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Abstract

The large-scale deployment of Advanced Metering Infrastructure among residential energy cus-
tomers has served as a boon for energy systems research relying on granular consumption data.
Residential Demand Response aims to utilize the flexibility of consumers to reduce their energy
usage during times when the grid is strained. Suitable incentive mechanisms to encourage cus-
tomers to deviate from their usual behavior have to be implemented to correctly control the bids
into the wholesale electricity market as a Demand Response provider. In this paper, we present a
framework for short-term load forecasting on an individual user level, and relate non-experimental
estimates of Demand Response efficacy (the estimated reduction of consumption during Demand
Response events) to the variability of a user’s consumption. We apply our framework on a dataset
from a residential Demand Response program in the Western United States. Our results suggest
that users with more variable consumption patterns are more likely to reduce their consumption
compared to users with a more regular consumption behavior.
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Chapter 1

Introduction

The widespread deployment of Advanced Metering Infrastructure (AMI) has made granular data
on the electricity consumption of individual residential electricity customers available on a large
scale. Smart meters report the electricity consumption of customers at a high temporal resolution,
which enables novel data-centric services. One such service is residential Demand Response (DR),
in which a DR provider serves as an interface between individual residential customers and the
wholesale electricity market. The economic argument made for DR is that it is believed to improve
economic efficiency by providing program participants with a proxy of a price signal [11].

Regulators and market operators in different jurisdictions have been moving towards allowing
DR providers to offer capacity directly into wholesale electricity markets [24,25]. The DR provider
incentivizes users to temporarily reduce consumption at certain times, e.g. during periods of high
Locational Marginal Prices (LMPs), bundles these reductions, and makes capacity bids into the
market. If dispatched, the DR provider has to provide a reduction in energy consumption with
respect to a certain baseline, and is rewarded by the LMP at the time of dispatch (in this paper
we are not concerned with the capacity payments that DR providers receive for helping to fulfill
Resource Adequacy requirements). In such auction-based market settings, it is crucial for DR
providers to be able to make informed bids, as bidding too much capacity might result in a penalty
due to failure to meet obligations, and bidding too little would result in a suboptimal revenue. The
process of making bids is a complex problem - factors to take into account are, among others,
the LMP, which determines the marginal price for DR reductions, the number of responsive DR
participants under contract, and some knowledge about the behavior of these participants during
DR event periods. The DR provider can improve its bidding strategy and efficiency by modeling
the users’ consumption behavior during DR and non-DR periods and by targeting households with
a high potential reduction during DR hours.

In this paper, we identify such users through a combination of established Machine Learning
(ML) methods for short-term load forecasting (STLF), load shape clustering, and non-parametric
statistics. STLF is employed to predict the consumption of individual residential customers during
regular operation as well as during DR periods. This is used in conjunction with a non-parametric
hypothesis test to determine whether, under our modeling assumptions, a reduction of consumption
during DR periods can be detected [3]. These reductions serve as non-experimental estimates of
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participants’ willingness to reduce energy consumption during DR periods. We then identify a
“dictionary” of consumption patterns by clustering load shapes in order to correlate the variability
of an individual’s consumption pattern to our non-experimental estimate of their consumption shift.
Our results show a positive correlation between the degree of variability and our non-experimental
estimates of the reductions. This finding may be used for adaptive targeting of users solely based
on historical consumption data.

In the area of STLF, the two main categories of research are statistical time series modeling and
techniques relying on predictor functions [23]. The first category makes use of ARMA, ARIMA,
and SARIMA models [1, 28], and the second uses classical regression techniques such as Least
Squares, Lasso- and Ridge-Regression [10], or a class of modern nonparametric methods in which
Support Vector Regression [9], Nearest Neighbors Regression, Neural Networks [8], and fuzzy
models [8] have been most extensively studied. Other approaches are based on Principal Com-
ponent Analysis [28], state-space models such as Kalman-Filtering [13] or exponential smoothing
methods (Holt-Winters Method) [22]. The covariates that are most often used for forecasting are
previous observations of consumption, temperatures, and calendar variables such as hour of day
and day of week.

