
Improving Cloud Security using Secure Enclaves

Jethro Beekman

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-219
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-219.html

December 22, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission.

Improving Cloud Security using Secure Enclaves

by

Jethro Gideon Beekman

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering – Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor David Wagner, Chair
John Louis Manferdelli

Assistant Professor Raluca Ada Popa
Associate Professor Deirdre Kathleen Mulligan

Fall 2016

Improving Cloud Security using Secure Enclaves

Copyright 2016
by

Jethro Gideon Beekman

1

Abstract

Improving Cloud Security using Secure Enclaves

by

Jethro Gideon Beekman

Doctor of Philosophy in Engineering – Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor David Wagner, Chair

Internet services can provide a wealth of functionality, yet their usage raises privacy, security
and integrity concerns for users. This is caused by a lack of guarantees about what is
happening on the server side. As a worst case scenario, the service might be subjected to an
insider attack.

This dissertation describes the unalterable secure service concept for trustworthy cloud
computing. Secure services are a powerful abstraction that enables viewing the cloud as a
true extension of local computing resources. Secure services combine the security benefits
one gets locally with the manageability and availability of the distributed cloud.

Secure services are implemented using secure enclaves. Remote attestation of the server is
used to obtain guarantees about the programming of the service. This dissertation addresses
concerns related to using secure enclaves such as providing data freshness and distributing
identity information. Certificate Transparency is augmented to distribute information about
which services exist and what they do. All combined, this creates a platform that allows
legacy clients to obtain security guarantees about Internet services.

i

K. has seen for himself that the court officials, including some who are quite
high up, come forward without being asked, are glad to give information which
is fully open or at least easy to understand, they discuss the next stages in the
proceedings, in fact in some cases they can be won over and are quite willing to
adopt the other person’s point of view. However, when this happens, you should
never trust them too far, as however firmly they may have declared this new point
of view in favour of the defendant they might well go straight back to their offices
and write a report for the court that says just the opposite.

— Franz Kafka, The Trial

ii

Contents

Contents ii

List of Figures iv

List of Tables v

1 Introduction 1

2 Background and related work 4
2.1 Trustworthy computing . 4
2.2 Verifiable cloud services . 5
2.3 Secure Enclaves . 6
2.4 Intel Software Guard Extensions . 8
2.5 Rollback protection . 9
2.6 Services with untrusted servers . 10
2.7 Certificate Transparency . 11

3 Secure services 12
3.1 Threat model . 12
3.2 Overview . 13
3.3 Interface . 13
3.4 High-level design . 16
3.5 Implementation . 18
3.6 Possible applications . 19

4 Rollback protection (Hugo) 21
4.1 Overview . 23
4.2 Design of Hugo . 25
4.3 Obliviousness . 31
4.4 Counter backends . 33
4.5 Evaluation . 35

5 Attestation Transparency 39

iii

5.1 Overview . 39
5.2 Client verification of secure services . 42
5.3 Attestation Transparency . 43
5.4 Incremental deployment — logs . 43
5.5 Validating enclave identities . 45
5.6 Enclave policies . 46
5.7 Incremental deployment — clients . 48

6 Discussion and open research questions 49
6.1 Limitations . 49
6.2 Adoption . 50

7 Conclusion 52

Bibliography 54

Glossary 60

iv

List of Figures

3.1 Secure service threat model. The shaded areas may be controlled by the adversary. 12
3.2 Secure service architecture. The shaded blocks are not trusted. 14
3.3 Key management and setup procedure for a secure service. 17

4.1 Architectural diagram showing how Hugo is incorporated into existing applications. 24
4.2 Collect-commit pipeline with two types of request shown. 29
4.3 Dependency graph between various variables in Trace 4. 33
4.4 Latency of requests for different configurations. 38
4.5 Throughput of requests for different implementations. 38

5.1 Overview of Attestation Transparency. 41

v

List of Tables

3.1 Secure storage types . 15
3.2 Rust types of values in different memory regions 19

4.1 Comparison of Hugo’s throughput and latency versus existing systems. 35

vi

Acknowledgments

First and foremost I wish to thank John Manferdelli for de facto being my academic advisor.
Without John, the work in this dissertation might very well have never existed.

I also wish to thank David Wagner for making this arrangement possible, and for seem-
ingly having previously already looked at every single computer security subject I’m inter-
ested in. Thanks to Raluca Ada Popa for our brief but effective collaboration and thanks to
Elad Alon for supporting me while I figured out what I wanted to do in graduate school.

Thanks to all my colleagues at U.C. Berkeley for the many interesting and insightful
discussions about computer security, the Internet and the world. I also wish to thank Angie
and the rest of the support staff at the Electrical Engineering and Computer Sciences de-
partment.

And finally, thanks to my parents for advising me in everything I do and to my brother
and sister for being awesome.

1

Chapter 1

Introduction

End users increasingly perform important computing activities online in the cloud. This
is convenient for them but the guarantees they get about those activities are significantly
reduced from an ideal local computing model where applications are run on trusted machines,
inaccessible to adversaries, using software installed and maintained by knowledgeable trusted
personnel known to the end user. On well-managed local machines, users can be confident
that the software they use is the version they expect, with known behavior and mechanisms to
prevent unauthenticated access to their data and unauthorized modification to the software
itself.

Cloud services typically do not provide similar guarantees, which raises privacy, security
and integrity concerns [17, 34]. Who will have access to my data, intentionally or uninten-
tionally? Will the service continue to work properly tomorrow? Can the service read my
data and use it for purposes I didn’t have in mind? Will my data still exist in the same form
tomorrow? Could a malicious system administrator at the service read or modify my data?
If a system administrator’s credentials are breached, could an attacker gain access to my
data? For current Internet services, the answers to these questions are often unsatisfying.

On the other hand, cloud services provide many benefits that local users don’t get. Cloud
services provide availability through redundancy and replication and they remove the burden
of maintenance from the user. In addition, the sheer number of available services seems to
be surpassing the number of applications available locally.

The ideas presented in this dissertation aim to combine benefits from the cloud-based
service model with some of the guarantees with which local computer users are familiar.
These ideas will help us move towards the ultimate goal of trustworthy cloud computing:

trustworthy cloud computing

being able to outsource computational needs while maintaining the privacy and
integrity of both data and computation

CHAPTER 1. INTRODUCTION 2

A core component we use to reason about and validate our ideas is the unalterable secure
service (or just secure service). These services can be secure replacements for any component
in a service-oriented architecture [48]. Such a service must provide the following three security
properties:

S1. Handle user data securely. Data security is defined in terms of three sub-properties
privacy, integrity, and freshness. This is a key property necessary for users to gain
trust in cloud computing, for it is exactly these properties users rely on when using
local computing for security reasons.

a. Privacy. Unauthorized parties must not be able to learn bits of information that
are being handled or stored by the secure service.

b. Integrity. Unauthorized parties must not be able to tamper with information that
is being handled or stored by the secure service, nor must they be able to influence
the result of any computation being done by the secure service.

c. Freshness. Unauthorized parties must not be able to present an unmodified his-
toric set of then-actual information as current through the secure service.

S2. Protect against insider attacks. Even an insider must not be able to break any of
the other defined security properties. For instance, the insider might be a malicious
system administrator, a system operator whose credentials have been compromised, or
even a government order that compels the service to provide access to user data [23].
Of course insider attacks can occur in the local computing model. However, in that
scenario physical and virtual local access is controlled by the same party controlling
the computation.

S3. Service operation verifiable by clients. A client of a secure service must be able to verify
the correct operation of the service and its adherence to these security properties. If
it can’t, the system would be vulnerable to imposter attacks, where the service looks
legitimate but in fact is an insecure version of the same service.

A more detailed threat model under which these properties must hold is described in §3.1.
In addition to those security properties, a platform built to support secure services must be
practical in order to be adopted by the industry. Therefore we set the following three
practicality goals:

P1. Practical performance. The orders of magnitude of slowdown for cryptographically se-
cure computation [71] or oblivious computation [43] are not going to lead to widespread
adoption of those schemes in the near future. We set out to achieve minimal perfor-
mance loss compared to an insecure baseline.

P2. Incremental deployment with legacy client support. Worldwide technologies that require
immediate adoption by a large number of parties to be useful are unlikely to be adopted
at all. We aim to design a system with immediate benefits for its users without putting

CHAPTER 1. INTRODUCTION 3

additional requirements on other users or services. Additionally, users of secure services
shouldn’t need to change any client software to enjoy most of the security benefits
conferred by our platform.

P3. Support for software updates. It’s an inconvenience of life that software will need to be
updated. Even though we describe our services as unalterable, they must be able to
have their software updated as well, while maintaining all security properties in the
process. It shouldn’t be possible to update the service software to a version that is less
secure.

This dissertation describes how to use secure enclaves to build secure services that have
these properties and meet these goals. Secure enclaves (§2.3) are a trusted computing prim-
itive providing fully isolated execution, sealing and remote attestation. While we evaluate
our concept with Intel SGX [46] in mind, everything can be generalized to fit the generic
idea of a secure enclave.

