set Θs := θmin. (Recall from Section 3.1.2 that θmin = (q − λ)/λ(q − 1)
when λ < q.) Also, let ε > 0 be a small constant (independent of n) to be chosen later and let
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ξ (r ) =
√

2nr logn. The following preliminary facts, which we prove in Section 3.3.3, are used in

the proof of Lemma 3.14.

Fact 3.17. If 0 < λ < q and L2(Xt ) ≤ r < 2n11/12, then for su�ciently large n:

(i) If L (Xt ) is inactive, then with probability 1 −O (n−2)

At ∈ Ĵt :=

[
n − L1(Xt )

q
− ξ (r ),

n − L1(Xt )

q
+ ξ (r )

]
.

Moreover, if At ∈ Ĵt then G (At ,p) is sub-critical and all new components in Xt+1 have size
O (logn) (resp., O (

√
n)) with probability 1 −O (n−1) (resp., 1 −O (n−2)).

(ii) If L (Xt ) is active, then with probability 1 −O (n−2)

At ∈ Jt :=

[
L1(Xt ) +

n − L1(Xt )

q
− ξ (r ),L1(Xt ) +

n − L1(Xt )

q
+ ξ (r ).

]
(3.6)

Moreover, if At ∈ Jt and L1(Xt ) ≥ (Θs + ε )n, then G (At ,p) is super-critical and the second
largest new component has size O (logn) with probability 1 −O (n−1).

(iii) If L (Xt ) is active and L1(Xt ) ≤ (Θs − ε )n, then the largest new component has size O (logn)
with probability 1 −O (n−1).

(iv) If there is no large component in Xt , then L1(Xt+1) = O (logn) with probability 1 −O (n−1).

Fact 3.18. If 0 < λ < q and X0 has a unique large component, then L2(Xt ) < 2n11/12 for all
0 ≤ t ≤ T w.h.p. for any T = O (logn).

Fact 3.19. Suppose that 0 < λ < q and thatXt has at most one large component. Then for su�ciently
large n:

(i) If L1(Xt ) ≥ (Θs + ε )n, then E[L1(Xt+1) | Xt , Et ] ≤ ϕ (θt )n + 3n1/4 and

−
f (θt )n

q
− 2n1/4 ≤ E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −

f (θt )n

q
+ 2n1/4.

(The function f was de�ned in Section 3.1.2; see (3.4)).

(ii) If Xt is such that θt ∈ (Θs − ε,Θs + ε ),

E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −
f (Θs + ε )n

q
+

2εn

q
+ 2n1/4.

Fact 3.20. If 0 < λ < q and X0 has a unique large component such that L1(X0) ≤ (Θs − ε )n, then
there exists T = O (logn) such that L1(XT ) = O (logn) with probability Ω(1).



CHAPTER 3. DYNAMICS FOR THE MEAN-FIELD RANDOM-CLUSTER MODEL 31

We are now ready to prove Lemma 3.14.

Proof of Lemma 3.14. By Fact 3.18 we may assume throughout the proof that there is at most one

large component. If θt ≥ Θs + ε , by Fact 3.19(i), we have

E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −
f (θt )n

q
+O (n1/4)

Since λ < λs , Lemma 3.7 implies that there exists a constant δ > 0 such that f (θt ) ≥ δ . Hence,

E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −
δn

q
+O (n1/4). (3.7)

(Note that Lemma 3.7 only holds when λ < λs ; this is why Lemma 3.14 only holds for λ in this

regime.)

Similarly, if θt ∈ (Θs − ε,Θs + ε ), Fact 3.19(ii) and Lemma 3.7 imply

E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −
f (Θs + ε )n

q
+

2εn

q
+O (n1/4) ≤ −

δn

q
+

2εn

q
+O (n1/4).

By choosing ε su�ciently small, we see that there exists a constant γ > 0 such that, if θt > Θs−ε ,
then

E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −γn.

Let τ = min{t > 0 : L1(Xt ) ≤ (Θs − ε )n}. Note that E[τ ] < ∞, and thus Lemma 2.20 implies

that E[τ ] ≤ 4/γ . By Markov’s inequality Pr[τ > 8/γ ] ≤ 1/2, so L1(XT ) ≤ (Θs − ε )n for some

T = O (1) with probability Ω(1). Fact 3.20 then implies that after O (logn) additional steps the

largest component in the con�guration has size O (logn).
Finally, note that if L1(Xt ) = O (logn) then Facts 3.17(i) and 3.17(ii) imply that the number of

active vertices is Ω(n) with probability 1 −O (n−1). Hence, I (Xt+1) = Ω(n) w.h.p. by Lemma 2.4.

Since L1(Xt+1) = O (logn) w.h.p. by Fact 3.17(iv), the result follows. �

3.3.3 Proofs of preliminary facts
Here we provide the proofs of the auxiliary facts used in the previous section.

Proof of Fact 3.17. Observe that E[At |Xt ,¬Et ] =
n−L1 (Xt )

q =: µ, and

∑
j≥2

Lj (Xt )
2 ≤ rn since

L2(Xt ) ≤ r . Then, Hoe�ding’s inequality implies

Pr [ |At − µ | > ξ (r ) | Xt ,¬Et ] ≤ 2 exp

(
−

2rn logn

rn

)
≤

2

n2
.

Thus, At ∈ Ĵt with probability at least 1−O (n−2). Also, (µ + ξ (r )) λn <
λ
q +o(1) < 1 for su�ciently

large n since λ < q; hence, the random graph G (At ,p) is sub-critical and part (i) follows from

Lemmas 2.6 and 2.10.
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Parts (ii), (iii) and (iv) follow in similar fashion. IfL (Xt ) is active, thenAt ∈ Jt with probability

1 −O (n−2) by Hoe�ding’s inequality. If At ∈ Jt and L1(Xt ) ≥ (Θs + ε )n, then the random graph

G (At ,p) is super-critical, since(
L1(Xt ) +

n − L1(Xt )

q
− ξ (r )

)
λ

n
≥

(
Θs + ε +

1 − Θs − ε

q

)
λ − o(1)

= 1 +

(
1 −

1

q

)
ελ − o(1) > 1,

where in last equality we used the fact that Θs =
q−λ
λ(q−1) . Part (ii) then follows from Lemma 2.7.

If L (Xt ) is active, then At ∈ Jt with probability 1 − O (n−2) by part (ii). Since also L1(Xt ) ≤
(Θs − ε )n, we have(

L1(Xt ) +
n − L1(Xt )

q
+ ξ (r )

)
λ

n
≤ 1 −

(
1 −

1

q

)
ελ + o(1) < 1.

Hence, G (At ,p) is sub-critical and part (ii) follows from Lemma 2.6.

Finally, note that E[At |Xt ] = n/q and since in this case L (Xt ) is also small, Hoe�ding’s in-

equality implies that At ∈ [n/q − ξ (r ),n/q + ξ (r )] with probability 1 − O (n−2). If At ∈ [n/q −
ξ (r ),n/q + ξ (r )] and λ < q, then the random graph G (At ,p) is sub-critical and part (iv) follows

from Lemma 2.6. �

Proof of Fact 3.18. If Xt has a unique large component and L (Xt ) is activated, then Lemma 2.5

implies that Xt+1 has at most one large component with probability 1 −O (n−1/12). Otherwise, if

L (Xt ) is not activated, Xt+1 will have a unique large component with probability 1 −O (n−1) by

Fact 3.17(i). The result then follows by a union bound over the T = O (logn) steps. �

Proof of 3.19. Let Nt be the size of the largest new component created at time t . First observe that

when L (Xt ) is inactive, Fact 3.17(i) implies that Nt = O (logn) with probability 1−O (n−1). Since

by assumption L1(Xt ) ≥ (Θs + ε )n, L1(Xt+1) = L1(Xt ) with probability 1 −O (n−1) and thus

−O (1) ≤ E[L1(Xt+1) − L1(Xt ) | Xt ,¬Et ] ≤ O (1). (3.8)

To bound E[L1(Xt+1)−L1(Xt ) | Xt , Et ], let µt = θtn+
(1−θt )n

q , Mt = At −µt and let `m (θt ) denote

the size of the largest component of a G (µt +m,p) random graph. Note that if Mt = m, then Nt

and `m (θt ) have the same distribution. Also, if At ∈ Jt (see (3.6)) then Mt ∈ J ′t := [−ξ (r ), ξ (r )].
Hence, by Fact 3.17(ii)

E[Nt | Xt , Et ] ≤
∑
m∈J ′t

E[`m (θt )] Pr[Mt =m | Xt , Et ] +O (1). (3.9)

When θt ≥ Θs + ε and m ∈ J ′t , Fact 3.17(ii) implies that G (µt +m,p) is a super-critical random

graph and by Lemma 2.8

E[`m (θt )] ≤ ϕ (θt ) (n +m) + 2n1/4. (3.10)
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(The function ϕ was de�ned in Section 3.1.2; see (3.3)). Hence,

E[Nt | Xt , Et ] ≤ ϕ (θt )n + ϕ (θt ) E[Mt | Xt , Et ] + 2n1/4 +O (1) = ϕ (θt )n + 2n1/4 +O (1),

since E[Mt | Xt , Et ] = 0. Similarly, we obtain

E[Nt | Xt , Et ] ≥ ϕ (θt )n − 2n1/4 −O (1).

Now, when L (Xt ) is active, L1(Xt+1) , Nt only if the size of the largest inactive component

is at least Nt . But since the second largest component is small (i.e., L2(Xt ) < 2n11/12
) and the per-

colation step is super-critical, Lemma 2.7 implies that Pr[L1(Xt+1) , Nt | Xt , Et ] = exp(−Ω(n)).
Consequently,

ϕ (θt )n − 2n1/4 −O (1) ≤ E[L1(Xt+1) | Xt , Et ] ≤ ϕ (θt )n + 2n1/4 +O (1). (3.11)

Putting together (3.8) and (3.11), we get

−
f (θt )n

q
−

2n1/4

q
−O (1) ≤ E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −

f (θt )n

q
+

2n1/4

q
+O (1); (3.12)

part (i) then follows from (3.11) and (3.12).

For part (ii), note that for any θt ∈ (Θs − ε,Θs + ε ) and any m ∈ J ′t , we have E[`m (θt )] ≤

E[`m (Θs+ ε )] by monotonicity. Also, if µ̂t = (Θs+ ε )n+
(1−Θs−ε )n

q , then by Fact 3.17(ii) the random

graph G (µ̂t +m,p) is super-critical for anym ∈ J ′t . Hence,

E[`m (θt )] ≤ E[`m (Θs + ε )] ≤ ϕ (Θs + ε ) (n +m) +O (n1/4), (3.13)

by Lemma 2.8. The inequality in (3.9) also holds for θt ∈ (Θs−ε,Θs+ε ). Since again L1(Xt+1) = Nt

with probability 1 − exp(−Ω(n)), we get from (3.9) and (3.13) that

E[L1(Xt+1) | Xt , Et ] ≤ ϕ (Θs + ε )n +O (n1/4).

Together with (3.8), which also holds in this setting, this implies that

E[L1(Xt+1) | Xt ] ≤

(
1 −

1

q

)
θtn +

ϕ (Θs + ε )n

q
+O (n1/4)

≤ L1(Xt ) −
f (Θs + ε )n

q
+

2εn

q
+O (n1/4),

from which part (ii) follows. �

Proof of Fact 3.20. If L1(X0) ≤ (Θs − ε )n and L (X0) is activated, then by Fact 3.17(iii) the largest

new component has size O (logn) with probability 1 − O (n−1). Hence, X1 has no large compo-

nent with probability Ω(1). Now, Fact 3.17(iv) and a union bound imply that all the new com-

ponents created during the O (logn) steps immediately after have size O (logn) w.h.p. Another

union bound over components shows that during these O (logn) steps, every component in X1

is activated w.h.p. Thus, after O (logn) steps the largest component in the con�guration has size

O (logn) with probability Ω(1), as desired. �
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3.3.4 Coupling to the same component structure: Proof of Lemma 3.15
In this section we design a coupling of the CM steps which, starting from two con�gurations

with certain properties (i.e., those established in Lemma 3.14), quickly converges to a pair of con-

�gurations with the same component structure. (We say that two random-cluster con�gurations

X and Y have the same component structure if Lj (X ) = Lj (Y ) for all j ≥ 1.) In particular, we

establish Lemma 3.15.

The following corollary of Lemma 3.14 will be used in the proof.

Corollary 3.21. Let q > 1, 0 < λ < q and suppose X0 is a random-cluster con�guration such that
L1(X0) = O (logn) and I (X0) = Ω(n). Then, these two properties are maintained for T steps of the
CM dynamics w.h.p. provided T = O (logn).

Proof. If L1(Xt ) = O (logn), then L1(Xt+1) = O (logn) with probability 1−O (n−1) by Fact 3.17(iv).

Moreover,At = Ω(n) with probability 1−O (n−1) by Facts 3.17(i) and 3.17(ii). Thus, I (Xt+1) = Ω(n)
with probability 1 −O (n−1) by Lemma 2.4. The result then follows by a union bound over the T
steps. �

Proof of Lemma 3.15. Since L1(X0) = O (logn) and I (X0) = Ω(n), by Corollary 3.21 L1(Xt ) =
O (logn) and I (Xt ) = Ω(n) for all t ∈ [0,T ] w.h.p. providedT = O (logn); the same holds for {Yt }.
Hence, it is safe to assume that these properties are maintained throughout the O (logn) steps of

the coupling.

Our coupling will be a composition of two couplings. Coupling I contracts a certain notion of

distance between {Xt } and {Yt }. This contraction will boost the probability of success of Coupling

II. Coupling II uses the binomial coupling from Lemma 2.18 to achieve two con�gurations with

the same component structure with probability Ω(1).
Coupling I: Consider a maximal matchingWt between the components ofXt and Yt with the

restriction that only components of equal size are matched to each other. Let M (Xt ) and M (Yt )
be the components in the matching from Xt and Yt respectively. Let D (Xt ) and D (Yt ) be the

complements of M (Xt ) and M (Yt ) respectively, and let dt = |D (Xt ) | + |D (Yt ) | where | · | denotes

the total number of vertices in the respective components.

The activation of the components in M (Xt ) and M (Yt ) is coupled using the matching Wt .

That is, c ∈ M (Xt ) and Wt (c ) ∈ M (Yt ) are activated simultaneously with probability 1/q. The

components in D (Xt ) and D (Yt ) are activated independently.

Let A(Xt ) and A(Yt ) denote the set of active vertices in Xt and Yt respectively, and w.l.o.g.

assume |A(Xt ) | ≥ |A(Yt ) |. Let Rt be an arbitrary subset of A(Xt ) such that |Rt | = |A(Yt ) | and let

Qt = A(Xt ) \ Rt . The percolation step is coupled by establishing an arbitrary vertex bijection

bt : Rt → A(Yt ) and coupling the re-sampling of each edge (u,v ) ∈ Rt × Rt with (bt (u),bt (v )) ∈
A(Yt ) × A(Yt ). Edges within Qt and in the cut Ct = Rt × Qt are re-sampled independently. The

following claim establishes a contraction in dt .

Claim 3.22. Let ω (n) = n
log

4 n
; after T = O (log logn) steps, dT ≤ ω (n) w.h.p.
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Proof. Coupling I guarantees thatRt andA(Yt ) will have the same component structure internally.

However, the vertices in Qt will contribute to dt+1 and each edge added to Ct in the re-sampling

would increase dt+1 by at most (twice) the size of a component of Rt , which is O (logn) by as-

sumption. Thus,

E[dt+1 | Xt ,Yt ] ≤ dt −
dt
q
+ E[|Qt | | Xt ,Yt ] + 2 E[Kt | Xt ,Yt ] ×O (logn), (3.14)

where Kt is the number of edges added to Ct during the re-sampling. Now,

E[Kt | Xt ,Yt ] ≤
n∑

m=0

E[Kt | Xt ,Yt , |Qt | =m] ≤ λ E[|Qt | | Xt ,Yt ]. (3.15)

Moreover, since |D (Xt ) | = |D (Yt ) |, the expected number of active vertices fromD (Xt ) andD (Yt ) is

the same, and Hoe�ding’s inequality implies that |Qt | = O (
√
n logn) with probability 1−O (n−1).

Hence, E[|Qt | | Xt ,Yt ] = O (
√
n logn) and from (3.14) and (3.15) we get

E[dt+1 | Xt ,Yt ] ≤ dt −
dt
q
+O

(√
n log

2 n
)

(3.16)

≤

(
1 −

1

2q

)
dt

provided dt > ω (n). Thus, Markov’s inequality implies dT ≤ ω (n) for some T = O (log logn)
w.h.p. (Note that for larger values ofT , this argument immediately provides stronger bounds for

dT , but neither our analysis nor the order of the coupling time bene�ts from this.) �

Coupling II:Assume now thatd0 ≤ ω (n) and let Im(Xt ) and Im(Yt ) denote the isolated vertices

in M (Xt ) and M (Yt ) respectively. The activation in Xt \ Im(Xt ) and Yt \ Im(Yt ) is coupled as in

Coupling I. This �rst part of the activation could activate a di�erent number of vertices from

each copy of the chain; let ρt be this di�erence.

Since dt ≤ ω (n) = n/ log
4 n and the expected number of active vertices from D (Xt ) and D (Yt )

is the same, Hoe�ding’s inequality implies ρt = O
(√

n log
−1 n

)
w.h.p. We show next how to

couple the activation in Im(Xt ) and Im(Yt ) in a way that |A(Xt ) | = |A(Yt ) | w.h.p.

The number of active isolated vertices from Im(Xt ) is binomially distributed with parameters

|Im(Xt ) | and 1/q, and similarly for Im(Yt ). Hence, the activation of the isolated vertices may be

coupled using the binomial coupling from Lemma 2.18. Let Ht be the event that this coupling

of the isolated vertices succeeds in correcting the error ρt . Since |Im(Xt ) | = |Im(Yt ) | = Ω(n) and

ρt = O
(√

n log
−1 n

)
, Lemma 2.18 implies thatHt occurs with probability 1−O (log

−1 n). If this is

the case, and we couple the edge re-sampling bijectively as in Coupling I, the updated part of both

con�gurations will have the same component structure and also dt+1 ≤ dt . Hence, if Ht occurs

for all 0 ≤ t ≤ T , then XT and YT fail to have the same component structure only if at least one of

the initial components was never activated. For T = O (logn) this occurs with at most constant

probability. SinceHt occurs for all 0 ≤ t ≤ T = O (logn) with at least constant probability, then

XT and YT have the same component structure with probability Ω(1).
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Couplings I and II succeed each with at least constant probability. Thus, the overall coupling

succeeds with probability Ω(1), as desired. �

3.3.5 Coupling to the same con�guration: Proof of Lemma 3.16
To conclude Section 3.3 we provide the proof of Lemma 3.16. In this lemma we construct a

coupling of the CM steps that starts from two con�gurations with the same component structure

and converges in O (logn) steps to two identical con�gurations.

Proof of Lemma 3.16. Let Bt a bijection between the vertices of Xt and Yt . We �rst describe how

to construct B0. Consider a maximal matching between the components of X0 and Y0 with the

restriction that only components of equal size are matched to each other. Since the two con�g-

urations have the same component structure all components are matched. Using this matching,

vertices between matched components are mapped arbitrarily to obtain B0.

Vertices mapped to themselves we call “�xed”. At time t , the component activation is coupled

according to Bt . That is, if Bt (u) = v for u ∈ Xt and v ∈ Yt , then the components containing

u and v are simultaneously activated with probability 1/q. Bt+1 is adjusted such that if a vertex

w becomes active in both con�gurations then Bt+1(w ) = w ; the rest of the activated vertices are

mapped arbitrarily in Bt+1 and the inactive vertices are mapped like in Bt . The percolation step

at time t is then coupled using Bt+1. That is, the re-sampling of the active edge (u,v ) ∈ Xt is

coupled with the re-sampling of the active edge (Bt+1(u),Bt+1(v )) ∈ Yt .
This coupling ensures that the component structures of Xt and Yt remain the same for all

t ≥ 0. Moreover, once a vertex is �xed it remains �xed forever. The probability that a vertex is

�xed in one step is 1/q2. Therefore, after O (logn) steps the probability that a vertex is not �xed

is at most 1/n2
. A union bound over all vertices implies that XT = YT w.h.p. after T = O (logn)

steps. �

3.4 Mixing time upper bounds: the super-critical case
In this section we establish our mixing time upper bound for the CM dynamics when λ > λS = q
and q > 1. From Lemma 3.3 we know that λc = λS = q for q ≤ 2 and λc < λS for q > 2, so here

we analyze the mixing time in most of the super-critical regime. The mixing time for q > 2 and

λ ∈ (λc , λS] is analyzed in Sections 3.6 and 3.7.

We establish the following theorem.

Theorem 3.23. Let q > 1 and λ > λS = q. Then, the mixing time of the CM dynamics is O (logn).