Clustering algorithms have been investigated in [19] and [27], who conduct a segmentation
of residential load shapes of consumption data in California. Similarly, [26] identifies typical
load shapes of residential customers in Austin, Texas, and relates those to socioeconomic data. A
comparison between common clustering algorithms - Hierarchical clustering, k-means clustering,
and fuzzy C-means clustering - is performed in [18]. Other methods, including Self-Organizing
Maps, are explored in [7].

The contribution of this paper lies in combining methods from STLF, load shape analysis, and
non-parametric statistics to identify more responsive users for DR programs. The remainder of this
paper is organized as follows: In Section 2, we introduce the data and outline preliminary steps. We
describe ML algorithms used for STLF in Section 3 and detail the estimation of energy reduction
during DR hours in Section 4. In Section 5, we present the methodology used for load shape
analysis, and then apply our methods on both synthetic data (Section 6) and real consumption data
(Section 7). We conclude in Section 8.
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Chapter 2

Preliminaries

2.1 Data Characteristics
Our analyses are based on hourly smart meter readings of 500 residential electricity customers in
the Western United States, collected between 2012 and 2014. Aligned with those readings are
timestamps of notifications sent by the DR provider to the users that prompt them to reduce their
consumption for a short period. We also use ambient air temperature measurements from public
data sources to capture the correlation between temperature and electricity consumption.

2.2 Data Preprocessing
Before any analysis is carried out, we pre-process the available data to provide a coherent basis for
a comparison of different forecasting techniques.

First, we exclude users with residential solar photovoltaics to remove effects due to correlation
in power generation and DR events. We also exclude users with corrupt meter readings (such as
excessive or negative consumption).

Second, the time series for consumption and temperature are matched by only taking data into
account that includes both temperature and consumption readings. Temperature observations are
resampled to hourly data by taking a weighted mean between non-evenly spaced measurements.

Third, consumption and temperature are standardized to zero mean and unit variance to allow
future comparisons of prediction methods that are not necessarily scale-invariant.

Fourth, the consumption series are analyzed for stationarity with the augmented Dickey-Fuller
test [12]. In particular, it has to be asserted that DR events, interpreted as exogenous “shocks”,
only have transitory effects and thus do not permanently impact the non-DR consumption. After
differencing the consumption series in order to free it from seasonality, all the consumption time
series are found to be stationary with a significance level of more then 99%. This is in accordance
with [22], where the authors used the Kwiatkowiski, Phillips, Schmidt, and Shin Test (KPSS) to
assert stationarity.
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Fifth, and most importantly, hours of meter readings “shortly” after DR hours are removed
from the training dataset. For every DR message sent to a user, we remove 8 hours of subsequent
metering recordings to prevent forecasting algorithms to use data in hours that are likely to have
been influenced by users deviating from their usual consumption behavior. We therefore assume
that the user reverts to the usual behavior at most 8 hours after receiving their last DR message.
Most existing literature on the “rebound effect”, which describes the increase of electricity con-
sumption after the end of DR periods, is concerned with the consumption in a single hour after
the DR event [20, 21]. Thus, removing 8 hours is a conservative estimate to remove spillovers of
consumption anomalies into the training data.

2.3 Covariates
Our models for participants’ consumption are fitted by using the following predictors:

• Previous hourly consumptions,

• Previous hourly ambient temperatures,

• A categorical variable combining the hour of day with a boolean weekend indicator variable.

That is, to predict the consumption at a given time, we incorporate an autoregressive term taking
into account five previous meter readings, five past ambient temperatures as well as a categorical
variable of length 48 that differentiates between a weekday/weekend day and the hour of day.

2.4 Data Splitting
The pre-processed data is split into a training set that represents the “usual” behavior of users
during non-DR hours, and a DR set that describes the consumption of users during DR events. The
outcome/covariate pairs for a given user i are denoted as (Y 0

i , X
0
i ) and (Y 1

i , X
1
i ) for the training

set and the DR set, respectively.



