
Maximum Model Counting

Daniel J. Fremont
Markus N. Rabe
Sanjit A. Seshia

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-169
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-169.html

November 30, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Maximum Model Counting

Daniel J. Fremont and Markus N. Rabe and Sanjit A. Seshia
University of California, Berkeley

Email: {dfremont,rabe,sseshia}@berkeley.edu

Abstract

We introduce the problem Max#SAT, an extension of model
counting (#SAT). Given a formula over sets of variables X ,
Y , and Z, the Max#SAT problem is to maximize over the
variables X the number of assignments to Y that can be ex-
tended to a solution with some assignment to Z. We demon-
strate that Max#SAT has applications in many areas, show-
ing how it can be used to solve problems in probabilistic in-
ference (marginal MAP), planning, program synthesis, and
quantitative information flow analysis. We also give an al-
gorithm which by making only polynomially many calls to
an NP oracle can approximate the maximum count to within
any desired multiplicative error. The NP queries needed are
relatively simple, arising from recent practical approximate
model counting and sampling algorithms, which allows our
technique to be effectively implemented with a SAT solver.
Through several experiments we show that our approach can
be successfully applied to interesting problems.

Introduction
Algorithms for the Boolean satisfiability problem (SAT)
have proved tremendously useful in a variety of applica-
tion areas, including planning, security, and verification.
SAT asks for some solution (a satisfying assignment) of a
Boolean formula, without regard to precisely which solution
we get. The maximum satisfiability problem (MaxSAT) asks
for an assignment that satisfies the highest number of clauses
and thereby enables a search for “good” assignments. A
broad range of discrete optimization problems have thus
been encoded in MaxSAT, and a number of mature algo-
rithms are available capable of solving large instances (Sa-
farpour et al. 2007; Marques-Silva and Planes 2011; Davies
and Bacchus 2013).

A different, quantitative extension of SAT is the Boolean
model counting problem (#SAT), which asks for the num-
ber of solutions #X.ψ(X) of a given formula ψ. #SAT
allows us to encode summations over exponentially many
terms succinctly, which enables several applications in-
cluding probabilistic inference (Sang, Beame, and Kautz
2005) and quantitative information flow analysis (Backes,
Köpf, and Rybalchenko 2009; Newsome, McCamant, and

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Song 2009; Klebanov, Manthey, and Muise 2013). Solv-
ing #SAT is considered to be a very hard problem (Toda
1991) but effective approximation algorithms have been
found recently (Chakraborty, Meel, and Vardi 2013; 2016;
Ermon et al. 2013).

In this paper we define the maximum model counting
(Max#SAT) problem, which generalizes both MaxSAT and
#SAT and thereby combines the ability to optimize with the
power of succinct encodings of large summations.

Definition 1. Given a propositional formula ϕ(X,Y, Z)
over sets of variables X , Y , and Z, the Max#SAT problem
is to determine maxX #Y. ∃Z.ϕ(X,Y, Z).
Informally, the Max#SAT problem is to maximize over the
variables X the number of assignments to Y such that the
formula ϕ(X,Y, Z) is satisfiable.

The main technical contribution of this paper is a ran-
domized approximation algorithm for Max#SAT that es-
timates the maximum count up to a desired multiplica-
tive error and confidence. The algorithm avoids consid-
ering each of the exponentially many assignments over
which we maximize and instead encodes the problem in
polynomially many queries to an NP oracle. Specifically,
given ϕ(X,Y, Z) the algorithm considers a new formula
ψ(X,Y1, . . . , Yk) = ∃Z1, . . . , Zk.

∧
i ϕ(X,Yi, Zi), where

each Yi and Zi is a fresh copy of Y and Z. If ψ has N so-
lutions, then we prove that for a large enough k ∈ O(|X|),
k
√
N approximates the solution to the Max#SAT problem.

Furthermore, uniformly sampling from the solutions of ψ
yields a witnessing assignment to X that achieves close
to the maximum model count with high probability. The
counting and sampling operations need only be approxi-
mate, so that we can take advantage of efficient SAT solver-
based algorithms (Chakraborty, Meel, and Vardi 2014; 2016;
Chakraborty et al. 2015).

In the second part of the paper we present encodings of
a variety of problems into Max#SAT and demonstrate the
applicability of our approximation algorithm. First we show
that Max#SAT generalizes MaxSAT by giving a reduction.
This also provides a new approach to the rich set of appli-
cations of MaxSAT, complementing existing algorithms that
rely on either cardinality constraints (Fu and Malik 2006)
or on the joint use of SAT and mixed integer programming
(MIP) solvers (Davies and Bacchus 2013).

In quantitative information flow analysis (QIF) the goal
is to estimate the amount of information a program leaks,
typically measured in terms of channel capacity. Without
an adversary the problem comes down to counting the num-
ber of possible outputs of the program, for which various
model counting approaches have been considered (Backes,
Köpf, and Rybalchenko 2009; Newsome, McCamant, and
Song 2009; Klebanov, Manthey, and Muise 2013). We
demonstrate that Max#SAT enables effective QIF analysis
of programs with adversary-controlled inputs, finding near-
optimal choices for the adversary that maximize the leakage.

Next we show that probabilistic inference problems,
such as marginal maximum a posteriori inference (MAP),
have a natural encoding in Max#SAT. This provides the
first algorithm to approximate MAP and the functional
E-MAJSAT problem (Pipatsrisawat and Darwiche 2009),
which is closely related to Max#SAT, with polynomially
many calls to an NP oracle.

Finally, in program synthesis we seek to find a program,
or parts thereof, satisfying a given specification and syntac-
tic restrictions such as a template (Alur et al. 2013). The
specification may be a logical formula or a list of examples;
either way, it can easily happen that the specification con-
tains contradictory requirements or that a precondition has
been omitted. In such cases it can be useful to find a best-
effort program that is correct on as many inputs as possible.
This is naturally formulated as a Max#SAT problem.

In summary, the contributions of this work are as follows:
• we define the Max#SAT problem,
• we give an approximation algorithm for Max#SAT that is

polynomial-time relative to an NP oracle,
• we show that this algorithm provides a novel approach to

MaxSAT, and
• we apply the algorithm to problems in quantitative in-

formation flow analysis, probabilistic inference, and pro-
gram synthesis.

Overview
In this section we illustrate the Max#SAT problem and our
approximation algorithm with an example from quantitative
information flow (QIF). Consider Program 1, which mod-
els a password-checking program. It has a public input that
is controlled by an adversarial user, and a secret input rep-
resenting the true password. Normally the program returns
either 1 or 0 to indicate whether the user is allowed to log in.
However, it also has a backdoor: if the user enters a certain
magic value, the program will return the secret password.