Essentially, a secure service (§3) is a TLS server running inside a secure enclave hosted in
the cloud. By terminating the TLS secure channel inside the enclave, security is guaranteed.
The application protocol can be any suitable protocol for Internet services, such as HTTP
REST or IMAP, and possible application are discussed in §3.6.

Persistent state stored by untrusted third parties on behalf of secure enclaves can be
subject to rollback attacks. We identify shortcomings in current rollback protection mecha-
nisms, especially when trying to combine them with long-running services. We introduce a
rollback budget to enable a trade-off between security and performance and implement it in
Hugo (§4).

Using transparency of code, we both enable the ability to update secure services as well
as confer security benefits to legacy clients. Attestations can bind code identities to crypto-
graphic keys, and making them publicly available through public logs will allow anyone to
audit code identities on behalf of others such as legacy clients. Attestation Transparency (§5)
also enables detection of software updates, which deters service providers from implementing
insecure updates.

This dissertation would not have been possible without several recent advancements
in security technologies upon which this work builds. The next chapter discusses those
technologies.

4

Chapter 2

Background and related work

2.1 Trustworthy computing

Bill Gates defined trustworthy computing in 2002 [24] as “computing that is as available,
reliable and secure as electricity, water services and telephony.” A lot of research before and
after that internal company memo has aimed to achieve that goal.

An early line of research strove to verify the integrity of a known system stack. This
was important since malicious or unreliable system software would certainly prevent the
secure operation of even well written applications which were themselves safe. The AEGIS
system [5] proposed verifying the entire stack by having a chain of integrity checks where
each step in the boot process verifies the next before proceeding. This work has been
extended to protect other critical software like BIOS code which, if corrupted, presents the
application developer with insurmountable barriers for safe operations. Parno et al. provide
an overview [49] of the relevant techniques and research in this area.

Wobber et al. describe how in the Taos operating system they treat code (represented,
say, as a cryptographic hash) as a first class security principal which can be authenti-
cated [68]. This enabled distributed programs to establish an authentication and autho-
rization model that was as rich and reliable as that for a single program running in batch
mode on a single machine. It is not always desirable to attest directly to code principals,
as software can change frequently and can exist in many different configurations. Property-
based attestation [16] aimed to solve this by using properties of software, instead of the
software itself, as security principals.

Since secure distributed computing relied on increasingly well studied and accepted cryp-
tographic mechanisms, researchers sought a key management mechanism that allowed re-
mote verification of program identity and isolation properties of program elements running
on widely dispersed machines. Trusted computing primitives combining a discrete security
chip [63] coupled with processor features [31] provided the necessary underlying capabilities.
Brannock et al. propose a Secure Execution Environment [12] with properties similar to our
secure enclave.

CHAPTER 2. BACKGROUND AND RELATED WORK 5

Researchers recognizing that even with the foregoing advances, large TCBs made security
difficult to assure and maintain and thus attempted to minimize the footprint to help ensure
that security guarantees could be credibly met. Protected module architectures (PMAs) have
pioneered the way towards TCB minimization in trusted computing. Many of the ideas apply
directly to secure enclaves.

Nizza [28] provides the ability to run “secure applications” on top of a small TCB along-
side a regular OS. This is achieved through judicious use of isolation and privilege separation
using an L4 microkernel. While this provides good security, there is no hardware root-of-trust
and operation can not be verified.

Flicker [45] emphasized application of the Trusted Computing primitives on small services
within an application isolating them from the rest of the application and the operating
system, providing a PMA abstraction on x86 platforms. For example, Flicker enclaves were
well suited as a virtual Hardware Security Module or as an authentication enclave that used
a long term secret; the security model ensured that the OS, other applications and other
portions of the same application could not get private key material. However, it was shown
that Intel Trusted Execution Technology, which Flicker is based on, is not secure [69].

Various other systems were proposed to marry cloud computing with trusted comput-
ing, such as Self-service Cloud Computing [13], Cryptography-as-a-Service [10], and My-
Cloud [42]. These systems focused on providing trust in the cloud hypervisor to a customer
of the cloud service provider, not on providing trust of Internet services to users of those
services.

SGX [30] employed specialized hardware for this same purpose and also encrypted enclave
memory in DRAM thus protecting from an adversary with system bus access. Several recent
works employ SGX to protect cloud service components. Haven [6] employed SGX to run
MS SQL Server entirely in a secure enclave. Clients of that database server could benefit
from the Attestation Transparency Framework to verify the server they’re connecting to.
VC3 [55] implements secure MapReduce operations for the Hadoop distributed computation
platform using SGX.

2.2 Verifiable cloud services

While PMA designs have focused on TCB minimization, others have researched building
systems that allow verifiable operation of services in the cloud.

Hawblitzel et al. propose a system using Ironclad Apps [26] for secure remote computa-
tions by formally verifying the entire server stack.

CloudProxy [44] provides a layered abstraction for trusted computing primitives. While
not providing the same isolation guarantees as secure enclaves it does provide sealing and
attestation primitives. It provides hierarchical attestation from the hardware root-of-trust at
boot, to the operating system and from there to individual applications. This allows clients
to verify the proper functioning of functioning of services run on this platform.

CHAPTER 2. BACKGROUND AND RELATED WORK 6

Haven [6] was the first to propose running an entire service inside an enclave. Haven
employs a Windows-based unikernel capable of running inside Intel SGX, and runs Microsoft
SQL Server or Apache on top of that. TCB minimization was not a goal of Haven, and it
includes hundreds of megabytes of binaries in its TCB.

2.3 Secure Enclaves

We define a secure enclave as (a) an isolated process, executed on a platform that provides
confidentiality and integrity of code and data as well as (b) sealing and (c) attestation.
In general, these technologies allow initializing an isolated and perhaps encrypted block of
memory with a known program. Access to application memory is restricted by hardware
and external access to the software is similarly restricted to identified entry points into the
code. The software loaded in an enclave is also measured1, allowing the hardware to attest
to another party that the expected software was properly loaded and initialized and that
the enclave software is isolated from other software running on the computer. The platform
also provides a way to encrypt data so that the encrypted data can only be decrypted by
this particular instance of the code running on this particular hardware. Different tech-
nologies provide such secure enclaves, including Intel SGX [46, 4], AMD Secure Encrypted
Virtualization [35], IBM SecureBlue++ [11], TPM-based Flicker [45], and perhaps ARM
Trustzone [67]. Our design builds on these general concepts and is not tied to any particular
platform.

Fully isolated execution

Isolated execution of a process restricts access to a subset of memory to that particular
process or enclave. No other process on the same processor, not even the operating system,
hypervisor, or system management module, can access that memory. Additional security
measures may be provided by the platform such as memory encryption or a separate memory
bank used solely for secure enclaves. Generally, as part of the isolated execution, the enclaves
have no or limited access to the I/O system. This isolation dramatically reduces the Trusted
Computing Base (TCB) for the enclave, which comprises only the enclave code itself and the
secure enclave platform. This is a break from the traditional hierarchical kernel–userspace
privilege model, in which the entire operating system kernel is generally considered to be
part of the TCB of a user process.

Sealing

Sealing is the authenticated encryption of data with an encryption key based on the identity
of the enclave and the platform it is running on. The enclave’s identity (Ienclave) could for

1A measurement is typically a cryptographic hash of the software as loaded together with any configu-
ration information which may affect the software behavior.

CHAPTER 2. BACKGROUND AND RELATED WORK 7

example be a hash of its binary as it was loaded into memory and that of the platform could
be a unique identifier embedded in the processor hardware. This provides secure enclaves
with the ability to have other parties, such as the operating system, store information securely
on behalf of the enclave. No process other than the exact same enclave running on the same
physical processor will be able to decrypt such data.

Sealing, or more generally, encryption is important for secure enclaves since the secure
enclave concept does not include secure persistent storage. This is generally solved by using
an untrusted persistent store and storing data only in encrypted form. This provides a form
of secure persistent storage.

Define authenticated encryption for a key K, message m, and ciphertext c as

c = E(K,m)

m = D(K, c).

Similarly, define sealing and unsealing for a message m and sealed text s as

s = Eseal(m)

m = Dseal(s).

Remote attestation

Remote attestation is the ability to prove to third parties that you are running a secure
enclave with a particular identity securely on your hardware. The mechanism allows software
to make statements that can be verified remotely by communicating parties, using attested
statements. When talking about secure enclaves, some hardware-based root of trust, H,
will attest that it is running a program with identity (measurement) I. In order for such a
program to communicate with the outside world securely, it will need an encryption key K,
and a way to securely announce to the outside world that it controls that key. Attestation
provides such a mechanism: the hardware makes a statement of the form2

A(I,K) = � H says “H runs I which says [K speaks for I]”� .

Platforms providing secure enclaves often provide ways for an entity I1 to endorse a
particular program with identity I2. For example, I1 might cryptographically sign I2, and
this signature can be verified as part of loading I2. Such an attestation is of the form

A(I1 : I2, K) =� H says “H runs I2 which says [K

speaks for I2]” and “I1 endorses I2”� .

2Following the Taos language [68].