9

Chapter 3

Forecasting Techniques

We apply the following forecasting methods:

• Ordinary Least Squares Regression (OLS)

• Lasso Regression (L1)

• Ridge Regression (L2)

• k Nearest Neighbors Regression (KNN)

• Support Vector Regression (SVR)

• Decision Tree Regression (DT)

• ISO Baseline Prediction

Each forecasting model, trained on (Y 0
i , X

0
i ), is then applied to the covariates of the DR data X1

i

to obtain the estimated consumption Ŷ c
i . This prediction is subsequently compared to the observed

consumption Y 1
i during DR events. The differences

Y ∆
i = Y 1

i − Ŷ c
i (3.1)

will be used to compare the statistical differences between consumption predictions outside and
during DR periods.

3.1 Ordinary Least Squares Regression
Assuming a linear relationship between covariate-outcome pairs (X0

i (j), Y 0
i (j)), j = 1, . . . , N ,

Y 0
i = X0

i β, (3.2)

the parameter β is estimated using OLS.
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3.2 Ridge- and Lasso-Regression
The same linear relationship (3.2) with a regularization term on the parameter β results in LASSO-
Regression

β̂ = arg min
β
‖Y 0

i −X0
i β‖2

2 + λ‖β‖1 (3.3)

or Ridge-Regression
β̂ = arg min

β
‖Y 0

i −X0
i β‖2

2 + λ‖β‖2. (3.4)

The penalty λ is found with standard cross-validation techniques (e.g. we used k-fold cross-
validation) [14].

3.3 KNN-Regression
Given a point in feature space X0

i (z), the goal is to find the k training points X0
i (1), . . . , X0

i (k)
that are closest in distance to X0

i (z) [14]. We chose the commonly used Euclidian norm (though
other choices can be justified) as a measure for distance in feature space. The prediction of the
outcome variable Ŷ 0

i (z) is the average of the outcomes of the k nearest neighbors

Ŷ 0
i (z) =

1

k

[
Y 0
i (1) + . . .+ Y 0

i (k)
]
. (3.5)

The number of neighbors k is found using cross-validation to avoid overfitting (k too small) and
underfitting (k too large).

3.4 Support Vector Regression
Support Vector Regression solves the following optimization problem:

min
w,b,ξ,ξ∗

1

2
‖w‖2 + C

N∑
j=1

(ξj + ξ∗j )

s.t. Y 0
i (j)− w>φ(X0

i (j))− b ≤ ε+ ξj,

w>φ(X0
i (j)) + b− Y 0

i (j) ≤ ε+ ξ∗j ,

ξj, ξ
∗
j ≥ 0 ∀j ∈ [1, . . . , N ].

(3.6)

In (3.6), ε defines an error tube within which no penalty is associated, ξ and ξ∗ denote slack vari-
ables that guarantee the existence of a solution for all ε, b is a real constant, C is the regularization
constant, w are the regression coefficients to be estimated, and φ(·) a map between the input space
and a higher dimensional feature space. (3.6) is typically solved by transforming it into dual form,
thereby avoiding the explicit calculation of φ(·) with the so-called Kernel trick. We chose the com-
monly used Gaussian Kernel function. The resulting optimization problem can be readily solved
using Quadratic Programming [9].
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3.5 Decision Tree Regression
This non-parametric learning method finds decision rules that partition the feature space into up to
2n pieces, where n denotes the maximal depth of the tree. For a given iteration step, enumeration
of all nodes and possible splitting scenarios (exhaustive search) yields a tuple θ∗ = (j, tm) that
minimizes the sum of the ensuing child node impurities G(θ∗,m), where j denotes the j-th feature
and m the m-th node of the tree. This is formally written as

θ∗ = arg min
θ
G(θ,m), (3.7)

G(θ,m) =
nmleft

Nm

H(Qleft(θ)) +
nmright

Nm

H(Qright(θ)). (3.8)

where Qleft and Qright denote the set of (X0
i , Y

0
i ) covariate-outcome pairs belonging to the left and

right child node of mother node m, respectively; and nmleft and nmright denote their respective count.
The impurity measure H(·) at a node minimizes the mean squared error

c(·) =
1

N(·)
∑
j∈N(·)