The structure of the proof of this theorem does not di�er signi�cantly from that of Theorem 3.12

for the sub-critical regime. Indeed, we again construct a coupling of the CM dynamics with four

phases: the �rst two correspond to a burn-in period; the third phase is a coupling that reaches two

con�gurations with the same component structure; and the last phase couples two con�gurations

that maintain the same component structure. For the �rst and last phases we are able to reuse
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Lemmas 3.13 and 3.16 from Section 3.3. However, super-critical random-cluster con�gurations

are likely to have a giant component of size roughly θrn, where θr is the largest positive solution

of equation (3.1). Thus, the goal of the second burn-in phase in the super-critical setting is to

reach two con�gurations with their respective unique large component of size ∼θrn. To do this,

we again use the drift function f (see (3.4)). For λ > λS , θr is the unique positive zero of this

function. Moreover, f is negative for θ < θr and positive for θ > θr (see Figure 3.1). Consequently,

we can show that the drift is always “towards” θrn. However, in contrast to the sub-critical case,

we now have to deal the fact f (θr ) = 0, so the drift can be arbitrarily small near θr ; this requires

a more subtle argument.

The coupling to the same component structure in the third phase also requires some new

insights to deal with the two components of linear size, but it may be seen as an extension of the

coupling in Lemma 3.15.

The following lemmas are used in the proof of Theorem 3.23. Let ΘS := 1 − q/λ and let ε > 0

be a small constant independent of n we choose later.

Lemma 3.24. Let λ > q. If X0 has at most one large component, then L1(X1) = Ω(n) and L2(X1) <
2n11/12 with probability Ω(1).

Lemma 3.25. Let λ ≥ q. If L1(X0) = Ω(n) and L2(X0) < 2n11/12, then there exists T = O (logn)
such that: L1(XT ) > (ΘS+ ε )n, L2(XT ) = O (logn), and

∑
j≥2

Lj (XT )
2 = O (n) with probability Ω(1).

Moreover, once these properties are obtained they are preserved for a furtherT ′ = O (logn) CM steps
w.h.p.

Lemma 3.26. Let λ ≥ q. Suppose that L1(X0) > (ΘS + ε )n, L2(X0) = O (logn) and
∑

j≥2
Lj (X0)

2 =

O (n). Then, there exists T = O (logn) such that with probability Ω(1): |L1(XT ) − θrn | = O (
√
n),

L2(XT ) = O (logn),
∑

j≥2
Lj (XT )

2 = O (n) and I (XT ) = Ω(n).

Lemma 3.27. Let λ ≥ q and let X0 and Y0 be random-cluster con�gurations such that:

(i) |L1(X0) − θrn |, |L1(Y0) − θrn | = O (
√
n);

(ii) L2(X0), L2(Y0) = O (logn);

(iii) I (X0), I (Y0) = Ω(n); and

(iv)
∑

j≥2
Lj (X0)

2,
∑

j≥2
Lj (Y0)

2 = O (n).

Then, there exists a coupling of the CM steps such thatXT andYT have the same component structure
after T = O (logn) steps with probability Ω(1).

Proof of Theorem 3.23. Let X0 and Y0 be two arbitrary random-cluster con�gurations. We con-

struct a coupling of the CM dynamics and show that Pr[XT = YT ] = Ω(1) for someT = O (logn);
the result then follows from (2.1). By Lemmas 3.13, 3.24, 3.25 and 3.26 after T = O (logn) steps:

|L1(XT ) − θrn | = O (
√
n), L2(XT ) = O (logn), I (XT ) = Ω(n) and

∑
j≥2

Lj (XT )
2 = O (n) with proba-

bility Ω(1), and the same holds for YT . The result then follows from Lemmas 3.27 and 3.16. �
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We turn next to the proofs of Lemmas 3.24, 3.25, 3.26 and 3.27. We point out that Lemma 3.24

holds only for λ > q, while all other lemmas used in the proof of Theorem 3.23 hold for λ ≥ q.

This will be useful later in Section 3.6 where we analyze the λ = q regime.

Lemmas 3.24 and 3.25 lay the groundwork for the proof of Lemma 3.26, which is proved �rst

in Section 3.4.1. The proofs of Lemmas 3.24 and 3.25 can be found in Section 3.4.2. Finally, Lemma

3.27 is proved in Section 3.4.3.

3.4.1 Proof of Lemma 3.26
Let ξ (r ) =

√
nr logn, µt = L1(Xt ) +

n−L1 (Xt )
q and µ̂t =

n−L1 (Xt )
q . The following fact will be useful.

Fact 3.28. Let λ ≥ q. Assume Xt has at most one large component and that L2(Xt ) ≤ r < 2n11/12.
Then for su�ciently large n, each of the following holds:

(i) If L (Xt ) is inactive and L1(Xt ) > (ΘS + ε )n, then At ∈ [µ̂t − ξ (r ), µ̂t + ξ (r )] and the largest
new component has size O (logn) with probability 1 −O

(
n−1

)
.

(ii) If L (Xt ) is active, then At ∈ Jt ,r := [µt − ξ (r ), µt + ξ (r )] with probability 1 −O
(
n−1

)
. More-

over, if At ∈ Jt ,r and L1(Xt ) = Ω(n), then G (At ,p) is a super-critical random graph.

Proof of Lemma 3.26. By assumption we have that L1(X0) > (ΘS + ε )n, L2(X0) = O (logn) and∑
j≥2

Lj (X0)
2 = O (n). Hence, Lemma 3.25 implies that {Xt } retains these properties for T steps

w.h.p., provided T = O (logn). Thus, we may assume throughout the proof that these properties

are maintained.

Let∆t := |L1(Xt )−θrn |; we show that one step of the CM dynamics contracts∆t in expectation.

First, if L1(Xt ) > (ΘS + ε )n and L (Xt ) is inactive, then L1(Xt+1) = L1(Xt ) with probability 1 −

O (n−1) by Fact 3.28(i). Therefore,

E[∆t+1 | Xt ,¬Et ] ≤ E [ |L1(Xt+1) − L1(Xt ) | | Xt ,¬Et ] + |L1(Xt ) − θrn | ≤ ∆t +O (1). (3.17)

To bound E[∆t+1 | Xt , Et ], let Mt := At − µt and ∆′t+1
:= |L1(Xt+1) − ϕ (θt )n |. Note that if

At ∈ Jt ,r , then Mt ∈ J
′
t ,r := [−ξ (r ), ξ (r )]. Hence, Fact 3.28(ii) implies

E[∆′t+1
| Xt , Et ] ≤

∑
m∈J ′t,r

E[∆′t+1
| Xt , Et ,Mt =m] Pr[Mt =m | Xt , Et ] +O (1) (3.18)

Let `t (m) be the size of the largest component of a G (µt +m,p) random graph. Conditioned on

Mt = m, the largest new component has size `t (m). The random graph G (µt +m,p) is a super-

critical for m ∈ J ′t ,r by Fact 3.28(ii). Thus, `t (m) = Ω(n) with probability 1 − O (n−1) by Lemma

2.7. Since the size of the largest inactive component is O (logn), we have that L1(Xt+1) = `t (m)
with probability 1 −O (n−1). From (3.18) we then get

E[∆′t+1
| Xt , Et ] ≤

∑
m∈J ′t,r

E[|`t (m) − ϕ (θt )n |] Pr[Mt =m | Xt , Et ] +O (1). (3.19)
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Now,

E[|`t (m) − ϕ (θt )n |] ≤ E[|`t (m) − E[`t (m)]|] + | E[`t (m)] − ϕ (θt )n |

≤
√

Var(`t (m)) + | E[`t (m)] − ϕ (θt )n |.

Since G (µt + m,p) is super-critical, it follows from Lemma 2.8 that Var(`t (m)) = O (n) and

| E[`t (m)] − ϕ (θt )n | ≤ ϕ (θt ) |m | +O (
√
n). Hence,

E[|`t (m) − ϕ (θt )n |] ≤ |m | +O (
√
n).

Plugging this inequality into (3.19), we get

E[∆′t+1
| Xt , Et ] ≤ E[|Mt | | Xt , Et ] +O (

√
n). (3.20)

The following fact, which we prove later, follows straightforwardly from Hoe�ding’s inequality

since by assumption

∑
j≥2

Lj (Xt )
2 = O (n).

Fact 3.29. E[ |Mt | | Xt , Et ] = O (
√
n).

Fact 3.29 and (3.20) imply

E[∆′t+1
| Xt , Et ] = O (

√
n),

and by the triangle inequality

E[∆t+1 | Xt , Et ] ≤ E[∆′t+1
| Xt , Et ] + |θr − ϕ (θt ) |n ≤ |θr − ϕ (θt ) |n +O (

√
n). (3.21)

Putting (3.17) and (3.21) together, we have

E[∆t+1 | Xt ] ≤

(
1 −

1

q

)
∆t +

|θr − ϕ (θt ) |n

q
+O (

√
n). (3.22)

Since by assumption θt > ΘS+ε , Lemma 3.9(ii) implies that there exists a constant δ ∈ (0, 1) such

that δ |θt −θr | ≤ |θt −ϕ (θt ) |. Together with Lemma 3.9(i), this implies |θr −ϕ (θt ) | ≤ (1−δ ) |θt −θr |.
Plugging this into (3.22), we obtain

E[∆t+1 | Xt ] ≤ (1 − δ/q)∆t +O (
√
n),

and inducting

E[∆t ] ≤ (1 − δ/q)t∆0 +O (
√
n). (3.23)

Therefore, for a su�ciently large T = O (logn) we have E[∆T ] = O (
√
n), and by Markov’s in-

equality ∆T = O (
√
n) with probability Ω(1).

Finally, by Facts 3.28(i) and 3.28(ii) the number of active vertices at time T − 1 is Ω(n) w.h.p.,

and thus, by Lemma 2.4, I (XT ) = Ω(n) w.h.p. Since also L2(XT ) = O (logn) and

∑
j≥2

Lj (XT )
2
, the

result follows. �

We now provide the missing proof of Facts 3.29 and 3.28.
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Proof of Fact 3.29. LetWt be a random variable distributed according to the conditional distribu-

tion of |Mt | given Xt and Et . Since

∑
j≥2

Lj (Xt )
2 = O (n), Hoe�ding’s inequality implies that there

exists a constant c such that Pr[Wt > a
√
n] ≤ 2 exp(−ca2) for every a > 0. Observe also that

Wt =

n∑
k=0

1(Wt ≥ k + 1) + 1(k + 1 >Wt > k ) (Wt − k ).

Therefore,

E[Wt ] ≤

n∑
k=0

Pr[Wt > k] ≤ 1 + 2

n∑
k=1

e−
ck2

n ≤ 1 + 2

∞∫
0

e−
cx2

n dx = O (
√
n),

as desired. �

Proof of Fact 3.28. This proof is similar to that of Fact 3.17. If L (Xt ) is inactive, then Hoe�ding’s

inequality implies thatAt ∈ [µ̂t −ξ (r ), µ̂t +ξ (r )] with probability 1−O (n−2). It is straightforward

to check that if At ∈ [µ̂t − ξ (r ), µ̂t + ξ (r )], then G (At ,p) is a sub-critical random graph, provided

L1(Xt ) > (ΘS + ε )n. Part (i) then follows from Lemma 2.6.

Part (ii) follows in similar fashion. If L (Xt ) is active, thenAt ∈ Jt ,r with probability 1−O (n−2)
by Hoe�ding’s inequality. Moreover,

λ

n
(µt − ξ (r )) >

λ

q
+ λ

(
1 −

1

q

)
L1(Xt )

n
− o(1) > 1

provided that λ ≥ q, L1(Xt ) = Ω(n) and that n is large enough. This implies that G (At ,p) is

super-critical when At ∈ Jt ,r . �

3.4.2 Proof of preliminary facts
In this section we give the proofs of Lemmas 3.24 and 3.25.

Proof of Lemma 3.24. First note that if L (X0) is activated, then A0 ∈ J0,r w.h.p. by Fact 3.28(ii).

The fact that λ > q implies that G (A0,p) is a super-critical random graph for A0 ∈ J0,r . (This is

not necessarily the case when λ = q and this why the lemma does not hold for λ = q.) Hence,

L1(X1) = Ω(n) with probability Ω(1) by Lemma 2.7 and L2(X1) < 2n11/12
w.h.p. by Lemma 2.5. �

Proof of Lemma 3.25. It will be convenient to split the proof in three parts, each corresponding to

one of the following claims.

Claim 3.30. If L1(X0) = Ω(n) and L2(X0) < 2n11/12, then there exists T = O (logn) such that
L1(XT ) > (ΘS + ε )n and L2(XT ) < 2n11/12 with probability Ω(1).

Claim 3.31. If L1(X0) > (ΘS + ε )n and L2(X0) < 2n11/12, then these properties are preserved for a
further T = O (logn) CM steps w.h.p.
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Claim 3.32. If L1(X0) > (ΘS + ε )n and L2(X0) < 2n11/12, then there exists T = O (logn) such that
L2(XT ) = O (logn) and

∑
j≥2

Lj (XT )
2 = O (n) with probability Ω(1). Moreover, once these properties

are obtained they are preserved for a further T ′ = O (logn) CM steps w.h.p.

Lemma 3.25 follows directly from these three claims. �

Proof of Claim 3.30. By Lemma 2.5 and a union bound, L2(Xt ) < 2n11/12
for all t ∈ [0,T ] w.h.p.,

provided T = O (logn). Also, since L1(X0) = Ω(n) by assumption, if L1(Xt ) = Ω(n), then when

L (Xt ) is active L1(Xt+1) = Ω(n) with probability 1−O (n−1) by Fact 3.28(ii) and Lemma 2.7; when

L (Xt ) is inactive L1(Xt+1) ≥ L1(Xt ). A union bound over the steps implies that L1(Xt ) = Ω(n)
for all t ∈ [0,T ] w.h.p. Hence, it is safe to assume that both of these properties are preserved

throughout the proof.

Let dt := (ΘS + ε )n − L1(Xt ). Then,

E[dt+1 | Xt , Et ] = dt + θtn − E[L1(Xt+1) | Xt , Et ]. (3.24)

Leth−(θt ) := θtn+
(1−θt )n

q −ξ (r ) and let `−(θt ) be the size of the largest component of aG (h−(θt ),p)

random graph. IfL (Xt ) is activated, Fact 3.28(ii) implies thatAt ∈ Jt ,r with probability 1−O
(
n−1

)
,

where we take r = 2n11/12
. Therefore,

E[L1(Xt+1) | Xt , Et ] ≥
∑
a∈Jt,r

E[L1(Xt+1) | Xt , Et ,At = a] Pr[At = a | Xt , Et ]

≥ E[L1(Xt+1) | Xt , Et ,At = h
−(θt )] − Ω(1), (3.25)

where the second inequality follows by monotonicity. Since L1(Xt ) = Ω(n), Fact 3.28(ii) implies

that G (h−(θt ),p) is a super-critical random graph. Hence, `−(θt ) = Ω(n) with probability 1 −

O (n−1) by Lemma 2.7. Now, L2(Xt ) < 2n11/12
, so if At = h−(θt ), then L1(Xt+1) = `

−(θt ) with

probability 1 −O (n−1). Thus, from (3.25), we get

E[L1(Xt+1) | Xt , Et ] ≥ E[`−(θt )] − Ω(1) ≥ ϕ (θt )n − Ω(ξ (r )),

where the last inequality follows from Lemma 2.8. Plugging this bound into (3.24), we have

E[dt+1 | Xt , Et ] ≤ dt + (θt − ϕ (θt ))n +O (ξ (r )).

Now, θr > ΘS by Fact 3.10 and thus θr > ΘS + ε for small enough ε . Also, L1(Xt ) = Ω(n) by

assumption. Therefore, if dt > 0 (i.e., Ω(n) = L1(Xt ) < (ΘS+ ε )n), then Lemma 3.9(ii) implies that

there exists a constant δ ∈ (0, 1) such that ϕ (θt ) − θt > δ (θr − θt ) > δ (θr − ΘS − ε ) =: δ ′. Note

that δ ′ is a constant in (0, 1) for su�ciently small ε . Moreover, ξ (r ) = o(n) and thus there is a

constant γ > 0 such that

E[dt+1 − dt | Xt , Et ] ≤ −δ
′n +O (ξ (r )) ≤ −γn, (3.26)

provided dt > 0.
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Assuming d0 > 0 (there is nothing to prove otherwise), let τ = min{t > 0 : dt ≤ 0} and letHK

be the event that L (Xt ) is activated for all t ∈ [0,K], where K is a �xed constant independent

of n we choose later. Let T̂ := min{τ ,K } and observe that conditioned onHK , (3.26) holds for all

t < T̂ . Hence, Lemma 2.20 implies E[T̂ |HK ] ≤ 4/γ , and by Markov’s inequality we have that for

su�ciently large K

Pr[τ < K/2 | HK ] ≥ Pr[T̂ < K/2 | HK ] ≥ 1 −
8

γK
> 0.

Since the event HK occurs with constant probability q−K , we have L1(XT ) ≥ (ΘS + 2ε )n with

probability Ω(1) for some T = O (1). �

Proof of Claim 3.31. We show that if L1(X0) > (ΘS + ε )n and L2(X0) < 2n11/12
, then L1(X1) >

(ΘS + ε )n and L2(X1) < 2n11/12
with probability 1−O (n−1/12). A union bound over the steps then

implies L1(Xt ) > (ΘS + ε )n and L2(Xt ) < 2n11/12
for all t ∈ [0,T ] with probability 1−O

(
T /n1/12

)
.

If L (X0) is not activated, by Fact 3.28(i), L1(X1) = L1(X0) > (ΘS + ε )n with probability

1 −O
(
n−1

)
. Otherwise, let h−(θ0) := θ0n +

(1−θ0)n
q − ξ (r ) and let `−(θ0) be the size of the largest

component of a G (h−(θ0),p) random graph. By monotonicity

Pr[L1(X1) < ϕ (θ0)n − 2ξ (r ) | A0 ∈ J0,r ] ≤ Pr[L1(X1) < ϕ (θ0)n − 2ξ (r ) | A0 = h
−(θ0)].

By Fact 3.28(ii) with r = 2n11/12
,G (h−(θ0),p) is super-critical with probability 1−O (n−1). Hence,

if L (X0) is activated and A0 = h
−(θ0), L1(X1) = `

−(θ0) with probability 1−O (n−1) since L2(X0) <
2n11/12

. Therefore,

Pr[L1(X1) < ϕ (θ0)n − 2ξ (r ) | E0,A0 ∈ J0,r ] ≤ Pr[`−(θ0) < ϕ (θ0)n − 2ξ (r )],

and by Lemma 2.7

Pr[L1(X1) < ϕ (θ0)n − 2ξ (r ) | E0,A0 ∈ J0,r ] = O (n−1).

By Lemma 3.9(i), either ϕ (θ0)n − 2ξ (r ) > θ0n or ϕ (θ0)n − 2ξ (r ) > θrn for su�ciently large n since

ξ (r ) = o(n). In either case, ϕ (θ0)n − 2ξ (r ) > (ΘS + ε )n, since θ0 > ΘS + ε by assumption and

θr > ΘS by Fact 3.10. Thus,

Pr[L1(X1) ≤ (ΘS − ε )n | E0,A0 ∈ J0,r ] = O (n−1).

When L (X0) is active, A0 ∈ J0,r with probability 1 − O (n−1) by Fact 3.28(i). Hence, L1(X1) >

(ΘS + ε )n with probability 1 − O
(
n−1

)
. Finally, note that L2(X1) < 2n11/12

with probability

1 −O (n−1/12) and thus the result follows by a union bound. �

Proof of Claim 3.32. By Claim 3.31 we may condition on the event L1(Xt ) > (ΘS+ε )n and L2(Xt ) <
2n11/12

for all t ∈ [0,T ] with T = O (logn). By fact 3.28(i) if L (Xt ) is inactive or by Fact 3.28(ii)

and Lemma 2.7 if L (Xt ) is active, every new small component has size O (logn) with probability
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1 − O (n−1). A union bound over the steps then implies that every new small component up to

time T has size O (logn) with probability 1 − O (T /n). Moreover, the probability that any initial

component remains after T = B logn steps is O (n−1) for a su�ciently large constant B > 0;

therefore, L2(XT ) = O (logn) with probability 1 − O (logn/n). Facts 3.28(i), 3.28(ii), Lemma 2.7

and another union bound implies that this property is maintained for an additionalO (logn) steps

w.h.p.

To establish that

∑
j≥2

Lj (XT )
2 = O (n), we consider the one-dimensional random process {Zt }

where Zt =
∑

j≥2
Lj (Xt )

2
. At any time t , the decrease in Zt as a result of the dissolution of active

components is Zt/q in expectation, and is at least Zt/q − o(n) with probability 1 − O (n−1) by

Hoe�ding’s inequality since L2(Xt ) < 2n11/12
. If L1(Xt ) > (Θs + ε )n, then Facts 3.28(i) and 3.28(ii)

imply that when L (Xt ) is active (resp., inactive), then the percolation step is super-critical (resp.,

sub-critical) with probability 1 −O (n−1). Hence, Lemma 2.11 implies that the increase in Zt as a

result of the creation of new components in the percolation step is at most Cn with probability

1 −O (n−1), for some constant C > 0. Therefore,

E[Zt+1 | Xt ] ≤ Zt −
Zt

q
+Cn + o(n)

and thus ZT < 8Cqn with probability Ω(1) for some T = O (logn) by Lemma 2.24. Finally, when

Zt > 8Cqn, Zt decreases by at least 8Cn − o(n) and increases by at most Cn with probability

1 − O (n−1); therefore, Zt+1 ≤ Zt with probability 1 − O (n−1). Moreover, if Zt ≤ 8Cqn, then

Zt+1 ≤ (8q + 1)Cn with probability 1−O (n−1). Hence, if Z0 ≤ 8Cqn, by a union bound Zt = O (n)
for all t ∈ [0,T ] w.h.p., provided T = O (logn). �

3.4.3 Coupling to the same component structure: Proof of Lemma 3.27
In this section we design a coupling of the CM steps which converges quickly to a pair of con-

�gurations with the same component structure, assuming the starting con�gurations have the

super-critical properties guaranteed by Lemma 3.26. In particular, we prove Lemma 3.27, which

is an extension of Lemma 3.15. For convenience, we reuse the notation introduced in the proof

of that lemma.