CHAPTER 2. BACKGROUND AND RELATED WORK 8

If the platform can not verify the endorsement itself, a similar statement can still be formed
by including the endorsement directly, as in

A(I1 : I2, K) =� H says “H runs I2 which says [K speaks for

I2]”� and � I1 says “I1 endorses I2”� .

If an enclave depends on other enclaves for its security guarantees, attestation can be
performed transitively. Take for example an enclave B that relies on an enclave A and a
party C requests an attestation of B. In a prior initialization phase, B will have requested an
attestation of A and verified it. Because this initialization and verification is “hard-coded”
in B, it is part of B’s identity. C can therefore be assured that when the attestation of B
verifies correctly, A was also properly attested to.

2.4 Intel Software Guard Extensions

Intel Software Guard Extensions (SGX) [46, 4, 27, 30] are a recent hardware technology
and instruction set extension providing secure enclaves. A special set of instructions can
measure and encrypt a memory region before transferring execution control to it. The trusted
computing base of SGX-based secure enclaves encompasses only the processor hardware, its
microcode and firmware, and the enclave image itself. In particular, a hypervisor or operating
system is not part of the TCB. Data stored in memory regions belonging to the enclave is
encrypted before it leaves the processor, so that the memory bus is also not part of the
TCB. The security of this system is predicated on the correct functioning of the processor
hardware and the SGX instruction set.

The processor effectively adds an additional privilege level enclave mode, which is both
more and less privileged than other privilege levels such as user mode and kernel mode. Each
enclave has its own enclave mode address space, and the processor maintains its integrity.
Enclaves are associated with a particular user process’s address space and additionally have
access to all process user memory. The process when running in user mode does not have
access to enclave memory. Also, unlike regular user memory, the kernel has no access to the
enclave memory, which is also enforced by the processor.

Attestation

SGX-enabled hardware can generate reports : integrity-protected statements about the en-
clave generated by the hardware

Reportlocal = MAC (Ienclave‖Isigner‖Duser) .

The MAC key is different for each processor and private to the enclave that requested
the report—only that enclave on the same processor can verify the report. Ienclave is the
measurement of the code of the enclave the report is generated of and Isigner is the public

CHAPTER 2. BACKGROUND AND RELATED WORK 9

key that was used to sign that enclave before loading it. Duser is an arbitrary value that can
be specified by the enclave when requesting the attestation report. This can be used to bind
data to the attestation.

A special secure enclave provided by Intel, called the quoting enclave, can replace the
MAC with a signature

Reportremote = Sign (Ienclave‖Isigner‖Duser) .

The signature private key is private to the processor and cannot be used improperly or for
any purpose. The corresponding public key is made available by the vendor, and a third
party can use it to verify that the report was created by actual Intel hardware, such that

A(Isigner : Ienclave, Duser) = Reportremote.

Sealed storage

A special instruction can generate an enclave-specific sealing key. The key is derived as

Kseal = H (Ienclave‖Kdevice‖ . . .)

where Kdevice is a hardware-embedded secret unique to this device. The enclave can use this
key to encrypt data which can only be decrypted by the same enclave running the same code
on the same hardware, such that

Eseal(m) = E(Kseal,m)

Dseal(s) = D(Kseal, s).

A different key can also be derived as Kderived = H (Isigner‖Kdevice‖ . . .). This key can be
used to transfer data between enclaves running on the same hardware that were signed by
the same public key.

2.5 Rollback protection

None of the PMAs and service frameworks in the previous sections protect against rollback
attacks. However, there are schemes designed to add rollback protection to PMAs.

Memoir [50] was the first robust rollback protection system with a small TCB based
on Flicker. Memoir works by building a hash chain of every request from the initial state
to the current state. Every link in the hash chain consists of the previous hash and the
current request. The most recent hash is embedded in the most recent state, and the most
recent hash is stored securely in TPM NVRAM. This provides rollback protection because
only the state with the current hash embedded in it will be accepted. It also provides crash
resilience because inputs can be replayed exactly to get to the right point in the the hash

CHAPTER 2. BACKGROUND AND RELATED WORK 10

chain. Because inputs and their resulting output states are strictly ordered, it is not possible
to perform concurrent operations. Memoir requires an NVRAM write for every input, or
requires putting a trusted shutdown routine and uninterruptible power supply (UPS) in the
TCB.

ICE [61] obviates the need for a UPS by basically building one into the trusted hardware.
The trusted hardware will store the most recent hash in NVRAM on shutdown, whether
clean or due to a power failure. Unfortunately, such functionality is not currently available
in commodity hardware.

Ariadne [62] implements many of the same concepts as Memoir, except it uses a mono-
tonic counter instead of storing a hash. For every input, the input and the previous state
are stored together with the next value of the counter. Then the counter is incremented
and computation proceeds. The monotonic counter is provided securely by a TPM. This
provides rollback protection because only the state with the current counter value in it will
be accepted. It also provides crash resilience because inputs can be replayed exactly to rerun
a crashed computation and obtain its output. Concurrency is not supported for the same
reasons as Memoir, and a TPM counter increase is required for every input.

2.6 Services with untrusted servers

Consistency schemes without the need for trusted hardware while providing guarantees sim-
ilar to, but weaker than, full rollback protection have been proposed.

Secure Untrusted Data Repository (SUNDR) [41] is specifically designed to work with
data coming from multiple trusted users. SUNDR provides a guarantee called fork consis-
tency. Users must either see the same state, or a fork of a previous state. A fork can never
incorporated changes from another fork without being detected. A dishonest server must
maintain the fork forever and this could be detected out-of-band by different clients.

Caelus [37] provides consistency guarantees for an untrusted service to at least one trusted
client. It does so by keeping a history of all operations performed and periodically attesting
to this history. Clients will be able to detect inconsistencies after one such attestation period
by checking whether its operations have been recorded properly.

Verena [36] is a web application framework that provides end-to-end integrity guarantees
against a compromised web server including rollback protection. It achieves the latter prop-
erty by storing hashes securely at a separate hash server, and updating them upon every
user modification. Verena assumes that the hash server and the main server on which the
application runs are mutually distrustful. As such, Verena is susceptible to software attacks
to the hash server and does not provide crash resilience or concurrency. Moreover, it is not
clear that Verena integrates well with obliviousness.

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.7 Certificate Transparency

Attacks on PKI [1] threatened the trustworthiness of co-dependent services which can benefit
from the execution flexibility of cloud computing and the vast quantity of community curated
data. This prompted the development of the Certificate Transparency (CT) framework [38]
to highlight misissued certificates. As the name implies, it aims to provide transparency to
the issuance of TLS certificates. CT makes all legitimate TLS certificates a matter of public
record, making it trivial to identify misissued certificates. The framework consists of several
parts.

Public append-only logs A CT log server maintains a log of all certificates submitted to
it. The log is structured as a Merkle tree which allows efficient verification of additions
to the log. When submitting a certificate to the log server, the server will return a
Signed Certificate Timestamp (SCT). The SCT is a promise that the server will include
the certificate in the log within a certain time limit, the maximum merge delay. The
SCT can be used as proof to other parties that a certificate is part of the public record.

Monitors A monitor watches one or more CT log servers for suspicious changes. For
example, a domain owner might know that all its certificates are issued by a particular
CA. If a certificate for their domain issued by a different CA appears in a log, the
monitor raises an alarm. The administrator can then act upon that alarm, e.g., by
demanding the revocation of the phony certificate.

Auditors An auditor watches one or more CT log servers for consistency. It checks that
the Merkle tree is updated consistently and that certificates are included as promised
by SCTs. If it detects any inconsistency, it raises an alarm. The CT log owner will
then need to explain the discrepancy or risk being shut down.

Browsers Once the CT framework is fully operational, TLS clients such as browsers can
demand proof from TLS servers that the server’s certificate appears in a log. TLS
servers can provide this proof in the form of SCTs. If a certificate does not appear in
the logs, that is suspicious, and the client can choose to abort the connection attempt.

12

Chapter 3

Secure services

We want application service providers on the Internet to be able to host secure services.
These services must be able to store and handle user data securely. By secure, we mean that
the data’s confidentiality and integrity is preserved, in the face of attacks within the scope
of the threat model set forth below, which includes insider attacks.

This chapter presents the architecture we use to implement unalterable secure services.
Unalterable here means that the functionality of the service cannot be changed. This allows
a client of the service to view the service as an extension of the client itself and not just a
third-party program subject to the whims of another entity.

Our architecture runs services inside a secure enclave as well as to encourage secure
software development. To reduce the attack surface, the architecture presents a limited
interface to the programmer that should be sufficient for Internet services, and the interface
is implemented in a memory-safe and type-safe language, Rust [53].

3.1 Threat model

We assume the server hosting the service uses some secure enclave technology that prevents
the adversary from accessing the code and data running in the enclave. We allow adversaries
all the capabilities of an active network attacker as well as full control over non-enclave

User

Client Internet

Server

Secure
enclave

Admin

Figure 3.1: Secure service threat model. The shaded areas may be controlled by the adver-
sary.

