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Abstract

Applications of Machine Learning to Support Dementia Care through Commercially
Available O↵-the-Shelf Sensing

by

George Netscher

Master of Science, Plan II in Computer Science

University of California, Berkeley

Alexandre M. Bayen, Research Advisor

In this report, we discuss a project beginning August 2014 and ending in December 2016
through which four applications of machine learning to dementia care were explored. The
purpose of this project was to determine how advances in machine learning could be applied
to commercially available o↵-the-shelf sensing equipment to make a positive impact in care
for individuals with Alzheimer’s disease and related dementias (ADRD), a cause personally
important to the author and the research advisor. The project will be discussed for an
audience familiar with the state-of-the-art in machine learning but unfamiliar with the open
problems in dementia care. The first chapter gives background on Alzheimer’s disease and
the context for the current work in terms of the current challenges faced by the Alzheimer’s
research community. The following four chapters each discuss one application. The first
discusses how a wearable system can be designed to support daily monitoring of individuals
a↵ected by Alzheimer’s disease to study functional changes which can occur as the disease
progresses. The second discusses how analysis of speech can be used to detect the presence
of dementia. The third discusses how video monitoring can be used to detect safety-critical
events with a particular focus on falls. The fourth provides preliminary pilot study results
from the application of video monitoring in one 40-resident memory care community. The
final chapter concludes by discussing the gaps between the available technology and the
current needs and poses suggestions for future work to bridge the gaps.
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Chapter 1

Introduction and Background

1.1 Background on Alzheimer’s Disease

In the US, Alzheimer’s disease is the sixth most common disease and the single most expen-
sive disease ($236B direct costs; estimated $221B indirect). As shown in figure 1, among
the top six diseases, it is the only disease for which the number of deaths is increasing. As
the median age of the US population continues to increase, Alzheimer’s disease will only
becoming more prevalent, and the resulting cost of Alzheimer’s care will continue rising to
unsustainable levels [2]. Unfortunately, the drug failure rate for Alzheimer’s disease still
remains among the highest – currently 99.6% (as compared to 81% for cancer) [14] due to
our limited understanding of the brain and the root causes of Alzheimer’s disease.

Figure 1.1: Alzheimers disease is the most expensive disease in the US and the only disease
in the top six for which the number of deaths is increasing [2]
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Alzheimer’s disease is characterized by a progressive loss of cognitive ability. In the mild
stage, a↵ected individuals may have trouble remembering words, planning, and completing
tasks independently. In the moderate stage, those a↵ected might forget their own personal
history, become confused about time and place, and su↵er alterations in personal behavior
and self-control. By the severe stage, individuals usually require full-time care to help
complete the activities of daily living (ADLs) such as eating and toileting, and they may
experience changes in physical ability such as the ability to walk, sit, and swallow.

The incidence rate of Alzheimer’s disease is alarming. 5.4 million people in the United
States are a↵ected including 1 in 9 people over 65 years old and 1 in 3 over 85 years old. Thus,
almost surely, every person who reads this statement will be personally a↵ected through a
loved one, a close personal friend, or a personal diagnosis. One reason for the high inci-
dence rate is that it is not uncommon for an individual with Alzheimers disease to live for
20 years after diagnosis. In much of this time, individuals will require support with ac-
tivities of daily living and struggle with preventable emergency room visits due to urinary
tract infections, extrinsic fall incidents, and bedsores. These incidents could be prevented
respectively through proper hydration and toileting habits, proper design of environment to
remove external factors contributing to falls, and through periodic changes in body position-
ing. With costs already at unsustainable levels, Alzheimers disease threatens to cripple the
US healthcare system, and Alzheimers disease only represents two thirds of all those a↵ected
by dementia [2].

1.2 Context of Work

In this work, we discuss three approaches currently under development in the research com-
munity to address the challenges presented by Alzheimer’s disease and related dementias.

1. Curing, delaying, or mitigating disease e↵ects: This research area focuses
broadly on the root cause of the disease. It includes the many pharmaceutical ap-
proaches attempted to cure Alzheimer’s and many public health studies aimed at de-
termining if certain interventions such as proper diet and exercise can mitigate the
e↵ects on a population level.

2. Early detection: This research focuses on identifying relevant biomarkers which can
be detected before significant brain damage has occurred. By detecting these warning
signs early, the available interventions identified in the previous research area can be
applied to delay and/or mitigate the e↵ects of the disease.

3. Caring for those currently a↵ected: This research area focuses on improving the
quality of life and reducing the cost of care for those currently a↵ected. Major themes
in this area include reducing the rate of hospitalization where falls are the greatest
contributor and enabling individuals to remain independent for longer.
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Although several other interesting areas of Alzheimer’s research exist, these three themes
capture major thrusts within the research community. Moreover, we focus here because in
each area, there appear to be significant opportunities for the development of technology
which could make a far-reaching positive impact.

Curing, Delaying, or Mitigating the E↵ects

The first approach where technology may provide support is in curing, delaying, or miti-
gating the e↵ects of Alzheimer’s disease. Unfortunately, it seems every year a promising
pharmaceutical appears to provide hope before failing in clinical trial. Most recently, Eli
Lilly’s experimental Alzheimer’s therapy solanezumab which showed potential for slowing
the e↵ects of cognitive impairment in 2015 [55] failed large scale clinical trial in November
2016 [10]. This therapy targets the amyloid plaques that appear as tangles in the brain of
those a↵ected by Alzheimer’s disease. The failure of this therapy adds supporting evidence
that these amyloid plaques which are characteristic of Alzheimer’s disease may only be a
symptom and not the root cause of the disease.

Although research with respect to finding a cure has so far proven unsuccessful, interesting
results have been uncovered with respect to delaying the symptoms. For instance, with
respect to brain training games, a consensus statement was released by a group of leading
geriatricians expressing concerns regarding the lack of supporting evidence [3]. Specifically,
although evidence existed that individuals continued to perform well on brain training games,
this success did not appear to extend to more general cognitive abilities. Since then, several
interesting results have been released including [60] and [4], most notably showing from a
sample of 2,832 volunteers that those who completed gamified training sessions where 48%
less likely to be diagnosed with some form of dementia after ten years.

The Alzheimer’s Association o�cial stance on preventative measures is based on a 2015
review of the literature [9] in which su�cient evidence was found to support that regular
physical exercise and management of cardiovascular risk factors including diabetes, obesity,
smoking, and hypertension reduce the risk of cognitive decline and may reduce the risk of
dementia. Healthy diet and lifelong learning or cognitive training may also reduce the risk
of cognitive decline but su�cient evidence does not exist to suggest that they may reduce
the risk of dementia. Our work with respect to this first thrust of Alzheimer’s research is
discussed in Chapter 2 where we discuss the design and implementation of a system for
monitoring the disease progression of individuals with Alzheimer’s. The aim of this system
is to provide researchers with the necessary tools to define more fine-grained relationships
between the amount of exercise individuals undertake and the eventual onset of the disease.
Traditional approaches require participants to fill out daily surveys and o↵-the-shelf tools
provide limited functionality such as a step count. We design here a open-source platform
based on o↵-the-shelf components for interacting with sensors around the home (e.g., to see
if the stove is on) and perform typical signal processing and machine learning techniques
on the fine-grained data (e.g., to detect anomalies). More details on similar approaches
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are discussed in Chapter 2 alongside the relevant sensing equipment and available machine
learning methods.

(a) Strength of evidence on risk factors for cog-
nitive decline

(b) Strength of evidence on risk factors for de-
mentia

Figure 1.2: Factors which impact the likelihood of cognitive decline and dementia

Early Detection

The second research thrust focuses on identifying ways in which Alzheimer’s disease can
be detected before noticeable changes in behavior occur. Typically, Alzheimer’s disease is
diagnosed after a family member or friend notices perceptible changes in the individual’s
memory. Unfortunately, these changes often become apparent only after significant brain
damage has occurred. At this point, the damage is thought to be irreversible [1]. Thus,
significant interest exists in the development of screening tools which could be applied early
and with high sensitivity to detect individuals living in the community which may have
Alzheimer’s disease or related dementia before significant damage occurs. The screening
tool would then refer the individual to clinical personnel for more accurate diagnosis.

Clinical diagnosis of Alzheimer’s disease is typically performed through personal history,
family history, memory tests including the commonly used mini-mental state exam [22],
physical tests such as blood and urine analysis, and brain scans such as CT, MRI, and PET.
Although brain scans would seem to be a useful tool for a human expert to perform diag-
nosis of brain abnormalities, the traditional role of these scans has been to rule out other
possible causes of symptoms such as tumor growth [1], [38]. Even with all of these tools, the
diagnostic accuracy by clinical experts is surprisingly low. A 5-year review of 919 subjects
from Alzheimer’s Disease Centers sponsored by the National Institute on Aging who had
died and been autopsied revealed sensitivity for the centers ranging from 70.9% to 87.3%
and specificity ranging from 44.3% to 70.8%. Currently, the only way to identify Alzheimer’s
disease with 100% accuracy is through post-mortem histology to identify the plaques char-
acteristic of the disease. These low accuracies in diagnoses are particularly startling after
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considering the years of expertise required by the clinical expert and the potential harm that
can be caused by misdiagnosis. Individuals with Dementia with Lewy Bodies, for instance,
respond particularly negatively and can die when inappropriately prescribed anti-psychotic
medication [47].

These low diagnostic accuracies suggest that clinicians do not have the necessary tools
to obtain clear signals regarding patient state. Thus, a primary focus in this research area is
identifying relevant biomarkers that provide strong indications of particular diseases and the
stage of these disease. The most relevant work in this regard is with respect to new techniques
for identifying Alzheimer’s disease from cerebral spinal fluid [27], [67] where the concentration
of amyloid-�-derived di↵usible ligands provides a relevant marker for Alzheimer’s disease.
In Chapter 3, we discuss how traditional machine learning techniques can be applied to
conversational speech data from individuals with Alzheimer’s disease and their caregivers to
detect the presence of dementia. This approach is tempting in that a smartphone application
could easily be developed to act as an early screening tool, but refining the approach presents
di�culties in longitudinal data collection which were not practically feasible within the scope
of this project report.

Caring for Those Currently A↵ected

The final research area focuses on how we can support care for those currently a↵ected by
Alzheimer’s disease and related dementias. Particular areas of interest include how we can
improve the quality of care and reduce the cost of providing care. The biggest contributors
to cost include the need for assistance with the activities of daily living and the high rate of
hospitalization for individuals a↵ected by Alzheimer’s disease [2]. A particular focus area in
this regard is delaying or reducing the need for institutionalized care by empowering family
caregivers and home care services to support care in the home of the a↵ected individual for
longer. Work in this area includes the development of proper tools such as those provided by
the Alzheimer’s Association and Family Caregiver Alliance for educating caregivers about
the resources available to them such as adult day care services and memory care communities
which may provide short-term respite care. Another interesting avenue includes the study
of how technology can be used with a human assistant in the loop. This includes work done
by the UC San Francisco and University of Nebraska Medical Centers on the Dementia Care
Ecosystem where anomalies can be detected by home sensors and screened by a low-cost case
manager before escalating to the need for an emergency room visit as discussed in Chapter
2.

Several interesting commercial product o↵erings also exist in this space including tradi-
tional fall detection pendants like the Phillips Lifeline, Emerald non-wearable fall detection,
and wander detection systems like the GPS SmartSole and Bluetooth SafeWander. Unfortu-
nately, although these products provide wander and fall detection, there are no systems with
significant supporting evidence for reducing the rate at which these safety accidents occur. In
Chapters 4 and 5, we discuss methods for detecting falls from video and the first deployment
of such techniques. Falls are the leading cause of hospitalization in Alzheimer’s care and are



CHAPTER 1. INTRODUCTION AND BACKGROUND 6

a particular concern in managed care where residents with dementia have been observed to
fall at an average rate of 4 times per year, roughly twice that of cognitively healthy elderly
residents [17]. Moreover, less than 10% of falls lead to serious injury [15], [17], but 50-75%
of elderly fallers experience repeat falls. Although preliminary, it appears the use of cameras
in dementia care communities may provide significant benefit with respect to lowering the
rate of repeat falls. In one pilot study with a 40-resident memory care community, the fall
rate was reduced by 80% following video review of fall incidents after which, personalized
changes could be made to individual room environments based on the way in which residents
were falling. The technology behind this video fall detection is discussed in Chapter 4 and
the results from the pilot study are discussed in 5.
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Chapter 2

Functional Monitoring through
Wearables

2.1 Chapter Abstract

The increasing availability of wearable computing opens up new avenues for cyberphysical
systems which can provide content personalized to user preferences. In the past, testing these
ideas has required expertise in disparate areas ranging from embedded systems to machine
learning. Max is a platform for rapidely prototyping new ideas in personalized wearable
computing without the need for in-depth expertise and long design cycles. It is built from
o↵-the-shelf components – Bluetooth home sensors, an Android smartwatch, and Android
smartphone – and (mostly) open source libraries – Android OS and Sci-Kit Learn. From
these components, Max is a full-stack system including methods for collecting data from
the individual via the watch and from the environment via the sensors; maintaining data
securely; transmitting data to a backend server; performing standard machine learning and
signal processing tasks such as filtering, classifying, detecting trends, and flagging anomalies;
and displaying data through Android UX and Salesforce API. In addition, novel methods
for cost-e↵ective approximate indoor positioning are developed. We show one use case for
Max, monitoring individuals with Alzheimer’s disease (AD) through the Dementia Care
Ecosystem. The Dementia Care Ecosystem defines a new proactive model from the UCSF
and UNMC medical centers aimed at reducing emergency room use. This article describes
the design and implementation of Max including the challenges faced, the tradeo↵s made,
and beta test results from 13 healthy users over 39 total months. These results show 96.1%
accuracy in room-locationing and many trade-o↵s that must be made concerning battery
life.
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2.2 Introduction

In the last four years the global market for wearable devices has grown from $0.75B to
$2.93B. This nearly 400% growth has been fueled mainly by high market demand for fitness
trackers which can monitor bodily signals such as step count, heart rate, and hours of sleep.
For the user to view this data, these wearable devices usually use a bluetooth radio to pair
with the owner’s smartphone. This bluetooth radio, however, allows for communication not
just with the owner’s smartphone, but also with the owner’s environment. Since e�cient and
robust algorithms exist for determining whether the device is worn in a given instant, these
platforms pose the potential for a yet unrealized new paradigm for the user to monitor not
just their body but also their environment through communication with ambient bluetooth
sensors. We believe this paradigm sets the stage for the next phase of home automation
where the home is able to provide functions individualized to particular users such as TVs
turning on to particular settings, shared vehicles moving to preset user settings, and home
automation for particular habits. It also pushes the current paradigm of personal tracking
forward by enabling tracking of habits which are exhibited not only by bodily signals such as
step count, but also by environmental signals such as how long a wearer spends in di↵erent
rooms of the house, uses di↵erent appliances, or spends in a car.