The following corollary of Lemma 3.26 will be used in the proof.

Corollary 3.33. Let λ ≥ q and T = O (logn). Suppose X0 is a random-cluster con�guration with
a component structure that satis�es properties (i)-(iv) from Lemma 3.27. Then, |L1(Xt ) − θrn | =
O (
√
n log

2 n), L2(Xt ) = O (logn) and
∑

j≥2
Lj (Xt )

2 = O (n) for all t ∈ [0,T ] w.h.p. Moreover, for any
t ∈ [0,T ], |L1(Xt ) − θrn | = O (

√
n) with probability Ω(1).

Proof. By Claim 3.32, L2(Xt ) = O (logn) and

∑
j≥2

Lj (Xt )
2 = O (n) for all t ∈ [0,T ] w.h.p. More-

over, if a con�guration has these two properties, then the number of active vertices is Ω(n) with

probability 1 −O (n−1) by Hoe�ding’s inequality. Lemma 2.4 and a union bound then imply that

I (Xt ) = Ω(n) for all t ∈ [0,T ] w.h.p.

Finally note that by (3.23), E[|L1(Xt ) − θrn |] = O (
√
n) for any t ∈ [0,T ]. Hence, by Markov’s

inequality there exists a constant c > 0 such that Pr[|L1(Xt ) − θrn | ≥ A
√
cn] ≤ 1/A for any
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t ≥ 0 and A > 0; thus, |L1(Xt ) − θrn | = O (
√
n) with probability Ω(1). Taking A = O (log

2 n), a

union bound implies that |L1(Xt ) − θrn | = O (
√
n log

2 n) for all t ∈ [0,T ] w.h.p., and the result

follows. �

We are know ready to prove Lemma 3.27.

Proof of Lemma 3.27. By Corollary 3.33 we can assume that properties (ii) to (iv) of X0 and Y0

are preserved throughout the O (logn) steps of this coupling. Corollary 3.33 also implies that

|L1(Xt ) − θrn | = O (
√
n log

2 n) for all t ∈ [0,T ] w.h.p. provided T = O (logn); the same holds for

Yt . Thus, we also assume that this property is maintained throughout the O (logn) steps of the

coupling.

As mentioned earlier, the coupling we design in this setting is very similar to the one used in

Lemma 3.15. Thus, it is convenient to reuse the notation introduced in the proof of that lemma.

The coupling will be a composition of three couplings. First we use Coupling I from the proof

of Lemma 3.15 to contract dt as before. Then, we use a one-step coupling which guarantees that

the largest components of {Xt } and {Yt } have the same size with probability Ω(1). Once the two

con�gurations agree on the sizes of their largest component and dt ≤ ω (n), we use Coupling II.

The activations of L (Xt ) and L (Yt ) are coupled; i.e., both are active with probability 1/q and

both are inactive otherwise. The remaining components and the edge re-sampling are coupled

using Coupling I. Observe that inequalities (3.14) and (3.15) are valid in this setting. Moreover,

the expected number of active vertices from D (Xt ) and D (Yt ) di�er by at mostO (
√
n log

2 n), since

by assumption |L1(Xt ) − L1(Yt ) | = O (
√
n log

2 n). This implies that |Qt | = O (
√
n log

2 n) w.h.p. by

Hoefdding’s inequality. (In Lemma 3.15 we had |Qt | = O (
√
n logn) w.h.p.) Therefore, inequality

(3.16) is also valid here provided the error term O (
√
n log

2 n) is replaced by O (
√
n log

3 n). Hence,

Claim 3.22 holds and thus dT ≤ ω (n) after T = O (log logn) steps with probability Ω(1).
We take care next of �xing the di�erence in size between the two largest components. The

activation in Xt \ Im(Xt ) and Yt \ Im(Yt ) is coupled as in Coupling I and we condition on the event

that L (Xt ) and L (Yt ) are activate; this event occurs with probability 1/q.

First we show that ρt = O (
√
n) with probability Ω(1). By Corollary 3.21, we have that |L1(Xt )−

L1(Yt ) | = O (
√
n) with probability Ω(1). If this is the case, then | |D (Xt ) | − |D (Yt ) | | = O (

√
n). Also,∑

j≥2
Lj (Xt )

2 = O (n) and

∑
j≥2

Lj (Yt )
2 = O (n), and thus Hoe�ding’s inequality implies that the

number of active vertices from D (Xt ) and D (Yt ) di�er by at most O (
√
n) with probability Ω(1).

Thus, ρt = O (
√
n) with probability Ω(1). The activation of the isolated vertices is then coupled

using the binomial coupling from Section 2.4. Since |Im(Xt ) | = |Im(Yt ) | = Ω(n) and ρt = O (
√
n),

Lemma 2.18 implies that this coupling corrects the di�erence ρt with probability Ω(1). If this

is the case, then by coupling the edge re-sampling bijectively as in Coupling I, we ensure that

L1(Xt+1) = L1(Yt+1) and dt+1 ≤ ω (n) with probability Ω(1).
Finally, we use Coupling II until the two con�gurations have the same component structure.

Since each of these couplings succeeds with at least constant probability, the result follows. �
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3.5 Mixing time upper bounds: the λ = λs case
In this section we prove our mixing time upper bound for the CM dynamics for λ = λs and q > 2.

In particular, the following theorem establishes the upper bound in part (ii) of Theorem 3.11 from

Section 3.2.

Theorem 3.34. Let q > 2 and λ = λs . Then, the mixing time of the CM dynamics is O (n1/3).

The structure of the proof of Theorem 3.34 mimics that of Theorems 3.12 and 3.23 for the sub-

critical and super-critical regimes, respectively. We again construct a four-phase coupling by

composing a two-phase burn-in period, a coupling to reach two con�gurations with the same

component structure and a �nal coupling to couple them exactly. For the �rst, third and fourth

phases we are able to reuse Lemmas 3.13, 3.15 and 3.16 from Section 3.3, all of which hold for

λ = λs and q > 2. However, the second phase of the burn-in period presents signi�cant new

challenges.

Recall that after the �rst phase there is a unique large component, and the goal of the second

phase in the sub-critical regime is to reach a con�guration where the largest component has

size O (logn). As before, the expected change in size of this component is speci�ed by the drift

function f . For λ = λs and q > 2, the function f has a unique zero θ ∗ (see Figure 3.1), and thus

the drift can be arbitrarily small near θ ∗. In contrast to the super-critical case, where it was only

required to get close enough to the zero of f , here the evolution of the largest component needs

to pass through this regime of “zero drift” and then continue to decrease in size until it reaches a

size of O (logn).
Our approach is to split the second phase of the burn-in period into three parts. Namely, we

choose a windowW := [θ ∗n −O (n2/3),θ ∗n +O (n2/3)], and in the �rst part we bound the time it

takes for the largest component to reach a size inW , assuming its initial size wasn. The magnitude

of the drift is roughly given by f (θ )n, and in Section 3.1.2 we showed that f (θ ) ≈ (θ − θ ∗)2 (see

Lemma 3.8(i)); hence, f (θ )n ≈ (θ − θ ∗)2n. Since f is increasing in (θ ∗, 1), the drift is at least

O (n1/3) throughout the �rst part. However, using this very pessimistic lower bound yields only

that O (n2/3) steps are su�cient to reach W . Instead, we split the interval (θ ∗, 1) into O (logn)
subintervals and use a much more precise lower bound for the drift in each subinterval. This

gives the desired O (n1/3) bound for the number of steps required to reachW .

In the second part we bound the time it takes to “escape”W through its left boundary. Inside

W the drift is too small to be useful, so it is ignored. Instead, we use the fact that the variance

σ 2
of the process is large; i.e., σ 2 = Ω(n). Since the process is “close” to a martingale (which

corresponds to having drift 0), we are able to show that after O ( |W |2/σ 2) = O (n1/3) steps the

process escapesW through its left boundary with probability Ω(1). For this, we use the tailored

supermartingale hitting time bound we proved in Lemma 2.23.

In the third part we show that if the process starts o� with a unique large component of size

at most θ ∗n − O (n2/3), i.e., to the left of W , then after O (n1/3) steps the largest component will

have size O (logn) with probability Ω(1). The argument for this part does not di�er signi�cantly

from the one in the �rst part. Finally, we point out that the size of the windowW is optimized so

that each of the three parts takes roughly the same number of steps.
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The following lemma is a key part of the proof of Theorem 3.34.

Lemma 3.35. Let q > 2 and λ = λs . If X0 has at most one large component, then there exists
T = O (n1/3) such that L1(XT ) = O (logn) and I (XT ) = Ω(n) with probability Ω(1).

Proof of Theorem 3.34. LetX0 andY0 be two arbitrary random-cluster con�gurations. By Lemmas

3.13 and 3.35, afterT = O (n1/3) steps L1(XT ) = O (logn) and I (XT ) = Ω(n) with probability Ω(1).
The same holds for YT . Hence, Lemmas 3.15 and 3.16 imply that after an additionalO (logn) steps

the two con�gurations agree with probability Ω(1). The result then follows from the standard

mixing time estimate (2.1). �

Let θ ∗ be the unique zero of the function f in the interval (θmin, 1] (see Fact 3.6). Lemma 3.35 is

direct a consequence of the following three lemmas; these lemmas hold when q > 2 and λ = λs .

Lemma 3.36. Assume L1(X0) > θ ∗n + Bn2/3 and L2(X0) < 2n11/12, where B > 0 is a constant
independent of n. Then, there exists T = O (n1/3) such that, with probability Ω(1), L1(XT ) ≤ θ

∗n +
Bn2/3 and L2(XT ) < 2n11/12.

Lemma 3.37. Suppose L1(X0) ∈ [θ ∗n − Bn2/3,θ ∗n + Bn2/3
] for a su�ciently small constant B > 0.

If L2(X0) < 2n11/12, then there exists T = O (n1/3) such that, with probability Ω(1), L1(XT ) <
θ ∗n − Bn2/3 and L2(XT ) < 2n11/12.

Lemma 3.38. Assume L1(X0) < θ ∗n − Bn2/3 and L2(X0) < 2n11/12 where B > 0 is constant
independent ofn. Then, there existsT = O (n1/3) such that, with probability Ω(1), L1(XT ) = O (logn)
and I (XT ) = Ω(n) .

Let ε > 0 be a small constant (independent of n) that we choose later. The following auxiliary

facts, which are proved later in Section 3.5.1, will be used in the proofs of these lemmas. Fact 3.39

guarantees additional initial properties of the con�guration that will simplify our proofs, while

Fact 3.40 establishes useful properties of the one-dimensional process {L1(Xt )} that we will refer

to repeatedly.

Fact 3.39. Let λ < q and let X0 be a random-cluster con�guration.

(i) If X0 is such that L1(X0) ≥ (Θs + ε )n and L2(X0) < 2n11/12, then there exists T = O (logn)
such that, with probability Ω(1), either L2(XT ) = O (logn) and

∑
j≥2

Lj (XT )
2 = O (n) or

L1(XT ) < (Θs + ε )n and L2(XT ) < 2n11/12.

(ii) Suppose X0 is such that L1(X0) ≥ (Θs + ε )n, L2(X0) = O (logn) and
∑

j≥2
Lj (X0)

2 = O (n). If
L1(Xt ) ≥ (Θs + ε )n for all t ∈ [0,T ], then L2(Xt ) = O (logn) and

∑
j≥2

Lj (Xt )
2 = O (n) for all

t ∈ [0,T ] w.h.p., provided T = O (n1/3).

Fact 3.40. Let λ < q and suppose Xt is such that L1(Xt ) ≥ (Θs + ε )n, L2(Xt ) = O (logn) and∑
j≥2

Lj (Xt )
2 = O (n). Then for su�ciently large n:

(i) Var(L1(Xt+1) | Xt , Et ) = Θ(n);
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(ii) Var(L1(Xt+1) | Xt ) = Ω(n);

(iii) There exists a constant A > 0 such that:

• Pr[L1(Xt+1) < [ϕ (θt )n −A
√
n logn,ϕ (θt )n +A

√
n logn] | Xt , Et ] = O (n−2).

• Pr[L1(Xt+1) < [ϕ (θt )n −A
√
n logn,ϕ (θt )n +A

√
n logn] ∪ {L1(Xt )} | Xt ] = O (n−2).

(see (3.3) for the de�nition of ϕ).

Proof of Lemma 3.36. By assumption, L1(X0) > θ
∗n + Bn2/3

and L2(X0) < 2n11/12
. Since θ ∗ > Θs

(see Fact 3.6), L1(X0) ≥ (Θs + ε )n for small enough ε . Therefore, Fact 3.39 will allow us to assume

that L2(Xt ) = O (logn) and

∑
j≥2

Lj (Xt )
2 = O (n) for all t ≤ τ w.h.p., provided τ = O (n1/3).

Namely, by Fact 3.39(i) after O (logn) initial steps these properties are achieved with probability

Ω(1) and by Fact 3.39(ii) they are preserved for τ steps w.h.p., provided τ = O (n1/3) and that

L1(Xt ) ≥ (Θs + ε )n for all t ≤ τ . (Note that if L1(Xt ) < (Θs + ε )n for any t ≤ τ , then there is

nothing to prove.)

Let Yt+1 := L1(Xt+1) − ϕ (θt )n and let

Ỹt :=



Yt if |Yt | ≤ A
√
n logn;

0 otherwise,

where A > 0 is the constant from Fact 3.40(iii). We shall see that when L (Xt ) is active, ϕ (θt )n
speci�es the expected value of L1(Xt+1); hence,Yt corresponds roughly to the �uctuation of L1(Xt )
around its mean. Moreover, the sequence of random variables Ỹ1, Ỹ2, . . . ignores the very unlikely

large �uctuations, which will simplify our arguments.

Now, let {Zt } be the stochastic process given by Zt+1 = ϕ (Zt/n)n + Ỹt with Z0 = L1(X0).
Observe that if the largest component in the con�guration is forced to be always active and

Yt ≤ A
√
n logn for all t ≥ 0, then the one-dimensional process {Zt } keeps track of the size of the

largest component.

We show �rst that ZT ≤ θ ∗n + Bn2/3
with probability Ω(1) for some T = O (n1/3). Suppose

Z0 ∈ [θ ∗n + 2
kBn2/3,θ ∗n + 2

k+1Bn2/3
] and let Ik := [θ ∗n + 2

kBn2/3,θ ∗n + 2
k+3Bn2/3

], where k is a

positive integer. (If either θ ∗n + 2
k+1Bn2/3 > n or θ ∗n + 2

k+3Bn2/3 > n, then the right boundary of

the corresponding interval is replaced by n.)

We consider �rst the case when k is small; i.e., k is such that 2
k/n1/3 → 0. For ease of notation

let
ˆθt = Zt/n. Lemma 3.8(i) implies that for Zt ∈ Ik there exist constants δ ,δ1,δ2 > 0 such that

ϕ ( ˆθt )n ≤ Zt − δ1 | ˆθt − θ
∗ |2n + δ2 | ˆθt − θ

∗ |3n

≤ Zt − δ | ˆθt − θ
∗ |2n

≤ Zt − δ2
2kB2n1/3, (3.27)

and thus

Zt+1 ≤ Zt − δ2
2kB2n1/3 + Ỹt+1.
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From Fact 3.19(i) we know that E[Yt+1 |Xt , Et ] ≤ 3n1/4
and from Fact 3.40(i) that Var(Yt+1 |Xt , Et ) =

O (n). Since conditioned on Et , Yt+1 = Ỹt+1 with probability 1 −O (n−2) by Fact 3.40(iii), we have

that E[Ỹt+1 |Xt , Et ] ≤ 4n1/4
and Var(Ỹt+1 |Xt , Et ) = O (n).

We now claim that the process {Zt } in the interval Ik satis�es all the assumptions of Lemma

2.22. To see this, observe that w.l.o.g. we can shift the process by subtracting θ ∗n + 2
kBn2/3

and

then take M = 7 · 2kBn2/3
, α = 1/7, κ = 2, D = δ2

2kB2n1/3
and C = δ ′2k , where δ ′ is a su�ciently

small positive constant. Hence, afterTk = O (2−kn1/3) steps, ZTk < θ
∗n + 2

kBn2/3
with probability

1 − 2 exp(−c2
k ), for some constant c > 0 independent of n and k .

We proceed in a similar manner when 2
k/n1/3 9 0; i.e., 2

k = Ω(n1/3). In this case, Lemma

3.8(iii) implies that ϕ ( ˆθt )n ≤ Zt −γn for some constant γ > 0, and so Zt+1 ≤ Zt −γn+Ỹt+1. Lemma

2.22 then implies that for some Tk = O (1), ZTk ≤ θ
∗n + 2

kBn2/3
with probability Ω(1).

Putting all this together, if Z0 ∈ [θ ∗n + 2
kBn2/3,θ ∗n + 2

k+1Bn2/3
] for some k ≥ 0, then after

T =
∑k

j=0
Tj = O (n1/3) steps ZT ≤ θ

∗n + Bn2/3
with probability Ω(1).

We show next that if ZT ≤ θ
∗n + Bn2/3

for some T = O (n1/3), then there exists T ′ = O (n1/3)
such that L1(XT ′ ) ≤ θ

∗n + Bn2/3
w.h.p. For this, let

Z̃t+1 =



ϕ (Z̃t/n)n + Ỹt+1 if L (Xt ) is active;

Z̃t otherwise,

and let Z̃0 = Z0 = L1(X0). The process {Z̃t } is simply “lazy” version of {Zt }; namely, Z̃t+1 = Z̃t

with probability 1 − q−1
, and otherwise {Z̃t } evolves like {Zt }. Therefore, if ZT ≤ θ

∗n + Bn2/3
for

some T = O (n1/3), then Z̃T ′ ≤ θ
∗n + Bn2/3

for some T ′ = O (n1/3) w.h.p.

Now, if L (Xt ) is inactive, then L (Xt+1) = L (Xt ) with probability 1 −O (n−1) by Fact 3.17(i).

Hence,

Pr[Z̃t+1 , L1(Xt+1) | Zt = L1(Xt ),¬Et ] = O (n−1).

Also, if L (Xt ) is active, then Fact 3.40(iii) implies that Yt+1 = Ỹt+1 with probability 1 −O (n−2), so

Pr[Z̃t+1 , L1(Xt+1) | Zt = L1(Xt ), Et ] = O (n−2),

and thus

Pr[Z̃t+1 = L1(Xt+1) | Zt = L1(Xt )] = 1 −O (n−1).

Inductively, we then get that Z̃T ′ = L1(XT ′ ) w.h.p., and hence L1(XT ′ ) ≤ θ
∗n + Bn2/3

with prob-

ability Ω(1). Since also L2(XT ′ ) = O (logn) w.h.p. (see discussion at the beginning of the proof),

then the result follows. �

Proof of Lemma 3.37. By Fact 3.39, we shall assume that L2(Xt ) = O (logn) and

∑
j≥2

Lj (Xt )
2 =

O (n) for all t ≤ T w.h.p., whereT = O (n1/3) will be determined later. Let Zt := L1(Xt ) − θ
∗n; Fact

3.19(i) implies

−
f (θt )n

q
− 2n1/4 ≤ E[Zt+1 − Zt | Xt ] ≤ −

f (θt )n

q
+ 2n1/4 ≤ 2n1/4.



CHAPTER 3. DYNAMICS FOR THE MEAN-FIELD RANDOM-CLUSTER MODEL 49

Moreover, if L1(Xt ) ∈ [θ ∗n − 2Bn2/3,θ ∗n + 2Bn2/3
], then by Fact 3.8(i) there exists a positive

constant δ such that | f (θt ) |n ≤ δB
2n1/3

. Hence,

−2δB2n1/3 ≤ E[Zt+1 − Zt | Xt ] ≤ 2δB2n1/3

for su�ciently large n. By Fact 3.40(ii), we also know that Var(Zt+1 |Xt ) = Ω(n) and by part (iii)

of the same fact we get that, with probability 1 −O (n−2), either L1(Xt+1) = L1(Xt ) or L1(Xt+1) ∈
[ϕ (θt )n − a

√
n logn,ϕ (θt )n + a

√
n logn] for some constant a > 0. Since |θt − ϕ (θt ) |n = | f (θt ) |n ≤

δB2n1/3
, we have that su�ciently large n

Pr[|Zt+1 − Zt | > 2a
√
n logn | Xt ] = O (n−2).