Y 0
i (j), (3.9)

H(·) =
1

N(·)
∑
j∈N(·)

[
Y 0
i (j)− c(·)

]2
, (3.10)

with N(·) representing the number of observations at the node of interest.
One popular algorithm is exhaustive search, e.g. CART, which iteratively performs (3.7), (3.8),

(3.9), and (3.10) to detect the optimal tuple θ∗ = (j, tm) to update the tree until some convergence
criterion, e.g. on the maximal depth, is reached [5]. Cross-validation, usually on the number of
the maximal depth of the tree (which we used) or the minimal number of samples per node, avoids
overfitting of the tree. Novel cross-validation schemes on Decision Trees specifically tailored to
estimate the outcome of treatment effects have been proposed by [2]. The optimized tree is then
used for forecasting the outcome by taking the average of all outcomes belonging to a given node
m. This yields a decision tree with piecewise constant predictions.

3.6 ISO Baseline Prediction
For benchmarking purposes, we use a baselining procedure as commonly employed by many In-
dependent System Operators (ISOs). Techniques vary between ISOs, but yield similar results [17].
We chose the so-called “10 in 10” methodology as defined by the California Independent System
Operator (CAISO) [6]. The baseline for a given hour on a weekday is obtained by averaging the
hourly consumption during the given hour of the past 10 weekday consumptions on days without
an event. Similarly, the baseline for a given hour on a weekend day or holiday is the average
consumption during the given hour observed on 4 past weekend days or holidays [6]. Further, the
baseline on a day of a DR event is modified with a so-called Load Point Adjustment by multiplying
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the hourly baseline values with a ratio, which is calculated as the mean consumption of the three
hours preceding the hour before the DR event compared to the average baseline for the same hours.
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Chapter 4

Non-Experimental Estimates of DR
Treatment Effects

4.1 Counterfactual DR Consumption
Following the general idea of [3], we use the different models fitted on the training data to obtain
a non-experimental estimate of the counterfactual consumption Ŷ c

i , which can be described as
the consumption during DR times in the hypothetical absence of a DR event. This consumption
of course cannot be observed on the level of an individual, since at all DR times, the DR event
has affected the consumption of a given user. This general problem has been referred to as the
fundamental problem of causal inference [16]. Since model misspecification cannot be ruled out,
any true causal estimate of treatment effects will require the comparison of different groups in a
randomized controlled experiment. However, conducting such an experiment typically involves
significant preparation time and cost. The contribution of our approach is that it allows to generate
meaningful non-experimental estimates in a much broader range of settings.

As a proxy for the unobservable counterfactual consumption in the absence of a DR event, we
use the prediction Ŷ c

i obtained by the cross-validated forecasting techniques presented earlier. We
define the average empirical reduction ∆̂i for user i during DR hours as

∆̂i =
1

N

N∑
j=1

(
Ŷ c
i (j)− Y 1

i (j)
)
, (4.1)

which is simply the sample mean of the component-wise difference between the estimated coun-
terfactual and the actual, observed DR consumption. N represents the number of DR events. The
intuition is that the forecasting models have been trained on non-DR data (X0

i , Y
0
i ), and predic-

tions for DR consumptions Ŷ c
i assume the absence of DR events. Therefore, if the mean of the

estimated counterfactual consumption exceeds the mean of the actual DR consumption Y 1
i , then,

assuming the absence of model mismatch, the difference in means can be interpreted as the mean
reduction during DR events. Note that ∆̂i is not restricted to positive values - according to (4.1), a
negative ∆̂i would imply an increased DR consumption by a mean value of |∆̂i|.
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Equation (4.1) is an absolute measure that ignores the respective overall consumption level.
For a potentially more meaningful, relative measure, we define the weighted mean percentage
reduction (MPR)

MPR =
1

N

N∑
j=1

Y 1
i (j)− Ŷ c

i (j)

|Ŷ c
i (j)|

· 100%, (4.2)

which normalizes the componentwise deviations by the estimated counterfactual consumption.
MPR < 0 corresponds to an estimated average DR reduction of |MPR|%. Note that a disadvan-
tage of MPR lies in the normalization of the componentwise deviations by |Ŷ c

i (j)|, which gives
disproportionate errors for small |Ŷ c

i (j)|.