In the past, those with a compelling idea for a personalized computing application have
been faced with a di�culty challenge. They had to bring together diverse skill sets ranging
from hardware expertise to build the physical device, web or mobile expertise to create the
interface, and machine learning expertise to provide the analysis. The di�culty of bringing
together all these skills on a low budget made the success of new endeavors extremely unlikely
as evinced by the recent failings of startup companies like Lively and Ninja Blocks. With the
recent deployment of Android Wear, we aim to provide the next logical step. We develop
a platform for rapid prototyping of personalized computing by pulling together the basic
hardware, web/mobile, and machine learning building blocks. The core of this platform are
three (mostly) open-source projects: 1) Android Wear, 2) TI Sensortag, and 3) Sci-Kit Learn.
Using these projects requires only purchasing commercial o↵-the-shelf components such as
an Android watch and TI Sensortag. Our project is built with generality, extensibility, and
scalability in mind where methods are developed for hosting a full-stack application complete
with extensive development both for computation on a local Android host and on a remote
server.

In this work, we use the Sony Smartwatch 3, currently available for $130, and the Blue-
tooth Smart TI Sensortag, currently available for $30. We present results for one use case:
home monitoring of an individual with dementia. After 12 months of beta testing, this use
case is currently being deployed through the Dementia Care Ecosystem, a $10M project
sponsored for the Centers for Medicare and Medicaid Services. The rest of the paper contin-
ues as follows. Section 2.3 gives background on Alzheimer’s disease and the specific use case.
Section 2.4 describes the system architecture in detail. Section 2.5 describes the biggest
challenges faced in development. Section 2.6 defines the analysis methods available and the
subset included for the Alzheimer’s use case. Section 2.7 describes a new indoor positioning
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infrastructure for low-cost, room-level indoor positioning. Section 2.8 presents the results
from beta testing. Section 2.9 provides concluding remarks and recommendations for future
use.

2.3 The Dementia Care Ecosystem

One example new program is the Dementia Care Ecosystem sponsored by the Centers for
Medicare and Medicaid Services [56]. The Dementia Care Ecosystem is a 3-year clinical trail
evaluating a care model called Navigated Care, for people with dementia and their family
caregivers. The goal is to improve quality of life, health care utilization, caregiver burden,
and satisfaction with care. Central to the Care Ecosystem are minimally trained sta↵ called
‘care team navigators’ (CTNs). These sta↵ members are the primary point of contact for up
to 80 families, allowing for personalized communication between families and their medical
network. The Dementia Care Ecosystem is composed of four modules:

1. The Caregiver Module includes educational forums, caregiver support, and connects
families with community resources.

2. The Decision-Making Module facilitates proactive medical, financial, and safety
decisions.

3. The Medication Module tracks and reduces inappropriate medications or doses, and
triggers pharmacist review when indicated.

4. The Functional Monitoring Module uses smartphones and sensors to rapidly detect
and respond to changes in functional status, which is particularly important for patients
living remotely, alone, or who are at-risk for acute declines.

The use case of the system described in this paper is for the functional monitoring module.
The goal of the functional monitoring module is to calculate five metrics and provide alerts
when these metrics deviate from expected. These five metrics include daily step count,
approximate gait speed, daily lifespace, daily and hourly room percentage, and daily room
transitions. Based on these five metrics, 2 sets of analyses are conducted: outlier detection
and trend detection. Data is collected with an Android smartphone, Android smartwatch,
and in-home sensors, analyzed using a backend server, and displayed for CTNs using a
Salesforce dashboard. CTNs respond to alerts by confirming the data appears abnormal
then calling the family or clinical team as needed.

This system is the first long-term, continuous, personalized monitoring system developed
for individuals with cognitive disorders. This represents part of a growing paradigm shift
from medical equipment that is designed to react to disease states (e.g., X-ray imaging),
to equipment which is designed to enable a proactive medical system. It is the first long-
term. Many other technology systems for Alzheimer’s care are available including o↵erings
from companies like HealthSense and BeClose, but they fail to identify a person uniquely.
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Thus, the primary impetus for this system was the need for a system which could monitor
the behavior patterns of a specific individual in the presence of multiple individuals living
in the same residence. The greatest challenge in accomplishing this goal was designing a
system capable of robust indoor positioning using cost-e↵ective o↵-the-shelf equipment. The
solution is described in Section 2.7.

2.4 System Architecture

The goal of the system architecture is to provide a pipeline whereby data from the external
environment can be collected, analyzed, and used for generating notifications if necessary. For
the Alzheimer’s monitoring use case, the pipeline is used to calculate five metrics, determine
possible causes for alarm, and raise notifications for care team navigators responsible for
monitoring a↵ected individuals. The full system architecture instantiated for this use case
is shown in Figure 2.1.

Figure 2.1: The architecture deployed for the Dementia Care Ecosystem.

The five metrics used for the Dementia Care Ecosystem include:
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1. Step count: The number of steps taken per day

2. Approximate gait speed: The steps per minute during each period of activity

3. Lifespace: The maximum euclidean distance from the home per day

4. Room percentage: The percentage of time spent in each room on a daily and hourly
basis

5. Room transitions: The number of transitions between rooms per day

Although these are the five metrics chosen for the Dementia Care Ecosystem, we take
care to design a system which is flexible enough to handle the inclusion of any Bluetooth
sensors. O↵-the-shelf, the application allows for the collection of all data sources from the
smartphone and smartwatch depending on the capabilities of each. For instance, although
we do not use heart rate data, it can be collected at the desired interval simply by connecting
a smartwatch with a heart rate sensor to the smartphone through standard Android Wear
procedures then updating the appropriate settings.

To collect these metrics, the system architecture is composed of five units. The Estimote
beacons output a Bluetooth low energy (BLE) ping at a user-defined power and frequency.
The Android smartwatch acts as a BLE receiver for in-home sensors, collects step-count data,
and bu↵ers data until it can be transmitted to the smartphone. The Android smartphone
collects GPS data, provides a user interface (UI), and uploads data to the backend server
at fixed 12-hour intervals. The Android smartphone communicates with the backend server
through an optional security proxy called Mulesoft. The backend server performs data
processing to estimate the room location, calculate desired metrics, flag outliers, and detect
undesirable trends. The Salesforce dashboard provides an interface for administrators to
receive alerts and view metrics from the backend server. The decision to push most of the
computation to the server was made to preserve battery life. This allows for prototyping
before isolating those functions which must be performed in real time. For instance, room
estimation is performed o✏ine with the method that provides the highest accuracy for our
use case, but can be performed locally using the methods discussed in Section below.

BLE Sensors

Two types of Bluetooth low energy (BLE) sensors are used: one to provide consistent room
locationing and another to infer activities of daily living (ADLs). The sensors used for room
locationing are called Estimote beacons. They provide a simple BLE ping with customizable
power settings, so the receiving device may output a received signal strength indiction (RSSI)
which is roughly proportional to the distance from the beacon. The second type of sensor
used is the TI Sensortag. Equipped with 10 di↵erent sensors including temperature, motion,
and humidity, the Sensortags allow for collecting many types of data which is useful for
inferring the performance of di↵erent activities (e.g., medicating). These two sensor types
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Figure 2.2: The five system components and their uses.

are actually redundant. The Estimotes are equipped with temperature and motion sensors,
and the TI Sensortags provide RSSI values. In practice, using both sensors allows for rapid
prototyping which is both flexible and modular where users have the option to only include
those sensors most relevant for their use case.

The sensors used to perform room detection are called Estimote beacons. The Estimote
beacons provide a simple BLE ping to infer distance from the Android application. The rate
at which the beacons ping is set to 200ms by default and the smartwatch scans for these
pings every 10 second for a 1 second period by default. The Estimote beacons with sticky
backs can be placed on ceilings or walls without reducing the aesthetics of the room.

The sensors used for inferring user activity are called TI Sensortags. They provide sensing
for 1) temperature, 2) acceleration, 3) orientation, 4) humidity, 5) magnetic flux, 6) ambient
light, 7) pressure, and 8) audio. Because the Sensortag is equipped with so many types of
sensors, it allows for prototyping of many di↵erent features with minimal changes to source
code. Data is sampled from the Sensortags as follows. Every minute the watch scans for
available tags. It then connects to the three tags with the highest RSSI value. This gives
some measure of which tags are closest and likely to provide data related to the user activity.
Following connection, data is streamed at the desired interval from the desired sensors on
the tag. For example, tags identified for monitoring shower user provide readings from the
humidity and temperature sensors at a slower rate than tags identified for identifying if
a specific object has moved via the accelerometer. Because data from the Sensortags can
quickly grow to large scales, this data is stored in as bson (binary json) and only transmitted
to the phone once per hour to conserve battery by default.

Thus, Max allows collecting data and testing algorithms for di↵erent functions, but once
battery life becomes a constraint new methods may need to be devised. Because the Sen-
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sortag software is open source, the user can implement simple detection algorithms such as
the spike events discussed below on the tags themselves and only transmit resulting detection
to the watch. This would allow for Bluetooth beaconing mode instead of pairing mode to
be used, reducing battery consumption from both the sensor and the watch.

Smartwatch

The smartwatch used to determine the wearer’s location in the home and to collect stepcount
data is the Sony Smartwatch 3. We choose this watch because it provides a longer battery
life than the Moto360 or Samsung Gear Live (no longer produced) based on empirical tests.
It further provides IP68 dust and water resistance, dust tight and submersible in water up
to 1.5 meters. It should be noted that this water resistance requires a charging cap to be
closed which cannot be guaranteed in the use case discussed here. As discussed below, the
battery on the smartwatch is the greatest bottleneck in the project for which reason extreme
care has been taken to develop e�cient asynchronous data collection from the smartwatch.
Once data is collected, it is stored in a sqlite database on the watch and uploaded every hour
to the phone by default.

Smartphone

The smartphone used to collect GPS data, provide a user-interface, and upload data to the
backend server is the Motorola Moto G. This phone was chosen because it was the most
cost-e↵ective phone supporting the latest version of Android. At the time of publication it
cost $150 retail. The system developed is not phone specific, however, and has been tested
on a number of Android phones. The smartphone uploads data to the backend server by
default every 12 hours. GPS data is recorded whenever a change greater than a certain
threshold occurs through standard Android protocols.

Server

The server used to perform indoor positioning, outlier detection, and trend detection is a
high-performance desktop computer located at the UCSF Memory and Aging Center. The
hardware specifications include 32 GB of RAM and 1 Intel Quadcore x86 CPU operating at
2.7 Ghz. The operating system used is Linux Ubuntu 14.04. The server hardware specifi-
cations can be chosen to match the algorithms and scale required. The server operates as
follows. An http receiver asynchronously uploads data to a SQL table responsible for stor-
ing all metrics. When new data is received, functions are applied to calculate the required
metrics (e.g., percentage time spent in each room). After metrics are calculated, analysis is
performed to detect anomalies and trends. If any detection occurs, events are sent through
the Salesforce API.
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Dashboard

The dashboard for the administrator to observe events detected is implemented using Sales-
force. For this use case, events are detected on a daily basis based on the data from the
previous day, so the care team navigator can review adverse situations and handle them as
needed. The goal here is for the clinical team to collect the data necessary to determine
which information is most useful for evaluation before translating the system into a device
most suitable for patient and clinician needs.

2.5 Biggest Development Challenges

Full system development from initial prototyping to deployment with patients required 18
months from 3 active developers. The greatest challenges involved battery life, always-on
functionality, security, robustness, and methods to encourage adherence specific to the use
case.

Battery Life

Battery life concerns limited the amount of data that could be collected and increased the
latency between data collection and analysis. We strove to maintain 1-day battery life to
avoid any deviation from normal routines which many users would find overly burdensome.
In order to accomplish this, we found that sampling the sensors on the watch caused the
greatest battery drain. As shown in Figure 2.3, this prevented the CPU from sleeping
properly and led to rapid battery loss. We explored storing data in a hardware FIFO [30],
but found the best solution to be focusing in on what data we really needed. We read the step
count directly from a chip present in many smartwatches where the step count algorithms
is implemented directly in hardware. We read gyroscope data once per minute, infrequently
enough to prevent excessive battery drain. We then calculate the variance of this data over
a rolling 30-minute window and see if it has passed an empirically defined threshold to
determine if the watch is currently on the body or not. We further conserve battery life by
reducing the sampling rate from the Estimote beacons when the user is determined to be
outside the house by GPS or because an Estimote ping has not been received in a preset
amount of time.

Figure 2.3: CPU usage before optimizing for battery life. Waking up the CPU frequently to
sample from the sensors caused rapid battery loss.
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Always-on Functionality

In order to maximize data collection time, the Android application starts itself when the
phone turns on and cannot be closed by the user. In this way, data collection is ensured
unless either the phone or watch is turned o↵. This always-on functionality is accomplished
through the use of the notification services provided by Android (foreground service) that are
independent of the application user interface. Thus, unless the user forbids the notifications,
there is no way to stop the service, but the user is always informed by a notification when
monitoring is underway. As a further failsafe, a background service independent of the
others regularly checks if the other services are running, and if not, restarts them. This
keeps services running even if the application crashes.

Security

Before deployment with patients, the platform was required to pass security review at UCSF.
The end result includes four measures to increase security.

Encryption

Data is encrypted in the phone and watch internal sqlite database. When it is transmitted,
it is done through a secure https tunnel and decrypted on the server.

Mulesoft

Mulesoft is used as a security proxy following standard protocol at UCSF, preventing the
need for the Android application to store a private server key. Mulesoft further provides
a simple mechanism for archiving all encrypted data before it reaches the backend server.
Passing the Mulesoft security review at UCSF required installing a CA certificate on the
backend server; using HTTPS for pushing data from Android to Mulesoft and from Mulesoft
to the backend server; creating Maven build profiles for each of the development, staging,
and production environments; exporting all server URL’s, domain names, ports, and related
networking information to external property files; and modifying error logging to only record
the most severe errors.

HockeyApp

HockeyApp is used for private distribution of the Android application. It allows sharing
the Android application with new devices via email and pushing software updates without
requiring posting the application publicly on Google Play. HockeyApp can be used for
free with up to 2 apps and unlimited storage, crash reports, users, and user feedback. We
also explored creating a Google Play private channel, but found the $50/user/year fee to
be excessive. The most challenging part of incorporating HockeyApp was implementing
automatic updates. By default HockeyApp only checks for updates when the app is opened.
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For the Dementia Care Ecosystem use case, however, it was expected that the app would
operate continuously in the background without the user ever necessarily opening the app
after the initial home installation. Unfortunately, HockeyApp provides no API for updating
the application on a regular basis, so automatic updating was implemented by decompiling
their library and reimplementing automatic checks for an update in a background service
responsible which is active whenever the phone is on through the always-on functionality
described previously.

Progaurd

Progaurd provides Android enabled code obfuscation. We make it available in this system,
but disable it by default since we found it caused too many dependencies to be broken
within our code. It also only makes it slightly more di�cult for a would-be attacker to find
a password or ssh credentials hidden within the code since the password itself will still be
present in the code even if the variable name is obfuscated. We thus prefer the Mulesoft
security proxy discussed above to any code obfuscation techniques where security is required.