Program 1 CHECKPASSWORD(public, secret)
if public = 0x42CB88FF then

return secret
else

return public = secret
end if

Even without the backdoor, it is clear that a password-
checking program must leak some information about the se-
cret. If an adversary guesses a password at random, they will

almost certainly guess wrong, but in so doing eliminate one
possible value for the true password. This leak is unavoid-
able, but it is not a security problem, since it is negligible
compared to the size of the space of passwords. On the other
hand, the backdoor in Program 1 allows the program to leak
a large amount of information.

In QIF leaks are measured with information-theoretic
metrics. One of the simplest and most popular is channel
capacity. For deterministic programs with public and secret
inputs as above, the channel capacity C is the logarithm of
the number of possible output values, maximized over the
public inputs. More formally, if ϕ(P,O, S) holds if and only
if the program returns O on inputs P and S, then

C = log2

(
max
P

#O.∃S. ϕ(P,O, S)
)
. (1)

For example, if the inputs to Program 1 are 32-bit words,
then its channel capacity is 32 bits, as when public has the
magic backdoor value the program has 232 possible outputs.

There are standard techniques that can construct a propo-
sitional formula ϕ as needed above for any loop-free pro-
gram. For Program 1, we could define ϕ(P,O, S) to be

(P = 0x42CB88FF→O = S)

∧ (P 6= 0x42CB88FF→ (P = S → O = 1)

∧ (P 6= S → O = 0)) .

Then computing the inner quantity in (1) is exactly an in-
stance of Max#SAT.

How might we solve such a problem? A first observa-
tion is that for a particular choice of public input p, find-
ing #O.∃S. ϕ(p,O, S) is an instance of (projected) model
counting, for which there are efficient approximation algo-
rithms using SAT solvers (Chakraborty, Meel, and Vardi
2013; 2016). So one simple approach would be to choose
public inputs at random, computing the output count for
each and taking the maximum: if a significant fraction of
the inputs cause large leaks, this could find them quickly.
However, this method clearly breaks down if large leaks are
caused by relatively few inputs, and Program 1 is an extreme
example: there is exactly 1 public input with a leak of 32
bits, and the remaining 232 − 1 inputs leak only 1 bit.

To fix this problem, we need a way to sample public inputs
that puts more weight on those that have large output counts.
Consider the solutions (p, o) to the formula ψ(P,O) =
∃S. ϕ(P,O, S). In our example there are 232 solutions with
p being the backdoor value, while there are only two so-
lutions for every other value of p. Taking a random sample
from this formula, for which there are again efficient approx-
imation algorithms (Chakraborty, Meel, and Vardi 2014;
Chakraborty et al. 2015), likely gives us a solution with the
backdoor value for p. To be precise ψ has 232+(232−1)·2 =
3 · 232 − 2 solutions, of which 232 have the backdoor value
for p. So if we sample from them uniformly, we will obtain
the backdoor value with probability 232/(3 ·232−2) ≥ 1/3.
Unlike our first attempt where we picked values of p un-
intelligently, we will now discover the maximum leak after
taking just a few samples.

Notice that we are taking advantage of the fact that there
is a large gap between the maximum leak and the “typical”

leak. If the maximum leak were smaller, say only 16 bits,
then the probability of sampling the single public input p
leading to it would be 216/(216+(232−1) ·2) < 2−16. Here
even though p has many more solutions leading to it than
any other input, they are not enough to make up a significant
fraction of the whole solution space. We can further bias the
sampling towards p by giving it more solutions, and a natural
way to do this is by duplicating the formula:

ψ(p, o1, o2) = ∃s1. ϕ(p, o1, s1) ∧ ∃s2. ϕ(p, o2, s2).
Now the solutions leading to p are those of the form
(p, o1, o2) for any possible outputs o1 and o2 on public in-
put p. The number of solutions is squared, which amplifies
the gap between the leaks: a 16-bit leak will now have 232

corresponding solutions, while a 1-bit leak will only have
22. So the probability of finding the 16-bit leak will be
232/(232 + (232 − 1) · 22) ≥ 1/5, which is once again large
enough for sampling to succeed. In general, making k copies
of the formula will raise the number of solutions correspond-
ing to a leak to the k-th power. As k increases, the solution
space is dominated more and more by solutions correspond-
ing to public inputs with large counts, and the probability of
finding such an input increases accordingly. We will show
that finding an input whose count is within any desired mul-
tiplicative factor of the maximum only requires a polynomi-
ally large k, leading to an algorithm that is polynomial-time
relative to the underlying sampling and counting primitives.

Maximum Model Counting
We call an assignment x to X a witness for the Max#SAT
instance, and say its count Cx is #Y. ∃Z.ϕ(x, Y, Z). The
solution to the Max#SAT problem is M = maxx Cx, so for
any witness x we have Cx ≤ M . The quality of x is the
ratio Cx/M , which indicates how close x comes to achiev-
ing the maximum possible count in terms of multiplicative
error. A quality-1 witness has the maximum count, a quality-
1/2 witness has count within a factor of 2 of the maximum,
and so forth. Often when solving a Max#SAT problem we
want not only to bound the maximum count but also to find
a high-quality witness.

Approximate Solution Technique
By work of Toda (1991), the decision version of Max#SAT
is in NPPP. The NPPP-complete problem E-MAJSAT
(Littman, Goldsmith, and Mundhenk 1998) can be trivially
reduced to it, so it is also NPPP-complete. However, this
does not determine how difficult Max#SAT is to approxi-
mate. In this section we present an algorithm, MAXCOUNT,
that approximately solves the Max#SAT problem using only
polynomially-many queries to an NP oracle.

The algorithm uses the notion of the k-self-composition
ϕk of a given formula ϕ(X,Y, Z) for some k ∈ N:

ϕk(X,Y , Z) ≡ ϕ(X,Y1, Z1) ∧ · · · ∧ ϕ(X,Yk, Zk) ,

where Y = (Y1, . . . , Yk) and Z = (Z1, . . . , Zk).
We now present the algorithm MAXCOUNT, which given

a Max#SAT problem and two parameters ε and δ computes
a tuple (c, x) consisting of an estimate c of the maximum

model count and a witness x. MAXCOUNT is based on tech-
niques for projected model counting and projected sampling.
The number of solutions of a formula ψ(X,Y) projected
onto X is the number of solutions distinct in X . Accord-
ingly, projected sampling returns an assignment to X uni-
formly at random from those that satisfy ∃Y. ψ(X,Y).

