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Abstract

Audio Hashprints: Theory & Application

by

Timothy Jwoyen Tsai

Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

We rely heavily on search engines like Google to navigate millions of webpages, but a
lot of content of interest is multimedia, not text data. One important class of multimedia
data is audio. How can we search a database of audio data? One of the main challenges in
audio search and retrieval is to determine a mapping from a continuous time-series signal to
a sequence of discrete symbols that are suitable for reverse-indexing and efficient pairwise
comparison. This talk introduces a method for learning this mapping in an unsupervised,
highly adaptive way, resulting in a representation which we call audio hashprints. We will
discuss the theoretical underpinnings that determine how useful a particular representation
is in a retrieval context, and we show how hashprints are a suitable representation for tasks
requiring high adaptivity. We investigate the performance of the proposed hashprints on two
different audio search tasks: synchronizing consumer recordings of the same live event using
audio correspondences, and identifying a song at a live concert. Using audio hashprints, we
demonstrate state-of-the-art performance on both tasks.
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Chapter 1

Introduction & Background Work

This dissertation investigates the audio search and retrieval problem. In this introductory
chapter, we will first provide the context and motivation behind the problem (section 1.1),
describe the general problem statement (section 1.2), give a high-level overview of two rele-
vant areas of previous work (sections 1.3 and 1.4), and lay out a roadmap for the remainder
of the dissertation (section 1.5).

1.1 Context & Motivation

As a way of providing context and motivation for the problem of interest, let us begin by
pointing out three trends in our society.

• Trend #1: Accessing information efficiently. We live in a world that places great
value on accessing information efficiently. People don’t want to go to Blockbuster to
get a movie; they want to watch the movie on Netflix right now. People don’t want
to do research comparing ticket prices on different airline websites; they want that
resesarch done on Expedia right now. People don’t want to wait until they get back to
their desktop computer to check their Facebook account; they want to see an update
on their phones right now. If you can help people access information or content more
efficiently, you can probably build a business on it. Our society highly values efficient
information access.

• Trend #2: Big data. Every time we search for a piece of information on the web, we
are stepping into a stadium full of books. The only way that we can find what we are
looking for is to use search engines like Google to search through billions of webpages.
The amount of data so far exceeds our capacity to wade through it ourselves that we
are completely dependent on the tools we use to find what we are looking for.

• Trend #3: Growth of multimedia. Even though we rely heavily on search engines
like Google to find relevant content, a lot of the data nowadays is not text data – it’s
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multimedia data. We live in an age of Youtube, Netflix, iTunes, Spotify, and Pandora.
Cisco estimates that consumer internet video traffic made up 64% of all consumer
internet traffic in 2014, and this percentage is expected to grow to 80% by 2019.1

The problem we will investigate grows out of the intersection of these three trends. There
is a lot of multimedia data out there, and we are dependent on our tools to find what we are
looking for in an efficient and reliable way.

1.2 Problem Statement

The question we will ask in this thesis is, “How can I search audio?” The general problem
statement is illustrated in figure 1.1. Given a short, noisy query, we would like to find a match
in a database of audio recordings. For example, let’s say that a person goes to a Taylor Swift
concert and records 6 seconds of the live performance on his or her cell phone. This short,
noisy audio recording is the query. The database might be a collection of songs from various
artists’ studio albums. Given the 6 second recording of the live performance, we would like to
identify the name of the song, get instant access to purchasing the original studio recording,
or perhaps get the lyrics so that we can sing along. This live song identification scenario is
one specific example of the general audio search problem shown in figure 1.1, and we will
investigate this specific scenario later in this thesis.

One way we could approach this problem is to do a brute-force, exhaustive search. For
example, we could simply compute the cross correlation between the query and all of the
audio recordings in the database, and then identify the location in the database that has the
highest cross correlation. This might work, but it would be very inefficient. And accessing
information efficiently is one of our goals. Can we do any better?

To gain some inspiration, let’s consider the following analogy. Imagine that a person
comes to you with a book in their hand and they say, “There are one or more sentences
in this book that contain the phrase ‘Armstrong waited for Ullrich.’ I would like you to
identify where these sentences are located.” One way that you could approach this problem
is to read the book from cover to cover in order to find the sentences containing the target
phrase. This approach is analagous to the cross correlation appraoch described above. But
a much more efficient way to solve this problem would be to turn to the word index at the
end of the book, look up all of the pages in which the word ‘Armstrong’ occurs, and then
scan only those selected pages of interest. What would have taken many hours to do using a
reading approach only takes a few moments to do using a word index. Indeed, the concept
of reverse indexing is a central idea behind search engines like Google. Clearly, using a word
index helps us solve this text search problem much more efficiently. The question is, “What
does this word index correspond to in the audio domain?”

1http://www.cisco.com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_c11-481360.html



CHAPTER 1. INTRODUCTION & BACKGROUND WORK 3

Figure 1.1: The general problem statement. Given a short, noisy audio query, we would like
to find a match in a database of audio recordings.

One key factor that allows us to build a word index is the fact that words are discrete
quantities. Discrete quantities like integers can be indexed; continuously-varying quantities
like floating point numbers cannot. There must be a discretization process if we are to use
indexing techniques. In other words, we would like to map a continuously-varying time-
domain representation of audio to a sequence of discrete values. Once we have represented
audio as a sequence of discrete values, then we can build an index on these discrete values.
Figure 1.2 illustrates one such mapping, where the discrete values are represented as different
colored boxes. These discrete values are often called “audio fingerprints” because they are
a compact descriptor that can be used to uniquely identify segments of audio. For reasons
that we will explain in chapter 2, however, we will refer to these discrete values as hash keys.

We have refined the problem statement to this: How can we map an audio signal to a
sequence of hash keys in a way that facilitates efficient, robust search and retrieval? This is
the specific question that we will address in this thesis. This dissertation proposes one such
mapping that leads to a representation of audio which we call audio hashprints. Starting
from first principles, we will motivate the design of this mapping, explain how hashprints
are computed, and demonstrate how this representation can help achieve state-of-the-art
performance in two different audio search and retrieval applications.
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Figure 1.2: The refined problem statement. How can we map an audio signal to a sequence
of hash keys in a way that facilitates audio search and retrieval?

1.3 Background Work: Audio Fingerprinting

There are two areas of background work that fit the general problem statement shown in
figure 1.1: audio fingerprinting and audio matching. We will discuss audio fingerprinting in
this section and audio matching in the next section. In addition to fragment-level retrieval
tasks like audio fingerprinting and audio matching, there are also document-level retrieval
tasks such as version identification and cover song retrieval. These tasks, however, will not
be discussed in this chapter.

Problem definition. Audio fingerprinting (also commonly referred to as audio identi-
fication or exact-match audio search) is a special case of the general audio search problem
where the goal is to find an exact match. Even though the query may have various types
of noise and distortion, the underlying source signal is identical to the matching segment of
the database. Two well-known applications of audio fingerprinting are music identification
and copyright detection. The goal of music identification is to recognize a song playing on
the radio by recording a short segment of it on a cell phone. The goal of copyright detection
is to determine when a user uploads any video or audio content that is covered by a copy-
right. Note that in both of these applications, the type of noise and distortion is different.
In the music identification scenario, there is additive noise from other sound sources in the
environment, distortion from the acoustics of the room, and perhaps pitch-shifting on the
audio signal in order to fit the song within an allotted broadcast timeframe. In the copyright
detection scenario, the audio may be compressed or encoded in different formats, it may be
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mixed with other audio tracks or sounds, or it may have been affected by frame dropping
or audio equalization. Despite the differences in the types of noise and distortion, these are
both examples of audio fingerprinting because we are looking for an exact match: the song
playing on the radio is exactly the same as the original studio recording, and the uploaded
video content is exactly the same as the original copyrighted movie. Audio fingerprinting
means exact match.

Interest in industry & academia. Audio fingerprinting has received a lot of interest
in both industry and academia. There are several commercially successful apps like Shazam
and SoundHound that do music identification, and other similar apps like Intonow, Viggle,
and MusicID. A lot of academic work in the audio fingerprinting literature has come out
of companies like Google [3][4], Philips [32][33], Telefonica [2][101], Microsoft [35], and Gra-
cenote [12]. Research on this topic has also benefited from organized evaluations like the
TRECVID content based copy detection task [69], which provided an evaluation benchmark
to compare the performance of different approaches [2][64][34][79][31][101][97][59][55][68][44].

Other applications. While most of the development in audio fingerprinting came
from music identification and copyright detection, many other applications have been ex-
plored. Some of these applications include detecting repeating objects in audio streams
[48][27][72][35][66], recognizing a TV channel in real-time [7], synchronizing two different
versions of a movie [19] or two TV audio streams [18] or a music video and a studio album
track [56], and performing self-localization of multiple recording devices [38]. Several other
relevant applications of fingerprinting will be discussed in the application chapters.

Approaches. There are a wide range of approaches that have been explored in the
audio fingerprinting literature. Rather than trying to explain the minutiae of individual ap-
proaches, we will instead describe the broad landscape of previous work by discussing three
major factors or design decisions along which these approaches vary. In keeping with the
focus of this dissertation, we will limit our discussion to the actual fingerprint representa-
tion itself, though of course a complete audio fingerprinting system will have other system
components like the search mechanism.

• Factor #1: Continuous vs discrete. The first major factor is whether the repre-
sentation is continuous-valued or discrete-valued. A vector of floating point numbers
is an example of a continuous-valued representation, whereas a binary code would be a
discrete-valued representation. The advantages of a continuous-valued representation
are greater precision and ease of mathematical manipulation (when considering, say, an
optimization problem). The advantage of a discrete-valued representation, as discussed
earlier in this chapter, is that it can be indexed. There are also other advantages to
using a binary code representation, which will be discussed further in chapter 4.

• Factor #2: Threshold-based vs value-based. Among the approaches that adopt a
discrete representation, the approaches can be divided into what we will call threshold-
based and value-based methods. A threshold-based method is one in which each bit of
the representation is derived by computing some feature of interest and then applying
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a hard threshold. This feature of interest could be, for example, the change in subband
energies [32], spectral subband moments [49], or chroma [25]. A value-based method
is one in which some features of interest are computed, and the values of the features
themselves are directly encoded in the binary representation. One very commonly
adopted approach is to encode the location of maxima, such as the absolute or relative
location of spectral peaks [99][28][26][92], the location of maxima in wavelet coefficients
[3][4], or the location of local spectral luminance maxima [87]. Note that these two
approaches are not necessarily incompatible. The fingerprints proposed by Anguera et
al. [2], for example, encode the location of a spectral peak for part of the representation,
and adopt a threshold-based approach for the other bits.

• Factor #3: Design method. Another way to cluster fingerprint representations is
to separate them by their design method. A majority of fingerprint representations are
the result of manual design. These approaches often use features that have proven to
be useful in other contexts, have useful mathematical properties, or carry some intu-
itive advantage. For example, spectral peaks are frequently used (e.g. [99][28][26][92])
because they are the most robust part of the signal to additive noise – if we were to
increase the noise floor, the spectral peak would be the last part of the signal to be sub-
merged. Other examples include methods based on modulation frequency features [94],
chroma [25][57], spectral flatness [1][36], and spectral subband centroids and moments
[82][83]. Note that value-based methods that encode the location of a maxima are al-
most all manually designed representations, since such quantities are generally not very
amenable to mathematical optimization procedures. A second category of fingerprint
representations are through a supervised learning process. Several works, for example,
define a family of features and use boosting techniques to select the features that yield
a maximally robust fingerprint [45][42][49]. A third category of fingerprint representa-
tions are through an unsupervised learning process. Many of these works combine a
manually designed feature with an unsupervised learning method. For example, Ngo
et al. [64] propose a bag-of-audio words representation by applying k-means clustering
to standard MFCC features.

Table 1.1 shows a wide range of approaches in the audio fingerprinting literature. The
leftmost column identifies the work by author and year, along with the bibliographic refer-
ence. Columns 2, 3, and 4 describe the approach along the three factors discussed above.
Column 5 indicates whether the approach uses indexing techniques. The rightmost column
includes a short description of the feature representation. This table is not meant to be
an exhaustive list of all approaches, but rather a large sample that is representative of the
literature.
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Table 1.1: An overview of the audio fingerprinting liter-
ature. See text for an explanation of the columns.

Identifier
cont/
discr

thresh/
value

design
method

index feature

Allamanche01 [1] cont - manual no
MPEG-7 low level
descriptors

Haitsma02 [32] discr thresh manual yes
changes in subband
energy

Sukittanon02 [94] cont - manual no
modulation
frequency features

Burges03 [9] cont -
super-
vised

no
convolutional neural
network

Wang03 [99] discr value manual yes spectral peak pairs

Ke05 [45] discr thresh
super-
vised

yes
boosted Viola-Jones
filters

Ramalingam05 [75] cont - manual no

GMM on spectral
centroid, crest
factor, entropy,
MFCC

Seo05 [82] cont - manual no
spectral subband
centroids

Seo05 [83] cont - manual no
spectral subband
moments

Herley06 [35] cont - manual no
Bark band
correlation

Ibarrola06 [41] discr thresh manual no entropy delta

Park06 [70] discr thresh manual yes
subband energy
differences

Baluja07 [3] discr value manual yes
Haar wavelet
coefficient maxima

Kim07 [49] discr thresh
super-
vised

no
boosted spectral
subband moments

Lebosse07 [51] discr thresh manual no
subband energy
around energy peaks

Baluja08 [4] discr value manual yes
Haar wavelet
coefficient maxima

Jang09 [42] discr thresh
super-
vised

no boosted filters

Continued on next page
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Table 1.1 – continued from previous page

Identifier
cont/
discr

thresh/
value

design
method

index feature

Liu09 [54] discr thresh manual yes
changes in
modulation
frequency features

Ngo09 [64] discr value
manual/
unsuper-

vised
yes bag of MFCC words

Saracoglu09 [79] discr thresh manual yes
subband energy
differences

Cotton10 [13] discr value
manual/
unsuper-

vised
yes

pairs of sparse
Gabor dictionary
elements

Dupraz10 [20] discr value manual yes spectral peaks

Liu10 [55] discr value manual yes
bag of words, MFCC
& RASTA-PLP

Mukai10 [59] discr value manual yes VQ subband energy

Son10 [91] discr thresh manual no
applying mask to
Haitsma fingerprint

Uchida10 [97] discr thresh manual yes
filterbank energy
differences

Younessian10 [101] discr thresh manual yes
subband energy
changes

Fenet11 [26] discr value manual yes spectral peak pairs

Liu11 [53] discr thresh
manual/
unsuper-

vised
yes

PCA on MDCT,
MFCC, MPEG-7,
chroma; QUC-tree

Ramona11 [76] cont - manual no
modulation
frequency features at
onsets

Shi11 [87] discr value manual yes
spectral luminance
maxima

Anguera12 [2] discr hybrid manual yes
spectral peak, local
energy differences

Fenet12 [27] discr value
manual/
unsuper-

vised
yes

sparse
decomposition into
MDCT dictionary
elements

Continued on next page
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Table 1.1 – continued from previous page

Identifier
cont/
discr

thresh/
value

design
method

index feature

Jegou12 [44] discr value manual yes
quantized mel
spectrogram energy
values

Radhakrishnan12 [72] discr thresh manual yes
random projections
on coarse
spectrogram

Coover14 [12] discr thresh manual yes
applying mask to
Haitsma fingerprint

Khemiri14 [48] discr value
manual/
unsuper-

vised
no HMM, MFCCs

Malekesmaeili14 [57] cont - manual no
DCT coefficients of
patches in
time-chroma plane

Ouali14 [68] discr thresh manual no
binarized
spectrogram

Seo14 [81] discr thresh manual yes
applying mask to
Haitsma fingerprint

Six14 [89] discr value manual yes spectral peak triples

Sonnleitner14 [92] discr value manual yes spectral peak quads

George15 [28] discr value manual yes spectral peaks

Nagano15 [63] discr value manual yes
VQ normalized
spectrum

1.4 Background Work: Audio Matching

Problem definition. Audio matching (also commonly referred to as cross-version retrieval)
is another special case of the general audio search problem where the goal is to find an item
in the database that is similar to the query. Unlike the audio fingerprinting scenario, the
underlying source signal in the query is not identical to the matching portion of the database.
For example, a person might record a short segment of a live symphony performance and
would like to retrieve other recordings of the same symphony. In this case, the query is similar
to the database items insofar as they come from the same symphony, but the underlying
signals will be different due to differences in tempo, articulation, phrasing, balance, dynamics,
and other aspects of musical interpretation. Another example is if a concertgoer records a
short segment of a live performance from a band and would like to purchase the original



CHAPTER 1. INTRODUCTION & BACKGROUND WORK 10

Identifier
cont/
discr

thresh/
value

design
method

index feature

Dannenberg03 [14] cont - manual no chroma

Hu03 [39] cont - manual no chroma

Muller05 [62] cont - manual no short-time chroma stats

Muller05 [61] cont - manual no short-time chroma stats

Ibarrola06 [41] discr thresh manual no entropy delta

Casey08 [11] discr thresh manual yes
LSH on chroma
shingles

Kurth08 [50] ? ? ? yes ?

Grosche12 [29] discr thresh manual yes
LSH on chroma-like
shingles

Grosche12 [30] discr value manual yes pairs of spectral peaks

Fenet13 [25] discr thresh manual yes
thresholded chroma at
energy onsets

Rafii14 [74] discr thresh manual no binarized CQT

Table 1.2: An overview of the audio matching literature. The columns match those in table
1.1.

studio recording. In this case, the query is similar to the matching database item insofar as
they are both performances of the same song, but the underlying signals will be different due
to differences in tempo, arrangement, instrumentation, and (lack of) digital audio effects or
editing. This latter example is one of the two applications we will investigate later in this
work. Audio matching means similarity match.

Definition of similarity. Note that the definition of what is ‘similar’ is task-specific.
In the case of classical music, similarity is pretty clearly defined: two recordings are similar
if they are performances of the same piece. We expact these audio signals to still have
strong resemblance to one another, since they will have the exact same sequence of notes.
In other genres of music, however, similarity may be much more subjective. Two different
performances of the same jazz standard, for example, may be drastically different in time
signature, instrumentation, style, and mood. Because queries are very short and because
greater differences make the problem harder, most works in audio matching have primarily
focused on classical music, where the differences are more predictable and controlled.

Approaches. Many audio matching approaches adopt techniques and ideas from the
audio fingerprinting literature. However, because the underlying signals in the query and
database are no longer identical, indexing techniques tend to be less effective due to the lack
of specificity in the match. As a result, many audio matching approaches do not use indexing
techniques, but instead use some form of exhaustive matching such as cross correlation or
dynamic time warping. Other approaches [11] adopt probabilistic methods like locality
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sensitive hashing to find nearest neighbors in high dimensional spaces. The combination of
the above factors has limited most audio matching applications to small- and medium-sized
databases. Scaling such approaches to large databases has proved to be a major challenge.