Robustness

To ensure robustness, the system was beta tested by 13 di↵erent healthy subjects over 39 total
months months before deploying with real individuals a↵ected by Alzheimer’s disease. This
testing exposed unexpected challenges including di�culty with certain ceiling types when
attaching the Estimote sensors, di�culty connecting to the backend server through certain
routers, di�culty connecting to certain beacons, and many other smaller issues. This led to
numerous bug fixes and an extensive trouble shooting guide for new installations. After such
extensive testing, we are happy to share Max with such high confidence in its robustness.

Adherence

To maximize adherence, we detect when the watch has not been worn, when the watch-phone
connection has been lost, and when either the watch or phone is out of batteries. We alert
the caregiver through email or text message based on personal preference. The preference
is determined during the initial home setup. The on-body detection is performed with the
gyroscope as described above. The break in watch-phone connection and out-of-battery
signal are both provided by the Android API.

2.6 Analysis Methods

Two sets of analyses are provided to determine possible causes for alarm based on metrics
collected.
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1. Outlier Detection: Two methods for outlier detection are provided, DBSCAN and
a nearest neighbors approach from [29]. These methods are used to determine if any
metric significantly di↵ers from a baseline which is set to 30 days by default. Both are
used in a fully unsupervised setting.

2. Trend Detection: The RANSAC algorithm is used to determine if any metric has
declined by greater than a certain threshold over the a previous window. In the de-
mentia use case, we examine if any metric has declined over 33% over the previous 30
days.

DBSCAN

DBSCAN performs clustering based on proximity. The DBSCAN algorithm or Density-
Based Spatial Clustering of Applications with Noise algorithm clusters points using two
hyperparameters, the minimum number of points required to form a cluster and the maxi-
mum distance two points can be apart to be considered within the same cluster. The clusters
are formed by choosing an arbitrary starting point, connecting all points in the cluster, then
choosing an arbitrary new starting point. The process is repeated until all points are either
assigned to a cluster or identified as not belonging to any cluster in which case they are
labeled outliers.

This method of outlier detection is provided because it provides good results in many use
cases and allows for seamless substitution with other methods from the Sci-Kit Learn API
where many other outlier detection methods are available. We prefer the method discussed
next which was implemented for this project due to its higher level of support in the outlier
detection literature.

Figure 2.4: Outliers are those points labeled by DBSCAN as not belonging to any cluster
[53].
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k-NN Outlier Detection

As recommended by [29], we prefer k-NN for global outlier detection tasks. This method has
been shown to provide high performance on a diverse applications ranging from breast cancer
diagnosis to handwritten digit classification. The caveat is that these techniques work well
in low-dimensional spaces where distance metrics to determine the nearest neighbors can be
calculated in a manner which is meaningful and e�cient. In all applications discussed in [29]
where k-NN produced the best or very good results, k-NN was applied in a low dimensional
feature space (d  40).

Outlier detection with k-NN is performed as follows. For each point, an outlier score is
calculated by choosing the k closest points and determining the average distance to these
points. We choose k = 4 and the Euclidean distance metric by default. This outlier score is
used to define an ordering over the points. With this ordering defined, the most anomalous
point is that with the greatest outlier score. It is the point furthest from its closest neighbors.
After defining this ordering, some threshold must be set to determine what values constitute
an outlier. In the semi-supervised setting, this threshold may be determined empirically
from data or from thresholds which may be relevant for the use case. Before data collection
begins, however, there may be no way of determining an appropriate threshold. For this case,
we provide thresholds based on percentiles. By default, a severity level 1 event is triggered
when it is in the top 3% of the ordering, a level 2 event in the top 1%, a level 3 event in
the top 0.3%, a level 4 event in the top 0.1%, and a level 5 event in the top 0.03%. For
the metrics defined in the dementia use case which are measured on a daily basis, a level 1
event will occur in normal data approximately every 30 days and a level 5 event will occur
in normal data approximately every 3000 days – much like using the term 100-year storm to
describe a weather event so severe it should only happen once every 100 years.

The challenge with these approaches is that they view the data as stationary. As shown in
Figure 2.5, as the data distribution changes over time as would be expected in the dementia
use case, these methods will fail to identify the shift and instead identify those points which
are furthest from the baseline as anomalous. If in actuality the distribution is shifting, these
points may signal an important trend rather than an anomaly, but will still be highlighted
as anomalous until enough of them occur. In situations where the stationarity assumption
is violated, we recommend detecting anomalies based on a rolling window where the severity
levels are determined not for the whole data set, but for windows of various sizes which can
be thresholded in the same manner as discussed above.

RANSAC

The default method for trend detection is RANSAC [20] linear regression. The RANSAC
algorithm or RANdom SAmple Concensus Algorithm performs model fitting in the presence
of outliers. In the original method, hyperparameters defining the tolerance and threshold
are provided [20]. In the method defined by sci-kit learn [53] and used here, the maximum
number of trials is provided. The algorithm iterates by selecting a random sample of the
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Figure 2.5: Global outlier detection with k-NN fails for a nonstationary distribution. Local
outlier detection methods provide empirically worse performance as described in described
in [29]. We instead prefer the k �NN with a rolling window when anomaly detection over
a nonstationary window is required.

data containing the minimum number of points required to estimate the model parameters.
In the case of linear regression with 2-dimensional data (e.g., daily step count), this requires
2 points. From this sample, a model is fit. By [20], if the predefined threshold of points fit
within the tolerance, the algorithm terminates. If not, the program iterates. In practice,
this method can result in infinite iteration if no acceptable model with the predefined hy-
perparameters exist. [53] instead simply repeats for a predefined number of iterations and
then choses the parameters which result in the greatest number of inliers. This surprisingly
simple and highly computational e�cient model grew out of the computer vision community
and has found wide success on a number of applications for which reason it is the default
here. Note that alternative methods such as the Theil-Sen regressor for median fitting are
provided by Sci-Kit Learn and can be easily substituted given the matching API.

2.7 Indoor Positioning

As discussed in Section 2.4, in order to perform indoor positioning, Estimote beacons are
used and the received signal strength indicator (RSSI) is detected by the smartwatch. The
RSSI is filtered then the approximate location is determined through supervised learning.
This method allows for approximate positioning to be performed by matching the wearer of
the watch to the closest beacon. It was chosen over methods based on triangulation that
require multiple beacons per room to ensure at least 3 beacons are visible at all times. In
contrast, this method allows for cost-e↵ective approximate indoor positioning by binning
users into one location from a set of possible locations. In the Care Ecosystem, it is used
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Figure 2.6: RANSAC fits a regression line by consensus, providing robustness to noise [53].

for cost-e↵ective room-level indoor positioning where one beacon is placed in each room. By
default, the RSSI values are adaptively filtered with the kernel least mean square (KLMS)
algorithm then labeled with the random forest supervised learning algorithm; however, many
more techniques for filtering and supervised learning are provided. Both default methods
are empirically chosen based on results demonstrated in the following section. It should be
noted although we do not provide o↵-the-shelf support for triangulation, the same Estimote
beacons can be used for this function if needed.

Radio Wave Propagation and WPL

The primary challenge in accurate indoor positioning is the highly variable nature of the radio
wave received signal strength indicator (RSSI). Because standard construction materials
provide moderate impedance to radio waves, signals may be both transmitted and reflected
through the surrounding environment. Thus, certain regions of the room may demonstrate
high RSSI despite being further away from the source. Moreover, changes in the room
environment such as people walking to di↵erent positions significantly alter these multipath
e↵ects. For this reason, fingerprinting techniques that attempt to laboriously map the RSSI
of the room struggle to maintain robustness [52]. To compensate, these methods often use
techniques like k-nearest neighbors (kNN) to increase accuracy, but show only marginal gains
within an individual block of signal strength emitters (e.g., when only one emitter is used
per room). In order to account for the exponential decay of radiowaves, many nonlinear
filters have been applied including particle filters, extended Kalman filters, path loss models
[52, 82, 76]. We leverage the path loss method here because it provides a natural fit as a
feature in supervised classification.The path loss model used is based on the ITU Indoor
Propagation Model [82] in which the signal strength can be expressed as the path loss over
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a distance d (m) at frequency f(mHz)

PL(d, f) = 20log(f) + 10↵log(d) + c(k, f)� 28 (2.1)

where ↵ is the path loss exponent, k is the number of floors between the transmitter
and receiver, c is an empirical floor penetration loss factor, and f is the radio frequency.
With f considered constant in this case for Bluetooth at 2.4 GHz, the signal strength can
be expressed as

PL(d) = PL0 + 10↵log(d) (2.2)

In the weighted path loss model (WPL), the indoor propagation model is used to estimate
position based on the RSS [82]. Weights are assigned by solving equation (2) for d and
defining the weighted factor for the ith RSSI as

wi =
1/diP
i 1/di

(2.3)

The unknown position of the person is then estimated as

(q, r, s) =
X

i

wi(xi, yi, zi) (2.4)

where (xi, yi, zi) is the position of the ith beacon.WPL has traditionally been used to replace
techniques like kNN as a supplement to fingerprinting. We use it here to define the kernel
for KLMS.

KLMS

Adaptive filtering techniques provide a framework for estimating a non-stationary signal.
They converge to the optimal linear filter in the mean square error. The Kernel Least Mean
Square (KLMS) algorithm is a technique for adaptively filtering nonlinear data.

As an adaptive filtering technique, KLMS requires an iterative convex optimization algo-
rithm to converge to the minimum mean square error. KLMS traditionally is the application
of just one technique, the popular stochastic gradient method, but many convex algorithms
can be applied to a↵ect the convergence of the filter. We prefer stochastic gradient descent
with Nesterov momentum here due to the increased convergence rate. The general equation
for gradient descent with Nesterov momentum is:

xn+1 = xn � µrf(xn + �(xn � xn�1)) + �(xn � xn�1) (2.5)

where 0 < � < 1 defines the momentum hyperparameter. Note that if � = 0, no
momentum is present and the iterates are the same as the gradient method. Compared
to traditional gradient descent, this method is more robust to ill-conditioning and provides
faster convergence bounds which a↵ects how well the adaptive filter approaches optimality.
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In stochastic methods, rather than accessing the gradient directly, we compute a function
with the same expected value [61]. That is, we can approximate the gradient by a function
g(x) such that E[g(x)] = f(xn). In KLMS, this amounts to minimizing the mean square
error over a fixed number of filter taps rather than the true mean square error. As in other
stochastic methods, because we replace the actual function by one that only shares the
expected value, we now converge only in the expected value. That is, some randomness will
be introduced into our convergence and we will converge to a ball with some radius rather
than a fixed point.

The end result is a minor update to the traditional KLMS method to perform stochastic
gradient descent with Nesterov momentum where

wn+1 = wn + µenx
H
n (2.6)

is updated to

wn�1 = wn + µ(dn � (wn + �(wn � wn� 1))Txn)x
H
n

+ �(wn � wn�1)
(2.7)

As with traditional KLMS, this update rule is applied in the kernel space not the time
domain. This KLMS with momentum is applied to the RSSI values from each beacon
independently as a univariate analysis. The result is that correlations in the time domain
are handled through filtering, so that the next supervised learning phase can handle each
point as if it is independent.

Figure 2.7: KLMS outperforms linear LMS in fitting nonlinear functions when the nonlinear
function class is known a priori [45].
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Random Forest

Many supervised learning techniques are available through Sci-Kit Learn. In our room-
estimation pipeline we try several methods and choose the one which produces the best result
over 3 fold cross-validation. The best resulting classifier is often the random forest classifier.
We thus describe the random forest classifier here to provide full insight into one potential
pipeline with the caveat that the Sci-Kit Learn API is nearly identical for all supervised
learning methods, so any number of alternate methods are available for substitution.

The random forest classifier and related methods such as extra trees, gradient boosting
and AdaBoost increase accuracy by ensembling many weak classifiers, a technique known
as bagging or boosting depending on how the ensemble is formed and accumulated. The
weak classifier for the random forest is the decision tree, and the random forest is formed by
averaging over the predictions of many decision trees. The di↵erence between the two can
be seen in Figure 2.8. The resulting classifier is improved if each of the weak classifiers is
similarly good, but uses di↵erent features to form the decision boundary (i.e., averaging over
many instances of the same decision tree will produce a result no better than the original
decision tree). For this reason, randomness is injected by selecting a random subset of the
available features and forming the best decision tree from this subset.

The fact that the random forest performs well in this scenario highlights that even after
filtering with a nonlinear kernel, the resulting data points remain di�cult to separate with
a linear decision boundary. This suggests the RSSI data is highly nonlinear not only due to
the exponential decay of radio waves, but also due to the variable impedances present in the
environment.

2.8 Results of Beta Test

We present results from 39 total months beta testing the features of Max required for the
Dementia Care Ecosystem use case.

User Interface

The results are available for viewing through Salesforce. Max provides the methods necessary
to transmit metrics and analysis to Salesforce through a predefined API. The implementation
in Salesforce itself was performed by contractors at UCSF with the end result shown in Figure
2.9.

The primary function of the Android user interface is to allow new users to perform initial
home setup and allow administrators to view appropriate debugging information. Examples
of each are shown in Figure 2.10. This Android user interface can be extended and customized
through standard Android development techniques. As a sidenote, when developing user
interfaces in collaboration with individuals without an engineering background, we found
InVision to be an extremely useful service. InVision allows users to develop the look and
feel of an application in PowerPoint, a more broadly available skill.
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Figure 2.8: The random forest increases classifier accuracy by averaging over random decision
trees to reduce variance [53].

Room Estimation

Based on 13 home setups with number of rooms equal to 3.1 ± 1.7, the room detection
accuracy is 96.1% ± 2.6%. In these procedures, only one was performed in a house with
rooms on multiple floors. More rooms and more floors would naturally decrease the detection
accuracy as the number of neighboring rooms increases. Room sizes were allowed to vary
as they naturally do in the home setting with small rooms on the order of 1 meter diameter
(e.g., bathrooms) and large rooms on the order of 6 meter diameter (e.g., living rooms).
Estimote beacon settings were all set to the same parameters with broadcasting power set
to -20 dBm, su�ciently large to cover any room size, and advertising interval set to 200
ms, su�ciently small to provide many opportunities for detection even when just passing
through a room.

Results from one representative plot are shown in Figure 2.11. The top line of circles
shows the true room at each point in time. The line below it of triangles shows the prediction
made at each time point. The squares scattered below show the RSSI value from each beacon
at each point with higher values denoting beacons expected to be closer. As shown, the
method is able to successfully resolve uncertainty when the RSSI value is fluctuating between
two rooms, a situation which is highly detrimental to the Care Ecosystem use case in which
a key metric is the number of transitions between rooms. The cost is decreased accuracy



CHAPTER 2. FUNCTIONAL MONITORING THROUGH WEARABLES 25

Figure 2.9: Salesforce user interface for care team navigators to view metrics and analysis
for monitored individuals with dementia

when a true room transition is made. In most situations this occurs far less frequently.