4.2 Nonparametric Hypothesis Test
∆̂i and MPR can be evaluated on a set of DR events belonging to an individual user to estimate in-
dividual treatment effects, or an aggregation of users to estimate average treatment effects. Clearly,
the accuracy of the estimated average treatment effects scales with the size of the user base (modulo
potentially unmodeled effects).

However, ∆̂i and MPR on an individual user level will typically be very noisy due to the
volatility of the consumption behavior of a single user. Therefore, we make use of a nonparametric
hypothesis test to compare our estimates on individual users, following the approach presented
in [3]. This is carried out by comparing the samples Y 1

i and Ŷ c
i with the Wilcoxon Signed Rank

Test, whose goal is to determine that these samples stem from different distributions. Our null
hypothesis is that both samples are generated by the same (unknown) distribution F (u):

H0 : Y 1
i , Ŷ

c
i ∼ F (u)⇒ E

[
Y 1
i − Ŷ c

i

]
= 0. (4.3)

The null hypothesis (4.3) is juxtaposed with the (one-sided) alternative hypothesis H1, stating the
existence of a difference in the distribution between Y 1

i and Ŷ c
i :

H1 : Y 1
i ∼ F (u), Ŷ c

i ∼ F (u) + ∆⇒ E
[
Ŷ c
i − Y 1

i

]
= ∆. (4.4)

In (4.4), it is assumed that the predicted outcomes Ŷ 1
i are generated by a distribution of the same

shape, but shifted by the parameter ∆:

E
[
Ŷ c
i − Y 1

i

]
= ∆. (4.5)

If the alternative hypothesis is accepted, this suggests that, within the constraints of our model, the
predicted counterfactual consumptions Ŷ c

i are on average greater than the observed DR consump-
tions Y 1

i , which can be interpreted as a mean reduction of consumption by ∆ during DR hours.
Further, the p−value of the hypothesis test is the probability of making the observations under the
null hypothesis.
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4.3 Wilcoxon Signed Rank Test
The Wilcoxon Signed Rank Test with paired samples (Ŷ c

i , Y
1
i ) is a non-parametric hypothesis test

that follows the intuition of the paired Student’s t-test, but does not assume that the samples are
drawn from a normal distribution. The test places the pairwise sample differences, excluding zero
differences, into a single list which is then sorted in ascending order. Next, the rank of a data point
is defined as its ordinal position in this sorted list. The test statistic U involves the sum of the
signed ranks, which for large sample sizes can be approximated by a normal distribution:

U ∼ N
(
µ, σ2

)
, µ = 0, σ2 =

N(N + 1)(2N + 1)

6
, (4.6)

where N denotes the number of non-identical paired samples in (Ŷ c
i , Y

1
i ). In addition to the p-

value, an estimate ∆̂ of the location parameter shift can be obtained via the Wilcoxon Signed Rank
Test (the so-called Hodges-Lehmann estimator). This estimate corresponds to the mean empirical
reduction of consumption during DR-events of user i based on the samples (Ŷ c

i , Y
1
i ) [15].
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Chapter 5

Segmentation of Users

The consumption behavior of residential electricity customers is highly variable across the popula-
tion, and many analyses have been performed on the relationship between socioeconomic factors
and household energy consumption (see e.g. [4,29]). Inspired by these approaches, we explore the
existence of a relationship between the variability of user consumption and our non-experimental
estimates of the change in consumption during DR periods. Any conclusion drawn from this analy-
sis would be useful for the purpose of targeting particular consumers and allow for a more efficient
identification and recruiting of users for DR programs.