Table 1.2 shows a range of approaches in the audio matching literature. The structure of
the table matches that in table 1.1 in order to facilitate comparison. As we can see, fewer of
the approaches use indexing techniques for the reasons described above. We also note that
the features tend to be focused on pitch-related information like chroma features, since we
are trying to find matches that are similar in a musical sense.

1.5 Dissertation Structure

Figure 1.3 shows the structure of this thesis. The main body of this dissertation (chapters 2
through 6) has three parts. In the first part, we will lay a foundation of theory. In chapters
2 and 3, we will address to relevant theoretical questions of interest to us: “What makes a
good hash key?” and “What makes a good hash bit?” Since a hash key is simply a collection
of hash bits, these two questions essentially boil down to the questions “What makes a
good team?” and “What makes a good individual?” In the second part (chapter 4), we will
introduce audio hashprints. Audio hashprints are a representation of audio that are designed
to facilitate audio search and retrieval. The design of the hashprints builds upon the key
insights from our foundation of theory. The third part represents application. In chapters 5
and 6, we will see how hashprints can be used in two different application scenarios: aligning
meeting recordings and live song identification.

The metaphor of building blocks shown in figure 1.3 was chosen for two reasons. First,
it illustrates the relationship between the different parts of the dissertation. The audio
hashprint representation is built upon the foundation of theory, and the applications in
turn depend on the hashprint representation of audio. Second, it illustrates the fact that
hashprints straddle the line between theory and application. They must be grounded in
theory; they must also be useful in practice.
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Figure 1.3: Dissertation structure. In the first part of the thesis, we will lay down a founda-
tion of theory by considering two questions of interest. In the second part, we will propose
a representation of audio called audio hashprints that build upon our foundation of theory.
In the third part, we will see how audio hashprints can be used to solve two different tasks
in a robust and efficient way.
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Chapter 2

Theory: What Makes A Good Hash
Key?

In this chapter, we will investigate the first theoretical question of interest: “What makes a
good hash key?” This question will provide the first of two building blocks that will provide
a foundation for all that follows. We will first define the problem statement (section 2.1),
point out two incorrect answers to the question (sections 2.2 and 2.3), present one reasonable,
intuitive answer to the question (section 2.4), and then offer experimental evidence to validate
this proposed metric (section 2.5).1

2.1 Problem Statement

The question we would like to answer is, “What makes a good hash key?” In order to make
this question precise, we must first define two terms: “hash key” and “good”.

Here, “hash key” refers to a representation of audio that can be used to look something
up in a hash table. In the illustration of the problem shown in figure 2.1, the query audio
recording and the database audio recordings have all been mapped to sequences of discrete
symbols, which are represented as different colored boxes. The hash keys are the colored
boxes. They are the result of applying a mapping which takes a time-domain representation
of audio as input, and outputs a sequence of discrete values.

It is useful to point out the relationship between the terms hash key and audio fingerprint.
In the context of an audio fingerprinting application, the hash keys are often referred to as
audio fingerprints. There is a reason why we adopt a different terminology: the discrete
representation that we will propose in this thesis will be applied not only in a fingerprinting
application, but also in a nonexact-match audio retrieval problem. Since the term “audio
fingerprint” implicitly suggests that the problem is an exact-match fingerprinting application,

1Much of the content in this chapter was published in a conference paper entitled “An Information-
Theoretic Metric of Fingerprint Effectiveness” [95].
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Figure 2.1: Problem statement. Given a short audio query, we would like to find a match
in a database of audio recordings. Here, audio has been mapped into sequences of discrete
symbols represented as colored boxes.

we have introduced a more generic term “hash key” that makes fewer assumptions about the
nature of the retrieval problem. Audio fingerprints are hash keys in a fingerprinting context.

The term “good” refers to the purpose of the hash key: to facilitate efficient retrieval. So,
a good hash key is a discrete representation of audio that allows us to perform audio search
and retrieval in a robust and efficient manner. Of course, the definition of “good” may vary
depending on the specific task at hand. Nonetheless, we can still try to reason about the
general properties or characteristics that would make a hash key useful or not useful.

Another way to rephrase the question is, “What makes a good mapping?” In other words,
how can we map a time-domain representation of audio to a sequence of discrete symbols in
such a way that it allows us to efficiently find matches in a database?

2.2 Wrong Answer: High Accuracy

In order to gain some intuition about this question, let’s first point out what the answer is
not. A good hash key is not the one with the highest accuracy. Here, accuracy refers to the
percentage of hash keys that match when comparing the query with the true match in the
database.
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Figure 2.2: Accuracy is defined as the agreement between the query sequence and part of
the database where the true match occurs. In the example shown above, the true match
occurs at the end of the second database recording, and the accuracy is 8

9
= 89%.

Consider the example shown in figure 2.2. The query has been mapped to a sequence of
nine hash keys, shown at the left side of figure 2.2. The audio recordings in the database
have also been mapped to sequences of hash keys. In this case, we can see that the true
match occurs at the end of the second audio file in the database. When we compare the two
corresponding sequences of hash keys, we see that 8 of the 9 boxes match in color. There
is 8

9
= 89% agreement between the query and the true match and thus 89% accuracy. We

might be tempted to think that a good hash key is the one that has highest accuracy.
But let’s consider a second example, shown in figure 2.3. Here, the mapping is very

simple: it simply maps everything to a red box. Of course, we would never use such a
mapping, since we are simply throwing away all of the information in the signal. Yet it is
useful to point out that in this case, there is 100% agreement between the query and the
true match in the database, and thus 100% accuracy.

Clearly, there is something wrong with just focusing on accuracy. A good hash key is not
simply the one with highest accuracy.

2.3 Wrong Answer: High Entropy

To gain more intuition, let’s point out another example of what a good hash key is not. A
good hash key is not the one with the highest entropy. Entropy is a measure of randomness
and can be thought of as the number of bits required to encode the color of the box. If we
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Figure 2.3: An example demonstrating that maximizing accuracy is not the correct goal
to aim for. In this case, the accuracy is 100%, but clearly this mapping is not helpful in
facilitating search and retrieval.

have 3 bits of entropy, we can encode 8 different colors. If we have 4 bits, we can encode
16 different colors. If we have 5 bits, we can encode 32 different colors. Figure 2.4 shows 3
examples of colors encoded by a 6 bit representation.

Consider the simplistic scenario where each bit is independent and correct 90% of the
time. This means that if we encode the box color with 3 bits, the color of the box will be
correct .93 = 73% of the time. If we encode the box color with 5 bits, the color of the box
will be correct .95 = 59% of the time. If we encode the box color with 32 bits, the color of
the box will be correct .932 = 3% of the time. Clearly, using more bits does not necessarily
result in a better hash key. A good hash key is not simply the one with the highest entropy.

Our intuition tells us that using too few bits is a bad thing. If we have too few colors,
the hash keys will not be useful. But we can also see that using too many bits is also a bad
thing. If we have too many colors, the hash keys will also not be useful. So what is it that
makes a good hash key?

2.4 Useful Information Rate

Armed with more intuition, we now propose a metric to measure how good a hash key is. The
metric we propose is accuracy times entropy. Let’s consider the behavior of this quantity.

Consider first the relationship between entropy and the number of bits in the hash key.
Assuming that the bits are all balanced and independent, these two two quantities will be
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Figure 2.4: In our illustrations, the value of the hash key is represented by different colors.
These are examples of 3 different colors being encoded by a 6 bit representation.

identical. The relationship between them will be a line with a slope of 1. Consider now the
relationship between accuracy and the number of bits in the hash key. In our simplistic form,
we saw in the previous section that the relationship is exponential: as the number of bits
increases, the accuracy falls off exponentially. If we were to multiply these two functions,
as shown in figure 2.5, we would get a hill-shaped function like the one shown in blue.
The metric that we propose suggests that the best hash key is the one that maximizes the
blue-colored hill. We call this hill-shaped function the useful information rate.

We can interpret the multiplication of these two functions in the following way. Each
hash key communicates a certain number of bits of information. The problem is that some-
times this information is wrong – the hash key is incorrect. So our goal is not simply to
maximize the total amount of information that the hash keys are communicating, but to
maximize the amount of correct information that the hash keys are communicating. This is
the quantity that we are most interested in, since it is the correct information that is useful
to us. Accordingly, the term we use to describe this quantity is useful information rate.

Note that there are many ways that we could combine the accuracy and entropy functions.
Useful information rate is one particularly simple way of combining them (i.e. multiplication)
that has an intuitive interpretation from an information theory perspective. But does it
correspond to anything meaningful in an actual system? We will investigate this in the next
section.

2.5 Experimental Validation

In this section, we will present a simple experiment to verify and validate the intuition behind
useful information rate. Note that this experiment is not intended to be a rigorous empirical
proof – the rigorous empirical validation of these ideas will come in chapters 5 and 6, when
we thoroughly investigate two different application scenarios. The simple experiment in this
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Figure 2.5: Useful information rate is the multiplication of accuracy and entropy. It repre-
sents the average amount of correct information that each hash key communicates. The blue
curve shows the general shape of useful information rate as a function of the number of bits
in the hash key.

section is intended more as a sanity check to validate our intuition.
Our intuition tells us that the useful information rate of a fingerprint design should

correlate with its system-level performance. To test this hypothesis, we can measure the
useful information rate and the system-level performance of a number of fingerprint designs,
and then see if the two metrics correlate with one another. If the hypothesis is true, a
better fingerprint design should have both a higher useful information rate and a higher
system-level performance. We will describe our experimental validation in four parts: the
fingerprint designs, how we measure the useful information rate, how we measure system-level
performance, and the results we observe.

Fingerprint designs. We consider a family of fingerprint designs that are variants of
the well-known Philips fingerprint. The Philips fingerprint is one of the most highly cited
works in the literature, and is computed in the following manner:

• Compute a log mel spectrogram. Like the original paper [32], we consider 33 mel bands
up to 2kHz and use 370 ms windows with 11.6 ms hop size.

• Compute fingerprint bits. The mth fingerprint bit at time index n is given by

F (n,m) = sign(E(n,m)− E(n,m+ 1) + E(n+ 1,m+ 1)− E(n+ 1,m))
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Figure 2.6: The 2 × 2 spectro-temporal filters used by the Philips fingerprint design are
shown at left. Black corresponds to +1 value and white corresponds to a −1 value. For our
experiments, we used 2×W spectro-temporal filters that are a generalization of the Philips
design.

where E(n,m) is the log mel spectrogram energy value at time index n for mel band m.
We compute the M = 32 fingerprint bits using the above expression for m = 1, . . . ,M .

Note that the original Philips fingerprint design corresponds to applying a 2×2 checkerboard
spectro-temporal filter at different frequency bands and thresholding the result at 0. The
family of fingerprint designs is a simple variant of the Philips design in which we use a 2×W
checkerboard spectro-temporal filter (see figure ?) instead of a 2× 2 filter. For a given fixed
filter width W , the fingerprints are computed in the following manner:

• Compute a log mel spectrogram. We consider 33 mel bands up to 2kHz and use 370
ms windows and 11.6 ms hop size.

• Compute fingerprint bits. The mth fingerprint bit at time index n is given by:

F (n,m) = sign(
L−1∑
l=0

E(n− l,m)−E(n− l,m+1)+E(n+1+ l,m+1)−E(n+1+ l,m))

By defining the family of fingerprint designs in this way, the Philips fingerprint simply
becomes a special case with filter width L = 2. We can then compare the performance of
this fingerprint design as a function of the filter width L.

Measuring useful information rate. In order to measure useful information rate, we
use the procedure shown in figure 2.7. We first take a set of clean audio recordings and
“noisify” them by adding white gaussian noise at a specified signal-to-noise ratio (SNR).
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Figure 2.7: Block diagram of the process for computing useful information rate.

We then compute fingerprints on the clean and noisy recordings and measure the empirical
useful information rate between the corresponding sequences of fingerprints. Here, accuracy
simply referes to the fraction of corresponding fingerprints that match. We compute the
useful information rate on 10000 randomly sampled frames (and their surrounding context)
from the TRECVID content based copy detection data set [69], which contains internet
archive videos.

Measuring system-level performance. To measure system-level performance, we
created a database of fingerprints for 977 audio files from the TRECVID data, which amounts
to 40 hours of audio data. We generated 500 noisy queries by randomly selecting 10 second
segments and adding white gaussian noise at a desired SNR. To compute a score for each
item in the database, we use the search method described by Wang [99], which accumulates
a histogram of offsets from matching fingerprints. We then measured the accuracy as the
percentage of queries that were identified correctly (i.e. the true match had the highest
score). This is a common metric used to measure system-level performance on a fixed
database search (e.g. [3][4][99][32]).

Results. Figures 2.8 and 2.9 show the useful information rate and system-level per-
formance for these two experiments, respectively. Each group of bars shows the useful
information rate or accuracy of the fingerprint model with filter width W at a given SNR.
There are two things to notice when we compare figures 2.8 and 2.9.

First, we notice that useful information rate and system-level accuracy correlate directly
when assessing the relative performance of various fingerprint designs. As filter width in-
creases, both useful information rate and system-level accuracy increase. This suggests that
a higher filter width corresponds to a more robust fingerprint design, and this increased ro-
bustness is reflected in both metrics. One benefit of the useful information rate metric is that
we can compare fingerprint designs more efficiently than with a system-level performance
metric. Note that figure 2.9 required more than 1000 times more data and significantly more
setup and implementation than figure 2.8. For example, figure 2.8 did not require creating
a database or implementing a search mechanism.

Second, we point out that the useful information rate metric is not indicative of absolute
performance. For example, notice that a fingerprint filter width of 32 at 10dB SNR has
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Figure 2.8: Useful information rate of various fingerprint designs. Each group of bars shows
how useful information rate varies as a function of the filter width W at a fixed SNR.

higher system accuracy than a fingerprint filter width of 2 at 20dB SNR. In contrast, a
fingerprint filter width of 32 at 10dB SNR has a much lower useful information rate than a
fingerprint filter width of 2 at 20dB SNR. This is to be expected – the absolute performance
numbers depend upon many factors besides the fingerprint design, such as the database size,
how similar or different database items are to one another, and how much redundancy is
built into the search mechanism. These experiments indicate that useful information rate
is useful in assessing the relative performance of different fingerprint designs, but of course
cannot predict the absolute system performance.

Figures 2.8 and 2.9 are consistent with our intuition that useful information rate and
system-level accuracy correlate directly in evaluating fingerprint designs. A more robust
fingerprint design will have both higher useful information rate and higher system-level
performance. The useful information rate metric is preferable because it decouples the effect
of other system factors and focuses only on the robustness of the fingerprint design. As a
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Figure 2.9: Accuracy of various fingerprint designs on an exact-match fingerprinting task.
Each group of bars shows how accuracy varies as a function of the filter width W at a fixed
SNR.

result, it requires much less data and very little setup to compute.

2.6 Recap

We have discussed the first theoretical question of interest: What makes a good hash key?
After building some intuition by pointing out several wrong answers to the question, we pro-
pose an intuitive, information-theoretic metric called useful information rate that measures
how good a hash key is. We then presented some simple experiments using empirical data to
validate our intuition. The insights in this chapter will provide a foundation for the design
of audio hashprints in chapter 4.
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Chapter 3

Theory: What Makes A Good Hash
Bit?

In the previous chapter, we asked the question, “What makes a good hash key?” In this
chapter, we will ask a second fundamental question: “What makes a good hash bit?” We
will first introduce the problem statement (section 3.1), and then discuss the three key
characteristics that define a good hash bit (sections 3.2, 3.3, 3.4).

3.1 Problem Statement

A hash key is simply a collection of hash bits. In the previous chapter, we discussed what it
is that makes a good hash key. In this chapter, we will discuss what it is that makes a good
hash bit. Whereas in the previous chapter we focused on having the right colored box, in
this chapter we will investigate the individual bits that determine the color of the box (see
figure 3.1).

We can make an analogy between a hash key and a team of people. We have already
asked the question, “What makes a good team?” In chapter 2, we proposed a way to measure
how good a team is. That metric is called useful information rate. It consists of two
components: high entropy and high accuracy. But now we ask the question, “What makes
a good individual?”

A good individual is one who contributes to the team’s mission. A good hash bit is one
that helps the hash key have high entropy and high accuracy. Each of these two characteris-
tics has certain consequences on what it means for a hash bit to be good. These consequences
will be discussed in the next 3 sections.

3.2 Balanced

One consequence of high entropy is that each bit should be balanced. In other words, it
should take on the value 0 half the time and 1 half the time. When this is true, the bit is
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Figure 3.1: Hash key vs hash bit. A hash key is a collection of hash bits. In our graphical
depiction of fingerprints, the color of the box represents the value of the hash key. The color
is encoded by the values of the individual hash bits.

equivalent to a fair coin toss – it has maximum randomness and maximum entropy of 1 bit.
Note that any imbalance in a bit will result in a decrease in entropy. In the extreme case
where a bit always takes on the same value, the entropy is 0.

One way to map a random variable to a binary 0-1 value is to apply a hard threshold. If
the random variable takes on a value that is less than the threshold, we assign a 0 bit value.
If the random variable takes on a value that is greater than the threshold, we assign a 1
bit value. The question is, “Where do we set the threshold?” High entropy tells us that the
threshold should be set to the median of the random variable’s probability distribution. This
ensures that the bit will have maximum entropy and thus communicate the most information.
If the threshold is located in the tail of the distribution, the bit will have low entropy and
communicate very little information (see figure 3.2).
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Figure 3.2: In order for the bits to be balanced, the threshold should be set to the median
of the underlying probability distribution (left side). If the threshold is located in the tail of
the distribution, the bit will have very little entropy (right side).

3.3 Uncorrelated

Another consequence of high entropy is that each bit should be uncorrelated with the other
bits. Any correlations between hash bits represents inefficiency. For example, a single hash
bit that is simply replicated N times will result in a hash key which still only contains a
maximum of 1 bit of entropy. On the other hand, a set of N independent bits will have the
maximum N bits of entropy. It is not enough that each bit in isolation contribute 1 bit of
information, but that it contribute 1 bit of information that is new.

3.4 High Variance

Now let’s consider the consequence of high accuracy. In the context of applying a threshold
to a random variable, high accuracy corresponds to maximizing the variance of the random
variable’s probability distribution. To see this, consider the case when the random variable
takes on a value that is very close to the threshold, which will be located at the median of the
distribution (as discussed above). In the context of the hashprint framework, this random
variable will be a linear combination of many spectrogram energy values, so its distribution
will be roughly bell-shaped as a result of the central limit theorem. Because the random
variable takes on a value close to the threshold, a small perturbation from noise may cause the
feature to fall on the wrong side of the threshold, resulting in an incorrect bit. This situation
can be minimized by maximizing the variance of the feature distribution. Figure 3.3 shows
a comparison between two distributions with different variances. As we can see, the area
of the red ‘danger zone’ around the threshold decreases as the variance of the distribution
increases. Thus, when noise can be approximated as a symmetric perturbation with zero
mean, robustness corresponds to high variance in the underlying feature distribution. While
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Figure 3.3: When thresholding a random variable, robustness corresponds to higher variance
in the underlying probability distribution. When the random variable takes on a value very
close to the median threshold, a small perturbation from noise may cause the variable to fall
on the wrong side of the threshold, resulting in an incorrect bit.

this assumption about the noise is rarely true in a strict sense, it is nonetheless a reasonable
approximation for many different types of noise.

