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Abstract

Computational approaches to understanding the genetic architecture of complex traits

by

Brielin Chase Brown

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Lior Pachter, Chair

Assistant Professor Noah Zaitlen, Co-chair

Advances in DNA sequencing technology have resulted in the ability to generate genetic
data at costs unimaginable even ten years ago. This has resulted in a tremendous amount
of data, with large studies providing genotypes of hundreds of thousands of individuals at
millions of genetic locations. This rapid increase in the scale of genetic data necessitates the
development of computational methods that can analyze this data rapidly without sacrificing
statistical rigor.

The low cost of DNA sequencing also provides an opportunity to tailor medical care to
an individuals unique genetic signature. However, this type of precision medicine is limited
by our understanding of how genetic variation shapes disease. Our understanding of so-
called complex diseases is particularly poor, and most identified variants explain only a tiny
fraction of the variance in the disease that is expected to be due to genetics. This is further
complicated by the fact that most studies of complex disease go directly from genotype to
phenotype, ignoring the complex biological processes that take place in between.

Herein, we discuss several advances in the field of complex trait genetics. We begin with
a review of computational and statistical methods for working with genotype and phenotype
data, as well as a discussion of methods for analyzing RNA-seq data in effort to bridge
the gap between genotype and phenotype. We then describe our methods for 1) improving
power to detect common variants associated with disease, 2) determining the extent to which
different world populations share similar disease genetics and 3) identifying genes which show
differential expression between the two haplotypes of a single individual. Finally, we discuss
opportunities for future investigation in this field.
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Chapter 1

Introduction

1.1 Complex traits and the problem of missing

heritability

Complex traits

Human traits, such as disease status and morphological features, can be broadly split into
those that do and do not have a genetic component. Among traits that have a genetic
component, they can be further subdivided into mendelian and complex traits. Mendelian
traits are controlled by a single genetic variant in a dominant or recessive pattern, where the
trait is determined by the presence of a single copy of the disease-causing mutation on one
haplotype (dominant) or the presence of the disease-causing mutation on both haplotypes
(recessive). Complex traits, on the other hand, are caused by a combination of many hun-
dreds or thousands of genetic variants and the environment. Each individual genetic variant
may contribute only a small amount to the trait, where each copy of a relevant mutation that
an individual carries increases their height by a small amount, say 1cm, on-average relative
to an individual that does not carry the variant. Examples of complex and mendelian traits
are given in Table 1.1. As with most topics in biology, this division is not complete, and
there are a few traits that are known to be governed by a small number of genes like hair
and eye color.

In this manuscript we focus primarily on complex trait architecture. Broadly speaking,
the architecture of a complex trait is the pattern of genetic variation effecting it. This
includes questions like: what proportion of the variance in the phenotype is explained by ge-
netics? what proportion is explained by validated associations? which regions of the genome
are enriched for disease-associated variants? how similar are the genetics of two different
diseases? how similar are the genetics effects of a disease in two different populations? and
related questions.

There are numerous ways to model the relationship between genotype, environment and
phenotype. There are also many kinds of genetic variation we can choose to include in our
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Table 1.1: Complex traits are caused by hundreds or thousands of genetic variants and the
environment, while mendelian traits are effected by a single genetic variant in a dominant
or recessive pattern. Complex traits are the focus of this manuscript.

Complex Mendelian

Height Sickle-cell disease
Type-II diabetes Blood type
Rheumatoid arthritis Lactase persistence
Most cancers Cleft chin

Table 1.2: Type and number of various kinds of human genetic variation. Single nucleotide
polymorphisms (SNPs) are the most common, making up about 95% of all variation. In
each case, an example modification to the sequence GATTACA is provided. Note that there
are many kinds of structural variation, and the example provided is a copy-number variant.

Type Example: GATTACA Number of variants

Single nucleotide polymorphism GATTGCA 84,387,209
Short insertion or deletion GACA 3,409,987
Multi-allelic SNP GATTGCA, GATTCCA 289,480
Structural variation GAGAGAGAGATTACA 59,797

model, including bi-allelic single nucleotide polymorphisms (SNPs), short indels, multi-allelic
SNPs, and various kinds of structural variation (Table 1.2). The majority of human genetic
variants are rare, however there are about ten million SNPs that are present in at least 1%
of at least one global population [22]. Modeling the impact of common SNPs on human
phenotypes is the focus of this work, though we acknowledge that evaluating the phenotypic
impact of rare genetic variation may be of tremendous medical importance [78, 107].

Let G ∈ {0, 1, 2}N×M be a matrix of genotypes for N individuals at M SNPs. The number
Gi,j ∈ {0, 1, 2} represents the number of copies of the minor allele that individual i carries
at SNP j. Similarly, let E be an N ×L matrix of L possible environmental effects. Then the
most general way to model the relationship between genetics, environment and phenotype
is Y = Ψ(G,E) [134]. The function Ψ can include many terms, some of which are listed
in Table 1.3. Among these, we will focus on additive genetic variation for reasons that will
become clear in the following sections. We will also assume that the trait is quantitative,
that is, the the trait is real-valued (Y ∈ RN). We will discuss binary (disease) traits in
Section 1.2.
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Table 1.3: Examples of terms that can be included when modeling the relationship between
genotype, environment and phenotype. For the purposes of this manuscript we will focus
on additive genetic effects, while acknowledging the potential significance of other kinds of
effects in later sections. The ellipsis indicates than in each case we model many additional
effects. The notation 1[C] is an indicator variable that the specified condition C holds.

Type Model

Additive (linear) Y = βiGi + . . .
Dominant Y = βi1[Gi > 0] + . . .
Recessive Y = βi1[Gi = 2] + . . .
SNP-SNP interaction Y = βijGiGj + . . .
SNP-environment interaction Y = βikGiEk + . . .

Missing heritability

The concept of heritability has both an intuitive meaning and a technical definition. In
fact, the concept of heritability has several competing technical definitions, which we will
be careful to distinguish between in the remainder of this work. At an intuitive level, the
concept of heritability relates to the ancient debate between nature and nurture [63]. When
we discuss the heritability of a human trait, we think of the relative importance of genetics
versus environment in shaping the trait outcome. From a technical standpoint, heritability
is the proportion of the variance in the trait that is explained by genetics. In the most
general case, the variance of the trait can be partitioned into the genetic variance, the
environmental variance, the genetic-environment covariance, and the genetic-environment
interaction variance [114]. Specifically, if we partition the trait variance as

σ2
Y = σ2

G + σ2
E + 2σ2

G,E + σ2
G×E (1.1)

Then we can define the broad-sense heritability as

H =
σ2
G

σ2
Y

(1.2)

The genetic component of variance can be further decomposed into the additive, dominant,
and epistatic (interaction) components σ2

G = σ2
A + σ2

D + σ2
I . This is used to define the

narrow-sense heritability

h2all =
σ2
A

σ2
Y

(1.3)

The quantity H2 represents the total variance in the trait that is explained exclusively by
genetics, while the quantity h2all represents the total variance that can be explained by addi-
tive effects. For the most part, the genetics community is more interested in the narrow-sense
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heritability than the broad-sense heritability. There are a number of reasons for this. One
is that sharing gene interactions between relatives requires two different genes be identical
by descent (IBD). With the important exception of full-sibling and twin relationships, this
is relatively rare [114]. Another is that identifying gene interactions is considerably more
difficult due to issues of statistical power, a point we will return to in Chapter 2. A third
reason is that estimating the broad-sense heritability explained by a set of genetic variants
is computationally intractable for arbitrary Ψ [134].

The most widely applied method of estimating heritability is via comparing the correla-
tion of monozygotic (mz) and dizygotic (dz) twins. If we assume that the trait is strictly
additive, then we can model the similarity of twins as having a component due to additive
genetics (A), common environment (C) and unique environment (E). Since mz twins share
100% of their genome, dz twins share 50% of their genome, and share the same environment,
we can estimate heritability by [31]

rmz = A+ C

rdz =
1

2
A+ C

A = h2ACE = 2(rmz − rdz)

where rmz and rdz are the phenotypic correlations between mz and dz twins in a population.
Methods that compare the phenotypic resemblance of close relatives to determine heri-

tability can be called top-down estimators of heritability. Another approach to estimating
heritability is by computing the total variance of the trait explained by a set of discovered
variants, the bottom-up approach. For a set of uncorrelated genetic variants G′, the variance
explained is

h2G′ =

|G′|∑
i=1

2fi(1− fi)β2
i (1.4)

where fi is the frequency of variant i in the population.
The most common approach to discovering genetic variants to include in the set is the

genome-wide association study. In this study, we obtain genotype and trait information
for the trait of interest then use linear regression to determine which genetic variants are
statistically associated. As previously discussed, there are millions of genetic variants to
include in the model. Acquiring the sample size necessary for a multiple regression of millions
of regressors to be well-conditioned is problematic, and methods for regularization such as the
elastic net[133] are computationally intractable at this scale. Therefore, geneticists resort to
computing the association statistic for each SNP in isolation of the remainder of the genome,
while conditioning on covariates relevant for the trait of interest. The consequences of this
approach will be discussed more thoroughly in Section 1.2.

Each linear regression is a test of the null hypothesis that the SNP is not associated with
the trait. To avoid inflating the type-I error rate, the threshold of association must account
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Figure 1.1: An example of a manhattan plot with simulated data. Each of the points
is − log10(p), where the p-value is determined by the χ2-test statistic of association with
the phenotype. The dashed line represents − log10(5 × 10−8), the threshold of statistical
significance in most genome-wide association studies.

for the fact that we are testing millions of correlated hypotheses. Geneticists estimate that
there are roughly one-million independent genomic loci in European populations, therefore a
Bonferonni multiple-testing correction for a type-I error rate of 0.05 results in a significance
threshold of 0.05

106
= 5 × 10−8[89]. The resulting data is usually presented in a Manhattan

plot, with highly significant regions showing large log-p-values (Figure 1.1).
We now describe the problem of missing heritability. Let G′ be the set of un-correlated

genetic variants statistically associated in a GWAS for trait Y . Let h2G′ = h2GWAS be the pro-
portion of phenotypic variance explained by these variants. In it’s simplest formulation, the
problem of missing heritability is the observation that the variance explained by discovered
associations is only a tiny fraction of the heritability estimated by twin studies. That is,

h2GWAS << h2ACE (1.5)

A lot has been written about locating the missing heritability [28, 68, 134, 114, 124].
Notice that we were careful not to call the heritability estimated by twin studies the total
narrow-sense heritability, and that we were careful to allow the general model to include
gene-gene and gene-environment interactions. Some geneticists have observed that the ACE
model commonly used in twin studies implicitly assumes that the trait is strictly additive,
and have argued that gene interactions inflate estimates from family studies because close
relatives are much more likely to share gene interactions than distant relatives [134]. Others
have argued that GWAS are under-powered to detect the many small-effect variants [68, 124].
Furthermore, variants, such as rare SNPs and structural variation, that are not studied in
GWAS may contribute to phenotypic variance [68, 28].
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1.2 Statistical models for complex trait genetics

Linear mixed models the liability threshold

In the remainder of this work, we will examine statistical models that improve our ability to
understand complex trait genetics. The first modeling choice we will make is to only model
additive genetic variance, and to assume there are no gene-environment interactions. We
also assume that the individuals are only distantly related so that they have no common
environment. The next choice we will make is that the SNP effects act via standardized
genotypes, an assumption we will relax in Chapter 3. That is, let µG = 2[f1, . . . , fM ] be
the column mean of the genotype matrix G, where fi is the allele frequency of SNP i. Let
VG = 2[f1(1− f1), . . . , fM(1− fM)]IM = diag

(
1
M

(G− µG)>(G− µG)
)

be the allele variances
assuming Hardy-Weinberg equilibrium. Now let X = (G−µG)V −1G . Then our model for the
complex trait Y is

Y = Cγ +Xβ + ε (1.6)

where ε⊥β and the Cγ term allows for covariates to effect the trait mean.
Another assumption we will make for now is that the genetic effects are random, rather

than fixed. Specifically, let the vector of genetic effect sizes follow the normal distribution

(β1, . . . , βM) ∼ N
(

0M ,
σ2
g

M
IM

)
(1.7)

where 0M is the length-M 0-vector, IM is the M ×M identity matrix, and σ2
G is the trait

variance explained by the M variants. This is commonly called the infinitesimal assumption
[124]. It has its roots in Fisher’s observation that family phenotypic resemblance is consistent
with a large number of variants of small effect, and that small effect mutations are more likely
to increase fitness[35]. This assumption will be prove very valuable for the remainder of this
work. However, some geneticists prefer to assume that the genetic effects are fixed. This
approach is especially useful when analyzing short genetic regions where the number of
variants makes limiting distribution assumptions problematic [37, 99].

We now have a linear mixed model (LMM). Conditional on fixed effects, the trait is
Y = g+ ε, with g the genetic contribution to the trait ε the environmental contribution. By
the central limit theorem, g is normally distributed. If we assume that any large environ-
mental effects, such as smoking for lung cancer risk, are known and modeled as fixed-effect
covariates, then we can informally argue that the environmental contribution is due to a
sum of many small effects and can therefore be assumed normal. This implies that the
trait is normally distributed in the population, and indeed this is true for many complex
quantitative traits [67]. The distributions of the genetic and environmental contributions
are therefore

g ∼ N
(
0, Kσ2

g

)
ε ∼ N

(
0, INσ

2
ε

)
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where K = XX>/M is called the genetic relatedness matrix (GRM). The GRM provides an
estimate of the shared genetics of distantly related individuals. The trait variance can then
be partitioned in order to estimate the total phenotypic variance explained by the set of M
SNPs in the genotype matrix

h2chip =
σ2
g

σ2
g + σ2

ε

(1.8)

which provides a useful lower bound on the narrow sense heritability. However, it does bring
many assumptions. In particular, the normalization of the genotype matrix implies that
genetic effect sizes are inversely proportional to allele frequency [102]. We will return to this
point and relax this assumption in Chapter 3.

We can extend this framework to handle binary (disease) traits by assuming that the trait
status is related to an underlying normally-distributed liability via a probit transformation.
That is, assume that a disease trait Y that effects k% of the population has an underlying
liability l such that every individual with liability exceed a threshold t = Φ−1(1 − k) has
the disease and everyone under the threshold doesn’t. This is called the liability threshold
model [30, 56] (Figure 1.2A).

l = Gβ + ε

Y = 1[l > t]

Note that estimates of variance components on the observed (binary) scale must be trans-
formed to get estimates of the variance explained on the underlying liability scale via [26,
56]

h2l,chip =
k(1− k)

z2
h2o,chip (1.9)

where z = φ(t) is the height of the standard normal distribution at the threshold. Further-
more, in most case-control studies of binary traits, the proportion of cases in the study does
not match the proportion of cases in the population (Figure 1.2B). In this case, one can show
that if the proportion of cases in the sample is p, then the conversion from the observed scale
to the liability scale is [56]

h2l,chip =
k2(1− k)2

z2p(1− p)
h2o,chip (1.10)

Linear mixed models have broad utility in complex trait genetics beyond providing a
lower bound on the amount of trait variance explained by additive genetic variance. Per-
haps the most common use of LMMs is to control for population structure in GWAS by
explicitly modeling the correlations in the genetic effects that arise from distant family re-
lationships [61]. Another application of mixed models is to find unbiased estimates of the
SNP effect sizes that account for the non-random correlation between SNPs in a population,
called linkage disequilibrium (LD). This is done by first estimating the total genetic (gi)
and environmental (εi) contribution for and individual and then estimating the effect size
of each SNP on the residual variance of the trait[126]. Finally, note the number of variance
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Figure 1.2: Distribution of the underlying liability in a case-control study, using the liability
threshold model. In both cases, the population prevalence of the trait is k = 6% and
there are 100, 000 individuals. The threshold at which an individual is considered a case
is Φ−1(1 − k) = 1.55. (A) With no ascertainment, the underlying liability has a normal
distribution. (B) In most studies, there are many more cases than in the general population.
In this example, there are 50, 000 cases and 50, 000 controls.

components can be increased to compare the variance explained by different sets of genetic
variants

Y = g1 + g2 + . . .+ gm + ε

gi ∼ N
(
0, Kiσ

2
i

)
where Ki is genetic similarity matrix at subset i of the genetic variants. Gusev et al [39] use
this approach to examine how trait variance is partitioned across SNPs in different regulatory
regions.