5.1 Load Shape Analysis
The intuition is to find a set of representative “signature” load shapes that describe the user be-
havior. In other words, among the set of all observed load shapes, it is desirable to find a reduced
set of load shapes that best describes consumption patterns. For this purpose, following [19], we
define a load shape s(t) consisting of 24 hourly values as

a =
24∑
t=1

l(t) and s(t) =
l(t)

a
, (5.1)

where l(t) is a daily consumption profile ∈ R24 from midnight to midnight. We only collect
weekday consumption patterns, as there is an increased variability of energy consumption during
weekends [19]. Next, in order to reduce the noise stemming from individual daily load shapes,
for each user, 5 consecutive weekday load shapes are averaged [27] and treated as a single one.
Denote the collection of all 5-day average loads as S. Finding representative shapes C1, . . . , Ck
that minimize the squared error

SE =
∑
si∈S

(Ci − si)2 , (5.2)

where Ci denotes the cluster center closest to a given load shape si, is a clustering algorithm with
k clusters to be set.



CHAPTER 5. SEGMENTATION OF USERS 17

Unlike [19], where the authors make use of a two-step k-means algorithm (first find the appropriate
number of k to maintain a maximal distance between loads and centers, then merge clusters to-
gether), we choose the standard k-means algorithm with different values of the number of a-priori
defined cluster centers k.

5.2 Variability of User Consumption
After the k cluster centers have been found, we characterize the variability of a given user using
the following metrics:

Entropy
Each daily load shape of user j is matched to its closest cluster center. Define pj(Ci) as the
frequency count of the event that a daily load shape is matched to centroid i divided by the total
number of load shapes. Then the entropy Hj of user j is

Hj = −
k∑
i=1

pj(Ci) log(pj(Ci)). (5.3)

The entropy is minimal (= 0) if the user follows a single centroid, and maximal (= log(k)) if all
cluster centers are of equal occurrence [19].

Hourly Standard Deviations
We suggest the metric

H̃j =
24∑
i=1

std [sj(i)] , (5.4)

i.e. the sum of the standard deviations of the observed hourly consumptions over all hours for a
given user j. This method has the advantage that it does not rely on a k-means clustering algorithm,
and thus avoids an a-priori choice of the number of clusters k.
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Chapter 6

Validation on Synthetic Data

We now construct synthetic data to verify the functionality of our forecasting algorithms and pre-
dicted counterfactual consumption to estimate the DR reduction. Our motivation is that we can
benchmark our models on the a-priori known ground truth of the synthetic data. The goal is to
show that, within the limitations of our model, our learning algorithms are capable of predicting
the average empirical reduction (4.1) and the MPR (4.2) with acceptable accuracy.

To generate an artificial time series l̄(t), a base consumption consisting of the daily character-
istic load shapes shown in Figure 7.4 is constructed. The relative occurrence of the 12 dictionary
load shapes in the base consumption is varied so as to generate timeseries with different entropies
(5.3). Then, a linear temperature contribution is added as well as Gaussian Noise ε ∼ N (0, σ2).
Further, a random subset of the time indices are defined as DR hours, for which the respective
consumption is decreased by a constant cDR > 0. The resulting artifical load shape l̄(t) therefore
includes (known) components of the daily characteristic load shapes, the ambient temperature, and
DR reductions:

l̄(t) = Ci(t) + ct · T (t)− I(t ∈ D) · cDR + ε(t), (6.1)

whereD denotes the set of all DR times, Ci(t) the cluster center in the base consumption at time t,
and ct the proportionality constant for the ambient temperature at time t. After l̄(t) is standardized,
we can run our forecasting techniques on this artificial load shape with the same features used in
Section 2.3, and investigate the prediction accuracy as well as the estimates of the DR reductions
as a function of the entropy and magnitude of noise.