3.5 Recap

In this chapter we asked the question, “What makes a good hash bit?” Since a hash key
is simply a collection of hash bits, a good hash bit is one that helps the hash key to have
high entropy and high accuracy. The two consequences of high entropy are that each bit
should be balanced and uncorrelated with the other bits. The consequence of high accuracy
is that each bit should be the result of thresholding a probability distribution that has high
variance. So, what makes a good hash bit? Balanced, uncorrelated, and high variance.
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Chapter 4

Audio Hashprints

Having laid down our foundation of theory, we are now ready to introduce audio hashprints.
Audio hashprints are a representation of audio that facilitates audio search and retrieval.
As our building block metaphor suggests, this representation is built upon the key insights
established in the previous two chapters. This representation will in turn be a fundamental
building block in tackling the two different application scenarios of interest. In this chapter,
we introduce and explain what audio hashprints are. We will do this in five parts: the
motivation behind developing such a representation, the mechanics of computing hashprints,
the formulation of the filter learning problem, the rationale of the hashprint design, and its
relation to previous work.

4.1 Motivation

We will explain the motivation behind the proposed fingerprint design in three parts: the
design choice of using a binary representation, general principles of good fingerprint design,
and other desirable application-specific characteristics.

Binary Representation

Hashprints are, first of all, a binary representation of audio. Using a binary feature repre-
sentation has three important benefits.

1. Compactness in memory. Because hashprints are simply a collection of bits, we
can represent each hashprint as a single 64-bit integer containing up to 64 bits of
information. Since we may have to store a large amount of audio data in a searchable
database, compactness in memory is an important consideration.

2. Indexing. Because hashprints are a discrete representation (rather than a continuous
representation), we can directly use hashprints in a table lookup or reverse index.
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These techniques are especially useful in retrieving matches from a large database in
an efficient manner.

3. Efficient distance computations. We can compute the Hamming distance between
two hashprints very efficiently by peforming a single logical xor operation between two
64-bit integers, and then counting the number of 1 bits in the result. This requires
fewer operations compared to computing (say) the Euclidean distance between two
vectors of floating point numbers. When some type of exhaustive search is necessary,
these computational savings can be important in reducing the latency of the search.

For these reasons, we will focus on the problem of designing a binary representation that
facilitates audio search and retrieval. We now turn our attention to general principles for
how to design such a binary fingerprint representation.

Principles of Fingerprint Design

The formulation of audio hashprints grows out of two key principles of good fingerprint
design.

1. Design principle 1: Compactness. A good fingerprint should represent a maximum
amount of information in as little space as possible. There are two direct consequences
of this principle in the context of our representation: each bit should be balanced, and
each bit should be uncorrelated with all the other bits. Note that any imbalance in a
bit or any correlation between bits will result in an inefficient representation. These
two characteristics were discussed in sections 3.2 and 3.3.

2. Design principle 2: Robustness. A good fingerprint should be robust to noise.
In the context of our hashprint design where each bit results from thresholding a
feature, achieving robustness corresponds to maximizing the variance of the feature
distribution. This was discussed in section 3.4.

The above two principles of fingerprint design are very general – we will always want the
fingerprint to be compact and robust. In addition to these general characteristics, though,
there are several other application-specific characteristics that we would like the representa-
tion to have. These are discussed in the next subsection.

Other Desirable Characteristics

There are three other characteristics that we would like hashprints to have. These character-
istics are not general principles of good design, as in the previous subsection, but are instead
useful in certain application-specific scenarios such as those explored in chapters 5 and 6.
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1. Highly adaptive. The first desirable characteristic is that the representation be
highly adaptive. The ‘adaptive’ part means that the representation is not a fixed
representation like MFCCs, chroma features, or a hardcoded fingerprint extraction
module. Rather, the representation should be tailored to a set of data in order to
adapt to its unique characteristics. The ‘highly’ part means that we would ideally
be able to learn a suitable representation given a small quantity of data, rather than
requiring an extremely large amount of data. In the context of the scenarios explored
in chapters 5 and 6, for example, we would like to learn a representation based on a
few audio recordings of a meeting, or a collection of studio tracks from a musical artist.

2. Unsupervised. The second desirable characteristic is that the representation can be
learned in an unsupervised manner. Often, collecting suitable training data, annotating
ground truth, and setting up a supervised learning task requires a significant amount
of time and effort. Other times, it is not possible to get suitable training data, or
the available training data may not be representative of the actual test data. The
two scenarios explored in chapter 5 and 6 are examples of these situations. In these
scenarios, we would like to be able to learn the representation without any ground truth
labels, so that the representation can be learned automatically on-the-fly without any
manual effort.

3. Volume-invariant. The third desirable characteristic is that the representation should
be volume-invariant. This means that an audio signal will yield the same representa-
tion even if it is multiplied by a constant factor. This is an important characteristic
in many search and retrieval scenarios. Consider the aligning meeting recordings sce-
nario – when a person speaks, the same signal will be picked up by multiple recording
nodes but with varying attenuation levels (along with distortions, of course) depending
on the distance to the speaker. Likewise, it is an important characteristic in the live
song identification scenario – the noisy cell phone recording may not be at the same
volume level as the original studio track. In audio search and retrieval applications,
volume-invariance is usually a desired characteristic.

Identifying these three additional desired characteristics will help inform the design of the
hashprint represenation. Having discussed the characteristics and properties that we would
like to have in an ideal representation, we will now introduce and explain how hashprints
are computed.

4.2 Mechanics

Figure 4.1 shows how to compute audio hashprints from a time-domain representation of an
audio signal. The computation consists of 6 steps, which are described below.

1. Compute spectrogram. The first step is to compute a time-frequency representation
of audio. This time-frequency representation can be selected to suit the characteristics
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Figure 4.1: Block diagram of the fingerprint computation.

of the problem at hand. In the meeting recordings scenario that we will investigate
in chapter 5, for example, we used a log mel spectrogram, since the underlying source
signals are primarily speech. In the live song identification scenario that we will investi-
gate in chapter 6, we instead use a constant Q transform that is designed to match the
pitches of the western musical scale, since the underlying source signals are primarily
music. At the end of this first step, the audio is represented at each frame by a vector
of dimension B, where B is the number of frequency subbands.

2. Collect context frames. In addition to looking at the audio frame of interest, we also
look at the neighboring frames to its left and right. When computing the fingerprint
at a particular frame, we consider w frames of context. At the end of this second step,
we represent each frame with a vector of dimension Bw.

3. Apply spectro-temporal filters. At each frame we apply N different spectrotem-
poral filters in order to compute N different specto-temporal features. Each spectro-
temporal feature is a linear combination of the spectrogram energy values for the
current frame and surrounding context frames. The weights of this linear combination
are specified by the coefficients in the spectro-temporal filters. A graphical illustration
of this process is shown in figure 4.2. These filters are learned in an unsupervised
manner by solving a sequence of optimization problems, which we will discuss in detail
in the next section. At the end of this third step, we have N spectro-temporal features
per frame.

4. Compute deltas. For each of our N features, we compute the change in the feature
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Figure 4.2: A graphical illustration of applying a spectro-temporal filter. To compute a
spectro-temporal feature, we consider a linear combination of the spectrogram energy values
for the current audio frame and several context frames. The weights of this linear combina-
tion are specified by the spectro-temporal filter. This process is shown in matlab notation.

value over a time lag T . If the feature value at frame n is given by xn, then the
corresponding delta feature will be ∆n = xn − xn+T . At the end of this fourth step,
we have N spectro-temporal delta features per frame.

5. Apply threshold. Each of the N delta features is compared to a threshold value of
0, which results in a binary value. Each of these binary values thus represents whether
the delta feature is increasing or decreasing over time (across the time lag T ). At the
end of the fifth step, we have N binary values per frame.

6. Bit packing. The N binary values are packed into a single 32-bit or 64-bit integer
which represents the hashprint value for a single frame. This compact binary repre-
sentation will allow us to store fingerprints in memory efficiently, do reverse indexing,
or compute Hamming distance between hashprints very quickly.

Figure 4.1 shows a summary of the hashprint computation process. The text above the
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boxes shows the dimension (per frame) at each stage of the process. The text below the
boxes provides additional clarifying information. The only part of this figure that still needs
explanation is how we learn the spectro-temporal filters that are applied in step 3. This will
be addressed in the next section.

4.3 Filter Learning Problem

The filters are selected to maximize the variance of the resulting spectro-temporal features,
while ensuring that these features are uncorrelated. The filter learning problem can be
formulated as a series of optimization problems, which are described below. Consider a vector
∈ RBw containing the spectrogram energy values for an audio frame and its neighboring
context frames, where w specifies the number of context frames and B specifies the number
of frequency bands per frame. We can stack a bunch of these vectors into a large matrix
A ∈ RM×Bw, where M corresponds (approximately) to the total number of audio frames in
a set of audio recordings. Let S ∈ RBw×Bw be the covariance matrix of A, and let xi ∈ RBw

specify the coefficients of the ith spectro-temporal filter. Finally, let N denote the number
of bits in the fingerprint. Then, for i = 1, . . . , N , we solve the following:

maximize xTi Sxi

subject to ‖xi‖22 = 1

xTi xj = 0, j = 1, . . . , i− 1.

(4.1)

Each resulting xi specifies the spectro-temporal filter weights corresponding to the ith fin-
gerprint bit.

Let’s unpack the above formulation. The first line can be summarized as “maximize
the variance.” To see this, note that the variance of the features Axi can be expressed as
1
M
‖Ãxi‖22, where the columns of Ã are zero mean. This objective is motivated by our design

principle of robustness. The first constraint simply says, “finite energy.” We could use a
number of different ways to constrain the energy, and we choose the L2 norm for reasons
that we will see shortly. The last constraint says, “uncorrelated filters.” This constraint
ensures that the filters are mutually orthogonal. This constraint is motivated by our design
principle of compactness (uncorrelated bits).

The optimization problem 4.1 is exactly the eigenvalue/eigenvector problem, where xi, i =
1, ..., N are the N eigenvectors of S with highest eigenvalue. The benefit of this formulation is
that it can be solved very efficiently using standard implementations. The eigenvectors, once
“reassembled” as eigenfilters spanning w context frames, are the spectro-temporal filters that
are applied in Step 3 of the fingerprint computation. These spectrotemporal filters yield the
spectrotemporal features with maximum variance, ensuring that the fingerprint bits will be
robust. The eigenvectors will also be orthogonal to one another, ensuring that the fingerprint
bits will be uncorrelated. One big advantage of this formulation is that it can be done in an
unsupervised fashion. We can thus design a robust fingerprint without labeled data.
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To summarize the filter learning problem, we first construct the data matrix A containing
spectrogram energy values from a set of audio data. We then compute the covariance matrix
of A, and then compute the eigenvectors of the covariance matrix. These eigenvectors specify
the spectro-temporal filters that we apply in the hashprint computation.

We will now turn our attention to an explanation and justification of why we use the
computation process in Figure 4.1.

4.4 Rationale of Design

In this section, we will revisit each of the six steps of the hashprint computation. This
time, however, we will focus on the rationale of each step, rather than the mechanics of the
computation.

1. Compute spectrogram. The first step is to compute a suitable time-frequency
representation of the audio signal. As mentioned previously, this time-frequency rep-
resentation can be chosen to suit the task at hand. The rationale for this first step
is to simply convert the time-domain signal into a representation where we can access
the relevant spectral information.

2. Collect context frames. Instead of only considering the spectrogram energy values
for the current audio frame of interest, we also consider the neighboring context frames
to its left and right. The purpose of this is to represent the audio in a higher dimensional
space, which allows for greater discrimination between data points than can be achieved
when only looking at a single audio frame. The purpose of this step is thus to make
our representation more discriminative.

3. Apply spectro-temporal filters. In the third step, we apply a set of spectro-
temporal filters at each frame in order to generate N spectro-temporal features. Note
that many standard feature representations are special cases of spectro-temporal fea-
tures. For example, MFCCs can be interpreted as spectro-temporal features that are
generated by applying a specific set of spectro-temporal filters to a log mel spectrogram.
In this case, the spectro-temporal filters only span a single audio frame, and the filter
coefficients are specified by the coefficients of the discrete cosine transform. Likewise,
chroma features can be interpreted as spectro-temporal features that are generated by
applying a specific set of spectro-temporal filters to a constant Q transform. Here, the
spectro-temporal filters again only span a single audio frame, and the filter coefficients
are selected to aggregate energy across musical octaves.

Rather than using a fixed set of spectro-temporal filters, as in the case with MFCC or
chroma features, we instead use filters that are learned and adapted to the data. As we
saw in the previous section, these filters are selected to capture directions of maximum
variance across the data. Also, rather than only focusing on a single audio frame, the
learned spectro-temporal filters span w audio frames.
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The rationale of this step is that it is generally better to use a feature representation
that is adapted to the data, rather than a fixed, hardcoded representation. At the same
time, we would like to avoid the hassle of annotating training data, so that the repre-
sentation can be learned on-the-fly in an unsupervised manner. These considerations
motivate the proposed filter learning problem discussed in the previous section. On a
practical level, then, this feature representation should not require any more effort on
the part of a researcher than using a standard feature representation like MFCC or
chroma, since the learning is done on-the-fly.

4. Compute deltas. We cannot simply threshold the spectro-temporal features them-
selves, because the resulting fingerprint would not satisfy one other important char-
acteristic: invariance to volume level. In order to work effectively in our use-case
scenarios, the fingerprints must be invariant to acoustic energy level. So, the same
audio signal attenuated or amplified should yield the same fingerprint values.

Computing delta features is one way to achieve volume-invariance. We threshold the
delta features at 0, so each bit encodes whether the spectro-temporal features are
increasing or decreasing in time (across a time lag T ). Note that this information is
invariant to volume level when we use a log-energy representation such as a log mel
spectrogram.1 In contrast, applying a threshold to the features themselves (rather than
the delta features) would not be invariant to volume level.

There are, of course, other ways to achieve volume-invariance. Perhaps the most
obvious way is to simply normalize features at every frame. Computing delta features
is a more effective way to achieve volume-invariance than (say) L2 normalization for
two reasons. First, it is computationally cheaper. Computing delta features simply
requires one additional subtraction per feature per frame, whereas normalizing the
spectral values in a set of context windows at each frame is much more expensive.
Second, the delta features are far more robust. Each delta feature can thought of as
the sum of two different variables, which effectively doubles the variance of the feature
and thus increases its robustness. We have verified this empirically in both of the two
scenarios explored in chapters 5 and 6.

There is a tradeoff in the selection of the time lag T . For very small T , the delta features
will have lower variance, since we are taking the difference between features that are
immediately adjacent in time (and thus highly correlated). A larger T will thus yield
a more robust fingerprint up until the point where the signal becomes decorrelated
with itself. On the other hand, a very large T results in a fingerprint that is not
very localized in time. So, the ideal T is the minimum time lag that ensures that the
underlying audio signal has become decorrelated with itself. The selection of T could
thus be determined empirically on-the-fly by measuring autocorrelation, or it could be
set to a fixed value based on a priori assumptions. For example, in the aligning meeting

1e.g. log(x[n])− log(x[n + T ]) = log(5x[n])− log(5x[n + T ])
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Step Rationale
Computing spectrogram access spectral info
Collect context frames discriminative
Apply spectro-temporal filters robust
Compute delta volume-invariant
Apply threshold balanced
Bit packing compact

Table 4.1: The rationale behind each step of the hashprint computation process.

recordings scenario in chapter 5, we select a value of T based on typical speech rates
in American English.

5. Apply threshold. The threshold is applied to the delta spectro-temporal features.
Unless the audio is continuously increasing or decreasing in volume, these delta features
will have a roughly symmetric distribution centered around 0. Since we would like to
ensure that each bit is balanced, we set all of the thresholds to the median value of
0. This also has the added advantage that the threshold value does not need to be
learned.

6. Bit packing. The last stage packages the N binary values into a 32-bit or 64-bit
integer, depending on the computer architecture of the server or machine running the
application. This representation has the benefit of being compact in memory, and it can
also be manipulated easily as a built-in representation. For example, we can directly
use the integer representation as a key in a hash table, or compute the Hamming
distance between two hashprints using logical bitwise operators.

Before moving on, it is useful to summarize what each of the six steps is doing. The
first step transforms the audio signal into a time-frequency representation that allows us to
access relevant spectral information. The second step incorporates context frames in order
to make the representation more discriminative. The third step uses the spectrogram energy
information and generates a set of uncorrelated random variables whose distributions have
maximum variance (which correlates with robustness). The fourth step computes delta fea-
tures in order to ensure a volume-invariant representation. The fifth step applies a threshold
at the median of the distribution in order to generate balanced bits. The sixth step then
packages the binary values in memory in a compact way. Table 4.1 shows a summary of
these six steps, along with a brief description of what each step accomplishes.
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4.5 Relation to Previous Work

The design of audio hashprints uses ideas and techniques that are drawn from a rich literature
in audio fingerprinting, cover song detection, machine learning, and other related fields. In
this section, we will explain how various aspects of the design draw inspiration from and fit
into the context of previous work. We will approach this from five different angles.

Continuous vs Discrete

One key design decision is using a binary (discrete) representation of audio. Binary repre-
sentations of audio have been explored extensively in the audio fingerprinting literature, as
we saw in table 1.1. They are an excellent design decision for fingerprinting applications
because they are compact in memory and thus allow for efficient storage of large databases,
and they are also suitable for use with indexing techniques.

Threshold-Based vs Value-Based

In section 1.3 we discussed the difference between threshold-based and value-based methods.
Recall that a threshold-based method is one in which each bit of the representation is derived
by computing some feature of interest and then applying a hard threshold. A value-based
method is one in which some features of interest are computed, and the values of the features
themselves are directly encoded in the binary representation. One very commonly adopted
value-based approach is to encode the location of maxima such as spectral peaks. Given the
above schema, it is useful to point out that hashprints are an example of a threshold-based
approach where the features of interest are delta spectro-temporal features.

Design Method

Another way that we clustered fingerprint representations in section 1.3 was by their design
method: manual design, supervised learning, or unsupervised learning. As we saw from table
1.1, most representations are manually designed, a few incorporate supervised learning, and
a few combine manually designed features with unsupervised techniques.

The main contribution of audio hashprints to the fingerprinting literature is that they
provide a highly adaptive method for learning a binary fingerprint representation in an
entirely unsupervised manner. This characteristic can be very desirable in situations where
labeled training data may not be available or is difficult to obtain. In chapters 5 and 6,
we will investigate two such scenarios. In a live song identification scenario (chapter 6),
for example, learning the representation in an unsupervised manner means that the binary
representation can be tailored to each artist’s music without having to collect and annotate
training data for each artist.
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There are other works (not in the audio fingerprinting literature) that explore learning
binary representations in an unsupervised manner using deep neural networks. Because this
is an important class of approaches, these will be discussed in a separate subsection below.