While LMMs have enjoyed remarkable success as a tool for understanding the genetic
architecture of complex traits, they are not without their limitations. One limitation is that
estimating the kinship matrix has complexity O(N2M), and is therefore extremely time
consuming to estimate for large sample sizes. Similarly, the variance components are usually
fit with restricted maximum likelihood estimation (REML) which can be time consuming
for large sample sizes and many variance components. That said, a tremendous amount of
work has been done to speed up variance component methods [131, 61, 64]

Summary statistics

Another complication to the application of LLMs to complex trait genetics is that the require
access to the genotype and phenotype matrices, which are often not provided due to privacy
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Table 1.4: Typical summary association data consists of SNP names (rsids), estimates of the
effect size and stand error of that SNP, the reference and alternate alleles in the study, and
the number of individuals with data at that SNP.

Chr Pos rsid Ref Alt N β̂ σβ

1 1199503 rs11260558 T C 10324 0.0521 0.024
1 1449501 chr1:1449501 A G 10500 -0.012 0.032
...

...
...

...
...

...
...

...
22 38896335 rs5757337 A G 11324 0.102 0.042

concerns [41]. Instead, researched tend to share GWA results data, called summary statistics.
This usually consists of covariate adjusted effect sizes or odds ratios and their standard errors
for a test of association for each SNP against the trait, signed with respect to the reported
major allele in the study (Table 1.4). In rare cases, the allele frequencies are also provided.
From a computational standpoint, summary statistics can be thought of as a map from
genotype-phenotype space to effect size space, which reduces the size of the dataset from
N +M ×N to c×M . This dramatically lowers the computational burden of working with
the data.

Problematically, summary statistics almost never include correlation matrices of the SNPs
in the study. As nearby SNPs are correlated with one another (the aforementioned LD),
testing a single SNP implicitly tests all SNPs that are in LD with it. De-correlating estimates
of SNP effect sizes requires knowing this correlation structure. This correlation structure
can vary dramatically across world populations, but tends to be relatively conserved within
each population. This has led some geneticists to develop summary statistics methods that
leverage known genotypes from the population of interest to approximate the correlation
matrix. These reference panels are provided for many populations around the world by the
International HapMap Project [38] and the 1000 Genomes Project [22].

We now introduce a formal model for working with summary statistic data by deriving the
distribution of the summary statistics. We assume the same linear effect model introduced
above. Let Zi be the Wald test statistic (Z-score) of association for SNP i, Zi = βi

σβi
. Then

the vector of association statistics Z can be written

Z =
X>Y√
N

(1.11)

and is asymptotically multivariate normal.
To compute the expected value and variance-covariance matrix of the test statistic, we

will assume that the individuals in the study are randomly drawn from population A. That
is, assume that in the infinite population-size limit, the SNP correlation matrix is Σ and the
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allele frequencies are fi. Then,

E[X] = 2[f1, . . . , fM ]

E
[
X>X

N

]
= ΣA

By the law of total expectation, E[X>Y ] = EX [X>E[Y |X]] = 0. The variance-covariance
matrix is

E[ZZ>] =
1

N
E[X>Y Y >X]

=
1

N
EX [X>E[Y Y >|X]X]

=
σ2
g

NM
E[X>XX>X] +

σ2
ε

N
E[X>X]

=
σ2
g

NM
[N(N + 1)Σ2 +NMΣ] + σ2

εΣ

= σ2
g

N + 1

M
Σ2 + (σ2

g + σ2
ε )Σ

If we normalize the variance of Y to σ2
g + σ2

ε = 1, then we have

Z ∼ N
(

0,Σ + h2chip
N + 1

M
Σ2

)
(1.12)

If we assume we can accurately estimate the population LD matrix Σ, the variance-
covariance matrix of Z has only one unknown parameter, the variance explained by the M
SNPs h2chip. This can be exploited to estimate h2chip. The most common approach for this is

called LD-score regression. Let (Σ2)ii =
∑M

j=1 r
2
ij = li be the LD score of SNP i. Then we

can estimate h2chip via a linear regression of the χ2 test statistics[7]

Z2 ∼ a+ bl

h2chip ≈
M

N + 1
b

We will extend this model to multiple populations, discuss the consequences of it’s as-
sumptions, and consider alternative approaches of fitting the covariance of the distribution
of the Z-scores in Chapter 3.

1.3 Gene expression as a genetic trait

By going directly from genotype to phenotype, we are ignoring the complex biological pro-
cesses that mediate the transition. The field of functional genomics attempts to uncover
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how human genetic variation leads to changes in molecular phenotype. This involves the
integration of many kinds of genomic data, usually human genotypes or DNA-seq combined
with other high throughput *-seq experiments that give information about molecular pheno-
types. These include SHAPE-seq [66], which measures RNA structure, ATAC-seq [6], which
measures open chromatin regions, CHiP-seq [51, 73], which measures DNA-protein binding,
and bisulfite sequencing [72], which measures DNA methylation. There are many more
protocols, and new protocols are constantly under development[1].

From among these, the one we will focus on in this manuscript is RNA-Seq, which is a
protocol for measuring RNA transcript abundances [76]. RNA-Seq is broadly useful [117],
but in the context of this manuscript we will be primarily interested in analyzing how hu-
man genetic variation gives rise to variation in transcript and gene abundances. Obtaining
accurate estimates of the abundance of genes at the isoform level requires solving numerous
computational and statistical challenges. The primary challenges are: read-mapping [108],
transcriptome assembly [42], transcript abundance quantification [82] and statistical detec-
tion of differential expression between replicates [81]. From among these, we will review
transcript abundance quantification and differential expression.

Transcript abundance quantification from RNA-Seq reads

We assume that we have an accurate assembly of the human reference transcriptome, that
is, sequences of all isoforms of all genes transcribed in human, and that mapping RNA-
Seq reads to the human reference genome or reference transcriptome is accurate, even if
it is computationally intensive. With this, quantifying relative transcript abundance from
RNA-Seq reads still requires solving many computational and statistical challenges. These
are:

• Multi-mapping reads: a read from an exon contained in multiple isoforms of the same
gene will map to multiple transcripts in the transcriptome. Futhermore, reads from
genes with homology elsewhere in the genome will map to multiple locations in the
reference genome.

• Positional bias: fragments are not uniformly sampled from the transcript, which may
result from non-uniform fragmentation during library prep.

• Sequence bias: sequences around the beginning and end of transcripts are non-random,
meaning that priming and fragmentation strategies result in over-sampling of certain
transcripts.

There are numerous methods for estimating gene and transcript level abundances from RNA-
Seq reads (see [122, 95, 58, 5, 87, 110, 85] and many others). The most general approach for
handling multi-mapping reads while accounting for bias is to use the expectation maximiza-
tion (EM) algorithm [122, 58, 95, 82, 5]. First, we review the EM algorithm in the general
case. Then, we discuss the likelihood-based model generalized in [82] and it’s EM algorithm.
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Finally, we discuss a recent extension of this approach which dramatically improves speed
by observing that the likelihood does not actually require mapped reads [5].

Maximum likelihood estimation and the EM algorithm

Suppose we observe a sequence of n independent and identically distributed (i.i.d) random
variables X1, . . . , Xn from an unknown distribution Xi ∼ f0. In the following, we let xi
denote a random variable and let it’s corresponding observation be Xi. Assume that the
distribution f0 belongs to a family of distributions parametrized by θ, f0(x) = f(x|θ). Then
the distribution from which the observations are drawn can be written

f(x1, . . . , xn|θ) =
n∏
i=1

f(xi|θ) (1.13)

Now by treating the observations as fixed and the parameter as free, we can define the
likelihood

L(θ;X1, . . . , Xn) = f(Xi|θ)n (1.14)

and we can determine the parameter θ which gives the highest probability of observing the
data set X1, . . . , Xn

θ̂mle = arg max
θ
L(θ;X) (1.15)

In practice, statistical models are not always completely observed. That is, the likelihood
may depend on latent, unknown, variables. For example, if a dataset is drawn from a mixture
of two normal distributions, the distribution from which it is drawn is a latent variable.
For our application, if a read maps to multiple transcripts, the transcript that generated
the read is the latent variable. Formally, let Z be a matrix of latent variables, and let
L(θ;X,Z) = f(X,Z|θ) be the likelihood of the complete data. The MLE for the observed
dataset is the parameter θ that maximizes the marginal likelihood

L(θ;X) =
∑
Z

f(X,Z|θ) (1.16)

However, in practice this quantity can be difficult to compute as the space of possibilities
for Z can be exponentially large. The EM algorithm overcomes this by iteratively applying
a two-step procedure. In many situations, the distribution of the latent variable can be
estimated given a value for the parameter θ and the observations X, while the value of the
parameter θ can be estimated easily given complete data Z,X. This is the intuition that is
leveraged by the EM algorithm.

We start with an initial guess for the parameter θt. Then, in the E-step, we compute the
expected value of the hidden variable Z given X, θt

Z(t) = EZ [L(θ(t);X,Z)|X, θ(t)] (1.17)
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Then, in the M-step, we compute the MLE estimate of θ given the current guess for the
latent variable Zt

θ(t+1) = arg max
θ
L(θ;X,Z(t)) (1.18)

At each step, the resulting likelihood is guaranteed to be at least as large as the previous
step [121]. That said, if the likelihood function is not convex, it is only guaranteed to
converge to a local maximum.

Likelihood function for RNA-Seq abundance

We now turn to discussing MLE of RNA-Seq abundances. Following [122], assume there are
K transcripts each with probability pk of getting selected, and we have N total reads. If we
know which transript each read comes from, this is a multinomial distribution. Specifically,
let Z = {Zi,k}N,Ki=1,k=1 be an indicator matrix that read i is from transcript k. Then the
likelihood of the probability vector is

L(p;Z) ∝
K∏
k=1

p
∑N
i=1 Zi,k

k =
N∏
i=1

K∑
k=1

Zi,kpk (1.19)

However, in practice reads map to multiple transcripts and we don’t observe the matrix Z
directly. Instead, we observe the matrix Y = {Yi,k}N,Ki=1,k=1 which is an indicator matrix that
read i maps to transcript k. Then the likelihood becomes

L(p;Y ) =
N∏
i=1

K∑
k=1

Yi,kpk (1.20)

and we must infer the true transcript assignments using the EM algorithm. The E-step is

Z
(t)
i,k = E[Zi,k|Y, p(t)] =

Yi,kp
(t)
k∑K

k=1 Yi,kp
(t)
k

(1.21)

For the M-step, let n
(t)
k =

∑N
i=1 Z

(t)
i,k . Then

p
(t+1)
k =

n
(t)
k

N
(1.22)

The prior derivation assumes that the frequency of reads from a transcript is directly pro-
portional to it’s abundance. However, this is not exactly the case. In the generative mode,
first a transcript is selected, then a position on the transcript is selected uniformly at random
from which to draw the read. Longer transcripts are more likely to be selected. If the read
length is m, then the number of positions in the transcript at which the read can start is
l̃k = lk −m+ 1. The probability of selecting a transcript is therefore

αk =
pk l̃k∑
k pk l̃k

(1.23)
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Each position in the transcript is chosen uniformly at random, therefore the probability of
a specific read is αk

l̃k
. So that the above likelihood becomes

L(α;Y ) ∝
N∏
i=1

K∑
k=1

Yi,k
αk

l̃k
(1.24)

and the abundances can be backed out from the estimated transcript probabilities via pk =
αk
l̃k∑
k
αk
l̃k

More complicated formulations of the likelihood, such as the one used in [94], can model
sequence-specific and positional bias while incorporating complex error models. From among
these, sequence-specific bias is particularly problematic [95]. In the above formulation of the
likelihood, sequence-specific bias can be accounted for by adjusting the effective length.
Briefly, one can look at the empirical distribution of 6-mers of the transcript sequence over-
lapping the 5’ fragment and add the bias of each 6-mer on both strands [5, 94]. Notably, the
above likelihood cannot account for positional bias and incorporates no error model.

Notice that the above derivation requires that we know which transcripts each read is
compatible with. In software like RSEM [58], this is accomplished by mapping each read to
the reference transcriptome. This is an extremely time consuming process. Note, however,
that the above likelihood doesn’t require we know where in the transcript a read came from,
just which transcripts it is compatible with. Therefore, if we can determine which transcripts
a read maps to without actually mapping the reads, we may be able to speed up abundance
estimation dramatically.

Recently, this insight was leveraged by Bray et al [5] in software called kallisto using
a technique called k-mer hashing. Define an equivalence class for a read r as the set of
transcripts that that read can map to. kallisto works via two steps:

• Index construction: One can think of the kallisto index as a hash table that maps
every k-mer present in the transcriptome to the set of transcripts that contain that
k-mer. Call this set the k-mer equivalence class.

• Psuedoalignment: Each read is shredded into it’s corresponding k-mers, and then
each k-mer is looked up in the hash table to determine it’s k-mer equivalence class. The
equivalence class of a read is the intersection of the equivalence classes of the k-mers.

More accurately, the index is a colored transcriptome DeBruijin graph (T-DBG), where
each node is a k-mer and each color corresponds to a transcript. Each node is colored by the
transcripts that contain that k-mer. The principal difference between the T-DGB and the
hash table is that if a sequence of nodes in the T-DBG has the same coloring, those k-mers
need not be hashed, and can be skipped.
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Bray et al. also show that the likelihood can be re-formulated as a function of the number
of reads mapping to each equivalence class.

L(α;Y ) ∝
N∏
i=1

K∑
k=1

Yi,k
αk

l̃k
(1.25)

=
∏
e∈E

(∑
k∈e

αk

l̃k

)ce

(1.26)

where E is the set of all equivalence classes. This formulation of the likelihood also brings a
substantial speed improvement. Instead of performing the EM algorithm on millions reads,
it is performed on tens of thousands of equivalence classes. This two speed improvements
enable non-parametric estimation of the standard error of the abundances via the bootstrap.

Differential expression

If our goal is to understand the molecular path from genotype to phenotype, then the first
logical step is to understand how changes in biological condition result in statistically sig-
nificant changes in transcript abundance. This is the problem of differential expression.
Determining what constitutes a statistically significant change in transcript counts is non-
trivial because there are two sources of variance, the biological variance which arises from the
stochasticity of transcription within and between cells [29], and the technical variance that
arises from stochasticity in quantifying the relative transcript abundances from RNA-Seq.

Thus, an ideal experiment looking for differential expression would contain both biological
replicates, where different cDNA libraries constructed from repeated experiments in the
same or nearly the same conditions are sequenced, and technical replicates, where the same
cDNA library is re-sequenced. In an idealized RNA-Seq experiment, where every read maps
uniquely to a single transcript, the observed counts follow a multinomial distribution. This
can be well-approximated by a set of independent Poisson random variables, where the
variance is equal to the mean, and therefore the variance that would be inferred from technical
replicates is redundant [71]. In practice, reads map to multiple transcripts and transcript
counts must be inferred via EM as described above. This results in over-dispersion of the
count data in technical replicates relative to the Poisson distribution [77]. The most common
way to model count data in light of this is via the negative binomial distribution [65, 3].

There are dozens of methods for testing for differential expression (see e.g. [65, 96, 54,
109, 91] and references therein). They incorporate various strategies for shrinkage estimation
of the variance parameter in the negative binomial and transformations and normalizations
of the count data to fit linear or generalized linear models. A full comparison of the models
is beyond the scope of this manuscript, therefore we will focus on the model of [91] which
we will further leverage in Chapter 4.
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Assume we have measured the transcript abundances of N samples. The logarithm of
the counts is approximately normally distributed, therefore let

Yt = Xtβt + εt

be the log-counts of transcript t as a function of a fixed-effect design matrix of p covariates X,
and biological noise εt ∼ N (0, σ2

t IN). Many RNA-Seq models claim that Yt is observed [65],
but due to the randomness inherent in read alignment, we must also model the technical
variance

Dt = Yt + ξt = Xtβt + εt + ξt

where ξt ∼ N (0, τ 2t IN) and ξt⊥εt, Yt. This implies

Dt ∼ N
(
Xtβt, (σ

2
t + τ 2t )IN

)
so that accurate estimation of the fixed effects requires accurate estimation of the variance
components.