Figure 6.1 shows scatter plots for three different noise levels σ estimated with Ridge-Regression.
The plot shows the differences between actual and predicted MPR (4.2), the differences between
the known mean reduction and the estimated mean reduction (4.1), the estimated location param-
eter shift ∆̂ from the Wilcoxon Signed Rank Test, and the mean absolute percentage error of the
consumption predictions (MAPE, (7.1)). Subplots 1-2 indicate that higher noise levels do not
qualitatively impact the accuracy of prediction for MPR and the empirical reduction, even though
the range of errors increases as σ increases. Similarly, the estimated location parameter shift ∆̂
from the Wilcoxon Signed Rank Test varies around a constant, which, from further analyses, is
found to be cDR. As expected, higher noise levels increase the MAPE of the predictions. The
observations imply that, under the correct model specification and in the absence of confounding
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variables, Ridge-Regression on average is able to correctly estimate the MPR, the empirical reduc-
tion, and the subsequent location parameter shift given by the Wilcoxon Signed Rank test, even
in the presence of varying noise levels. It is also important to note that the findings of Subplots
1-3 are independent of entropy. Only subplot 4 shows an increase of MAPE as entropy increases,
which intuitively makes sense because more variable consumption is inherently harder to predict.
Lastly, further analyses show that the qualitative nature of Figure 6.1 varies with the bias of the
estimator, in the sense that upward biased estimates yield a higher ∆̂. A more precise analysis of
the bias-variance tradeoff that influences the non-experimental estimates of ∆̂ is performed in [3].
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Figure 6.1: Synthetic Data Characteristics with Different Noise Levels. Top Left: Actual MPR −
Predicted MPR, Top Right: Actual ∆̂− Predicted ∆̂, Bottom Left: Wilcoxon-∆̂, Bottom Right:
MAPEs

We can think of real load shapes as some mixture of base load shapes, which describe the
daily behavior of users. These base loads are then perturbed with temperature influences (e.g.
increased AC consumption during high temperature days) and noise (e.g. user vagaries). It can be
imagined that different users possess different archetypes of energy consumption behavior (e.g. a
single person household might have a more regular consumption pattern than a family), and thus
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different entropies. Since our analysis on the synthetic data shows that the mean predicted DR
reductions are independent of entropy, we conclude that our prediction algorithms are applicable
to participants with different levels of consumption variability.
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Chapter 7

Experiments on Data

7.1 Prediction Accuracy
We chose the mean absolute percentage error (MAPE) as a measure for the prediction accuracy:

MAPE =
1

N

N∑
j=1

|Y 0
i (j)− Ŷ 0

i (j)|
Y 0
i (j)

· 100%. (7.1)

Figure 7.1 shows box plots for the MAPE of different prediction methods and the CAISO baseline
across the user population. L1, L2 and LS have similar MAPEs, indicating that LASSO- and
Ridge-Regression do not improve the prediction accuracy by adding bias and reducing variance. It
is apparent that the L1-regularization term introduced in (3.3) does not have a strong effect, which
indicates that because of the large data set available overfitting is not an issue. Similarly, the lack of
MAPE reduction for Ridge-Regression indicates a lack of multicollinearity in the regressors [15].
As expected, the ISO baseline prediction performs worst since it averages hourly consumption
readings far back in the past (up to 10 weekdays before a prediction), which are unlikely to predict
the consumption accurately. Decision Trees and Support Vector Regression with median MAPEs
of∼ 23 and 29%, respectively, outperform k−nearest neighbors and the linear regression methods
whose median MAPE across users is ∼ 30 − 35%. However, the better prediction quality of
Support Vector Regression comes at a higher cost: Computation times of up to 45 minutes to fit
an SVR model on a time series of length 40,000 were observed, whereas the training step for the
linear regression models took less than 5 seconds per user on a six-core CPU. Prediction times for
all methods, however, were negligible.

We acknowledge that more accurate predictions can likely be obtained by taking into account
more covariates, e.g. a greater number of autoregressive consumption terms, more temperature
data, and more sophisticated ML algorithms such as neural networks. This, however, is not the fo-
cus of this paper, and the reader is referred to [8] for a discussion on the performance of forecasting
algorithms.



CHAPTER 7. EXPERIMENTS ON DATA 22

BL DT KNN L1 L2 OLS SVR
0

10

20

30

40

50

60

70

M
A

P
E
 [

%
]

Mean Absolute Percentage Error by Method

Figure 7.1: MAPEs for Different Forecasting Techniques and CAISO Baseline

7.2 Estimation of Reduction of DR Consumption
Figure 7.2 shows box plots of the estimated treatment effects determined by (4.1) and the location
parameter shift estimates ∆̂ provided by the Wilcoxon Signed Rank Test, and Figure 7.3 gives box
plots of the range of estimated MPRs across all users by method, computed with (4.2).