CHAPTER 3. SECURE SERVICES 13

software running on the computer hosting the service (e.g., for SGX enclaves, this includes
control over the operating system). For instance, an insider might add malicious software,
or service provider personnel might accidentally misconfigure the service; these are included
in the threat model. The adversary also has the ability to run its own servers mimicking real
services. We assume the user’s client is secure and cannot be tampered with. The threat
model is depicted in Figure 3.1.

We consider availability out of scope. A cloud provider will have a strong economic
incentive not to deny service. However, if a malicious insider wishes to destroy all user data
or deny access to the service, they can do so.

3.2 Overview

The basic idea is to run all of the service code—including TLS session establishment, request
handling, and storage—in an enclave on the server. This provides isolation and ensures that
even insiders on the server cannot tamper with the running code or memory of the service.
Also, we use sealed storage to prevent malicious insiders from reading or modifying data
stored by the service on persistent storage: effectively, all data is encrypted before it leaves
the enclave.

The user connects to the server, using TLS to establish a secure channel between the
client and server. We use remote attestation to allow the user to verify what code is running
in the enclave: secure hardware on the server provides a signed statement indicating what
code has been loaded into the enclave. A fully attestation-aware client would then use this
attestation to verify that the server is running the expected code.

Conveniently, the TLS protocol is widely supported and provides a secure channel to
the server, while verifying the authenticity of that server. This means legacy clients will
have no trouble connecting to the server. As is usual for TLS, the client checks that the
server’s TLS certificate is valid and authenticates the server using the public key found in
this certificate. Our system extends the guarantees provided by this authentication step by
further constraining the use of the private key.

In particular, a secure service runs inside a secure enclave and it will generate its TLS
private key there. The TLS private key will never leave the enclave in unencrypted form; it
is stored using sealed storage, so that only the enclave can retrieve it. Thus, even insiders
cannot learn the service’s TLS private key.

In our architecture (Figure 3.2), only the CPU and the code inside the secure enclave are
trusted.

3.3 Interface

The secure enclave has no input/output capabilities and relies on an untrusted driver for
(insecure) access to the outside world. The untrusted driver is part of the host operating

CHAPTER 3. SECURE SERVICES 14

Untrusted
driver

Enclave
library

Application
code

Secure enclave

Operating system

CPUStorageNetwork

Figure 3.2: Secure service architecture. The shaded blocks are not trusted.

system and provides persistent storage (e.g., via C Standard I/O Streams), networking (e.g.,
via BSD sockets), and inter-process communication (e.g., via stdin/stdout/stderr). On top
of this, the secure enclave library implements encrypted networking using TLS (e.g., using a
standard TLS library), encrypted and sealed storage, attestation, and IPC. It is these features
that are exposed to the application code. Software developers use these secure primitives to
write their secure service. The secure enclave library and application code together form the
secure enclave.

Secure networking
interface SecureClient

static fn connect(address : string)→ stream

static fn connect enclave(address : string, attester : Attester, id : blob)→ stream

interface SecureServer

static fn listen(channel : int, key : Key)→ SecureServer

fn accept()→ stream

fn accept enclave(attester : Attester)→ (blob, stream)

Secure networking is provided using TLS. The secure client interface allows connecting to
an Internet address using TLS and verifying the connection using default methods (per RFC
5280 [18] and RFC 6125 [54]). There is also an option to connect to another secure service
running in an enclave and have it attest to the secure channel parameters. The client will
then verify that the attestation is valid and matches the expected server enclave identity.

The secure server interface will listen on a specified port and accept TLS connections
from clients. This is the main communication mechanism for a service using our architecture.
There is also an option to accept connections from clients that are themselves running in an
enclave and have that client identify itself and attest to the secure channel parameters.

CHAPTER 3. SECURE SERVICES 15

Secure storage
interface SecureStorage

static fn sealed()→ SecureStorage

static fn keyed(id : string, key : blob)→ SecureStorage

static fn keyed sealed(id : string, key : blob)→ SecureStorage

fn read(name : string)→ blob

fn write(name : string, value : blob)

fn delete(name : string)→ bool

fn list()→ string[]

fn exist(name : string)→ bool

The secure storage interface allows the application to store persistent data safely. The
interface provides access to different data objects identified by their name or path, while
using an encrypted storage backend. There are three possible keying schemes for encrypting
the data before storage: using the sealing key, a user key, or both (encrypted with a user key,
then sealed). The different schemes have different benefits as shown in Table 3.1. In case of

Table 3.1: Secure storage types

Benefit Sealed Keyed Both
Protect against blanket access after breach X X
Protect against offline attack versus weak user key X X
Recover data after hardware failure X

a breach—e.g., due to a faulty update (see §5.5), or a code bug—using sealing only, in its
simplest form, is inadequate. Further, sealing—in its simplest form—is hardware-dependent
and any sealed data is lost after a hardware failure. Using a per-user key based on the user’s
password enables password-guessing attacks if the password is weak. This is of particular
concern since in addition to online attacks via the normal service authentication mechanism
that all Internet services have to deal with, in our model an adversary can perform offline
attacks on the stored data.

Asymmetric cryptography
interface Key

static fn new()→ Key

static fn deserialize(data : blob)→ Key

fn serialize()→ blob

fn get certificate signing request(subject : string, attester : Attester)→ blob

fn is certificate valid()→ bool

fn set certificates(cert : blob[])

CHAPTER 3. SECURE SERVICES 16

The key interface abstracts over a public-private key pair together with a certificate chain
for that public key. A key can be constructed by generating a new one or by deserializing
a byte stream (presumably obtained from sealed storage). A new certificate signing request
can be generated for a particular subject, and an attestation can be included in the request
as well. The purpose of this is detailed in §5.3.

Remote attestation

interface Attester

static fn attest(key : blob)→ blob

static fn verify(statement : blob, id : blob)→ blob

The attestation interface allows a secure enclave to have the hardware attest to a key. It
can also verify that attested statements match a certain identity and extract the key that
was attested to.

Inter-process communication

interface IPC

static fn open()→ stream

Services may use inter-process communication, e.g., for inputting configuration data and
logging. Since this channel is not secure, no sensitive information should be logged through
this channel, and it must not be used for configuration that changes the security properties
of the service. Instead, such configuration needs to be part of the enclave measurement.

3.4 High-level design

Using the primitives defined in the previous section, we can build an unalterable secure
service. Keeping the private key K−1server of a TLS server in sealed storage and never exporting
the key outside the enclave ensures only a particular secure enclave instance can have access
to it. This means that when one establishes a TLS connection with a server that uses that
Kserver to authenticate its key exchange, the server endpoint is guaranteed to terminate inside
the enclave.

Since the private key should never exist outside the enclave, it must be generated inside
the enclave. The key setup procedure for the secure service enclave is shown in Figure 3.3.
Input and output happens through the IPC channel.

All the service’s static content (e.g., for a website, images and layout elements) must be
included in the server binary that will be measured upon enclave startup. All dynamic/user
content must be stored in secure storage.

CHAPTER 3. SECURE SERVICES 17

Begin
Valid privkey in
sealed storage?

Valid cert in
sealed storage?

Start listening
TLS server

Generate & store
private key

Output certificate
signing request

Input & store
certificate

no

yes

no

yes

Figure 3.3: Key management and setup procedure for a secure service.

Horizontal scaling

Once one instance of a service is running, another instance can connect to it and they can
both verify that they’re instances of the same program. After the verification, sensitive
information can be shared (over a secure channel established using a secure key-exchange
protocol). Any kind of distributed service can be supported this way.

Multiple enclaves

A service might consist of multiple parts, for example a database server and an application
server. The enclaves should validate each other’s identity and establish a secure channel
between the two. There are at least two secure ways to implement this.

Consider an enclave A that accepts connections from clients and provides controlled
access to information based on the client’s identity. A second enclave B wants to use enclave
A’s service and has fixed A’s identity in its loaded and measured code. Enclaves A and B
establish a secure channel and both attest to their parameters. Enclave B can verify A’s
attestation and see that the identity matches what is expected. Enclave A can verify B’s
attestation and provide B access to the information B is authorized to access.

If both enclaves must verify each other’s identity using embedded identities, there is a
chicken-and-egg problem. Since the identity of a program changes when including a different
identity, it’s not possible for both programs to have the other’s identity fixed in its code.

CHAPTER 3. SECURE SERVICES 18

Also, it’s not secure to rely upon a system administrator to sign the identities of the two
enclaves, since an insider could falsely sign the identity of a malicious enclave. One solution
is to combine multiple programs into a single one with multiple operating modes. Now the
same solution used for horizontal scaling can be applied.

Updates

When a service is updated, its persistent data will need to be updated too. Data encrypted
with a user-dependent key can be used directly by the newer version. However, since the new
service identity will be different from the previous version, all data stored in sealed storage
is lost. Sealed data will need to be moved to the new version before the old version can be
retired.

A secure channel will need to be established between the old and the new version, see
§5.5 for details on the authentication of this channel. Once the channel is established, the
old version can unseal the data in question and send it across. The new version receives the
data and immediately puts it in sealed storage. If there is too much data to be transferred
over the secure channel, instead that data should be encrypted with an enclave-generated
secret key. The key itself can then be stored in sealed storage and transferred for updates.