Let cti be the observed (raw) counts of transcript t in sample i. Then following [3] we
normalize the counts using sample specific size factors ŝi = mediant

cti

(
∏N
j=1)

1
N

so that the

log-transformed counts are

dti = log

(
cti
ŝi

+ 0.5

)
(1.27)

The technical variance can be estimated from the mean of the sample variances, which are
individually estimated via the bootstrap as discussed above, τ̂t = 1

N

∑N
i=1 τ̂ti. Estimating

the biological variance is less straightforward. If we let β̂t = (X>t Xt)
−1X>t dt be the OLS

estimate of the fixed effects. Then biological variance is the residual variance [91]

σ̂2
t = max

((
1

N − p

N∑
i=1

(dti −Xβ̂)

)
− τ̂t, 0

)
(1.28)

In many applications, the number of samples N is small and this estimate of the biological
variance is unstable. In this situation, most methods employ a shrinkage estimator of the
biological variance [91, 3, 54, 109]. However, in this manuscript we are primarily interested
in differential expression at the population level and therefore will omit discussion of the
shrinkage estimator for variance.
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Chapter 2

Local joint testing improves power
and identifies hidden heritability in
association studies

2.1 Introduction

Genetic association studies typically take a marginal approach to analysis; investigating
each SNP in isolation of all other SNPs for association with a phenotype of interest. While
this method has led to the discovery of thousands of loci associated with hundreds of phe-
notypes [119, 27], it fails to capture the additional signal available when multiple SNPs
representing independent genetic signals are examined simultaneously [125], or when SNPs
are imperfectly imputed [120]. Furthermore, the hidden heritability, the difference between
the heritability due to genome-wide significant associations and heritability due to geno-
typed variants, remains substantial [28]. In this work we investigate a local joint testing
approach to analysis of genetic data sets in which pairs of variants from the same locus are
examined simultaneously for association with a phenotype. The motivation for our approach
comes from the mounting evidence that complex traits are highly polygenic [115], that causal
variants are not evenly distributed across the genome [40], that known associated loci often
harbor multiple causal variants [120, 88, 32, 62, 111, 112, 90], and that the underlying causal
variants can be in linkage disequilibrium (LD) with each other [24].

In fact, LD between underlying causal variants can result in additive associations that
would be nearly impossible to detect using standard marginal methods. Consider the case
of two SNPs: one risk-increasing for a disease, and the other protective. If these SNPs are
correlated in the study population then marginal association methods will fail to detect the
signal due to the large number of individuals carrying both variants (and therefore having
little or no increased risk for the disease). The same effect can occur when the variants have
the same effect direction but are anti-correlated in the study population. In the context of
this paper, we will refer to these SNP pairs as linkage masked. Note that in practice linkage
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masking may present in two distinct and important ways. The first is multiple correlated
genotyped causal variants with opposite effect direction, which may occur due to the Bulmer
effect [9] (see discussion). The second is correlated genotyped variants with opposite tagging
of an untyped causal variant. Lappalainen et al [53] give evidence that linkage masking
between regulatory and coding variation may be common due to balancing selection. While
linkage masked SNPs are difficult to uncover using standard marginal association methods,
mixed model heritability is determined by a simultaneous fit of all SNPs while accounting for
LD and therefore includes signal from linkage masked SNPs, implicating them as a source
of hidden heritability which has not been widely considered [28].

Pairwise (joint) testing for additive effects without a statistical interaction term may
help unmask these associations and, more generally, improve power in the presence of gene
interactions, multiple causal variants or multiple variants differentially tagging an untyped
causal SNP. However, applying joint tests in practice has several problems. Because ex-
act multiple testing correction is usually unknown, several studies have used joint testing
for follow up and fine mapping of known associated loci, often revealing additional associ-
ated variants [120, 125], and demonstrating the merits of joint testing in practice. Studies
such as these are able to ignore multiple hypothesis correction issues due to their focus on
known associated regions but do not have the potential to reveal novel loci. Other studies
examining genome-wide joint testing of all pairs of SNPs, including those with statistical
interaction terms, pay such severe multiple hypothesis correction penalties that many loci
found via standard marginal approaches would not reach genome-wide significance [92, 4],
and are computationally expensive, though effect methods for reducing the computational
burden have been explored [92, 116]. Slavin and Elston [100] proposed testing all adjacent
pairs and applied their approach in the WTCCC seven disease study. Howey and Cordell
(SnipSnip) [48] proposed using a conditional test on 10 adjacent SNPs to choose a partner
SNP for inclusion in the linear model. While these approaches reduce the multiple hypoth-
esis correction penalty we show that they do not capture much of the available power gain.
Furthermore, prior approaches have not accounted for a known issue with genotyping error
and joint tests [56], which we show impacts these methods.

By testing pairs of SNPs for additive effects, rather than individual SNPs, we improve
power to detect loci containing multiple independent causal variants, including those con-
taining linkage masked SNPs. Through local testing, we substantially reduce the multiple
hypothesis correction penalty, while simultaneously enriching for situations in which joint
tests are more powerful, i.e. when there are independent additive genetic signals contained
in each of the SNPs in the test. Rather than employing the overly conservative Bonfer-
roni procedure to account for multiple testing, we extend the work of Han et al. [44] to
provide a method for sampling from the null distribution of joint tests orders of magnitude
faster than a permutation test, making application computationally efficient. We applied our
method to the WTCCC [11] cohorts for bipolar disorder, coronary artery disease, Crohn’s
diease, hypertension, rheumatoid arthritis, type-1 diabetes and type-2 diabetes. We define
significant locus as any 1 megabase region containing a statistically significant association
at family-wise error rate (FWER) 5% and compare the number of significant loci discovered
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from the NHGRI database of replicated associations to the standard marginal method. We
compare our approach to SnipSnip [48] and marginal analysis of imputed WTCCC geno-
types. We also estimate the phenotypic variance explained by associated SNPs discovered
in the marginal and joint approaches. Finally, we apply our method to gene expression data
from the gEUVADIS project, comparing the number genes containing cis-eQTLs at various
false discovery rate (FDR) thresholds under marginal and joint testing approaches.

We find: 1) Local joint testing provides significant power gains when multiple risk variants
are proximal, reaching as high as 41% when they are linkage masked. 2) Local joint testing
in the original WTCCC cohort discovers seven loci not found via the standard marginal
approach, all of which were later replicated in more powerful followup studies. Marginal
analysis of imputed genotypes discovers only two of these loci, as well as one locus not
detectable in either genotype-based method. 3) New SNPs and loci discovered via local joint
testing explain a significant amount of the phenotypic variance of these diseases. 4) joint
testing all pairs of cis-SNPs in gEUVADIS reveals 607 more genes at FDR 5%, an increase
of 10.7% over the marginal approach.

2.2 Methods

We begin by describing the null distributions of the tests in our procedure in order to
motivate the sampling approach used to determine the multiple testing correction. We
then show that given the marginal Z-scores at two SNPs the joint χ2 test statistic can
be exactly determined. In most cases, determining the significance level of a pairwise test
of correlated variables requires a computationally expensive permutation test. However, we
build upon a framework for generating marginal test statistics under the null efficiently using
a conditional sampling approach [44], which has also been used for genome-wide interaction
effect power calculations [116]. This implies that we are able to efficiently sample from
the null distribution of the joint test allowing for a dramatic improvement in speed over a
permutation test. Finally, we describe the local joint testing procedure. For simplicity, we
assume the phenotype and genotypes have been standardized.

Asymptotic distribution of the marginal and joint tests

For many widely used statistical tests, the vector of test statistics over many markers asymp-
totically follows a multivariate normal distribution (MVN) under the null hypothesis of no
association [98, 59]. In particular, let Y be the phenotype of interest and G the genotype
matrix, with Gi the genotype at SNP i in a study with N individuals, then the Wald test

Zi = β̂i
sβ̂i

=
√
NCor(Gi, Y ) is asymptotically N (0, 1). From this, one can derive the corre-

lation structure for two tests under the null [44], Cor(Zi, Zj) = Cor(Gi, Gj) := ρij, so that

the vector of marginal test statistics is asymptotically MVN with mean
−→
0 and covariance

matrix Σ = {Σij}N,Ni=1,j=1 = {ρij}N,Ni=1,j=1.
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Next, we consider the value of the likelihood ratio test (LRT) statistic for a linear or
logistic two-SNP association test. We shoe that it is possible to compute the value of this
test statistic directly from the marginal association statistics, without fitting the joint model.
Specifically

Observation 1. Let Zi, Zj be the Z-values of test statistics for the SNPs (i, j) against a
phenotype Y . Let the correlation between SNPs Gi and Gj be ρi,j. Then the likelihood ratio
test statistic for the model Y ∼ 1 +Gi +Gj against the null Y ∼ 1 is

χ2
J =

1

1− ρ2i,j
(Z2

i + Z2
j − 2ρijZiZj) (2.1)

and is asymptotically χ2
2 distributed.

Proof. The equality follows from setting up the normal equations and solving them. Let
X be the N × 3 matrix of regressors X = (

−→
1 |Gi|Gj). Assume that in the linear model

Y = Xβ + ε, the distribution of the error terms is ε ∼ N (0, σ2). Then the normal equations
for the β-coefficients are

β = (X>X)−1X>Y

solving this and simplifying yieldsβ1βi
βj

 =

 0
N3

D
(ρY,i − ρijρY,j)

N3

D
(ρY,j − ρijρY,i)


where

D = N3(1− ρ2ij)

is the determinant of X>X.
The log-likelihood for a linear model is L = − 1

2σ2

∑N
i=1(Yi − β>Xi). Using the above

calculation of β, we can find the model log-likelihoods and compute the likelihood ratio

LN = − N

2σ2

LJ = − N

2σ2
(1− 2ρY,iβi − 2ρY,jβj + β2

i + β2
j + ρi,jβiβj)

χ2
J = 2(LJ − LN)

Simplifying the above yields,
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χ2
J =

N

σ2

1

1− ρi,j
(ρ2Y,1 + ρ2Y,2 − 2ρi,jρY,1ρY,2)

=
1

(1− ρi,j)
(Z2

Y,1 + Z2
Y,2 − 2ρi,jZY,1ZY,2)

Thus, given the marginal test statistics and the sample correlation of the genotype pair,
we can compute the joint test statistic under the null without computationally fitting the
model (similar results derived in other contexts can be found in [98] and [125]). This, when
combined with MVN sampling of the marginal test statistics, allows a substantial speedup
over a permutation test.

While the above is derived in the context of a continuous disease phenotype, it is straight-
forward to conclude that the framework is extensible to case-control (binary) phenotypes.
While we assumed for simplicity the phenotype was standardized, the result is independent
of the scale of Y and thus holds for the diseases on the underlying liability scale. Since the
least squares model does not rely on the assumption that the error terms are normally dis-
tributed (only that they are spherical) the result extends to logistically distributed residuals
(logistic regression). In this case the β’s are log odds-ratios. We verified computationally by
simulating pairs of SNPs at all correlation levels that this equation is exact (not shown).

Estimating the significance threshold and local joint testing

We use a conditional sampling method to sample the marginal test statistics under the null
from the multivariate normal distribution. Since distal SNPs are likely to be independent,
we choose a window size Wz and ‘slide’ along the genome, sampling null test statistics at
SNP i conditional on the correlation with the previous Wz SNPs [44]. Specifically, the MVN
factors as

f(Z1, . . . , ZL) = f(Z1)f(Z2|Z1) . . . f(ZL|ZL−1 . . . Z1)

≈ f(Z1)f(Z2|Z1) . . . f(ZL|ZL−1 . . . ZL−Wz)

and we can sample Zi|Zi−1 . . . Zi−Wz via the standard conditional MVN

Zi|Zi−1 . . . Zi−Wz = Zi|Zp ∼ N
(
Σi,pΣ

−1
p,pZp, 1− Σi,pΣ

−1
p,pΣ

>
i,p

)
where Σi,p is the vector of correlations between SNP i and the conditional SNPs, Σp,p is
the Wz ×Wz correlation matrix for the conditional SNPs, and Zp represents their sampled
values.

Each set of sampled marginal null test statistics roughly corresponds to one genome-wide
marginal permutation test. Given these marginal null test statistics, we define a joint-testing
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window size Wj and compute the joint null test statistics for every pair of SNPs within
distance Wj via equation 2.1. These inferred joint null test statistics similarly correspond to
a permutation test of all SNP pairs within distance Wj of each other. With these sampled
null test statistics in hand, computing the significance threshold is straightforward. For
more details, see Algorithm 1, which takes as an input a desired FWER, number of samples
(roughly analogous to the number of permutations), a window size, and a set of joint tests
T , and outputs a multiple-testing corrected significance level corresponding to the desired
FWER. To verify that our method produced results equivalent to those of a permutation
test, we performed a permutation test of local joint testing with a window size of 100 SNPs
on the first 1000 SNPs of chromosome 1 (∼10 megabases) in the WT control group. We find
that the distributions of test statistics under the null for Jester and permutation approaches
are concordant, and that the significance threshold corresponding to an FWER of 5% are
nearly identical (Figure 2.1).

Algorithm 1: Method for sampling from the null distribution to determine significance
threshold

Input: significance level α, number of samples n, window size Wz, a set of joint tests
T.

Output: Significance threshold
Sample marginal test statistics using a conditional normal approximation
Compute the p-values associated to the marginal tests
for Jt ∈ T do

Compute S = χ2
Jt

using (2.1)
Compute the p-value associated to S

end
Sort the p-values from all tests performed
return (1− α)× nth smallest p-value

With the multiple testing correction in hand, the local joint testing procedure is a straight-
forward modification to the standard GWAS procedure. We choose a window size Wj, cor-
relation cutoff ρ2min and fit the two-SNP LRT for every pair of SNPs exceeding correlation
ρ2min within Wj markers of each other (Algorithm 2). This procedure is implemented in a
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Figure 2.1: Comparison of the density of the maximum test statistic from local joint testing
on the first 1000 SNPs of chromosome 1 in the WT controls between Jester and permutation
approaches. In each case 100K samples were used. The significance level α corresponding to
an FWER of 5% for Jester in this experiment was αjester = 4.37e−06 and for the permutation
test was αpermutation = 4.66e−06. For the purposes of this plot, marginal test statistics (Z
values) and joint test statistics (χ2

2) were transformed to χ2
1.

python package called Jester (github.com/brielin/Jester).

Algorithm 2: Jester ’s GWAS pipeline

Input: A matrix of genotypes G and a vector of phenotypes Y for N individuals
Output: A set of pairs of variants meeting genome-wide significance
Perform standard QC on G and Y
Estimate the joint test significance threshold αLJT
for SNP Gi ∈ G do

Test Gi for association with Y
Jointly test Gi with any of the preceding Wj markers correlated with Gi at level
ρ2min or greater

end
return SNP pairs with p-value < αLJT

github.com/brielin/Jester
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Filtering false positives

Lee et al. [56] describe an issue where genotyping errors that would go unnoticed in standard
QC procedures can cause inflation in joint and conditional tests of association. When SNPs
are highly correlated, mis-called bases in only the cases or controls induce rare haplotypes.
As these haplotypes are only present in the cases or controls, this increases the association
signal in the joint test [56].

While performing our analysis, we found many highly correlated (|ρ| > 0.9) pairs of SNPs
where neither SNP had substantial marginal signal but together showed an extremely strong
association. We accounted for this in two ways: first, we considered only associations arising
from pairs with correlation less than 0.9, second, we used imputation against 1000 genomes
to reanalyze jointly significant genotyped SNPs. Specifically, for each pair of potentially
significant SNPs, we used the -pgs flag of Impute2 to hold out the genotyped SNPs and
replace them with values imputed from the surrounding SNPs. We then re-computed the
test statistic using the imputed values of the SNPs. When the signal was a true association,
the joint test statistic remained significant after pgs imputation (Table 2.4). However when
the association appeared to be driven by genotyping error, the joint test statistic became
insignificant after pgs imputation (Table 2.7). In this way, we overcome the false positive
error identified by Lee et al. [56].