Analysis

After data is collected from the watch and ambient sensors, metrics can be formed and
analysis methods applied. Two example results of the analysis are displayed in Figures 2.12
and 2.13. In Figure 2.12, outlier detection is applied after room estimation has been applied
to infer the percentage of the day the user spends in the Bathroom and the Bedroom. In this
situation, the home environment was an apartment limited to these two rooms. From the
outlier detection, a distinct pattern emerges. On most days, the user spends very little time
in the bathroom. On some days, the user spends more time in the bathroom. This cluster
was mostly composed of days in which the user showered. Finally, an outlier is detected
when an atypical point was detected from the normal. In the Dementia Care Ecosystem,
this would flag the care team navigator to call the user and ask about specific symptoms
defined by a flowchart designed by the clinicians involved. In Figure 2.13, trend detection is
applied to the step count data collected on the watch in the first 30 days of use. The use of
the fitness tracker appears to show the desired increase in number of steps taken over this
time. Note that the two points in which many steps are taken are ignored in the resulting
model. Similarly, this robust RANSAC regression allows model fitting in the presence of
many days when the user forgets or chooses not to wear the device.
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Figure 2.10: The Android user interface for administrators and a selected screen from home
setup. The interface for non-administrator users provides a subset of the functions available.

2.9 Conclusion

In this work, we describe Max, an open source prototyping platform constructed from o↵-
the-shelf components for designing cyber-physical systems with personalized to individual
users. The current starting price is $400 assuming the smartphone and smartwatch used
here, three sensors, and an available server for computation. At this price, many interesting
new applications are feasible. We hope Max reduces the engineering burden of creating such
systems to spur innovation in creating new and interesting applications. We describe one
such application here in the Dementia Care Ecosystem. The Dementia Care Ecosystem aims
to reduce the cost of dementia care through cost-e↵ective continuous monitoring to detect
changes in behavior early enough to respond before a painful and expensive emergency room
visit may be needed. One example is monitoring changes in bathroom use for signs of possible
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Figure 2.11: Representative plot of room inference from raw RSSI

Figure 2.12: Representative plot of inferred room location with outlier detection applied

urinary tract infections, an unfortunately common problem in dementia care.
We present the system architecture for collecting data, maintaining data securely, and

performing several common data analysis techniques including filtering, classification, anomaly
detection, and trend detection. Where possible, we give concrete examples from the De-
mentia Care Ecosystem use case and highlight where other methods are available through
open-source libraries such as Sci-Kit Learn. We further derive and demonstrate the e�cacy
of a new technique for cost-e↵ective approximate indoor positioning, a common need for
many personalized applications which is not met by current o↵erings.

There are several features that we plan for future inclusion in Max but are not yet avail-
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Figure 2.13: Representative plot of step count data with trend detection applied

able. One significant missing feature is the presence of any actuators. Given the current
disjointed market for sensors and actuators, it is di�cult to establish a common API for
inclusion of the many types which would be interesting to use with Max. By building this
project as an open-source collaboration, we hope to gain support from the community in
developing support for prevalent IoT platforms. Some of the notable platforms for which we
will encourage inclusion in the near future include Automatic for automotive and Samsung
SmartThings for home. Another missing feature is the lack of analytical methods which lever-
age large quantities of data for increase performance. To this end, we anticipate the future
inclusion of Lasagne and Theano, open source libraries for deep learning and computational
graph analysis. For example, as the Dementia Care Ecosystem scales, this inclusion will
enable the ability to label sequences using recurrent neural networks based on the annotated
data already collected through the current implementation.

The challenge from a hardware perspective now stems not from the wearable device, but
from the surrounding sensors. We thus conclude that if those who wish to drive innovation
in the wearable computing market such as Google and Apple similar to that in current
smartphone ecosystems, they should produce a developer’s kit with the sensors and actuators
necessary to enable a large array of potential applications. The seamless inclusion of these
sensors would dramatically reduce the burden of producing the next generation of wearables,
where interaction is enabled not only with the user’s body but also with the surrounding
environment.
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Chapter 3

Diagnosis through Speech

3.1 Chapter Abstract

The aim of this work is to provide computer tools to help diagnose subjects with various
dementias by applying machine learning algorithms to recorded conversations between pa-
tients and close caregivers. The dataset includes 126 conversations collected between 2002
and 2014 and including patients with Alzheimer’s Disease (AD), behavioral variant Fron-
totemporal Dementia (bvFTD), Primary Progressive Aphasia (PPA), and healthy controls
(HC). By combining both acoustic and text features, we reach a level of 92% accuracy in
distinguishing dementia from healthy controls and 75% in distinguishing between subtypes
(AD vs. bvFTD vs. PPA vs. HC). Most notably, by collecting more than 1200 features and
selecting the most relevant ones, we highlight highly relevant features that cannot practically
be collected by a human during clinical observation, suggesting new avenues for computer-
aided diagnosis and prognosis of dementia.

3.2 Introduction

In this chapter, we develop, prototype, and test a set of signal processing and machine
learning tools, to support computational diagnosis of dementia. We focus on conversational
speech data due to its high availability through cellphones and connected devices (i.e., no
custom sensors are needed) and its high expressive power (i.e., much can be inferred about
an individual’s state from the content and quality of his/her speech). The primary aim of
this article is to show that this speech data can provide valuable insight into the presence
or absence of dementia and into the specific kinds of dementia if present. Towards this aim,
we set two specific goals:

1. To create an algorithm with leading results for determining whether an individual has
dementia or not based on recorded speech.

2. To determine the key features needed for this classification.
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The methods used in this article follow a three-stage process. First, features are extracted
using readily available open-source tools including the openSMILE package for acoustic fea-
ture extraction and the Google speech recognition API for text-based feature extraction [18,
81]. Second, feature selection techniques are applied to remove noisy features. This step was
originally applied in post-processing to select those features which were most indicative to
the clinical team. We later found this feature selection process significantly improved the
final classification results and so included it as the second stage of the process. The final
stage performs classification by which we undertake both the bimodal task of determining
whether an individual is healthy or has dementia and the multimodal task of determining
what diagnosis if any an individual should receive.

The system and study presented here was produced with two potential future applica-
tions in mind. First, we aim to pave the way toward an early detection mechanism for
dementias such as the ones described here. Although the results we present are on a dataset
that demonstrates considerable selection bias (i.e., the proportions of dementia subtypes
di↵er from the true population prevalence), results approaching human performance sug-
gest that the proposed techniques could one day be applied to early detection through an
easily accessible medium such as a smartphone application. Second, we aim to support gen-
eral practitioners that may not have specialists nearby to which he/she could refer di�cult
cases. For instance, we believe that this proof-of-concept demonstrates the potential to fa-
cilitate distinction between diseases that typically required special training to distinguish
(e.g., bvFTD vs. PPA).

Outline

The rest of the article is organized as follows. Section 2 gives background on speech processing
and dementia and details related work in automatic dementia detection. Section 3 discusses
the feature extraction process, describing the dataset and the collection of acoustic and text-
based features. Section 3 discusses the classification process including methods for feature
selection and classification. Section 4 describes the results obtained. Section 5 discusses the
results and limitations of the work. Section 6 provides some conclusions on the work and
possible future directions.

3.3 Background and Related Work

Types of Dementia Relevant to this Work

Dementia is defined clinically as a progressive cognitive disorder that leads to an inability
for an individual to independently perform their activities of daily living. While many
view dementia as synonymous with Alzheimers disease, there are in fact several forms of
dementia. Alzheimers disease is most common over the age of 65, but dementia can strike
younger people, often resulting in misdiagnosis. In people under the age of 65, dementias
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can be mistaken for personality changes or a psychiatric illness such as depression [78]. Even
if a dementia is suspected, the wider variety of possible dementia types in younger age make
a precise diagnosis di�cult.

Frontotemporal dementia (FTD) at least as common as Alzheimers disease in people
under the age of 65. There are three main forms of frontotemporal dementia: behavioral
variant frontotemporal dementia (bvFTD), semantic variant primary progressive aphasia
(svPPA), and the nonfluent variant of primary progressive aphasia (nfvPPA). All FTDs
interfere with social interaction: bvFTD causes a loss of social and emotional regulation and
appropriate interaction, whereas the two forms of primary progressive aphasia interfere with
language comprehension and production [58, 57].

Accurate diagnosis of dementia, including the subtype, can have important implications
for treatment and prognosis of the disease. This will only become more important with the
advent of new therapeutic agents, as there is a growing recognition that treatments are most
likely to be e↵ective early in the disease course, therefore requiring early diagnoses.

Background on Speech Processing

Methods in computational processing of speech have advanced considerably in recent years.
Private companies have developed state-of-the-art automatic speech recognition (ASR) schemes
by leveraging massive quantities of labeled training data. With these large datasets, deep
learning techniques first replaced more classical Gaussian mixture models (GMMs) for rec-
ognizing individual phonemes then hidden Markov models (HMMs) for modeling temporal
probability distributions.

In limited data regimes where deep learning methods are prone to overfitting, however,
GMM-HMM techniques continue to provide cutting-edge results. These techniques typically
represent acoustic data by Mel Frequency Cepstral Coe�cients (MFCCs) or linear spectral
pairs (LSPs) and their first or second temporal derivatives. The purpose of this preprocessing
is to define summary statistics of the raw acoustic waveform that are smaller in size by
selecting the information relevant for making accurate discrimination between the sounds
to which humans are sensitive. This preprocessing reduces the feature space from having
dimension in the hundreds of thousands (e.g., a 10 second window sampled at 44kHz provides
440,000 data points per sequence) to a low dimensional manifold in which we expect the
relevant information to occur. In this way, e�cient calculations over acoustic data can be
performed while minimizing the loss in expressive power.

Related Work

Recent studies in automatic dementia detection have focused on extracting content based
features and training simple classification algorithms.

In [70], they use the ACADIE corpus of transcripted conversations of AD patients com-
piled within a study of donepezil. Using the frequencies of common words in the text,
they achieve 95% accuracy in detecting AD. [32, 33] use Carolina Conversation Collection
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composed of both raw conversations and transcripts . [33] mixes lexical richness measure-
ments with hand designed features including filler words, repetitions, incomplete words and
go-ahead utterances.

Some studies have intended mixing textual features to some acoustic measures to predict
specific dementia types detection. [64] adds few acoustic measurements to text based features
but focus on detecting trouble-indicating speech for subjects already with AD. [23] focus on
PPA detection using audio of patients asked to tell the Cinderella story and its transcribed
version made by research assistants. By using frequency text based features as well as
pauses and fundamental frequency variations, they achieve 87% accuracy in detecting PPA
on a dataset of 40 people. [51] uses a combination of part of speech related features and
pauses to discriminate di↵erent variants of frontotemporal lobar degeneration on 38 patients.

In our study, we focus on a fully automatic dementia detection procedure. We use a
consequently larger dataset with 124 individual after preprocessing and including various
subtypes of dementia. Thus, the high accuracy presented here is less likely due to sample
bias or overfitting than previous results presented in the literature. Our main objective being
early detection, we used patient data for early dementia variants. By using only raw con-
versation, we designed algorithms easily applied in real world context (phone conversations,
recorded appointments). We apply a more statistical approach using a large combination
of acoustic based features (frequencies, pitch, loudness, pauses) and textual based features
(word frequencies, richness, word similarities, reaction times). By looking at di↵erent mea-
surements (accuracy, recall, precision, importance of features), we provide an analysis of how
we could generalize with bigger datasets and what kind of measurements could be of interest
for practicioners.

3.4 Feature Extraction Process

Description of the Dataset

The dataset was obtained by gathering recordings of couples (participants with dementia
and a familial caregiver). Patients were diagnosed with bvFTD, svPPA, nfvPPA and eoAD
by a team of neurologists, speech pathologists and neuropsychologists. BvFTD diagnoses
were determined using the Neary clinical criteria [48], and svPPA and nfvPPA by consensus
criteria [31]. AD was diagnosed using National Institute on Aging-Alzheimer’s Association
diagnostic guidelines [41]. The patients were in early stages of dementia as judged by a
mean Mini-Mental State Exam score of 23.4 (SD 5.8) [22]. All assessments were conducted
between 2002 and 2014. All study participants provided written consent regarding study
participation. The study was approved by appropriate institutional review boards. Patients
with bvFTD, svPPA, nfvPPA and eoAD (early onset Alzheimer Disease) were evaluated
along with a healthy companion, usually a close friend or family member.

The dataset used for this research consisted of 98 audio conversations between an individ-
ual with dementia and his/her close caregiver, obtained during an assessment of emotional
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functioning conducted at the Berkeley Psychophysiology Laboratory at the University of
California, Berkeley. Laboratory procedures for obtaining samples of conversations were de-
rived from those originally developed by [44]. Couples were instructed to discuss a mutually
selected topic of continuing disagreement in their relationship. Each conversation lasted be-
tween 10 to 15 minutes. Recordings of the conversations were obtained using unidirectional
Shure lavalier microphones attached to each participant.

The audio from the conflict conversations was then transformed into .wav files. A spectral
noise gaiting algorithm was used to remove background noise in Audacity 2.0.3 [69]. Trained
research assistants blinded to speaker diagnosis labeled controls and participants speech in
Praat [12], an acoustic analysis program. Environmental noises and non-speech sounds were
labeled for exclusion. Each labeled conversation was checked for quality before use. A Praat
script then extracted intervals of uninterrupted speech for each speaker in the conversation.
These intervals were then subjected to further analysis.

In addition to the raw audio files, the times each speaker concluded or began were man-
ually marked in a file that we will call textgrid.Marking times in this fashion allowed for
simple segmentation of the conversation. To ensure quality, each timing file was indepen-
dently checked and verified. Demographics for 126 of the individuals contained within the
sample population were also provided. Two of the individuals in the sample spoke so little
that no analysis was possible. Thus, from the original 98 audio conversations, segmented
audio from 124 individuals was extracted and analyzed alongside matching diagnoses and
demographic information. The others couldn’t be used because the diagnosis was not pro-
vided.

The sample characteristics of the dataset are shown in Figure 3.1. The dataset shows
minor bias toward healthy controls (52.4%). Those controls were obtained by taking the
healthy caregiver speech in the conversation. Within the dementia subsample, the set is
divided among three classes of disease: Alzheimer’s disease (AD, 12.7%), behavioral vari-
ant Fronto-Temporal Dementia (bvFTD, 15.9%), and Primary Progressive Aphasia (PPA,
18.3%). The gender distribution is 51% male, 49% female. The age distribution is approxi-
mately Gaussian centered at the 60-65 age bracket (Figure 3.2).

While conclusions drawn here may not generalize to the whole population due to the
inclusion of a higher proportion of less common subtypes of dementia (e.g. bvFTD, PPA),
the diversity of the dataset enables better accuracy for less frequent subtypes as well as
better detection in a relatively young population.