3.5 Implementation

Since the secure service is fully in control of all sensitive data handled by it, care must
be taken to ensure data security. The sensitive data includes at least user data and the
TLS private key. Memory safety bugs could easily lead to remote code execution inside the
enclave, thereby allowing an attacker full control over the data. Similary, concurrency bugs
can easily lead to corruption of the sensitive data. Logic bugs could lead to both information
disclosure or corruption.

To help prevent such errors, secure enclaves must be implemented using state-of-the-art
secure coding techniques. The most secure solution would be to formally verify the entire
enclave code. However, the verification of large arbitrary codebases is squarely within the
realm of academic research [22]. Secure enclave specific techniques have been developed but
verify or enforce only a limited set of properties [57, 56].

If full formal verification is not possible, using a memory-safe language is probably the
next best thing. Memory-safe languages can prevent entire classes of bugs. In addition,
such languages might prevent the creation of references to non-enclave memory on platforms
where such a thing would normally be possible. This would be an additional protection
against accidental information disclosure.

Unfortunately, most memory-safe languages require some sort of runtime. The use of
runtimes is hampered by the limited system interaction of most enclave implementations.
This makes porting most languages to run inside secure enclaves difficult.

CHAPTER 3. SECURE SERVICES 19

Rust & SGX

There is one language however which boasts memory-safety without a runtime: Rust [53].
The Rust language and compiler enforce memory-safety at compile time through static anal-
ysis. It has many other safety features as well, such as safe concurrency (preventing data
races) and first-class error handling (it’s not possible to misuse an error return value). We
built a set of tools and libraries [7, 8] to use Rust with Intel’s secure enclave implementation,
SGX. This encompasses the “enclave library” mentioned in Figure 3.2 on page 14.

Rust makes it almost trivial to implement “Information Release Confinement” [56]. By
limiting all standard memory allocations to the enclave stack and enclave heap, it isn’t
possible for a programmer to write sensitive data outside enclave memory. To communicate
data with userspace, a second heap in user memory needs to be used. Data stored on the user
heap is of a different type than that stored in enclave memory, see Table 3.2, and therefore
data can’t be accidentally used inappropriately. The developer must explicitly indicate that
they want to move data from enclave memory to the user heap or vice versa.

Table 3.2: Rust types of values in different memory regions

scalar value multiple scalars
Enclave stack T [T;n]

Enclave heap Box<T> Box<[T]>

Enclave reference &T &[T]

User heap UserBox<T> UserSlice<T>

User reference N/A N/A

Side-channel attacks and oblivious computation

Intel SGX explicitly does not aim to protect against most side-channel attacks [33]. Previous
work has shown that much information can be inferred from observing the behavior of
an SGX process from the Operating System [70]. Developers wishing to defend against
such attacks to maintain confidentiality should employ oblivious algorithms [43] or use a
secure enclave architecture that has better protections [20]. However, our library must
preserve the obliviousness of applications written using the library. This is accomplished by
avoiding secret-dependent branches in our code and using constant-time implementations of
cryptography algorithms [25, 9].

3.6 Possible applications

Browser-based cryptographic systems

One of the arguments against doing in-browser cryptography using JavaScript is its poor
auditability [39, 51]. Even if a user assures themselves of the quality of the cryptographic

CHAPTER 3. SECURE SERVICES 20

system by carefully inspecting a page’s DOM tree, there is no guarantee the server will send
you the exact same page the next time you visit it. With a secure service, a user does get
that guarantee. Because the logic for sending HTTP responses is fixed within the unalterable
secure service’s identity, a client will receive the same script every time. This in combination
with the Web Crypto API [58] brings us closer to being able to do browser-based crypto
properly and securely.

Bootstrapping secure web applications

In the web application world, many production updates are pushed out every day. Having
to go through the update process and requesting a new TLS certificate every time might
not be practical. It is not necessary, however, to include an entire website within the secure
enclave.

Instead, one can create a small core web page at a well-known URL (e.g. example.com)
that will load further web content. Even untrusted content can be included (e.g. from
not-audited.example.com) when using a technique such as HTML5 privilege separation [3].
The small core is secure and verified and provides only security functionality to the web
application, which should require infrequent changes. The untrusted part of the website can
be developed and updated frequently as normal, while not being able to cause harm because
of the privilege separation.

Including static external content, e.g. from Content Delivery Networks, is supported
securely through the recent Subresource Integrity draft [2]. Websites can include a hash
with a URL on an external resource which will be checked by the browser.

Including dynamic external content is trickier. If an external site is known to be a secure
service defined in this paper, verifying its known public key should be sufficient to ensure
the safety of loading its contents. The Subresource Integrity mechanism could be extended
to allow public key pinning on an external resource.

Encrypted e-mail storage server

An e-mail provider could run their SMTP/IMAP stack as two separate secure services. The
IMAP server, storing the user’s e-mails, will maintain an internal directory of users and
corresponding encryption keys. Only the user will have access to their e-mails which are
encrypted at rest. The SMTP server, when receiving mail for a local user, will obtain the
local public key for that user from the IMAP server and encrypt the received message before
handing it to the IMAP server for storage.

This setup provides secure encrypted e-mail storage for legacy IMAP clients including
the inability of an insider to obtain the user’s e-mails or credentials. Additionally, an SMTP
client could verify the server’s identity before submitting mail, making sure that the e-mail
will get delivered to a secure mailbox.

21

Chapter 4

Rollback protection (Hugo)

This dissertation proposed secure services which are similar to—but not quite the same as—
Protected Module Architectures (PMAs), a concept analyzed extensively in the literature [14,
28, 45]. PMAs such as Flicker are typically described as securing small part of a bigger
application. This protected module provides a request-oriented interface, taking some input
and a current state, then computing on it to produce an output and an updated state. A
PMA could for example be used to securely store a Certification Authority’s (CA) private key
for certificate signing. Secure services do not fit this model well because they are servicing
multiple requests at a time and are using and updating shared state simultaneously.

An important shortcoming of both the secure enclave and PMA models is the inability to
store state persistently within the trust boundary. A common way to solve this problem is to
use a special enclave-specific sealing key to encrypt state and have an untrusted party store
the encrypted blob. While this preserves the privacy and integrity of the state, it does not
provide freshness. The untrusted party will over time collect many different encrypted states.
When the untrusted party presents the enclave with anything but the latest state, this is
known as a rollback attack. In the example of our versioned file storage, this could emerge
as a user not seeing the latest version of a file they uploaded. Current secure enclave-based
services such as the Haven SQL Server [6] are susceptible to these attacks.

Rollback attacks have been studied in the context of PMAs [50, 61, 62], but the solutions
developed for PMAs—while secure—are not practical for long-running services. In particular,
the latency involved with updating the secure state for each request is too high and the
throughput in terms of the number of requests serviced is too low.

We present Hugo,1 a framework and programming paradigm for protecting the freshness
of persistent state for long-running services. In what follows, we discuss challenges Hugo faces
in achieving these properties and how it addresses them.

Not all inputs modify state: Existing systems [50, 62] implement strict state conti-
nuity by persistently storing every input to the PMA in a rollback-protected manner before
doing any computation. With these mechanisms you’re paying an upfront cost for every

1From the Dutch word “geheugen” (memory).

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 22

single computation. Also, if the input of the computation is large but the output is small,
this requires additional storage capacity. Storing every input is both inconvenient and un-
necessary.

It is inconvenient because TLS, the most widely used cryptographic protocol for es-
tablishing secure channels necessary to communicate with secure services, requires several
round-trips to setup such a channel. Each round-trip is a separate input to a PMA, and the
rollback protection cost has to be paid each time. Hugo considers rollback protection for
application-level requests, not low-level inputs.

It is unnecessary because not all inputs change state. For example, in a web service,
many requests are likely to just retrieve information without changing state. In Hugo,
rollback protection is applied only to state, not input.

Not all state is rollback-sensitive: Not all of the persistent state necessarily needs to
be protected against rollback attacks. We conjecture that state rollbacks are only bad when
exhausting some limited resource. Examples of such limited resources are a privacy budget
for a differentially-private database, or a number of tries to enter a password. Consider the
latter case in which a particular user has n tries left. If an adversary could try a password,
learn the outcome of the password verification, and rollback the state to when there were
n tries left, this would allow the adversary to try a virtually infinite number of passwords.
Password tries are therefore a limited resource in need of rollback protection. Examples of
things that don’t need rollback protection are for example the exact number of page views
or a login session cache. Hugo lets the developer specify which state is in need of rollback
protection, but applies rollback protection opportunistically to all state.

Opportunistic rollback protection: There is a certain overhead to rollback protec-
tion. To achieve the best performance, state should only be protected against rollbacks when
strictly necessary. Nonetheless, it’s desirable to protect all state against rollback when this
doesn’t hurt performance. To ensure rollback protection is always applied when necessary
but opportunistically applied otherwise, we introduce the notion of a rollback budget. This
budget specifies the amount of state that could potentially be rolled back by an adversary
when feigning a crash. The number password tries will have a rollback budget of 0, meaning
no state will ever be able to be rolled back.