Datasets

We analyzed the WTCCC phenotypes bipolar disorder, Crohns disease, coronary artery
disease, hypertension, rheumatoid arthritis, type-1 diabetes and type-2 diabetes (CD, CAD,
HT, RA, T1D, T2D). We chose this data set because it was one of the first GWAS performed
and the phenotypes have been subsequently studied in independent large scale GWAS. Thus,
we emphasize the potential of early discovery of true effect leveraging non-standard GWAS
methods. We used a window size of Wz = Wj = 100 SNPs for estimating the null distribu-
tion, and a correlation cutoff of ρ2min = 0 (all pairs in the window). We performed standard
QC on the data, removing individuals with missingness > 0.1, SNPs with missing-ness > 0.1,
markers failing a Hardy-Heinberg equilibrium (HWE) test at significance level 0.001, and
SNPs with minor allele frequency < 0.05. To impute the WTCCC cohort, genotypes were
split into 1 mega-base regions and pre-phased against the 1000 Genomes EUR reference
panel using HAPI-UR, then imputed using Impute2 against the same reference panel. Non-
biallelic SNPs and SNPs with reference panel frequency below 5% were not imputed. All
imputed SNPs with info score below 0.5 were excluded from further analysis.

We also analyzed gene espression data for 16155 genes of the the gEUVADIS European
dataset. Raw RNA-sequencing reads obtained from the European Nucleotide Archive were
aligned to the transcriptome using UCSC annotations matching hg19 coordinates. RSEM
was used to estimate the abundances of each annotated isoform and total gene abundance
is calculated as the sum of all isoform abundances normalized to one million total counts
or transcripts per million (TPM). Genotyping data was obtained from the 1000 Genomes
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Phase III public release. eQTL mapping was performed on a per-gene basis. The cis region
of each eQTL was defined as all SNPs with MAF > 5% within 200KB of the transcription
start site (TSS), which was chosen because the vast majority of eQTLs are known to be
contained in this region [104]. Joint tests were performed between all pairs of SNPs in the
cis region. In each analysis, 30 genotype principal components were included as covariates.
Approximate permutation tests from our sampling procedure with 2500 samples were used
to infer permuted p-values separately for the marginal and joint approaches, which were then
independently analyzed to determine the number of significant genes at FDR 1%-25%.

2.3 Results

Multiple Testing Penalties for WTCCC and Power

We computed the multiple testing correction for local joint testing in the WTCCC cohort
using Jester for various window sizes and ρ2min cutoffs. We define the effective number
of tests (ENT) as the number of independent tests that would correspond to a corrected
significance level of αC for corresponding FWER α. That is, ENT = α/αC . We found that
the significance level of genome-wide marginal testing at FWER 5% was αM = 2.3 × 10−7.
We chose to use a window size of 100 and ρ2min cutoff of 0 for our main analysis, increasing
the ENT by a factor of 19.55 over the marginal test, even though we perform 100 times as
many tests (αJ = 1.18 × 10−8). We chose the window size based on the work of Han et
al. [44], and used no correlation cutoff because our power simulations showed an increase in
power even in the absence of LD (Figure 2.2, right). For smaller window sizes and larger
cutoffs, the multiple testing burden decreases substantially. Using a modest ρ2min cutoff of
0.004, for example, increases the number of tests by a factor of 8.90 over the marginal test
(αJ,0.004 = 2.5× 10−8).

We sought to determine the relative power of local joint testing versus marginal testing in
the case of 1) two correlated variants in LD and 2) a single causal variant. We simulated pairs
of genotypes for 5000 individuals with allele frequency 50% and correlation ρ ∈ [−1, 1]. We
simulated phenotypes in a linear model with standard normally distributed environmental
noise where 1) both SNPs had an effect size of β = 0.1 or 2) only SNP 1 had an effect size
of β = 0.1. We used the significance thresholds computed above to incorporate the effect of
testing pairs of correlated variants genome-wide. We found a substantial increase in power
for modest window sizes and small correlation cutoffs (Figure 2.2, right) when there were
multiple causal variants. Using a window size 50 and cutoff of 0.004 lead to an increase in
power of up to 41.0% when there were multiple correlated causal variants, while a window
size of 100 and cutoff of 0.0 saw an increase in power of 35.4%. In the absence of multiple
causal variants, the increase in multiple testing burden and degree-of-freedom penalty gave
a decrease in power of 15% and 20%, respectively for the two testing contitions, for all
correlation levels. Note that while our method shows its most substantial gain when SNPs
are linkage masked, we also see up to a 25% increase in power when the causal variants are
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uncorrelated.

Figure 2.2: (Left) Joint testing genome-wide shows a power loss for all correlation structures
when only one SNP affects the trait. (Right) Joint testing genome-wide shows a substantial
power gain for anti-correlated SNPs that both affect the trait.

Significant loci in WTCCC

We analyzed the WTCCC phenotypes using four different methods: 1) marginal tests at an
FWER of 5% (2.3×10−7), 2) joint tests with window size 100 and ρ2min = 0 at the significance
level estimated by Jester corresponding to an FWER of 5% (1.18× 10−8), 3) SnipSnip [48]
with window size of 10 SNPs at significance level 5× 10−8 and 4) marginal tests of imputed
genotypes at significance level 5× 10−8. Since SnipSnip does not include an analysis of the
multiple testing correction we chose to use their suggested significance threshold.

Local joint testing resulted in the discovery of 2.3 times as many associated SNPs over
the marginal method, summarized in Table 2.1. In Figure 2.3 we provide a plot of the
density of the correlation between the pair of SNPs that are genome-wide significant at
FWER 5% using Jester. These SNP pairs have a range of correlations, but SNP pairs where
neither SNP was discovered in marginal testing have higher correlation (signed with respect
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to opposite effect directions) than the average (Figure 2.3). The marginal test of genotyped
SNPs revealed 17 significant loci. Jester discovered seven additional loci while missing two
of the original due to the increased multiple testing burden, for a total of 22 significant loci.
For each of these seven newly significant loci, we searched the NHGRI GWAS database [119]
for reported associations and found that each had been reported in more powerful disease-
specific follow-up studies. The significant SNP pairs in four of these seven novel loci were
linkage masked, with correlations ranging from 0.26 to 0.74 (signed w.r.t opposite direction
SNP effects). Interestingly, SnipSnip discovered fewer SNPs and loci than the marginal
method, but we emphasize that the set of loci it uncovered are not a strict subset of those
discovered via the marginal method (Table 2.5). That is, it discovers some new loci while
missing some that are marginally significant and thus remains useful as a secondary analysis
tool.

We also compared our method to a GWAS of imputed genotypes, the current gold stan-
dard method. This allows us both to determine how our method compares in the number
of discovered loci, and whether the linkage masked loci that Jester uncovered were due to
correlated SNPs with opposite tagging of an untyped causal variant. The imputed GWAS
discovered 20 loci in total: the 17 marginally discovered loci, two of the seven linkage masked
loci (Table 2.2) , and one locus found by SnipSnip but not Jester or the marginal GWAS
(CD 18p11.21, Tables ??). The two loci discovered by both Jester and imputation (CD
5q31.1 and T1D 10p15.1) were linkage masked, but the discovery of a significant SNP after
imputation implies this was due to opposite tagging of an untyped causal. Of the remaining
five loci, three (CD 10q21.3, RA 1p36.32, RA 10p15.1) were uncorrelated, supporting the
presence of multiple causal variants. The final two loci (CD 6p21.32, T2D 9p21.3) were
correlated (r = 0.26 and r = 0.51, respectively) but did not contain a significant SNP after
imputation. We conclude that these loci are strong candidates for followup study to validate
the presence of linkage masking. For complete details of all associations discovered in each
method, see Tables 2.3-2.6.

Phenotypic variance explained by new genome-wide significant
associations

We sought to quantify the effect of newly significant SNPs on the phenotypic variance ex-
plained by to genome-wide significant associations. We used GCTA to compute the genetic
relationship matrix (GRM) for each phenotype using only SNPs identified as significant us-
ing either the classic marginal or local joint testing method. We used the GCTA -mgrm mode
to fit a mixed model containing both marginal and joint GRM’s, and performed a likelihood
ratio test of the full model against a reduced model containing only the marginal GRM to
assess statistical significance. We were unable to fit the model for RA because of numerical
issues. For the four remaining disease phenotypes with genome-wide significant associations,
three (CD, T1D, T2D) show a statistically significant increase in the phenotypic variance
explained, while one (CAD) shows no increase in the phenotypic variance explained. The
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Table 2.1: (Left) Total number of loci containing genome-wide significant SNPs discovered
using standard marginal, local joint, SnipSnip (SS), and genome-wide imputation (imp)
testing methods. (Right) Total number of genome-wide significant SNPs discovered using
standard marginal, local joint, SnipSnip (SS) and genome-wide imputation (imp) testing
methods. For our analysis of T1D and RA, we removed chromosome 6 because of the large
effect HLA locus.

marg Jester SS imp marg Jester SS imp

BD 0 0 0 0 0 0 0 0
CAD 1 1 0 1 16 24 0 96
CD 7 8 5 8 58 89 56 587
HT 0 0 0 0 0 0 0 0
RA 2 4 3 3 6 29 6 88
T1D 5 6 3 6 14 82 14 264
T2D 2 3 2 2 16 25 24 76
Total 17 22 13 20 110 249 100 1111

Table 2.2: Loci that were not significant in the standard marginal approach but became
significant using Jester. ρ indicates correlation of SNPs signed with respect to opposite effect
direction. Results at these loci from imputation against 1000 genomes are also reported. P-
values which are significant for a particular testing method are denoted by an asterisk.

marginal Jester imputation

Dis Locus SNP PV SNP1 SNP2 ρ PV SNP PV

CD 5q31.1 rs6596075 5.97E-07 rs6596075 rs273913 0.32 9.34E-09* rs6897597 3.22E-8*
6p21.32 rs9469220 9.09E-07 rs9469220 rs12524063 0.26 2.81E-10* rs210194 3.359E-6
10q21.3 rs10761659 2.82E-07 rs10995271 rs10995271 0.01 3.02E-09* rs10761659 1.88e-07

RA 1p36.32 rs10910099 3.09E-06 rs12027041 rs10910099 0.00 1.02E-09* rs867436 4.795e-07
10p15.1 rs2104286 7.31E-06 rs1570527 rs2104286 0.03 3.71E-09* rs2181623 5.182e-05

T1D 10p15.1 rs2104286 8.28E-06 rs12722489 rs2104286 0.74 1.17E-08* rs12722563 6.39E-09*
T2D 9p21.3 rs523096 2.49E-04 rs10757283 rs10811661 0.51 3.36E-09* rs12555274 1.877e-07
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Table 2.3: Loci containing a marginally significant SNP at the 0.05 level after correction for
genome-wide multiple testing (p ¡ 2.18e-7)

Disease Locus RSID Pos Beta Beta SE p-Value

CAD 9p21.3 rs1333049 22115503 0.636 0.0834 2.31E-14
CD 1p31.3 rs11805303 67387537 -0.634 0.0886 8.09E-13

2q37.1 rs10210302 233940839 0.656 0.088 9.06E-14
5p13.1 rs17234657 40437266 -0.859 0.118 3.35E-13
5q33.1 rs11747270 150239060 -0.839 0.154 5.31E-08
10q24.2 rs10883365 101277754 -0.49 0.0865 1.52E-08
16q12.1 rs2076756 49314382 -0.731 0.0943 8.78E-15
18p11.21 rs2542151 12769947 -0.594 0.109 5.13E-08

RA 1p13.2 rs6679677 114015850 -1.34 0.129 2.92E-25
MHC rs6457617 32771829 1.64 0.0909 2.10E-72

T1D 1p13.2 rs6679677 114015850 -1.31 0.124 8.24E-26
MHC rs9268877 32539125 1.82 0.101 2.29E-73
12q24.13 rs17696736 110949538 -0.663 0.084 2.90E-15
12q13.2 rs11171739 54756892 -0.562 0.0833 1.58E-11
16p13.13 rs12924729 11095284 0.502 0.09 2.40E-08

T2D 10q25.2 rs4506565 114746031 -0.63 0.0877 7.12E-13
16q12.2 rs7193144 52368187 -0.482 0.0852 1.56E-08

increase in phenotypic variance explained varies by phenotype, with CD showing a 74%
increase, T1D showing a 12% increase, and T2D showing a 75% increase (Figure 2.3).

However, winners curse may disproportionally impact joint testing due to the increased
number of tests relative to the marginal approach. To quantify the effect of winners curse
we estimated the out of sample phenotypic variance explained by genome-wide significant
associations for T2D using European individuals from the Genetic Epidemiology Research on
Adult Health and Aging (GERA) cohort (detailed description of the cohort and study design
can be found in dbGaP, Study Accession: phs000674.v1.p1). Of the 16 marginally significant
SNPs present in WTCCC, 5 were also present in GERA. Of the 250 joint significant SNPs
present in WTCCC, 65 were also present in GERA. In the GERA analysis, we estimated the
phenotypic variance explained by those sets of SNPs as the coefficient of determination (R2)
in a linear regression of the marginal and joint SNP sets against the T2D phenotype. We
found that the variance in liability explained in GERA for the marginally significant SNPs
was 1.03% (0.07%), and the variance in liability explained in GERA for the joint significant
SNPs was 1.52% (0.11%), an increase of 46.6% (p = 0.0049 for an LRT of the joint and
marginal SNPs against just the maginal SNPs). Therefore we conclude that winners curse
does effect in-sample estimates, but the increase in variance explained due to linkage masked
variants remains substantial.
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Figure 2.3: The heritability of liability due to genome-wide significant marginal associations
(dark blue) plus additional heritability explained by genome-wide significant joint associa-
tions (light blue). Error bars correspond to the standard error of the heritability estimates.
In all cases but the T2D GERA, p-values correspond to the liklihood ratio test of the linear
mixed-model fit with both marginal and joint GRM against the linear-mixed model fit only
with the marginal GRM. In the T2D GERA case, the p-value corresponds to a likelihood
ratio test of the linear model fit will joint and marginal significant SNPs against the model
fit with only marginally-significant SNPs.
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Table 2.5: Results of running SnipSnip on the WT disease cohort using the default param-
eters. All pairs with correlation above 0.8 were removed to filter false positives.

Disease Locus Position 1 Position 2 Corr χ2-M PV Marg χ2-J PV Joint

CD 1 67406223 67416128 0.32 47.35 5.93E-12 37.43 9.44E-10
2 233943769 234015235 0.29 56.03 7.11E-14 54.28 1.73E-13
5 40437266 40438290 0.24 52.87 3.56E-13 76.27 2.46E-18
5 131829057 131815177 0.13 23.12 1.52E-06 32.54 1.16E-08
6 32766288 32771829 0.32 24.25 8.45E-07 27.63 1.47E-07
16 49323628 49317048 0.29 32.85 9.91E-09 58.84 1.71E-14
18 12824359 12802167 0.33 9.65 1.88E-3 27.48 1.58E-07

RA 1 114015850 113930493 0.39 109.27 1.41E-25 84.57 3.71E-20
6 32471505 32467409 0.14 273.18 2.29E-61 287.63 1.63E-64
11 3638426 3635022 0.47 15.41 8.65E-05 37.39 9.67E-10

T1D 1 114015850 113930493 0.40 112.54 2.72E-26 73.70 9.07E-18
6 31726100 31730585 0.32 324.81 1.29E-72 560.78 5.66E-124
12 54756892 54841289 0.15 45.79 1.31E-11 42.85 5.90E-11

T2D 9 22124094 22124172 0.25 11.46 7.1E-4 29.25 6.35E-08
10 114779067 114795850 0.18 48.94 2.63E-12 49.28 2.22E-12
16 52368187 52365759 0.39 32.12 1.45E-08 33.18 8.37E-09

gEUVADIS eQTL analysis

We compared the number of genes containing an eQTL at an FDR of 1%-25% using standard
marginal linear regression of all cis-SNPs against joint tests of all cis-SNPs (Table 2.8). At
an FDR of 5%, we find that 5641 of 16155 genes contain an eQTL using the marginal test,
and 6248 genes contain an eQTL using the joint test, an increase of 10.7%. As in our analysis
of the Wellcome Trust data, the genes discovered using the marginal approach are not a strict
subset of those discovered using the joint approach. For each level of FDR, we determined
the proportion of genes uncovered in the joint but not marginal approach that appear to
be linkage masked. At FDR 5%, the joint testing approach discovers 908 new genes. In
381 of those 908 genes the significant SNP pair have a correlation of greater than 0.2 signed
with respect to opposite direction SNP effects (Table 2.8). In Figure 2.3 we provide a plot
of the density of the correlation between the pair of SNPs in the most significant pair for
each gene containing an eQTL at FDR 5% using Jester These SNP pairs have a range of
correlations, but SNP pairs in genes without an eQTL discovered in marginal testing have
higher correlation (signed with respect to opposite effect directions) than the average (Figure
2.3).
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Table 2.6: Replicated loci found in a GWAS on WTCCC variants imputed to 1000 genomes.
The Comment column indicates whether the locus was detected in the marginal or 100-SNP
joint method, and provides a reference to the earliest replecation for the loci not found in
the standard marginal or local joint approaches

DIS LOC BP Imp AF χ2 pv Comment

CAD 9p21.3 22018781 0.4297 29.97 4.39E-08 Marg
CD 1p31.3 67552639 0.06555 30.57 3.22E-08 Marg

2q37.1 234143048 0.4826 47.3 6.08E-12 Marg
5p13.1 40319877 0.1225 48.53 3.25E-12 Marg
5q31.1 131743465 0.2415 30.57 3.22E-08 Joint
5q33.1 150240076 0.06646 30.42 3.49E-08 Marg
10q24.2 101277816 0.4685 30.24 3.82E-08 Marg
16q12.1 50737498 0.2751 31.25 2.27E-08 Marg
18p11.21 12774326 0.1635 31.11 2.44E-08 Parkes et al 2007 NG

RA 1p13.2 114173410 0.1201 50.28 1.34E-12 Marg
MHC 29690056 0.2316 39.1 4.02E-10 Marg
6q23.3 138173422 0.07418 30.09 4.11E-08 Okada et al 2014 Nature

T1D 1p13.2 114075796 0.2287 30.8 2.86E-08 Marg
MHC 32096001 0.1256 251.6 1.17E-56 Marg
10p15.1 6069561 0.1181 33.71 6.39E-09 Joint
12q13.2 56379060 0.416 30.07 4.17E-08 Marg
12q24.13 112486818 0.4243 62.73 2.37E-15 Marg
16p13.3 11164567 0.3222 31.46 2.04E-08 Marg

T2D 10q25.2 114732906 0.4478 29.97 4.39E-08 Marg
16q12.2 53800954 0.4074 30.21 3.87E-08 Marg

2.4 Discussion

In this work we described a local joint testing procedure, its multiple testing correction,
the genetic architecture for which it is well powered, a system for reducing susceptibility
to genotyping error, and implications for phenotypic variance explained from GWAS SNPs.
We have shown that when loci harbor multiple causal variants, the joint test can outperform
the marginal test substantially. We observed that our method out-performs the standard
marginal association method, lending further evidence that disease loci frequently harbor
multiple causal mutations. In our simulations, we find that the largest power gains come
from linkage masked SNPs: when SNPs have opposite effect direction but are correlated
in the study population. Furthermore, four of the seven (57%) newly significant WT loci
have the aforementioned property and 381 of the 908 (42%) newly discovered eQTLs at
FDR 5% show evidence of linkage masking. This finding is weakened only somewhat by
the fact that two of the four linkage masked loci in WTCCC appear to be type 2 linkage
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Figure 2.4: (left) Density of the correlation between SNPs in pairs that are genome-wide
significant at FWER 5% in the Wellcome Trust dataset, with all pairs of significant SNPs
in light blue and just those SNPs discovered using jester in dark blue. (right) Density of
the correlation between SNPs in the most significant pair for each gene containing an eQTL
pair at FDR 5% in the gEUVADIS dataset, with all pairs from genes with significant eQTLs
in light blue and just those eQTL’s discovered using jester in dark blue.

Table 2.8: Joint testing pairs of cis-SNPs improves the number of eQTL’s detected at FDR
5% by 10.7%. Many of the new genes (row new) discovered using the joint test appear to be
linkage masked (row LM), with correlation between the significant SNP pair of above 0.2.

FDR 1% 2% 3% 4% 5% 10% 15% 20% 25%

marg 4528 4936 5240 5458 5641 6432 7072 7600 8123
joint 4884 5376 5726 6015 6248 7206 7947 8625 9277
new 597 698 781 850 908 1113 1263 1431 1565
LM 276 303 334 358 381 473 566 634 701
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masking: correlated SNPs with opposite tagging of an un-typed causal, while the remaining
two appear to be type 1 linkage masking. Still, we observe increased power due to detection
of linkage masking in all aspects of our analysis. The Bulmer effect implies linkage masking
should be common; high fitness haplotypes are able to resist selective pressures, and may
acquire fitness decreasing mutations without being eliminated from the population. SNPs
of this kind are hypothesized as a source of missing heritability by Haig et al. [43] and
Lappalainen et al [53] argue that gene expression data support widespread linkage masking
due to balancing selection.

We find more evidence for linkage masking in the regulation of gene expression that in
the complex disease phenotypes we consider. However, it is not surprising that such effects
are more difficult to find in a genotyped cohort. As the effects of such SNPs are already
masked, the tagging SNP pair must be in tight LD with the causal SNP pair to prevent severe
power loss. On top of this, the tagging SNP pair must be highly correlated to achieve the
increased signal necessary to find linkage masked SNP pairs. Hemani et al. [45] make a sim-
ilar argument, showing that small reductions in LD can result in dramatic under-estimation
of epistatic effects. While linkage masked SNPs are difficult to uncover using standard
marginal association methods their signal is included in mixed-model SNP heritability esti-
mates. These SNPs are therefore a source of hidden heritability: the difference between the
phenotypic variance explained by genome-wide significant associations and the phenotypic
variance explained by genotyped variation. This is in contrast to the missing heritability,
the difference between the variance explained by genotyped variation and the total narrow-
sense heritability, which is unaffected by linkage masking. Our result narrows the hidden
heritability gap by discovering new associations which increase the variance explained due
to statistically significant associations.

Our approach is not without drawbacks. When causal variants are sparse we see a
reduction in power due to the degree of freedom and multiple test correction which only
reaps benefits in the presence of multiple signals. While our results indicate this is a less
common situation, there are two loci discovered by a marginal GWAS but not by Jester
(Table 2.3). Additionally, it can be difficult to distinguish heavy linkage masking from
genotyping error. In our analysis of the WT disease associations, we used a window size of
100 SNPs, chosen based on results from Han et al. [44] A logical question is whether or not
a larger or smaller window size would lead to more results. We repeated the analysis with a
window size of 50 and a correlation cutoff of 0.04, and discovered the same number of loci
and slightly more SNPs than presented here (not shown).

The relationship between joint testing and set testing [60, 50] remains an interesting av-
enue for further investigation. Set and joint testing are similar in that they 1) both improve
power to detect associations in the presence of multiple causal variants, 2) both are suscep-
tible to false positives due to genotyping error and population structure and 3) both require
an explicit estimation of the multiple testing correction to maintain the desired FWER. We
consider one recent set test, FaST-LMM-set, which has shown desirable properties with re-
spect to previous set tests [15]. FaST-LMM-set without a background kernel is equivalent
to a likelihood ratio test of the SNPs in the set against a null model, while our test is a
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likelihood ratio test of pairs of SNPs. We used FaST-LMM-set to analyze the WTCCC
dataset using 100-SNP windows, the same size used in our analysis, but found concerning
levels of inflation in the test statistics that we were unable to resolve (Figure 2.4). In addi-
tion, set tests currently require expensive permutation tests to control the FWER making
genome-wide application computationally intensive [15]. We view approximating the MTC
of set testing without resorting to permutations as an interesting open problem, and believe
that it may be possible to extend the MVN framework to set tests in the same way we have
done for joint tests. We hope to explore this connection thoroughly in future work.

Yang et al. [125] propose a mathematically similar approach to ours, determining joint
test statistics from marginal summary test statistics (albeit only at genome-wide significant
marginal loci), while using an external reference panel to estimate the pairwise LD. This
approach in combination with our multiple hypothesis correction threshold could provide
a way to apply our local method without access to genotype data. We caution that our
proposed imputation based genotyping error correction method will not be applicable here
and thus high LD SNPs should be avoided in such an analysis. Furthermore, the variance of
the correlation coefficient estimates can be large even when many hundreds of individuals are
available in the reference panel [128] which could lead to false positives. While the reference
panel correlations may still be relatively accurate for controls from the same population,
case individuals are more likely to harbor many disease-associated mutations and thus will
not match the reference panels as well [130, 129]. Even with these caveats, however, the
vast gain in power possible with the increased sample size of summary data makes this a
tempting proposition, and we have implemented this method in our software package.
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Figure 2.5: Q-Q plots of the results of FaST-LMM on the WTCCC dataset. (A) Control-control analysis, 15.6% of sets
have a p-value of less than 0.10. (B) Bipolar disorder, 18.4% of sets have a p-value of less than 0.10. (C) Coronary artery
disease, 13.4% of sets have a p-value of less than 0.10. (D) Crohn’s disease, 16.5% of sets have a p-value of less than 0.10. (E)
Hypertension, 13.4% of sets have a p-value of less than 0.10. (F) Rheumatoid arthritis, 14.2% of sets have a p-value of less than
0.10. (G) Type-1 diabetes, 13.7% of sets have a p-value of less than 0.10. (H) Type-2 diabetes, 14.7% of sets have a p-value
of less than 0.10. (I) Bipolar disorder with leave-one-chromosome-out GRM background kernel, 15.4% of sets have a p-value of
less than 0.10. In all cases we used 100-SNP sets. In (A) through (H), we used a likelihood ratio test with 10 permutations per
set and no background kernel. In (I), we used the sc davies score test to improve speed with the background kernel present.
In some cases, λGC is 0 because permutation tests result in more than half of the sets having a p-value of 1.0.
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Chapter 3

Transethnic genetic correlations from
summary statistics

3.1 Introduction

Many complex human phenotypes vary dramatically in their distributions between popula-
tions due to a combination of genetic and environmental differences. For example, northern
Europeans are on average taller than southern Europeans [97] and African Americans have
an increased rate of hypertension relative to European Americans [10]. The genetic con-
tribution to population phenotypic differentiation is driven by differences in causal allele
frequencies, effect sizes, and genetic architectures. Understanding the root causes of pheno-
typic differences worldwide has profound implications for biomedical and clinical practice in
diverse populations, the transferability of epidemiological results, aiding multi-ethnic disease
mapping [23, 74], assessing the contribution of non-additive and rare variant effects, and
modeling the genetic architecture of complex traits. In this work we consider a central ques-
tion in the global study of phenotype: do genetic variants have the same phenotypic effects
in different populations?

While the vast majority of GWAS have been conducted in European populations [12],
the growing number of non-European and multi-ethnic studies [2, 80, 74] provide an op-
portunity to study genetic effect distributions across populations. For example, one recent
study used mixed-model based methods to show that the genome-wide genetic correlation
of schizophrenia between European and African Americans is nonzero [14]. While powerful,
computational costs and privacy concerns limit the utility of genotype-based methods. In
this work, we make two significant contributions to studies of transethnic genetic correlation.
First, we expand the definition of genetic correlation to better account for a transethnic con-
text. Second, we develop an approach to estimating genetic correlation across populations
that uses only summary level GWAS data. Similar to other recent summary statistics based
methods [83, 57, 125, 86, 47, 46, 52, 8, 7, 34, 84, 123] our approach supplements summary
association data with linkage disequilibrium (LD) information from external reference panels,
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avoids privacy concerns, and is scalable to hundreds of thousands of individuals and millions
of markers. Unlike traditional approaches that focus on the similarity of GWAS results [49,
135, 33, 19, 118] we utilize the entire spectrum of GWAS associations while accounting for
LD in order to avoid filtering correlated SNPs.

In a single population, the genetic correlation of two phenotypes is defined as the cor-
relation coefficient of SNP effect sizes [55, 7]. In multiple populations, differences in allele
frequency motivate multiple possible definitions of genetic correlation. Here we consider both
the correlation of allele effect sizes as well as the correlation of allelic impact, which takes into
account the frequency of the variant in the population: a variant may have a much higher
effect size but much lower frequency in one population. Therefore, we define the transeth-
nic genetic effect correlation (ρge, previously defined by Lee et al [55] and implemented in
GCTA) as the correlation coefficient of the per-allele SNP effect sizes, and the transethnic
genetic impact correlation (ρgi) as the correlation coefficient of the population-specific allele
variance normalized SNP effect sizes.

Intuitively, the genetic effect correlation measures the extent to which the same variant
has the same phenotypic change, while the genetic impact correlation gives more weight to
common alleles than rare ones separately in each population. For example, if the effect sizes
are the same in each population ρge = 1 but ρgi < 1 because of allele frequency differences
between the populations. In this case ρgi < ρge however the opposite can also be true. If
rare alleles have larger effect sizes and there are many alleles common in study one but rare
in study two, then ρgi will be greater than ρge. In this case, the differences in effect sizes
are mitigated by corresponding differences in allele frequency. While other definitions of
the genetic correlation are possible (see discussion), these quantities capture two important
questions about the study of disease in multiple populations: to what extent do the same
mutations in multiple populations differ in their phenotypic effects and to what extent are
these differences mitigated or exacerbated by differences in allele frequency?

To estimate genetic correlation, we take a Bayesian approach wherein we assume geno-
types are drawn separately from within each population and effects sizes have a normal prior
(the infinitesimal model [31]). While unlikely to represent reality, this model has been used
successfully in practice [64, 7, 34, 124, 14]. The infinitesimal assumption yields a multivariate
normal distribution on the observed test statistics (Z-scores), which is a function of the heri-
tability and genetic correlation. Rather than pruning SNPs in LD [83, 101, 113], this allows
us to explicitly model the resulting inflation of Z-scores. We then maximize an approximate
weighted likelihood function to find the heritability and genetic correlation. This method
is implemented in a python package called popcorn. Though derived for quantitative phe-
notypes, popcorn extends easily to binary phenotypes under the liability threshold model.
We show via extensive simulation that popcorn produces unbiased estimates of the genetic
correlation and the population specific heritabilities, with a standard error that decreases
as the number of SNPs and individuals in the studies increases. Furthermore, we show that
our approach is robust to violations of the infinitesimal assumption.

We apply popcorn to European and Yoruban gene expression data [106] as well as GWAS
summary statistics from European and East Asian rheumatoid arthritis and type-two dia-



CHAPTER 3. TRANSETHNIC GENETIC CORRELATIONS 41

betes cohorts [75, 21]. Our analysis of gEUVADIS shows that our summary statistic based
estimator is concordant with the mixed model based estimator. We find that the mean
transethnic genetic correlation across all genes is low (ρge= 0.320 (0.009)), but increases
substantially when the gene is highly heritable in both populations (ρge= 0.772 (0.017)).
We find the genetic effect correlation in RA and T2D to be 0.463 (0.058) and 0.621 (0.088),
respectively.

Across all phenotypes considered, we overwhelmingly find that the transethnic genetic
correlation is significantly less than one. There are many phenomena that may contribute
to this, including: untyped and unimputed, possibly rare variants linked to observed SNPs;
gene-gene interactions or dominance effects, gene-environment interactions, including epi-
genetic effects, that are differential between populations; and differences in sub-phenotype
composition. Our results therefore show that these phenomena significantly alter the effect
sizes of SNPs common to both populations, but cannot differentiate between them on the ba-
sis of this analysis. Furthermore, our finding that effects differ between populations indicates
that GWAS results may not transfer between populations, necessitating increased study of
disease in multiple populations to gain insight into differences in genetic architecture.

3.2 Methods

Our method takes as input summary association statistics from two studies of a phenotype in
two different populations, along with two sets of reference genotypes each matching one of the
populations in the study. Our method has two steps: first, we estimate the diagonal elements
of the LD matrix products Σ2

1,Σ
2
2,Σ1Σ2, then using these estimates we find the maximum

likelihood values and estimate standard errors of the parameters of interest: h21, h
2
2 and ρge

or ρgi. The details follow.
Consider two GWAS of a phenotype conducted in different populations populations, A

and B. Assume we have NA individuals genotyped or imputed to M SNPs in study A and
NB individuals genotyped or imputed to M SNPs in study B. Let GA, GB and YA, YB be the
matrices of mean-centered genotypes and phenotypes of the individuals in study A and B,
respectively, with fA, fB the allele frequencies of the M SNPs common to both populations.
Assuming Hardy-Weinberg equilibrium, the allele variances are σ2

A = 2fA(1 − fA), σ2
B =

2fB(1 − fB). Let βA, βB be the (unobserved) per-allele effect sizes for each SNP in studies
A and B, respectively. Define the genetic impact correlation ρgi = Cor(

√
σ2
AβA,

√
σ2
BβB)

and the genetic effect correlation ρge = Cor(βA, βB). We present a maximum likelihood
framework for estimating the heritability of the phenotype in study A and it’s standard
error, the heritability of the phenotype in study B and it’s standard error, and the genetic
effect and impact correlation of the phenotype between the studies and it’s standard error
given only the summary statistics ZA, ZB and reference genotypes RA, RB representing the
populations in the studies. We assume that genotypes are drawn randomly from populations
with expected correlation matrices ΣA (and similarly for study B), and that every SNP is
causal with a normally distributed effects size (though this assumption is not necessary in
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Figure 3.1: Bias and standard error of the heritability estimator in popcorn as the number
of SNPs M and number of individuals N varies.. All simulations conducted using simulated
phenotypes with h21 = 0.5, h22 = 0.5, ρgi,e = 0.5 and simulated European (EUR) and East
Asian (EAS) genotypes generated with HapGen2.

practice, see Figure 3.1).

Genetic impact correlation

Let XA = GA√
σ2
A

(and similarly for study 2) be normalized genotype matrices. We consider

the standard linear model for generation of the phenotypes, where

YA = XAβA + εA

YB = XBβB + εB

For convenience of notation let h2ix = ρgi
√
h2Ah

2
B. We assume the SNP effects follow the

infinitesimal model, where every SNP has an effect size drawn from the normal distribution,
and that the residuals are independent for each individual and normally distributed:

(
βA
βB

)
∼ N

([
0
0

]
,

1

M

[
h2AIM h2ixIM
h2ixIM h2BIM

])
(3.1)(

εA
εB

)
∼ N

([
0
0

]
,

[
(1− h2A)IM 0

0 (1− h2B)IM

])
(3.2)

where h2A, h
2
B are the heritability of the disease in study one and two, respectively, and ρgi

is the genetic impact correlation.
Using the above model, we compute the distribution of the observed Z scores as a func-

tion of the reference panel correlations and the model parameters (h2A, h
2
B, ρgi). Given a

distribution for Z and an observation of Z we can then choose parameters which give the
highest probability of observing Z. First, we compute the distribution of Z. It is well known
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that the Z-scores of a linear regression are normally distributed given β when the sample
size is large enough. Since P(Z) ∝ P(Z|β)P(β) and the product of normal distributions is
normal, we only need to compute the unconditional mean and variance of Z to know its

distribution. Specifically, let Z = [Z>A , Z
>
B ]>. Let Z ∼ N

([
µA
µB

]
,

[
C11 C12

C>12 C22

])
From

Chapter 1, we know that the mean and within-population variance are[
µA
µB

]
= E

[
ZA
ZB

]
=

[
0
0

]
C11 = E[ZAZ

>
A ] = ΣA + h2A

NA + 1

M
Σ2
A

C22 = E[ZBZ
>
B ] = ΣB + h2B

NB + 1

M
Σ2
A

The between-population variance C12 is

C12 = E[ZAZ
>
B ] =

1√
NANB

E
[
X>AYAY

>
B XB

]
(3.3)

=
1√

NANB

EXA,XB
[
X>AE

[
YAY

>
B |XA, XB

]
XB

]
(3.4)

=
hix

M
√
NANB

E
[
X>AXAX

>
BXB

]
(3.5)

= hix

√
NANB

M
ΣAΣB (3.6)

Genetic effect correlation

Let hex = ρge
√
h2Ah

2
B. We modify the procedure above to use mean-centered instead of

normalized genotype matrices and model the distribution of the effect sizes as

(
βA
βB

)
∼ N

[ 0
0

]
,

 h2A
‖σ2
A‖1

IM hex√
‖σ2
A‖1‖σ

2
B‖1

IM
hex√

‖σ2
A‖1‖σ

2
B‖1

IM
h2B
‖σ2
B‖1

IM

 (3.7)

Notice that a linear model with effects sizes acting on un-normalized genotypes is the same
as a linear model with effect sizes acting on normalized genotypes under the substitution

βA,B →
√
σ2
A,BβA,B. Therefore the covariance of Z-scores on the per allele scale can be

immediately inferred from the prior derivation

C = Var(Z) =

 ΣA + NA+1
‖σ2
A‖1

h2AΣAσ
2
AΣA h2gx

√
NANB√

‖σ2
A‖1‖σ

2
B‖1

ΣA

√
σ2
Aσ

2
BΣB

h2gx
√
NANB√

‖σ2
A‖1‖σ

2
B‖1

ΣB

√
σ2
Bσ

2
AΣA ΣB + NB+1

‖σ2
B‖1

h2BΣBσ
2
BΣB


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Approximate maximum likelihood estimation

We approximately optimize the above likelihood as follows: first we find h2A and h2B by max-
imizing the likelihood corresponding to C11 and C22, then we find ρgi or ρge by maximizing
the likelihood corresponding to C12:

l(h2A|ZA,Σ, σ) ≈ −
M∑
i=1

w11i

(
ln(C11ii) +

Z2
1i

C11ii

)

l(h2B|ZB,Σ, σ) ≈ −
M∑
i=1

w22i

(
ln(C22ii) +

Z2
2i

C22ii

)

l(ρg{i,e}|Z, ĥ2A, ĥ2B,Σ, σ) ≈ −
M∑
i=1

w12i

(
ln(C12ii) +

Z1iZ2i

C12ii

)
Because we are discarding between-SNP covariance information (Cov(ZAi, ZAj)), highly cor-
related SNPs will be overcounted in our approximate likelihood. As a simple example, notice
that two SNPs in perfect LD will each contribute identical terms to the approximate likeli-
hood, and therefore should be downweighted by a factor of 1/2. The extent to which SNP i is
over-counted is exactly the i’th entry in it’s corresponding LD-matrix product. Therefore we

let wgijki = 1/ (ΣjΣk)ii and wgejki = 1/
(

Σj

√
σ2
jσ

2
kΣk

)
ii

to reduce the variance in our estimates

of the parameters h2A, h
2
B, ρgi and ρge.

Furthermore, rather than compute the full products Σ2
1, Σ2

2 and Σ1Σ2 over all M SNPs
in the genome, we choose a window size W and approximate the product by (ΣaΣb)ii =∑w=i+W

w=i−W raiwrbiw. Though maximum likelihood estimation admits a straightforward estimate
of the standard error via the fisher information, we found these estimates to be inaccurate
in practice. Instead, we use block jackknife with block size equal to min(100, M

200
) SNPs to

ensure that blocks are large enough to remove residual correlations. These optimizations are
similar to those employed by LD score regression [7].

Out of population prediction of phenotypic values

Consider using the results of a GWAS with perfect power in population 2 to predict the
phenotypic values of a set of individuals from population 1. This defines the upper limit of
the correlation of true and predicted phenotypic values. Let the true values of the effects
sizes in population 2 be βB. Let the true phenotypes in population 1 be Y = XAβA + εA
while the predicted phenotypes are P = XAβB. We are interested in the correlaiton of
the predicted and true phenotypes ρMAX

Y P = Cor(Y, P ). Notice that, given X, the true and
predicted phenotype of each individual is an affine transformation of a multivariate normal
random variable (β) [

Yi
Pi

]
=

[
X(i) 0M
0M X(i)

] [
βA
βB

]
+

[
εi
0

]
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and therefore (Yi, Pi) for individual i is multivariate normal with expected covariance matrix

EX [Cov(Yi, Pi)] = EX
[
X(i) 0M
0M X(i)

] 1
‖σ2
A‖1

IM hex√
‖σ2
A‖1‖σ

2
B‖1

IM
hex√

‖σ2
A‖1‖σ

2
B‖1

IM h22
‖σ2
B‖1

IM

[ X(i) 0M
0M X(i)

]>

= EX


∑
mX2

im

‖σ2
A‖1

hex
∑
mX2

im√
‖σ2
A‖1‖σ

2
B‖1

hex
∑
mX2

im√
‖σ2

1‖1‖σ2
B‖1

h22
∑
mX2

im

‖σ2
B‖1


=

 1 hex

√
‖σ2
A‖1

‖σ2
B‖1

hex

√
‖σ2
A‖1

‖σ2
B‖1

h2B
‖σ2
A‖1

‖σ2
B‖1


and therefore the expected correlation E[Cor(Yi, Pi)] is hex√

h2B

√
‖σ2
A‖1

‖σ2
B‖1

‖σ2
B‖1

‖σ2
A‖1

= ρge
√
h2A. The

expected population correlation tends to the sample correlation as the number of samples
increases, therefore

ρMAX
Y P = Cor(Y, P )→ ρge

√
h2A (3.8)

as N →∞

3.3 Results

Simulated genotypes and simulated phenotypes

In order to verify that popcorn yields an unbiased estimate of the heritabilities (h2A, h
2
B)

and genetic correlations (ρge, ρgi), we applied popcorn to summary statistics from simulated
GWAS. We simulated 50,000 European-like (EUR) and 50,000 East Asian-like (EAS) indi-
viduals at 248,953 SNPs from chromosomes 1-3 with allele frequency above 1% in both Eu-
ropean and East Asian HapMap3 populations with HapGen2 [105]. HapGen2 implements a
haplotype recombination with mutation model that results in excess local relatedness among
the simulated individuals. To account for this local structure, we used Plink2 [18] to filter
individuals with genetic relatedness above 0.05, resulting in 4499 EUR-like individuals and
4837 EAS-like individuals. From these simulated individuals, 500 per population were chosen
uniformly at random to serve as an external reference panel for estimating ΣA and ΣB.

In each simulation effect sizes were drawn from a ?spike and slab? model, where β1i, β2i ∼

N
(

0,

[
h2A ρge

√
h2Ah

2
B

ρge
√
h2Ah

2
B h22

])
with probability p and βAi, βBi = (0, 0) with probability

1 − p. ρgi was analytically computed from the simulated effect sizes and allele frequencies
in the simulated reference genotypes. Quantitative phenotypes were generated under a lin-
ear model with i.i.d. noise and normalized to have mean 0 and variance 1, while binary
phenotypes were generated under a liability threshold model.
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Figure 3.2: True and estimated genetic impact and effect correlation. All simulations con-
ducted with simulated EUR and EAS heritability of 0.5 using 4499 simulated EUR and 4836
simulated EAS individuals at 248,953 SNPs.

Table 3.1: Average heritability and genetic correlation over 1000 simulations with varying
levels of ascertainment. All simulations contained exactly N cases and controls for a study
prevalence of 0.5. Phenotypes were simulated with liability scale heritability of 0.3 for both
phenotypes and genetic correlation of 0.3.

Prevalence N ĥ1 ĥ2 ρ̂g

0.03 1000 0.31 0.31 0.27
0.05 1700 0.30 0.31 0.30
0.1 3400 0.31 0.30 0.29
0.25 5000 0.31 0.30 0.30

We varied h2A, h
2
B, ρge, and ρgi, as well as the number of individuals in each study

(NA, NB), the number of SNPs (M), the population prevalence K, and proportion of causal
variants (p) in the simulated GWAS and generated summary statistics for each study. The re-
sults shown in Figure 3.2 and Figure 3.1 demonstrate that the estimators are nearly unbiased
as the genetic correlation and heritabilities vary. Furthermore, by varying the proportion
of causal variants p we show that our estimator is robust to violations of the infinitesimal
assumption (Figure 3.3). In figure 3.4, we show that the standard error of the estimator
decreases as the number of SNPs and individuals in the study increases. Finally, we show in
Table 3.1 that our estimates of the heritability of liability in case control studies are nearly
unbiased.

Simulations with nonstandard disease models

Our approach, as well as genotype-based methods such as GCTA, makes assumptions about
the genetic architecture of complex traits [102]. Previous work has shown that violations of
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Figure 3.3: Bias and standard error as the proportion of causal variants is decreased from 1.0
(all variants causal, the infinitesimal model) to 0.0001 (one in ten thousand variants causal,
or approximately 25 total causals). All simulations conducted using simulated phenotypes
with h21 = 0.5, h22 = 0.5, ρgi,e = 0.5 and simulated European (EUR) and East Asian (EAS)
genotypes generated with HapGen2.

these assumptions can lead to bias in heritability estimation, therefore we sought to quantify
the extent that this bias may effect our estimates. We simulated phenotypes under six differ-
ent disease models. Independent: effect size independent of allele frequency. Inverse: effect
size inversely proportional to allele frequency. Rare: only SNPs with allele frequency under
10% affect the trait. Common: only SNPs with allele frequency between 40% and 50% affect
the trait. Difference: effect size proportional to difference in allele frequency. Adversarial:
difference model with sign of beta set to increase the phenotype in the population where the
allele is most common. Additional genetic architectures are possible, including ones where
effect sizes are not a direct function of MAF [127].

We simulated phenotypes using genotypes with allele frequency above 1% or 5% and
compared the true and estimated genetic impact and effect correlation among all models
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Figure 3.4: Kernel density estimate (KDE) comparison between popcorn and GCTA as her-
itability estimators. Density was computed using the scipy statistics package gaussian kde

function on the set of heritability estimates.

Table 3.2: True and estimated values of the genetic impact and effect correlation in simulated
EUR-like and EAS-like genotypes. Results are the average of 100 simulations with phenotype
heritability of 0.5 in each population.

MAF >0.01 MAF >0.05

Model ρge ρgi ρ̂ge ρ̂gi ρge ρgi ρ̂ge ρ̂gi

Independent 0.500 0.478 0.500 0.460 0.500 0.488 0.509 0.469
Inverse 0.431 0.500 0.567 0.496 0.479 0.500 0.555 0.482
Rare 0.500 0.467 0.382 0.863 0.500 0.496 0.998 0.756
Common 0.500 0.500 0.522 0.493 0.500 0.500 0.502 0.496
Difference 0.500 0.416 0.354 0.435 0.500 0.461 0.410 0.412
Adversarial 0.710 0.604 0.525 0.651 0.714 0.667 0.601 0.675

(Table 3.2). We find that when only SNPs with frequency above 5% in both populations are
used, the difference in ρge and ρgi is minimal except in the most adversarial cases. Even in
the adversarial model, the true difference is only 7%. Though unlikely to represent reality,
the four nonstandard disease models result in substantial bias in our estimators. When
SNPs with allele frequency above 1% in both populations are included, the differences are
more pronounced. This is because the normalizing constant 1/σ rapidly increases as the
SNP becomes more rare. Indeed, as SNPs become more rare having an accurate disease
model becomes increasingly important and therefore we proceed with a 5% MAF cutoff
in our analysis of real data and use the notation h2c to refer to the heritability of SNPs
with allele frequency above 5% in both populations (the common-SNP heritability). Note,
however, that one of the advantages of maximum likelihood estimation in general is that the
likelihood can be reformulated to mimic the disease model of interest.
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Validation of popcorn using gene expression in gEUVADIS

To further validate our approach, we compared the common-SNP heritability (h2c) and genetic
correlation estimates of popcorn to GCTA in the gEUVADIS dataset for which raw genotypes
are publicly available. gEUVADIS consists of RNA-seq data for 464 lymphoblastoid cell line
(LCL) samples from five populations in the 1000 genomes project. Of these, 375 are of
European ancestry (CEU, FIN, GBR, TSI) and 89 are of African ancestry (YRI). Raw
RNA-sequencing reads obtained from the European Nucleotide Archive were aligned to the
transcriptome using UCSC annotations matching hg19 coordinates. RSEM was used to
estimate the abundances of each annotated isoform and total gene abundance is calculated
as the sum of all isoform abundances normalized to one million total counts or transcripts
per million (TPM). For eQTL mapping, European and Yoruban samples were analyzed
separately. For each population, TPMs were median-normalized to account for differences
in sequencing depth in each sample and standardized to mean 0 and variance 1. Of the
29763 total genes, 9350 with TPM > 2 in both populations were chosen for this analysis.

For each gene we conducted a cis-eQTL association study at all SNPs within 1 megabase
of the gene body with allele frequency above 5% in both populations using 30 principal com-
ponents as covariates. We found that GCTA and popcorn agree on the global distribution
of heritability (Figure 3.4) and that GCTA’s estimates of genetic correlation have a similar
distribution to popcorn’s genetic effect (GE) and genetic impact (GI) correlation estimates
(Figure 3.5). While the number of SNPs and individuals included in each gene analysis are
too small to obtain accurate point estimates of the genetic correlation on a per-gene basis
(N = 464,M = 4279.5), the large number of genes enables accurate estimation of the global
mean heritability and genetic correlation.

Common-SNP heritability and genetic correlation of gene
expression in gEUVADIS

We find that the average cis-h2c of the expression of the genes we analyzed was 0.093 (0.002)
in EUR and 0.088 (0.002) in YRI. Our estimates are higher than previously reported average
cis-heritability estimates of 0.055 in whole blood and 0.057 in adipose [93], which could arise
for several reasons. First, we remove 68% of the transcripts that are lowly expressed in either
the YRI or EUR data. Second, estimates from RNA-seq analysis of cell lines might not be
directly comparable to microarray data from tissue.

The average genetic effect correlation was 0.320 (0.010) while the average genetic impact
correlation was 0.313 (0.010). Notably, the genetic correlation increases as the cis-h2c of
expression in both populations increases (Figure 3.6). In particular, when the cis-h2c of the
gene is at least 0.2 in both populations the genetic effect correlation was 0.772 (0.017) while
the genetic impact correlation was 0.753 (0.018).

In order to verify that there were no small-sample size or conditioning biases in our
analysis, we analyzed the genetic correlation of simulated phenotypes over the gEUVADIS
genotypes. We sampled pairs of heritabilities from the estimated expression heritability dis-



CHAPTER 3. TRANSETHNIC GENETIC CORRELATIONS 50

Figure 3.5: Kernel density estimate of genetic correlation comparison between popcorn and
GCTA. Distribution was computed using a gaussian kde on the set of genetic correlation
estimates..

tribution and simulated pairs of phenotypes to have the given heritability and a genetic effect
correlation of 0.0 over randomly chosen 4000 base regions from chromosome 1 of the gEU-
VADIS genotypes. Without conditioning, the average estimated genetic effect correlation
was -0.002 (0.003), indicating that the estimator remained unbiased. Furthermore, the av-
erage estimated genetic effect correlation was not significantly different from 0.0 conditional
on the estimates of heritability being above a certain threshold (Figure 3.7).

We find that while the average genetic correlation is low, the genetic correlation increases
with the cis-h2c of the gene, indicating that as cis-genetic regulation of gene expression in-
creases it does so similarly in both YRI and EUR populations. This may help interpret the
recent observation that while the global genetic correlation of gene expression across tissues
is low [93], cis-eQTL’s tend to replicate across tissues [36]. As the presence of a cis-eQTL
indicates substantial cis-genetic regulation, an analysis of eQTL replication across tissues is
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Figure 3.6: Genetic correlation as a function of heritability for gene expression. The mean
and standard error of the genetic correlation of the set of genes with h12 and h22 exceeding
threshold h in each analysis (y-axis) is plotted against h (x-axis).

implicitly conditioning on the heritability of gene expression being high and therefore may
indicate much higher genetic correlation than average.

Summary statistics of RA and T2D

Finally, we sought to examine the transethnic ρgi and ρge in RA and T2D cohorts for which
raw genotypes are not available. We obtained summary statistics of GWAS for rheumatoid
arthritis and type-2 diabetes conducted in European and East Asian populations. We used
genotypes from 504 East Asian and 503 European individuals sequenced as part of the
1000 genomes project as population-specific external reference panels for our EAS and EUR
summary statistics, respectively. We removed the MHC region (chromosome 6, 25?35 Mb)
from the RA summary statistics. We estimated the common-SNP heritability and genetic
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Figure 3.7: Null distribution of the conditional genetic correlation. Phenotypes were gen-
erated with heritability randomly sampled from the joint distribution of the gEUVADIS
heritability estimates over randomly selected 4000 SNP regions from chromosome 1 of the
true EUR and YRI genotypes and genetic correlation of 0. The mean and standard error
of the genetic correlation of the set of genes with ĥ21 and ĥ22 exceeding threshold h in each
analysis (y-axis) is plotted against h (x-axis)
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Table 3.3: Heritability and genetic correlation of RA and T2D between EUR and EAS
populations. EUR RA data contained 8,875 cases and 29,367 controls for a study prevalence
of 0.23. EAS RA data contained 4,873 cases and 17,642 controls for a study prevalence
of 0.22. RA disease prevalence was assumed to be 0.5% in both populations. T2D EUR
data contained 12171 cases and 56862 controls for a study prevalence of 0.18. T2D EAS
data contained 6952 cases and 11865 controls for a study prevalence of 0.37. T2D EUR
prevalence was assumed to be 8% while T2D EAS prevalence was assumed to be 9%

h2EUR lia h2EAS lia ρge ρgi

RA

Est. (SE) 0.18 (0.02) 0.22 (0.03) 0.46 (0.06) 0.46 (0.06)
95% CI [0.15, 0.21] [0.16, 0.28] [0.34, 0.58] [0.34, 0.58]
p>0 3.90e-32 1.89e-17 1.37e-15 8.16e-16
p<1 0.0 3.1e-197 2.53e-20 4.87e-22

T2D

Est. (SE) 0.24 (0.01) 0.11 (0.02) 0.62 (0.09) 0.61 (0.08)
95% CI [0.22, 0.26] [0.07, 0.15] [0.44, 0.80] [0.45,0.77]
p>0 2.41e-77 5.73e-7 1.70e-12 2.85e-13
p<1 0.0 0.0 1.066e-05 2.06e-06

correlation using 2,539,629 SNPs genotyped or imputed in both RA studies and 1,054,079
SNPs genotyped or imputed in both T2D studies with allele frequency above 5% in 1000
genomes EUR and EAS populations. The h2c and genetic correlation estimates are presented
in Table 3.3. Our RA h2c estimates of 0.177 (0.015) and 0.221 (0.026) for EUR and EAS,
respectively, are lower than a previously reported mixed-model based heritability estimates
of 0.32 (0.037) in Europeans [103]. Similarly, our T2D h2c estimates of 0.242 (0.013) and
0.105 (0.021) for EUR and EAS, respectively, are lower than a previously reported mixed-
model based estimate of 0.51 (0.065) in Europeans [103]. We stress that this discrepancy
is likely due to the difference between common-SNP heritability h2c and total narrow-sense
heritability h2g. Furthermore, estimates of the heritability of T2D from family studies can
vary significantly [70, 79].

We find the genetic effect correlation in RA and T2D to be 0.463 (0.058) and 0.621
(0.088), respectively, while the genetic impact correlation is not significantly different at
0.455 (0.056) and 0.606 (0.083). The transethnic genetic impact and effect correlation for
both phenotypes are significantly different from both 1 and 0 (Table 3.3), showing that
while there is clear genetic overlap between the phenotypes, the per allele effects sizes differ
significantly between the two populations.

3.4 Discussion

We have developed the transethnic genetic effect and genetic impact correlation and pro-
vided an estimator for these quantities based only on summary-level GWAS information and
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suitable reference panels. We have applied our estimator to several phenotypes: rheuma-
toid arthritis, type-2 diabetes and gene expression. While the gEUVADIS dataset lacks the
power required to make inferences about the genetic correlation of single or small subsets
of genes, we can make inferences about the global structure of genetic correlation of gene
expression. We find that the global mean genetic correlation is low, but that it increases
substantially when the heritability is high in both populations. In all phenotypes analyzed,
the genetic correlation is significantly different from both 0 and 1. Our results show that
global differences in SNP effect size of complex traits can be large. In contrast, effects sizes
of gene expression appear to be more conserved where there is strong genetic regulation.

It is not possible to draw conclusions about polygenic selection from estimates of transeth-
nic genetic correlation. The effects sizes may be identical (ρge = 1) while polygenic selection
acts to change only the allele frequencies. Similarly, the effects sizes may be different (ρge < 1)
without selection. Differences in effects sizes at common SNPs can result from many phe-
nomena. If a gene-gene or gene-environment interaction exists, but only marginal effects are
tested, the observed marginal effects will be altered by changes in allele frequency even if
the interaction effect is the same in both populations, resulting in decreased genetic corre-
lation. Un-typed and un-imputed variants differentially linked to observed SNPs, as well as
differentially tagged rare variants will also contribute, though we expect the latter effect to
be small. Another contribution likely comes from variants that are rare in population one
but common in population two (and vice versa), which will be filtered in our analysis. While
within-locus (dominance) interactions may also play a role [20], the magnitude of this effect
has been debated [132]. We emphasize that we cannot differentiate between these effects on
the basis of this analysis alone, and further research is required to establish the magnitude
of the contribution of each of these effects to inter-population effect size differences.

Estimates of the transethnic genetic correlation are important for several reasons. They
may help inform best practices for transethnic meta-analysis, potentially offering improve-
ments over current methods that use Fst to cluster populations for analysis [74]. Further,
the transethnic genetic correlation constrains the limit of out of sample phenotype predictive
power. If the maximum within population correlation of predicted phenotype P to true phe-
notype Y is ρmaxY P =

√
h21 , then the maximum out of population correlation is ρmaxY P = ρge

√
h21

(Methods). Our observation that for RA, T2D, and gene expression the genetic correlation
is low shows that out of population phenotypic predictive power is quite low. Similarly, it
implies that disease risk assessment in non-Europeans based on current GWAS results may
be problematic, necessitating increased study of disease in many populations to gain insight
into differences in genetic architecture and improve risk assessment.

While the genetic correlation of multiple phenotypes in one population has a relatively
straightforward definition, extending this to multiple populations motivates multiple possible
extensions. In this work we have provided estimators for the correlation of genetic effect
and genetic impact but other quantities related to the shared genetics of complex traits
between populations include the correlation of variance explained ρge = Cor(σ2

1β
2
1 , σ

2
2β

2
2) and

proportion of shared causal variants between the two populations. Interestingly, while our
goal was to construct an estimator that determined the extent of genetic sharing independent



CHAPTER 3. TRANSETHNIC GENETIC CORRELATIONS 55

Figure 3.8: Comparison of popcorn and ldsc as heritability estimators as the number
of SNPs and individuals in each study varies. All simulations conducted using simulated
phenotypes with h21 = 0.5, h22 = 0.5, ρgi,e = 0.5 and simulated European (EUR) and East
Asian (EAS) genotypes generated with HapGen2.

of allele frequency, we observe that the correlation of genetic effect and genetic impact are
similar. Furthermore, our simulations show that under a random effects model utilizing only
SNPs with allele frequency above 5% in both populations the true genetic effect and genetic
impact correlation are similar. We conclude that at variants common in both populations,
differences in effect size and not allele frequency are driving the transethnic phenotypic
differences in these traits.

Our approach to estimating genetic correlation has two major advantages over mixed-
model based approaches. First, utilizing summary statistics allows application of the method
without data-sharing and privacy concerns that come with raw genotypes. Second, our
approach is linear in the number of SNPs avoiding the computational bottleneck required
to estimate the genetic relationship matrix. Conceptually, our approach is very similar to
that taken by LD score regression. Indeed, the diagonal of the LD matrix product in one
population are exactly the LD-scores (Σ2

Aii = li). One could ignore our likelihood-based
approach and define cross-population scores ci =

∑
m r1imr2im in order to exploit the linear

relationship E[Z1iZ2i] =
√
N1N2

M
ρgi
√
h21h

2
2ci (a similar approach can be taken for the genetic

effect correlation). Since LD-score regression has been successfully used to compute the
genetic correlation of two phenotypes in a single population, this derivation can be viewed
as an extension of LD-score regression to one phenotype in two different populations. The
main difference in our approach is choosing maximum likelihood rather than regression in
order to fit the model. A comparison of our method to the ldsc software shows they perform
similarly as heritability estimators (Figure 3.8).

Of course, our method is not without drawbacks. First, it requires a large sample size and
large number of SNPs to achieve standard errors low enough to generate accurate estimates.
Until recently large sample GWAS have been rare in non-European populations, though they
are becoming more common. Similarly, reference panel quality may suffer in non-European
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populations and this may impact downstream analysis [69]. Second, it is limited to analyzing
relatively common SNPs, both because having an accurate disease model is important for
the analysis of rare variants and because effect size and correlation coefficient estimates have
a high standard error at rare SNPs [7]. Third, our analysis is currently limited to SNPs that
are present in both populations. Indeed it is currently unclear how best to handle population-
specific variants in this framework. Fourth, our estimator of ρ is bounded between −1 and
1. This may induce bias when the true value is close to the boundary and the sample size is
small. Finally, admixed populations induce very long-range LD that is not accounted for in
our approach and we are therefore limited to un-admixed populations [7].

Our analysis leaves open several avenues for future work. We approximately maximize
the likelihood of an M ×M multivariate normal distribution via a method that uses only
the diagonal elements of each block, discarding covariance information between Z-scores. A
better approximation may lower the standard error of the estimator, facilitating an analysis
of the genetic correlation of functional categories, pathways and genetic regions. We would
also like to extend our analysis to include population specific variants as well as variants at
frequencies between 1-5% or lower than 1%. Our simulations indicate that having an accu-
rate disease model is important for determining the difference between the genetic effect and
genetic impact correlation when rare variants are included. Maximum likelihood approaches
are well suited to different genetic architectures, for example one could explicitly model the
relationship between allele frequency and effect size 2f(1 − f) ∝ βα, where α = −1 corre-
sponds to the inverse assumption and α = 0 corresponds to the independence assumption.
One could go even further and incorporate population divergence into the prior distribution
of the effects sizes, modeling the relationship between effect sizes as a function of Fst, which
may reveal important biological insights. In future work, we hope to model these effects
while incorporating additional sources of information such as the effect of selection.
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Chapter 4

Allele-specific transcript abundance
estimation

4.1 Introduction

Humans are diploid organisms, carrying two copies of each gene. If an individual is het-
erozygous for an exonic variant, this can be leveraged to separately infer the abundances of
the transcripts with and without the variant. These allele-specific (AS) estimates of tran-
script abundances are of substantial interest. AS differences in abundance in an individual
are biologically interesting in their own right, and when combined with parental genotype
information they can be used to detect genomic imprinting. AS estimates can also be used
downstream in analysis of transcript counts to infer e.g. effects of cis-regulatory variants.

Unfortunately, AS estimates are under-utilized in practice due to numerous technical
challenges. Chief among these is that of mapping bias. Reads from the haplotype containing
the alternative variant contain at least one mismatch a priori, and therefore have a lower
probability of mapping accurately than reads from the reference haplotype when using tra-
ditional alignment methods. While variant-aware aligners can reduce this bias somewhat,
the most accurate method is to either i) align to a personalized reference transcriptome or
ii) filter SNPs that show mapping bias in simulation [17]. Alignment to a personalized ref-
erence transcriptome eliminates mapping bias by removing the concept of a reference allele
altogether. This method involves creating a reference transcriptome containing two copies
of each gene, where each copy contains the variants from one of the haplotypes of an in-
dividual. While complete assembly of a personalized reference genome is not possible due
to structural variants with incomplete positional information, the overwhelming majority of
exonic genetic variation consists of SNPs and short indels which can be accommodated in
this fashion.

Creating personalized reference transcriptomes requires knowing which variants lie on
the same haplotypes. In other words, it requires (gene-level) phasing information. If high-
quality haplotypes are not provided, this information is almost always acquired by statistical
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phasing [25]. However, statistical phasing can be problematic in this application for several
reasons. First, it adds an additional time-consuming step to an already time-consuming
analysis pipeline. Second, if a switch error occurs between two variants, then reads con-
taining both variants will map equally-well to both haplotypes and are therefore rendered
un-informative for determination of allele-specific abundances. Not only are these reads cru-
cial for that problem, but they also contain phase information and can be used to correct
switch errors, particularly at rare variants [16].

In this paper, we introduce ursa, a tool for quantifying AS abundances from RNA-seq
data and individual genotypes. ursa leverages the pseudoalignment of kallisto and phas-
ing information in the RNA-seq reads to quantify the abundances without time-consuming
read alignment or genotype phasing steps. When haplotypes are known, ursa creates person-
alized reference transcriptomes, estimates abundances with kallisto and post-processes it’s
output. When haplotypes are unknown, ursa creates personalized references corresponding
to all possible phasings of each gene, and relies on phasing-informative reads to cause the
EM algorithm of kallisto to converge to the correct AS abundances.