Acoustic Features

Vocal production can be influenced by social, emotional, autonomic and motoric processes,
all of which may be altered by neurodegenerative illness. This has led to demonstrated
di↵erences in vocal production from healthy controls in a wide range of neurological illnesses
such as Alzheimer’s disease. That vocal production can be measured by several measures. For
example, the Mel-frequency cepstral coe�cients (MFCCs) – popular for autonomic speech
processing tasks – use a scale accounting for human hearing perception. It is obtained by
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Figure 3.1: Distribution of the 126 individuals with respect to disease. The set comprises
66 healthy controls (HC, 52.4%), and 60 individuals with Alzheimer’s disease and related
Dementias (ADRD, 47.6%). Of the a↵ected individuals, the primary diagnosis for 16 is
Alzheimer’s disease (AD, 12.7%), for 20 is behavioral Fronto-Temporal Dementia (bvFTD,
15.9%), for 1 is Dementia with Lewy Bodies (DLB, 0.8%), for 23 is Primary Progressive
Aphasia (PPA, 18.3%). Within the PPA segment, 14 show the semantic variant (svPPA,
11.1%), 7 show the right semantic variant (rsvPPA, 5.6%), and 2 show the non-fluent variant
(nfvPPA, 1.6%)

Figure 3.2: Distribution of the 126 individuals with respect to gender and age.

mapping the power spectrum of the sound onto mel scale bands via equidistant triangular
overlapping filters, then taking the logarithm of the powers within each mel frequency band.
Line spectral pairs (LSPs) are a representation of linear prediction coe�cients (LPCs), which
themselves represent transmissions of the spectral envelope of speech. Compared to LPCs,
LSPs have relative high stability and low sensitivity to quantization noise. [66]

In recent studies of computer-aided dementia detection [32, 33, 23, 25, 51], the study of
speech characteristics plays an important role but is generally focused on content. Specific
acoustic features stated above have been used partially in some studies [23, 25, 51] and have
been proven significant in similar tasks such as emotion recognition [5] or autism detection
[40].

To gather a wider variety of measurements, we computed the large acoustic feature set
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using the open-source tool, openSMILE [18]. We created, given a part of the audio conversa-
tion, 26 indicators for every frame of the audio, including principal frequency, MFCC, LSP,
loudness and voicing probabilities. By optionally applying the discrete di↵erentiation (finite
di↵erence quotient) followed by 19 aggregating functions such as mean, standard deviations,
quantiles or regressions slope and o↵set, we obtained a set of 988 features.

To compute the aforementioned features, we first divided the pre-filtered audio files into
samples of length at least 8 seconds containing speech from only one person (between 4 and
20 samples per person). This ensured that each sample is long enough to be relevant. We
computed the features on each sample and then took the mean on all the samples extracted
for the same person from the same conversation. We additionally stored 8 features on
the whole conversation, including the segments shorter than 8 seconds. We refer to these
as conversational features because they encapsulate more global information relating to the
tone of the conversation including ratio of speech, mean length of utterances, and the number
of uninterrupted parts of speech per conversation.

Following the study from Pakhomov et al. [51] and other similar studies, [23, 25], we
finally added 5 features to describe the pauses in the speech (functions of length and number),
using a custom pause extraction process that finds pauses by merging close sets of consecutive
silent frames. We extract pauses of length more than 1ms, which correspond to what the
human ear can detect. The resulting dataset of acoustic features has 1001 elements.

Textual Features

Given the good results of classification on content-based features [32, 33, 23, 25, 51], we
also extracted textual features. We started with an automatic transcription with a su�cient
word-by-word accuracy (see Appendix C). The text was then modelled as a bag of words,
meaning the order of the words was ignored and the text was viewed simply as a set of
with multiplicity. The general process is therefore to apply text-based metrics on each word
separately and then use four aggregation functions (min, max, mean and standard deviation)
to derive features in a similar manner as acoustic features generation. In order to maintain
feature relevancy, we provided a specific function for each measurement to test if every word
was relevant. For example, in bigram frequencies of the letters, we did not consider words of
length less than 3. We then stored the ratio of words not relevant in a feature: the relevance
ratio (figure 3.3).

A large number of the word measurements were selected from the Elexicon project [7]
which provides behavioral and descriptive data on 40,481 words. The corresponding fea-
tures have been either computed or collected among six universities on normal students
and sta↵. From this, 39 measurements were used divided in six categories: word com-
plexity (frequency in di↵erent corpuses), orthographic neighborhood (size and complex-
ity of words close in spelling), phonographic neighborhood (close in sound), numbers of
phonemes/syllables/letters, bigram frequencies (mean frequencies of consecutive pairs of let-
ters) and reaction times to speeded naming and lexical decisions (time to pronounce a word
and to identify that a combination of letters is a word). For these features, the relevance
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Figure 3.3: Vocabulary Features Extraction Process. Each word considered relevant is used
to compute aggregation functions. The others are counted to compute the relevance ratio

function was set to accept all words present in the Elexicon project. Plural and conjugate
forms were assigned the value of the root word.

Eight other measurements were used in addition: bigram and trigram frequencies of
words not included in the Elexicon project (4 features), vowel and consonant distributions
(2 features), and the age of acquisition (2 features) [43]. The age of acquisition has been
used in several similar studies [24, 25, 23] and originates from a database that provides
the mean and the standard deviation of the user-reported age at which users learned each
word. Data for this database was collecting using Amazon Mechanical Turk, the web-based
crowdsourcing technology. The relevance function was therefore set to reject unavailable
words as well as those with high standard deviation (greater than 4).

In addition to vocabulary oriented text features, inspired by the work of [13, 32, 33], we
also added four features that measure the richness of the vocabulary: number of words (N),
richness ratio(RR), Brunet Index(BI), and Honore Statistic(HS). They are defined as:

8
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>>>>:

N

RR = V
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BI = N�0.165V

HS = 100log(N)
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where N is the number of words, V the number of distinct words and V1 the number of
words used exactly once. To the richness features, we also added the TF-IDF indices (Term
Frequency – Inverse Document Frequency) [65] for words present in at least 25% of the
documents and that are in the top 15 features selected with at least one of the feature
selection techniques described below. TF-IDF is defined as:

tfIdfi,j = tfi,j ·
|D|

|{dj : ti 2 dj}|
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where ti is the ith term, dj is the jth document, tfi,j the frequency of ti in dj and |D| the
total number of documents. This process resulted in 10 words. All combined, a total of 249
textual features were defined.

3.5 Classification Process

Preprocessing and Feature Selection

Once the feature set was computed, we performed several preprocessing steps. We separated
the data by gender due to variance in acoustic features for men and women. We discarded
every sample with missing acoustic features and took the mean over all samples to obtain
a single value for each person. We also discarded every person associated with a transcript
with less than 20 words in order to keep relevant vocabulary features. Due to limited data,
we did not discard subjects for other reasons. If values were missing for age, we took the
mean value. If no information on pauses could be extracted, we set a 0 value indicating no
pauses were present. We finally eliminated any feature constant for every subject since these
features only extend computation time without prodiving any discriminative power. After
the preprocessing steps, 124 subjects remained in the dataset. To this dataset we applied
leave-one-out cross validation.

Because of the high number of features coupled to a small number of samples, feature
selection was critical to high performance. Because we wanted to keep interpretability as
well as some stability in the set of features selected, we used precomputed scoring functions
on features to select the k best ones. On every cross-validation set, the scoring function was
computed for every feature and then the average was taken across all sets. This had the
primary advantage of being easily interpretable and more stable than simply computing the
score functions directly. It is also significantly faster than computing it for each set of the
cross-validation individually. However, because it uses the target values of all samples, it
risks overfitting. To verify that only minor overfitting occurred, we tested the final algorithm
on 10 new subjects and observed a drop in accuracy of less than 5%.

We used three di↵erent types of scoring functions for the feature selection. First we
used 3 variance-based approaches: ANOVA, the Welch t-test and the Chi2. In brief review,
ANOVA tests the probability that according to one feature, individuals from two labels are
likely to come from the same population. The Welch t-test takes a similar approach but does
not assume equal variance in both labels. The Chi2 tests the likelihood of independence
between every feature and the label. We next used the coe�cients from both Lasso and
Ridge regression as scoring functions. We tuned the sparsifying coe�cient of each to select
approximately 100 variables. We finally used the feature importance in several tree-based
methods: Decision Tree, Random Forest, and AdaBoost with Trees as base learners using
either the entropy or the gini impurity as criterion for the cuts. The methods used were
extracted directly from Scikit Learn Python library [54] except for the Welch t-test where
the SciPy library [39] was used.
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Figure 3.4: Procedure to perform classification using regressors. 0, 1 and 2 represent the
labels to predict (HC, AD, FTD, PPA). One regressor is associated to each of them

Classifiers

For the classification itself, we used a large number of standard classifiers from the Scikit
Learn Python library [54]. We first used simple linear models such as Logistic Regression,
Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM). We also used
the Decision Tree classifier and given its good results, we tried di↵erent tree-based methods
exploring the bias-variance tradeo↵, such as Random Forest, boosting (AdaBoost and Gradi-
ent Boosting), and Extra Trees (a more randomized version of Random Forest). In addition
to the above algorithms, based on the good accuracy of neural networks in many speech-
based classifications, we implement the Extreme Learning Machine (ELM) [35] which is a
one hidden layer neural network with weights between the input and the single hidden layer
set randomly. It has the advantage of being significantly faster than traditional multilayer
networks and less prone to overfitting given the reduced parameter set. We did not apply
any deep networks given the relatively small dataset, and the unavailability in the literature
of relevant pre-trained deep networks such as those available for vision through ImageNet
[16].

In order to leverage penalization properties (sparsity, handling of highly correlated fea-
tures) on simple models, we used regression algorithms such as Lasso, Ridge regression, Least
Angle Regression, and Elastic Net. To do so, we trained a regression algorithm for each label
in the output and used the index of the regression with maximum output as a prediction
(see figure 3.4). The probability of belonging to each class was computed using the following
formula:

Prob(x 2 Cl) =
Rl(x)�min(�1,mini2L(Ri(x)))P
j2L Rj(x)�min(�1,mini2L(Ri(x)))

with Cl the class of label l, Rl(x) the score of the regressor associated to the label l for x,
and L the set containing all the labels. With the definition above, the regressor output with
the lower value had 0 probability if it is under -1, but had a positive probability otherwise.
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Figure 3.5: The best results in determining whether a speech segment belongs to an in-
dividual with dementia or a healthy control. Two-step AdaBoost, or Selective Boosting,
demonstrates 92% accuracy and greater than 90% precision and recall.

Finally, we used di↵erent Voting Classifiers. As typical in ensemble methods, the idea
was to combine the predicted probabilities from di↵erent algorithms to get a more stable one
which incorporates the benefits in prediction from di↵erent algorithms. In order to avoid
giving too much importance to some algorithms, the minimal probability was set to 0.01.
This threshold also enabled the method to discredit the labels with null probability for one
of the classifier while still di↵erentiating if several labels had null probabilities.

3.6 Results

Classification Accuracy

The best classification accuracy scores for the bimodal problem (Dementia vs. Control) are
shown in Figure 3.5. The best result of 92% accuracy was achieved using AdaBoost with
the 50 best features selected by AdaBoost a priori, as discussed in the previous section. The
precision and recall are each over 90%. All other classifiers show significantly weaker results.
With this result, the first goal is accomplished of providing leading-edge prediction accuracy.
The result also seems to show that a two-step AdaBoost significantly improves accuracy. In
the below sections, we refer to this method as Selective Boosting.

The best accuracy scores on the multimodal problem are shown in Figure 3.7. The scores
are considerably lower. In the best case, the overall accuracy is 70%, obtained using Gradient
Boosting. As shown, this result strongly benefits from the ability to separate healthy controls
with greater than 90% recall. Among the three disease types, each presents similar recall
suggesting the three variants present similar classification di�culty.
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Figure 3.6: The best results in determining whether a speech segment belongs to an indi-
vidual with dementia or a healthy control. Most tree-based methods reach accuracies higher
than 80%.

Figure 3.7: The best results in determining the diagnosis if present. Gradient Boosting
demonstrates 70% accuracy, greatly benefitted from high recall among healthy controls.

Feature Selection

As shown in Figure 3.8, the impact of feature selection is significant. In this case, feature
selection is performed a priori using the AdaBoost scoring function. Thus, the benefits of
feature selection are less apparent for the other algorithms. In the case of AdaBoost, the
benefits are significant. With 200 features, the accuracy is 74%. The accuracy increases as
noisy features are removed and overfitting is reduced until 50 features are used where the
accuracy is 92%. After this point, feature selection reduces the accuracy as useful information
is lost. When only 5 features are used, the accuracy drops to 76%. Although lower than the
peak performance, this result is unexpectedly high given how little information the algorithm
has access to with only 5 features present. These features are shown in table 3.8 and discussed
in the following section.

To examine the e↵ects of feature selection, we limit each algorithm to only using 15
features. We perform feature selection using a decision tree with Gini criterion to provide
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Figure 3.8: The e↵ect of feature selection on the bimodal classification results. Feature
selection is performed a priori using the AdaBoost score function, so the change in accuracy
for AdaBoost is most indicative.

Figure 3.9: The best results when limited to 15 features. Note multiBoost still demonstrates
85% accuracy. Here feature selection is performed using a decision tree with Gini criterion.

similar benefit to each of the tree-based algorithms. The results are shown in Figure 3.9. In
this case, the best results are achieved by multiBoost with 85% accuracy. As discussed in 3.2,
multiBoost is a Voting Classifier based on the predicted probabilities of di↵erent tree-based
methods to reduce variance (Random Forest, Extra trees, AdaBoost and Gradient Boosting
on Decision Trees). As compared to Figure 3.8, the accuracy of AdaBoost is drastically
reduced. This demonstrates the benefit of allowing a specific algorithm to perform feature
selection. It also shows that although AdaBoost is able to leverage less informative features
to achieve a higher final accuracy, it does not perform as well as the other classifiers with
limited information.

Most significant features

The most significant features for the bimodal classification problem are shown in Table
3.1. The most indicative feature is the proportion of the conversation in which the a↵ected
individual is speaking. Six of the features are acoustic features based on functions of the
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Mel-frequency cepstral coe�cients (MFCC) and line spectral pairs (LSP). Interestingly, the
remaining features are each based on how di�cult a word is to say (e.g, the variance of words
used which start with a vowel). Other text-based features such as how di�cult a word is to
comprehend are not seen.

Table 3.1: Top 10 features for bimodal classification. The symbol � denotes composition of
functions.