Crash resilience: It is possible that the latest state was lost, for example, due to a
system crash. Rollback protection mechanisms must ensure crash resilience, meaning that a
crash will not leave the system in an unusable state. On the other hand, an adversary must
not be able to game the rollback protection system by feigning a crash.

Existing systems based on state continuity [50, 62] can restart computation based on the
stored input if there was a crash. Since Hugo does not store input, a different solution is
needed.

We surmise that there is enough of the previously-discussed limited resources that ex-
hausting some of the resource while having to redo the computation is not a problem in the
rare occurrence of a system crash. For example, if a user tries to login to a system, and the
system crashes just as the password is being verified, it is OK if the user has one less try for
their password without learning the outcome of the password verification.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 23

When updating state due to a request, Hugo updates the state before outputting the
result of the request. This means that in the event of a crash, the historical input can’t be
replayed to learn the result of the crashed computation. As discussed, this is acceptable. If
necessary, the same request can be submitted again when the system is back up.

Obliviousness: Secure enclaves are susceptible to various side-channel attacks [33, 70].
A common defense against such attacks is oblivious computation. Hence, it is important that
the rollback protection system neither makes unoblivious accesses nor leaks information that
the original application did not. We show that Hugo preserves this obliviousness by making
accesses that mimic the obliviousness of the application.

Concurrency: Existing systems require a strict ordering to their input and do not
support servicing multiple requests at the same time. Hugo supports concurrency trivially
for requests that do not change state. For requests that do change state, concurrency is
supported by having multiple requests coordinate the rollback budget and state changes.

Keeping trusted state: Rollback protections for PMAs rely on trusted hardware to
provide a limited amount of trusted persistent state, e.g. to store a single hash or counter.
Hugo also relies on a trusted party to keep a secure monotonic counter, but is flexible in the
choice of this party. It could for example be a trusted network service, or in some cases the
client of a service built on top of Hugo, or existing commodity hardware (TPM). However,
not all secure enclave implementations have direct access to hardware (e.g. Intel SGX). We
describe how to set up a secure channel with existing trusted hardware to ensure the proper
and secure functioning of the counter.

To summarize, we make the following three key contributions in this chapter:

• We present Hugo, a performant and concurrent rollback protection scheme designed
for long-running services. We demonstrate a versioned web-based file storage service
built using a Hugo prototype written in Rust on top of Intel SGX, achieving 2–13×
the throughput of serialized continuity schemes.

• We show how a rollback budget can provide great performance combined with oppor-
tunistic rollback protection, achieving 8–13× the throughput and 50% of the latency
of serialized continuity schemes.

• We present a flexible trusted counter backend supporting various use cases and hard-
ware, describing how to setup a secure channel with a TPM and how to leverage trust
in a client of a secure service.

4.1 Overview

Hugo provides a rollback-protected key-value store abstraction for secure enclaves. It builds
this on top of a secure monotonic counter interface and a regular revertible (untrusted) key-
value store. This is done by keeping track of the state in the entire key-value store and
linking that state to value of the monotonic counter.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 24

Threat model

The threat model for Hugo is the same as in §3.1 on page 12, except that the secure enclave
also has access to a trusted counter. The communication channel between the enclave and
the counter need not be trusted as we describe how to setup a secure channel between the
two. It is within the adversary’s capabilities to inspect, modify, and delete any and all
data stored in untrusted storage, as well as intercept, modify and block requests made to
and responses coming from storage. Likewise, it can intercept, modify and block requests
made to and responses coming from the counter. The adversary can interrupt, resume, and
terminate the execution of the secure enclave at will. The adversary can run multiple of the
same secure enclave simultaneously and replay requests and responses from each to others.

Architecture

Hugo is designed as a small program library that can be interposed in a ‘plug-in’ manner
into an existing secure enclave application, if the application was already using a key-value
store for storage. Figure 4.1 shows how Hugo connects to other components in the system.

Whenever the application writes a value to a key, Hugo updates its internal state with
the key and the hash of the value. The internal state is serialized and sealed together with
the next counter value. Then, the original key and value are written to the backing store,
as well as a special state key and the sealed state. Finally the counter is incremented. It
is important that an application does not produce any output relating to the state change
until after the counter has been successfully incremented.

When the application reads a key, Hugo passes the read request through to the backing
store. The returned valued is hashed and compared to Hugo’s internal state. If the hash is
a match, the value is returned to the application. Otherwise, an integrity error is signaled.

To restore the state at start-up time, Hugo reads the special state key and unseals the
returned value. The unsealed counter value is compared against the current counter value. If

Application KV Store

(a) original application

Application Hugo KV Store

Counter

(b) same application using Hugo

Figure 4.1: Architectural diagram showing how Hugo is incorporated into existing applica-
tions.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 25

the unsealed counter is lower than the current counter, a rollback error is signaled. Otherwise,
application start-up can continue normally.

4.2 Design of Hugo

This section will go into more detail about the design of the different components and
algorithms in Hugo.

Counter interface

Many different secure counters are supported, see §4.4. Each counter backend exposes a
straightforward interface as follows:

• AllocateCounter→ I

• ReadCount(Icounter)→ i

• BumpCount(Icounter)

AllocateCounter allocates a new counter for this enclave and returns a globally
unique identifier for this particular counter. This identifier will later be used to securely
associate a state with this particular counter. If the same identifier was previously for
another counter, the new counter must be initialized with at least the maximum value of
the old counter. In the case of a TPM, the identifier might for example be the combination
of this TPM’s public endorsement key and the index handle.

ReadCount simply reads the current value of the counter identified by the argument.
BumpCount increments the counter value by one and blocks until the counter is actually
incremented.

Key-value store interface

The revertible key-value storage backend provides the following standard interface:

• Read(k)→ v

• Write(k, v)

• ClearAll

Write will write the value v at location k, replacing an old value at the same location,
if any. The special value ∅ can be written to erase a location. Read will read the value
stored at location k, or the special value ∅ if the location is empty. A correctly functioning
key value store will return the value that was stored there by the most recent Write call,
but the security of our scheme does not depend on this. ClearAll will erase the entire
store as if ∅ was written to every location.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 26

Strawman implementation

Using the building blocks introduced in the previous section we now describe a simplified ver-
sion of the main Hugo algorithm, as described in §4.1. This simplified version, Algorithm 1,
is completely secure, but does not support efficient concurrency or the rollback budget. For
clarity, the case of ∅ reads and writes has been omitted. An atomic block means that in case
of an interruption of service (crash, power off, etc.) and an honest revertible key-value store,
the whole block completed successfully, or nothing changed. The security of our scheme does
not depend on the atomicity.

The algorithm works as follows. A map S of all the keys in the revertible key-value store
and the hash of the values is kept in enclave memory. When a value is written to the store
using WriteFresh, its hash is computed and stored or updated in the map. When a value
is retrieved from the store using ReadFresh, its hash is checked against the one in the map.
If the hashes don’t match, an error is signaled. This provides partial rollback protection: the
untrusted key-value store cannot compose an inconsistent state by piecing together various
writes.

Additionally, when a value is written, after updating the map, the map is serialized and
sealed to the enclave identity, counter identity and the next counter value. The serialized
and sealed map c along with the counter identity and the next counter value is stored in the
revertible key-value store at the special key Σ. This will allow us to recover S after a failure
in the future. Then, the counter is incremented.

Restoring S follows a similar procedure in reverse. First, the expected counter identity
and counter value, and c are read from key Σ. If the expected counter value is lower than
the actual value of that counter, an error is signaled. Otherwise, c is unsealed (failure to
unseal will also signal an error) and stored in S. Further ReadFresh and WriteFresh
calls can proceed as normal.

We already established that partial rollbacks are not possible. Also note that a violation
of the atomicity by the untrusted key-value store is treated the same as a partial rollback.

Full state rollbacks are prevented by the counter. If the secure service is interrupted
before line 25, no state has changed and there is therefore no rollback. If the secure service
is interrupted during the atomic operation, the system must revert to the state as it was
before the operation was started. If it doesn’t, the state will be inconsistent and some
future invocations of ReadFresh will fail. If the secure service is interrupted just after the
atomic operation has succeeded or before the counter is physically incremented, Restore
will accept both the current and previous states. An adversary is able to generate many new
states with the same next counter value by crashing the application just before line 31. This
is acceptable since any output associated with the new states has not yet been outputted.
Once the counter increment succeeds, Restore will accept only the current state.

S can be efficiently implemented using a Merkle tree so that each WriteFresh need
only output O(log n) data each state update instead of O(n).