Also, |Zt+1 − Zt | < n and by assumption Z0 ∈ [−Bn2/3,Bn2/3
]. Hence, Lemma 2.23 with M = n,

A = 2Bn2/3
, C = 2δB2n1/3

, σ 2 = Ω(n), L = 2a
√
n logn, ε = O (n−2) and κ = 4 implies that, for B

small enough, ZT < −Bn
2/3

with probability Ω(1) for some T = O (n1/3) as desired. �

Proof of Lemma 3.38. We show �rst that for some T = O (n1/3), L1(XT ) ≤ (Θs + ε )n and L2(XT ) <
2n11/12

with probability Ω(1). The proof of this fact is very similar to that of Lemma 3.36. Indeed,

by Fact 3.39 we shall again assume that L2(Xt ) = O (logn) and

∑
j≥2

Lj (Xt )
2 = O (n) for all t ≤

T = O (n1/3), and we consider the same stochastic process {Zt } and sequences of random variables

{Yt } and {Ỹt }.
Suppose Z0 ∈ [θ ∗n − 2

k+3Bn2/3,θ ∗n − 2
k+2Bn2/3

] and let I ′
k

:= [θ ∗n − 2
k+3Bn2/3,θ ∗n − 2

kBn2/3
],

where k ≥ 0 is an integer and if θ ∗n − 2
k+3Bn2/3 < (Θs + ε )n, the left boundaries of both these

intervals is set to (Θs + ε )n instead. If Zt ∈ I
′
k

and k is small (i.e., 2
k/n1/3 → 0), then Lemma 3.8(i)

guarantees that (3.27) also holds in this setting. Moreover, from Facts 3.19(i), 3.40(i) and 3.40(iii)

we deduce as in the proof of Lemma 3.36 that E[Ỹt+1 |Xt , Et ] ≤ 4n1/4
and Var(Ỹt+1 |Xt , Et ) = O (n).

Thus, Lemma 2.22 applied to the process {Zt } in I ′
k

(with M = 7 · 2
kBn2/3

, α = 4/7, κ = 2,

D = δ2
2kB2n1/3

and C = δ ′2k , where δ ′ > 0 is a su�ciently small constant) implies that after

Tk = O (2−kn1/3) steps, ZTk ≤ θ
∗n − 2

k+3Bn2/3
with probability 1 − 2 exp(−c2

k ), for some constant

c > 0 independent of n and k . The same holds if 2
k = Ω(n1/3) for someTk = O (1) with probability

Ω(1). Since

∑
j≥0

Tj = O (n1/3), L1(XT ) ≤ (Θs + ε )n with probability Ω(1) for some T = O (n1/3).
Finally, note that L2(XT ) < 2n11/12

w.h.p. and thus the proof of the �rst part is complete.

Consider next the interval J := [(Θs − 2ε )n, (Θs + 2ε )n]. Suppose L1(X0) ∈ J and L2(X0) <
2n11/12

. From Fact 3.18 and a union over the steps, we get L2(Xt ) < 2n11/12
for all t ≤ T w.h.p.,

provided T = O (logn). Assuming this, Fact 3.19(ii) and Lemma 3.8(iii) imply

E[L1(Xt+1) − L1(Xt ) | Xt ] ≤ −γn +O (n1/4)

for some constant γ > 0, provided L1(Xt ) ∈ J . Therefore, by Corollary 2.21 after O (1) steps

the largest component has size at most (Θs − ε )n with probability Ω(1). Fact 3.20 then implies

that after O (logn) additional steps the largest component has at most O (logn) vertices with

probability Ω(1).
Finally, if L1(Xt ) = O (logn) then Facts 3.17(i), 3.17(ii) and Lemma 2.4 imply that I (Xt+1) =

Ω(n) w.h.p. Since also L1(Xt+1) = O (logn) w.h.p. by Fact 3.17(iv), the result follows. �
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3.5.1 Proofs of auxiliary facts
It remains to go back and prove Facts 3.39 and 3.40.

Proof of Fact 3.39. By Fact 3.18 L2(Xt ) < 2n11/12
for all t ≤ T w.h.p., provided T = O (logn).

Assuming this, if L1(Xt ) < (Θs + ε )n for any t ≤ T , then the proof of part (i) is complete. Thus,

we shall also assume that L1(Xt ) ≥ (Θs + ε )n for all t ≤ T . Now, for a suitable T = O (logn),
after the �rst T steps every initial component in X0 has been activated w.h.p. Moreover, since

L1(Xt ) ≥ (Θs + ε )n, by Facts 3.17(i) and 3.17(ii) every new small component in Xt+1 has size

O (logn) with probability 1 −O (n−1). A union bound then implies that L2(XT ) = O (logn) w.h.p.

To establish that

∑
j≥2

Lj (XT )
2 = O (n) we can use an argument analogous to the one used in the

proof of Claim 3.32; the details are thus omitted. This completes the proof of part (i).

For part (ii), note that if L1(Xt ) ≥ (ΘS+ε )n and L2(Xt ) = O (logn), then Facts 3.17(i) and 3.17(ii)

imply that L2(Xt+1) = O (logn) with probability 1−O (n−1). Again, an analogous argument to the

one in the proof of Claim 3.32 yields that

∑
j≥2

Lj (Xt+1)
2 = O (n) with probability 1−O (n−1). Part

(ii) then follows from a union bound over the T = O (n1/3) steps. �

Proof of Fact 3.40. LetNt be the size of the largest (new) component created at time t , µt = L1(Xt )+
n−L1 (Xt )

q , Mt = At − µt and let `m (θt ) denote the size of the largest component of a G (µt +m,p)

random graph. By the law of total variance, we have

Var(Nt | Xt , Et ) = EMt [Var(Nt | Mt ) | Xt , Et ] + VarMt (E[Nt | Mt ] | Xt , Et ). (3.28)

We bound each term in the right hand side of (3.28) separately. If At ∈ Jt , then Mt ∈ J ′t =
[−ξ (r ), ξ (r )] (Jt was de�ned in (3.6)). Hence, Fact 3.17(ii) (with r = O (logn)) implies that

EMt [Var(Nt | Mt ) | Xt , Et ] ≤
∑
m∈J ′t

EMt [Var(Nt | Mt ) | Xt , Et ,Mt =m] +O (1).

Now, if Mt =m, then Nt and `m (θt ) have the same distribution. Hence,

EMt [Var(Nt | Mt ) | Xt , Et ] ≤
∑
m∈J ′t

Var(`m (θt )) Pr[Mt =m | Xt , Et ] +O (1)

≤ max

m∈J ′t
Var(`m (θt )) +O (1).

Since by assumption L1(Xt ) ≥ (Θs + ε )n, G (µt +m,p) is super-critical for m ∈ J ′t by Fact 3.17(ii).

Therefore, Lemma 2.8 implies that EMt [Var(Nt | Mt ) | Xt , Et ] = O (n).
Similarly, we obtain that EMt [Var(Nt | Mt ) | Xt , Et ] = Ω(n), and thus

EMt [Var(Nt | Mt ) | Xt , Et ] = Θ(n). (3.29)

We show next that VarMt (E[Nt | Mt ] | Xt , Et ) = O (n). For this, let

д(m) := E[Nt | Mt =m] = E[`m (θt )],
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and let Γ := EMt [д(Mt ) | Xt , Et ]. Then,

VarMt (E[Nt | Mt ] | Xt , Et ) = VarMt (д(Mt ) | Xt , Et )

= EMt [(д(Mt ) − Γ)2 | Xt , Et ]

≤
∑
m∈J ′t

EMt [(д(m) − Γ)2] Pr[Mt =m | Xt , Et ] +O (1), (3.30)

where the last inequality follows from Fact 3.17(ii). SinceG (µt +m,p) is super-critical form ∈ J ′t ,
Lemma 2.8 implies that form ∈ J ′t

ϕ (θt ) (n +m) − 2n1/4 ≤ д(m) = E[`m (θt )] ≤ ϕ (θt ) (n +m) + 2n1/4. (3.31)

Also, by Fact 3.17(ii)

Γ ≤
∑
m∈J ′t

д(m) Pr[Mt =m | Xt , Et ] +O (1)

=
∑
m∈J ′t

E[`m (θt )] Pr[Mt =m | Xt , Et ] +O (1)

≤ ϕ (θt )n + ϕ (θt ) E[Mt | Xt , Et ] + 3n1/4

= ϕ (θt )n + 3n1/4,

where the last inequality follows from Lemma 2.7. Similarly, we can show that Γ ≥ ϕ (θt )n−3n1/4
.

Together with (3.31) this implies that for anym ∈ J ′t

ϕ (θt )m − 5n1/4 ≤ д(m) − Γ ≤ ϕ (θt )m + 5n1/4,

and thus

(д(m) − Γ)2 ≤ (ϕ (θt )m)2 +O (n1/4) · |m | +O (
√
n).

Plugging this bound into (3.30), we get

VarMt (E[Nt | Mt ] | Xt , Et ) ≤ ϕ (θt )
2

E[M2

t | Xt , Et ] +O (n1/4) · E[|Mt | | Xt , Et ] +O (
√
n). (3.32)

By Fact 3.17(ii), if L (Xt ) is active, then Mt ∈ J
′
t with probability 1 − O (n−1); therefore, E[|Mt | |

Xt , Et ] = O (
√
n logn). To bound E[M2

t | Xt , Et ], let ξ2, ξ3, ... be independent Bernoulli random

variables with parameter 1/q. Then,

E[M2

t | Xt , Et ] = E[(At − µt )
2 | Xt , Et ] = Var(At | Xt , Et )

= Var

(∑
j≥2

ξj · Lj (Xt ) | Xt , Et

)
=

∑
j≥2

Lj (Xt )
2 · Var

(
ξj | Xt , Et

)
= O (n),
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where in the last equality we used the fact that Var

(
ξj | Xt , Et

)
= Θ(1) for all j ≥ 2 and that∑

j≥2
Lj (Xt )

2 = O (n) by assumption. Plugging these bounds into (3.32), we get that VarMt (E[Nt |

Mt ] | Xt , Et ) = O (n). Together with (3.29) this implies that Var(Nt | Xt , Et ) = O (n).
Now, when L (Xt ) is activated, L1(Xt+1) , Nt only when the size of the largest inactive com-

ponent is at least Nt . SinceG (µt +m,p) is super-critical with probability 1−O (n−1) and L2(Xt ) =
O (logn), Lemma 2.7 implies that Pr[L1(Xt+1) , Nt ] = exp(−Ω(n)). Hence, Var(L1(Xt+1) |
Xt , Et ) = O (n), which establishes part (i).

For part (ii), note that by the law of total variance

Var(Nt | Xt ) ≥ EMt [Var(Nt | Mt ) | Xt ]

≥
1

q
EMt [Var(Nt | Mt ) | Xt , Et ] = Ω(n). (3.33)

Using Fact 3.17 it is straightforward to check that Pr[L1(Xt+1) , Nt ] = exp(−Ω(n)) and thus

Var(L1(Xt+1) | Xt ) = Ω(n), which establishes part (ii).

Finally, for part (iii) observe that when L (Xt ) is inactive, Nt = O (
√
n) with probability

1 − O (n−2) by Fact 3.17(i); since by assumption L1(Xt ) ≥ (Θs + ε )n, L1(Xt+1) = L1(Xt ) with

probability 1 − O (n−2). When L (Xt ) is active, Fact 3.17(ii) implies that G (At ,p) is super-critical

with probability 1 − O (n−2). Also, ξ (r ) = O (
√
n logn) since L2(Xt ) = O (logn). Therefore, by

Lemma 2.7

ϕ (θt )n −O (
√
n logn) ≤ Nt ≤ ϕ (θt )n +O (

√
n logn)

with probability 1−O (n−2). Part (iii) then follows from the fact that L1(Xt+1) = Nt with probability

1 − exp(−Ω(n)) when L (Xt ) is active. �

3.6 Mixing time upper bounds: the λ = q case
In this section we prove the upper bound portion of part (iv) of Theorem 3.11 from Section 3.2.

In particular we establish the following theorem.

Theorem 3.41. Let λ = q and q > 2. Then, the mixing time of the CM dynamics is O (logn).

This proof follows closely that of Theorem 3.23 in Section 3.4. In fact, we would have been able

to use the same proof if Lemma 3.24 held when λ = q, but this is not the case. After the �rst

phase of the burn-in period, where a con�guration with a unique large component is reached,

Lemma 3.24 guarantees that after one more step the large component will be of linear size with

probability Ω(1). This is because, when the large component is active, the percolation step is

super-critical w.h.p. However, as was pointed out in the proof of Lemma 3.24, this is not the case

for λ = q where the percolation is critical or close to critical w.h.p., and thus the largest new

component will be of sublinear size. Our approach is to re-analyze the �rst phase of the burn-in

period for λ = q. We show �rst that after O (logn) steps there is a unique large component of

size Ω(n2/3) with probability Ω(1). Then, we use the random graph facts for the critical and near-

critical regimes in Section 2.3.1 to argue that, after at most O (logn) steps, the size of this largest
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component becomes linear. It will also be crucial in our proofs to control the magnitude of the

sum of the squares of the sizes of the components, since this quantity determines the variance of

the number of active vertices. This again requires us to use the critical random graph facts from

Section 2.3.1.

Theorem 3.41 follows immediately from the following two lemmas.

Lemma 3.42. Let λ = q and let X0 be an arbitrary random-cluster con�guration. Then, there exists
T = O (logn) such that, with probability Ω(1),

∑
j≥2

Lj (XT )
2 = O (n4/3) and L1(XT ) ≥ Bn2/3, for any

desired constant B ≥ 0.

Lemma 3.43. Let λ = q and q > 2. Suppose
∑

j≥2
Lj (X0)

2 = O (n4/3) and L1(X0) ≥ Bn2/3 for a
su�ciently large constant B > 0. Then, there exists T = O (logn) such that, with probability Ω(1),
L1(XT ) = Ω(n) and L2(XT ) = O (n2/3).

Proof of Theorem 3.41. LetX0 andY0 be two arbitrary random-cluster con�gurations. By Lemmas

3.42 and 3.43, afterT = O (logn) steps L1(XT ) = Ω(n) and L2(XT ) = O (n2/3) with probability Ω(1);
the same holds for YT . Since ΘS = 1 − q/λ = 0 when λ = q, the result follows from Lemmas 3.25,

3.26, 3.27 and 3.16. �

We now provide the proofs of Lemmas 3.42 and 3.43.

Proof of Lemma 3.42. Let C (Xt ) denote the set of connected components of Xt . Let S0 = {L (X0)},
and given St , St+1 is obtained as follows:

(i) St+1 = St ;

(ii) every component in St activated by the CM dynamics at time t is removed from St+1; and

(iii) the largest new component (breaking ties arbitrarily) is added to St+1.

(Note that St ⊆ C (Xt ) for all t ≥ 0.)

We analyze �rst how the size of St , i.e., the number of components in St for which we use |St |,
�uctuates. Observe that for any t ≥ 1

E[|St | | St−1] =

(
1 −

1

q

)
|St−1 | + 1,

and so

E[|St |] =

(
1 −

1

q

)t
|S0 | +

t−1∑
k=0

(
1 −

1

q

)k
≤ q + 1.

Thus, for any given t ≥ 0, |St | < 2(q + 1) with probability at least 1/2 by Markov’s inequality.

Now, letWt :=
∑

j≥2
|Cj (t ) |

2
where Cj (t ) is the j-th largest new component created at time t .

By Lemma 2.16, E[Wt | Xt ] = O (n4/3). Hence, if Zt :=
∑
C∈C (Xt )\St |C|

2
, we have

E[Zt+1 | Xt ] = Zt −
Zt

q
+ E[Wt | Xt ] ≤

(
1 −

1

q

)
Zt +O (n4/3).
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Lemma 2.24 then implies that there exists T = O (logn) such that ZT = O (n4/3) with probability

Ω(1).
We show next that at timeT+1 the con�guration has all the desired properties with probability

Ω(1). Suppose all the components in ST are activated at time T + 1. Since |ST | < 2(q + 1)
with probability at least 1/2, this occurs with probability at least 1/(2q2(q+1) ). If this is the case,

Hoe�ding’s inequality implies that

At ≥ m +
n −m

q
− γn2/3 =: M

with probability Ω(1), where m is the total number of vertices in ST and γ > 0 is a suitable

constant. If At = M , then the largest new component is the largest component of a G (M, 1+ε
M )

random graph with ε = qM/n − 1 ≥ −γqn−1/3
. Thus, using monotonicity and Lemma 2.17 we

deduce that Pr[|C1(T+1) | ≥ Bn2/3
] = Ω(1) for any desired constantB > 0, and thus Pr[L1(XT+1) ≥

Bn2/3
] = Ω(1). Finally, since ZT = O (n4/3) and E[WT ] = O (n4/3) by Lemma 2.16, E[ZT+1] ≤

ZT + E[WT ] = O (n4/3), which concludes the proof. �

Proof of Lemma 3.43. LetZt :=
∑

j≥2
Lj (Xt )

2
andWt :=

∑
j≥1
|Cj (t ) |

2
, whereCj (t ) is the j-th largest

new component created at time t . Let wt := L1(Xt )/n
2/3

and let δ be a small positive constant we

choose later. The result follows by an inductive argument from the following two claims.

Claim 3.44.

(i) Suppose Zt = O (n4/3) and B ≤ wt ≤ δn1/3. Then, there exist constants α > 1 and A, c > 0

such that
Pr [L1(Xt+1) > αL1(Xt ) | Xt , Et ] ≥ 1 −A exp(−cw2

t );

(ii) Pr[L1(Xt+1) ≥ L1(Xt ) | Xt ,¬Et ] = 1.

Claim 3.45. Suppose Zt = O (n4/3),wt ≥ B and let C > 0 be a �xed large constant. Then:

(i) There exist constants a,b > 0 such that

Pr

[
Zt+1 < Zt +

Cn4/3

√
wt

�����
Xt , Et

]
≥ 1 −

a
√
wt
− 2 exp(−bw2

t );

(ii) There exists a constant d > 0 such that

Pr

[
Zt+1 < Zt +

Cn4/3

√
wt

�����
Xt ,¬Et

]
≥ 1 −

d
√
wt
.
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Let t̂0 be the �rst time the largest component is activated and let t̃0 = min{t̂0,qw
1/4
0
}. By Claim

3.44(ii), wt ≥ w0 for all t ≤ t̂0. Hence, if Zt = O (n4/3) and t ≤ t̂0, then Claim 3.45(ii) implies that

Zt+1 < Zt +
Cn4/3

√
w0

with probability at least 1 − d√
w0

. From this, it follows inductively that

Zt̃0 < Z0 +
t̃0Cn

4/3

√
w0

< Z0 +
qCn4/3

w1/4
0

with probability (
1 −

d
√
w0

) t̃0
≥ 1 − dqw−1/4

0
.

Observe that t̂0 is a geometric random variable with parameter 1/q, and thus by Markov’s in-

equality Pr[t̂0 ≥ qw1/4
0

] ≤ w−1/4
0

. Hence, t̂0t̃0 with probability at least 1 −w−1/4
0

, and thus

Zt̂0 < Z0 +
qCn4/3

w1/4
0

with probability 1− (dq+1)w−1/4
0

by a union bound. This, together with Claims 3.44(i) and 3.45(i)

imply by a union bound that

Pr


L1(Xt̂0+1

) > αL1(X0) , Zt̂0+1
< Z0 +

(q + 1)Cn4/3

w1/4
0


≥ 1 −A′ exp(−c′w2

0
) −

a
√
w0

−
dq + 1

w1/4
0

≥ 1 −A′ exp(−c′w2

0
) −

a + dq + 1

w1/4
0

, (3.34)

for suitable constants A′, c′ > 0.

Now, let T̃ be the �rst time L1(Xt ) ≥ δn and L2(Xt ) = O (n2/3). Also, let T̂ = 2q logα (δB
−1n1/3),

T := min{T̃ , T̂ } and let 0 ≤ t̂0 < t̂1 < · · · < t̂K ≤ T be the random times at which the largest

component in the con�guration is activated. From (3.34), it follows inductively that

Pr

[
L1(Xt̂K+1

) > αKL1(X0) , Zt̂K+1
< Z0 +M

]
≥

K∏
k=0

1 −A′ exp(−c′w2

k ) −
a + dq + 1

w1/4
k

,

≥

K∏
k=0

1 −A′ exp(−c′w2

0
α2k ) −

a + dq + 1

w1/4
0
αk/4

, (3.35)

where

M := (q + 1)Cn4/3
K∑
k=0

1

w1/4
k

=
(q + 1)Cn4/3

w1/4
0

K∑
k=0

1

αk/4
= O (n4/3).

Since by assumption w0 ≥ B and B is large, it follows from (3.35) that for a su�ciently large

constant c′′ > 0

Pr

[
L1(Xt̂K+1

) > αKL1(X0) , Zt̂K+1
< O (n4/3)

]
≥

K∏
k=0

exp

(
−

c′′

αk/4

)
= Ω(1).
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Finally, a Cherno� bound implies that K ≥ logα (2B
−1n1/4) w.h.p. Hence, L1(Xt̂K+1

) > αKBn2/3 =

δn and L2(Xt̂K+1
) = O (n2/3) with probability Ω(1), which completes the proof. �

We complete the proof of Lemma 3.43 by providing the missing proofs of Claims 3.44 and 3.45.

Proof of Claim 3.44. Let µt := L1(Xt ) +
n−L1 (Xt )

q , Jt := [µt − γwtn
2/3, µt + γwtn

2/3
] and m := µt −

γwtn
2/3

, where γ > 0 is a small constant we choose later. Also, let ε :=mq/n − 1 = ∆wtn
−1/3

with

∆ := q − 1 − γq. If At = m, then C1(t ) is the largest component of a G (m, 1+ε
m ) random graph.

Observe that

ε3m =
(∆wt )

3

q
(1 + ∆wtn

−1/3).