Shingling & Hashing

Another key design decision is to have each hashprint describe a relatively long temporal
context containing multiple audio frames. Using multiple context frames in the manner
described above is often referred to as shingling [11] or time delay embedding [86]. By
considering a much higher dimensional space, this technique allows for greater discrimination
on a single feature vector than could be achieved with only a single audio frame. Not
surprisingly, it has proven to be very useful in handling cover song variations [11][86][85][50].

The hashprint uses hashing techniques to convert each audio shingle into a set of binary
values. Given an audio shingle represented as a point in some high-dimensional space, it
projects the point onto a direction of maximum variance, and then thresholds the projection
to generate a bit.2 In the hashing literature, this technique is called spectral hashing [100].
It can be thought of as a variant of locality sensitive hashing [15], where the projections are
done in a data-dependent way instead of projecting onto random directions.

Hashprints can thus be thought of as applying spectral hashing to a shingle representa-
tion, along with a slight modification (computing delta features) to ensure volume-invariance.

Relation to DNNs

Given the recent surge of interest in deep neural networks (DNNs), it is instructive to con-
sider how hashprints relate to such work. In the machine learning community, many recent
works have explored binary encodings learned through DNN architectures [65][78][52]. In
the music information retrieval community, Raffel and Ellis [73] propose such an approach
for matching MIDI and audio files. Compared to these approaches, hashprints offer two
potential advantages in a scenario like (say) live song identification. One advantage is that
it learns the binary representation in an unsupervised manner. This is particularly helpful
for a scenario like this, where collecting training data and annotating ground truth would be
very time-consuming and laborious. The second advantage is that it requires relatively little
data to learn a reasonable representation. This allows hashprints to “divide up” the search
space in a way that is specific to the scenario at hand, even if only a small amount of data
is available. In cases like these, a deep autoencoder [37][16] may not have sufficient data to
converge to a good representation. So, our method straddles two extremes: it is adaptive to
the data (unlike hardcoded, fixed representations), but it works well with small amounts of
data (unlike representations based on DNNs).

Hashprints are similar to DNNs in that both are distributed representations. In fact,
hashprints can be considered a single layer neural network, where each output node corre-

2More precisely, the hashprint thresholds the delta of the projection. The main text is left as is to make
the connection to spectral hashing more clear.
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sponds to a spectro-temporal filter, the weights for each output node correspond to the filter
coefficients, and the output nonlinearity is a hard threshold.3 So, in a sense, hashprints can
be interpreted as a neural network that is tuned to work well with small amounts of data
and forced to obey certain constraints (e.g. uncorrelated and volume-invariant).

4.6 Recap

In this chapter, we have introduced audio hashprints. We describe the motivation behind the
representation, the mechanics of computing hashprints, the formulation of the unsupervised
filter learning problem, the rationale of the hashprint design, and the relationship of various
aspects of the hashprint design to previous work. Having defined what audio hashprints are,
we will now see how hashprints are actually used in practice.

3More precisely, the weights for each output node will reflect the filter coefficients for the current frame
and the filter coefficients for the corresponding delta frame. The main text is left as is for clarity of illustration.
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Chapter 5

Application: Aligning Meeting
Recordings

Now that we have introduced and explained the audio hashprint representation, we are
ready to see how it can be used in practice. Our first application scenario is aligning meeting
recordings. We will first introduce the problem statement (section 5.1), discuss relevant
prior work (section 5.2), describe the proposed system (section 5.3), show experimental
results (section 5.4), perform various analyses of interest (section 5.5), and then summarize
several practical takeaway lessons (section 5.6).1

5.1 Problem Statement

More and more, mobile computing devices are carried by their users at all times, including
when they engage in meetings with others. In this chapter we explore an application scenario
in which multiple mobile devices could be used to generate a reasonably high-quality record-
ing of a meeting, offering a low-cost alternative to potentially expensive recording equipment
or software. In this scenario, meeting participants would use their mobile phones, tablets
or laptop computers as audio recording devices in an unsynchronized manner. No matter
when they arrive at the meeting, participants place their mobile devices on the table in front
of them and begin recording. Assume person A arrives at time t = 0 minutes and begins
recording. Person B arrives at time t = 2 minutes. Person C joins remotely via skype at
t = 5 minutes, and he too simply places his mobile phone in front of him at his remote
location. Person D arrives late at time t = 25 minutes and begins recording. Some people
leave the meeting early; others stay late. At the end of the meeting, everyone has an audio
recording. We would like to take these partial, unsynchronized, overlapping audio recordings
and generate a single high-quality “summary” recording of the entire meeting. This chapter
describes a method for accomplishing this in an efficient and robust manner.

1Much of the work in this chapter was published in a journal article entitled “Robust and Efficient
Multiple Alignment of Unsynchronized Meeting Recordings” [96].
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Figure 5.1: Graphical depiction of the temporal alignment problem.

The main problem that needs to be addressed in this application scenario is to align the
audio files with each other in time, as shown in figure 5.1. Once the audio files are aligned in
time, we can generate a summary recording by simply averaging the audio channels or using
a blind beamforming approach. Note that the term “alignment” often refers to aligning
text and audio (e.g. forced alignment), whereas here we are aligning audio to audio. No
transcriptions are necessary for this type of alignment.

Note that explicit timestamping of recordings would not be a reliable way to align files.
Clocks on mobile devices are not typically synchronized, and might not even record time at
the required precision (on the order of milliseconds).

The most straightforward content-based alignment method is to use a simple cross-
correlation method. While cross-correlation might work for aligning audio files with small
time offsets, it may be prohibitively expensive for situations where the recordings are an hour
long and the time offset might be 25 minutes, as in the example above. Additionally, simple
cross-correlation alone will not handle transitive relationships: if A and B overlap, and B
and C overlap, but A and C do not overlap, we should still be able to align all three using the
information given. One can immediately come up with several ideas to improve the efficiency
of a cross-correlation approach: performing the cross-correlation on FFT data rather than
time samples, using only a segment of audio to compute the correlation estimates, etc. This
paper represents the development of one such line of thought taken to its logical conclusion.

This chapter describes an approach to the multiple alignment problem that utilizes the
hashprint representation described in chapter 3. The fact that hashprints are learned in an
unsupervised fashion makes it possible to learn the fingerprint design on-the-fly, so that the
fingerprint representation is adapted to each alignment scenario (i.e. group of audio files to
be aligned) rather than being fixed based on a global training set. One significant benefit
of this approach is that, because the fingerprint design is learned on-the-fly, our system
requires little or no tuning. The robustness of the fingerprints can be adjusted very easily
by tuning two hyper-parameters, according to the amount of computation we are willing to
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perform. Once the audio is represented in a binary fingerprint representation, the alignment
is accomplished using an iterative, greedy two-stage alignment algorithm which performs a
rough alignment using efficient indexing techniques, and then refines the alignment estimate
based on Hamming distance.

5.2 Related Work

Our approach for the alignment of multiple overlapping meeting recordings grows out of
the development of audio fingerprinting techniques. These audio fingerprinting techniques
largely developed in the context of music identification and online copy detection, which we
discussed in chapter 1. In this section, we point out other applications of audio fingerprinting
that are relevant to the task at hand.

Audio fingerprinting techniques have been applied to a variety of other applications be-
sides music identification and copy detection. These include detecting repeating objects in
audio streams [48][27][72][35][66], recognizing a TV channel in real-time [7], synchronizing
two different versions of a movie [19], of two TV audio streams [18], or of a music video
and a studio album track [56], and performing self-localization of multiple recording devices
[38]. Of particular interest to the aligning meetings scenario, several works have explored
the synchronization of consumer videos of the same live event. Shrestha et al. [88] apply the
Philips fingerprint to match pairs of video in order to synchronize several video recordings
of the same live event. Kennedy and Naaman [46] likewise apply the Shazam fingerprint
in a pairwise manner to synchronize videos of live concert recordings. Su et al. [93], Bryan
et al. [8], and Six and Leman [90] extend the work of Kennedy and Naaman by applying
additional post-processing steps such as clustering or a more refined alignment.

The work described in this chapter explores a specific application which has hitherto
not been studied: aligning unsychronized audio recordings of meetings, such as might be
collected from participants’ personal devices. This application scenario presents some unique
challenges and requirements which led to the development of the hashprint design. While
this dissertation presented hashprints in a previous chapter for pedagogical reasons, the
hashprint design was actually developed in the context of solving the meeting alignment
problem.

The primary contribution of our work on aligning meeting recordings is developing a
method to learn an audio fingerprint design in an unsupervised manner. This allows the
fingerprint representation to be adaptive to each alignment scenario (i.e. a set of meeting
recordings that need to be aligned). Rather than fixing a fingerprint representation based
on a separate training set, the fingerprint design is instead learned on-the-fly in a completely
unsupervised fashion and adapted to perform well on the data at hand. Many fingerprint
approaches are manually designed or learned in a supervised manner, but, to the best of
our knowledge, this is the first entirely unsupervised adaptive fingerprinting method. This
method requires very little data to train (on the order of seconds of speech), is efficient to
compute, and works without any labeled data, which allows us to tailor the fingerprint design
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Figure 5.2: Block diagram of the hashprint computation for the aligning meeting recordings
scenario.

to the particular characteristics of each alignment scenario. This method is, of course, the
hashprints that we have described in chapter 3.

It is important to note that our current problem should not be confused with research
work on microphone arrays. Research on microphone arrays focuses on small time lags be-
tween microphone elements in order to infer source location or inform beamforming weights.
These works typically assume that the microphone elements record audio in a coordinated
manner or are approximately synchronized, so that simple cross-correlation over small time
lags can be used to align the recordings. Our focus here is on aligning audio files which
might be offset by an arbitrary amount of time (e.g. 30 minutes), or may not be directly
overlapping at all (i.e. A overlaps with B, B overlaps with C, but A and C do not overlap).

5.3 System Description

The proposed system will be described in two parts: the hashprint representation and the
alignment algorithm.

Hashprint Representation

We explained how hashprints are computed in chapter 4. Here, we revisit that explanation,
filling in each step with details that are specific to this application. The six steps are
described below.

1. Compute spectrogram. Because the underlying source signal in a meeting scenario
is speech, we compute a log mel spectrogram for the time-frequency representation.



CHAPTER 5. APPLICATION: ALIGNING MEETING RECORDINGS 43

We used 100 ms windows in time with 10 ms hop size to generate a linear spectrogram.
We then integrated over 33 Mel frequency bands between 200Hz and 2000Hz and took
the logarithm of band energies. These settings are similar to those used in several
previous audio fingerprinting works [32][45][3][2].

2. Collect context frames. When computing the fingerprint at a particular frame, we
consider w = 32 frames of context. So, at each frame we are working with a vector
of dimension 33w = 1056. In section 5.5, we will explore the effect of w on system
performance.

3. Apply spectro-temporal filters. We compute a set of N = 16 features at each
frame by applying N different spectrotemporal filters. So, each feature is a linear
combination of the log Mel spectrogram values for the current frame and surrounding
context frames. As pointed out in chapter 4, MFCCs are a special case of spectrotem-
poral filters in which the filter coefficients match the coefficients of the discrete cosine
transform. Rather than using MFCCs, however, we use filters that capture the direc-
tions of maximum variance, as explained in section 4.3. In section 5.5, we will explore
the effect of N on system performance.

4. Compute deltas. For each of our N features, we compute the change in the feature
value over a time lag T . If the feature value at frame n is given by xn, then the
corresponding delta feature will be ∆n = xn − xn+T . As explained in section 4.4,
we would like the choice of T to ensure that the underlying audio signal has become
decorrelated with itself. Given that the underlying source signal will be speech and that
typical speech rates in American English range between 110 - 150 words per minute, we
select T = 50 frames (.5 seconds) as a conservative value that ensures decorrelation. It
should be noted, though, that the value of T could be determined empirically on-the-fly
by measuring autocorrelation, if necessary.

5. Apply threshold. Each of the N delta features is compared to a threshold value of
0, which results in a binary value. These bits represent whether the N features are
increasing or decreasing across the time lag T .

6. Bit packing. The N binary values are packed into a single 32-bit integer which
represents the fingerprint value for a single frame. This compact binary representation
will allow us to store fingerprints in memory efficiently and to do reverse indexing in
order to quickly look up fingerprint matches.

Figure 5.2 shows a block diagram of the hashprint computation process. The text above
the boxes shows the dimension (per frame) at each stage of the process. The text below the
boxes provides additional clarifying information. Note that the values shown in figure 5.2
refer to the “default” parameter settings for the hashprint system shown in the results section.
We will explore the effect of several of these system parameters on system performance in
section 5.5.



CHAPTER 5. APPLICATION: ALIGNING MEETING RECORDINGS 44

Figure 5.3: Illustration of example problem after step 1. Hashprint values are indicated as
different colored boxes. For clarity, only some selected hashprint are shown. A reverse index
is created on the hashprint values, and one of the recordings is selected as an anchor file to
provide a time frame of reference.

Alignment Algorithm

In this subsection, we describe the algorithm used to align the multiple audio recordings
in time. Consider the graphical depiction of the problem in Figure 5.1. Here, we see four
different audio recordings denoted by A, B, C, and D. Person A begins recording first (t = 0),
person B begins recording 180 seconds into the meeting, and so forth. Note the nontransitive
relationships among the files: A overlaps with B, and B overlaps with C, but A and C do
not overlap. It will be important for our algorithm to be able to handle these nontransitive
relations, rather than simply comparing files in a pairwise manner.

The alignment algorithm has four steps, each described below. In order to make the
explanation more clear, we also include illustrations on a sample problem in figures 5.3, 5.4,
5.5, and 5.6.

• Step 1: Initialization. The initialization step has four components. First, we learn
the spectro-temporal filters for the hashprint design using the formulation described
in section 4.3. This determines the N spectro-temporal filters that are adapted to
the data at hand. Second, we use the learned filters to compute hashprints on all the
audio recordings in the current alignment scenario. In the example shown in Figure 5.1,
this means extracting hashprints from recordings A, B, C, and D. Third, we create a
database which contains triples of the form (hp, fileid, offset), where hp specifies the
32-bit hashprint value, fileid specifies the audio recording, and offset specifies the
frame offset relative to the beginning of the audio recording. To make the hashprint
lookups more efficient, we also create a reverse index which maps hashprint values
to the list of triples with that hashprint value. Fourth, we select one of the audio
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Figure 5.4: Illustration of example problem after step 2. Using the anchor file as the first
query, we accumulate a histogram of the time offsets between matching hashprints. The
histogram bin with the highest count indicates which recording has the strongest match, and
it also indicates the rough relative alignment. In step 3, this rough alignment is adjusted
using a more fine-grained alignment.

recordings to serve as our “anchor” file. In our experiments, we selected the anchor
file to be the audio recording with highest average energy. All other time indices will
be computed relative to the beginning of this anchor file. We denote this time index
as the universal time index. The time scale in Figure 5.1 shows the universal time
index when recording A is selected as the anchor file. Figure 5.3 shows the state of the
alignment system after this step has been completed. Note that hashprint values are
represented graphically as different colored boxes, and that only selected hashprints
are shown for clarity of illustration.

• Step 2: Find the best match. Using the anchor file as a query, we find the audio
recording that has the strongest match. We use the method proposed in the Shazam
algorithm [99], which is based on histograms of time differences. A brief explanation
is given here, and the reader is referred to the Shazam paper for more details. For
every hashprint h at time offset offsetquery in the query file, we look up the list of
matching hashprint triples (h, Ui, offsetUi

) in the database, where Ui, i = 1, 2, . . . , k
is the fileid for one of the k currently unaligned audio recordings. If the query file
and an unaligned file Ui overlap in time, we expect there to be a lot of matching
hashprint triples with a fixed time difference ∆t = offsetquery − offsetUi

. So, we can
estimate the true alignment between the query and Ui by accumulating a histogram of
the matching hashprint time differences ∆t, and then scanning the histogram counts
for a peak. If there are a lot of matching fingerprints at a particular time offset ∆t,
then ∆t indicates the relative alignment between the query file and the unaligned audio
recording. Note that there may be many spurious hashprint matches throughout the
database, but it is very unlikely to have a lot of hashprint matches aligned in time. In
this way, we accumulate a histogram of time offsets for each unaligned audio recording
Ui, and we take the maximum bin count of each histogram as the match score for
Ui. The unaligned audio recording with the highest match score is identified as the
best match. Figure 5.4 shows the state of the alignment system after step 2 has been
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Figure 5.5: Illustration of example problem after repeating steps 2 and 3. After each file
is aligned, we repeat the process using the most recently aligned file as the new query.
We can again accumulate a histogram of matching hashprints to determine the strongest
match among the remaining unaligned files, and then refine our estimate using a fine-grained
alignment.

completed. Note that in this toy example, channel B has the strongest match with 4
matching hashprints at a relative offset of ∆B.

• Step 3: Fine alignment. We know the approximate offset ∆t between the query
file and the best match. However, this offset is not very precise, since its precision is
limited by the width of the histogram bins. Also, since a fingerprint match requires
all N fingerprint bits to be correct, the match score ignores a lot of more fine-grained
information about fingerprint agreement. For these reasons, we do a fine-grained align-
ment between the query file Q and U∗, the unaligned audio recording with the best
(rough) match score. We consider a range of possible offsets [∆t− B,∆t + B], where
B represents a search window size in frames. For each possible offset, we compare the
corresponding hashprints in Q and U∗ and determine what percentage of the hashprint
bits agree. Note that here we are comparing individual hashprint bits, which allows
us to detect partial matches, unlike in the best match step that compares only the
full 32-bit hashprint values. These bit comparisons can be computed very efficiently
using bit arithmetic, and they allow us a much more precise estimate of hashprint
agreement. The offset ∆t∗ which yields the highest hashprint agreement is selected,
and it specifies the starting time of U∗ on the universal time index. U∗ is added to the
list of aligned files.2 After this third step, the state of the alignment system will look
exactly like figure 5.4, except that the relative alignment ∆B will be replaced with a
more fine-grained alignment estimate ∆B∗.

• Step 4: Repeat steps 2 and 3. We repeat step 2 using the most recently aligned
file as the query file. For all aligned files, frame offsets are adjusted to represent
the universal time index. In other words, hashprint tuples (hp, fileid, offset) will
effectively become (hp, fileid, offset + ∆t∗). When accumulating histogram counts

2The method described above is useful for finding an approximate alignment on the order of the frame
size (10 ms) very efficiently. If even finer precision is needed, one could do an additional cross-correlation in
the time-domain around the approximate alignment.
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Figure 5.6: Illustration of example problem after all files have been aligned. The final relative
alignment estimates are given by ∆B∗, ∆C∗, and ∆D∗.

for the current query file, we retain the histograms from previous steps and simply
add additional counts. In this way, we accumulate evidence from all of the previously
aligned files to help match unaligned files. This means that when we align the last
recording (which will be the recording that had the lowest match scores), we will have
the most data and evidence to help determine the optimal alignment. Steps 2 and 3
are thus repeated in like fashion until all files have been aligned. Figure 5.5 shows
the state of the alignment system after steps 2 and 3 have been repeated to align
channel C. Figure 5.6 shows the final state of the alignment system after all recordings
have been aligned. Note that channel D has two hashprint matches in its histogram
of offsets. Even though channel D only has one matching hashprint with channel A
and one matching hashprint with channel C, the histogram aggregates the cumulative
evidence from all previously aligned files. The final relative alignment estimates are
given by ∆B∗, ∆C∗, and ∆D∗.