For our purposes it is sufficient to estimate the projected
solution count with any desired multiplicative error. Like-
wise we only need almost-uniform sampling, where each el-
ement is returned with a probability within a multiplicative
factor of the uniform probability. Both can be done with an
NP oracle using the algorithms of Chakraborty, Meel, and
Vardi (2016) and Chakraborty et al. (2015).

The first step of MAXCOUNT is to sample almost-
uniformly from the solutions of ϕk, projected onto X and
Y . Observe that for any assignment x to X , we have

#Y .∃Z.ϕk(x, Y , Z) = [#Y.∃Z.ϕ(x, Y, Z)]k = Ckx . (2)

Therefore the probability of obtaining x from our sample is
proportional to Ckx . This means that increasing k concen-
trates the probability on assignments with large counts, and
for appropriate k our sample x will be such an assignment
with high probability.

The second phase of MAXCOUNT is simply to estimate
Cx, which is a projected model counting problem. The re-
sulting value is our estimate for M .

The procedure is given in more detail as Algorithm 2. The
parameters ε and δ specify the desired tolerance and fail-
ure probability. The function SAMPLE(ψ, V, n, ρ) generates
n independent samples from ψ projected onto the variables
V , with a distribution that is uniform to within a multiplica-
tive error of ρ. The function COUNT(ψ, V, ρ, δ) estimates
the number of models of ψ projected onto the variables V ,
returning a value that is accurate to within a multiplicative
error of ρ with probability at least 1− δ.

Algorithm 2 MAXCOUNT(ϕ(X,Y, Z), ε, δ)

k ← d2|X|/ log2(1 + ε)e
n← d34 ln(2/δ)e
s1, . . . , sn ← SAMPLE(ϕk(X,Y , Z), X ∪ Y , n, 17)
for all i ∈ {1, . . . , n} do

(xi, yi)← si
ci ← COUNT(ϕ(xi, Y, Z), Y,

√
1 + ε, δ/2n)

end for
i← argmaxi ci
return (ci, xi)

Theorem 1. For any ϕ and ε, δ > 0, suppose that
MAXCOUNT(ϕ, ε, δ) returns (c̃, x̃). Then with probability at
least 1−δ,M/(1+ε) ≤ c̃ ≤ (1+ε)M andCx̃ ≥M/(1+ε).

Proof. Let A be the set of all assignments to X . Let B ⊆ A
consist of all assignments such that Cx ≥ M/

√
1 + ε, i.e.

all x which have “close” to the largest possible count.
Each sample si is obtained by almost-uniformly sampling

from solutions of ϕk(X,Y , Z) projected onto X and Y . By
Equation (2), for any x the number of such projected solu-
tions with x as the assignment to X is Ckx . So the fraction

f of projected solutions where the assignment to X is in B
(and thus the xi obtained from that sample is in B) is∑

x∈B C
k
x∑

x∈B C
k
x +

∑
x∈A\B C

k
x

≥
∑
x∈B C

k
x∑

x∈B C
k
x + |A|

(
M√
1+ε

)k .
Now since B contains at least one witness achieving the
maximum count,

∑
x∈B C

k
x ≥Mk and so

f ≥
(
1 +

|A|
(1 + ε)k/2

)−1
≥
(
1 +

|A|
2|X|

)−1
=

1

2
,

where we have used k = d2|X|/ log2(1 + ε)e =⌈
2 log1+ε(2

|X|)
⌉
. Therefore, the probability that at least one

xi is in B is at least
1− (1− (f/17))

n ≥ 1− exp (−nf/17)
≥ 1− exp (−n/34) ≥ 1− δ/2.

Also, with probability at least (1 − δ/2n)n, we have
Cxi/

√
1 + ε ≤ ci ≤ Cxi

√
1 + ε for every xi, i.e. the es-

timates ci are accurate for every sample. So with probability
at least (1− δ/2) · (1− δ/2n)n ≥ 1− δ we have:

• xi ∈ B for some i;
• M/(1 + ε) ≤ Cxi

/
√
1 + ε ≤ ci (since xi ∈ B and ci is

accurate);
• ci ≤ c̃ (since c̃ is chosen as the max);
• c̃ ≤ Cx̃

√
1 + ε ≤ M

√
1 + ε ≤ M(1 + ε) (since c̃ is

accurate).

So with probability at least 1− δ we have M/(1+ ε) ≤ c̃ ≤
M(1 + ε) and Cx̃ ≥M/(1 + ε).

Thus MAXCOUNT allows us to solve Max#SAT problems
to any desired accuracy with high probability, and in fact to
find arbitrarily high-quality witnesses. It can also be imple-
mented efficiently using SAT solvers:
Theorem 2. Relative to an NP oracle, MAXCOUNT runs in
O(|ϕ||X| log2(|X||Y |) log

2
2(1/δ)/ε

2) time.

Proof. We have k ∈ O(|X|/ log2(1 + ε)) ⊆ O(|X|/ε),
so ϕk has size O(|ϕ||X|/ε). Implementing SAMPLE re-
quires n ∈ O(log2(1/δ)) calls to the algorithm of
Chakraborty et al. (2015). Replacing its internal counter
with the improved algorithm of Chakraborty, Meel, and
Vardi (2016), its runtime will be only logarithmic in
the number of projection variables. There are |X| +
k|Y | = O(|X||Y |/ε) of these, and we use a constant
sampling tolerance, so each sampling call takes O(|ϕk| ·
log2(|X||Y |/ε)) = O(|ϕ||X| log2(|X||Y |/ε)/ε) time rel-
ative to an NP oracle. We can implement COUNT with
the algorithm of Chakraborty, Meel, and Vardi (2016). We
project onto |Y | variables, so each of the n calls takes
O(|ϕ| log2 |Y | log2(2n/δ)/ε̃2) time relative to an NP ora-
cle, where 1 + ε̃ =

√
1 + ε and so 1/ε̃ ∈ O(1/ε).

In total, the sampling queries require
O(|ϕ||X| log2(|X||Y |/ε) log2(1/δ)/ε) time and the
counting queries require O(|ϕ| log2 |Y | log

2
2(1/δ)/ε

2)
time. Adding these and simplifying, MAXCOUNT runs in
O(|ϕ||X| log2(|X||Y |) log

2
2(1/δ)/ε

2) time relative to an
NP oracle.

Discussion
We designed MAXCOUNT with two goals in mind: (1) pro-
vide guarantees for both lower and upper bounds and (2)
quickly find witnesses with large counts. If we are primar-
ily interested in finding witnesses to obtain lower bounds,
it makes sense to start with k = 0 (sampling assignments
to X uniformly at random with no constraints), incremen-
tally increasing k until we get a large enough lower bound
for our purposes. If we reach k ∼ |X|/ log2(1 + ε), then
our bounds are likely tight. This method has two advantages.
First, runtime generally increases with k, and directly setting
k to 2|X|/ log2(1 + ε) would yield formulas too large for
current sampling and counting techniques. Second, in many
of our experiments, there was a large gap between the “typ-
ical” counts achieved by most witnesses and the maximum
count. This allowed the incremental approach to find good
lower bounds with values of k that were much smaller than
those required in the worst case.