In Figure 7.2 it can be seen that the median of the mean empirical reductions, computed with
both the Wilcoxon Signed Rank Test and (4.1), are greater than zero throughout. As already men-
tioned, the different levels of ∆̂ can be explained by potentially biased estimators, e.g. downward
biased estimates of Ŷ c

i , on average, yield a smaller ∆̂ [3]. Indeed, our findings reveal that both
KNN and SVR yield downward biased estimates across all users with a median value of 0.0025
and 0.0034, respectively. The bias for L1, L2 and DT was found to be less than 1e − 09 for all
users. This explains the smaller median ∆̂ for KNN and SVR.

According to Figure 7.3, the median MPRs are between ≈ −0.2% and −7% for all methods
excluding DT, which is synonymous with a DR reduction in all cases but DT. It can be seen that
the downward biased methods SVR and KNN result in a smaller median reduction |MPR|. For
DT, the counterintuitive result of an increased DR consumption (MPR > 0) despite a near zero
bias could possibly be explained with the normalization of some

(
Y 1
i (j) − Ŷ 1

i (j)
)

by outliers in
|Ŷ 1
i (j)| that are close to zero because of misclassifications in the training step.

7.3 K-Means Clustering Results
Figure 7.4 shows the 12 characteristic centroids and the number of load shapes that belong to the
respective centroid. Similar to [19] and [27], we can characterize different habits of users, such as
users with a

• Morning + evening peak (#2, #3, #6, #7, #9, #12)

• Daytime peak (#5, #11)
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Figure 7.3: Predicted Mean Percentage Reductions (MPRs)

• Night peak (#8, #10)

• Evening peak (#1, #4)

7.4 Entropies and P-Values
Figure 7.5 depicts bar charts for the percentage of accepted and rejected Null Hypotheses as defined
in (4.3) for different significance levels and forecasting methods, sorted by entropy percentiles
computed with (5.3) for k = 20. For all significance levels, the percentage of rejections tends
to increase as entropy increases. Under the assumption of a correctly specified model and in the
absence of confounding variables, this suggests that users with higher variability in their consump-
tion tend to have a lower consumption during DR events than those with lower variability in their
consumption. Figure 7.5 shows a similar trend for k-means with 6 or 12 centroids as well as the
standard deviation (5.4) as entropy criteria. An interesting observation is the tendency towards
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Figure 7.4: Characteristic Load Shapes Identified with k-Means, k = 12

higher rejection rates for the linear regression models (OLS, L1, L2) compared to the nonparamet-
ric ones. This can be explained by the downward biased estimates of SVR and KNN, which reduce
the estimated location parameter shifts ∆̂. A lower estimated location shift results in a smaller test
statistic U , which then correlates with fewer rejected nulls in expectation.
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Figure 7.5: Percentage of Rejected / Accepted Nulls for k-Means, 20 Clusters and Different Sig-
nificance Levels (1− p): Top: 0.95, Middle: 0.90, Bottom: 0.80
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Chapter 8

Conclusion

We analyzed Machine Learning methods for predicting residential energy consumption, and used
these in conjunction with a non-parametric hypothesis test to estimate the flexibility in users’ con-
sumption during peak hours. We presented two entropy criteria for the variability of individual
household consumption and identified a positive correlation between their inherent variability and
the magnitude of the non-experimental estimates of reductions during DR periods.

The covariates used in our approach proved to yield satisfactory prediction results, and an
improved choice of training features will only improve the forecasting accuracy, but not change
our findings qualitatively. Further improvements can be achieved by incorporating a larger data set
with more households and using more refined clustering methods.

The effect of biased forecasts on the estimated DR reductions highlights the need for a more
careful evaluation of the employed prediction methods, an issue that we are currently exploring.
Due to the non-experimental nature of our estimates, in order to make claims about being able to
identify the causal effects of DR interventions, our methods will need to be benchmarked against
a randomized experiment.
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