Since also B ≤ wt ≤ δn1/3
by assumption and we can choose B large enough, it follows from

Lemma 2.12 that for any positive constant ρ ≤ 1/10 there are constants c0, c1 > 0 such that

Pr[|C1(t ) | ≤ (2 − ρ)εm | Xt , Et ,At =m] ≤ c1 exp(−c0w
3

t ).

By monotonicity,

Pr[|C1(t ) | ≤ (2 − ρ)εm | Xt , Et ,At ∈ Jt ] ≤ c1 exp(−c0w
3

t ),

and since L1(Xt+1) ≥ |C1(t ) |,

Pr[L1(Xt+1) ≤ (2 − ρ)εm | Xt , Et ,At ∈ Jt ] ≤ c1 exp(−c0w
3

t ).

Now, note that

(2 − ρ)εm =
(2 − ρ)∆(1 + ∆wtn

−1/3)

q
L1(Xt ),

so we let α :=
(2−ρ)∆(1+∆wtn

−1/3)
q . Observe that if δ = ρ = γ = 0, then α =

2(q−1)
q . Since

2(q−1)
q > 1

for q > 2, we can choose γ , δ and ρ small enough such that α > 1. Thus,

Pr[L1(Xt+1) > αL1(Xt ) | Xt , Et ,At ∈ Jt ] ≥ 1 − c1 exp(−c0w
3

t ). (3.36)

By assumption Zt = O (n4/3), so Hoe�ding’s inequality implies that for a suitable constant c2 > 0

Pr[At ∈ Jt | Xt , Et ] ≥ 1 − 2 exp(−c2w
2

t ).

Together with (3.36) this implies that

Pr[L1(Xt+1) > αL1(Xt ) | Xt , Et ] ≥ (1 − 2 exp(−c2w
2

t )) (1 − c1 exp(−c0w
3

t )),

from which part (i) follows. Part (ii) holds because if the largest component is inactive at time t ,
then at time t + 1 there is a component of size L1(Xt ). �
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Proof of Claim 3.45. Let W ′
t :=

∑
j≥2
|Cj (t ) |

2
, µt := L1(Xt ) +

n−L1 (Xt )
q and Jt := [µt − γwtn

2/3, µt +

γwtn
2/3

] where γ > 0 is a small constant we choose later. Then,

E[W ′
t | Xt , Et ,At ∈ Jt ] =

∑
m∈Jt

E[W ′
t | Xt , Et ,At =m] Pr[At =m | Xt , Et ,At ∈ Jt ].

Let ε (m) =mq/n − 1, ∆+ = q − 1 + γq and ∆− = q − 1 − γq. If At =m, then the new components

are those of a G (m, 1+ε (m)
m ) random graph. Moreover, form ∈ Jt we have

∆−wtn
−1/3 ≤ ε (m) ≤ ∆+wtn

−1/3.

Since ∆− > 0 for γ small, wt ≥ B and B is large by assumption, by Lemma 2.14

E[W ′
t | Xt , Et ,At ∈ Jt ] =

∑
m∈Jt

O

(
m

ε (m)

)
Pr[At =m | Xt , Et ,At ∈ Jt ] = O

(
n4/3

wt

)
,

and by Markov’s inequality

Pr

[
W ′

t <
Cn4/3

√
wt

�����
Xt , Et ,At ∈ Jt

]
≥ 1 −

c0

√
wt
,

for some constant c0 > 0. Since Zt = O (n4/3), Hoe�ding’s inequality implies that, for suitable

constant c1 > 0, Pr[At ∈ Jt | Xt , Et ] ≥ 1 − 2 exp(−c1w
2

t ). Hence,

Pr

[
W ′

t <
Cn4/3

√
wt

�����
Xt , Et

]
≥ 1 −

c0

√
wt
− 2 exp(−c1w

2

t ).

Now, if CI is the largest inactive component of Xt , then

Zt+1 ≤ Zt − |CI |
2 +min{|C1(t ) |, |CI |}

2 +W ′
t ≤ Zt +W

′
t .

Thus,

Pr

[
Zt+1 < Zt +

Cn4/3

√
wt

�����
Xt , Et

]
≥ Pr

[
W ′

t <
Cn4/3

√
wt

�����
Xt , Et

]
≥ 1 −

c0

√
wt
− 2 exp(−c1w

2

t ),

from which part (i) follows.

We derive part (ii) in a similar fashion. Let µ̂t :=
n−L1 (Xt )

q , Ĵt := [µ̂t −γwtn
2/3, µ̂t +γwtn

2/3
] and

m̂ = µ̂t + γwtn
2/3

. By monotonicity,

E[Wt | Xt ,¬Et ,At ∈ Ĵt ] ≤ E[Wt | Xt ,¬Et ,At = m̂].

Let ε̂ := m̂q/n−1 = −wtn
−1/3(1−γq). IfAt = m̂, then the new components are those of aG (m̂, 1+ε̂

m̂ )
random graph. So for su�ciently small γ Lemma 2.13 implies

E[Wt | Xt ,¬Et ,At ∈ Ĵt ] = O

(
m̂

|ε̂ |

)
= O

(
n4/3

wt

)
,
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and by Markov’s inequality

Pr

[
Wt <

Cn4/3

√
wt

�����
Xt ,¬Et ,At ∈ Ĵt

]
≥ 1 −

c′
0

√
wt
,

for a suitable positive constant c′
0
. Since Zt = O (n4/3) by assumption, by Hoe�ding’s inequality

Pr[At ∈ Ĵt | Xt ,¬Et ] ≥ 1 − 2 exp(−c′
1
w2

t ) for a suitable constant c′
1
> 0. Therefore,

Pr

[
Wt <

Cn4/3

√
wt

�����
Xt ,¬Et

]
≥ 1 −

c′
0

√
wt
− 2 exp(−c′

1
w2

t ).

Part (ii) then follows from the facts that Zt+1 ≤ Zt +Wt , wt ≥ B and B is large. �

3.7 Mixing time lower bounds
In this section we prove the lower bounds in Theorem 3.11 for the mixing time of the CM dynam-

ics. We point out that for λ < λs the SW dynamics is known to mix in Θ(1) steps [38, 21], while

the CM dynamics requires Θ(logn) steps to mix. This is due to the fact that the CM dynamics

may require as many steps to activate all the components.

Theorem 3.46. If q > 2 and λ ∈ (λs , λS ), then the mixing time of the CM dynamics is exp(Ω(
√
n)).

Proof. The random-cluster model undergoes a phase transition at λc , so it is natural to divide the

proof into two cases: λ ∈ [λc , λS ) and λ ∈ (λs , λc ).
Case (i): λc ≤ λ < λS = q. The idea for this bound comes from [25]. Let S be the set of

graphs G such that L1(G ) = Θ(
√
n) and let X0 ∈ S . Let µ := E[A0] = n/q; then by Hoe�ding’s

inequality Pr [
��A0 − µ�� > εn] ≤ 2 exp

(
−2ε2
√
n
)
. If A0 < µ + εn, the active subgraph is sub-critical

for su�ciently small ε . Therefore, Lemma 2.10 implies that Pr[X1 < S |X0 ∈ S] ≤ e−c
√
n

for some

constant c > 0. Hence, Pr[X1, ...,Xt ∈ S |X0 ∈ S] ≥ 1 − te−c
√
n ≥ 3/4 for t = bec

√
n/4c. The result

again follows from Lemma 3.1.

Case (ii): λs < λ < λc . The intuition for this case comes directly from Figure 3.1. In this

regime, Fact 3.6 implies that the function f (θ ) = θ − ϕ (θ ) has two positive zeros θ ∗ and θr in

(θmin, 1] with θ ∗ < θr . Moreover, f is negative in the interval (θ ∗,θr ). Therefore, any con�gura-

tion with a unique large component of size θn with θ ∈ (θ ∗,θr ) will “drift” towards a con�guration

with a bigger large component. However, a typical random-cluster con�guration in this regime

does not have a large component. This drift in the incorrect direction is su�cient to prove the

exponential lower bound in this regime. We now proceed to formalize this intuition.

Let S be the set of graphs G such that L1(G ) > (θ ∗ + ε )n and L2(G ) = O (
√
n) where ε is a

small positive constant to be chosen later. Assume X0 ∈ S . If L (X0) is inactive, by Hoe�ding’s

inequality A0 ∈ I0 := [(1 − θ0)n/q − γ0n, (1 − θ0)n/q + γ0n] with probability 1 − e−Ω(
√
n)

for any

desired constant γ0 > 0. If A0 ∈ I0, then, for a su�ciently small γ0, the percolation step is sub-

critical, and by Lemma 2.10, Pr[X1 < S |X0 ∈ S] = e−Ω(
√
n) .
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When L (X0) is active, we show that for any desired constant ρ > 0, L1(X1) ∈ [ϕ (θ0)n −

ρn,ϕ (θ0)n + ρn] with probability 1 − e−Ω(
√
n)

. Let µ0 := θ0n + (1 − θ0)n/q; then by Hoe�ding’s

inequality A0 ∈ I1 := [µ0 − γ1n, µ0 + γ1n] with probability 1 − e−Ω(
√
n)

for any desired constant

γ1 > 0. Let h(θ0) = µ0n + γ1n and let `(θ0) be a random variable distributed as the size of the

largest component of a G (h(θ0),p) random graph. Then, for any ρ > 0,

Pr[L1(X1) > ϕ (θ0)n + ρn] ≤
∑
a∈I1

Pr[L1(X1) > ϕ (θ0)n + ρn |A0 = a] Pr[A0 = a] + e−Ω(
√
n)

≤ Pr[ `(θ0) > ϕ (θ0)n + ρn ] + e−Ω(
√
n) .

Recall from Section 3.1.2 that when λ < q, λ(θmin+(1−θmin)q
−1) = 1. Therefore, theG (h(θ0),p)

random graph is super-critical since θ0 > θ ∗ > θmin. Let β = β (λ′) with λ′ = λh(θ0)/n where

β (λ′) is de�ned in (2.2). By Lemma 2.9, `(θ0) ∈ [βn − γ2n, βn + γ2n] with probability at least

1 − e−Ω(n)
for any desired constant γ2 > 0. Observe that if γ1 = 0, then β = ϕ (θ0) by the

de�nition of ϕ. Then by continuity, for any constant δ > 0 there exists γ1 small enough such that

|ϕ (θ0)−β | < δ . Thus, `(θ0) ∈ [ϕ (θ0)n−ρn,ϕ (θ0)n+ρn] with probability 1−e−Ω(n)
. Consequently,

Pr[L1(X1) > ϕ (θ0)n + ρn] = e−Ω(
√
n)

. By a similar argument Pr[L1(X1) < ϕ (θ0)n − ρn] = e−Ω(
√
n)

,

and then L1(X1) ∈ [ϕ (θ0)n − ρn,ϕ (θ0)n + ρn] with probability 1 − e−Ω(
√
n) .

Now we show that for suitable positive constants ε and ρ, ϕ (θ0) − ρ > θ ∗ + ε ; this implies

L1(X1) > (θ ∗+ε )n with probability 1−e−Ω(
√
n)

. Note that Lemma 3.9(i) still holds when λc > λ > λs
and θ ∈ (θ ∗, 1). Hence, if θ0 > θr − ε , then ϕ (θ0) > θr − ε . Therefore, we can choose ε and ρ such

that ϕ (θ0) − ρ > θ
∗ + ε . If θ0 < θr − ε , then ϕ (θ0) > θ0 > θ

∗ + ε since f is negative in this interval.

Note that ϕ (θ0) − θ0 = −f (θ0), so in this case we can pick ρ to be −1/2 of the maximum of f in

[θ ∗ + ε,θr − ε] for a su�ciently small ε . Thus, L1(X1) > (θ ∗ + ε )n with probability 1 − e−Ω(
√
n)

.

By Lemma 2.10, L2(X1) = O (
√
n) with probability 1 − e−Ω(

√
n)

. Hence, Pr[X1 < S |X0 ∈ S] ≤

e−c
√
n

for some constant c > 0, and then Pr[X1, ...,Xt ∈ S |X0 ∈ S] ≥ 1 − te−c
√
n ≥ 3/4 for

t = bec
√
n/4c. The result then follows from Lemma 3.1. �

We prove next a uniform lower bound for the fast mixing regime.

Theorem 3.47. For q > 1 and λ , λc the mixing time of the CM dynamics is Ω(logn).

Proof. LetX0 be a con�guration where all the components have sizeΘ(log
2 n) and letb = q/(q−1).

The probability that a particular component is not activated in any of the �rstT = d1

2
logb ne steps

is (1 − 1/q)T ≤ n−1/2
. Therefore, the probability that all initial components are activated in the

�rstT steps is at least (1−n−1/2)K , whereK = Θ(n/ log
2 n). Moreover, the probability that exactly

one initial component is not activated in the �rstT steps is Ω(Kn−1/2(1−n−1/2)K−1). Hence, after

T steps L2(XT ) = Θ(log
2 n) w.h.p., and the result follows from Lemma 3.1. �

We conclude this section by proving a Ω(n1/3) lower bound for the mixing time for q > 2 and

λ = λs .

Theorem 3.48. For q > 2 and λ = λs the mixing time of the CM dynamics is Ω(n1/3).



CHAPTER 3. DYNAMICS FOR THE MEAN-FIELD RANDOM-CLUSTER MODEL 60

Proof. Let X0 be a random-cluster con�guration such that L1(X0) = θ
∗n +n3/4

, L2(X0) = O (logn)
and

∑
j≥2

Lj (X0)
2 = O (n). By Fact 3.39(ii) these properties are maintained for T steps w.h.p.,

provided T = O (n1/3) and L1(Xt ) ≥ (Θs + ε )n for all t ≤ T , where ε > 0 is the constant from Fact

3.39.

SupposeXt is such that θ ∗n−n3/4 ≤ L1(Xt ) ≤ θ
∗n+n3/4

, L2(Xt ) = O (logn) and

∑
j≥2

Lj (Xt )
2 =

O (n). Then, whenL (Xt ) is inactive L1(Xt+1) = L1(Xt ) with probability 1−O (n−1) by Fact 3.17(i). If

L (Xt ) is active, then L1(Xt+1) ∈ [ϕ (θt )n−A
√
n logn,ϕ (θt )n+A

√
n logn] with probability 1−O (n−2)

by Fact 3.40(iii). Since θ ∗n − n3/4 ≤ L1(Xt ) ≤ θ ∗n + n3/4
, Lemma 3.8(i) implies that there exist

constants δ ,δ ′ > 0 such that

θt − δ (θt − θ
∗)2 ≤ ϕ (θt ) ≤ θt − δ

′(θt − θ
∗)2,

and thus

θtn − δ
√
n ≤ ϕ (θt )n ≤ θtn.

Therefore, with probability 1 −O (n−2),

L1(Xt+1) ∈ [θtn − (A + 1)
√
n logn,θtn + (A + 1)

√
n logn]

Inductively, we get that if T = O (n1/3), then L1(XT ) ≥ L1(X0) −T (A + 1)
√
n logn = Ω(n) w.h.p.,

and thus the result follows from Lemma 3.1. �

3.8 Local dynamics
In this section we prove Theorem 1.3 from the Introduction.

3.8.1 Standard background
Let P be the transition matrix of a �nite, ergodic and reversible Markov chain over state space Ω
with stationary distribution π , and let 1 = λ1 ≥ λ2 ≥ ... ≥ λn denote the eigenvalues of P . The

spectral gap of P is de�ned by λ(P ) := 1 − λ∗, where λ∗ = max{|λ2 |, |λn |}. The following bounds

on the mixing time are standard (see, e.g., [37]):

λ−1(P ) − 1 ≤ τmix(P ) ≤ log

(
2eπ−1

min

)
λ−1(P ), (3.37)

where πmin = minx∈Ω π (x ).
In this section we will need some elementary notions from functional analysis; for extensive

background on the application of such ideas to the analysis of �nite Markov chains, see [46]. If

we endow R|Ω | with the inner product 〈f ,д〉π =
∑

x∈Ω f (x )д(x )π (x ), we obtain a Hilbert space

denoted L2(π ) = (R|Ω |, 〈·, ·〉π ). Note that P de�nes an operator from L2(π ) to L2(π ) via matrix-

vector multiplication.

Consider two Hilbert spaces S1 and S2 with inner products 〈·, ·〉S1
and 〈·, ·〉S2

respectively, and

let R : S2 → S1 be a bounded linear operator. The adjoint of R is the unique operator R∗ : S1 → S2

satisfying 〈f ,Rд〉S1
= 〈R∗ f ,д〉S2

for all f ∈ S1 and д ∈ S2. If S1 = S2, R is self-adjoint when R = R∗.
If R is self-adjoint, it is also positive if ∀д ∈ S2, 〈Rд,д〉S2

≥ 0.
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3.8.2 A comparison technique for Markov chains
Let H = (V ,E) be an arbitrary �nite graph and let ΩE = {(V ,A) : A ⊆ E} be the set of random-

cluster con�gurations on H . Let P be the transition matrix of a �nite, ergodic and reversible

Markov chain over ΩE with stationary distribution µ = µp,q . For r ∈ N, let ΩV = {0, 1, . . . , r − 1}V

be the set of “r -labelings” ofV , and let ΩJ = ΩV ×ΩE. Assume P can be decomposed as a product

of stochastic matrices of the form

P = M *
,

m∏
i=1

Ti+
-
M∗, (3.38)

where:

(i) M is a |ΩE | × |ΩJ | matrix indexed by the elements of ΩE and ΩJ where M (A, (σ ,B)) , 0

only if A = B for all A ∈ ΩE, (σ ,B) ∈ ΩJ.

(ii) EachTi is a |ΩJ | × |ΩJ | matrix indexed by the elements of ΩJ and reversible w.r.t. the distri-

bution ν = µM , and such that Ti ((σ ,A), (τ ,B)) , 0 only if σ = τ for all (σ ,A), (τ ,B) ∈ ΩJ.

(iii) M∗ is a |ΩJ | × |ΩE | matrix such that M∗ : L2(µ ) → L2(ν ) is the adjoint of M : L2(ν ) → L2(µ ).

In words, M assigns a (random) r -labeling to the vertices of H ; (
∏m

i=1
Ti ) performs a sequence

of m operations Ti , each of which updates some edges of H ; and M∗ drops the labels from the

vertices. These properties imply that M∗((σ ,A),B) = 1(A = B) and MM∗ = I .
Consider now the matrix

PL = M *
,

1

m

m∑
i=1

Ti+
-
M∗. (3.39)

It is straightforward to verify that PL is also reversible w.r.t. µ. The following theorem, which

generalizes a recent result of Ullrich [50, 51], relates the spectral gaps of P and PL up to a factor

of O (m logm).

Theorem 3.49. If M , M∗ and Ti are stochastic matrices satisfying (i)–(iii) above, and the Ti ’s are
idempotent commuting operators, then

λ(PL) ≤ λ(P ) ≤ 8m logm · λ(PL).

We pause to note that this fact has a very attractive intuitive basis. As noted above, PL performs

a single update Ti chosen u.a.r., while P performs all m updates Ti , so by coupon collecting one

might expect that O (m logm) PL steps should su�ce to simulate a single P step. However, the

proof has to take account of the fact that theTi updates are interleaved with the vertex re-labeling

operations M and M∗ in PL. The proofs in [50] and [51] are speci�c to the case where P corre-

sponds to the SW dynamics. Our contribution is the realization that these proofs still go through

(without essential modi�cation) under the more general assumptions of Theorem 3.49, as well as

the framework described above that provides a systematic way of deducing PL from any P of the

form (3.38).
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Observe that Theorem 3.49 relates the spectral gaps of P and PL. We shall see next how to use

this technology to obtain mixing time bounds for the heat-bath dynamics using the CM bounds

from Sections 3.2 and 3.7.

3.8.3 Application to local dynamics
Let PCM and PHB be the transition matrices of the Chayes-Machta (CM) and heat-bath (HB) dy-

namics respectively. In this subsection we show that PCM can be expressed as a product of stochas-

tic matrices equivalent to (3.38) and that PHB is closely related to the corresponding matrix PL in

(3.39). Then, we use Theorem 3.49 to relate the spectral gaps λ(PHB) and λ(PCM) and hence prove

Theorem 1.3 via (3.37).

In this case, ΩV = {0, 1}
V

is the set of possible “active-inactive” labelings of V . Consider the

|ΩE | × |ΩJ | stochastic matrix M de�ned by

M (B, (σ ,A)) = 1(A = B) 1(A ⊆ E (σ )) (q − 1) f (σ ,A)q−c (A),

where E (σ ) = {(u,v ) ∈ E : σ (u) = σ (v )} and f (σ ,A) is the number of inactive connected com-

ponents in (σ ,A). The adjoint of M is the |ΩJ | × |ΩE | stochastic matrix M∗((σ ,A),B) = 1(A = B).
Consider also the family of |ΩJ | × |ΩJ | stochastic matrices Te de�ned for each e = (u,v ) ∈ E as

follows:

Te ((σ ,A), (τ ,B)) = 1(σ = τ )




p if B = A ∪ e, σ (u) = σ (v ) = 1;

1 − p if B = A \ e, σ (u) = σ (v ) = 1;

1 if A(e ) = B (e ), σ (u) = 0 or σ (v ) = 0;

0 if A(e ) , B (e ), σ (u) = 0 or σ (v ) = 0

where σ (v ) = 1 (resp., 0) if vertex v is active (resp., inactive) in σ and A(e ) = 1 (resp., A(e ) = 0)

if the edge e is present (resp., not present) in A.