At the end of this process, we have estimates of the relative alignment among all the
audio recordings. Figure 5.1 shows a possible representation of the alignment estimates after
the entire alignment process has been completed.

5.4 Evaluation

The evaluation of the proposed system will be explained in three parts: the data, the eval-
uation metric, and the experimental results.

Data

To evaluate our system, we ran experiments on data extracted from the ICSI meeting corpus
[43]. The original data set consists of multi-channel audio recordings of 75 real research group
meetings, totaling approximately 72 hours of meetings. For each meeting, participants wore
headsets which captured audio through close-talking microphones. Several tabletop micro-
phones spread across the conference room table also collected audio data. These tabletop
microphones included four high-quality omnidirectional microphones and two low-quality
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microphones, each mounted on a small block of wood. The meetings ranged in length from
17 to 103 minutes, and the number of simultaneous audio channels ranged from 9 to 15
channels. The data set also contains manual annotations of what people said, who spoke,
and when they spoke.

The ICSI meeting corpus provides useful source material that we can use to generate re-
alistic query scenarios for the task at hand. The corpus has three important characteristics
that make it suitable for our experiments. First, the data contains multiple synchronized
recordings. The ICSI data set contains simultaneous audio recordings that are synchronized,
which gives us ground truth alignments.3 Second, the data has microphones placed through-
out the conference room. In a realistic scenario where a group uses their portable devices
to record a meeting, there will be diversity in microphone location, so this is an important
characteristic to maintain. Third, the data contains a variety of microphone characteristics.
In our scenario of interest, users would have different types of portable devices which would
have different microphone characteristics, so diversity in microphone characteristics is an im-
portant aspect. The meeting data contains close-talking and far-field microphones, as well as
both high-quality and low-quality microphones. It is useful to point out that data collected
from a microphone array generally does not satisfy characteristics 2 and 3 above. While
using actual data with mobile phones would be ideal, coordinating the collection of such a
data set in sufficient quantity is outside the scope of this work. For the reasons described
above, the ICSI meeting corpus provides good source material for our experiments.4

We generate each alignment scenario as follows. Given the audio data for a single meeting,
we randomized the ordering of audio channels and performed the following steps on each
channel in the random order.

1. Select an audio segment length from a uniform distribution [0, T ]. In our experiments,
we selected T to be 10 minutes.

2. Randomly select a time interval of this length from the full audio recording.

3. Verify that the selected audio segment has 30 seconds or more of temporal overlap
with at least one other previously selected audio segment. If it does not, repeat Steps
1 and 2 until this condition is met.

In this way, each audio channel generates a randomly chosen audio segment, and every audio
segment is guaranteed to have at least 30 seconds of overlap with at least one other audio
segment. Since the above process is probabilistic, we can generate multiple query scenarios
from a single meeting. We generated 10 query scenarios from each of the 75 meetings,

3Due to issues in the recording software, there were slight variations in the alignment of the individual
audio channels. These misalignments are on the order of milliseconds, which is tolerable for the range of
precision that we will study in this chapter.

4The AMI Meeting Corpus [10] would be another data set that is suitable for our study. We chose to use
the ICSI meeting corpus because the meetings are not scripted, and there is greater diversity in the number
of meeting participants and microphone types.
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resulting in a total of 750 query scenarios and approximately 8500 alignments. We used
37 of the meetings for “training” the system, and the other 38 meetings for testing. Since
our fingerprint design is entirely learned on-the-fly for each alignment scenario, there is no
supervised training to do. The “training” set was primarily used for system debugging and
for learning appropriate values for a few system hyper-parameters such as the histogram bin
width.

Note that the above process of generating queries is probably more difficult and challeng-
ing than a typical use case scenario, since users would probably all record a very substantial
chunk of the meeting, with an occasional user leaving the meeting early or entering very
late. However, generating more difficult alignment scenarios with shorter audio segments
and shorter amounts of temporal overlap will enable us to better characterize and test the
robustness of our system.

Evaluation metric

We evaluate our proposed system by measuring the robustness and accuracy of the align-
ments in the following manner. Consider a single alignment scenario, such as the one depicted
in Figure 5.1. If we use channel A as an anchor file, we can compute the time offset of all
other files relative to A. These time offsets are denoted in Figure 5.1 as ∆B, ∆C, etc. Our
alignment system will produce a set of hypotheses ∆Bhyp,∆Chyp, · · · for each alignment sce-
nario. Since we generated the alignment scenario ourselves, we also know the true offsets
∆Bref ,∆Cref , · · ·. We then compare the estimated offset for each audio recording to the
true offset. Let e denote the difference between the estimated offset (e.g. ∆Bhyp) and the
true offset (e.g. ∆Bref ). If |e| > γ, where γ specifies an error tolerance, we consider that
particular alignment to be incorrect. We can compute the fraction of alignments that are
correct at a fixed error tolerance. By sweeping across a range of γ values, we can characterize
the tradeoff between accuracy and error tolerance.

Note that an alignment scenario with K audio recordings will generate K−1 predictions
that are either correct or incorrect. Our accuracy versus error tolerance curves aggregate the
results of these predictions over all alignment scenarios. In addition to the accuracy versus
error tolerance tradeoff, we can also succinctly characterize the performance of a system by
looking at the accuracy at a fixed error tolerance.

It is useful to point out that the anchor file for scoring and the anchor file in our alignment
system (as described previously) are totally independent concepts. Our evaluation metric
should not depend on our selection of scoring anchor file, since this selection is arbitrary.
Accordingly, for each alignment scenario, we consider all possible channels as the scoring
anchor file, and choose the one which yields the highest accuracy. This step is necessary to
prevent an unlucky selection from unfairly penalizing the results. For example, if the scoring
anchor file is aligned incorrectly, the N − 1 predicted alignments will all be incorrect, even
if the other N − 1 files are aligned correctly amongst themselves. By considering all possible
scoring anchor files, this situation would (correctly) yield N − 2 correct alignments and 1
incorrect alignment.
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Results

In this section we present experimental results for our proposed system. As a baseline com-
parison to our adaptive fingerprint design, we also ran experiments with five other fingerprint
designs: the Philips fingerprint [32], the Shazam fingerprint5 [99], the boosted fingerprints
proposed by Ke et al. [45], the MASK fingerprint [2], and the Panako fingerprint [89]. The
Philips and Shazam fingerprints are the most well-known approaches in the literature, the
work by Ke and colleagues is one of the most highly cited works among those that incor-
porate boosting into the fingerprint design process, and the MASK and Panako fingerprints
are relatively recent works that extend previous approaches to provide greater robustness to
changes in pitch and/or tempo. Thus, these five fingerprint designs span a range of different
approaches and include both well-known and recent works.

Figure 5.7 shows the tradeoff between alignment accuracy and error tolerance for the six
different fingerprints. To make the comparison as fair as possible, all six fingerprints were
evaluated using the same cumulative alignment algorithm. However, there is one important
difference to mention. The fine alignment step described in section 5.3 assumes that finger-
prints are computed at every time frame and that the Hamming distance between fingerprints
corresponds to a measure of dissimilarity. For the three approaches that do not satisfy these
assumptions – Shazam, MASK, and Panako – the fine alignment step was omitted. For
the experiments, we used the default parameter settings in the provided implementation or
reference paper. The proposed adaptive fingerprint in Figure 5.7 uses 16 bits and 32 frames
of context.6 The ordering of the legend corresponds to the ordering of performance at 100ms
error tolerance.

There are three things to notice about Figure 5.7. First, there are two separate dimen-
sions along which we can measure the performance of a fingerprint design: precision and
robustness. Note that precision has several meanings in different contexts (e.g. precision
and recall, bit precision, etc.), and here we use precision to describe how precisely in time
a fingerprint can localize a segment of audio. In figure 5.7, precision refers to the error
tolerance at which the performance curve levels off. Robustness, on the other hand, refers
to the accuracy at which the curve levels off. It is important to point out that these two
dimensions are not necessarily correlated. Some fingerprints have high precision but low
robustness, such as the Philips fingerprint. Other fingerprints have high robustness but low
precision, such as the Shazam and Panako fingerprints. Both dimensions are important to
consider in evaluating the effectiveness of a fingerprint design.

Second, the relative performance of the proposed system is very good. Among the six
fingerprint designs that were evaluated, the adaptive fingerprint has the best performance
both in terms of precision and robustness. The adaptive fingerprint is approximately tied
with the Philips fingerprint for highest precision – they both level off at an error tolerance of
around 50 ms. It is also slightly more robust than the three other highly robust fingerprints:
Shazam, MASK, and Panako. It is interesting that all three of these other approaches level

5For the Shazam fingerprint, we used the implementation provided by Dan Ellis [21].
6The choice of 16 bits is discussed in Section 5.5.
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Figure 5.7: The tradeoff between accuracy and error tolerance for six different fingerprints.
The ordering of the legend corresponds to the performance ordering at 100 ms error threshold.

off at approximately the same accuracy, perhaps because all three approaches focus on identi-
fying the location of spectral peaks. While different fingerprints may offer different tradeoffs
between precision and robustness, the decision here is clear: the adaptive fingerprints are
best along both dimensions.

Third, the absolute performance of the proposed system is very good. Beyond simply
performing well relative to other fingerprints, the hashprint has very good absolute perfor-
mance numbers. As seen in Figure 5.7, the adaptive fingerprint achieves an accuracy of
99.4% for 100 ms error tolerance. The errors from this system generally came from close-
talking microphone channels that contained only silence (e.g. the channel was not used or
the person was silent) or local noise (e.g. the person wore the headset too closely and the
microphone picked up their breathing patterns). Furthermore, we can improve the robust-
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ness of the alignment even more (if needed) by providing more context information to the
hashprint and by reducing the number of fingerprint bits in the lookup. We will explore the
effect of these two factors on fingerprint robustness in the analysis section. We simply note
here, however, that the proposed system works very reliably and robustly.

5.5 Analysis

In this section we will investigate and answer six questions of interest. These investigations
will develop intuition and understanding of the inner workings, capabilities, and limitations
of the proposed alignment system.

Effect of Number of Lookup Bits

The first question we will answer is, “How does the number of bits in the hashprint repre-
sentation affect its robustness?” In many other works, fingerprints are often characterized
by 32 bits so that each fingerprint can be represented compactly as a single 32-bit integer.
Here, we investigate how the number of bits affects robustness.

Before presenting any experimental results, we can approach the question from a theoret-
ical standpoint. Note that using a higher number of lookup bits results in higher specificity
but lower accuracy. To see this, consider a 32-bit fingerprint whose bits are uncorrelated
and balanced (each bit is 1 half the time and 0 half the time). If each bit independently has
a α = 90% probability of being correct given a noisy true match, then the fingerprint would
be correct (.9)32 ≈ 3.4% of the time. When compared to a randomly selected fingerprint,
we would expect a random match approximately 1

232
of the time. This corresponds roughly

to one spurious match for every 10, 000 hours of audio. Clearly, this is far more specificity
than we need for our application of interest, which involves a few tens of hours of audio at
most. Now consider a 16-bit fingerprint in the same hypothetical scenario. This fingerprint
would be correct (.9)16 ≈ 18.5% of the time, and it would have roughly one spurious match
for every 10 minutes of audio. This is a much more reasonable choice for our application of
interest. The tradeoff essentially comes down to this: reducing the number of lookup bits by
1 increases the fingerprint true match accuracy by a factor of α (which was .9 in the example
above) but also increases the number of spurious matches by a factor of 2.

Now that we know what the results should look like, we present our experimental results
investigating the effect of the number of lookup bits. Figure 5.8 shows the accuracy (at a
fixed 100 ms error tolerance) of the hashprint for three different lookup key sizes: 16, 24, and
32 bits. We did not run experiments with an 8-bit lookup since processing the large number
of spurious matches would result in very long run times. Each group of bars compares the
effect of lookup key size on a hashprint with a fixed amount of context, where we consider
2, 8, and 32 frames of context information.

As we expect, reducing the number of fingerprint lookup bits improves system accuracy.
This improvement is dramatic for the Philips fingerprint, since the original 32-bit fingerprint
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Figure 5.8: Determining the effect of the number of fingerprint lookup bits. The leftmost
group shows the performance of the Philips fingerprint with a 16-, 24-, and 32-bit lookup.
The three rightmost groups show the same comparison for the adaptive fingerprints with 2,
8, and 32 frames of context.

leaves a lot of room for improvement. For the more robust hashprints, there is still a clear
but less dramatic improvement, since the results are nearly saturated already. We can also
see the effect of context from this figure, but we will defer discussion of this until a later
analysis subsection.

Effect of Overlap

The second question we will answer is, “How much temporal overlap is required to correctly
align files?” This question will help us understand the conditions necessary to align recordings
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correctly in meeting scenarios.
To answer this question, we created a slightly different experimental setup in order to

isolate the effect of temporal overlap. This modified setup makes two changes to the main
experimental setup described previously. First, only two randomly selected channels (rather
than all channels) are used to generate each query scenario. This simplifies the setup and
allows us to focus on the effect of the amount of overlap between two recordings. Since close-
talking microphones often contain extended amounts of silence and we will be considering
short amounts of overlap (in the range of a few seconds), we only considered the six tabletop
microphone channels for these experiments. Second, we deterministically control the lengths
of the two audio segments rather than selecting the lengths randomly as in the previous
experiments. Specifically, one channel is selected to be the reference channel and is kept in
its entirety (i.e. the entire original audio recording is used). The other channel is selected to
be the query, and an N second segment is randomly selected from that channel. Thus, we are
given an N second query from one tabletop microphone and we are trying to identify where
in the meeting the query occurs in a different tabletop microphone. We can then measure
how our accuracy of alignment depends on the length of query. Note that the meetings in
the ICSI meeting corpus are typically around an hour long, so with an error tolerance of 100
ms the accuracy of random guessing would be about .006%.

Figure 5.9 shows the results of our overlap experiments. Each curve shows the effect of
query length on the alignment accuracy at a fixed 100 ms error tolerance. Each point on
the curve represents the accuracy averaged over approximately 1100 queries. The top three
curves correspond to the hashprints with 2, 8, and 32 context frames, and the lowest curve
corresponds to the Philips fingerprint.

There are two things to notice about the results in Figure 5.9. First, there is a dramatic
improvement in using hashprints rather than the Philips fingerprint. For 15 second queries,
for example, the hashprints have alignment accuracies of 94% and higher, while the Philips
fingerprint has an accuracy of 14%. Second, using more context frames improves alignment
robustness and shortens the minimum required temporal overlap. Note that the amount
of temporal overlap needed to achieve saturated performance decreases as we include more
and more context. With 2 context frames, we need about 30 seconds of overlap. With
8 context frames, this number drops to about 15 seconds. With 32 frames of context, 10
seconds of overlap is sufficient to reliably ensure correct alignment. These numbers assume
typical meeting dynamics (i.e. the overlap will contain natural pauses but probably not long,
extended silence).

Effect of Amount of Training Data

The third question we will answer is “How much data is necessary to learn a robust fingerprint
design?” When meetings are very long, we would like to know how much data is actually
necessary to learn a robust fingerprint design. Alternatively, when meetings are short, we
would like to know if the amount of data is sufficient to learn a reasonable fingerprint design.
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Figure 5.9: Determining how much temporal overlap between two recordings is necessary
to find a correct alignment. The top three curves show the performance of the hashprint
with 2, 8, and 32 frames of context. The bottom curve shows the performance of the Philips
fingerprint.

To answer this question, we ran the original set of experiments with one change: instead
of learning the eigenfilters on all of the available data, we selected one T -second random
segment from each available channel and learned the eigenfilters only on the selected data.
By varying the amount of available training data, we can determine how much data is
necessary to learn a robust fingerprint design.

Figure 5.10 compares the alignment accuracy for adaptive fingerprints with T =1, 5, 30,
and∞ (using all available data for training). Each group of bars corresponds to a hashprint
with a fixed amount of context frames, where we again consider 2, 8, and 32 frames of
context.
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Figure 5.10: Determining the effect of the amount of training data. A T -second segment
is randomly selected from each channel, and the fingerprint design is learned only on the
selected data. Performance is shown for T = 1, 5, 30, and ∞ (use all available data). The
three groups of bars show the performance of hashprints with 2, 8, and 32 frames of context.

Surprisingly, even just a 1 second segment from each channel provides enough information
to learn a reasonable fingerprint design with good performance. The performance of the
hashprints is approximately saturated for T = 5, so there is only very marginal benefit in
using more than 5 seconds of training data from each channel. These results have two very
encouraging implications: (1) the hashprints will work well for any length of meeting, even
very short meetings, and (2) for very long meetings, we can achieve roughly the same level
of performance with less computation by only training the filters on a very small subset of
data.
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Table 5.1: Comparing several variants of the alignment algorithm. The indicated numbers
are the accuracy at a specified error tolerance. All experiments use 16-bit hashprints with 2
context frames.

Alignment Algorithm
Error Tolerance

25ms 50ms 75ms 100ms
Pairwise, no refinement 52.1% 82.9% 95.5% 98.7%
Cumulative, no refinement 51.2% 83.3% 95.1% 98.3%
Cumulative, with refinement 66.5% 96.5% 98.5% 99.2%

Effect of Context

The fourth question we will answer is, “How does the amount of context affect fingerprint
robustness?” Since we explored a range of context values in all of our previous analysis
experiments, we will simply revisit our previous results but now with a focus on the effect
of context.

Earlier we saw that using fewer lookup bits improves accuracy at the expense of compu-
tation. This can be seen in Figure 5.8 by comparing the results within each group of bars.
But we can see the effect of context in the same figure by comparing results across the groups
of bars. For example, if we look at the rightmost bar in each group, we can see that the
accuracy increases from 87.2% to 93.5% to 98.4% as we increase the context from 2 to 8 to
32 frames. For fewer lookup bits, we see a similar but less dramatic improvement, since the
results are closer to saturation. Clearly, using more context makes the system more robust,
though the amount of improvement in system-level accuracy depends on how saturated the
results are.

We can similarly revisit the results in Figure 5.10 with a focus on context. Because so
little data is needed to train robust filters, however, we see little differentiation between
different amounts of context. For all practical application scenarios, there is more than
enough data to learn a robust fingerprint design for up to 32 context frames.

Assessing the Alignment Algorithm

The fifth question we will answer is, “How much actual benefit is gained by aggregating
cumulative evidence and doing a refined alignment?” We can tease apart the effect of these
two components by starting with a pairwise out-of-the-box alignment approach, and then
adding in these components one at a time.

Table 5.1 compares the performance of three different alignment algorithms. The top line
shows the performance of a pairwise alignment approach, similar to the works by Kennedy
and Naaman [46] and Su et al. [93]. This approach does not aggregate cumulative evidence
and does not do a refined alignment step. The second line shows the performance when we
aggregate cumulative evidence, but without a refined alignment. The third line shows the
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Figure 5.11: The top 32 learned spectro-temporal filters from one alignment scenario. The
filters are arranged from left to right, and then from top to bottom.

performance when we aggregate cumulative evidence and perform a refined alignment. All
experiments use a 16-bit adaptive fingerprint with 2 frames of context.

The results in Table 5.1 are somewhat surprising. There is a significant benefit in using
our proposed approach over a simple pairwise out-of-the-box approach, but all of the benefit
is coming from the refined alignment step. Comparing the top two rows of the table, we
see that the accuracy is roughly the same. Sometimes the accuracy is slightly higher and
sometimes it is slightly lower, depending on the error threshold. But there seems to be no
measurable benefit (or detriment) to aggregating cumulative evidence in this scenario. On
the other hand, doing a refined alignment yields drastic improvements at all error thresholds.
For example, at a 25 ms error threshold, the refined alignment improves the accuracy from
about 52% to 66%. As we might expect, the refined alignment improves accuracy the most
for very small error thresholds.

Learned Filters

The sixth question we will answer is, “What do the learned filters look like?” The purpose
of this question is not so much to improve system performance as it is to gain more intuition
and understanding into what constitutes a robust fingerprint design.

Figure 5.11 shows the top 32 learned filters for one particular query scenario when the
fingerprint is given 32 context frames. Recall that the filters are learned from scratch on
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each query, so each query will have its own set of filters. Figure 5.11 shows one example set
of filters. The filters progress from left to right, and then from top to bottom. So the upper
leftmost is the first filter, and the lower rightmost is the 32nd filter.

There are three observations to make about the filters shown in Figure 5.11. First,
modulations in both time and frequency are useful. Some of the filters primarily capture
modulations in time, such as filters 2, 3, 5, and 8 in Figure 5.11. Some of the filters primarily
capture modulations in frequency, such as filters 1, 4, 6, and 13. Other filters capture
modulations in both time and frequency, such as filters 7 and 15. The key thing to point
out is that both are important, so we should not emphasize one to the exclusion of the
other. For example, giving the adaptive filters only two frames of context forces the filters
to focus almost entirely on frequency modulations rather than temporal modulations, since
two frames is insufficient to capture much variation in the temporal dimension. Second,
low modulations seem to be most important and useful. We can see a progression from low
modulations to higher frequency modulations as we get to later and later filters. For example,
the second, third, fifth, eighth, and fourteenth filters capture higher and higher frequency
modulations in time. In general, we see a progression from slower modulations in the top few
filters to faster modulations in later filters. Third, the filters are remarkably consistent from
query to query. When we look at the learned filters for many different queries, we observe
that the first 8-10 filters are usually very similar and in approximately the same order. As
we progress to later filters, there is more diversity and difference from query to query. This
suggests that these top few filters are capturing information that is characteristic of the genre
of audio data (i.e. meeting speech), rather than something specific to what is being said in
a particular meeting.7

5.6 Takeaway Lessons

In this section we discuss three practical takeaway lessons from our experimental findings.
Takeaway lesson #1: Hashprints are a robust way to align meeting recordings. Our

system is able to achieve more than 99% alignment accuracy at a reasonable error tolerance
(100ms) on alignment scenarios that are much more challenging and aggressive than would
typically be found in practice (i.e. shorter audio recordings and less temporal overlap).
The files that our system could not align correctly were close-talking microphone channels
consisting almost entirely of silence or local noise such as the speaker breathing into the
microphone. Only about 10 seconds of typical meeting speech is necessary to identify a
correct alignment. Furthermore, since only a few seconds of data from each recording is
needed to reliably learn a robust fingerprint design, the hashprints can be learned quickly
and efficiently on meetings of any length, even short ones. In general, the proposed system
should be able to align meeting recordings very reliably.

7It is also interesting to note that spectro–temporal filters favoring particular ranges of temporal and
spectral modulations are commonly associated with cortical processing in the human auditory system (e.g.
[71][58]).
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L\K 2 4 6 8
5 min 17sec 25sec 38sec 52sec
10 min 24sec 42sec 67sec 97sec
20 min 42sec 80sec 139sec 211sec
30 min 60sec 120sec 214sec 340sec
60 min 125sec 272sec 506sec 795sec

Table 5.2: Average run time required to align K recordings each of length L using the
proposed approach. Experiments were run on a 2.2 GHz Intel Xeon processor.

Takeaway lesson #2: The efficiency of the proposed hashprint approach is acceptable.
Table 5.2 shows the average run time required to align K recordings that are each exactly
L minutes long using the proposed approach. So, for example, aligning 8 files that are each
1 hour long takes 795 seconds on average. Here, we have chosen values of K and L that
span a range of realistic scenarios. These measurements were taken on a single thread of
a 2.2 GHz Intel Xeon processor. Note that the running time for the proposed approach is
acceptable for any realistic scenario. The running times are on the order of minutes, which
is acceptable for an offline task. It would also be trivial to parallelize this task for a further
reduction in computation time.

Takeaway lesson #3: If more robustness is needed, it can be achieved very simply. There
are two parameters that we can modify to improve the robustness of the fingerprint, both of
which come at the cost of more computation. The first parameter is the amount of context.
We saw in section 5.5 that increasing the amount of context improves the alignment accuracy
and reduces the amount of temporal overlap needed for correct alignment. Varying this first
parameter increases computation linearly. Note that increasing the amount of context by
a factor of N means doing N times as many dense multiplications at each frame when
extracting fingerprints. The second parameter is the number of fingerprint lookup bits.
We saw earlier that decreasing the number of lookup bits increases the alignment accuracy.
Varying this second parameter increases computation exponentially: for every 1 bit reduction
in the lookup key size, we will have to process twice as many spurious fingerprint matches.

Given these two parameters, we can adopt the following simple strategy to increase the
robustness if needed: First, we increase the context to gain robustness at the expense of
a linear increase in computation. If the fingerprint is still not robust enough, we can then
begin decreasing the number of fingerprint lookup bits and paying the heavier exponential
cost. The number of lookup bits adjusts robustness at a coarse granularity, and the context
adjusts robustness at a fine granularity. Because the proposed fingerprints are learned on
the fly in an unsupervised manner, there is very little system tuning to do given a new set
of data to align. We can start with a reasonable setting (e.g. 16-bit lookup with 32 frames
of context) and, if more robustness is needed, we can follow the simple strategy above.
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5.7 Recap

In this chapter, we have proposed a method for aligning a set of overlapping meeting record-
ings. Our method represents audio as a sequence of hashprints, where the hashprint trans-
formation is learned on-the-fly for the recordings on hand. Using this representation, the
recordings are then aligned with an iterative, greedy two-stage alignment algorithm which
performs a rough alignment using indexing techniques, followed by a fine-grained alignment
based on Hamming distance. Using the ICSI meeting corpus as source material to gener-
ate challenging alignment scenarios, our proposed method is able to achieve greater than
99% alignment accuracy at a reasonable error tolerance of 0.1 seconds. The method only
requires a few seconds of audio from each channel to learn a robust fingerprint design, and
can robustly identify an alignment with 10 seconds of temporal overlap in a typical meet-
ing scenario. One of the greatest benefits of our approach is that it requires little to no
system tuning given a new set of recordings to align, since the fingerprint representation is
learned on-the-fly. We demonstrated how the robustness of the fingerprint can be improved
by increasing the amount of context information or by decreasing the number of fingerprint
lookup bits. We have discussed the tradeoffs of changing these two factors and proposed a
simple strategy to adjust them in practice.
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Chapter 6

Application: Live Song Identification

In the previous chapter we applied hashprints to the problem of aligning unsynchronized
meeting recordings. In this chapter we will explore a second application of hashprints: live
song identification. We will first introduce the problem statement (section 6.1), discuss rele-
vant prior work (section 6.2), describe the proposed system (section 6.3), show experimental
results (section 6.4), perform various analyses of interest (section 6.5), and then summarize
several practical takeaway lessons (section 6.6).

6.1 Problem Statement

This chapter investigates the problem of live song identification. A person goes to a live
concert, hears a song that he or she likes, and wants to know, “What song is this?” Ideally,
the person can simply open an app on his or her cell phone, record a few seconds of the
performance, and get an answer. Even if the song is already known, such an app could
provide a convenient way for concertgoers to purchase music instantly. While there are
several commercially successful apps like Shazam and SoundHound that can identify pre-
recorded music playing on the radio, the technology for identifying live music is lagging
behind. This chapter offers a step towards bridging that gap.

In order for such an app to be useful, it must return reliable results with minimal latency.
Users will not use an app that has unreliable results or an app that makes them wait for
more than a few seconds. In our study, we must therefore consider both the reliability of
the results and the runtime latency. Accordingly, our goal is the following: given a 6 second
cell phone recording of a band’s live performance, identify the song with less than 1 second
of latency and with results that are significantly better than the previous state-of-the-art.
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Figure 6.1: Summary of related work. Live song identification is a hybrid of audio finger-
printing and cover song detection in the sense that it inherits the challenges and difficulties
of both. Factors that make a problem easier are shown in green, and factors that make a
problem more challenging are shown in red.

6.2 Related Work

Live song identification is a hybrid of two well-studied problems: audio fingerprinting and
cover song detection.1 Recall that audio fingerprinting attempts to uniquely identify a seg-
ment of audio in a database of clean recordings. This is what Shazam does. Cover song
detection attempts to identify cover versions of the same song. Each of these well-studied
problems has certain factors that make the problem challenging and certain factors that
make the problem easier. These factors are summarized in figure 6.1.

For audio fingerprinting, one major factor that makes the problem challenging is that
the queries are short and noisy. Also, audio fingerprinting applications like Shazam often
have to run in real-time, so runtime latency can be a big challenge. The factor that makes
audio fingerprinting much easier is that such systems typically assume an exact match in
the underlying source signals, possibly with some simple systematic distortions (like tempo
change or room acoustics) or other additive sounds in the environment.

For cover song detection, the factor that makes the problem challenging is that the match
is very fuzzy — cover versions can differ in key, tempo, arrangement, and instrumentation,
and these differences can make the matching problem much more subjective. One factor
that makes cover song detection easier is that the problem is offline, so runtime latency

1Audio fingerprinting is also often referred to as audio identification or exact-match audio search. Cover
song detection is also often referred to as version identification. See chapter 7 in [60] for a broad overview
of both problems.
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is less of a factor. Also, cover song systems typically assume that the “query” is a clean
studio recording of an entire song, so length of query and other additive sound sources and
distortion are typically not an issue.

Live song identification is a hybrid of these two problems in the sense that it inherits
the challenges from both. Like audio fingerprinting, the queries are short and noisy, and the
system must run in real-time. Like cover song detection, the match is somewhat fuzzy. While
the differences between an artist’s live performance and studio recording may be less drastic
than the difference between two different cover versions, the live song identification problem
must nonetheless cope with differences in key, tempo, arrangement, and instrumentation that
are typical of live performances. To indicate the degree of difficulty in the match similarity,
the entry for live song identification in figure 6.1 is shown in orange (not red).

There has been a lot of previous work in audio fingerprinting and cover song detection. We
have already discussed previous work in audio fingerprinting extensively in chapter 1. Like
audio fingerprinting, cover song detection has benefited greatly from organized evaluations
in the academic community. The MIREX evaluation [17] allowed researchers to compare
different approaches on a standardized benchmark, and it spurred a lot of progress on cover
song detection [77][23][86][85]. The release of the million song dataset [6] has also allowed
researchers to explore cover song retrieval at a large scale [22][40][47][67][5].

There have also been a number of works in audio matching [11][29][50][61]. Audio match-
ing is another hybrid of audio fingerprinting and cover song detection, where the goal is to
find segments of audio that are musically similar to a short audio query. There are a few
major differences between these approaches and the live song identification scenario consid-
ered in this chapter. One difference is that many of these works are offline tasks, where the
fragment length is too long for a real-time application (10 to 30 seconds) or runtime latency
is not considered. Another difference is that the query fragments are often extracted from
clean studio recordings, rather than from noisy cell phone recordings. Yet another significant
difference is that these approaches mostly focus on classical music, where the audience is
generally very quiet (unlike at a rock concert).

In contrast, live song identification based on short cell phone queries is relatively new
and unexplored. One major reason for this is the difficulty of collecting and annotating a
suitable data set. Rafii et al. [74] collect a set of cell phone recordings of live concerts for
ten popular bands, and they propose a method for song identification based on a binarized
representation of the constant Q transform. To the best of our knowledge, this is the only
previous work that directly addresses our problem of interest. This previous work will serve
as a baseline comparison to our proposed system.

In this chapter, we propose a solution to the live song identification problem that has
two main components: (1) the hashprint representation of audio, which was introduced in
chapter 3, and (2) a simple, flexible hashprint cross correlation matching algorithm that
allows one to trade off accuracy for efficiency in order to accommodate the size of each
artist’s searchable database. Since we have already discussed the relationship of hashprints
to previous work in chapter 3, we will focus here on discussing the relation of the matching
algorithm to other approaches.
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The proposed search mechanism is not particularly novel or complex, but it is nonetheless
useful to compare it to other approaches. Most search mechanisms generally fall into one of
two groups: index-based approaches and exhaustive approaches.

Index-based approaches use binary representations to look up matches in a table or index.
This lookup can be improved in a variety of ways, including doing lookups on binary codes
that are close in Hamming distance [32][45], using probabilistic methods like locality-sensitive
hashing (LSH) and min-hash to improve retrieval performance [11][4], or accumulating lots
of local fingerprint matches in an efficient data structure such as a histogram of offsets [99][2].
(The histogram of offsets was used in our approach to aligning meeting recordings.) The
advantage of index-based approaches is that they offer the ability to scale to large databases.
The disadvantage is that performance drops dramatically when moving from an exact-match
problem to a nonexact-match problem like live song identification.

Exhaustive approaches simply do an exhaustive search through the database. The most
common example of this is to perform a full dynamic time warping (DTW) between the query
and all references sequences (e.g. [73][39]). DTW is a way to align two feature sequences with
local tempo mismatches using dynamic programming techniques. Many works explore ways
to speed up, optimize, or improve exhaustive searches. Some examples include assuming
a constant global tempo difference and considering a number of tempo-adjusted queries
[61], using a two-pass approach that first does a rough scoring in order to identify a set of
promising candidates for a more fine-grained rescoring [25], or using techniques to deduce
and skip computations that are unnecessary [63]. The advantage of exhaustive approaches
is that they yield better results for nonexact-match problems. The disadvantage is the
computational cost of exhaustively searching through the entire database.

The proposed search algorithm is a very simple exhaustive approach that has one very
useful characteristic: we can control the tradeoff between accuracy and computational cost.
Provided that the database is not too big, this approach offers the good results that come with
an exhaustive search while ensuring that the runtime latency will be kept to an acceptable
level. The details of the matching algorithm will be described in the next section.

6.3 System Description

The proposed live song identification system will be described in three parts: the system
architecture, the hashprint representation, and the search algorithm.

System Architecture

Figure 6.2 shows the system architecture for the proposed system. When a query is first
submitted, the GPS coordinates of the cell phone and the timestamp information are used
to associate the query with a concert in order to infer who the artist is. Once the artist has
been inferred, the problem is reduced to a known-artist search: we assume we know who
the artist is, and we are trying to determine which song is being played. The known-artist
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Figure 6.2: System architecture of the live song identification system. Using GPS coordinates
of the phone, the query is associated with a concert in order to infer who the artist is.

assumption is critical to reduce the search space down to a manageable size. Whereas the
space of all possible songs may contain millions of possibilities, the set of songs released
by a single musical artist is at most a few hundred.2 Inferring the artist’s identity requires
assembling and maintaining a database of up-to-date concert event information. Since our
evaluation data comes from concerts that have occurred in the past, we will simply assume
that such a database is maintained and that we have this information available. In this
chapter we will focus on addressing the known-artist search problem.

The system in Figure 6.2 makes two assumptions. The first assumption is that the
artist’s concert schedule is available online and can be stored in the database of concert event
information. This is necessary to correctly associate the query with a concert. The second
assumption is that the artist’s studio albums determine the space of possible songs that are
performed live. These two assumptions generally hold true for popular bands giving live
performances. This system would not work, however, with an amateur musician performing
at a local restaurant.

Hashprint Representation

We explained how hashprints are computed in chapter 4. Here, we revisit that explanation,
filling in each step with details that are specific to this application. The six steps are
described below.

1. Compute spectrogram. The first step is to compute a constant Q transform (CQT).

2This statement generally holds true for the genres of music considered in this work. For other genres
such as jazz or classical music, the number of performed works may be larger.
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Figure 6.3: Block diagram of hashprint computation for the live song identification scenario.

The CQT is a time-frequency representation of audio that uses a set of logarithmically
spaced filters with constant Q factor.3 One benefit of the CQT is that the filters can
be selected to match the pitches of the Western musical scale. Using the CQT thus
allows our representation to capture musically meaningful pitch-related information,
and it also allows us to efficiently compute pitch-shifted versions of a signal. In our
experiments, we used the CQT implementation by Schörkhuber and Klapuri [80]. Sim-
ilar to the work by Rafii et al. [74], we consider 24 subbands per octave between C3
(130.81 Hz) and C8 (4186.01 Hz). Using a quarter-tone resolution allows us to handle
slight tuning differences as well as key changes. To mimic the nonlinear processing of
the human auditory system, we take the logarithm of the subband energy values. At
the end of this step, we have 121 subband log-energy values every 12.4 ms.

2. Collect context frames. When computing the fingerprint at a particular frame, we
consider w = 20 frames of context. So, at each frame we are working with a vector
of dimension 121w = 2420. In section 6.5, we will explore the effect of w on system
performance.

3. Apply spectro-temporal filters. At each frame, we apply a set of N = 64 spectro-
temporal filters in order to generate N real-valued spectro-temporal features. Each
spectro-temporal feature is a linear combination of the CQT log-energy values from
the current audio frame and its context frames. As pointed out in chapter 4, chroma
features are a special case of spectro-temporal features in which the spectro-temporal
filter coefficients sum energy across musical octaves. Rather than using these hardcoded
filters, however, we use filters that capture the directions of maximum variance, as
explained in section 4.3. These filters are learned in an unsupervised manner based on
each artist’s studio recordings (i.e. the filters are learned per artist). In section 6.5,

3The Q factor of a filter is the ratio between the filter’s center frequency and its bandwidth.
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we will explore the effect of N on system performance. At the end of this third step,
we have N features per frame.

4. Compute deltas. For each of our N features, we compute the change in the feature
value over a time lag T . If the feature value at frame n is given by xn, then the
corresponding delta feature will be ∆n = xn − xn+T . In our experiments, we used a
value of T = .992 seconds, which was determined empirically (see section 6.5).

5. Apply threshold. Each of the N delta features is compared to a threshold value of
0, which results in a binary value. These bits represent whether the N features are
increasing or decreasing across the time lag T .

6. Bit packing. The sixth step is to package the N binary values per frame into a
single 64-bit integer. This representation allows us to store hashprints very compactly
in memory, and also to compute Hamming distances very efficiently using logical bit-
wise operators. The output of this final step is a sequence of hashprints, where each
hashprint is represented by a single 64-bit integer.

Figure 6.3 shows a block diagram of the hashprint computation process. The text above
the boxes shows the dimension (per frame) at each stage of the process. The text below the
boxes provides additional clarifying information. Note that the values shown in figure 6.3
refer to the “default” parameter settings for the hashprint system shown in the results section.
We will explore the effect of several of these system parameters on system performance in
section 6.5.

Search Algorithm

Figure 6.4 shows the offline and online portions of the known-artist search. During the offline
portion of the search, we collect audio from the artist’s studio albums, extract hashprints,
and store the hashprint sequences into a database. In order to handle the possibility that
the live performance may be performed in a different key (or a slightly different tuning)
than the original studio track, we also consider pitch-shifted versions of the original studio
tracks. We can compute pitch-shifted versions very efficiently by simply shifting the CQT
coefficients of the original studio recording. Once the CQT coefficients have been shifted, the
hashprints are computed as before by applying steps 2 through 5 (as described in the previous
subsection). These steps 2 through 5 are collectively indicated in figure 6.4 as “Hamming
embedding,” since they take the CQT coefficients and embed them in a Hamming space. In
our experiments we consider up to four quartertones above and below the original key. So,
for each song in the database, there will be nine hashprint sequences corresponding to the
nine different pitch-shifted versions of the song.

During the online portion of the search, the query hashprint sequence is compared to
the database to find a match. This online search is done by performing hashprint cross-
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Figure 6.4: Offline and online portions of the known-artist search. During the offline portion,
we populate the database with hashprint sequences from the artist’s studio tracks and cor-
responding pitch-shifted versions. During the online portion, we match the query hashprint
sequence against the database.

Figure 6.5: An illustration of hashprint cross-correlation matching. For each reference se-
quence in the database, we determine the offset which maximizes the bit agreement between
the query and reference hashprint sequences. This bit agreement is then interpreted as the
match score with the entire sequence. Hashprints are shown in the figure as different colored
boxes.

correlation matching with downsampling and rescoring. Each of these three components is
described below.
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Figure 6.6: An illustration of downsampling a hashprint sequence by a factor of 2. Down-
sampling by a factor of B yields a factor of B2 savings in search computation.

Hashprint cross correlation. For each hashprint sequence in the database, we deter-
mine the offset that maximizes the bit agreement rate between the query hashprint sequence
and the corresponding portion of the reference hashprint sequence. This maximum bit agree-
ment rate is used as the match score with the whole sequence. The maximum match score
among the various pitch-shifted versions of a song is taken as the aggregate match score for
the song. The songs in the database are then ranked by their aggregate match scores. Figure
6.5 shows an illustration of this matching process. Note that this approach is identical to a
time-domain cross correlation approach except that the correlation is computed on sequences
of hashprints rather than on sequences of time-domain samples. Note also that this approach
assumes an approximately 1-to-1 tempo correspondence between the query and the studio
album. We will investigate the validity of this assumption and also compare our results with
a dynamic time warping approach in section 6.5.

Downsampling. In order to speed up the online search, we downsample both the query
and reference hashprint sequences by a factor B. So, for example, when B = 2 we only
consider every other hashprint when computing bit agreement scores. Downsampling by a
factor B thus reduces the amount of search computation by a factor of B2. Our hope is
that we can reduce the search time without affecting the accuracy too much. The effect of
this downsampling will be investigated in section 6.5. Figure 6.6 shows an illustration of
downsampling by a factor of 2.

Rescoring. After sorting the reference sequences by their rough (downsampled) match
scores, we can rescore the top L sequences using the full hashprint sequences without down-
sampling. We can then resort these top L sequences by their fine-grained match scores.
Figure 6.7 shows an illustration of the rescoring process. The idea of rescoring is to keep the
computation savings of a downsampling approach while retaining the reliability and perfor-
mance of an exhaustive match without downsampling. The effect of this rescoring will be
investigated in section 6.5.
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Figure 6.7: An illustration of rescoring. The downsampled sequences in the database are
scored and sorted. The top L sequences are then re-scored without downsampling and re-
sorted. This toy example shows this process when the database has 5 sequences and L = 3.

Artist Name Artist ID Genre # Tracks
Big K.R.I.T. Big hip hop 71
Chromeo Chr electro-funk 44
Death Cab for Cutie Dea indie rock 87
Foo Fighters Foo hard rock 86
Kanye West Kan hip hop 92
Maroon 5 Mar pop rock 66
One Direction One pop boy band 60
Taylor Swift Tay country, pop 71
T.I. TI hip hop 154
Tom Petty Tom rock, blues rock 193

Table 6.1: Overview of the Gracenote live song identification data. The database contains
full tracks taken from artists’ studio albums. The queries consist of 1000 6-second cell phone
recordings of live performances (100 queries per artist).

6.4 Evaluation

We will describe the evaluation of the proposed system in three parts: the data, the evalua-
tion metric, and the experimental results.

Data

We evaluated the proposed system on the Gracenote live song identification benchmark.
This is a proprietary data set used for internal benchmarking purposes at Gracenote.4 The
data comes from 10 different musical artists spanning a range of genres including pop, rock,

4Thanks to Zafar Rafii and Markus Cremer at Gracenote for generously providing the data set.
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country, and rap. Table 6.1 shows the 10 musical artists, along with a brief description
and the number of studio recordings per artist. For each artist, there is a clean database
and a set of noisy queries. The database consists of full audio tracks taken from the artist’s
released studio albums. The noisy queries are short cell phone recordings of live performances
and were prepared in the following manner. Ten Youtube videos of live performances were
downloaded for each artist. These ten videos came from 10 different songs and were all
recorded on consumer cell phones. The videos were manually pre-processed to cut out non-
music material at the beginning and end of the video (e.g. applause, introducing the song,
etc). Finally, ten 6-second segments evenly spaced throughout the recording were extracted.
There are thus 100 queries per artist, and 1000 queries in total.

Evaluation Metric

The evaluation metric we use is the mean reciprocal rank (MRR) [98], which is given by the
following formula:

MRR =
1

N

N∑
i=1

1

Ri

Here, N refers to the total number of queries in the benchmark, and Ri refers to the rank
of the correct item for the ith query. In cases where there is more than one correct item
(i.e. the artist has more than one studio recording of the same song), the best rank is used.
Note that MRR ranges between 0 and 1, where a low value close to zero corresponds to poor
performance and 1 corresponds to perfect performance. Higher MRR is better.

Results

Figure 6.8 shows the performance of the proposed system along with five other baseline sys-
tems. Figure 6.9 shows the same results broken down by artist. The first baseline system
(‘ellis07’ [23]) is an open-source cover song detection system based on beat-level chroma
features. The second baseline (‘hydraSVM’ [77]) is another open-source cover song detec-
tion system that performs a system-level combination of three different cover song detection
approaches [23][24][84]. The third baseline (‘shazam’ [99]) is an open-source implementa-
tion [21] of the well-known Shazam algorithm. The fourth baseline (‘panako’ [89]) is an
open-source audio fingerprinting system that is designed to handle pitch-shifting and tempo
changes. The fifth baseline (‘rafii’ [74]) is the previously proposed live song identification
system at Gracenote. The two rightmost bars (‘hprint(1)’, ‘hprint(3)’) show the performance
of the proposed system at downsampling rates of 1 and 3, respectively. There are four things
to notice about the results in figures 6.8 and 6.9.

First, the audio fingerprinting and cover song detection baselines perform poorly. The
first four baselines suggest that existing cover song detection and audio fingerprinting ap-
proaches may not be suitable solutions to the live song identification problem. Audio fin-
gerprinting approaches typically assume that the underlying source signal is identical, and



CHAPTER 6. APPLICATION: LIVE SONG IDENTIFICATION 73

Figure 6.8: Performance of proposed hashprint system compared to five other baseline sys-
tems. The number in parenthesis indicates the downsampling factor of the hashprint cross-
correlation search.

may not be able to cope with the variations in live performances. (Note that the Shazam
algorithm performs okay for some artists like Chromeo that use digital sounds in live perfor-
mances that may be identical to the original studio recordings.) On the other hand, cover
song detection systems typically assume that an entire clean studio recording is available,
and may not be able to cope with short, noisy queries.

Second, the proposed system significantly improves upon the previous state-of-the-art.
Comparing the three rightmost systems, we see that the two versions of the proposed system
improve the MRR from .68 (‘rafii’) to .81 (‘hprint(1)’) and .79 (‘hprint(3)’). Given the
reciprocal nature of the evaluation metric, this amounts to a significant improvement in
performance.
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Figure 6.9: Breakdown of results by artist. The first three letters of the artist’s name is
shown at bottom.

Third, large computational savings can be achieved for a modest sacrifice in accuracy.
Comparing the two proposed systems, we see that it is possible to reduce the search com-
putation by a factor of B2 = 9 while only reducing the MRR from .81 to .79. We will
investigate the tradeoff between accuracy and search time in section ??.

Fourth, performance varies by artist. Looking at figure 6.9, we can see that the perfor-
mance of the various systems varies a lot from artist to artist. The systems generally agree
on which artists are “hard” and which are “easy.” One big factor that affects these results
is how similar or different an artist’s live performance is compared to the original studio
recording. Another big factor is how many studio tracks the artist has. Note that the artists
with highest and lowest scores (Chromeo and Tom Petty, respectively) correspond to the
artists with the smallest and largest databases.
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6.5 Analysis

In this section, we will investigate seven different questions of interest. These analyses
will give us a deeper intuition and understanding of the various factors that affect system
performance.

Effect of Tempo Mismatch

The first question of interest is, “How much do tempo mismatches affect our results?” As
mentioned earlier, the hashprint cross correlation matching approach assumes that the live
performance is at approximately the same tempo as the original studio recording. Clearly,
this assumption is violated if the artist performs a song faster or slower than the studio
version. We would like to measure how reasonable or unreasonable this assumption is.

In order to answer this question, we compared the hashprint cross correlation search
algorithm with subsequence DTW. DTW is a common way to align two feature sequences
with local tempo differences, and subsequence DTW is a variant of DTW that allows one
sequence to begin at any offset in the other sequence. A brief overview of the subsequence
DTW algorithm is given below, and the reader is referred to [60] (chapter 3) for a more
detailed explanation. For each reference sequence in the database, we compute a Hamming
distance cost matrix between the query and reference hashprint sequences, and then we
determine the alignment path with lowest score using dynamic programming techniques.
We use the set {(1, 1), (1, 2), (2, 1)} as possible step sizes, which allows for tempo differences
up to a factor of 2. We then use the normalized alignment path score as a match score for
the reference sequence. Comparing the hashprint cross-correlation and subsequence DTW
approaches will indicate how important it is to handle local tempo differences.

Figure 6.10 shows the comparison between the hashprint cross correlation and subse-
quence DTW approaches. Since the amount of temporal context described by each hash-
print can affect its ability to absorb timing mismatches, we also show this comparison across
a range of context values w. There are three things to notice about Figure 6.10. First,
hashprint cross correlation performs better than subsequence DTW. Across a wide range
of context values, the hashprint cross correlation approach shows consistently better results
than subsequence DTW. This indicates that the DTW algorithm is providing too many
degrees of freedom in the matching process, which ends up hurting system performance.
Second, more context helps up to a certain point. For both matching algorithms, using
more context frames (up to 20) improves results significantly. Third, context helps hash-
print cross-correlation more than it helps subsequence DTW. Note that the MRR scores
using subsequence DTW range from .75 to .78, while the MRR scores using hashprint cross
correlation range from .76 to .81. With the subsequence DTW approach, tempo mismatches
can be handled by the matching algorithm even if the context of each hashprint is small.
But with the hashprint cross correlation approach, tempo mismatches cannot be handled by
the matching algorithm. In this case, the only factor that can mitigate the effect of tempo
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Figure 6.10: Comparison of DTW and hashprint cross correlation approaches. The horizontal
axis refers to the number of context frames spanned by each hashprint.

mismatch is the amount of temporal context described by each hashprint, so context has a
proportionally larger impact on system performance.

In summary, the tempo mismatches are small enough that across a short 6-second seg-
ment, we can approximately assume that the tempos are equal. Furthermore, increasing the
amount of context in the hashprint representation allows individual hashprints to absorb
slight misalignments that result from tempo mismatch. Of course, these conclusions can
only generalize to the extent that these 10 musical artists are representative of other live
song identification scenarios. For this data set, however, the conclusion is clear: hashprint
cross correlation wins.
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Figure 6.11: Effect of hashprint context window length and delta separation value on system
performance.

Effect of Context & Delta

The second question of interest to us is, “How do context and delta separation affect system
performance?” To answer this question, we ran experiments across a range of context values
w and delta separation values T . For these experiments, we used hashprint cross correlation
matching with a downsampling rate of 1 (i.e. no downsampling).

Figure 6.11 shows the effect of context and delta separation on system performance. We
see that using more context helps up to a certain point, as discussed previously. We also see
that using greater delta separation (up to 992 ms) also improves results significantly. For very
small values of T , the delta spectro-temporal feature is the difference between two spectro-
temporal features that are located close together in time and thus highly correlated. Because
the difference between two highly correlated features is small, the variance of the resulting
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Figure 6.12: Effect of the number of hashprint bits on system performance.

delta features will be small, resulting in bits that are not robust. For large values of T ,
the delta spectro-temporal feature will be the difference between two independent features,
which effectively yields double the variance. As T increases, however, we also effectively lose
T seconds of data from our 6 second query. For example, when T = 2 seconds, we effectively
have 4 seconds of time-varying data. Thus, there is a tradeoff in selecting the optimal delta
separation value T . We can see from Figure 6.11 that T = 992 ms and w = 20 context
frames yield the best results. These settings are used in all of the reported results in this
chapter, unless otherwise noted.
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Effect of Number of Bits

The third question of interest to us is, “How does the number of hashprint bits affect the
results?” Figure 6.12 shows the effect of varying the number of bits in the hashprint rep-
resentation. For these experiments, we used a hashprint cross correlation matching with a
downsampling factor of 1. As we increase the number of bits in the hashprint representation,
the system performance improves in an asymptotic fashion. By the time we reach 64 bits, the
system performance has largely leveled off. We would expect only marginal improvement in
performance if we went beyond 64 bits. This is quite convenient for our system design, since
going beyond 64 bits would require twice the storage and computation on a 64-bit machine.
We use a 64-bit hashprint representation for all other results reported in this paper.

Effect of Learning

The fourth question of interest to us is, “How much does the unsupervised learning actually
help?” It could be the case, for example, that the benefit in our system performance simply
comes from using more context frames, rather than from learning the filter coefficients. In
order to answer this question, we repeated the ‘hprint(1)’ experiment in Figure 6.8 with one
major change: instead of using the learned filters, we use filters with random coefficients.
Using random coefficients corresponds to a locality sensitive hashing (LSH) approach, which
was described in section 4.5. When we ran this experiment, the MRR of the system falls
from .81 (‘hprint(1)’) to .65 (LSH-based approach).

There are two things to note about this result. First, using random coefficients still
performs quite well. This LSH-based approach (MRR .65) performs almost as well as the
previous state-of-the-art system proposed by Rafii et al. [74] (MRR .68). So, even if the
unsupervised learning was omitted, the resulting system would still perform relatively well.
The effectiveness of the LSH technique has been validated by its widespread adoption in
practice. Second, the learning helps a lot. The structural elements of the hashprint ap-
proach (e.g. spectro-temporal filters, amount of context, delta separation, etc) yields a
performance that is on par with the previous state-of-the-art, but the unsupervised learning
of filter coefficients is what provides the significant improvement beyond previous results.
The unsupervised learning does indeed help a lot.

Effect of Downsampling & Rescoring

The fifth question of interest to us is, “How do downsampling and rescoring affect system
performance?” The purpose of introducing downsampling and rescoring is to reduce the
search latency, so we must consider both the accuracy and the efficiency of the system.
Figure 6.13 shows the effect of downsampling and rescoring on system accuracy. The five
groups of bars show the MRR of the system as the downsampling rate increases from 1 to
5. Each pair of bars compares the performance with and without rescoring. Table 6.2 shows
the effect of downsampling and rescoring on system efficiency. To quantify the efficiency of
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Figure 6.13: Effect of downsampling and rescoring on system performance.

the system, we measure the average amount of time it takes to process each 6 second query.
We ran the experiments on a single core of a 2.2 GHz Intel Xeon processor. The average
amount of time required to compute the CQT and search the database is shown in columns
3 and 4, and the total average runtime is shown in column 5.

There are three things to notice about the results in Figure 6.13 and Table 6.2. First,
downsampling provides a tradeoff between accuracy and efficiency. As we increase the down-
sampling rate, the MRR gets worse (Figure 6.13) and the average runtime gets better (Table
6.2). We can choose a downsampling rate to achieve the desired tradeoff. Second, rescoring
significantly improves MRR with low impact on runtime. Comparing the two bars in each
group in Figure 6.13, we can see that rescoring helps to recoup a lot of the MRR that is
lost as a result of downsampling. At the same time, this rescoring has very little impact on
average runtime. Comparing the runtime of systems with and without rescoring in Table
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Downsample Rescoring CQT Search Total
1 no .51 2.87 3.43
2 no .50 .68 1.23
3 no .49 .31 .85
4 no .52 .18 .74
5 no .49 .12 .66
1 yes .53 2.90 3.48
2 yes .50 .72 1.26
3 yes .51 .35 .90
4 yes .50 .21 .76
5 yes .49 .15 .69

Table 6.2: Effect of downsampling and rescoring on average processing time per query.
Columns 3 and 4 show average time in seconds required to compute the CQT and per-
form the search, respectively. Column 5 shows the average total processing time per query.
Experiments were run on a single core of a 2.2 GHz Intel Xeon processor.

6.2, for example, we see that rescoring only adds 2 to 5 ms to the total runtime. Third, we
can substantially reduce the runtime with only a modest sacrifice to MRR. With a downsam-
pling rate of 3 with rescoring, for example, we can reduce the runtime from 3.48 seconds to
0.90 seconds while only decreasing the MRR from .81 to .79. This is the ‘hprint(3)’ system
shown at the far right of Figure 6.8. Note that the system proposed by Rafii et al. [74] had
a (self-reported) average runtime of 10 seconds per query, so our proposed system may offer
substantial savings in search computation.

One other important factor to mention is the cost of computing the CQT. We can see from
Table 6.2 that the CQT is a fixed cost to the system, regardless of the downsampling rate.
Downsampling can reduce the runtime of the search algorithm, but it can only asymptotically
reduce the total runtime down to this fixed cost. In a real commercial system, the CQT
could be computed on the query in a streaming manner, so that the latency experienced by
the user effectively depends only on the search algorithm. Such an implementation, however,
is beyond the scope of this work.