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 27

Algorithm 1 Simplified rollback protection

1: global Icounter
2: global S
3: procedure Reset
4: Icounter ←AllocateCounter
5: i←GetCount
6: S ← ∅
7: c←Seal(Ienclave||Icounter||i, S)
8: begin atomic
9: ClearAll

10: Write(Σ, (c, Icounter, i))
11: end atomic
12: procedure Restore
13: c, Icounter, i←Read(Σ)
14: i0 ←ReadCount(Icounter)
15: assert i ≥ i0
16: S ←Unseal(Ienclave||Icounter||i, c)
17: for 1 . . . (i− i0) do
18: BumpCount
19: procedure ReadFresh(k) → v
20: v ←Read(k)
21: assert H(v) = S[k]
22: return v
23: procedure WriteFresh(k, v)
24: i←ReadCount(Icounter)+1
25: S[k]← H(v)
26: c←Seal(Ienclave||Icounter||i, S)
27: begin atomic
28: Write(k, v)
29: Write(Σ, (c, Icounter, i))
30: end atomic
31: BumpCount(Icounter)

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 28

Algorithm 2 Rollback budget implementation

changes compared to Algorithm 1 indicated with *

1: global actual *
2: procedure ResetBudget
3: Reset
4: actual ← 0 *
5: procedure RestoreBudget
6: Restore
7: actual ← 0 *
8: procedure WriteBudget(k, v,budget)
9: i←ReadCount(Icounter)+1

10: S[k]← H(v)
11: c←Seal(Ienclave||Icounter||i, S)
12: begin atomic
13: Write(k, v)
14: Write(Σ, (c, Icounter, i))
15: end atomic
16: actual ← actual + Cost(v) *
17: if budget ≤ actual then *
18: actual ← 0 *
19: BumpCount(Icounter) *

Rollback budget

The rollback budget allows limited full rollback of the whole state to a previous self-consistent
state. Each write has a certain cost associated with it. As long as the cumulative cost has
not exceeded the budget, the counter will not be increased during a write. The augmented
algorithm is shown in Algorithm 2.

It is possible to obtain increased rollback protection by increasing the counter opportunis-
tically whenever new data is written. By calling BumpCount asynchronously, execution
can continue while the state is being rollback protected as fast as possible. During this time
more data can be collected which will be linked to the future counter value. Only once a
write would exceed the budget will the write block until the counter increment is complete.

This results in a pipeline where state gets rollback protected as soon as possible, see
Figure 4.2. As soon as a counter increase is initiated (“commit”), writes for the following
counter state will be collected (“collect”) while the increase is pending. Once the increase is
complete, another increase is immediately issued and the cycles continues.

Note that the maximum time a request might block is now 2∆t (where ∆t is the time it
takes from issuing the counter increase request to its confirmation), whereas it is ∆t without
the pipeline. The throughput is higher though, depending on the budget. As such, different
workloads will require different solutions.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 29

t

t0 t1 t2 t3

Collect 1
Commit 0

Collect 2
Commit 1

Collect 3
Commit 2

write within budget

returns immediately

budget-exceeding write

blocks until commited

Figure 4.2: Collect-commit pipeline with two types of request shown.

Crash-evidence

Because using the rollback budget provides weaker security guarantees, it’s important to at
least detect when the secure service was interrupted during a state update. This is performed
simply and reliably by keeping track of clean shutdowns.

Upon Reset, S[Γ] is set to unclean. A new function Shutdown will set S[Γ] ←
clean, and store S with no rollback budget, after which the program must exit immediately.
Upon Restore, after loading S, if i > i0, S[Γ] is set to unclean. Then S[Γ] is set to
unclean and the old value is returned as a clean shutdown indicator.

A secure service may rely on an external trusted party to implement rate-limiting of
unclean shutdowns.

Concurrency

Lastly, we add concurrency to our scheme as shown in Algorithm 3. Writes of Σ need to
happen in a serialized fashion to ensure the state is consistent and can be recovered fully.
We augment our definition of atomicity with three additional properties. An atomic block
means that

1. in case of an interruption of service (crash, power off, etc.), the whole block completed
successfully, or nothing changed;

2. all computations in the current thread work on the global state as it was at the begin-
ning of the block;

3. concurrent threads either see all changes or none;

4. consecutive atomic blocks observe strict ordering (they are pipelined).

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 30

We require that each k is either read in a shared fashion or written exclusively. This
can for example easily be accomplished with a read-write lock per k. Writes and reads to
different keys can happen concurrently.

Algorithm 3 Concurrent rollback protection

changes compared to Algorithm 2 indicated with *

1: global current *
2: procedure ResetConcurrent
3: ResetBudget
4: current ← ReadCount(Icounter) *

5: procedure RestoreBudget
6: RestoreBudget
7: current ← ReadCount(Icounter) *

Require: No concurrent writes of k *
8: procedure ReadConcurrent(k)
9: return ReadFresh(k)

Require: No concurrent reads or writes of k *
10: procedure WriteConcurrent(k, v,budget)
11: bump ← false *
12: begin atomic *
13: actual ← actual + Cost(v) *
14: i← current +1 *
15: if budget ≤ actual then *
16: actual ← 0 *
17: current ← i *
18: bump ← true *

19: end atomic *
20: begin atomic *
21: S[k]← H(v)
22: c←Seal(Ienclave||Icounter||i, S)
23: end atomic *
24: begin atomic *
25: Write(k, v)
26: Write(Σ, (c, Icounter, i))
27: end atomic *
28: begin atomic *
29: if bump then *
30: BumpCount(Icounter) *

31: end atomic *

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 31

4.3 Obliviousness

Existing secure enclave implementations such as Intel SGX do not protect against side-
channel attacks [33]. Previous work has shown that much information can be inferred from
observing the behavior of an SGX process from the Operating System [70]. Developers
wishing to defend against such attacks to maintain confidentiality should employ oblivious
algorithms [43]. If an application uses a key-value store in an oblivious manner, Hugo can
be used to provide rollback protection for that application while remaining oblivious.

To prove our point, we analyze Hugo under a variant of the program-counter model [47].
Under the PC model, it is assumed that an adversary can obtain a trace of every instruction
the program executes. In our model, the trace includes both instructions and data, and the
full program is known to the adversary. In other words, the adversary can observe all data
Hugo operates on. In our analysis we show that an adversary will not learn more information
than they would learn from the oblivious program without Hugo.

The information “leaked” by any program using a key-value storage backend without
Hugo is shown in Traces 1 and 2. On the left is the code and on the right is the trace

Trace 1 Unprotected read

1: procedure Read(k) → v “Read”, k, v

Trace 2 Unprotected read

1: procedure Write(k, v) “Write”, k, v

information for that code. An oblivious program will need to make sure that any trace
consisting of a sequence of these traces is oblivious, meaning no information can be learned
from any k, v or the ordering of those calls.

In Hugo, the trace for Read is replaced by the trace for ReadConcurrent in Trace 3.
As shown, the sequence of operations in the trace is dependent only on values that were

Trace 3 Hugo’s read

1: procedure ReadConcurrent(k) → v
2: v ←Read(k) “Read”, k, v
3: assert H(v) = S[k] “assert”, k, v, S
4: return v v

already known to the adversary per Trace 1. The only additional information being made
known to the adversary is S. Since S is determined solely by the sequence of writes in the
past, the adversary has full knowledge of the information contained in S already.

Hugo replaces the trace for Write by the trace for WriteConcurrent in Trace 4.
Conditional parts of the trace are denoted by ‘?’. Information that was not present in Trace 2

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 32

Trace 4 Hugo’s write

1: procedure WriteConcurrent(k, v,budget)
2: bump ← false bump
3: begin atomic
4: actual ← actual + Cost(v) actual,Cost(v)
5: i← current +1 i, current
6: if budget ≤ actual then budget, actual
7: actual ← 0 ?actual
8: current ← i ?current, i
9: bump ← true ?bump

10: end atomic
11: begin atomic
12: S[k]← H(v) k, v, S
13: c←Seal(Ienclave||Icounter||i, S)

c, Ienclave, Icounter, i, S
14: end atomic
15: begin atomic
16: Write(k, v) “Write”, k, v
17: Write(Σ, (c, Icounter, i))

“Write”, “Σ”, c, Icounter, i
18: end atomic
19: begin atomic
20: if bump then bump
21: BumpCount(Icounter) ?“BumpCount”

22: end atomic

is ‘bump’, ‘actual’, ‘current’, ‘budget’, Cost(v), i, c, Ienclave, Icounter, “Σ”, “BumpCount”
and a second “Write”:

• Ienclave, Icounter, “Σ” are all public information.

• c depends only on public information, i, and S.

• S is public, as described for ReadConcurrent.

• “BumpCount”, ‘bump’, ‘actual, ‘current’, and i depend only on ‘budget’, v (known),
and ReadCount, per Figure 4.3. That Figure also covers the conditional parts of the
trace.

• ReadCount is the value of the counter upon initialization and is publicly known.

• The second “Write” always happens after the first “Write”, regardless of any other
potentially unknown information.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 33

v

Cost(v)

budget actual ReadCount

bump current

BumpCount i

4

4
6+7

6+9 6+9
6+8

6+8 Algorithm 3

20+21 5 8

Figure 4.3: Dependency graph between various variables in Trace 4. Each arrow indicates
a dependency and is annotated with the line number where the dependency comes from.
Inputs are underlined. Dependencies on constants are not shown, since no information can
be revealed through such a dependency.

This leaves ‘budget’ and Cost(v), which to maintain obliviousness, must not reveal any
additional information. A useful Cost function that does not reveal additional information
is Cost : v 7→ |v|. The developer must choose ‘budget’ independently from k and v or risk
disclosing additional information.