Bimodal Features

1 Proportion of Conversation Spent Talking

2 MFCC-9 � Moving Average � Linear Regression Slope � Delta

3 Letter Trigram � Minimum

4 MFCC-12 � Moving Average � Linear Regression Y-Intercept

5 First Vowel � Variance

6 Orthographic Neighborhood Frequency � Mean � Minimum

7 MFCC-12 � Moving Average � Linear Regression Slope � Delta

8 LSP-1 � Moving Average � Slope

9 MFCC-5 � Moving Average � Interquartile Range 2-3

10 MFCC-9 � Moving Average � Minimum

Although its performance in the classification is less interesting than tree-based selection,
ANOVA selection gives interesting features that have a strong discriminative power for the
prediction of dementia. Its lower performance on the accuracy of the classification is certainly
due to high correlations in the feature space that can be captured by the tree and cannot
be understood with ANOVA. However, the top features are still interesting ones to consider
from a medical perspective. The 10 top features have been summarized in Table 3.2: like
for tree based selection, it contains three features on MFCC (8th and 9th). It contains
two features on voicing probabilities which are generally more powerful in the multimodal
problem. We also see trigrams and orthographic neighborhood features in the top 10 features
selected by ANOVA. This seems to suggest that words with unfamiliar sounds are not used
as frequently by dementia subjects. Finally, average intensity — which is often noted in
clinical practice — appears among the top ANOVA features.

The most significant features for the multimodal classification problem are shown in Table
3.3. The most significant feature is based on the zero-crossing rate, a common feature for
determining whether or not a sound belongs to human speech. The second feature is based
on the orthographic neighborhood. The remaining eight features are all functions of the
acoustics. Again, no features directly involving the complexity of a word in comprehension
are present.
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Table 3.2: Top 10 features for bimodal classification with ANOVA. The symbol � denotes
composition of functions.

Bimodal ANOVA Features

1 Letter Trigram � Minimum

2 Number of Samples

3 MFCC-9 � Moving Average � Skewness

4 Orthographic Neighborhood Frequency � Mean � Minimum

5 Intensity � Moving Average � Skewness

6 MFCC-8 � Moving Average � Delta � Kurtosis

7 MFCC-9 � Moving Average � Delta � Linear Regression O↵set

8 Voicing Probability � Moving Average � LR Quadratic Error

9 Trigram with Subtl Norm � Minimum

10 Voicing Probability � Moving Average � LR Linear Error

Table 3.3: Top 10 features for multimodal classification. The symbol � denotes composition
of functions.

Multimodal Features

1 Zero-Crossing Rate � Moving Average � Delta � Skew

2 Orthographic Neighborhood Frequency � Minimum

3 MFCC-5 � Moving Average � Linear Regression Slope

4 MFCC-3 � Moving Average � Linear Regression Slope

5 MFCC-2 � Moving Average � Delta � Mean

6 MFCC-8 � Moving Average � Kurtosis

7 Fundamental Frequency � Moving Average � Linear Reg. Y-Int.

8 MFCC-5 � Moving Average � Delta � Quartile 2

9 LSP-3 � Moving Average � Maximum

10 LSP-0 � Moving Average � Delta � Variance

3.7 Discussion

Clinical Relevance

As the population continues to age, interest in accurate diagnosis of dementia is increasing.
At this time, clinical diagnosis can demand much time on behalf of caregivers, patients, and
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medical personnel, and these demands are expected to grow. A simpler screen that can be
performed in the home environment without imposing additional demands on caregivers,
patients or medical sta↵ would be a valuable tool. This analysis shows greater than 90%
agreement with clinical judgment in the diagnosis of dementia based on conversational speech
alone. Given the ready availability of speech samples, it is possible that a similar approach
could permit screening for dementia with potential benefits of early detection and following
disease progression over time. This sets the stage for future progress in early diagnosis,
prognosis with readily available data streams, and inexpensive distinction between similar
speech pathologies.

Classification

The high accuracy in determining whether an individual has dementia or not suggests that
computer-aided diagnosis of dementia is worth pursuing. Although the results are on a
dataset which shows some bias in dementia pathologies, the accuracy is approaching that
of a human expert. With significantly more data including diagnoses confirmed by post-
mortem histology as well as data from patients across disease types and stages, an algorithm
competitive with human experts seems possible. On the task of dementia detection from
conversational speech, we present the highest accuracy achieved by an algorithm thus far on
a dataset of this size. It should be noted, however, that the dataset is still relatively small for
machine learning applications, thus, accuracies may be overestimated. By achieving the first
goal of the article to produce state-of-the-art results for determining whether an individual
has dementia from recorded speech, we hope to encourage future work in 1) early detection of
dementia and 2) support of fine-grained diagnosis by the general practitioner without access
to specialists in clinical neurology. The lower accuracy on the multinomial classification
problem suggests that continued research is needed before a computational diagnosis can be
performed independently.

Feature Selection

The most discriminative features are related to the proportion of the conversation spent talk-
ing, the pronunciation complexity, and the Mel-frequency cepstral coe�cients (MFCC). The
potential significance of a decreased proportion of conversational time spent talking has been
noted by clinicians. Although features capturing how di�cult a word is to say appeared, no
features appeared which are used to describe how complex a word is conceptually, such as the
age of acquisition. This suggests that in this cohort of early stage patients, mental capacity
is diminished less than muscular ability to perform di�cult articulation. The presence of
many MFCC features, which are often used in speech recognition algorithms, suggests that
the quality of the speech can be very indicative of the underlying disease state. The pres-
ence of these features also suggests that the algorithm could be improved by incorporating
advances that have been made in recent years to improve upon hand-engineered features like
the MFCCs by learning features from speech data itself (i.e., deep learning). Although we
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chose not to use deep-learning approaches here based on the paucity of data, future attempts
could be made to tune a pre-trained deep speech network to the data presented here.

With key features needed to characterize dementia-like speech, the approach presented
here can pose a privacy preserving, minimally invasive method for monitoring disease pro-
gression. By extracting the features studied and identified by our approach from regular
cellphone conversations, clinicians and family may obtain unique insight into the progres-
sion of the disease over time. Rather than saving the recorded conversation itself, these
features could be extracted locally, providing little insight into the actual content of the
conversation in a privacy preserving architecture. These same features could then be used to
perform regression whereby an individual may appear more dementia-like following a change
in medication, primary caregiver, place of residence, etc.

Limitations of the study

The dataset could be improved by including more participants, including participants from
varying stages of disease, providing data from the same participants over time, and obtaining
data with true labels based on post-mortem histology rather than clinical diagnosis. In
particular, the dataset analyzed here contained only individuals presenting early dementia
pathologies. In order to generalize these results to general diagnosis, the methods should be
applied to a broader dataset. It will likely not be possible to claim an algorithm is capable of
surpassing the performance of a human expert until a dataset is created which contains labels
based on post-mortem histology. It will not be possible to claim an algorithm is capable
of surpassing the performance of a human expert until this time. A more interesting goal,
however, may be to see how an algorithm can be developed to support the clinical expert to
improve the final diagnostic capability as discussed next.

The methods used could be improved by limiting overfitting and improving transcription.
To that extent, one could perform the feature selection directly inside the cross-validation.
It would complicate the computation of top features and increase the computational cost
but would limit the likelihood of overfitting. By improving transcription, one could have
better accuracies with textual features, and add measurements on the sentences structure.
Moreover, if a team of clinical experts created a list of the features used in diagnosis, an
individual clinician could provide a score for each of these features on making a new di-
agnosis. These feature scores could be used in tandem with the features selected here to
perform final classification through standard machine learning techniques. This strategy
would avoid the di�cult technical hurdle of automatically detecting nuanced features such
as changes in eye movements while allowing for the inclusion of features which are di�cult
for a human to measure such as the frequency with which certain word types are used (e.g.,
orthographic neighborhood). Existing methods could be further improved by more exten-
sive hyper-parameter optimization (i.e., through random search) and by including pruning
techniques into the tree-based learning algorithms which are not included o↵-the-shelf from
Scikit Learn Python library.
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Given the size of the dataset available for the present work, several design decisions were
made that could be improved upon with the addition of more data. The results are provided
based on leave-one-out cross validation. A better indicator of generalizability would be to
reserve a strict holdout set containing 20% of the data. This cross-validation method is prone
to overfitting, but has received recent justification through iterative data analysis techniques
such as the thresholdout method.

3.8 Conclusion

This work presents a method for distinguishing the speech of healthy individuals from people
with dementia. The method is based on assembling a large vector of features to characterize
the speech, then selecting those features that demonstrate the most discriminative power.
From this feature selection, we highlight certain features that are more widely clinically rec-
ognized, such as the proportion of the conversation spent speaking, and others which are not
currently used by clinicians such as the mel-frequency cepstral coe�cients. We show that
this method provides discriminative power approaching that of clinicians in binomial classi-
fication, but only moderate ability to discriminate between Alzheimer’s disease, behavioral
fronto-temporal dementia, and primary progressive aphasia.

In the future, we believe that this work could be improved in several ways. First, the
method could be fully automated by implementing computational segmentation of the speak-
ers in the conversation. This is easily obtainable from cell phone conversations and obtainable
with high accuracy in more natural settings if multiple microphones are used and readily
available algorithms such as independent component analysis (ICA) are applied. Second,
the study would benefit from more data, data from each individual from multiple points in
time, and particularly from data in which the post-mortem histology is known. Although
we show 70% accuracy in predicting the diagnosis, a more interesting result would be the
accuracy in predicting the true disease. The predictive features highlighted could be added
to clinical procedures in early dementia detection. However, although a physician may have
an intuitive understanding that the MFCC provide discrimination based on pitch in a scale
approximating the human auditory system, there is not yet a practical clinical system for
detecting and determining correlation between certain abnormalities in MFCCs and certain
disease types. Thus, the physician cannot yet use these features to inform their own diag-
nosis in the same way they can use cues obtained naturally by a human expert in practice
such as hand tremor or eye movement.

We hope that as medicine shifts from a reactive to a proactive paradigm, the present work
demonstrates a proof-of-concept process that recorded speech provides a data source that
is both easily obtainable and presents high expressive power. Moreover, by highlighting the
most influential features of the data, we propose a privacy protecting method for performing
daily prognosis and suggest methods in which features that are best detected my humans
and features that are best detected by machines can be used together to improve the overall
quality of care.
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Chapter 4

Fall Detection through Video Analysis

4.1 Chapter Abstract

We study robust fall detection in the context of images collected in the light with standard
RGB sensing and images collected in the dark with IR sensing. We collect a data set
in which 4 healthy adults simulate falls in the home environment. The data set contains
103,315 images in the light and 43,485 images in the dark with 30,608 fall images in the light
domain and 10,842 fall images in the dark domain. We explore three methods for domain
adaption none of which have previously been explored in the context of fall detection: (1)
tuning the pre-trained VGG network to the fall-detection task [68], (2) applying the domain
confusion loss developed by Tzeng, et al. [74], and (3) implementing a novel domain-specific
data augmentation technique based on the deep style work of Gatys, et al [26].

The best results for our application indicate 0.92 precision and 0.86 recall in the light
domain and 0.72 precision and 0.63 recall in the dark domain, both originating from simply
tuning VGG. For future work, we will generate a larger data set in a 3-month pilot study,
extend the discrete domain adaptation results to continuous domain adaptation under day-
light cycles, and explore the use of recurrent neural networks to exploit the time-dependencies
between video frames for better fall detection.

4.2 Introduction

Fall accidents account for 26% of all Alzheimer’s related hospitalizations [2] and are thus a
major concern and key cost contributor. Unfortunately, safety products developed for falls
require a wearable device; they were developed for cognitively aware adults and not designed
specifically for individuals with Alzheimer’s disease and related dementias. No dementia-
friendly fall detection solution currently exists to a↵ordably provide home AD care within a
comprehensive framework.

Our team proposes a system which uses o↵-the-shelf wall-mounted cameras and wireless
sensors to passively detect the key safety concerns for individuals with Alzheimer’s disease.
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The proposed system does not require any action of individuals or their caregivers such as
wearing a fall pendant and is therefore well-suited for individuals with dementia. Although
the proposed system provides several functions critical to AD care, we focus here on the
critical issue of fall detection from video.

Prior work in vision-based fall detection [19, 36, 46, 80]
follows generally the same process. The interested group collects a small data set of falls

which is necessarily limited given the rarity of fall events and the di�culty for an actor to
replicate an authentic fall event. The group then proposes a method which is based generally
on a three-stage pipeline:

1. Detection of the person within the frame

2. Extraction of key features from the detected region

3. Classification into fall / no-fall based on these features

In the literature, Stage 1 is often accomplished by simple background subtraction under
the assumption that the only movement in the frame is due to human motion. Stage 2 is
accomplished through numerous techniques including Gabor feature extraction, ellipse fitting
to the human profile, projection histograms, Gram-Schmidt orthogonalization, nonlinear
PCA, collections of heuristics, and deep features extracted from neural networks. Stage 3 is
performed by applying traditional SVMs, hierarchical SVMs, shallow neural networks, and
deep neural networks [19, 36, 46, 80] .

Although there is clear room for improvement in Stage 1 using algorithms which can be
tuned to person-specific localization such as fast-RCNN [28], the focus of this work is on
Stages 2 and 3. Namely, we provide the first application of pre-trained deep networks to
fall classification using VGG [68] pretrained on ImageNet [16], we study the robustness of
this classification to a change in the image capture modality from day-time RGB sensing
(light) to night-time IR sensing (dark), and we explore two supervised learning techniques for
maintaining robustness across modalities. The first method applies the deep domain transfer
techniques developed by Tzeng et al. [74], and the second applies the deep style techniques
developed by Gatys et al. [26] to learn a domain transfer mapping for domain-specific data
augmentation.

4.3 Methods

In this section, we first describe how we generated a fall dataset. Then, we outline the network
architectures and training methods used to perform fall detection in multiple domains. All
experiments were implemented using Ca↵e and deployed on a NVIDIA Titan X GPU [37].

Data Collection

In order to train and evaluate our model, we built a small fall data set. We recorded roughly 1
hour of video containing four individuals in a standard living room environment simulating
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typical fall behavior. To create a realistic domain shift, we recorded data in a day-time
setting with a color camera and in a night-time setting with infrared (IR) cameras. We
created bounding boxes and fall labels for human figures with Amazon’s Mechanical Turk,
using the Video Annotation Tool from Irvine California (VATIC) [75]. Workers were given
instructions on how to select regions they believed contained humans and on how to label
what they thought of as a fall or someone on the ground. Images were labeled as “fall” or
“no fall” , with a fall defined as a person lying on the ground and not in an intermediate
pose. To control the quality of the region proposals and labels, we fine-tuned results from
the workers, discarding errant proposals and trimming bounding boxes.

We generated 103,315 light and 43,485 dark data-points this way with 30,608 falls in the
light domain and 10,842 falls in the dark domain. We show examples of data from the two
di↵erent domains in Figure 4.1.

(a) Example of “fall” in the night-time set-
ting.

(b) Example of “no fall” in the day-time set-
ting.

Figure 4.1: Examples of data from the day-time and night-time settings.

Baselines

Our first attempt at performing fall detection was to simply finetune two distinct VGG-16
nets [68] for the light and dark domains. The baseline nets were initialized from the pre-
trained VGG-16 nets; only the final layer, fc8, was not initialized with weights from VGG.
For training, we locked the weights for the first 6 layers and only allowed the two final fully
connected layers (fc7 and fc8) to update weights. The Stochastic Gradient Descent (SGD)
solver parameters used for all experiments in this paper are listed in Table 4.1. For the
baselines, we noted convergence by 20000 iterations.
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Figure 4.2: Domain confusion net, based on [74], used for experiments. Note that the first
seven layers are initialized from the VGG weights [68]. We lock the weights for all layers
except fc7 and fc8. In implementation, we use two fcD layers with shared weights to connect
to light and dark fc7 layers, respectively.

Batch Size 64
Base Learning Rate 0.01

LR Policy Step
Step Size 5000
Momentum 0.9

Weight Decay 0.0005

Table 4.1: SGD solver parameters used to train all nets.

Domain Confusion

After performing the baseline experiments, we wanted to see if we could discover a domain-
invariant representation to allow use of a single net to perform fall detection in both light and
dark domains. We hoped this would allow the accuracy in both domains to be improved by
leveraging all available information. In [74], the authors achieved domain transfer through
maximizing domain confusion and transferring task correlations from a source domain to a
target domain. This method results in a feature representation that is di�cult to classify
by domain but simple to classify by category, with categories that were close to each other
in the source domain representation still close in the resultant domain-invariant feature
representation.

We used this technique with a few modifications. Since our problem is a binary classifica-
tion task (i.e. fall detection), we did not apply the soft label loss to achieve task transfer; we
only used the domain confusion loss. In addition, we used VGG as the base net for feature
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Model Precision Recall Number of
“Falls” in
Test Set

Number of
“No Falls” in

Test Set

Light Baseline 0.859 0.920 2506 18157
Light Domain
Confusion

0.884 0.840 2506 18157

Dark Baseline 0.715 0.632 1542 7155
Dark Domain
Confusion

0.939 0.511 1542 7155

Style Transfer 0.558 0.640 1542 7155

Table 4.2: Fall detection results for baseline, domain confusion, and style transfer methods.

Model Precision Recall Number of
Light Images
in Test Set

Number of
Dark Images
in Test Set

Light Domain
Confusion

0.424 0.463 20663 8697

Dark Domain
Confusion

0.457 0.409 20663 8697

Table 4.3: Dark domain detection results for domain confusion method. The dark domain
detection results in this table correspond to the snapshots used to evaluate fall detection in
Table 4.2. Note that the test set used for dark domain detection is the same test set used in
Table 4.2 but is partitioned by domain rather than by category.

representation rather than AlexNet [42].
A graphical representation of the domain confusion net is shown in Figure 4.2. Note that

we feed in both the light and dark data simultaneously; each input layer has a batch size of 64,
respectively. In addition, the DomainConfusionInnerProduct layer (i.e. fcD in Figure 4.2)
was provided by the authors of [74]. It implements an iterative update for back-propagation,
which is explained in the original paper. For this layer, we used the recommended loss weight
of 0.1 for both domain classifier and domain confusion losses. We noticed convergence after
30,000 iterations.

Style Transfer

Gatys, et al. demonstrate that the content from one image and the style from another can
be merged by extracting deep features from each image and matching first-order statistics
from the content image with second-order statistics from the style image [26]. One example
is shown in Figure 4.3. The result is achieved by starting with a white-noise image and
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iteratively minimizing the Euclidean loss between the exact features of one layer from the
content image and the Gram matrix of the features from several layers of the style image. For
example, Figure 4.3 is achieved by extracting the features from one feed-forward pass of the
original VGG network pre-trained on ImageNet, then matching the content reconstruction
from convolution layer 4 2 with the style reconstructions from convolution layers 1 1, 2 1,
3 1, 4 1 and 5 1.

In this work, we apply the deep style algorithm to domain-specific data augmentation.
Given that training data is present in both domains, we propose to learn a mapping from one
domain to the other whereby data from both domains can be leveraged to improve overall
accuracy. Given that the dark domain by definition captures less information, we propose
to map all data from the light domain into the style of night-vision capture. Although the
opposite direction is also possible, we show in Figure 4.4d that attempting the opposite
direction is an ill-posed problem due to the relative lack of information in the dark domain.

Style transfer was achieved by applying the Gatys style transfer algorithm on a frame-by-
frame basis based on code developed by [49]. To ensure diversity in the data augmentation
scheme, frames from the light domain were randomly matched with frames from the dark
domain. The intent of this scheme was to develop an augmented data set matching the global
statistics of the night vision data set rather than the specific statistics of a single frame.
This algorithm was parallelized and implemented using an NVIDIA Titan X GPU where 8
transformations could occur simultaneously. Each individual image transform was limited to
200 iterations. With this implementation, the processing time required to transform 30,000
images was 8 days. Due to the limited time remaining for the deadline, the transformation
was halted after 7,500 transformations from which 27,645 cropped images were extracted.
This augmented data was added to the existing training set containing 34,788 images from
night-vision capture for a total augmented data set containing 62,433 images.

4.4 Results and Discussion

In this section we discuss the results from our domain confusion and style transfer experi-
ments. The key results are displayed in Table 4.2. We measured the precision and recall of
the di↵erent approaches with a positive result corresponding to a fall. The results reveal that
domain confusion produces a classifier that has fewer false alarms (i.e. better precision) at
the expense of more missed detections (i.e. lower recall). Alternately, our results from style
transfer show minor improvements in recall at the expense of dramatically reduced precision.

Baseline vs. Domain Confusion

There is an interesting trade-o↵ between the baseline model and the domain confusion model.
Recall was higher for the baseline model for both the dark and light domains by roughly 10
%. In contrast, precision was higher for the domain confusion model for both domains. This
suggests that the models that are trained only on a single domain are more sensitive fall
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Figure 4.3: An example of deep artistic style transfer from [26] whereby the content of image
A is transformed into the style of 3 separate paintings in images B, C, and D.

detectors. However, the models that are trained on both domains concurrently and exhibit
domain confusion are better at rejecting “no fall” cases than the single domain models.

In this application, we are more sensitive to not missing falls. However, too many false
alarms could overload supervisors tasked with deploying resources in an emergency situation.
In the light domain, the baseline model is preferable as there is higher recall with relatively
low loss in precision. However, in the dark domain, there is a sizeable drop in precision if
we choose the dark baseline model. Thus, we do derive value from domain confusion for
detecting falls in dark environments and further work is warranted.

To verify that the domain confusion worked as expected, we looked at the domain con-
fusion net’s ability to distinguish between light and dark domains at di↵erent training iter-
ations. Table 4.3 shows the precision and recall of the domain confusion net at the iteration
matching the best performance in light and dark domains (i.e. the same set of weights used
for the results in Table 4.2). In this context, we designate the dark domain as a positive
result and the light domain as a negative result in calculating precision and recall. Figure 4.5
shows that the nets quickly learn how to tell the domains apart but then converge to a result
where both precision and recall are under 50%. Therefore, we conclude that the domain



CHAPTER 4. FALL DETECTION THROUGH VIDEO ANALYSIS 54

(a) Original picture from the dark domain. (b) Transformed picture with content of light
domain (4.4c) and style of dark domain
(4.4a).

(c) Original picture from the light domain. (d) Transformed picture with content of dark
domain (4.4a) and style of light domain
(4.4c).

Figure 4.4: Examples of style transfer with originals on the left and transformed images on
the right.

confusion loss is working and that our trained domain classifier is poor at distinguishing the
feature representation of a dark image from a light image.

Style Transfer

Figure 4.4 shows the qualitative results of style transfer. When transforming the content
from a light image (4.4c) to appear in the style of the dark domain (4.4a), the results appear
as expected (4.4b). For example, areas of local brightness are transformed to resemble lights
in the dark domain. This can be seen in the bottom left corner of Figure 4.4c where the
white spot of table surrounded by dark headphones is transformed to resemble the light
emitting from the bicycle reflectors in Figure 4.4b. Similarly, the cloudiness from Figure
4.4a appears in Figure 4.4b although minor separations across color channels occur. When
attempting the transformation in the reverse direction (Figures 4.4a, 4.4c, 4.4d), the inability
to compensate for information loss becomes readily apparent. For example, in comparing the
top right corner of Figures 4.4a and 4.4c, the colors on the canvas are lost by the IR camera.
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Figure 4.5: Measurement of the domain classifier’s ability to distinguish between light and
dark domains over training process. There are initial spikes in precision and recall, followed
by convergence to under 50%. Note that the light and dark domain confusion net results in
Tables 4.2 and 4.3 occur at 25,000 and 15,000 iterations, respectively.

In the same region of Figure 4.4d, the style transfer mechanism generates a seemingly random
accumulation of shapes and colors where it is unable to compensate for the information loss.
Interestingly, it is still able to learn selected transformations such as the appropriate color
for skin.

As seen in Table 4.2, augmenting the training set in the dark domain with transformed
images from the light domain did not provide significant benefit. The recall is improved by
0.008 at the expense of a 0.157 reduction in precision. Although the priority in this work
is on detecting all events at the expense of possible false alarms, this great of a trade-o↵ is
not warranted. Given that only one fourth of the available light data set was augmented
due to time constraints, it remains to be seen how this result scales with the amount of
transformed data. It may be that the results continue to improve by continuing to add
augmented data, but it may also be that once the majority of the training set originates
from simulated data, the statistics from the training set deviate too much from those of
the test set to provide satisfactory performance. Similarly, it may be that if standard data
augmentation techniques were applied to generate an equal amount of supplemental synthetic
images, the results from standard data augmentations may actually perform better than the
domain-specific data augmentation performed here.
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Successes and Failures

To better understand the representation of the domain confusion net utilized, we took il-
luminating sample failure and success cases in light and dark domains and used them to
identify where improvements could be made.

Figure 4.6 contains sample light images that are particularly instructive. In the left
column, we see that Figure 4.6a and Figure 4.6c appear similar, yet our classifier predicts
that Figure 4.6a contains a fall while Figure 4.6c contains no fall. To make sense of this,
we recall that our net was pre-trained on ImageNet with many human images in upright
positions with visible heads. A possible cause of this failure mode may have been that the
image in Figure 4.6c contains a barely visible head in a non-standard position, making it
di�cult to determine if the object on the floor is human.

In the right column, we have two images, Figure 4.6b and Figure 4.6d with fallen humans
in similar positions. However, the large occlusion in Figure 4.6d fools the net into making
the wrong prediction.

Samples of the dark images provide even more information on success and failure modes
of our classifier. In the left column (4.7a and 4.7c), we observe two images that appear
nearly identical. Yet, the net correctly classifies one image and not the other. We explored
this perplexing behavior further. We found that the di↵erence between both images is that
Figure 4.7c has a uniformly lower pixel intensity value. This misclassification could suggest
that the image lies directly on the decision boundary, but more likely is a sign that the net is
over-fitting to features specific to the training set. The images in the right column (Figures
4.7b and 4.7d) indicate that strong motion blur might also be a reason for misclassification.

4.5 Conclusion

The hope of this study was to develop a method which could be used to implement fall
detection with high accuracy regardless of the domain of origin. We extend the prior work
in the field by employing a pre-trained deep network for feature extraction, performing clas-
sification by implementing the current state-of-the-art for domain adaptation, and proposing
one novel method for domain-specific data augmentation. Unfortunately, the results do not
yet provide the high performance guarantees needed to provide this system to families caring
for a loved one with Alzheimer’s disease as evinced by the low accuracy in the dark domain.
In the light domain, however, results are on par with existing wearable techniques for fall
detection which show 90% accuracy on realistic datasets [6].

The best results from the light domain indicate 8% of falls will be missed and 2% of non-
falls will generate false alarms. Given that the camera sampling rate is 7 frames per second,
this corresponds to an average false alarm rate of 8.4 false alarms per minute. Although
the distribution of false alarms is not likely to be uniform and false alarms will likely cluster
around areas of uncertainty, this false alarm rate remains too high to perform independent fall
detection (i.e., without the support of a human observer). More significantly, 8% of frames
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(a) Example of a fall labeled correctly. (b) Example of a fall labeled correctly.

(c) Example of a fall labeled incorrectly.
This image is similar to 4.6a except that the
human head is not well distinguished. This
is a possible reason for failure, as it would be
hard to detect the human.

(d) Example of a fall labeled incorrectly.
This image is similar to 4.6b except for the
occlusion of the subject of interest. This is a
possible reason for failure.

Figure 4.6: Success and failure examples in fall detection in the light domain.

containing falls are missed in this test set preventing the current system from providing the
high safety guarantees needed for a home safety system.

In the dark domain, neither domain confusion nor domain-specific data augmentation
provide significant improvements over the baseline detection results. Moreover, the baseline
results leave much to be desired where 36% of falls are missed and 11% of non-falls generate
false alarms.

To improve on the current work and to better understand the problem, we will be gen-
erating a larger data set through a 3-month pilot study where falls will be observed under
natural conditions. In this study, we will further investigate how these results generalize
to continuous domain adaptation given daylight cycles present in normal home conditions,
and we will explore oversampling to adjust for class imbalance. We will also explore the use
of recurrent neural networks to leverage the time-dependencies inherent in fall-detection to
provide a more natural, accurate, and robust classifier. Finally, we will explore how domain-
specific data augmentation changes with more data and how it compares to standard data
augmentation techniques.
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(a) Example of a fall labeled correctly. (b) Example of fall labeled correctly.

(c) Example of a fall labeled incorrectly.
This image is similar to 4.7a except for uni-
formly lower intensity values. Incorrect clas-
sification could be a sign of over-fitting

(d) Example of a fall labeled incorrectly.
Strong motion blur obfuscates the image,
making detection harder. Figure 4.7b, a sim-
ilar image with less blurring, is labeled cor-
rectly.

Figure 4.7: Success and failure examples in fall detection in the dark domain.
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Chapter 5

Fall Reduction through Video Review

5.1 Chapter Abstract

A camera system composed of o↵-the-shelf video recording equipment was placed in one 40-
resident memory care community for 3 months to collect real-world data regarding the nature
in which fall incidents occur. The purpose was to use this data to develop computational
algorithms for fall detection. We describe here an unexpected result in which the memory
care facility used the fall video to review how incidents were occurring, updated policies and
room layout to reduce potential fall risks, and reduced fall rate from 10.5 falls per month on
average to 2 falls in the final month. Preliminary analysis shows a statistically significant
fall reduction with p=0.030. Given the small sample size, further studies are needed and
underway to validate this result.

5.2 Introduction

Significance

Fall accidents are the primary cause of AD-related hospitalization, contributing to 26% of
all hospitalizations at an estimated annual Medicare cost of $5.3B [15]. In nursing facilities,
individuals with dementia fall 4.05 times/year on average versus 2.33 times/year for other
residents [17]. Unfortunately, safety products such as wearable pendants were developed
for cognitively aware adults and fail to meet the needs of individuals with dementia that
cannot reliably wear or use such devices. Detecting falls early and in an ongoing manner
provides significant potential for reduced hospitalization and system-wide savings. Less than
10% of falls lead to serious injury [15], [17], but 50-75% of elderly fallers experience repeat
falls [8], [11], [50], [59], [72], [71]. Thus, detecting the first fall and taking preventative
action provides significant potential for reducing fall risk. Through a randomized clinical
trial of 160 ambulatory fallers, [63] showed that a nurse practitioner analysing a patient
and fall circumstances after the event led to 26% fewer hospitalizations and 52% reduction
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in hospital days. Rapid fall detection also limits the amount of time fallers spend on the
ground. Mary Tinetti, developer of the well-known Tinetti score for fall risk assessment [73],
noted the risks of time spent on the ground following a fall in a study of 596 non-injurious
falls [71]. Of 313 fallers, 47% were unable to get up independently after at least 1 fall. Fallers
who were unable to get up were more likely to die, to be hospitalized, and to su↵er lasting
decline in activities of daily living (35% vs 26%). These correlations are confirmed in [21],
[77].