This ability to give good results with small k is also why
we use a combination of sampling and counting in MAX-
COUNT, when counting would be sufficient. Observe that
counting instead of sampling on line 3 would return an es-
timate of S =

∑
x∈A C

k
x , which satisfies Mk ≤ S ≤

|A|Mk. So S1/k/2|X|/k ≤ M ≤ S1/k, and taking k ∼
|X|/ log2(1 + ε) suffices for S1/k to be a good estimate of
the maximum count. For this counting approach, however,
such a large value of k is also necessary, since otherwise
the lower bound S1/k/2|X|/k can be extremely weak. On
the other hand, the sampling approach used in MAXCOUNT
can potentially find strong lower bounds with low values of
k, since it returns the (estimated) count of a single witness.
With a favorable distribution of counts the witness is likely
near the maximum, even for small k.

Implementation Notes
As mentioned above, for projected model counting and sam-
pling we use the algorithms of Chakraborty, Meel, and Vardi
(2016) and Chakraborty et al. (2015) respectively. In our tool
we use an improved implementation of these algorithms by
Mate Soos and Kuldeep Meel, which is pending publication.

It can be helpful in practice to switch between several
counting techniques for the second phase of the algorithm.
In particular, if the density of solutions is high then sim-
ple Monte Carlo sampling, i.e. choosing assignments y uni-
formly at random and checking ∃Z.ϕ(x, y, Z) with a SAT
solver, can be much faster than the hashing-based counting
algorithm. Our implementation has a simple heuristic to de-
cide which methods to use.

Finally, there is a considerable amount of flexibility in
choosing the internal parameters — counting and sampling
tolerances, number of samples, size of k, etc. — so that the
desired overall tolerance ε and confidence δ are achieved.
For example, we can relax the needed sampling tolerance
by taking more samples, or the counting tolerance by us-
ing a larger value of k. Exposing these parameters as argu-
ments to MAXCOUNT would obscure the actual tolerance
and confidence achieved and complicate the statements of
Theorems 1 and 2. To keep the presentation above simple,

we have expressed everything in terms of only ε and δ and
fixed arbitrary convenient values for the internal parame-
ters (e.g. 17 for the sampling tolerance). In practice, trading
off the different sources of error (approximate sampling, ap-
proximate counting, small k) by adjusting these parameters
can improve efficiency. Our tool allows such adjustments to
be made easily, and computes the resulting overall tolerance
and confidence.

Experimental Setup
In the following sections we discuss a number of experi-
ments that were all performed on identical machines with In-
tel Core i7 3.1GHz processors. Memory requirements were
always moderate, so we only report execution times.

From Maximum Satisfiability to Max#SAT
MaxSAT is a well studied problem with several algorithms
competing in an annual evaluation (Argelich et al. 2008). In
this section we discuss a simple reduction from weighted
partial MaxSAT to Max#SAT. This shows that Max#SAT
generalizes MaxSAT and enables a novel algorithmic ap-
proach to it. Since there are highly optimized MaxSAT
solvers and MaxSAT resides in a lower complexity class
than Max#SAT, this will hardly give us a competitive ap-
proach to the problems already encoded in MaxSAT. How-
ever, in Max#SAT we can use counting variables to suc-
cinctly encode exponentially large sums, while in MaxSAT
they have to be listed explicitly as clauses. Applications
of MaxSAT that allow for such a succinct encoding may
thereby profit from our approximation algorithm.

A weighted partial MaxSAT (MaxSAT for short) problem
consists of a set of clauses F over variables X , partitioned
into soft clauses soft(F) and hard clauses hard(F), and a
weight functionwtmapping soft clauses to positive integers.
We assume that hard(F) is satisfiable and define the cost of
an assignment to X to be the total weight of the soft clauses
that are not satisfied. The MaxSAT problem is to determine
the minimal cost over all assignments satisfying hard(F).

Let n > 0 be the number of soft clauses and let m be the
maximal weight. Introducing two bitvectors y and y′ with
lengths dlog(n)e and dlog(m)e, we can encode the MaxSAT
problem as the following Max#SAT problem: maximize
over X the number of solutions in y and y′ of the formula

hard(F) ∧ y<n ∧
∧

0≤i<n

[(y= i ∧ y′<wt(Ci))⇒ Ci] ,

where Ci is the i-th soft clause, = encodes bitwise equality,
and < encodes the less than relation on unsigned bitvectors.
Then we have the following:
Theorem 3. The minimal cost of a MaxSAT problem is
equal to

∑
C∈soft(F) wt(C) minus the maximum model

count of the Max#SAT encoding above.

Proof. Let x be an assigment to X satisfying hard(F) with
cost c. The constraint y < n permits n values for y. For each
value, all but one of the conjuncts (y= i ∧ y′<wt(Ci))⇒
Ci are true by falsifying the antecedent. If for the remaining
conjunct the soft clause Ci is satisfied, the conjunct admits

wt(Ci) assignments for y′; otherwise it admits none. So the
number of solutions (projected onto y and y′) is the total
weight of the satisfied soft clauses, which is wt(soft(F))
minus the weight of the unsatisfied clauses.

We tested this encoding with benchmarks from the 2016
MaxSAT competition. In some cases MAXCOUNT pro-
vided better upper bounds on the minimum cost than
MAXHS (Davies and Bacchus 2013), the winner of the com-
petition. For example, with k = 5 we sampled a solution for
the benchmark keller4.clq with cost 1552 in 174 sec-
onds, while the best upper bound MAXHS could find before
the 3600s timeout was 1576. However, on the vast major-
ity of the problems from the competition the Max#SAT ap-
proach could not compete with MAXHS.

Application 1: Quantitative Information Flow
We consider the problem of finding the largest information
leak, measured by channel capacity, in a program with an
adversary-controlled input. Modeling such a public input is
crucial when looking for backdoors or other large leaks that
occur only for particular values of the input. However, ex-
isting QIF approaches that deal with public inputs take time
exponential in the size of the input or the size of the leak
(Köpf and Basin 2007; Heusser and Malacaria 2010). On
the other hand, as we saw in the Overview section, this task
is naturally represented as a Max#SAT problem, so we can
solve it in polynomial time relative to an NP oracle using
MAXCOUNT. The multiplicative error in our estimate gives
an additive error in the channel capacity (e.g. a factor of 16
gives 4 bit accuracy). In this section we demonstrate that
MAXCOUNT is effective in practice on interesting examples.

We are not aware of a standard set of QIF bench-
marks with public inputs. Several actual vulnerabilities in
the Linux kernel were studied by Heusser and Malacaria
(2010). We experimented with two, CVE-2007-2875 and
CVE-2009-3002, but they turn out to be uninteresting from
our perspective: almost all values of the public input trig-
ger the leak, so they are easily solved with k = 0 (i.e. just
testing random public inputs). Therefore we created several
more challenging benchmarks where the public input must
be carefully chosen (see the Appendix in the full version of
the paper for benchmark details). The next table shows the
least k needed to lower bound the maximum leak to within 4
bits (with at least 80% confidence), the actual leak, the lower
bound obtained, and the time taken.

Name k leak (bits) bound time (s)
CVE-2007-2875 0 32 32 0
CVE-2009-3002 0 64 60 30
pwd-backdoor 1 64 64 70
bin-search-16 1 16 16 72
reverse 2 32 29 4360
reverse2 2 32 28 1153
backdoor-2x16-8 3 16 15 59
backdoor-32-24 4 32 32 150

For completeness we implemented the approach of
Heusser and Malacaria (2010) and applied it to the bench-
marks above. Unsurprisingly, since the method is exponen-

0 1 2 3 4 5 6 7 8 9 10
0

4

8

12

16

20

24

28

32

k

L
ea

ka
ge

(b
its

)

0

100

200

300

400

500

600

R
un

tim
e

(s
)

Figure 1: Leak estimate (orange), upper and lower bounds
(purple, blue), and time to compute them (black), as a func-
tion of k for benchmark “backdoor-2x16-8”. Lower and up-
per bound confidences are 0.98 and 0.6 respectively. Exper-
iments with n = 20 samples and counting tolerance ε = 1.

tial in the size of the leak, in every case it ran out of memory
(with a 10 GB limit) before being able to lower bound the
leak to within 4 bits.

Our technique is particularly suited to finding lower
bounds, as this does not require a large k in many cases.
Sometimes it is also possible to prove nontrivial upper
bounds. An example is shown in Figure 1. At k = 3, when
the maximum leak of 16 bits was first found, there is already
an upper bound of about 27.6 bits. As k increases the up-
per bound gets tighter, although the time needed to obtain it
grows. However, the absolute value of the upper bound may
increase, as we see in Figure 1 between k = 2 and k = 3.
Here the estimate of the leak increases more than the im-
provement in the accuracy of the upper bound.

Application 2: Probabilistic Inference
We consider challenging problems in probabilistic infer-
ence, such as finding the marginal maximum a posteriori
hypothesis (MAP) or the maximum expected utility (MEU).
For sets X and Y of variables over finite domains and suit-
able functions f1, . . . , fn these problems can be represented
as an optimization over a sum of products (Dechter 1999):

max
X

∑
Y

∏
i≤n

fi(X,Y)

In this section we show that Max#SAT naturally cap-
tures sum-of-products problems by giving a simple reduc-
tion from MAP to Max#SAT. We also discuss how the rep-
resentation of these problems critically affects the perfor-
mance of Max#SAT.

Markov networks consist of variables over finite domains
and a list of potentials fi mapping variable assignments
to [0, 1], given as tables. Given a partition of the variables
X∪̇Y and evidence in the form of a partial assignment σ
to the variables, the MAP problem for Markov nets is to
determine maxX

∑
Y ′⊇σ

∏
i≤n fi(X,Y

′), where Y ′ are as-
signments extending σ. With suitable quantization and scal-
ing we can approximate the problem by a sum of products

with functions mapping to the natural numbers. We also en-
code the original variables by Boolean variables in a stan-
dard way, and write τ for the set of unit clauses asserting the
assignment σ. Finally, introducing bitvectors zi of lengths
log2(maxX,Y fi(X,Y)), we encode the MAP instance as
the following Max#SAT problem:

max
X

#Y, z1, . . . , zn. τ ∧
∧
i≤n

(zi < fi(X,Y))

where < represents the less than relation on bitvectors.
For given assignments to X and Y each conjunct has a

number of solutions equal to the value of the corresponding
potential (after scaling), and these solution counts multiply
since each variable zi occurs in exactly one of the conjuncts.
The total model count for an assignment to X adds these
products over all assignments to Y consistent with τ , equiv-
alently σ, and so the Max#SAT problem has the same solu-
tion as the MAP problem up to any quantization error. Ap-
plying MAXCOUNT, this yields the first algorithm to give
lower and upper bounds for MAP to arbitrary precision with
only polynomially many calls to an NP oracle.

From a practical perspective, however, the reduction
was not competitive with existing approaches (Marinescu,
Dechter, and Ihler 2014). The problem instances in the UAI
competition (Zhang and Tian 2014) tend to use many small
function tables, leading to a large number of variables zi.
Already for k = 1 this led to challenging queries for the un-
derlying counting and sampling algorithms. Our algorithm
could, however, show better performance on problems con-
sisting of a few large function tables, if we can represent
them succinctly as formulas. It would be interesting to see
how MAXCOUNT performs on succinct MAP problems, e.g.
those studied by Mauá, De Campos, and Cozman (2015).

Application 3: Program Synthesis
Program synthesis asks to find a program satisfying a given
specification, which constrains both the syntax and the be-
havior of the desired program (Alur et al. 2013). Here we
consider sketching, a class of synthesis problems that fix
most of the structure of the program but ask for a number
of integer constants to fill in ‘holes’, indicated by double
question marks (??) (Solar-Lezama et al. 2006). For exam-
ple, consider this sketch of a program computing the sign of
an integer:
short sign(short x) {

if (x > ??)
return 1;

else
return -1;

}

This sketch is, of course, unrealizable for the specifica-
tion of the sign function as it omits an option to provide the
output 0 for x = 0. However, we can still attempt to syn-
thesize a program P that is consistent with the sketch and
satisfies the specification ϕ on the maximal possible number
of inputs I , a best-effort program: maxP #I. ϕ(P, I).

Finding best-effort programs may also be of use for pro-
gramming by example, where the correctness specification

comes in the form of a list of input-output examples. It is
straightforward to adapt the formulation above of best-effort
program synthesis to the search for a program that matches
the examples as closely as possible given some error model.

In Table 1 we summarize a set of program synthesis tasks
from the Sketch performance benchmarks which are sub-
stantially larger than the example above (208–1808 LOC).
We considered the problem of finding a best-effort program
and we ran the experiments until we found with 80% confi-
dence a “good” program, i.e. one that is correct on at least
95% of the inputs. The experiment shows that MAXCOUNT
is able to sample almost correct programs and that the value
of k for which this succeeds is much lower than theoreti-
cally required. For some of the sketches we were even able
to sample fully correct programs, e.g. within 146 seconds
using k = 12 on the sketch ‘GuidanceService’.

Name kmax k Q80% time
ActivityService 952 1 .965 28
ActivityService2 952 1 .965 28
ConcreteActivityService 965 1 .970 33
ConcreteRoleAffectation 10036 - - TO
GuidanceService 938 1 .981 24
GuidanceService2 938 1 .981 24
IssueServiceImpl 1046 3 .955 45
IterationService 952 1 .965 29
LoginService 1248 4 .959 89
LoginService2 1370 5 .951 210
NotificationServiceImpl2 1182 13 .957 512
PhaseService 953 1 .965 28
ProcessBean 2248 4 .951 274
ProjectService3 1816 1 .974 81
UserServiceImpl 1181 4 .953 69

Table 1: Experiments on the Sketch performance benchmark
set. We indicate kmax, the value of k for which we are guar-
anteed to sample a good program with 80% chance, the first
k for which a good program was actually found, the fraction
Q80% of the inputs on which the program is correct with
80% confidence, and the computation time in seconds.

We also tried sampling programs uniformly at random,
corresponding to k = 0, but this did not result in a good
program in any of the cases above. This suggests that while
sampling uniformly at random produces programs that fail
on most inputs, sampling from programs that are correct on
a few randomly selected inputs is sufficient to get programs
that work on most inputs. Besides providing partial solutions
when no wholly correct solution exists, such best-effort pro-
grams may prove useful as a starting point for other program
synthesis tools.

Related Work
Functional E-MAJSAT (Pipatsrisawat and Darwiche
2009) is similar to Max#SAT. Given a formula
ϕ(X,Y) and a function θ mapping literals of Y to
[0, 1], the functional E-MAJSAT problem is to compute
maxx

∑
y|=ϕ(x,·)

∏
l∈y θ(l) where l ∈ y are the literals

true in y. If we choose θ(l) = 1 for all literals, we obtain
Max#SAT without projection variables Z. We note that
although they do not change the theoretical complexity,
projection variables are crucial for natural and efficient
encoding of applications like QIF. In the other direction,
we can reduce functional E-MAJSAT to Max#SAT with the
weighted-to-unweighted translation used above.

Recently, Xue et al. (2016) independently proposed an al-
gorithm, XOR MMAP, for marginal MAP based on uni-
versal hashing. Like MAXCOUNT, XOR MMAP creates
a number of copies of the original problem, but they are
used in a different way. Also, after adding hash func-
tions MAXCOUNT only requires satisfiability queries, while
XOR MMAP still has to solve optimization problems (via
MIP solvers).

Conclusion
In this paper we define the Max#SAT problem, which gener-
alizes MaxSAT and #SAT and thereby allows us to optimize
over succinctly represented problems. We give an approxi-
mation algorithm MAXCOUNT that can estimate, with any
desired multiplicative error, the maximum model count of a
Boolean formula using only polynomially many queries to
an NP oracle. The algorithm can also return witnesses that
have a model count close to the maximum.

We demonstrate with examples in quantitative informa-
tion flow analysis, probabilistic inference, and program syn-
thesis that MAXCOUNT enables interesting new applica-
tions. There are many more applications in areas such as
probabilistic programming and probabilistic model check-
ing that MAXCOUNT could potentially be applied to, which
we leave for future work.

Acknowledgments
We thank Armando Solar-Lezama for providing an exten-
sion to Sketch to generate the program synthesis examples
used in this paper. We also thank several anonymous re-
viewers for their helpful comments. This work is supported
in part by the National Science Foundation Graduate Re-
search Fellowship Program under Grant No. DGE-1106400,
by NSF grants CCF-1139138, CNS-1528108, and CNS-
1646208, and by TerraSwarm, one of six centers of STAR-
net, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA.

References
Alur, R.; Bodik, R.; Juniwal, G.; Martin, M. M. K.;
Raghothaman, M.; Seshia, S. A.; Singh, R.; Solar-Lezama,
A.; Torlak, E.; and Udupa, A. 2013. Syntax-guided synthe-
sis. In IEEE International Conference on Formal Methods
in Computer-Aided Design, 1–17.
Argelich, J.; Li, C.-M.; Manya, F.; and Planes, J. 2008. The
first and second Max-SAT evaluations. Journal on Satisfia-
bility, Boolean Modeling and Computation 4:251–278.
Backes, M.; Köpf, B.; and Rybalchenko, A. 2009. Auto-
matic discovery and quantification of information leaks. In
30th IEEE Symposium on Security and Privacy, 141–153.
IEEE.

Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.;
and Vardi, M. Y. 2015. On parallel scalable uniform SAT
witness generation. In International Conference on Tools
and Algorithms for the Construction and Analysis of Sys-
tems, 304–319. Springer.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2013. A scal-
able approximate model counter. In Principles and Practice
of Constraint Programming, 200–216. Springer.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2014. Bal-
ancing scalability and uniformity in SAT witness generator.
In 51st Design Automation Conference, 1–6. ACM.
Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Al-
gorithmic improvements in approximate counting for prob-
abilistic inference: From linear to logarithmic SAT calls. In
Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI-16), 3569–3576.
Clarke, E.; Kroening, D.; and Lerda, F. 2004. A tool for
checking ANSI-C programs. In Jensen, K., and Podelski, A.,
eds., Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), volume 2988 of Lecture Notes in
Computer Science, 168–176. Springer.
Davies, J., and Bacchus, F. 2013. Exploiting the power of
MIP solvers in MAXSAT. In Proceedings of Theory and
Applications of Satisfiability Testing, 166–181. Springer.
Dechter, R. 1999. Bucket elimination: A unifying frame-
work for reasoning. Artificial Intelligence 113(1):41–85.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013. Taming the curse of dimensionality: Discrete inte-
gration by hashing and optimization. In Proceedings of the
30th International Conference on Machine Learning. JMLR:
W&CP volume 28.
Fu, Z., and Malik, S. 2006. On solving the partial MAX-
SAT problem. In International Conference on Theory and
Applications of Satisfiability Testing, 252–265. Springer.
Heusser, J., and Malacaria, P. 2010. Quantifying informa-
tion leaks in software. In 26th Annual Computer Security
Applications Conference. ACM.
Klebanov, V.; Manthey, N.; and Muise, C. J. 2013. SAT-
based analysis and quantification of information flow in pro-
grams. In Quantitative Evaluation of Systems.
Köpf, B., and Basin, D. 2007. An information-theoretic
model for adaptive side-channel attacks. In Proceedings of
the ACM Conference on Computer and Communications Se-
curity (CCS 2007), 286–296. ACM.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998. The
computational complexity of probabilistic planning. Journal
of Artificial Intelligence Research 9(1):1–36.
Marinescu, R.; Dechter, R.; and Ihler, A. 2014. AND/OR
search for marginal MAP. In Uncertainty in Artificial Intel-
ligence (UAI), 563–572. Citeseer.
Marques-Silva, J., and Planes, J. 2011. Algorithms for max-
imum satisfiability using unsatisfiable cores. In Advanced
Techniques in Logic Synthesis, Optimizations and Applica-
tions. Springer New York. 171–182.
Mauá, D. D.; De Campos, C. P.; and Cozman, F. G. 2015.