4.4 Counter backends

TPM 2.0

A common secure counter available on many platforms are the non-volatile counters in
Trusted Platform Modules (TPMs). However, unlike in TXT-based PMA designs, the com-
munication channel between the TPM and a secure enclave is not trusted. This presents a
problem, since a malicious operating system must not be able to present a fake TPM counter
to the secure enclave.

The TPM specification version 2.0 includes the ability to setup a secure channel with a
TPM [65], similar to TLS. Embedded in the TPM is an endorsement key, a private key that
was generated at manufacturing time. The manufacturer is also a Certification Authority and
signs the endorsement public key (EK), this is called the endorsement certificate. Consider
a client C communicating with a TPM. C can request the EK and certificate, and verify
that the certificate is signed by a well-known and trusted TPM manufacturer. Compare
this process to how TLS certificates are used. C can then proceed to use the EK in a key-
exchange protocol. For an RSA EK, this means encrypting some key with the EK, for an EC
EK, this means performing EC Diffie-Hellman. The exchanged symmetric key is then used
to encrypt and MAC TPM commands. Again, compare this process to how TLS works.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 34

Using this secure channel, a secure enclave using a TPM counter can be assured that it
is talking to a genuine TPM. The TPM EK and counter handle together are the counter
identity as specified in §4.2. The TPM certificate validation code and the list of valid CAs
should be included in the enclave measurement for remote attestation, so that trust in the
TPM is conveyed transitively. This way, third parties can also be assured of the proper and
secure functioning of the counter.

TPM multiplexing

TPMs may support only 8 distinct counters [64]. In order to support many secure enclaves,
it is possible to write a separate counter enclave. The sole responsibility of this enclave
is to provide a consistent counter interface to other (client) enclaves, backed by a single
counter on the TPM. The counter enclave will keep a separate counter per client enclave
and store the state of all counters persistently using the TPM storage backend. The rollback
budgets specified by the clients could be consolidated by the counter enclave as well. The
client enclaves will require attestation of the counter enclave. This approach is similar to
the memory management module proposed in Memoir [50].

Trusted counter service

Instead of using the TPM backend with the counter enclave, the counter enclave could
instead run on trusted hardware directly (e.g. TrInc [40]) and communicate with client
enclaves over the network. The amount of network traffic would be very small compared to
a solution where all state would be stored on a trusted network appliance. Again, the client
enclaves will require some sort of attestation of the remote counter enclave.

Client cookie

In a cloud computing setting, a secure enclave service may be running in an untrusted
environment. However, the users of such a service might be trusted since they have a vested
interest in the correct and continued operation of the service. In such cases, the counter can
be stored on the client in a “cookie”.

When the service sends a response to a client, it includes a sealed counter value. The
client stores this value, the cookie, indefinitely. The next time the client makes a request, it
includes the cookie. Now the service can unseal the counter value and verify that the state
it’s processing on is no older than the last time a request for this client was completed.

Note that this presents a weaker guarantee than using a continuously available counter
such as a TPM. After a user A finishes a request, a user B might perform several requests
that change the service state. User A will not be able to determine if any of the changes
made by user B were rolled back. This guarantee may nonetheless be sufficient for certain
scenarios. Cookies may also be shared out-of-band with other clients of the same service to
convey state information for shared resources.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 35

4.5 Evaluation

Performance modeling

Three metrics determine the performance of parallel request handling. ρ is the time it
takes to process a single request, including network and TLS handshakes and data en-
and decryption. It is expected that this parameter is CPU-limited due to the amount of
cryptography involved. τ is the time it takes to increment the counter. N is the parallel
factor, the number of requests that can be handled in parallel. For CPU-bound processes,
N should be between 1 and 2 times the number of hyper-threaded cores on a system.

Throughput is a measure of the volume of requests that can be handled. If there’s no
rollback protection, this is just a matter of utilizing the available resources fully, handling N
requests taking ρ each in parallel. With serialized continuity schemes, each request must be
completed before the next one can be handled, so there is no opportunity for parallelism. In
addition to that, each request must also bear the cost τ of increasing the counter, even though
no processing is happening at that time. Hugo can handle multiple requests in parallel.
Even though individual budget-exceeding requests must wait for counter increments, other
requests can be serviced at that time, and throughput is not limited by τ .

Latency is the time it takes to handle a single request. If there’s no rollback protection,
this is simply the baseline ρ. Serialized continuity schemes incur a cost of at least τ . In
practice, serialized schemes incur τ for every input, not just every request. An interactive
session-establishment protocol such as TLS might require multiple inputs per request. There-
fore the ρ + τ is a very optimistic lower bound on the total latency of serialized schemes.
If a request does not exceed Hugo’s rollback budget, no extra time is required beyond just
servicing the request. If a request does exceed the budget, it will have to wait up to τ until
the current collect cycle is complete,2 and then another τ for the commit cycle.

Table 4.1 summarizes the idealized throughput and latency of no rollback protection,
existing serialized schemes, and Hugo. Hugo does not decrease throughput at all compared

Table 4.1: Comparison of Hugo’s throughput and latency versus existing systems.

E(Throughput) E(Latency)

No rollback protection N
ρ

ρ

Serialized continuity 1
ρ+τ

ρ+ τ

Hugo (within budget) N
ρ

ρ

Hugo (exceeding budget) N
ρ

ρ+ 11
2
τ

2If the request rate is sufficiently high that collects/commits are happening continuously, the arrival time
of a request and the windowing of the collect cycle are independent. Therefore, the amount of time left in a
collect cycle when a request arrives is uniformly distributed within the cycle, and the expected time to wait
until the end of the collect cycle is 1

2τ .

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 36

to a system with no rollback protection, except due to increased synchronization overhead
affecting N . If requests never exceed the rollback budget, Hugo similarly does not increase
latency. Even with budget-exceeding requests, a carefully adjusted budget likely results in
an average latency below that of serialized schemes.

HTTPS file storage service

To evaluate Hugo, we developed a web file storage service that runs on Intel SGX. The service
is exposed to the outside world as a TLS server endpoint that is terminated inside the secure
enclave. The storage service implements a REST API for uploading files (PUT), retrieving
files (GET), listing files and deleting files (DELETE). Files users upload are encrypted with
a key derived from their password. The secure enclave design guarantees that the service
can not be surreptitiously modified to log user credentials. Users can therefore be assured
of the confidentiality and integrity of the data they store with this service.

We implemented 4 versions of this service:

No rollback protection This version has the security properties described above, but does
not provide freshness. A user is guaranteed to see the consistent state of their files as
it was at some point in the past, but not necessarily the latest state.

Serialized continuity This version adds simulated PMA-like strict state continuity by
incrementing a counter for every request (GET or PUT). As mentioned above, this is
an optimistic approximation since a real PMA would treat a single HTTPS request as
many inputs.

Hugo (high budget) This is an implementation of a concurrent system with a rollback
budget and a collect-commit pipeline as described in §4.2. All requests are considered
to be within the rollback budget.

Hugo (low budget) This version considers all PUT and DELETE requests to exceed the
rollback budget. Other requests are within the budget.

The service is written mostly in memory- and type-safe Rust. Only the off-the-shelf
mbedTLS library is written in C. The storage backend used is Redis, while the counter is
provided by a TPM 2.0. A small untrusted driver program provides the secure enclave with
TCP and Redis connectivity, and relays TPM commands.

Our test setup hosts the service on a dual-core Intel Core i5-6200U with hyper-threading
and a 128MB EPC size.3 All requests where performed over a 1Gbit network connection.
The TPM used is an Intel Platform Trust Technology TPM.

We evaluated the no rollback protection version and both configurations of Hugo by per-
forming various mixes of PUT and GET requests with between 1 and 8 concurrent requests.
Since the serialized continuity version does not support concurrency and every request is

3This is the maximum EPC size supported by current hardware.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 37

handled similarly, we only tested it with 1 concurrent PUT request. One test consists of 30
seconds of repeatedly requesting the appropriate ratio of request types for a single configu-
ration, while measuring the time each request takes.

We first consider latency. The single concurrent request, 100% GET test of Hugo (high
budget) has an average latency of ρ = 60ms. The single concurrent request, 100% PUT test
of serialized continuity has an average latency of 190ms, therefore τ = 130ms. Figure 4.4
shows the latency for all of our tests. Since the ratio between GET and PUT requests
has limited impact on the latency for the no rollback protection version and Hugo (high
budget), those measurements are shown as a range instead of individual points. Of note is
the high latency and high variance in latency for low-budget high-concurrency mostly-PUT
benchmarks. Our performance model predicted slightly higher latency for the low-budget
benchmarks. We think the excess latency is caused by contention issues and is not an inherent
problem with our design: (a) the benchmarks are run on a 2-core CPU, which obviously
severely limits concurrency, and (b) because SGX does not have special synchronization
primitives, all synchronization is performed using busy-loops. Both these issues can easily
be resolved. Note that at 50/50 PUT/GET, 3 concurrent threads are still as fast as a single
serialized continuity thread. The same holds for 5 concurrent threads at 25/75 PUT/GET.

In our setup, we obtain maximum throughput at 5 concurrent requests. