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Abstract

This thesis presents a sample-based energy simulation methodology that en-
ables fast and accurate estimations of performance and average power for ar-
bitrary RTL designs. Our approach uses an FPGA to simultaneously simulate
the performance of an RTL design and to collect samples containing exact RTL
state snapshots. Each snapshot is then replayed in gate-level simulation, re-
sulting in a workload-specific average power estimate with confidence intervals.
For arbitrary RTL and workloads, our methodology guarantees a minimum of
four-orders-of-magnitude speedup over commercial CAD gate-level simulation
tools and gives average energy estimates guaranteed to be within 5% of the
true average energy with 99% confidence. We believe our open-source sample-
based energy simulation tool Strober can not only rapidly provide ground
truth for more abstract power models, but can enable productive design-space
exploration early in the RTL design process.



Chapter 1

Introduction

Energy efficiency has become the primary design metric for both low-power
portable computers and high-performance servers. As technology scaling slows
down, computer architects must use architectural innovation rather than semi-
conductor process improvement to improve energy efficiency. This trend neces-
sitates accurate and fast energy evaluation of various long-running applications
on novel designs for architectural design-space exploration.

The most accurate way to evaluate energy efficiency is by running applica-
tions on a silicon prototype [1I, 2, 3, 4], [5] with power consumption measured
directly. Prototyping is accurate and can run large workloads rapidly, but
each prototyping cycle is expensive and has a long latency, prohibiting exten-
sive design-space exploration.

Computer architects instead mostly rely on analytic power models cali-
brated against representative RTL designs [0l [7, 8, [0, T0]. These must be
driven by activities from micro-architectural simulation [I1], 12, 13]. This
approach helps designers gain some intuition in early design phases, but is
limited to microarchitectures resembling those for which the abstract model
was built, and requires long simulation times to gather microarchitectural ac-
tivities. As power model validation depends on the existence of representative
RTL, constructing abstract power models is more difficult for non-traditional
architectures such as application-specific accelerators.

When complete RTL designs are available, they can be used to evaluate
not only energy efficiency, but also cycle time and area using commercial CAD
tools [I4} (5, 15]. Although existing commercial CAD tools provide extremely
accurate performance and power estimates from detailed gate-level simulation,
the simulation runtime of complex designs is painfully slow, preventing large
architecture studies of many hardware configurations.

This paper describes a sample-based RTL energy-modeling methodology,



which enables fast and accurate energy evaluation of long-running applications.
First, a design’s performance is evaluated using full-system RTL simulation,
during which a set of replayable RTL snapshots is captured randomly over the
course of a program’s execution. Next, the design’s average power is estimated
by replaying the samples on a gate-level power simulator, which also provides
the confidence interval for the average power estimate.

We also present the open-source Strober framework, an example implemen-
tation of sample-based energy simulation. Strober is built upon Chisel [16],
which supports advanced hardware designs using highly parameterized gener-
ators. Strober automatically generates an FPGA-accelerated FAME1 simula-
tor [I7] from any Chisel RTL design, to provide rapid performance modeling.
The FAMEL1 simulator is enhanced with the ability to capture a full replayable
RTL snapshot at any sample point, which can then be replayed on a commer-
cial gate-level simulator to obtain power numbers. We evaluate the Strober
framework using both an in-order processor [1§] and an out-of-order proces-
sor [19].

The main contributions of this paper are as follows:

e General and Fasy-to-Use Framework: Strober automatically generates
FPGA-accelerated FAME1L simulations from any RTL design including
the ability to snapshot simulation state for replay on gate-level simula-
tion, thus minimizing designers’ manual effort. We present results using
RTL designs of in-order and out-of-order processors, but note that the
approach applies to any Chisel RTL including application-specific accel-
erators.

e Accurate Estimation: Performance measurement is truly cycle-accurate,
since it is based on the RTL design modeled using a token-based timing
simulation. For average power, we can achieve less than 5% error with
99.9% confidence against commercial CAD tools. This indicates Strober
can be a framework to provide ground truth for other models.

o [ast Stmulation: We achieve more than two orders of magnitude speedup
over existing microarchitectural simulators and four orders of magnitude
speedup over commercial Verilog simulators. This implies Strober can
support large design-space exploration using long-running applications
on complex hardware designs.



1.1 Previous Publication, Collaboration, and
Funding

Most of the content and figures in this thesis are adapted from a previous
publication, “Strober: Fast and Accurate Sample-Based Energy Simulation for
Arbitrary RTL” [20]. The previous publication and this thesis is the results of
a collaborative group project. Although the Strober framework is mainly im-
plemented by myself, other people have made direct contribution to the ideas
included in this thesis. Adam Izraelevitz contributed to the ideas presented
in Chapter |3| including reservoir sampling for random sampling on unknown
length of simulations. Christopher Celio is the lead architect of BOOM, which
was crucial to show the ideas of this thesis. He also contributed to the evalu-
ation methodologies presented in Chapter [5] and Chapter [l Hokeun Kim, my
project parter of CS252, contributed to implementing DRAM activity counters
for DRAM power estimates. Brian Zimmer suggests Synopsys Formality®) to
resolve name mangling from commercial CAD tools. Yunsup Lee, a leader in
group meetings, shed light on how to handle register retiming in the Strober
framework. Last but not least, Krste Asanovi¢ and Jonathan Bachrach, my
research co-advisors, were integral in all aspects of the project.
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0016; the Center for Future Architecture Re- search, a member of STARnet,
a Semiconductor Research Corporation program sponsored by MARCO and
DARPA; and ASPIRE Lab industrial sponsors and affiliates Intel, Google,
HPE, Huawei, LGE, Nokia, NVIDIA, Oracle, and Samsung. I am supported
in part by the Kwanjeong Educational Foundation.



Chapter 2
Related Work

Analytical power modeling [6], [7, [, Ol [10] combined with microarchitectural
software simulators [I1], 12 3] is widely-used for computer architecture re-
search. This method enables early architecture-level design-space exploration,
helping designers gain high-level intuitions before RTL implementation. How-
ever, microarchitectural software simulators execute far more slowly than real
systems, requiring application runs to be subset. Moreover, the power models
should be strictly validated against real systems or detailed gate-level simula-
tions, which is difficult when exploring new non-traditional designs. We sug-
gest sample-based energy simulation as a way of obtaining accurate ground
truth to train abstract power models rapidly.

Power modeling based on performance-monitoring counters is also popular
for power estimation [21] 22l 23 24 25 26]. This method provides a quick
power estimate by profiling full execution of applications. However, its appli-
cation is limited to existing physical systems since standard power simulators
are extremely slow. We believe the Strober framework enables the system de-
signer to correlate power models and performance metrics of novel hardware
designs by accelerating both performance and power simulations.

There are also significant efforts to validate power models [27], 28, 29| 30].
Shafi et al. [27] validate an event-driven power model against the IBM Pow-
erPC 405GP processor. Mesa-Martinez et al. [28] validate power and thermal
models by measuring the temperature of real machines. The authors measure
temperature using an infrared camera and translate temperature to power
using a genetic algorithm. Xi et al. [29] validate McPAT against the IBM
POWERT processor and illustrate how inaccuracies can arise without careful
tuning and validation. However, these methodologies can only be applied us-
ing existing machines or proprietary data. Jacobson et al. [30] suggest a power
model from systematically selected signals and validate it against RTL simu-
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lation. However, the approach relies on designer annotations and microbench-
marks exploiting familiarity with a particular family of processor architectures.
In contrast, Strober can be used for validation of novel hardware designs and
long-running real world applications.

There are a number of significant attempts to accelerate power estimation
using an FPGA [31], 32, 33, 34, B5]. Sunwoo et al. [31] generate power mod-
els from manually specified signals, which requires designers’ intuition. This
technique also requires additional manual efforts to instrument existing FPGA
simulators with power models. Bhattacharjee, Contreras, & Martonosi [32]
also manually implement event counters in FPGA emulators to speed up
event-driven power estimation. Coburn, Ravi, & Raghunathan [33] imple-
ment detailed power models directly on the FPGA, which suffers from large
FPGA resource overhead. Ghodrat et al. [34] extend Coburn et al. by em-
ploying a software/FPGA co-emulation approach to reduce FPGA resource
overhead, but introduces communication overhead between the software and
FPGA, which can bottleneck emulation performance without careful parti-
tioning. Atienza et al. [35] implement a special module to monitor selected
signal activities on FPGA.

Our Strober framework differs in that the hardware design is automatically
instrumented to generate samples instead of manually implementing power
models on an FPGA, while still minimizing FPGA resource overhead.

Sampling procedures have been applied to speed up existing processor
simulation frameworks; many such procedures, based on the foundational
work of SMARTS [36], alternate at fixed intervals between detailed simula-
tion (including a non-recorded warming stage) and fast functional simula-
tion [I3], 37, 38, B9]. This simulation methodology makes the following as-
sumptions: (1) length of execution is known, (2) no aliasing along the fixed in-
terval, (3) state warming terminates with an accurate state. While acceptable
for simulating known architectures and known benchmarks, these assumptions
are invalid when estimating power for arbitrary RTL running arbitrary code.
Our proposed sample-based methodology avoids making these assumptions by
employing reservoir sampling and cycle-accurate performance simulators.

There have been significant efforts to develop FPGA performance simula-
tors [40, 4T 17, 42, 43, [44]. Protoflex [40] implements a multi-core functional
simulator on the FPGA. FAST [41] is a hybrid approach simulating a func-
tion model in software and a timing model on the FPGA. Tan et al. [17]
describe different FAME levels. FAMEO simulators directly emulate the RTL
design on the FPGA. FAME] simulators are decoupled from the host mem-
ory simulation to match the target DRAM timing models. FAMET7 simulators
implement abstract models and simulation multi-threading on top of FAMEL.

11



RAMP Gold [1I7] and HASim [43] are examples of FAMET7 simulators. The
simulators above are orders of magnitude faster than software simulators, but
they require significant simulator development efforts. In contrast, our ap-
proach automatically generates FAME1 simulators directly from RTL designs
to accurately model the target design’s timing behavior.

12



Chapter 3

Sample-based Energy
Simulation

In this chapter, we present our sample-based energy simulation methodology
using RTL designs for fast and accurate energy estimation. First, we present
a brief theoretical background of statistical sampling in Section with pa-
rameters in Table 3.1} Next, we describe how statistical sampling is applied
to RTL energy simulation in Section [3.2]

3.1 Statistical Sampling

A population P of size N is the set of all elements (e;, ez, ... ex) which
could be selected in an experiment. Each element e; has a corresponding
measurable quantity, X;. A population’s parameters such as its mean, X, and
its variance, 02, can be exactly calculated if all elements within the population
are measured.

X = —Z%\} X (3.1)

Unfortunately, evaluating every element in P is usually infeasible due to
any number of resource constraints. Instead, a subset of the population, a
sample, is selected according to a sampling strategy, and is used to estimate
some parameters of the original population.

While there are many sampling strategies, the most statistically robust
strategy is random sampling without replacement, where every e; in P has an

13



Population Sample

size N size
mean X mean
variance o> variance

sampling mean
sampling variance (7)
confidence level (1 — «)

confidence interval T £ z1_(aj2)\/Var(Z)

Table 3.1: Statistical Parameters

R
S

equal probability of being selected in a sample. For simplicity and clarity, the
following assumes this specific sampling strategy.

To estimate population parameters, every element in a sample of size n is
measured (;), and the sample mean z and sample variance s2 are calculated.
These sample values are used to estimate the corresponding true population
values.

X~7= ZT“” (3.3)
> i (@ — )
st = SR (3.4)
N —1)s?
o’ ~ % (3.5)

Population parameter estimates depend entirely on which sample, out of
all possible samples, was selected in the experiment. To address this, sta-
tistical procedures have been developed to judge the quality of an estimated
parameter.

Suppose the mean for each possible sample of size n of our population
(totaling n'(NLLn)' possible samples) was calculated and plotted as a histogram
(Figure [3.1). The distribution of these sample means (sampling distribution)
has a variance Var(z) (sampling variance) and a mean (sampling mean) that
is equivalen to X.

Like o2, directly computing Var(Z) is too expensive but can be accurately
estimated P

! Assuming no measurement error, which is a valid assumption given our simulation
technique.
2This estimation again assumes no measurement error, as well as a sample size greater

than 30.
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confidence level
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X —z21_(aj2) VVar(%) X X +21_(a/2)V/ Var(%)

Figure 3.1: Theoretical Sampling Distribution

L S(N-n)
Var(z) ~ N

Once an estimator and its estimated accuracy have been computed, we can
use normal theory to obtain approximate confidence intervals under a given
confidence level (1 — «) for the unknown parameter being estimated. The
constant 2zi_(a/2) is the 100[1 — (a/2)]th percentile of the standard normal
distribution.

(3.6)

T x 21— (a/2) V(M‘(i’) (37)

A confidence interval interpretation is if n elements are sampled from a
population repeatedly, with a given sampling strategy, 100[1 — («/2)]% of each
sample’s confidence interval would include the true (but unknown) population
parameter.

A critical assumption of confidence intervals is of normality, or that the sam-
pling distribution is Gaussian in shape. Fortunately, the central limit theorem
of statistics guarantees that for large enough sample sizes (n > 30), sampling
distributions tend to be normal, regardless of the underlying distribution of
the element characteristics in the sample.ﬁ

3This guarantee of normality is only for linear estimators (e.g. a mean estimator).
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In other words, given random sampling, enough samples, and
no measurement error, calculated confidence intervals are always
representative of the accuracy of an estimator.

To determine the minimum sample size, the previous equations can be ana-
lyzed to derive the following approximate relationship, where € represents the
maximum relative difference allowed between the estimated parameter and the
unknown true population parameter.

2 (a/)5
—(a)2)5z

By using this equation, we can validate whether our sample size was large
enough to give adequate accuracy.

3.2 Methodology Overview

Our sample-based RTL energy simulation methodology quickly and accurately
estimates both performance and power of long running applications on arbi-
trary hardware designs. This methodology obtains random sample points from
a fast simulator and replays them on a slow but detailed simulator. Figure|3.2
shows the basic idea behind our methodology.

First, a design’s performance is evaluated by an accelerated full-system
RTL simulation, during which a set of replayable RTL snapshots is obtained.
A replayable RTL snapshot, at cycle ¢, of a given replay length L, consists of
all information necessary to replay from c to c+ L on a very slow but extremely
detailed gate-level simulation. More specifically, a replayable RTL snapshot
contains all RTL state at cycle ¢ and a trace of all I/O signals of length L
starting at cycle c. As an optimization, the 1/O traces of a given replayable
RTL snapshot are read out from the simulation only when the next replayable
RTL snapshot is picked.

We can obtain the best statistical properties when the replayable RTL snap-
shots are randomly captured over the course of the program’s execution (Sec-
tion . Since knowing the length of a full program execution is impossible
a priori, we employ reservoir sampling [45] to address this problem. With this
algorithm and a desired sample size n, the first n replayable RTL snapshots
are recorded with the sample size. The kth element where £ > n is recorded
with the probability of n/k, and then randomly replacing one of the existing
replayable RTL snapshots. Note that the probability of selection decreases
with longer execution, thus diminishing the sampling overhead. At the end of
the program execution, we have n replayable RTL snapshots that were selected

17



at random, without replacement. As seen in [5.2] the simulation time of very
long-running applications with sampling is very close to the simulation time
without sampling.

In order to replay each replayable RTL snapshot, the RTL state is loaded
into the detailed simulator. For each cycle in the replay, the inputs from the
I/O trace are fed to the input of the target design, and outputs are verified
against the output values of the design. Note that unlike the previous simula-
tion sampling techniques [36], (13, 37], there is no state warming problem due
to the exactness of the replayable RTL snapshot. In addition, all replayable
RTL snapshots are independent, so we can parallelize their replays on multiple
instances of the detailed simulator.

To estimate power, the detailed simulator is a gate-level simulation of the
given RTL design. The simulation computes the signal activities of the gate-
level design, accounting for detailed timing from floorplanning, placement and
routing. An industrial power analysis tool computes the power of each re-
playable RTL snapshot from the detailed signal activities. By aggregating the
power of all replayable RTL snapshots, we can predict the average power and
corresponding confidence interval of a full execution of benchmarks. In gen-
eral, the derived confidence intervals are very small with a small number of
replayable RTL snapshots and 99.9% confidence, regardless of the length of
simulation.

18



Chapter 4

The Strober Framework

In this chapter, we describe the Strober framework, our implementation of the
sampling-based energy-modeling methodology for Chisel RTL designs. In Sec-
tion [4.1} we briefly introduce Chisel. Next, in Section we explain how any
hardware design written in Chisel is automatically transformed into a FAME1
simulator with simulation snapshot capture capability. In Section we
explain how RTL snapshots are replayed on gate-level simulation using com-
mercial CAD tools that are industry-standard and widely available to aca-
demics through academic licensing programs. We also explain how to estimate
DRAM’s power consumption using activity counters in Section [£.5 Lastly, a
simple analytic performance model for the Strober framework is introduced in

Section (4.6l

4.1 Chisel

Chisel [16] is a hardware construction language embedded in Scala [46] that
helps hardware designers generate RTL with various parameters by provid-
ing access to advanced parameterization systems. Note that Chisel is not a
high-level synthesis tool; like Perl or Python scripts that modify or generate
Verilog [47], a designer uses Chisel’s host language Scala to create and connect
structural RTL components. Chisel can also generate fast C emulators and
high-level simulation interfaces for a design.

Most importantly, Chisel’s backend provides an intermediate representation
that can be manipulated by custom transforms. Our toolchain includes cus-
tom transforms and platform-specific hardware generators that automatically
convert Chisel designs to FPGA simulators, as explained in Section [4.2]

19



Chisel RTL
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5 Channel Wrapping !
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LB e !

LStrober FPGA Simulator

Figure 4.1: Flow to Generate FPGA Simulators

4.2 FPGA RTL Simulation

Manually writing accurate and fast FPGA simulators is very difficult and
tedious. Instead, Strober automatically transforms the RTL design into a
FAME1 simulator that can be mapped onto an FPGA. Figure shows the
tool flow to automatically generate FPGA RTL simulators. The following
subsections describe the strategies and techniques required to enable this au-
tomatic transformation.

4.3 Simulation Mapping

Strober creates a FAMEL simulator [I7] from a given hardware design, similar
to token-based timing simulators manually implemented in previous work [48],
49, (0, 51, 52]. Note that these simulators are instances of synchronous
dataflow [53].

Figure depicts an automatic FAME1 transformation on an arbitrary
RTL design to generate a token-based simulator of that design. Communi-
cation channels wrap a simulation module to buffer timing tokens from other

20
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simulation modules. A globally enabled mux is also added before each regis-
ter allowing it to capture its own output, thus enabling the entire simulation
module to stall when the global enable is not set. A running simulation mod-
ule will stall if the input buffer is empty or the output buffer is full. When
all input timing tokens are ready for a given cycle and output buffer space is
available for all output timing tokens, a simulation module fires, consuming
input tokens, simulating one cycle, and generating output tokens.

This FAME1 transformation allows simulation modules to run decoupled,
which is an important optimization when not all components can be hosted on
a single FPGA. In our case studies discussed in Section 7?7, the main memory
and I/O devices are mapped to the host platform memory and the software
components respectively, while the RTL designs are mapped to the FPGA
fabric.

The Strober framework flow, described in Figure [4.1], contains this FAME1
transformation implemented in compiler passes as well as libraries written in
Chisel. Channel wrapping, implemented as a Chisel library, systematically
generates communication channels for all I/O ports in a simulation module,
connecting them properly. This process also adds I/O trace buffers for each
channel for T/O recording, which is required for replayable RTL snapshots
(Section £.3.1). To complete FAMEL transforms, a global enable signal is
connected by traversing all state elements in the Chisel backend.

4.3.1 State Snapshotting using Scan Chains

The sample-based energy simulation methodology described in Chapter [3] re-
quires that replayable RTL snapshots are captured during the FPGA simula-
tion. These replayable snapshots include all register and SRAM values, which
can be a large amount of data in complex designs. This constraint requires
1) an efficient implementation to read a large amount of data from an FPGA,
and 2) a systematic and automatic approach to transform an arbitrary design.
Strober adds scan chains in the Chisel backend (Figure to meet these
requirements.

Figure [4.2] shows a basic scan chain to read the values from registers. Im-
mediately after the simulation stalls to create the replayable RTL snapshot,
the scan chain registers capture the RTL state in the scan chain. All register
state can then be read via the scan chain.

Due to RAMs’ large capacity, basic scan chains cannot be used. Moreover,
we cannot change the number of RAMs’ ports since they need to be mapped
to Block RAMs on an FPGA. To address this issue, Strober adds special scan
chains for RAMs (Figure [£.2). When the simulation stalls, the scan chain
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generates the address to be read, and copies the data from the read port.
After all the data in the scan chain is read out, the scan chain generates
the next address, and copies the data again. This process repeats until all
necessary data is read out.

4.3.2 Platform Mapping

To enable a design to be mapped to many different FPGA products, the
Strober framework has a platform-mapping transformation that automatically
generates the correct interface for a specific FPGA platforms. This transfor-
mation (Figure generates a wrapper to convert platform-specific data to
simulation timing tokens, as well as assigns addresses for the communication
channels and scan chain outputs. Simulation meta data for the simulation
software driver is also dumped in the custom transformation. We currently
support Xilinx Zynq boards for the host platform but plan to support more
platforms in the future.

4.4 Replaying on Gate-level Simulation

The FPGA RTL simulators generated by the Strober framework provide cycle-
exact performance estimates, but the replayable RTL snapshots must be sim-
ulated on a gate-level simulator to compute average power. Figure [4.3| shows
the tool flow to replay samples on gate-level simulation. The Chisel Verilog
backend generates Verilog RTL from Chisel RTL for the ASIC tool flow. Next,
a synthesis too]E] and place-and-route too]E] produce the gate-level netlist and
the post-layout design, respectively. Gate-level simulation E], with very detailed
timing, simulates the post-layout design to compute signal activities.

Replayable RTL snapshots are obtained from the Strober-generated FPGA
RTL simulator, as explained in Section The RTL state is loaded into the
gate-level simulation, and the input traces are fed to the inputs of the design.
Moreover, the output values of the design are compared with the output traces,
which ensures samples are replayed correctly. Samples are independent of one
another, so we can replay them on multiple instances of gate-level simulation
in parallel.

The generated signal activities are consumed by the power analysis too]ﬁ

'For synthesis, we used Design Compiler ® J-2014.09-SP4.
2For place-and-route, we used IC Compiler ™ J-2014.09-SP4.
3For gate-level simulation, we used VCS ® H-2013.06.

4For power analysis, we used PrimeTime ® PX J-2014.12-SP2.
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to estimate total power consumption for that replayable RTL snapshot. By
calculating the mean of each power result, we can obtain the average power of
all replayable RTL snapshots. As explained in Section [3.1], this average is an
accurate estimation of the total application’s power consumption on the given
RTL design.

However, there are three key challenges to replay samples on gate-level
simulation, addressed in the following subsections.

4.4.1 Signal Name Mangling in the Gate-level Netlist

One difficulty in initializing the RTL state is that register signal names are
mangled by the optimizations performed by CAD tools. Because we cannot
use the RTL signal names to load the state snapshots on gate-level simulation,




we use a commercial formal verification tool’] to match nodes between RTL
designs and gate-level netlists (Figure .

The synthesis tool generates information about optimizations applied to
a designs to help formal verification. By using this information, the formal
verification tool first finds the matching points between RTL and the gate-level
design (including registers) and then verifies the equality of the two designs.
The matching results of this tool enable us to construct a name mapping table
and translate FPGA RTL names into gate-level netlist names.

4.4.2 State Snapshot Loading on Gate-level Simulation

To load the register values into the gate-level simulation, we originally trans-
lated the values into scripts that were read by our commercial Verilog sim-
ulator. Unfortunately, this simulator could only execute 400 commands per
second, which for a design of 35k flip-flops with 30 replayable RTL snapshots
takes 40 minutes to load. While this is unacceptably slow for Strober’s frame-
work, writing a customized testbench for each design configuration is very
cumbersome and error-prone.

We address this issue by writing a custom state snapshot loader that uses
the Verilog Programming Language Interface [54]. The commercial Verilog
simulators are compiled with this loader, which handles the snapshot loading
commands efficiently. With this implementation, gate-level simulation can
handle 20000 commands per second, reducing runtime to only 54 seconds for
30 samples with the example in-order processor.

4.4.3 Register Retiming

Another big challenge in loading state snapshots is handling register retim-
ing. Register retiming is a technique to move datapath registers, reducing the
critical path, area, or both [55]. For example, RTL designers often depend on
this technique for writing floating-point units (FPUs), relying on CAD tools
to automatically balance the stages in a datapath pipeline. Unfortunately, we
cannot easily reconstruct the values of retimed registers from the RTL state
snapshot.

Instead, we can capture the I1/O values of the retimed datapath. First,
note the retimed datapaths are annotated by the designers with the desired

For formal verification, we used Formality ® J-2014.09-SP4. Again, all commercial
CAD tools used are industry-standard and widely available to academics through academic
licensing programs.
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latency. For the n-cycle-latency datapath, a custom transform adds shift regis-
ters which capture the I/O values for the last n cycles (and the corresponding
scan chains). The I/O signals of the retimed datapaths are forced externally
in the simulation for n cycles before loading the snapshots to recover their
internal state. By starting replays at this point, we can simulate each sample
snapshot with fully-recovered state.

4.5 DRAM Power Estimation

DRAM power consumption is affected by the DRAM’s internal operations
(which can be triggered by memory access requests) and its internal state.
For example, DRAM’s internal read and write operations trigger data transfer
through DRAM’s I/O bus, causing dynamic power consumption. However,
knowing the physical address mapping, the DRAM controller’s policies, and
all memory access requests is enough to predict any given DRAM’s internal
operations, and thus predict its power consumption. As in the experimental
settings specified in Kim et al. [56], we use Micron’s LPDDR2 SDRAM S4 [57]
with eight banks, and 16K (16 x 1024) rows for each bank. We assume a bank-
interleaved memory mapping where adjacent memory addresses are distributed
across different banks. Finally, we assume an open-page policy, where DRAM
banks are kept active after a row access.

To capture the DRAM memory requests, we attach counters to the mem-
ory request output ports. Using the known memory mapping, the physical
address of each memory request is translated into the bank number and the
row number. The previously accessed row and bank numbers are stored with
the counter data to enable determining whether the row activation operation
will occur. From the counter values, we know the number of read /write opera-
tions and the number of row activation operations. With this information and
DRAM configurations, the DRAM power can be calculated using a spreadsheet
power calculator provided by Micron [58].

4.6 Simulation Performance Model

To demonstrate the opportunity for significant speedup over the existing CAD
tools, we present a simple analytic performance model of the Strober frame-
work in this section. To estimate the overall time, we should consider (1)
the synthesis time for the FPGA simulator, (2) the FPGA simulation time,
(3) the ASIC tool chain time (logic synthesis, placement, routing, and formal
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verification), and (4) the replay time for sample snapshots. Note that (3) is
independent from (1) and (2), so the overall time is expressed as follows:

Toverall = max(TFPGAsyn + TFPGAsim> TASIC) + Treplay

The ASIC tool chain time, T4s7c, tends to be long for complex designs.
However, we run very long-running application on the FPGA simulator, thus
resulting in Tasrc < Trpcasyn + Trpcasim- In this paper, the synthesis time
for the FPGA simulator, Trpga_syn, can be up to one hour with a two-way
out-of-order processor while Tsg7¢c is around three or four hours. Also note
that Trpcasyn < Trpaasim for real-world long-running applications.

To estimate Tppgasim, assume the FPGA simulation runs at Ky Hz. Let
N and L be the total simulation cycles and the replay length respectively.
Reservoir sampling [45] ensures that the number of elements recorded during
the simulation is roughly 2nin((N/L)/n)) with the sample size n. The FPGA
simulation time, Trpgasim, 1S therefore:

TFPGAsim = Trun + Tsample ~ N/Kf + Trec X QHZTL(N/TLL)

where Thun, Tsampie, Trec are the simulation running time, the total sampling
time, and the time to read out a single replayable RTL snapshot, respectively.

Treplay is decomposed into (1) the snapshot loading time, (2) the snapshot
replay time, and (3) the power analysis tool time. The snapshot loading time is
considered because it can be very slow without a proper implementation (Sec-
tion . For the snapshot replay time, suppose the gate-level simulation
runs at K, Hz. In addition, only L cycles are replayed for each sample snap-
shot. We provide the switching activity interface format (SAIF) files to the
power analysis tool for the average power of each sample snapshot, and thus,
the power analysis time is independent of the length of each sample snapshot.
Lastly, as explained in Chapter [3| each replays in the sample are indepen-
dent and can be parallelized. Therefore, assuming P instances of gate-level
simulation, the total replay time is:

T n X (ﬂoad + (L/Kg) + Tpower)
replay — P

where Tj,qq is the time to load each RTL state into the gate-level simulation,
and Tpoyper is the time to run the power analysis tool for a single sample snap-
shot.

For the example two-way out-of-order processor used in this paper, the
FPGA synthesis time with Strober was around one hourf’] the FPGA sim-
ulation runs at 3.6 MHz, and the gate-level simulation runs at 12 Hz. In

6For FPGA synthesis, we used Vivado ® 2014.4.
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addition, the recording time per replayable RTL snapshot is 1.3 seconds, the
sample loading time on gate-level simulation is 3 seconds, and the time for
power analysisﬂ is around two and a half minutes. Suppose we simulate a
benchmark whose execution length is 100 billion cycles on the two-way out-
of-order, has a sample of 100 replayable RTL snapshots (with replay length of
1000 cycles), on 10 instances of gate-level simulation. Plugging these numbers
to the equations, we can calculate the overall simulation time:

TFPGAsyn = 3600 s

10t eycles
Trun = =2
56X 1000z 218
11
Tsample =1.3x100 x 2 x ln(m>) = 3592 s
100 10%cycles/12H 150
Tyeptay = 00 {107y 163/ 2H150) g

Thus, Toveratt = Trun +Tsampie +Treplay = 33703 seconds or 9.4 hours. Note that
it will take 10" cycles/300K Hz = 3.86 days even on fast microarchitectural
software simulators and

10" cycles/12H z = 264 years on gate-level simulation!

"For power analysis, we again used PrimeTime ® PX J-2014.12-SP2.
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Chapter 5

Evaluation

In this chapter, the Strober framework is evaluated and validated. The tar-
get hardware designs, Rocket-chip[I8] and BOOM[I9], used in the evaluation
are introduced in Section Although traditional in-order and out-of-order
processors are used in the evaluation, note that the Strober framework is not
limited to these designs and thus can be used for any novel hardware designs.
Next, the simulation performance of the Strober framework is measured and
how we can further improve its performance is explained in Section [5.2] In
Section [5.3, the DRAM timing model in the Strober framework is validated.
Finally, the power estimation of the Strober framework is validated with the

RISC-V benchmarks in Section [5.4l

5.1 Target Designs

To demonstrate Strober’s ability to augment arbitrary Chisel RTL, we eval-
uated two different synthesizable open-source cores, both which leverage the
open-source Rocket-Chip SoC generator [I8]. The first core is Rocket, a 5-
stage single-issue in-order core. The second core is BOOM, a parameterized,
superscalar out-of-order core [19]. Both cores implement the full 64-bit scalar
RISC-V ISA, which includes support for atomics, IEEE 754-2008 floating-
point, and page-based virtual memory. Note that the Strober framework is
built upon commercial CAD tools, which report accurate timing and area for
RTL designs. Figure [5.1] shows a sample floorplan of the two-way superscalar
out-of-order processor. For this evaluation, both cores were simulated at 1 GHz
frequency, however silicon implementations of Rocket have been demonstrated

to reach 1.3 GHz [59] and 1.65 GHz [60] in an IBM 45nm SOI technology.

29



DCache
Control

MELENE
Table

Figure 5.1: Floorplan of BOOM-2w

30



\ Rocket \ BOOM-1w \ BOOM-2w ‘

Fetch-width 1 1 2
Issue-width 1 1 2
Issue slots - 12 16
ROB size - 24 32
Ld/St entries - 8/8 8/8
Physical registers | 32(int)/32(fp) 100 110
L1 1$ and D$ 16KiB/16KiB
DRAM latency 100 cycles
Technology TSMC 45nm

Table 5.1: Processor Parameters

5.2 Simulation Performance

LinuxBoot | Coremark | gcc

Simulation Cycles (10°) 0.5 3.92 73.39
Record Counts 980 1116 1497
Simulation Time
with Sampling (mm) 12.88 32.80 344.00
Stmulation Time 3.68 11.00 | 312.25

without Sampling (min)

Table 5.2: Simulation Performance Evaluation for Each Benchmark on the
Two-way BOOM Processor

For Rocket Chip target systems running under Strober, target 1/O devices
are mapped to software on the host CPU, not the FPGA, causing a com-
munication overhead that stalls the simulator every 256 cycles. The target
simulator is also stalled while capturing a replayable RTL snapshot.

Table shows the performance evaluation of Strober with the two-way
BOOM processor running long benchmarks showed in [6.1} The record counts,
the number of sample recording during each simulation run, only moderately
increases as explained by reservoir sampling. Therefore, the sampling overhead
is very small for long-running simulations.

For the gcc runs of 70 billion cycles, Strober achieved a simulation speed of
around 3.56 MHz. For comparison, the unmodified Rocket and BOOM cores
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Figure 5.2: DRAM Timing Model Validation. A pointer-chase through in-
creasing sizes of arrays demonstrates the load-to-load latency of different levels
of the memory hierarchy. By varying the simulated DRAM latencies for the
Rocket-chip processor, a change in the off-chip latency can be observed.

both can be synthesized at 50 MHz on the same zc706 FPGA.

Note that the simulation speed in this evaluation is not the fundamental
limitation of the Strober framework. The reason Strober is much slower than
the FPGA emulation is the tethered systems are simulated. In the tethered
systems, the target hardware designs are connected to the frontend server in
software over decoupled I/0O so that the frontend server can handle system calls
and check the end of the program execution. Thus, the frontend sever initiates
the program execution by loading executable binaries, and is polling during
the execution even though there are no special activities in the target design,
thus slowing down the simulation significantly. We can resolve this issue by
reducing the frequency of the polling, and eventually, simulating stand-alone
target systems.

5.3 DRAM Timing Model Validation

One of the significant challenges of simulating RTL designs on FPGAs is prop-
erly modeling the interfaces to the outside environment. In simulating the pro-
cessor designs discussed in Section [5.1] the DRAM behavior must be properly
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Figure 5.3: Comparison for the Theoretical Error Bounds with the Actual
Errors

modeled. Figure demonstrates Strober’s ability to modify the simulated
DRAM latency. Repeated measurements of a pointer-chase benchmark [61]
is used to measure the Ll-cache size and memory access latencies to the L1
cache and off-chip DRAM.

5.4 Power Validation

Benchmark | Simulated Cycles Replayed Cycles Coverage
vvadd 200521 30 x 128 1.92%
towers 410752 30 x 128 0.93%

dhrystone 396790 30 x 128 0.97%
gsort 187160 30 x 128 2.05%
Spmu 927144 30 x 128 0.41%

dgemm 1833075 30 x 128 0.21%

Table 5.3: Simulated and Replayed Cycles for Each Benchmark on the Rocket
Processor

To validate our Strober framework and the sample-based RTL energy mod-
eling methodology, we run the microbenchmarks included in the Rocket-Chip
framework to completion on a gate-level-simulation of Rocket. The switching
activity for the entire benchmark is used to calculate the actual average power.
Also, we obtain 30 random sample snapshots of 128 cycles from the FPGA
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simulation, and by replaying these, we calculate the average power as well as
their error bounds with 99% confidence. Then, we compare those error bounds
over the actual errors as in Figure[5.3] We repeated this process five times for
each benchmark.