In words, the matrix M assigns a random active-inactive labeling to a random-cluster con-

�guration, while M∗ drops the active-inactive labeling from a joint con�guration. The matrix Te
samples e with probability p provided both its endpoints are active. The key observation, which

we prove later, is that we can naturally express the CM dynamics as the product of these matrices:

Lemma 3.50. PCM = M

(∏
e∈E

Te

)
M∗.

Now consider the Markov chain given by the matrix

PSU = M *
,

1

|E |

∑
e∈E

Te+
-
M∗,

which we call the Single Update (SU) dynamics and corresponds to the matrix PL de�ned in (3.39).

Hence, PSU is reversible w.r.t. to µ = µp,q . Observe that M and M∗ clearly satisfy the assumptions

of Theorem 3.49. Moreover, we can easily verify that the Te ’s also satisfy these assumptions:
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Fact 3.51. The Te ’s de�ned above are idempotent commuting operators from L2(ν ) to L2(ν ). More-
over, each Te is reversible w.r.t. ν = µM .

Proof. The distribution ν corresponds to the joint Edwards-Sokal measure over ΩJ:

ν (σ ,A) ∝

(
p

1 − p

) |A|
(q − 1) f (σ ,A) 1(A ⊆ E (σ ))

(see, e.g., [10]). From this representation, it is straightforward to check that Te is reversible w.r.t.

to ν . Also, from the de�nition ofTe it follows thatTe = T
2

e andTeTe ′ = Te ′Te , which completes the

proof. �

In light of Lemma 3.50 and Fact 3.51, we may apply Theorem 3.49 to obtain

λ(PSU) ≤ λ(PCM) ≤ 8|E | log |E | · λ(PSU). (3.40)

The SU dynamics is closely related to the HB dynamics. Speci�cally, their spectral gaps are

very similar, as the following fact which we will prove in a moment shows:

Claim 3.52. Let α = (q(1 − p) + p)/q2; then,

αλ(PHB) ≤ λ(PSU) ≤ λ(PHB).

Putting together this claim and (3.40) yields

αλ(PHB) ≤ λ(PCM) ≤ 8|E | log |E | · λ(PHB),

which relates the spectral gaps of PHB and PCM up to a factor of Õ (n2). (Note that α ∈ [1/q2, 1/q],

and thus α = Θ(1).) Using (3.37) this relationship can be translated to the mixing times at the cost

of a further factor of log(µ−1

min
), which is Õ (n2) in the mean-�eld case. Theorem 1.3 now follows

immediately from the mixing time bounds on the CM dynamics proved in Theorem 3.11.

Remark. In the �nal version of [5], which is currently in preparation, we are able to translate

the relation between the spectral gaps of PHB and PCM to the mixing times losing only an Õ (n)
factor. This strengthens all the bounds in Theorem 1.2 from the Introduction by an O (n) factor.

It remains only for us to supply the missing proofs of Lemma 3.50 and Claim 3.52.

Proof of Lemma 3.50. LetA (σ ) = {(u,v ) ∈ E : σ (u) = σ (v ) = 1} and let T =
∏
e∈E

Te . Observe that

T ((σ ,A), (τ ,B)) = 1(σ = τ ) 1(A \ A (σ ) = B \ A (σ ))p |A (σ )∩B | (1 − p) |A (σ ) |−|A (σ )∩B | .

Then, from the de�nitions of M , M∗ and T , we obtain

MTM∗(A,B) =
∑
(σ ,C )

∑
(τ ,D)

M (A, (σ ,C ))T ((σ ,C ), (τ ,D))M∗((τ ,D),B)

=
∑
σ∈ΩV

1(A ⊆ E (σ ))
(q − 1) f (σ ,A)

qc (A)
1(A \ A (σ ) = B \ A (σ ))p |A (σ )∩B | (1 − p) |A (σ ) |−|A (σ )∩B | .
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Now observe that if A ⊆ E (σ ), then sub-step (i) of the CM dynamics chooses σ ∈ ΩV with

probability (q − 1) f (σ ,A)q−c (A) . Moreover, if after sub-step (i) the joint con�guration obtained is

(σ ,A), then the probability of obtaining B in sub-step (iii) isp |A (σ )∩B | (1−p) |A (σ ) |−|A (σ )∩B |
provided

A and B di�er only in the active part of the con�gurationA (σ ). Thus, MTM∗(A,B) = PCM(A,B).
�

Proof of Claim 3.52. First we show that PSU is positive. This was already shown for PHB in [50,

Lemma 2.7]. Recall each Te is reversible w.r.t. to ν , and thus the operator Te : L2(ν ) → L2(ν ) is

self-adjoint (see, e.g., [46]). Since Te is self-adjoint and idempotent, it is also positive for every

e ∈ E (see, e.g. [34, Thm. 9.5-1 & 9.5-2]). Therefore, for f ∈ R|ΩE |
we have

〈PSU f , f 〉µ =
1

|E |

∑
e∈E

〈MTeM
∗ f , f 〉µ =

1

|E |

∑
e∈E

〈TeM
∗ f ,M∗ f 〉ν ≥ 0,

and thus PSU is positive.

Given a random-cluster con�guration (V ,A), it is straightforward to check that one step of

the SU dynamics is equivalent to the following discrete steps:

(i) activate each connected component of (V ,A) independently with probability 1/q;

(ii) pick e ∈ E u.a.r.;

(iii) if both endpoints of e are active, add e with probability p and remove it otherwise. (If either

endpoint of e is inactive, do nothing.)

Similarly, recalling the de�nition of the HB dynamics from the Introduction, it is easy to check

that each step is equivalent to the following:

(i) pick an edge e ∈ E u.a.r.;

(ii) include the edge e in the new con�guration with probability pe , where

pe =



p
p+q(1−p) if e is a cut edge in (V ,A ∪ {e});

p otherwise.

(The rest of the con�guration is left unchanged.)

Note that e is a cut edge in (V ,A ∪ {e}) i� changing the current con�guration of e changes the

number of connected components.

Using these de�nitions for the SU and HB dynamics, it is an easy exercise to check that for

A , B and α = (q(1 − p) + p)/q2
,

αPHB(A,B) ≤ PSU(A,B) ≤ PHB(A,B).

Since PSU is positive, the result follows from Lemma 2.5 in [50]. �
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Chapter 4

Random-Cluster Dynamics in Z2

4.1 Preliminaries
In this section we gather a number of de�nitions and background results that we will refer to

repeatedly. More details and proofs can be found in the books [26, 37].

Random-cluster model on Z2. Let L = (Z2,E) be the square lattice graph, where for u,v ∈ Z2
,

(u,v ) ∈ E i� d (u,v ) = 1 with d (·, ·) denoting the Euclidean distance. Let Λn ⊆ Z
2

be the set of

vertices of L contained in a square box of side length n, and let Λ = (Λn,En ) be the graph whose

edge set En contains all edges in E with both endpoints in Λn. We use ∂Λ to denote the boundary
of Λ; that is, the set of vertices in Λn connected by an edge in E to Λ

c
n = Z

2 \Λn.

A random-cluster con�guration on Λ corresponds to a subsetA of En. Alternatively, it is some-

times convenient to think of A as a vector in {0, 1} |En | indexed by the edges, where A(e ) = 1 i�

e ∈ A. Edges belonging to A are called open, and edges in En \A closed.

For any random-cluster con�guration Ac
on Λ

c
n, we may consider the conditional random-

cluster measure induced in Λn by Ac
. To make this precise, we introduce the standard concept of

boundary conditions. A boundary condition for Λ is a partition η = (P1, P2, ..., Pk ) of ∂Λ which

encodes how the vertices of ∂Λ are connected in a �xed con�guration Ac
on Λ

c
n; i.e., for all u,v ∈

∂Λ, u,v ∈ Pi i� u and v are connected by a path in Ac
(see Figure 4.1(a)). In this case we also say

that u and v are wired in η.

For A ⊆ En and a boundary condition η, let c (A,η) be the number of connected components

of (Λn,A) when the connectivities from the boundary condition η are also considered. More

precisely, if C1,C2 are connected components of A, and there exist u ∈ C1 ∩ ∂Λ and v ∈ C2 ∩ ∂Λ
such that u and v are wired in η, thenC1 andC2 are identi�ed as the same connected component

inA. The random-cluster measure on Λ with boundary condition η and parameters p ∈ (0, 1) and

q > 0 is then given by

µ
η
Λ,p,q (A) =

p |A| (1 − p) |En\A|qc (A,η)

Z
η
Λ,p,q

, (4.1)
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(a)(i) (a)(ii) (b)

Figure 4.1: (a) (i) Λ4⊂Z
2 with a random-cluster con�gurationAc in Λ

c
4
, (ii) the boundary condition

induced in Λ4 by Ac ; (b) examples of side-homogeneous boundary conditions.

where Z
η
Λ,p,q is the normalizing constant, or partition function. (Cf. equation (1.1) in the Introduc-

tion, which corresponds to the special case when the boundary condition η is “free”; see below.)

When Λ, p and q are clear from the context we will just write µη .

Free, wired and side-homogeneous boundary conditions. Some boundary conditions will

be of particular interest to us. In the free boundary condition no two vertices of ∂Λ are wired. At

the other extreme, in the wired boundary condition all vertices of ∂Λ are pairwise wired. We will

use µ0

Λ,p,q and µ1

Λ,p,q to denote the random-cluster measures on Λ with free and wired boundary

conditions, respectively.

We consider another class of boundary conditions which we call side-homogeneous. Let L1, L2,

L3, L4 ⊂ ∂Λ be the sets of vertices on each side of the square box Λn. (A corner vertex of Λn belongs

to two sides.) The class of side-homogeneous boundary conditions contains all η = (P1, ..., Pk )
satisfying:

(P1) |Pi | > 1 for at most one i; and

(P2) If |Pi | > 1, then Pi is the union of some of the sets Lj ; i.e., Pi =
⋃

j∈κ Lj , for some κ ⊆
{1, 2, 3, 4}.

(See Figure 4.1(b).) Note that both the free and wired boundary conditions are side-homogeneous

and there are in total 16 distinct side-homogeneous boundary conditions.

Monotonicity. For any pair of boundary conditions η andψ , we say η ≤ ψ if the partition η is a

re�nement ofψ ; i.e., if the connectivities induced by η in ∂Λ are also induced byψ . When q ≥ 1,

η ≤ ψ implies µ
η
Λ,p,q � µ

ψ
Λ,p,q , where � denotes stochastic domination; i.e., µ

η
Λ,p,q (E) ≤ µ

ψ
Λ,p,q (E) for

all increasing events E. (An event E is increasing if it is preserved by the addition of edges.)

Planar duality. Let Λ
∗ = (Λ∗n,E

∗
n ) denote the planar dual of Λ in the usual sense. That is, Λ

∗
n

corresponds to the set of faces of Λ, and for each e ∈ En, there is a dual edge e∗ ∈ E∗n connecting
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the two faces bordering e . The random-cluster measure satis�es µΛ,p,q (A) = µΛ
∗,p∗,q (A

∗), where

A∗ is the dual con�guration to A (i.e., e∗ ∈ E∗n i� e ∈ En), and

p∗ =
q(1 − p)

p + q(1 − p)
.

(This duality relation is a consequence of Euler’s formula.) The unique value ofp satisfyingp = p∗,
denoted psd (q), is called the self-dual point.

In�nite measure and phase transition. The random-cluster measure may also be de�ned on

the in�nite lattice Z2
by considering the sequence of random-cluster measures on Λn with free

boundary conditions as n → ∞. This sequence converges to a limiting measure µ L,p,q , which

is known as the random-cluster measure on L. The measure µ L,p,q exhibits a phase transition

corresponding to the appearance of an in�nite connected component. That is, there exists a

critical value p = pc (q) such that if p < pc (q) (resp., p > pc (q)), then all components are �nite

(resp., there is at least one in�nite component) with high probability.

For q ≥ 1, the exact value of pc (q) for L was only recently settled in breakthrough work by

Be�ara and Duminil-Copin [3], who proved the long standing conjecture

pc (q) = psd (q) =

√
q

√
q + 1

.

Exponential decay of connectivies and spatial mixing. In [3], it was also established that

the phase transition is very sharp, meaning that as soon as p < pc (q) there is exponential decay

of connectivities. More formally, for q ≥ 1 and any �xed p < pc (q), there exist positive constants

C, λ such that for all u,v ∈ Z2
,

µ L,p,q (u ↔ v ) ≤ Ce
− λd (u,v ),

where u ↔ v denotes the event that u and v are connected by a path of open edges. In work

predating [3], Alexander [1] showed that exponential decay of connectivities implies exponential

decay of �nite volume connectivities uniformly over all boundary conditions. That is, for any

boundary condition η on Λ, and all u,v ∈ Λn,

µ
η
Λ,p,q (u

Λn
↔v ) ≤ Ce

− λd (u,v ), (4.2)

where u
Λn
↔v is the event that u and v are connected by a path of open edges in Λn.

The notion of decay of connectivities for the random-cluster model is analogous to the notion

of decay of correlations in spin systems, which is ubiquitous in the spin systems literature. As in

spin systems, we require in our analysis of the dynamics a stronger form of decay of connectivities

known as spatial mixing.

For e ∈ En, let B (e, r ) ⊂ Λn be the set of vertices in the minimal square box around e such

that d ({e},v ) ≥ r for all v ∈ Λn \B (e, r ). Note that if d ({e}, ∂Λ) > r , then B (e, r ) is just a square
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e

e

2r+1

(a)

B

u

v

u′

v′

(b)

Figure 4.2: (a) B (e, r ) for two edges e of Λ; (b) a boundary condition ψ where the spatial mixing
property does not hold.

box of side length 2r + 1 centered at e; otherwise B (e, r ) intersects ∂Λ (see Figure 4.2(a)). Let

E (e, r ) be the set of edges in En with both endpoints in B (e, r ), and let Ec (e, r ) = En \ E (e, r ). The

spatial mixing property we use, which is slightly weaker than that de�ned in [1], states that for

all e ∈ En and for every pair of con�gurations Ac
1
,Ac

2
on Ec = Ec (e, r ), we have

���µ
η
Λ,p,q ( e = 1 |Ac

1
) − µ

η
Λ,p,q ( e = 1 |Ac

2
)��� ≤ e

−λr
(4.3)

for some constant λ > 0. Alexander [1] showed that (4.2) implies (4.3) for a certain class of

boundary conditions η when q is an integer. In Section 4.3 we will show, using the machinery

developed in [1], that (4.3) holds for all side-homogeneous boundary conditions η for any (not

necessarily integer) q ≥ 1. We shall see that (4.3) does not hold for arbitrary boundary conditions

(see, e.g., Figure 4.2(b), together with the detailed explanation in Section 4.3).

Glauber dynamics. LetM denote the heat-bath Glauber dynamics on Λ = (Λn,En ) reversible

with respect to µ
η
Λ,p,q . Recall from Chapter 1 that given a random-cluster con�guration At ⊆ En

at time t , a step ofM results in a new con�guration At+1 as follows:

(i) pick e ∈ En u.a.r;

(ii) let At+1 = At ∪ {e} with probability{ p
p+q(1−p) if e is a “cut edge” in (Λn,At );

p otherwise;

(iii) else let At+1 = At \ {e}.

In this setting, e is a cut edge in (Λn,At ) i� changing the current con�guration of e changes the

number of connected components ofAt , but also taking into account the connectivities introduce

by the boundary condition η.
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Identity coupling. Couplings of Markov chains and their connection with mixing times were

discussed in Section 2.2. One coupling of the heat-bath dynamics will be of particular interest to

us. Namely, consider the coupling that couples the evolution of two copies ofM, {Xt } and {Yt },
by using the same random e ∈ En in step (i) and the same uniform random number r ∈ [0, 1]

to decide whether to add or remove e in steps (ii) and (iii). We call this the identity coupling. It

is straightforward to verify that, when q ≥ 1, the identity coupling is a monotone coupling, in

the sense that if Xt ⊆ Yt then Xt+1 ⊆ Yt+1 with probability 1. In fact, the identity coupling can

be extended to a simultaneous coupling of all con�gurations that preserves the partial order ⊆.

Therefore, the coupling time starting from any pair of con�gurations is bounded by the coupling

time for initial con�gurations Y0 = ∅ and X0 = En, which are the unique minimal and maximal

elements in the partial order [45].

4.2 The speed of disagreement percolation
In spin systems, a central idea in the analysis of local Markov chains is to bound the speed at

which information propagates. Disagreement percolation (or path of disagreements) arguments

provide bounds of this sort (see, e.g., [4, 16]). These arguments are based on the idea that in spin

systems interactions only occur between neighboring sites, and thus if two con�gurations agree

everywhere except in some regionA, then it takes many steps for a local Markov chain under the

identity coupling to propagate these disagreements to regions that are far from A.

In this section, we provide a bound on the speed of propagation of disagreements for the

Glauber dynamics of the random-cluster model on Λ = (Λn,En ), under side-homogeneous bound-

ary conditions. A random-cluster con�guration may exhibit long range interactions in the form

of arbitrarily long paths, so disagreements could potentially propagate arbitrarily fast. Our in-

sight is to restrict attention to pairs of con�gurations where one of them is stationary; i.e., it has

law µ
η
Λ,p,q . Then by (4.2), the probability of long paths decays exponentially with the length of

the path, which makes the long range interactions manageable.

Throughout this section we will use the notation introduced in Section 4.1. In addition, for a

random-cluster con�guration A on Λ and any D ⊆ Λn, we use A(D) to denote the con�guration

induced by A on the edges with both endpoints in D. Also, we use ∂D and ∂E (D) to denote the

set of vertices and edges, respectively, on the boundary of D; that is, ∂D is the set of vertices in

D connected by an edge in En to Λn \D and ∂E (D) := {(u,v ) ∈ En : u ∈ D,v < D}. (Note that if

v ∈ D ∩ ∂Λ, then v < ∂D.) We are now ready to state and proof the main result of this section.

Lemma 4.1. Let p < pc (q), q ≥ 1 and consider two copies {Xt }, {Yt } of the Glauber dynamics on
Λ = (Λn,En ) with a side-homogeneous boundary condition η. Assume Y0 has law µ

η
Λ,p,q and that

X0(B (e, r )) = Y0(B (e, r )) for some e ∈ En and r ≥ 1. If the evolutions of {Xt } and {Yt } are coupled
using the identity coupling, then there exist absolute constants c,C, λ > 0 (independent of r and n)
such that, form = |En |, r ≥ c and 1 ≤ k ≤ r 1/4/(4e

2), we have

Pr[Xkm (e ) , Ykm (e ) ] ≤ Ce
−λr 1/4

.
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(a)

e

(b)

Figure 4.3: (a) a random-cluster con�gurationA in B, with R0 = Γ(A,B) (shaded); (b) R1, assuming
edge e was updated in the �rst step.

Proof. Let B := B (e, r ). For some �xed ` (to be chosen later) and each t ≥ 0 consider the event

E`,t := {u
Yt
=v ∀u,v ∈ B s.t. d (u,v ) > `},

where u
Yt
=v denotes the event that u and v are not connected by a path in Yt (B). Let E` :=⋂km

t=0
E`,t ; then,

Pr[Xkm (e ) , Ykm (e ) ] ≤ Pr[Xkm (e ) , Ykm (e ) | E` ] + Pr[¬E` ]. (4.4)

We bound each term on the right hand side of (4.4) separately.

For any random-cluster con�guration A on Λ, let

Γ(A,B) := B \
⋃

v∈∂B
C (v,A), (4.5)

where C (v,A) is the set of vertices in the connected component of v in (Λn,A).
Consider the sequence R0 ⊇ R1 ⊇ ... of subsets (or regions) of B, such that R0 = Γ(Y0,B) and

Rt+1 =




Rt if no edge from ∂E (Rt ) is updated at time t ;

Rt \C (at ,Yt ) if (at ,bt ) ∈ ∂E (Rt ) with at ∈ Rt ,bt < Rt is the edge updated

at time t ;

(see Figures 4.3(a), 4.3(b)). The second case above applies regardless of the state of (at ,bt ) in Xt+1

and Yt+1. Observe that Rt need not be a connected region of Z2
and that every edge in ∂E (Rt ) is

closed in both Xt and Yt .
The key observation is that, for all t ≥ 0, Rt is a region of B in which Xt (Rt ) = Yt (Rt ). We

prove this by induction on t . Assume Xt (Rt ) = Yt (Rt ) and let ψX (resp., ψY) be the boundary

condition induced in Rt by Xt (Λn \Rt ) (resp., Yt (Λn \Rt )) and η. Both ψX and ψY are partitions of

∂Rt ∪ (Rt ∩ ∂Λ). (Recall that, by de�nition, if v ∈ Rt ∩ ∂Λ then v < ∂Rt .)
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We consider three cases based on the location of the edge (at ,bt ) with respect to Rt . First, if

{at ,bt } ∩ Rt = ∅, then clearly Xt+1(Rt+1) = Yt+1(Rt+1). The second possibility is that {at ,bt } ∩
Rt = {at }; if this is the case, then Rt+1 = Rt \ C (at ,Yt ) by de�nition. Moreover, C (at ,Xt ) =
C (at ,Yt ) because Xt (Rt ) = Yt (Rt ) and all edges in ∂E (Rt ) are closed in both Xt and Yt ; as a result

Xt+1(Rt+1) = Yt+1(Rt+1).
Finally, when {at ,bt } ⊆ Rt we show that ψX = ψY; from this follows that Xt+1(Rt+1) =

Yt+1(Rt+1). First observe that every vertex in ∂Rt is a singleton in both ψX and ψY, since ev-

ery edge in ∂E (Rt ) is closed inXt and Yt . Therefore, if |Rt ∩∂Λ | ≤ 1, thenψX,ψY are both the free

boundary condition on Rt and we are done. Otherwise, assume that |Rt ∩ ∂Λ | ≥ 2 and let u, v be

any two distinct vertices in Rt ∩ ∂Λ. If u and v are wired in η, then they are also wired inψX and

ψY. Moreover, if u and v are not wired in η, then property (P1) of side-homogeneous boundary

conditions implies that one of them (say, v) is necessarily a singleton element in η. Since there is

no path of open edges from v to Λn \Rt in either Xt or Yt , then v is also a singleton element (and

thus not wired to u) in both ψX and ψY. Hence, u,v ∈ Rt ∩ ∂Λ are wired in ψX (resp., ψY) i� they

are wired in η. Since all the vertices in ∂Rt are singletons in both ψX and ψY, we conclude that

ψX = ψY.