The complexity of map inference in bayesian networks spec-
ified through logical languages. Cancer 1:Y2.
Meng, Z., and Smith, G. 2011. Calculating bounds on in-
formation leakage using two-bit patterns. In Proceedings of
PLAS. ACM.
Newsome, J.; McCamant, S.; and Song, D. 2009. Mea-
suring channel capacity to distinguish undue influence. In
ACM SIGPLAN Fourth Workshop on Programming Lan-
guages and Analysis for Security. ACM.
Pipatsrisawat, K., and Darwiche, A. 2009. A new d-
DNNF-based bound computation algorithm for functional
E-MAJSAT. In 21st international jont conference on Artifi-
cal intelligence (IJCAI), 590–595.
Safarpour, S.; Mangassarian, H.; Veneris, A.; Liffiton,
M. H.; and Sakallah, K. A. 2007. Improved design debug-
ging using maximum satisfiability. In Proceedigns of the
International Conference on Formal Methods in Computer
Aided Design (FMCAD), 13–19. IEEE.
Sang, T.; Beame, P.; and Kautz, H. 2005. Solving bayesian
networks by weighted model counting. In Proceedings of
the Twentieth National Conference on Artificial Intelligence
(AAAI-05), volume 1, 475–482.
Solar-Lezama, A.; Tancau, L.; Bodı́k, R.; Seshia, S. A.; and
Saraswat, V. A. 2006. Combinatorial sketching for finite
programs. In 12th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS), 404–415. ACM Press.
Toda, S. 1991. PP is as hard as the polynomial-time hierar-
chy. SIAM J. Comput. 20(5):865–877.
Xue, Y.; Li, Z.; Ermon, S.; Gomes, C. P.; and Selman, B.
2016. Solving marginal map problems with np oracles and
parity constraints. In Lee, D. D.; Luxburg, U. V.; Guyon,
I.; and Garnett, R., eds., Advances In Neural Information
Processing Systems 29. Curran Associates, Inc. 1127–1135.
Zhang, N. L., and Tian, J., eds. 2014. Proceedings of
the Thirtieth Conference on Uncertainty in Artificial Intelli-
gence, UAI 2014, Quebec City, Quebec, Canada, July 23-27,
2014. AUAI Press.

QIF Benchmarks
Our QIF benchmarks were written as functions in C taking
inputs public and secret. These were converted into proposi-
tional formulas using CBMC (Clarke, Kroening, and Lerda
2004). We now give complete listings of the benchmarks, as
well as brief descriptions.

pwd-backdoor
This benchmark models a password checker for 8-byte pass-
words that has a backdoor. If the backdoor value is given
as the public input, the secret is leaked (64 bits); otherwise
only whether or not the secret password has been guessed
correctly is leaked (1 bit).

unsigned long long pwd backdoor (
unsigned long long p u b l i c ,
unsigned long long s e c r e t)

{

i f (p u b l i c == 4414850668108406108 \
9415163175489421777ULL)

re turn s e c r e t ;
i f (p u b l i c == s e c r e t)

re turn 1 ;
e l s e

re turn 0 ;
}

bin-search-16

This is a variant of a benchmark from Meng and Smith
(2011), where all the bits of the secret are eventually leaked
through successive rounds of binary search. We have intro-
duced a public input in place of the constant 1, which allows
a wide variety of leaks: if public = 0 the leak is 0 bits, if
public = 1 the leak is 16 bits, and many intermediate values
are possible.

unsigned s h o r t b i n s e a r c h 1 6 (
unsigned s h o r t p u b l i c ,
unsigned s h o r t s e c r e t)

{
unsigned s h o r t o u t = 0 ;
f o r (i n t i = 0 ; i < 1 6 ; i ++) {

unsigned s h o r t m =
p u b l i c << (15 − i) ;

i f (o u t + m <= s e c r e t)
o u t += m;

}
re turn o u t ;

}

reverse

This benchmark is based on a classical technique for revers-
ing the bits in a 32-bit word. We have replaced the constant
0x55555555 by the public input: when the input is chosen
to be that value, the function reverses the secret and so leaks
all 32 bits of it. Many smaller leaks of different sizes exist.

unsigned i n t r e v e r s e (
unsigned i n t p u b l i c ,
unsigned i n t s e c r e t)

{
unsigned i n t r e s = s e c r e t ;
r e s = ((r e s >> 1) & p u b l i c)

| ((r e s & p u b l i c) << 1) ;
r e s = ((r e s >> 2) & 0 x33333333)

| ((r e s & 0 x33333333) << 2) ;
r e s = ((r e s >> 4) & 0x0F0F0F0F)

| ((r e s & 0x0F0F0F0F) << 4) ;
r e s = ((r e s >> 8) & 0x00FF00FF

| ((r e s & 0x00FF00FF) << 8)) ;
r e s = (r e s >> 16) | (r e s << 1 6) ;
re turn r e s ;

}

reverse2
This benchmark is an elaboration of the previous. Two dif-
ferent methods of reversing the bits in a byte are used to
reverse the secret, which is then reversed again using the
previous method (assuming the public input is set correctly).

t y p e d e f unsigned char b y t e ;
unsigned i n t r e v e r s e 2 (

unsigned i n t p u b l i c ,
unsigned i n t s e c r e t)

{
unsigned long mask = 0x22110UL ;

b y t e b1 = s e c r e t & 0xFF ;
b y t e b2 = (s e c r e t >> 8) & 0xFF ;
b y t e b3 = (s e c r e t >> 16) & 0xFF ;
b y t e b4 = (s e c r e t >> 24) & 0xFF ;

b y t e t ;
t = ((b1 ∗ 0x0802UL & mask)

| (b1 ∗ 0x8020UL & 0x88440UL))
∗ 0x10101UL >> 1 6 ;

b1 = ((b4 ∗ 0x0802UL & mask)
| (b4 ∗ 0x8020UL & 0x88440UL))
∗ 0x10101UL >> 1 6 ;

b4 = t ;

t = ((b2 ∗ 0x80200802ULL)
& 0x0884422110ULL)
∗ 0x0101010101ULL >> 3 2 ;

b2 = ((b3 ∗ 0x80200802ULL)
& 0x0884422110ULL)
∗ 0x0101010101ULL >> 3 2 ;

b3 = t ;

unsigned i n t r e s = b4 ;
r e s = (r e s << 8) | b3 ;
r e s = (r e s << 8) | b2 ;
r e s = (r e s << 8) | b1 ;

r e s = ((r e s >> 1) & p u b l i c)
| ((r e s & p u b l i c) << 1) ;

r e s = ((r e s >> 2) & 0 x33333333)
| ((r e s & 0 x33333333) << 2) ;

r e s = ((r e s >> 4) & 0x0F0F0F0F)
| ((r e s & 0x0F0F0F0F) << 4) ;

r e s = ((r e s >> 8) & 0x00FF00FF
| ((r e s & 0x00FF00FF) << 8)) ;

r e s = (r e s >> 16) | (r e s << 1 6) ;

re turn r e s ;
}

backdoor-2x16-8
This benchmark models a program which normally leaks 8
bits of the 32 bit secret. However, there are two separate
backdoors, each of which causes all 32 bits to be leaked. The
backdoors leak different sets of bits to ensure that CBMC
will not statically determine some bits to be fixed.

unsigned i n t b a c k d o o r 2 x 1 6 8 (
unsigned i n t p u b l i c ,
unsigned i n t s e c r e t)

{
i f (p u b l i c == 0x42CB88FF)

re turn s e c r e t & 0x0000FFFF ;
e l s e i f (p u b l i c == 0xC141F975)

re turn s e c r e t & 0xFFFF0000 ;
e l s e

re turn s e c r e t & 0 x000000FF ;
}

backdoor-32-24
This benchmark models a program which normally leaks 24
bits of the 32 bit secret, but has a backdoor causing it to leak
all 32 bits.

unsigned i n t b a c k d o o r 3 2 2 4 (
unsigned i n t p u b l i c ,
unsigned i n t s e c r e t)

{
i f (p u b l i c == 0x42CB88FF)

re turn s e c r e t ;
e l s e

re turn s e c r e t & 0x00FFFFFF ;
}

CVE-2007-2875
This benchmark is taken directly from Heusser and
Malacaria (2010). If the public input is too large, an integer
underflow occurs and secret data is unintentionally returned.

i n t CVE 2007 2875 (
i n t s e c r e t ,
long long p u b l i c) {

i n t b u f s z ;
unsigned i n t n b y t e s ;
b u f s z =1024;
n b y t e s =20;
i f (p u b l i c + n b y t e s > b u f s z)

n b y t e s = b u f s z − p u b l i c ;
i f (p u b l i c + n b y t e s > b u f s z) {

re turn s e c r e t ;
} e l s e {

re turn 0 ;
}

}

CVE-2009-3002
This is another benchmark from Heusser and Malacaria
(2010). The structure sat is stored in kernel memory but not
completely initialized, so that (potentially sensitive) parts of
kernel memory are leaked. The code was reconstructed from
the original Linux kernel source, simplified to omit some ir-
relevant error-checking code and structure fields. For conve-
nience we have also consolidated all of the public inputs into
a single structure getname query.

s t r u c t sock { i n t foo ; } ;
s t r u c t s o c k e t { s t r u c t sock ∗ sk ; } ;
s t r u c t a t a l k s o c k {

s t r u c t sock sk ;
unsigned s h o r t d e s t n e t ;
unsigned s h o r t s r c n e t ;
unsigned char d e s t n o d e ;
unsigned char s r c n o d e ;
unsigned char d e s t p o r t ;
unsigned char s r c p o r t ;

} ;
s t r u c t a t a l k a d d r {

unsigned s h o r t s n e t ;
char s n o d e ;

} ;
s t r u c t s o c k a d d r a t {

unsigned s h o r t s a t f a m i l y ;
char s a t p o r t ;
s t r u c t a t a l k a d d r s a t a d d r ;
char s a t z e r o [8] ;

} ;
s t r u c t g e t n a m e q u e r y {

s t r u c t a t a l k s o c k a t ;
s t r u c t s o c k a d d r a t uaddr ;
i n t u a d d r l e n ;
i n t p e e r ;

} ;

s t r u c t g e t n a m e q u e r y CVE 2009 3002 (
s t r u c t s o c k a d d r a t s a t
s t r u c t g e t n a m e q u e r y que ry)

{
s t r u c t a t a l k s o c k ∗ a t = &query . a t ;
s t r u c t s o c k a d d r a t ∗ uaddr =

&query . uaddr ;
i n t ∗ u a d d r l e n = &query . u a d d r l e n ;
i n t p e e r = query . p e e r ;

∗ u a d d r l e n =
s i z e o f (s t r u c t s o c k a d d r a t) ;

i f (p e e r) {
s a t . s a t a d d r . s n e t = a t−>d e s t n e t ;
s a t . s a t a d d r . s n o d e =

a t−>d e s t n o d e ;
s a t . s a t p o r t = a t−>d e s t p o r t ;

} e l s e {
s a t . s a t a d d r . s n e t = a t−>s r c n e t ;
s a t . s a t a d d r . s n o d e = a t−>s r c n o d e ;
s a t . s a t p o r t = a t−>s r c p o r t ;

}

s a t . s a t f a m i l y = 4 2 ;

uaddr−>s a t f a m i l y = s a t . s a t f a m i l y ;
uaddr−>s a t p o r t = s a t . s a t p o r t ;
uaddr−>s a t a d d r . s n e t =

s a t . s a t a d d r . s n e t ;
uaddr−>s a t a d d r . s n o d e =

s a t . s a t a d d r . s n o d e ;
uaddr−>s a t z e r o [0] = s a t . s a t z e r o [0] ;
uaddr−>s a t z e r o [1] = s a t . s a t z e r o [1] ;
uaddr−>s a t z e r o [2] = s a t . s a t z e r o [2] ;
uaddr−>s a t z e r o [3] = s a t . s a t z e r o [3] ;
uaddr−>s a t z e r o [4] = s a t . s a t z e r o [4] ;
uaddr−>s a t z e r o [5] = s a t . s a t z e r o [5] ;
uaddr−>s a t z e r o [6] = s a t . s a t z e r o [6] ;
uaddr−>s a t z e r o [7] = s a t . s a t z e r o [7] ;

re turn que ry ;
}