We show that this approach eliminates mapping bias on-average and yields accurate
estimates of the AS abundances even without haplotype information, as compared to the
only other known tool for estimating AS abundances from RNA-seq and genotype data,
allelecounter [17].

4.2 Results

We first investigated the feasibility of building a personalized reference transcriptome con-
taining all possible phasings of each gene. It has previously been shown that the number of
hets per person per gene is low ([17] Figure 2D). We replicate that finding (Figure 4.1) and
observe that 95% of genes have fewer than 8 het SNPs. By filtering gene-person pairs con-
taining more than 8 het SNPs, and building one transcript per possible phasing of each gene,
we increase the size of the reference transcriptome by 5.5× on average across all individuals
in the gEUVADIS dataset. Therefore we conclude that, contrary to intuition, building a per-
sonalized transcriptome containing all possible phasings of each gene is not computationally
difficult.

Next, we used simulated RNA-seq data to evaluate the performance of ursa with and
without haplotype information. We compared ursa to the only other known method for
estimating allele-specific counts using just genotype and RNA-seq data, allelecounter.
We simulated haplotype-specific “ground-truth” count matrices for each gene in each person
from negative-binomial distributions with parameters learned from real data, and simulated
reads corresponding to these count data using an error model learned from real data. See
Section 4.3 and Figure 4.6 for details. The resulting mean simulated reference and alternate
allele counts were 137.9 and 137.5, with standard deviations of 1249.43 and 1031.34 respec-
tively. Figure 4.2 shows a kernel density estimate (KDE) of the distribution of the reference
and alt counts.
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Figure 4.1: Distribution of heterozygous SNPs in gEUVADIS individuals. We replicate the
finding of Castel et al [17] that most genes contain few hets, and observe that 95% of genes
have 8 or fewer heterozygous SNPs.

Table 4.1 shows performance indicators for i) ursa with haplotype information, ii) ursa
without haplotype information and iii) allelecounter. With and without haplotype in-
formation, ursa provides unbiased estimates of the reference and alternate allele counts
and shows extremely strong correlation with the true counts, while allelecounter shows a
strong downward bias in its estimates and only modest correlation with the true counts. In
Figure 4.3 we plot the true versus estimated counts for all methods considered, along with a
line of best fit for a linear regression of the estimated counts on the true counts. Notice that
while ursa still shows strong correlation with the true counts without haplotype information,
there is clearly additional error. Finally, in Figure 4.4 we compare the estimated counts from
ursa with and without haplotype information. Clearly, there is high concordance between
the two estimators, with a correlation coefficient of ρ = 0.995 for the reference count and a
correlation coefficient of ρ = 0.994 for the alternate count.

The performance difference between ursa with and without haplotypes is more easily
visualized by looking at the distribution of the count errors of each case. This is presented
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Figure 4.2: KDE of the distribution of the “ground-truth” counts generated by our simula-
tion. Due to the long tail of the distribution, we limit the x-axis for improved visualization.

Table 4.1: Performance of ursa with and without haplotype information as compared to
allelecounter for estimation of reference and alternate allele counts in simulation. ME
is the mean error, RMSE is the square root of the mean squared error, and Cor is the
correlation of the estimated counts to the simulated counts.

Reference allele Alternate allele

Estimator ME SEME RMSE Cor ME SEME RMSE Cor

ursa w/ haps -0.451 0.284 80.241 0.998 -0.513 0.289 81.723 0.997
ursa w/o haps -0.564 0.470 133.021 0.994 -0.304 0.474 134.017 0.992
allelecounter -120.302 4.269 1212.828 0.474 -121.018 3.493 995.225 0.511
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Figure 4.3: True (x-axis) versus estimated (y-axis) counts for reference (blue) and alternate
(green) alleles using (top) ursa with haplotypes, (middle) ursa without haplotypes and
(bottom) allelecounter. In each case, we overlay the line of best fit from a linear regression
of the estimated counts on the true counts.
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Figure 4.4: Comparison of estimates of reference (blue) and alternate (green) counts using
ursa with (x-axis) and without (y-axis) haplotype information. The estimates are highly
concordant, with a correlation coefficient of ρ = 0.995 for the reference count and a correla-
tion coefficient of ρ = 0.994 for the alternate count.

in Figure 4.5, which shows a violin plot of the errors in these two cases. While ursa provides
accurate estimates of the reference and alternate counts when haplotypes are not provided,
the difference in performance here clearly indicates that ursa is unable to completely resolve
haplotype phasing in all cases.

4.3 Methods

Generation of personalized and all-phasings transcriptomes

We obtained VCF files for the Phase 3 1000 genomes project individuals from the EMBL
European Bioinformatics institute and filtered them to remove indels. We obtained FASTQ
files for QC+ mRNA-seq reads from the European Nucleotide Archive. We obtained the
hg19 human genome reference FASTA files and the hg19 GTF from the UCSC genome
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Figure 4.5: Violin plot of the error in the count estimate for ursa with and without
haplotype information.

browser. We generated 82,960 reference transcript targets from the hg19 reference and GTF
using rsem-prepare-reference. We generated personalized reference transcriptomes using
ursa. We define a personalized reference transcriptome as a transcriptome containing two
copies of each transcript, one for each haplototype, where each copy contains every SNP that
that individual has on that haplotype. If an individual has no het SNPs in a transcript, the
personalized reference contains only one copy of that transcript. All phasings transcriptomes
are generated by ignoring the haplotype information contained in the 1000 genomes VCF, and
building a personalized reference transcriptome containing 2#hets targets for each transcript
- one for each potential phasing. If the number of het SNPs in a transcript exceeds a user
defined number (default: 8), then that transcript is left out of that individuals all-phasings
transcriptome.
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Simulation of RNA-seq reads

In an idealized RNA-seq experiment, where every read maps uniquely to a single tran-
script, the observed counts should follow a multinomial distribution [82]. This can be well-
approximated by a set of independent Poisson random variables, where the variance is equal
to the mean. In practice, however, the variance of the counts at each transcript is greater
than the mean [77]. To model this over-dispersion, many authors choose to use a negative
binomial (NB) distribution to model count data [65], and we will do the same. Similar to
Pimentel et al [91], we learn the parameters of the NB distribution for each transcript from
a single gender in a single population to minimize the effect of population structure, differ-
ential environment and gender on our estimates. In this work, we chose the Tuscan female
(TSI-F) population of gEUVADIS. First, we quantified the transcript-level abundances of
each of the TSI-F individuals using kallisto. Then, we used these transcript-level abun-
dances to compute the mean and variance of the count distribution for each transcript in
the TSI-F population. The mean-variance parameterization of the NB distribution can be
easily converted to the more common NB(k; r, p) parameterization via the relationship

p =
σ2 − µ
σ2

r =
µ2

σ2 − µ

where r is the number of failures in a series of N = k + r bernoulli trials with success
probability p.

These parameters govern the transcript counts, but are not haplotype specific. It is
straightforward to observe that if C1, C2 ∼ NB

(
k; r

2
, p
)
, then C1 + C2 ∼ NB (k; r, p). That

is, we draw counts independently for each haplotype, such that the resulting sum of the
counts has the desired distribution. By simulating the counts independently, we also have the
opportunity to add allele-specific effects. Specifically, if we adopt the common assumption
that genetic effects are linear in log-count space [91] and we assume allele-specific effect
sizes are normally distributed in log-count space, then the same effects are log-normally
distributed in count space. Therefore we draw βi ∼ N (0, σ2) for each SNP, so that the
allele-specific count in individual j is

C ′H,t,j = exp(1[Hij = 1]βi)CH,t,j (4.1)

where 1[Hij = 1] is an indicator that individual j has variant i in haplotype H.
The primary sources of error and bias in RNA-seq are i) read error, ii) positional bias, and

iii) sequence bias. RSEM [58] provides a thorough simulation suite that learns parameters for
all of the above, as well as the fragment length distribution, from real data. First, we choose
one individual from gEUVADIS to train the simulator on, in this case NA20517. Then,
we quantify the transcript abundances in that individual using RSEM to learn the error
model parameters. Rather than simulate reads from the human reference transcriptome,
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we simulate them from personalized haplotype-specific reference transcriptomes build by
ursa using the gEUVADIS individual haplotypes. Given the simulated haplotype-specific
counts C ′H,t,j, the total number of reads for each haplotype of each individual is given by
NH,j =

∑
tC
′
H,t,j. We therefore simulate NH,j paried-end reads according to the generated

counts C ′H,t,j. Following this simulation, we combine the first and second reads generated
by each haplotype to yield Nj total reads without haplotype of origin information. The
simulation pipeline is maintained using sakemake. For a visualization of the simulation
framework, see Figure 4.6

Quantification of AS counts

For personalized transcriptomes with or without phasing information, we quantified abun-
dances by first building the kallisto index with default parameters, then quantifying
with kallisto quant using 10 bootstrap iterations. The resulting abundances were post-
processed by ursa to provide allele-specific reference and alt counts for each het SNP in each
individual, in an output format similar to that generated by allelecounter. When phasing
information is not provided, the allele count for a het SNP is determine by summing the
counts of all possible phasings containing that SNP.

For quantification of AS counts with allelecounter, we set-up the pipeline described
in [17] with one exception: we do not filter sites that are known to show mapping bias in
simulation. This choice was made to provide a fair comparison of the ability of each method
to quantify AS counts genome-wide. We used rsem-prepare-reference --star to build
STAR alignment indices according to the ENCODE3 STAR-RSEM pipeline. We aligned
reads to the STAR incides using STAR 2.5.2b, indexed the read alignment with samtools and
marked duplicate reads using picard, before quantification with allelecounter v0.5. We
set allelecounter parameters for minimum coverage, minimim base quality, and minimum
map quality to 2, 10 and 10, respectively.

4.4 Discussion

We have presented an approach to obtaining allele-specific transcript abundance estimates
that eliminates mapping bias via psuedo-alignment to personalized reference transcriptomes.
When haplotype phasing information is known, we obtain extremely accurate estimates
of allele-specific counts. When haplotype phasing is unknown, we pseudo-align to targets
consisting of all possible phasings of each gene, and suffer little loss of accuracy in simulation.
Our simulation framework is thorough, using an error model learned from real data and
transcript count distributions learned from a single gender in a single population to minimize
the effect of population structure, different environment and sex-specificity.

That said, differences in the accuracy with and without known haplotypes remain. There
are several approaches that could be considered in future work to improve the accuracy of
allele-specific estimates. First, we have made no internal modifications to the kallisto EM
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Figure 4.6: Simulation pipeline for generating personalized RNA-seq reads with allele-
specific abundances. The hg19 reference FASTA and GTF are used to build the standard
reference transcriptome, which is used in quantification of transcript abundances in one
population with kallisto. These abundances are used to calculate parameters of NB dis-
tributions for the counts of each gene. These distributions are used to draw counts for the
simulation, and fixed or random allele-specific effects can be added. The 1000 genomes VCFs
are used by ursa to build personalized references. RSEM is used to build an error model for
the simulator. Finally, the RSEM simulator is run independently for each haplotype with
haplotype-specific counts to generate personalized RNA-seq reads, which are combined to
erase haplotype of origin.
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algorithm, despite the additional structure that can be exploited in this problem. While this
work demonstrates that sometimes the simplest approach can yield accurate results, we may
be able to improve the accuracy of estimates by, for example, constraining the likelihood
to two-haplotypes and finding the pair of possible phasings that maximizes the likelihood.
Specifically we can write the likelihood of the abundances as a function of the haplotypes

L(α;Y ) =
∑
h1,h2

L(α;Y, h1, h2)P(h1, h2) (4.2)

The prior distribution of the haplotypes P(h1, h2) can be learned using known methods such
as SHAPEIT [25], which can compute a probability distribution over the possible phasings of
a genotype. This distribution can be further used to refine the space of possible phasings that
we use to determine allele-specific counts by constructing, for example, the 99% confidence
set of possible phasings. Unfortunately, pre-phasing and sampling from this space will take
substantial time, but may be worthwhile if it provides increased accuracy.

We compare our method to allelecounter because it is the only known alternative
method for generating AS counts from genotypes and RNA-seq data, however we must point
out that allelecounter is solving a slightly different problem, and that this discrepancy
explains the performance issue in this application. Rather than estimate transcript abun-
dances corresponding to the transcript containing each allele, it estimates the number of
reads containing each allele. Therefore, the counts reported by allelecounter do not in-
clude reads that map to the transcript but do not contain the allele of interest. On the other
hand, we proportionally assign these reads to the allele-specific transcripts via EM.

Note that, throughout this work, we have been careful to refer to our abundances as allele
specific and not haplotype specific. Indeed, when haplotype information is provided, these
are equivalent. But when haplotype information is not provided, ursa remains phase agnos-
tic. By integrating the above pre-phasing approach to generate confidence sets of possible
phasings, and using EM to generate a posterior distribution on the possible phasings, we
may be able to obtain highly accurate haplotype specific estimates of transcript abundance.

The principal utility of this software will surely be in the improved downstream analysis
of functional genomic effects. In future work, we plan on quantifying AS counts in the
gEUVADIS dataset, and using them to gain insight to the structure of gene regulation. For
example, AS differences in abundances might be present not just in one individual, but in
many individuals in the population that share a het-SNP at a gene. Furthermore, these
estimates can be used to find genetic variants associated with a difference in allele count. In
general, we hope that accurate estimates of AS counts will improve power to detect genetic
regulatory loci.
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Chapter 5

Discussion

The genetic architecture of complex traits is a complex and fascinating topic. In the long-
term, investigation in this area will simultaneously bolster our understanding of both molec-
ular biology and evolution - topics somewhat distantly related until the recent past. From
a practical perspective, complex trait genetics has numerous medical consequences: finding
new drug targets, predicting side effects, predicting lifetime risk for disease and more. These
findings will enable medical care to be tailored to a persons individual genome. However,
discovery of these findings is limited by the statistical and computational power required
to analyze massive datasets and integrate heterogeneous data types. In this work, we have
made three major contributions to this problem: increased power to detect hidden associa-
tions and find missing heritability, improving our understanding of the relationship between
complex trait genetics in different populations, and more accurate estimates of allele-specific
counts from RNA-seq studies. There are near limitless avenues for future work in this field,
but we will discuss a few specific ones in this section.

As we have discussed, the vast majority of studies of the genetics of complex traits have
been conducted in European populations. Those that have not been conducted in Euro-
pean populations have been conducted primarily in Asian populations by Asian institutions.
However, the largest amount of genetic diversity is present in Africa, where the infrastruc-
ture for conducting human genetic research is left wanting. A huge amount of medically
actionable genetic variation can almost certainly be learned by more complete studies of
African genetics. From a computational standpoint, we require better methods for integrat-
ing data from multiple populations. This will allow us to improve power to detect medically
actionable genetic variation, and allow us to understand which discoveries can be shared
across populations and which cannot. That said, as time goes on, the world is becoming
increasingly admixed. An admixed individual shares genetics from multiple world popula-
tions. This is particularly apparent in America, where more than 25% of the population
are African American (AA) or Hispanic/Latino. Medical genetics in admixed populations is
difficult: one genetic locus could have African ancestry in 50% of your AA samples, and Eu-
ropean ancestry in the other 50%. Methods for studying complex trait genetics in admixed
populations are one of the most promising avenues for medical impact in genetics.
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Much remains to be learned about the molecular path from genotype to phenotype, and
very few genetic variants that appear to causally increase risk for complex disease have a
well-understood biological mechanism. The amount of molecular phenotype data - such
as gene expression in different tissues, chromatin accessibility and methylation status - is
increasing rapidly as the cost of obtaining the data decreases. The integration of these and
other data types to form a complete picture of the path from genotype to phenotype is both
extremely promising and extremely challenging. In this area, better computational methods
for accurately measuring the molecular phenotype of interest from the raw sequencing data
are still required. For example, in this work we improved the ability to detect allele-specific
transcript counts. In future work we can use these counts to find new biology. For example,
we can look for genetic variants that are associated with differential expression between
the two haplotypes of an individual in one population, or use these allele-specific counts to
improve power to discover eQTLs. As these kinds of data become increasingly available in
patient samples, accurate measurement of molecular phenotypes will enable progress on this
problem.
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