We now have that Xt (Rt ) = Yt (Rt ) for all t ≥ 0. Hence, if both endpoints of e lie in Rkm,

then Xkm (e ) = Ykm (e ). Also, since we are conditioning on E` and we will choose ` � r , both

endpoints of e lie in R0. So, if Xkm (e ) , Ykm (e ), we may take v0 to be the �rst endpoint of e to be

removed from Rt0 , at some time t0 ≤ km. Let e1 ∈ ∂E (Rt0 ) be the edge whose update is responsible

for removing v0 from Rt0 . Starting from e1 we can then construct a sequence of edges e1, e2, ...
such that ei = (ui ,vi ) ∈ ∂Rti−1

, with ui ∈ Rti−1
and vi < Rti−1

, is the edge that removes vi−1 from

Rti−1
at time ti−1. Note that t0 > t1 > ... and that the sequence e1, e2, ... stops once it reaches an

edge et̃ incident to a vertex outside R0. We call the sequence e1, e2, ..., et̃ a witness for the fact that

Xkm (e ) , Ykm (e ).
The verticesvi−1 andui are in the same connected component inYti−1

, and since we are condi-

tioning on E` , we have d (vi−1,ui ) ≤ `. Therefore, the number of witnesses of length L is (crudely)

at most (4(` + 1)2)L. Note also that every witness contains at least r/(` + 1) edges, otherwise it

cannot reach any of the vertices outside R0. Moreover, the probability that a given witness of

length L is updated by the identity coupling in km steps is

(
km
L

) (
1

m

)L
. Hence,

Pr[Xkm (e ) , Ykm (e ) | E` ] ≤
∑
L≥ r

`+1

(
km

L

) (
1

m

)L
(4(` + 1)2)L

≤
∑
L≥ r

`+1

(
4ek (` + 1)2

L

)L
≤ ω

r
`+1

∑
L≥0

ωL,

where ω = 4ek (`+1)3

r . By taking ` = r 1/4 − 1 and using the fact that k ≤ r 1/4/(4e
2), we have

Pr[Xkm (e ) , Ykm (e ) | E` ] ≤
e

e−1

· e−r
3/4

. (4.6)
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Now we turn our attention to the second term on the right hand side of (4.4). Let N be the

number of updates the identity coupling performs in B up to time km, and let M be the number of

edges in B; i.e., M := |E (e, r ) | = Θ(r 2). A Cherno� bound implies that N > 2kM with probability

exp(−Ω(kM )), and thus

Pr[¬E` ] ≤ Pr[¬E` | N ≤ 2kM ] + e
−Ω(kM ) .

Observe that ¬E` =
⋃km

t=0
¬E`,t , and if the edge update at time t occurs outside B, we have

¬E`,t = ¬E`,t+1. Hence, a union bound implies

Pr[¬E` ] ≤ 2kM max

0≤t≤km
Pr[¬E`,t ] + e

−Ω(kM ) . (4.7)

To bound Pr[¬E`,t ] we use the exponential decay of �nite volume connectivities (4.2). To do this,

recall that Y0 (and thus Yt for all t ≥ 0) has law µη . Also, there are only O (r 4) pairs of vertices in

B. Hence, (4.2) and a union bound imply

Pr[¬E`,t ] ≤ O (r 4) · e−Ω(`) ≤ O (r 4) · e−Ω(r 1/4) .

Since 1 ≤ k ≤ r 1/4/(4e
2) and M = Θ(r 2), (4.7) gives

Pr[¬E` ] ≤ O (r 6.25) · e−Ω(r 1/4) + e
−Ω(r 2) .

Together with (4.4) and (4.6), this implies that there exist constants c,C, λ > 0 such that for all

r ≥ c , we have

Pr[Xkm (e ) , Ykm (e ) ] ≤ Ce
−λr 1/4

,

as desired. �

4.3 Spatial mixing for side-homogeneous boundary
conditions

In this section we show that the spatial mixing (4.3) holds for the class of side-homogeneous

boundary conditions on Λ = (Λn,En ). Let e ∈ En and let B=B (e, r ) for some r ≥ 1. Spatial mixing

holds when the in�uence on e of the con�guration in Ec = Ec (e, r ) decays exponentially with r .

This is easy to establish when B ∩ ∂Λ = ∅, since such in�uence is present only if there are paths

of open edges from e to ∂B, and, by (4.2), the probability of such paths decays exponentially with

r . However, if B ∩ ∂Λ , ∅, the in�uence from Ec could also propagate along B ∩ ∂Λ via the

boundary condition on Λ. This is why (4.3) does not hold for arbitrary boundary conditions, as

the following concrete example illustrates.

With a slight abuse of notation, we use {Ec = 1} (resp., {Ec = 0}) to denote the event that all

the edges in Ec are open (resp., closed). Suppose e = (u,v ) is an edge in ∂Λ that is far from the

corners of Λ, and let ψ be the boundary condition on Λ where u is wired to a vertex u′ ∈ ∂Λ \B
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and v is wired to a di�erent vertex v′ ∈ ∂Λ \B (see Figure 4.2(b)). When p = 1/2 and q = 3, we

have µψ (e = 1|Ec = 1) = 1/2. Also, by considering a small box around e , is easy to check that

µψ (e = 1|Ec = 0) ≤ 2/5. Both these bounds are independent of r and n; consequently,ψ does not

have the spatial mixing property.

It turns out that side-homogeneous boundary conditions (and in particular property (P1)) rule

out the possibility of in�uence propagating along B ∩ ∂Λ. As a result, we are able to establish the

spatial mixing property for side-homogeneous boundary conditions, as stated in the following

lemma; the proof uses the machinery developed in [1].

Lemma 4.2. Let p < pc (q), q ≥ 1 and let η be a side-homogeneous boundary condition for Λ =

(Λn,En ). For any e ∈ En, there exist constants c, λ > 0 such that for all r ≥ c and every pair of
con�gurations Ac

1
, Ac

2
on Ec :

��µη ( e = 1 |Ac
1
) − µη ( e = 1 |Ac

2
)�� ≤ e

−λr . (4.8)

Proof. Consider the measure µw := µη ( · |Ec = 1) on B = B (e, r ). Let Γ(·, ·) be de�ned as in (4.5).

We derive the result from the following key fact, which we prove later.

Claim 4.3. There exists a coupling π of the distributions µη ( · |Ac
1
), µη ( · |Ac

2
) and µw such that

π (A1,A2,Aw ) > 0 only if A1 ⊆ Aw , A2 ⊆ Aw and A1, A2 agree on all edges with both endpoints in
Γ(Aw ,B).

Let Γc (Aw ,B) := Λn \Γ(Aw ,B). Given the coupling π , we have

|µη ( e = 1 |Ac
1
) − µη ( e = 1 |Ac

2
) | ≤ π (A1(e ) , A2(e ) )

≤ π ( Γc (Aw ,B) ∩ {e} , ∅ )

≤ µw ( {e} ↔ ∂B ) ,

where {e} ↔ ∂B denotes the event that there is a path from e to ∂B.

Now, exponential decay of �nite volume connectivities (4.2) and a union bound over the

boundary vertices imply

µw ( {e} ↔ ∂B ) ≤ 2C | ∂B |e− λ r .

Since | ∂B | = Θ(r ), we obtain (4.8) for all r ≥ c for some constant c > 0, and hence the lemma. �

We conclude this section by providing the missing proof of Claim 4.3.

Proof. Let θ1 (resp., θ2) be the boundary condition induced on B = B (e, r ) by Ac
1

(resp., Ac
2
) and η.

Note that µθ1
, µθ2

and µw are random-cluster measures on B with di�erent boundary conditions,

and clearly µw � µθ1
and µw � µθ2

. Strassen’s theorem (see, e.g., [47]) then implies the existence

of monotone couplings µ1 for µθ1
and µw , and µ2 for µθ2

and µw . (Recall that µ1 is a monotone

coupling for µθ1
and µw i� every sample (Aθ1

,Aw ) from µ1 satis�esAθ1
⊆ Aw .) We show next how

to use µ1 and µ2 to construct the desired coupling π .

First, let ∆ := Γ(Aw ,B) and let ξ be the boundary condition induced in ∆ by η and the con�g-

uration of Aw in Γc (Aw ,B). We construct π as follows:
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(i) sample (Aθ1
,Aw ) from µ1;

(ii) sample Aθ2
from µ2( · |Aw ); and

(iii) sample Aγ from µ
ξ
∆,p,q .

Let π be the distribution of

({Aθ1
\ E (∆)} ∪Aγ , {Aθ2

\ E (∆)} ∪Aγ , {Aw \ E (∆)} ∪Aγ )

after step (iii), where E (∆) denotes the set of edges with both endpoints in ∆.

A straightforward calculation reveals that Aθ2
has law µθ2

, and thus after step (ii) the dis-

tribution of (Aθ1
,Aθ2
,Aw ) has all the right marginals. Moreover, since µ1 and µ2 are monotone

couplings, Aθ1
⊆ Aw and Aθ2

⊆ Aw .

We argue next that replacing the con�guration in ∆ with Aγ in step (iii) has no e�ect on

the distribution. For this, let ξ1 (resp., ξ2) be the boundary condition induced in ∆ by η and the

con�guration of Aθ1
(resp., Aθ2

) in Γc (Aw ,B). (Note that ξ , ξ1, ξ2 are partitions of ∂∆ ∪ (∆ ∩ ∂Λ).)
We show that ξ = ξ1 = ξ2. This is easy to see when ∆ ∩ ∂Λ = ∅, since in this case all three of

them are the free boundary condition on ∆. This is because Aθ1
⊆ Aw , Aθ2

⊆ Aw and every edge

from ∂∆ to ∆c
is closed in Aw .

When ∆∩ ∂Λ is not trivial, only vertices in ∆∩ ∂Λ may be wired in ξ . Property (P1), together

with the fact that every edge from ∂∆ to ∆c
is closed inAw , implies that two vertices from ∆∩∂Λ

are wired in ξ i� they are wired in η. The same holds for ξ1 and ξ2; hence, ξ = ξ1 = ξ2. (Note that

this argument is essentially the same as the one used in the proof of Lemma 4.1 to show that the

boundary conditions induced in Rt by Xt and Yt are the same.)

Finally, the domain Markov property of random-cluster measures (see, e.g., [26]) ensures that

indeed replacing ∆ with Aγ has no e�ect on the distribution. Hence, π is a coupling of the mea-

sures µθ1
, µθ2

, and µw with all the desired properties. �

4.4 Mixing time upper bound in the sub-critical regime
In this section we prove our main result: the upper bound for the mixing time in Theorem 1.4 for

p < pc (q). We state two theorems whose combination establishes the desired upper bound forp <
pc (q). In Theorem 4.4 we show that spatial mixing for the class of side-homogeneous boundary

conditions, as established in Section 4.3, implies a bound ofO (n2
logn(log logn)2) for the mixing

time of the Glauber dynamics on Λ = (Λn,En ), for any n and any side-homogeneous boundary

condition. The proof is inductive and makes crucial use of property (P2) of side-homogeneous

boundary conditions, which ensures that for any e ∈ En and r ≥ 1, the boundary condition

induced in B (e, r ) by the events {Ec = 1} or {Ec = 0} is also side-homogeneous.

In Theorem 4.5 we show that a su�ciently good upper bound on the mixing time of the

Glauber dynamics—in fact O
(
n2.25/ logn

)
su�ces—can be bootstrapped to the desired upper
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bound of O (n2
logn). The proof of Theorem 4.5 crucially uses the bounds on the speed of prop-

agation of disagreements from Section 4.2. Our proofs are inspired by those in the spin systems

literature, in particular those in [16, 41, 44].

Theorem 4.4. Let p < pc (q), q ≥ 1 and let η be a side-homogeneous boundary condition for
Λ = (Λn,En ). There exists a �xed constant C > 0 such that for all n, the mixing time of the Glauber
dynamics in Λ is at most T (m) = Cm logm(log logm)2, wherem := |En | = Θ(n2).

Proof. We bound the coupling time Tcoup of the identity coupling; the result then follows from

the fact that τmix ≤ Tcoup. Consider two copies {Xt }, {Yt } of the Glauber dynamics coupled with

the identity coupling. We may assume X0 = En and Y0 = ∅, since we know from Section 4.1 that

this is the worst pair of starting con�gurations. We prove that

Pr[XT (e ) , YT (e ) ] = O
(
m−2

)
for T = T (m) and for all e ∈ En. The bound for the coupling time then follows from a union

bound over them edges.

To bound Pr[XT (e ) , YT (e ) ], we introduce two additional copies {Z+t }, {Z
−
t } of the Glauber

dynamics. These two copies will only update edges with both endpoints in the box B = B (e, r ),
for a suitable r we choose later. We set Z+

0
= X0 = En and Z−

0
= Y0 = ∅. The four Markov chains

{Xt }, {Yt }, {Z
+
t } and {Z−t } are coupled with the identity coupling, and the updates outside B are

ignored by {Z+t } and {Z−t }. By monotonicity of the identity coupling, we have Z−t ⊆ Yt ⊆ Xt ⊆ Z+t
for all t ≥ 0. Hence,

Pr[Xt (e ) , Yt (e ) ] ≤ Pr[Z+t (e ) , Z−t (e ) ]

= Pr[Z+t (e ) = 1 ] − Pr[Z−t (e ) = 1 ].

The stationary distributions of {Z+t } and {Z−t } are µ
η
Λ
( · | Ec = 1 ) and µ

η
Λ
( · | Ec = 0) , respec-

tively, where as usual {Ec = 1} (resp., {Ec = 0}) denotes the event that all the edges in En\E (e, r )
are open (resp., closed). The triangle inequality then implies

Pr[Xt (e ) , Yt (e ) ] ≤
���Pr[Z+t (e ) = 1 ] − µ

η
Λ
( e = 1 | Ec = 1 )��� (4.9)

+
���µ
η
Λ
( e = 1 | Ec = 1 ) − µ

η
Λ
( e = 1 | Ec = 0 )��� (4.10)

+
���µ
η
Λ
( e = 1 | Ec = 0 ) − Pr[Z−t (e ) = 1 ]

��� . (4.11)

The chains {Z+t } and {Z−t } are (lazy) Glauber dynamics on the smaller square box B. More-

over, the boundary conditions induced in B by η and the events {Ec = 1}, {Ec = 0} are side-

homogeneous. Hence, we proceed inductively.

First note that for any �xedm0, the result holds for all square boxes of volume at mostm0 by

simply adjusting the constant C = C (m0). Now, let r = c logm for some constant c we choose

later, and assume the mixing time bound holds for square boxes of volume M := |E (e, r ) | with
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side-homogeneous boundary condition. After T (m) steps, the expected number of updates in B
is

T (m)
M

m
= CM logm(log logm)2 ≥ d4 log

2
meT (M ),

where we choosem0 such that the last inequality holds for allm > m0. Hence, a Cherno� bound

implies that the number of updates in B is at least d2 log
2
meT (M ) with probability at least 1−m−2

.

The induction hypothesis implies that the mixing time of {Z+t } is at most T (M ). Hence, if

indeed d2 log
2
meT (M ) updates happen in B, then

| | Z+t (·) − µ
η
Λ
( · | Ec = 1 ) | |TV ≤

1

m2
.

(Here we used the fact from Section 4.1 that τmix(ε ) ≤ dlog
2
ε−1e τmix.) Combining this with the

above Cherno� bound, we have

���Pr[Z+t (e ) = 1 ] − µ
η
Λ
( e = 1 | Ec = 1)��� ≤

2

m2
.

The quantity in (4.11) is bounded similarly.

Finally, taking c = 2/λ, the spatial mixing property (Lemma 4.2) implies that (4.10) is at most

1/m2
. Putting these bounds together we get

Pr[Xt (e ) , Yt (e ) ] ≤
5

m2
,

as desired. �

Theorem 4.5. Let p<pc (q), q≥ 1 and letm0, c be su�ciently large and su�ciently small constants,
respectively. Assume that the mixing time of the Glauber dynamics in any square box of volumem0

with side-homogeneous boundary conditions is at most cm9/8

0

log
2
m0

. Then, the mixing time of the Glauber
dynamics in Λ with side-homogeneous boundary conditions is O (n2

logn).

Proof. Letm := |En |=Θ(n
2) and the let η be a side-homogeneous boundary condition for Λ. Also,

let {Xt }, {Yt } be two copies of the Glauber dynamics in Λ coupled with the identity coupling. We

prove that for 1 ≤ k = o(m1/8), we have

Pr[Xkm (e ) , Ykm (e )] ≤ e
−Ω(k )

(4.12)

for any e ∈ En and any pair of initial con�gurations X0,Y0. Hence, for some k = O (logm) we

have Pr[Xkm (e ) , Ykm (e )] ≤ 1/(4m), and a union bound over the edges implies τmix ≤ Tcoup =

O (m logm), as desired.

We bound Pr[Xkm (e ) , Ykm (e )] for the case where X0 = En and Y0 is sampled from µη . The

proof for the case where X0 = ∅ and Y0 is sampled from µη is identical. The monotonicity of the

identity coupling discussed in Section 4.1 implies then that this bound holds for arbitrary initial

con�gurations X0, Y0.
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Let Ek be the event {Xkm (B (e, r )) = Ykm (B (e, r ))} for some r we will choose later, and let

ρ (k ) := maxe∈En Pr[Xkm (e ) , Ykm (e ) ],

where the probability is over both the choice of Y0 and the steps of the Markov chain. We will

show that ρ (k ) ≤ exp(−Ω(k )).
Since Y0 has law µ

η
Λ

, the bound on disagreement percolation in Lemma 4.1 implies that

Pr[X2km (e ),Y2km (e ) | Ek ] ≤ e
−Ω(r 1/4),

provided 1 ≤ k ≤ r 1/4/(4e
2) and r is large enough. Thus,

Pr[X2km (e ) , Y2km (e ) ] ≤ Pr[X2km (e ) , Y2km (e ) | ¬Ek ] Pr[¬Ek ] + e
−Ω(r 1/4) .

The monotonicity of the identity coupling implies that

Pr[X2km (e ) , Y2km (e ) | ¬Ek ] ≤ ρ (k ),

and a union bound over the edges in B (e, r ) implies Pr[¬Ek ] ≤ Θ(r 2)ρ (k ). Putting these bounds

together and taking r = Θ(k4), we obtain

ρ (2k ) ≤ Ck8ρ2(k ) + e
− λ k ,

for some suitable constants C > 1 and λ > 0. (Note that since r = Θ(k4) and r < n, our proof of

inequality (4.12) does not hold for arbitrarily large k ; hence the restriction k = o(m1/8).)
Now, let

ϕ (k ) := 2
8(Ck8 + 1) max{ρ (k ), e− λ k/2}.

We show next that ϕ (2k ) ≤ ϕ (k )2. For this observe that 2
8(C (2k )8 + 1)ρ (2k ) ≤ ϕ (k2). Hence, if

ρ (2k ) ≥ e− λ k , we get ϕ (2k ) ≤ ϕ (k2) directly. Otherwise, we have

ϕ (2k ) ≤ (28)2(Ck8 + 1)e− λ k ≤ ϕ (k )2.

Thus, for any integer α > 0, we get ϕ (k ) ≤ ϕ (k/2α )2
α
. The result follows from the following fact,

which provides a stopping point for this recurrence.

Claim 4.6. Let l =m1/8
0
/A, with A = 2(8Ce)1/8. Then ρ (l ) ≤ 1

2
8

e(Cl8+1)
for a su�ciently largem0.

As a result, ϕ (l ) ≤ 1/e for a su�ciently large constant l , and thus ρ (k ) ≤ ϕ (k ) ≤ exp(−k/l ) as

desired. �

We conclude this section with the proof of Claim 4.6. The proof is similar to that of Theorem 5.1

and makes crucial use of the hypothesis on the mixing time in square boxes of volumem0.



CHAPTER 4. RANDOM-CLUSTER DYNAMICS IN Z2
78

Proof. Let e ∈ En and choose r ′ such that |E (e, r ′) | = m0. (Note that as a result r ′ = Θ(m1/2
0

).)
The proof proceeds along the same lines as that of Theorem 4.4. In fact we consider the same

processes {Z+t }, {Z
−
t }, where Z+

0
= X0 = En, Z−t = ∅ and {Z+t }, {Z

−
t } only update edges with

both endpoints in B (e, r ′). As before, we couple the four chains {Xt }, {Yt }, {Z
+
t }, {Z

−
t } with the

identity coupling, ignoring the updates outside B (e, r ′) in {Z+t } and {Z−t }. The monotonicity of the

identity coupling then implies that Z−t ⊆ Yt ⊆ Xt ⊆ Z+t for all t ≥ 0. Hence, we obtain inequality

(4.9)-(4.11). (Note that in this case Yt has law µ
η
Λ

for all t ≥ 0.)