Effect of Database Size

The sixth question of interest to us is, “How does the database size affect system perfor-
mance?” In order to answer this question, we ran a set of controlled experiments in which we
artificially fixed the size of the database (measured by the number of songs). We considered
a range of database sizes that would be realistic for an artist of the given genres. (Note that
a very established musician like Tom Petty has about 200 songs.) When the fixed database
size is less than the artist’s actual database size, we removed songs from the database to
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Figure 6.14: Effect of database size on system performance.

achieve the desired size. When the fixed database size is greater than the artist’s actual
database size, we padded the database with randomly selected songs from the other musical
artists in order to achieve the desired size. Since the songs from other artists may result in a
database containing more variation in style and genre than is typical within the artist’s own
repertoire, these results should be interpreted with caution. Nonetheless, such an analysis
can provide a rough indicator of how database size would affect results.

Figure 6.14 shows the MRR of the system across different database sizes and different
downsampling rates. Figure 6.15 shows the corresponding average runtimes. Note that the
database size here refers to the number of original studio recordings, so the actual number of
pitch-shifted reference sequences in the database will be nine times greater. There are three
things we can observe about the results in Figures 6.14 and 6.15.

First, MRR decreases asymptotically in the database size. As database size increases



CHAPTER 6. APPLICATION: LIVE SONG IDENTIFICATION 83

Figure 6.15: Effect of database size on average processing time per query.

beyond 75, there is only a marginal decline in MRR. For example, with a downsampling
factor of 1, the MRR falls from .89 to .82 as the database size increases from 10 to 75, but
it only falls from .82 to .81 as the database size increases from 75 to 300. Similarly, with a
downsampling factor of 3, the MRR falls from .88 to .80 as the database size increases from
10 to 75, but it only falls from .80 to .78 as the database size increases from 75 to 300.

Second, the runtime increases linearly in the database size. (Note that the database sizes
shown in the figures are not spaced linearly.) Since the hashprint cross correlation search is
doing a linear scan across the database, the search time will be proportional to the size of
the database. The total runtime thus consists of fixed costs (such as computing the CQT)
and a variable cost that is proportional to the database size. Though actual runtime will of
course depend on memory usage and CPU load, a rough guideline is that there are about
.6 seconds of fixed costs and each hashprint sequence takes about 4 ms to score (without
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downsampling).
Third, the downsampling rate can be selected to stay below a maximum acceptable

runtime latency. One advantage of downsampling is that we can control the tradeoff between
accuracy and efficiency in an artist-specific way. For artists with a small database — where
latency is not an issue — we can use a downsampling rate of 1 to maximize the reliability of
the results. For artists with a large database — where latency will be an issue — we can use
a higher downsampling rate to guarantee that the average latency stays below an acceptable
threshold. In our experiments, for example, we can guarantee an average MRR of .75 and
average runtime latency of 1.3 seconds for databases up to size 200, and we can guarantee an
average MRR of .74 and average runtime latency of 1.6 seconds for databases up to size 300.
The downsampling rate can thus be tailored to each artist to achieve the desired tradeoff
between accuracy and efficiency.

Filters

The seventh question of interest to us is, “What do the learned filters look like?” This
analysis can help us gain a deeper intuition about what type of information the hashprints
are capturing. Figures 6.16 and 6.17 show the top 64 learned filters for two different musical
artists, Big K.R.I.T. and Taylor Swift. The filters are arranged first from left to right, and
then from top to bottom. The filters cover the frequency range C3 (130.81 Hz) to C8 (4186.01
Hz) and span .372 seconds.5 There are four things to notice about the filters in Figures 6.16
and 6.17.

First, the filters contain both temporal and spectral modulations. Some filters primarily
capture modulations along the temporal dimension, such as filters 3, 4, and 5 on the first
row of figure 6.16 that contain vertical bands. Some filters primarily capture modulations
along the spectral dimension, such as the filters on row 2 of figure 6.17 that contain many
horizontal bands. Other filters capture both temporal and spectral modulations, such as
filters 15 and 16 in figure 6.16, which seem to capture primarily temporal modulations
in the higher frequencies and primarily spectral modulations in the lower frequencies. The
important thing to point out is that both types of modulations are important: if the hashprint
representation were constrained to describing only a single audio frame, for example, it would
be unable to characterize an important aspect of the signal.

Second, the filters capture both broad and fine spectral detail. Some filters describe the
broad shape of the spectrum, such as filters 2 and 6 in figure 6.16. Other filters capture fine
spectral details such as filters 22, 23, and 24 in the same figure. Often feature representations
like chroma or MFCCs tend to focus on either fine spectral structure or broad spectral shape,
but here we see that the hashprints are able to capture both types of information in a simple,
unified framework.

5Note that here we use a slightly larger amount of context (w = 30) to make the filters easier to visualize.
We can see from figure ?? that using anywhere between 20 and 40 context frames yields roughly the same
performance.
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Figure 6.16: Top 64 learned filters for Big K.R.I.T. The filters are arranged first from left to
right, and then from top to bottom. Each filter spans .372 seconds and covers a frequency
range from C3 to C8.

Third, there is a progression from lower modulation frequencies to higher modulation
frequencies. When we look at filters 3, 4, 5, and 8 on the first row of figure 6.16, we can see
a progression from lower temporal modulation frequencies to higher and higher modulation
frequencies. We see a similar progression in filters 2, 6, 9, 10, and 11 in figure 6.16 for spectral
modulation frequencies. It appears that lower modulation frequencies are more useful in the
sense that they yield features with greater variance.

Fourth, the filters are artist-specific. When we compare the learned filters for Big K.R.I.T.
with the learned filters for Taylor Swift, we see that the first four filters are quite similar.
After these first four, however, the filters begin diverging and reflecting the unique charac-
teristics of each artist’s music. We notice, for example, that many more of the filters for Big
K.R.I.T. emphasize temporal modulations, perhaps a reflection of the fact that rap music
tends to be more percussion and rhythm-based. In contrast, the filters for Taylor Swift seem
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Figure 6.17: Top 64 learned filters for Taylor Swift.

to primarily capture pitch-related information, which perhaps reflects the fact that country
and pop music tends to be more harmony-based. The fact that the learned filters diverge so
quickly is also an argument for using a representation that is adaptive to each artist. For a
known-artist search, it may be more advantageous to use a highly adaptive representation
that is specific to each artist, rather than using a single unified representation based on a
huge training set.

6.6 Takeaway Lessons

In this section we discuss three practical takeaway lessons from our experimental findings.
These take into account what we have observed and learned in the context of both live song
identification (chapter 6) and aligning meeting recordings (chapter 5).

Takeaway Lesson #1: Hashprints can be useful for both exact match and similarity
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match. We have seen how hashprints have led to state-of-the-art performance on two dif-
ferent tasks. In chapter 5, we showed how hashprints outperform five other fingerprint
representations in aligning unsynchronized meeting recordings. This is an exact match sce-
nario in which we use hashprint values to look up matching occurrences in a reverse index.
In this chapter, we showed how hashprints significantly improve upon the previous state-of-
the-art in live song identification. This is a nonexact match scenario in which we use the
Hamming distance between hashprints as a measure of similarity. Though they are used in
very different ways in chapters 5 and 6, the hashprint framework has proven to be useful in
both exact and nonexact audio search and retrieval.

Takeaway Lesson #2: The hashprint framework can adapt to a wide variety of audio
signals. In the aligning meeting recordings scenario, we observe that hashprints are able
to effectively characterize speech signals for the purpose of exact matching. In the live
song identification scenario, we observe that hashprints are able to effectively characterize
music signals for the purpose of similarity matching. When we compare the learned spectro-
temporal filters in the meeting recordings scenario (figure 5.11) with the filters in the live
song identification scenario (figures 6.16 and 6.17), we can see how the filters reflect the
unique characteristics of the underlying signals. For example, many of the learned filters
in the live song identification scenario have lots of very thin horizontal bands, suggesting
that the filters are capturing pitch-related information in the musical signals. In contrast,
we do not see such structures in the learned filters from the meeting recordings scenario.
Furthermore, the filters are able to reflect the unique characteristics of each musical artist,
as discussed in section 6.5. The hashprints are able to capture broad spectral shape as
well as fine spectral structure, temporal modulations as well as spectral modulations, and
combinations of all such varieties and flavors. The effectiveness of the hashprint framework
on these two very different application scenarios suggests that it can adapt to a wide variety
of audio signals.

Takeaway Lesson #3: The hashprint framework can be very easily tuned to new appli-
cations. Comparing the hashprints in the meeting recordings scenario (figure 5.2) and the
live song identification scenario (figure 6.3), we can see that there are only four differences:
the time-frequency representation (mel spectrogram vs CQT), the number of context frames
(32 vs 20), the number of filters (16 vs 64), and the delta separation value (.5s vs .992s).
In general, this is a very small number of “knobs” that need to be tuned, even as we make
a fairly drastic switch from speech signals to music signals. These knobs can also be set
to reasonable default settings based on a few simple guidelines (see next paragraph). In
contrast, a researcher who wants to learn a representation using a DNN architecture faces a
bewildering array of choices including the number of hidden layers, the size of each layer, the
type of output nonlinearity, the initialization and training schemes, convolutional vs recur-
rent, etc. If a DNN-based binary representation is a nuclear bomb, hashprints are a Swiss
army knife. These two approaches occupy very different niches. For tasks in which we are
willing to invest a significant amount of time, energy, computation, setup, and infrastruc-
ture, DNN-based representations are the much better tool of choice. But for many practical
tasks in which we have little or no data and would like a no-hassle, easily tuned, easy-to-use
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representation that just works reasonably well, hashprints may be our friend.
Here are several simple guidelines for setting the “knobs” on a hashprint representation.

Of course, the optimal settings will depend heavily on the application at hand. Nevertheless,
it is useful to future researchers to present a few rough guidelines that can act as a starting
point.

• Spectrogram. If the signal is speech, use a mel spectrogram. If the signal is music, use
a CQT. If in doubt, use a CQT – it is more computationally expensive, but it allows
the hashprints to consider both broad and fine spectral structure.

• Context frames. Context frames help a lot up to a certain point (sections 6.5 and 5.5),
and increasing beyond that either helps or hurts only marginally. A reasonable default
setting to start with is 32 context frames.

• Number of filters. If the task is an exact match using indexing techniques (like aligning
meeting recordings), more bits will not correspond to better performance. In this case,
the main tradeoff is computation for accuracy – fewer bits will require sifting through
more false matches, but will yield better performance. 16 bits is a reasonable starting
point for such tasks. If the task is a nonexact match (like live song identification),
more bits will be better. In this case, the best selection is to use the most number of
bits that can fit into a single integer on the machine. This will be 64 bits or 32 bits,
depending on the computer architecture.

• Delta separation. The ideal delta separation value is the minimum lag T that ensures
that the signal has become decorrelated with itself. This can be set based on a priori
assumptions (e.g. the average speaking rate when dealing with speech signals) or
computed empirically by measuring autocorrelation. For typical music and speech
signals, T = 1 second is a reasonable setting.

6.7 Recap

In this chapter we have introduced a method for identifying live performances from popular
bands. The system uses a hashprint representation of audio based on spectro-temporal
filters that are tailored to each artist’s music. The matching is done using a hashprint cross
correlation matching algorithm that can be tuned to achieve a desired runtime latency. We
evaluated the performance of the proposed system on the Gracenote live song identification
benchmark, and we show that the proposed system improves the mean reciprocal rank of the
previous state-of-the-art from .68 to .79, while simultaneously reducing the runtime latency
from 10 seconds down to 0.9 seconds. We also conduct extensive analyses to understand the
capabilities and limitations of the hashprint representation as well as the search mechanism.
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Chapter 7

Conclusion & Future Work

We have laid a foundation of theory, introduced audio hashprints, and seen how hashprints
can be used in two different application scenarios. In this final chapter, we will summarize
the main concepts we have learned (section 7.1) and then introduce the three avenues of
future work (sections 7.2, 7.3, and 7.4).

7.1 Summary

Figure 7.1 is copied from chapter 1 and encapsulates the structure of this thesis. We first
lay down a foundation of theory by considering two theoretical questions of interest. We
then introduce a binary representation of audio called audio hashprints, and then apply this
hashprint representation to two different applications. Below, we give a concise summary of
what we have learned in each chapter.

• What makes a good hash key? Maximizing useful information rate. We have
proposed an information-theoretic metric that measures how good or bad a hash key is.
The metric is called useful information rate because it represents the average amount of
correct information that each hash key communicates. We discuss the intuition behind
this metric and also present some empirical evidence to show that it correlates with
system-level performance.

• What makes a good hash bit? Balanced, uncorrelated, high variance. A good
hash bit is one that helps the hash key to have high entropy and high accuracy (and
thus high useful information rate). Each of these two qualities have consequences on
the individual hash bits. High entropy means that each bit should be balanced and
uncorrelated with the other bits. high accuracy means that the underlying probability
distribution for each bit should have high variance.

• Audio hashprints: highly adaptive, unsupervised, facilitates search. Based on the
insights from these two theoretical questions, we proposed a representation of audio
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Figure 7.1: A diagram showing the high-level structure of this thesis. This figure is copied
from chapter 1.

called audio hashprints. The hashprint representation is based on a set of spectro-
temporal filters that can be learned in an unsupervised manner on a small amount of
data (and thus highly adaptvie). The binary nature of the representation makes it use-
ful for facilitating audio search and retrieval through indexing techniques or computing
Hamming distances very efficiently.

• Aligning meeting recordings. Better results, less hassle. The first application
scenario is aligning a set of unsynchronized meeting recordings. We present a method
to accomplish this in a robust, efficient manner using audio hashprints and a two-stage
alignment method. The proposed system has better performance than five other state-
of-the-art fingerprint methods, achieving a higher accuracy at a lower error tolerance.
It also has the benefit that the representation is learned on-the-fly in an unsupervised
manner, so that no supervised training is necessary.

• Live song identification. Better results, faster search. The second application sce-
nario is identifying a song given a short, noisy cell phone recording of a live performance.
We present a system to identify performances by popular bands. This sytem uses an
audio hashprint representation combined with a two-stage hashprint cross-correlation
matching approach. Compared to the previous state-of-the-art approach, the proposed
system significantly improves the reliability of the results, while simultaneously reduc-
ing the search latency by an order of magnitude.
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Figure 7.2: Original problem statement: given an audio query, how can we find a match in
a database of audio recordings?

Having summarized the main lessons learned, we will now devote the last several sections
to avenues of future work.

7.2 Future Work: Medical Diagnosis

This dissertation has focused entirely on audio search and retrieval. But audio search and
retrieval is one specific example of the more general problem of time-series search and re-
trieval. We can see that the original problem statement shown in figure 7.2 has nothing in
it that is particular to audio. There are many other applications and domains besides audio
where the hashprint representation may be useful.

One such domain is medicine. Instead of the query being an audio recording of a live
performance, it could instead be an ECG measurement of a person’s heartbeat (see figure
7.3). Given a short, noisy measurement, we would like to compare it to a database of
known signals for the purpose of classification and diagnosis. Some of the techniques in this
dissertation will transfer into this new domain; some of the techniques will not. It will be
worthwhile to investigate how much of this work will transfer.

One of the benefits of the hashprint representation is that there are few “knobs” to turn.
Because the representation is learned in an unsupervised manner and adapts itself to the
data, there are fewer aspects of the design that are task-specific. To the extent that fewer
aspects of the representation are manually designed and tailored to audio, the hashprint
framework may be more flexible in adapting to other types of time-series signals.
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Figure 7.3: Modified problem statement: given an ECG query, how can we find a match in
a database of known ECG recordings?

Personalized medicine is a promising and relevant domain to explore. In an age of sky-
rocketing healthcare costs, cloud-based medical diagnosis offers the possibility of drastically
reducing the cost of some medical diagnoses. It also offers the possibilitiy of extending
healthcare to places that might otherwise not have it. In developing countries, people may
not have access to medical facilities or expertise. But if they have a cell phone, an internet
connection, and a suitable measurement sensor, they may still be able to get access to some
medical diagnoses.

7.3 Future Work: Coupling with DNNs

In section 4.5, we explained how the hashprint representation can be interpreted as a single
layer neural network. We also discussed in section 6.6 how hashprints and DNN-based
approaches occupy different niches: DNNs are well suited to scenarios where a lot of labeled
training data is available, while hashprints are well suited to scenarios where we would like
the representation to be highly adaptive to a small set of unlabeled data. DNNs are very
powerful; hashprints are very flexible. Can we have a representation that has both qualities?

We can. (Maybe.) Since hashprints can be interpreted as a single layer neural network,
these two approaches can be combined easily. We could first learn a DNN-based representa-
tion based on a very large training set. Using this representation as a starting point, we could
then learn one additional layer using the hashprint framework. In the live song identification
scenario, for example, we could learn a deep autoencoder on a very large database of music,
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and then learn the (last) hashprint layer on a specific musical artist. This would offer the
benefits of a DNN-based representation, while retaining the adaptivity and useful properties
of the hashprint framework. Testing this idea on the live song identification scenario would
be a natural starting point to explore this direction.

7.4 Future Work: Characterizing Music

When we examined the learned filters in the live song identification scenario (figures 6.16 and
6.17), we observed that the hashprint representation is quite flexible along several dimensions.
For one, it is able to capture modulations in both dimensions of the time-frequency plane,
which in music corresponds to rhythmic and spectral information. For another, it is able to
describe both broad spectral shape and fine spectral structure, which in music corresponds
to timbre and harmony. Whereas many standard feature representations like chroma and
MFCC tend to focus on only one dimension of music – either harmonic content or broad
spectral shape – hashprints are able to describe many important dimensions of music in one
simple, unified framework. For this reason, it may be useful in characterizing music in a
richer, more complex way than relying on representations like chroma and MFCC.

Hashprints can be easily tuned to focus on different aspects of music. If temporal, rhyth-
mic information is desired, we can use a large number of context frames. If temporal,
rhythmic information is not desired, we can use a single context frame to force the repre-
sentation to focus only on spectral information. If broad spectral shape is the information
of interest, we can use a log mel spectrogram as the time-frequency representation. If fine
spectral structure is also of interest, we can use a CQT as the time-frequency representation
instead. If only pitch-like information is desired, we can use a CQT, learn the filters, and
select only those filters that have thin horizontal lines by applying a line detection algorithm
to the learned filters. The benefit of the hashprint framework is that it can characterize
many different aspects of an audio signal without the headache of setting up a supervised
training or manually designing a feature.

One possible starting point is to explore rhythm-based features. If we choose a time-
frequency representation that only has a few very broad frequency subbands and use a large
number of context frames, we can force the hashprint representation to focus its representa-
tional power on characterizing temporal, rhythmic information. This can serve as a useful
feature in analyzing drum beats for the purpose of (say) transcription of discrete events like
onsets of high hat, bass drum, and cymbal. This task would also be interesting to explore
since it differs from most other transcription tasks that focus primarily on harmonic content.
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