Related Work

Current commercial solutions for fall detection fail to address how a fall occurred. The
most well-known commercial solutions include wearable systems like Phillips Lifeline which
demonstrate limited success in dementia care where individuals forget or refuse to wear a
device. Non-wearable fall detection systems based on radar and optical sensors are under
development by groups including Emerald and C2S, but are not yet commercially available
in the US and have not yet demonstrated robustness through evidence-based studies. Fall
mats and bed alarms are prevalent solutions in memory care but are intended only for
those residents that should never be walking independently. When applied to general fall
detection, these alarms su↵er from high false alarm rates due to the prevalence of night-
time wandering in dementia care. None of these solutions allow care providers to see how
falls occur. There is an absence in the academic literature examining how fall review can
impact the quality of care. The most relevant study is conducted by Robinovitch et al. [62]
in which video is collected from cameras in two long-term care facilities over a period of 3
years and capturing 227 falls. This dataset was collected to determine the most common
causes of falls in managed care and so was collected in coordination with care facilities at
which cameras were already installed. Video was not reviewed with facility sta↵ with the
specific intention of identifying and removing any possible cause. The study thus o↵ers
little insight into the e↵ect of introducing cameras or how video review can impact fall rate.
It does confirm an increased fall incidence among residents with Alzheimers disease and
highlights that 43% of falls captured involved a cause which could be addressed by facility
sta↵ including trips, stumbles, hits, bumps, and loss of support from external objects. Many
causes such as incorrect transfer of body weight, responsible for 41% of falls, do not provide
obvious changes to the environment which sta↵ could address. Continued data collection
from this group appears to be in progress [79]. Only one other study conducting video review
of falls appears to exist [34] but has significantly smaller sample size and is also based on
pre-existing cameras with no feedback to sta↵.
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Figure 5.1: Equipment. IP cameras were placed in all common areas and approved private
rooms. Video was transmitted from the cameras to the network attached storage (NAS)
via Wi-Fi where it was maintained locally for 72 hours after which it was transmitted to
a remote server for archiving. Live video and video from the previous 72 hours were made
available to facility management via smartphone applications.

5.3 Materials and Methods

Equipment

Figure 1 shows the o↵-the-shelf video recording equipment used. Cameras were placed in
all common areas and private rooms of consenting residents and families in accordance with
the privacy guidelines described below. Camera video was transmitted using Wi-Fi to local
network attached storage (NAS) devices. Facility Wi-Fi coverage was upgraded using o↵-
the-shelf routers and range extenders to remove Wi-Fi dead zones. Video was maintained
on the local NAS for 72 hours before transmitting to a university server where the complete
video data set was maintained. A smartphone application was provided for viewing video
from the previous 72 hours, developed by the makers of the NAS. A smartphone application
for accessing the live video from each camera was provided, developed by the makers of
the cameras. Cameras were configured to record only on motion to filter unneeded video
and software was developed to support video transcoding and uploading from the NAS to
work around bandwidth limitations defined by the upload speed granted to the memory
care facility through their internet service provider. The specific equipment provided to the
facility included the following:

1. DLink 932L IP camera (x43),

2. QNAP 451+ network attached storage (x2),

3. Netgear AC5300 Nighthawk X8 Wifi Router (x2),



CHAPTER 5. FALL REDUCTION THROUGH VIDEO REVIEW 62

4. Netgear Nighthawk AC1900 Wifi Range Extender (x2).

Fall Review

In the first two months of the three-month study, no video review took place. The original
purpose of the study was only to collect video of falls for development of fall detection
algorithms. Thus, although video recordings from the previous 72 hours were available
to facility management, no formal review occurred. Facility management reported hardly
ever using the video feeds during this time due to the many other challenges faced with
operating a memory care facility and the little obvious value of the video. After two months,
a particularly severe fall incident was recorded. In accordance with procedures approved by
the university institutional review board, this incident was reported to facility management.
After reviewing this fall, facility management requested reviewing other significant falls.
Video was provided and facility management chose interventions which they believed would
address the causes. Interventions included movement of furniture that had caused tripping
hazards and head injuries and changes to policy that included checking on high-risk residents
every hour instead of every two hours at night. The facility did not use any devices for fall
detection before or after the incident occurred.

Privacy and Consent Procedures

Privacy and consent procedures were developed with support from the university institutional
review board. Permission was granted from facility management to place cameras in common
areas and to speak at town hall meeting to introduce the idea to families. After speaking,
interested families volunteered their contact information for follow-up discussion regarding
cameras within the private room. At the discussion, the study was explained in plain English,
and for those families who decided to participate, surrogate consent for the resident living in
the care facility was obtained following university guidelines for surrogate decision makers.
Residents were required to give assent; if they ever expressed a desire not to take part in the
study or have cameras placed in their rooms through verbal or non-verbal communication,
they were not included. Video segments defined as improper by the review board were
deleted including any video containing sexual activity, actions that could imply abuse if
taken out of context, and other incriminating behaviours. Before deleting, the dementia
care nurse on the team was responsible for determining if the matter should be taken to
facility management or to adult protective services. Following California state guidelines,
audio recording was disabled and signs were posted visibly on the door of each private room
in which video recording occurred. Before publishing video in any way, media release forms
were signed from individuals contained in the videos or from their surrogate decision makers
allowing for public release of the specific videos in question. The number of falls recorded and
resident population for each month were determined by interview with facility management.
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Figure 5.2: Fall rate. In the four months prior to video review, the fall rate at the community
was 10.5 2.5 falls per month, 79% of the national average. In the final month, 2 falls occurred,
17% of the national average.

5.4 Results

During the three-month study period from July to September, 26 falls occurred. In the two
months prior, 18 falls occurred. Overall, the rate was 10.5 2.5 falls per month before video
review, and 2 falls occurred in the month following video review. The facility supported an
average of 38 residents with a slight dip in the final month. For a facility with 38 residents,
the expected fall rate is 12.7 falls per month based on the national average of 4 falls per
month of individuals with dementia living in care facilities [17]. In the final month, the
resident population declined slightly and thus, the national average is adjusted accordingly
in Figure 2. The overall fall rate in this community was 79% of the national average for
the 4 months prior to review and 17% of the national average in the month following fall
review. Applying a one-tailed, two-sample t-test, the reduction in fall rate normalized by
the number of residents cared for at the time is statistically significant with p=0.030.
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5.5 Discussion

Although promising, these results are only preliminary. For example, in the final month 1
resident that fell four times in the previous month passed away. She fell zero times in the
month before that. As can be seen in Figure 2, deviations in the fall risk naturally occur as
some residents become greater risk before eventually passing away. If these 4 falls had been
removed, there would only have been 7 falls in the second month, the same number of falls
experienced in the month before the pilot study began. Controlling for this resident (i.e.,
removing her falls from all months), the result of the one-tailed two-sample t-test applied
to the per resident fall rate drops to p=0.058, no longer significant at the often-used 0.05
threshold. Moreover, this t-test requires the assumption that the variance in the fall rate
is the same before and after the introduction of video review. With only one sample data
point, there is no evidence to support this assumption. Clearly, more data is needed validate
that the fall rate in managed care facilities can be reduced through interactive video review
of falls.

5.6 Conclusions

If verified, the impact of these results could be tremendous. Based on feedback from the
families, the reduction from 10.5 falls per month to 2 falls in the final month is equivalent to
approximately $20k in savings in emergency room visits alone both for the families and for
Medicare. More importantly, any one of these falls could have led to serious fracture, severe
loss in mobility, significantly decreased quality of life, and significantly increased cost of care.
Given that Alzheimers disease is the most expensive disease in the US, and fall accidents
are the leading cause of hospitalization in Alzheimers care, this simple intervention may be
the first steps toward a big impact. Based on this preliminary result, the operators of this
care community have agreed to expand the study to 10-20 more facilities in California. In
this next phase, we will deploy the same system, conduct video review after the first month,
and observe if a statistically significant reduction in the fall rate occurs.
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Chapter 6

Conclusions

6.1 Review of Project Report

In this project report we discuss 4 projects spanning a total of 2.5 years. We begin by
discussing in Chapter 1 the relevant open problems in the dementia research community
that could be supported by the development of new technologies. In the following 4 chapters
we discuss several applications of machine learning and commercially available sensing to
develop a new technologies for the Alzheimer’s research community.

We first discuss the search for methods of curing, mitigating, or delaying the e↵ects
of Alzheimer’s disease. Relevant research in this area includes monitoring the e↵ects of
diet, exercise, cognitive stimulation, and related factors on disease progression. To support
this research area, in Chapter 2, we present the design and implementation of a wearable
system called Max for collecting fine-grained measurements from environmental sensors and
to perform analysis of this data for trends and anomalies. With this system, we hope to
provide the Alzheimer’s research community with the proper tools to perform functional
monitoring of individual patients, to study how the e↵ects of potential mitigating factors
influence patients on an individual as opposed to a population level, and to perform new
studies on how non-invasive home monitoring could be performed to recognize risks factors for
conditions like urinary tract infections before they escalate into emergency room visits. The
Max system is currently deployed with 18 individuals living in private homes and monitored
by the the University of Nebraska Medical Center as part of the Dementia Care Ecosystem
with data collection ongoing at the time this project report was submitted.

We next discuss the di�culty with accurately diagnosing Alzheimer’s disease and related
dementias. Since typical clinical diagnosis only provides accuracy near 75% for Alzheimer’s
disease, a focus here is on identifying biomarkers which are particularly indicative of a par-
ticular disease type. The ideal biomarker would be obtainable non-invasively and would
identify both the disease and the stage of the disease. The most relevant biomarker for
Alzheimer’s disease involves measuring the concentration of molecules deriving from the
characteristic amyloid-� in cerebral spinal fluid. In Chapter 3, we discuss another possible
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biomarker which involves performing computational assessment of the speech patterns. We
show that 92% accuracy can be achieved in matching an existing diagnosis for individuals
with dementia based on one short conversation based on traditional machine learning ap-
proaches. Unfortunately, practical circumstances limit the scope of this study within the
project report. Specifically, the much more interesting results require the collection of exten-
sive longitudinal data which is not feasible within the scope of this project report – showing
that the final clinical diagnosis performed from post-mortem histology can be determined
with accuracies matching that of a human expert or that a screening tool for early diagnosis
could be developed with high sensitivity based on a smartphone app alone.

We finally discuss how care could be improved for those currently living with Alzheimer’s
disease and related dementias, paying particular attention to improving the quality of care
and reducing the cost. This is a major research focus within the public health community
since Alzheimer’s disease is currently the most expensive disease in the US and the number
of a↵ected individuals is continuing to rise at an ever-increasing rate [2]. In Chapters 4 and
5, we explore how existing methods in computer vision can be applied to fall detection and
prevention. As discussed, since falls are the greatest cause of hospitalization in Alzheimer’s
care and 3 in 4 fallers experience repeat falls [50], it seems that a technology capable of
both detecting falls and showing caregivers how falls are occurring could provide significant
benefits. In Chapter 4, we show that the technology is possible by applying existing domain
adaptation techniques to a dataset of 200 falls acted out by healthy individuals. In this
dataset, we show 92% precision and 86% recall in daylight recordings – comparable with
results from wearable fall detection systems [6]. Given the deep-learning paradigm, the
practical challenge in this case appears to arise from the shortage of data containing true
falls collected with IR night-vision sensors. By applying the same techniques to a su�ciently
large database of true falls, it appears technically feasible to perform fall detection with high
accuracy from video. In Chapter 5, we study practical concerns with placing video cameras
in memory care through one 3-month pilot study at a 40-resident memory care community in
the San Francisco Bay Area. From active reviews of falls in the community, the management
at this community reduced the fall rate by 80% during the study period. Moreover, possible
concerns around the invasion of privacy for residents and sta↵ appeared minimal given the
possible safety benefits. Although preliminary, this result appears encouraging for reducing
the fall rate in managed dementia care.

6.2 Final Conclusion: Hybrid Solutions are Required
for Practical Challenges

From this work, the key conclusion is the need for hybrid solutions when solving practical
problems given the current limitations of the machine learning methods discussed. Despite
amazing successes in artificial intelligence, the best results continue to emerge from the
application of supervised learning techniques to large datasets where clear loss functions can
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be applied (e.g., image classification on ImageNet [16]). The need for large labeled training
sets puts several limitations on the value which can be provided by fully automated systems.
This is especially true for early stage companies that are continuing to learn about the most
useful services they can provide and cannot a↵ord the long design cycles and high resource
costs required to develop large training sets.

The first type of hybrid solution is like that presented in Chapter 2 whereby a system like
the Max smartwatch system must be designed before data collection can begin. In this case,
we found that unsupervised anomaly detection methods provide the most value. Once an
anomaly is detected, a human observer can step in to determine whether or not the anomaly
actually signifies a noteworthy event. The di�culty in this case is designing a feature space
whereby anomalous events are likely to contain information which is interesting to a human
observer. For instance, in the functional monitoring case, we want to flag events where the
a↵ected individual is dramatically less active, but we do not want to flag every time she
visits a new GPS location. Hence, anomaly detection algorithms are performed on the total
Euclidean distance traveled in a given day, not on the raw GPS data itself.

The second type of hybrid solution is similar to the first but based on a semi-supervised
instead of unsupervised approach. For instance, in Chapters 4 and 5, a system is discussed
for detecting falls automatically, but evaluation of what caused the fall is left to a human
observer. Thus, a more simple problem is posed which can fit within the current limitations
of the computational methods, but reasoning about cause and e↵ect is left to a human
expert. This approach appears particularly fruitful in situations such as the fall detection
problem where substantial benefit could be provided by a human expert reviewing all of the
data, but without the use of computational detection, this review would not be practically
feasible due to the volume of data collected. Another example of this is the screening tool
for Alzheimer’s disease based on speech discussed in Chapter 3.

The final type of hybrid solution is like that posed at the end of Chapter 3 whereby a
highly accurate Alzheimer’s detection system could be developed by implementing a system
where human experts and trained computational models work side-by-side. In this type of
system, the human is able to detect features which can be di�cult for the computational
model to discover such as di�culty responding to subtle social cues and the model is able to
detect features which are di�cult for the human to track such as changes in the frequency
with which the a↵ected individual uses the word ’you’ over time. Although untested here,
it would be very interesting to build a joint model to classify a↵ected individuals based on
the features and weights chosen both by a human expert and trained computational model.
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