Lemma 4.2 implies that (4.10) is at most exp(−Ω(r ′)). To bound (4.9), note that if we run

the identity coupling for lm steps, a Cherno� bound implies that with probability at least 1 −

exp(−lm0/8) the number of updates in B (e, r ′) is at least (2A)−1m9/8
0

. If indeed this many steps

hit B (e, r ′), then the hypothesis of the theorem (with c = (2A)−1
) implies

���Pr[Z+t (e ) = 1 ] − µ
η
Λ
( e = 1 | Ec = 1)��� ≤ || Z

+
t (·) − µ

η
Λ
( · | Ec = 1 ) | |TV ≤

1

m0

.

(Here we also used the fact that τmix(ε ) ≤ dlog
2
ε−1eτmix.) We do the same to bound (4.11), and

then

Pr[Xlm (e ) , Ylm (e ) ] ≤
2

m0

+ e−Ω(m9/8

0
) + e−Ω(m1/2

0
)

≤
4

m0

=
4

(Al )8
≤

1

2
8

e(Cl8 + 1)
,

for a su�ciently large constantm0. Hence, ϕ (l ) ≤ 1/ e for a su�ciently large l , as desired. �

4.5 Mixing time lower bound in the sub-critical regime
In this section we prove the lower bound from Theorem 1.4 for p < pc (q). (The lower bound for

p > pc (q) is derived in Section 4.6.) In the setting of spin systems, [28] provides a general mixing

time lower bound for Glauber dynamics. As mentioned earlier, the random-cluster model is not

a spin system in the usual sense because of the long range interactions, but we are still able to

adapt the techniques in [28] to the random-cluster setting. In fact, our proof follows closely the

argument in the proof of Theorem 4.1 in [28], the main di�erence being that we require a more

subtle choice of the starting con�guration to limit the e�ect of the long range interactions. We

derive the following theorem.

Theorem 4.7. Let p < pc (q), q ≥ 1 and let η be a side-homogeneous boundary condition for
Λ = (Λn,En ). The mixing time of the Glauber dynamics in Λ is Ω(n2

logn).

It is convenient to carry out our proof in continuous time. The continuous time Glauber dynamics

is obtained by adding a rate 1 Poisson clock to each edge; when the clock at edge e rings, e is

updated as in discrete time.

The switch to continuous time requires us to extend the bound in Section 4.2 for the speed

of propagation of disagreements to the continuous time dynamics. In addition, we will require
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slightly di�erent assumptions about the initial con�guration Y0. This is established in the follow-

ing lemma, whose proof is very similar to that of Lemma 4.1 (only requiring minor adjustments)

and is deferred to Appendix A.

Lemma 4.8. Let p < pc (q), q ≥ 1 and let η be a side-homogeneous boundary condition for Λ =

(Λn,En ). Also, let B = B (e, r ) for some e ∈ En and r ≥ 1. Consider two copies {Xt }, {Yt } of the
continuous time Glauber dynamics on Λ such that:

• X0(B) = Y0(B);

• Y0(B) has law µ0

B,p,q ( · | e = b) for some b ∈ {0, 1};

• Y0(e
′) = 0 for all e′ ∈ Ec (e, r ) incident to ∂B; and

• {Yt } only performs edge updates in B.

If the evolutions of {Xt } and {Yt } are coupled using the identity coupling, then there exist absolute
positive constants c ,C , and λ (independent of r andn) such that, for all r ≥ c and 1 ≤ T ≤ r 1/4/(4e

2),
we have

Pr[XT (e ) , YT (e ) ] ≤ Ce
−λr 1/4

.

We are now ready to prove Theorem 4.7.

Proof. Let {Xt } and {XDt } be copies of the continuous and discrete time Glauber dynamics in Λ,

respectively, such that XD
0
= X0. The following standard inequality holds for all t ≥ 0:

| |XDt ′ − µ
η | |TV ≥ ||Xt − µ

η | |TV − 2e−t
′

,

where t ′ = |En |t/2 (see, e.g., Proposition 2.1 in [28]).

We will show that | |XT −µ
η | |TV > 1/3 for someT = Ω(logn); as a result | |XDT ′ −µ

η | |TV > 1/4 for

some T ′ = Ω(n2
logn) and su�ciently large n. This implies that the mixing time of the discrete

time dynamics is Ω(n2
logn) as desired.

First we introduce some notation. Assume w.l.o.g. that 4r + 1 divides n − 1 for some r to be

chosen later, and split Λn into (n − 1)2/(4r + 1)2 square boxes of side length 4r + 1. Each of these

boxes corresponds to B (e, 2r ) for some edge e ∈ En; let C ⊆ En be the set of these edges. Also, let

Ê := En \
⋃

e∈C E (e, r ) and let E be the event that every edge e′ ∈ Ê incident to B (e, r ) for some

e ∈ C is closed.

Let A, AE be random-cluster con�gurations sampled from µη and µη ( · | E), respectively, and

let β := E[f (AE )], where f (AE ) is the fraction of edges e ∈ C such that AE (e ) = b for some �xed

b ∈ {0, 1}. Consider the following threshold for a value of ε > 0 that will be chosen later:

ˆβ =




β + ε if β < 1/2;

β if β = 1/2;

β − ε if β > 1/2.
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We pick b such that Pr[f (A) > ˆβ] ≤ 1/2.

As in [28], our goal is to choose X0 such that Pr[f (XT ) ≥ ˆβ] → 1 as n → ∞ for some

T = Ω(logn); then | |XT − µ
η | |TV > 1/3 for large enough n, as desired.

Let Φ be the set of random-cluster con�gurations in Λ such that Â ∈ Φ i� for all e ∈ C,

Â(e ) = b and Â(e′) = 0 for all e′ ∈ Ê incident to B (e, r ). For each Â ∈ Φ, let

π0(Â) :=
µη (Â)

µη (Φ)
. (4.13)

The starting con�guration X0 is sampled from π0.

Consider now an auxiliary copy {Yt } of the continuous time Glauber dynamics such that

Y0 = X0. The two chains {Xt },{Yt } are coupled using the identity coupling, except that {Yt } does

not update edges in Ê. First we establish a bound for Pr[f (YT ) ≤ ˆβ +ε/2]. To do this, we use the

following monotonicity property which is a straightforward consequence of Lemma 3.5 in [28].

Fact 4.9. For each e ∈ C, let αe := µ0

B,p,q (e = b) where B = B (e, r ). Then, for all t ≥ 0,

Pr[Yt (e ) = b] ≥ αe + (1 − αe )e
−t/(1−αe ) .

From this fact, we follow the steps in the proof of Theorem 4.1 in [28] to derive the following

bound:

E[f (YT )] ≥ β + (1 − β )e−T /(1−β ), (4.14)

for allT ≥ 0. Taking ε = 1/(4 exp(2T )), the right hand side of (4.14) is at least
ˆβ +ε . Also, since Y0

is sampled from π0, the con�gurations of the edges in C are independent in YT . Hence, | C | f (YT )
is the sum of | C | independent Bernoulli random variables; a Cherno� bound then implies

Pr[f (YT ) ≤ ˆβ +ε/2] ≤ e
−Ω(ε2 | C |) . (4.15)

The second step in the proof is to bound Pr[f (XT ) ≤ f (YT ) − ε/2]. For this, we use Lemma

4.8, which is tailored precisely to our setting. Thus, for all e ∈ C and 1 ≤ T ≤ r 1/4/(4e
2), we have

Pr[XT (e ) , YT (e )] ≤ Ce
−λr 1/4

,

provided r ≥ c , where c is a su�ciently large constant. Therefore, the expected number of

disagreements between XT and YT in the set C is at most | C |C exp(−λr 1/4), and by Markov’s

inequality,

Pr[f (XT ) ≤ f (YT ) − ε/2] ≤
2C

ε
e
−λr 1/4

. (4.16)

Putting together the bounds in (4.15) and (4.16), we get

Pr[f (XT ) ≤ ˆβ] ≤
2C

ε
e
−λr 1/4

+ e
−Ω(ε2 | C |) .

Finally, observe that | C | = Θ(n
2

r 2
); thus, when r = ( 1

4
logn)4 and T = min{λ/4, 1}r 1/4

, we get

Pr[f (XT ) > ˆβ]→ 1 as n → ∞ as desired. �
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4.6 Mixing time in the super-critical regime
In this section we prove Theorem 1.4 from the Introduction for p > pc (q). We will make use of

planar duality, discussed in Section 4.1, in order to reduce the proof to the sub-critical case.

Theorem 4.10. For p > pc (q) and q ≥ 1, the mixing time of the Glauber dynamics on Λ = (Λn,En )
with free or wired boundary conditions is Θ(n2

logn).

Proof. We focus on the free boundary condition case; the wired case follows from an analogous

argument. The planar dual Λ
∗ = (Λ∗n,E

∗
n ) of the graph Λ consists of an (n − 1) × (n − 1) box with

an additional outer vertex corresponding to the in�nite face of Λ. The dual measure µΛ
∗,p∗,q , with

p∗ =
q(1 − p)

p + q(1 − p)
,

is equivalent to the measure µ1

Λ
′,p∗,q

where Λ
′ = (Λn+1,En+1) (see, e.g., [3]). Note that p > pc (q) i�

p∗ < pc (q).
We say that two random-cluster con�gurations A on Λ and A′ on Λ

′
are compatible if the

con�guration resulting from A′ by contracting all the vertices in the boundary of Λ
′

into a single

vertex isA∗, the dual con�guration ofA. Note that eachA′ has a unique compatibleA, while each

Ahas multiple compatibleA′ that di�er only in the disposition of the edges in the boundary ∂Λn+1.

Observe also that any edge e′ of Λ
′

with at most one endpoint incident to ∂Λn+1 corresponds to

a unique dual edge e∗ ∈ E∗n and thus to a unique edge e ∈ En.

In order to analyze the Glauber dynamics on Λ when p > pc (q), we consider instead the

Glauber dynamics on Λ
′

with parameter p∗ < pc (q), which we denote {X ′t }. We shall show that

{X ′t } induces a Markov chain {Xt } on Λ which is essentially the same as the Glauber dynamics on

Λ with parameter p, and that the mixing times of {Xt } and {X ′t } are equal up to constant factors.

Since p∗ < pc (q), the results in Sections 4.4 and 4.5 imply that mixing time {X ′t } (and hence of

{Xt }) is Θ(n2
logn).

To de�ne the induced dynamics, let e′t be the edge chosen u.a.r. from En+1 at time t by {X ′t },
and let et be the corresponding edge in Λ if there is one. Xt+1 is obtained from Xt as follows:

(i) if both endpoints of e′t are in ∂Λn+1, then Xt+1 = Xt ;

(ii) else if X ′t+1
= X ′t+1

∪ {e′t }, then Xt+1 = Xt \ {et };

(iii) else if X ′t+1
= X ′t+1

\ {e′t }, then Xt+1 = Xt ∪ {et }.

The initial con�guration X0 is the unique con�guration compatible with X ′
0
.

We show �rst that {Xt } is in fact a lazy version of the Glauber dynamics on Λ. To see this,

note that Xt+1 = Xt whenever both endpoints of e′t are in ∂Λn+1. Otherwise, it is straightforward

to check that et ∈ Xt is a cut edge i� e′t ∈ X ′t is not a cut edge. Hence, Xt+1 = Xt ∪ {et } i�
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X ′t+1
= Xt \ {e

′
t } and thus Xt+1 = Xt ∪ {et } with probability:




1 −
p∗

q(1−p∗)+p∗ = p if e′t is a cut edge;

1 − p∗ =
p

q(1−p)+p otherwise.

This implies that {Xt } does not move with probability Θ(n−1), and otherwise evolves exactly like

the Glauber dynamics on Λ. Hence, it is su�cient for us to establish the mixing time of {Xt }. To

do this, we show that the mixing times of {Xt } and {X ′t } are essentially the same.

Let ΩRC be the set of random-cluster con�gurations on Λ, and let C (A) be the set of con�g-

urations compatible with a con�guration A on Λ. The �rst observation is that when {X ′t } mixes,

so does {Xt }. This follows from:

| |Xt (·) − µΛ,p,q (·) | |TV =
1

2

∑
A∈ΩRC

|Xt (A) − µΛ,p,q (A) |

=
1

2

∑
A∈ΩRC

|Xt (A) − µΛ
∗,p∗,q (A

∗) |

≤
1

2

∑
A∈ΩRC

∑
A′∈C (A)

���X
′
t (A
′) − µ1

Λ
′,p∗,q (A

′)���

= | |X ′t (·) − µ
1

Λ
′,p∗,q (·) | |TV,

where in the �rst and last equality we use the de�nition of total variation distance, in the second

equality we use planar duality, and the third inequality follows from the triangle inequality and

the correspondence between the con�gurations of Λ and Λ
′
. Hence, by the results in Section 4.4,

the mixing time of {Xt } is O (n2
logn).

We show next that the mixing time of {Xt } is Ω(n2
logn). For this, note that in Theorem 4.7

we showed that there is an initial distribution π0 for X ′
0
, de�ned in (4.13), such that

| |X ′T (·) − µ
1

Λ
′,p∗,q (·) | |TV > 1/4

for some T = Ω(n2
logn). We will prove that when X ′

0
is sampled from π0, then

| |X ′t (·) − µ
1

Λ
′,p∗,q (·) | |TV = | |Xt (·) − µΛ,p,q (·) | |TV

for all t ≥ 0. To show this we introduce some additional notation.

Let Λ
′′

:= (Λn+1,En+1 \ ∂En+1), where ∂En+1 ⊆ En+1 is the set of edges with both endpoints in

∂Λn+1. Also, for any random-cluster con�guration A′ on Λ
′
, we use ∂A′ to denote the random-

cluster con�guration induced in ∂Λ′ by A′.
Under the wired boundary condition, we have that for any e ∈ ∂Λ′, µ1

Λ
′,p∗,q

(e = 1) = p∗.

Hence, µ1

Λ
′,p∗,q

is the product measure of the distributions µ1

Λ
′′,p∗,q

and µ∂Λ′,p∗,1; the latter is the
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distribution on ∂Λ′ where every edge is sampled independently with probability p∗. Thus we

have

µ1

Λ
′,p∗,q (A

′) = µ1

Λ
′′,p∗,q (A

′ \ ∂A′) · µ∂Λ′,p∗,1(∂A
′).

By the correspondence between the con�gurations of Λ
∗

and Λ
′
, we have that µ1

Λ
′′,p∗,q

(A′ \ ∂A′) =

µΛ
∗,p∗,q (A

∗). (As in Section 4.1, A∗ denotes the dual of the unique con�gurationA compatible with

A′.) Moreover, by planar duality µΛ
∗,p∗,q (A

∗) = µΛ,p,q (A), and thus

µ1

Λ
′,p∗,q (A

′) = µΛ,p,q (A) · µ∂Λ′,p∗,1(∂A
′). (4.17)

Also, under the wired boundary condition the con�guration on the boundary ofX ′
0

is sampled

according to µ∂Λ′,p∗,1. Hence, the distribution on the boundary of X ′t has law µ∂Λ′,p∗,1 for all t ≥ 0.

Thus,

X ′t (A
′) = µ∂Λ′,p∗,1(∂A

′) · X ′t (A
′ \ ∂A′) = µ∂Λ′,p∗,1(∂A

′) · Xt (A). (4.18)

Hence,

| |X ′t (·) − µ
1

Λ
′,p∗,q (·) | |TV =

1

2

∑
A∈ΩRC

∑
A′∈C (A)

���X
′
t (A
′) − µ1

Λ
′,p∗,q (A

′)���

=
1

2

∑
A∈ΩRC

∑
A′∈C (A)

µ∂Λ′,p∗,1(∂A
′) ���Xt (A) − µΛ,p,q (A)

���

= | |Xt (·) − µΛ,p,q (·) | |TV,

where in the �rst and last equality we used the de�nition of total variation distance and the

second follows from (4.17) and (4.18).

The results in Section 4.5 then imply that the mixing time of {Xt } is Ω(n2
logn). Consequently,

the Glauber dynamics on Λ with p > pc (q) mixes in Θ(n2
logn) steps, as desired. �

A proof of Lemma 4.8
We show �rst that the measure that results from conditioning on the state of a single edge main-

tains the exponential decay of �nite volume connectivities (4.2).

Fact 4.11. Let p < pc (q), q ≥ 1, and let η be a boundary condition for Λ = (Λn,En ). Consider a copy
{Yt } of the continuous time Glauber dynamics on Λ, and assume Y0 is sampled from the distribution
µ
η
Λ,p,q ( · | e = b), for some e ∈ En and b ∈ {0, 1}. Then, for all u,v ∈ Λn, there exists positive constant

C and λ such that
Pr[u

Yt
↔v] ≤ Ce− λd (u,v ),

where u
Yt
↔v denotes the event that u and v are connected by a path of open edges in Yt .



CHAPTER 4. RANDOM-CLUSTER DYNAMICS IN Z2
84

Proof. Let {Zt } be a second instance of the continuous time Glauber dynamics. The evolution of

{Zt } is coupled with that of {Yt } via the identity coupling, except that {Zt } never updates the edge

e . The initial con�guration of {Zt } is sampled according to the distribution µη ( · | e = 1) such

that Y0 ⊆ Z0. This is always possible because µη ( · | e = 1) � µη . Then, Yt ⊆ Zt and Zt has law

µη ( · | e = 1) for all t ≥ 0. We establish that the measure µη ( · | e = 1) has exponential decay of

�nite volume connectivities and thus so does the distribution of Yt for all t ≥ 0. By (4.2), for all

u,v ∈ Λn, we have

µη (u ↔ v | e = 1)µη (e = 1) ≤ µη (u ↔ v ) ≤ Ce
− λd (u,v ),

where C, λ are positive constants. If p′ =
p

q(1−p)+p , then µη � µ
η
Λ,p ′,1 (see, e.g., [19]), and thus

µη (e = 1) ≥ p′. Since q ≥ 1,

µη (u ↔ v | e = 1) ≤
qC

p
e
− λd (u,v ) .

The result then follows immediately when p = Ω(1). Otherwise, the measure µη is stochastically

dominated by any random-cluster measure µ
η
Λ,p ′′,q with p′′ = Ω(1), for which we just established

exponential decay of �nite volume connectivities; the result follows by monotonicity. �

We are now ready to prove the lemma.

Proof. Let Qt be the random time at which the t-th edge is updated by the identity coupling. For

some �xed ` to be chosen later, and each t ≥ 0, consider the event

E`,t := {u
YQt
= v ∀u,v ∈ B s.t. d (u,v ) > `},

where u
YQt
= v denotes the event that u and v are not connected by a path in YQt (B). Also, let

E` :=
⋂

t :Qt≤T E`,t . Then,

Pr[XT (e ) , YT (e ) ] ≤ Pr[XT (e ) , YT (e ) | E` ] + Pr[¬E` ] (4.19)

(cf. equation (4.4)). We bound each term on the right hand side of (4.19) separately.

Conditioned on the event E` , a witness for the fact that XT (e ) , YT (e ) can be constructed

as in discrete time. However, the probability that a given witness of length L is updated by the

continuous time dynamics is instead bounded using the following fact from [28].

Fact 4.12. Consider L independent rate 1 Poisson clocks. Then, the probability that there is an
increasing sequence of times 0 ≤ t1 < ... < tL ≤ T such that clock i rings at time ti is at most

(
eT
L

)L
.

Recall from Section 4.2 that the number of witnesses of length L is at most (4(` + 1)2)L (crudely).

Hence, following the same steps as in the proof Lemma 4.1, and taking ` = r 1/4 − 1, we get

Pr[XT (e ) , YT (e ) | E` ] ≤
e

e−1

· e−r
3/4

, (4.20)
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using the fact that T ≤ r 1/4/(4e
2) (cf. equation (4.6)).

To bound the second term on the right hand side of (4.19), let N be the number of edge updates

in B up to time T . Observe that N is a Poisson random variable with rate M := |E (B, r ) | = Θ(r 2).
Using standard bounds for Poisson tail probabilities we get that Pr[N > e

2MT ] = exp(−Ω(MT ))
for all T ≥ 1. Therefore,

Pr[¬E` ] ≤ Pr[¬E` | N ≤ e
2MT ] + e

−Ω(MT ) .

Also, ¬E` :=
⋃

t :Qt≤T ¬E`,t , and if the edge update at time Qt occurs outside B, we have

¬E`,t = ¬E`,t+1. Hence, a union bound implies

Pr[¬E` ] ≤ e
2MT max

t :Qt≤T
Pr[¬E`,t ] + e

−Ω(MT ) .

Fact 4.11 establishes exponential decay of �nite volume connectivities (4.2) for the distribution

of Yt in B for all t ≥ 0. Then, as in Lemma 4.1, we obtain

Pr[¬E` ] ≤ O (r 6.25) · e−Ω(r 1/4) + e
−Ω(r 2) .

Together with (4.20), this implies there exist constants c,C, λ > 0 such that for all r ≥ c we have

Pr[XT (e ) , YT (e ) ] ≤ C exp(−λr 1/4), as desired. �
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