Note that even though the samples cover only less than 2.1% of the cycles as
shown in Table the errors tend to be very small. Moreover, in most cases,
the actual errors are within the error bounds computed from the samples. This
also shows that the errors are independent of the length of execution. While
the third sampling of towers, and the third of ¢sort are slightly outside their
error bounds, this result is somewhat expected due to the probabilistic nature
of statistical sampling. Nevertheless, their actual errors are still very small,
less than 2%.
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Chapter 6

Case Study

In this chapter, we demonstrate the capability of the Strober framework with
real-world hardware designs and software benchmarks. The benchmarks used
in this case study are introduced in Section[6.I} Next, the performance, power,
and energy estimates of these benchmarks with Rocket and BOOM are pre-
sented in Section [6.21

6.1 Benchmarks

We chose three disparate workloads to demonstrate Strober’s ability to mea-
sure target design performance, power, and energy usage. The first is Core-
Mark, a benchmark designed to stress processor pipelines [62]. The second
workload boots the RISC-V port of Linux on a small BusyBox disk image,
executes the uname and 1s commands, and then powers down. The third
workload executes the SPECint benchmark 403.gcc[63] on Linux. For gcc,
we execute the first 20B instructions (or 20%) of the SPECint reference input
workload “gcc 166.in”.

6.2 Performance, Power, and Energy Analysis

Figure [6.1) compares the energy breakdown of the Rocket, BOOM-1w, and
BOOM-2w cores using 30 random sample snapshots for each benchmark. The
performance differences between the cores is easiest to see when running Core-
Mark, a small benchmark designed to fit in L1 caches and stress processor’s
integer pipelines. BOOM-1w is 9.8% faster than Rocket, and BOOM-2w is
58% faster. However, BOOM-2w uses 3x the power, while Rocket is the most

energy-efficient (Figure [6.2)).
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Figure 6.1: Power Breakdown with Error Bounds using 30 Random Samples
for Each Benchmark
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Figure 6.2: Performance and Energy Efficiency of the Rocket and BOOM
Processors

The other benchmarks use a much larger memory footprint than CoreMark,
as seen in the increased DRAM power usage. On Linux-boot, clock for clock,
Rocket’s shorter branch resolution latency allows it to outperform BOOM,
which has only a simple branch predictor in the version used in this case
study.

Details aside, this case study shows the validity of using Strober as a ba-
sis for design-space exploration in architecture research. With Strober, re-
searchers now have the ability to run real programs on RTL with a full eval-
uation of energy, area, and performance. In addition, each sample snapshot
contains a timestamp, so by using performance counters we can correlate per-
formance and power at a specific point as shown in Figure[6.3l Using this case
study as an example, the turn-around time for evaluating 70 billion cycles on
BOOM-2w is approximately 7 hours for a complete evaluation. We believe
this is fast enough to enable realtime feedback in the RTL design loop.
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Chapter 7

Conclusion and Future Work

In this paper we presented a sample-based RTL energy modeling methodology
that captures replayable RTL snapshots from a fast performance simulation
and replays them on a detailed power simulation. We showed the statistical
robustness of this methodology, including the ability to generate confidence
intervals for any power prediction.

Next, we introduced Strober, a framework for taking existing RTL designs
written in the Chisel hardware construction language, and generating a cycle-
accurate, decoupled simulator that can be executed on an FPGA. The instru-
mented simulator can be used to not only measure the cycle-accurate perfor-
mance of the RTL design, but to generate random RTL snapshots that can be
replayed (in parallel) in a detailed gate-level simulator. We also demonstrated
significant theoretical speedups using an analytical model for simulation per-
formance. While this work demonstrates using Chisel RTL, the presented
methodology is amenable to any hardware construction language that pro-
vides a facility for developing new hardware transformation passes.

We then validated our methodology and framework for simulation perfor-
mance, and power accuracy. Finally, we demonstrated our framework by run-
ning three complex RTL designs through our toolchain to obtain timing, area,
performance, and average power for a variety of benchmarks. These case stud-
ies serve as an example of how Strober can not only provide ground truth for
building faster and more flexible abstract power models, but can in and of
itself be a tool for design-space exploration at the RTL level.

To sum up, Strober is much faster than exiting micro-architectural software
simulators and commercial verilog simulators. Also, its accuracy is very close
to that of commercial CAD tools. Finally, it is an easy-to-use tool as FPGA
simulators are automatically generated from the Chisel designs and the sample
replay flow is easily pluggable to the commercial CAD tool flow. We also
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demonstrated the Strober’s capability for real-world hardware designs and
software applications.

Strober is an on-going project. This framework was originally developed
based on Chisel 2. However, a main problem of Chisel 2 is its frontend APIs
and backend passes are tightly coupled, thus making it difficult to implement
and maintain custom transforms. Now, Chisel 2 evolves into Chisel 3 and FIR-
RTL [64]. The idea is FIRRTL provides the intermediate representation (IR)
for hardware circuits so that hardware designers can easily write their own
custom transforms, and Chisel 3 only emits the IR manipulated by the FIR-
RTL compiler. Strober is being reimplemented using Chisel 3 and FIRRTL,
which makes the Strober framework more maintainable.

As porting Strober to Chisel 3 and FIRRTL, the ideas of FAME simulators
presented in this thesis is generalized as MIDAS, a general FPGA simulation
and debugging framework, along with a more realistic DRAM timing model.
Indeed, Strober will be released as a use case of MIDAS for sample-based
energy simulation [65]. Moreover, Strober will support assertions and printfs
in FPGA simulation along with its snapshotting capability to ease debugging
efforts with long-running applications. Last but not least, MIDAS will be the
base for FireSim, the simulators for the Warehouse-Scale Computers (WSCs).
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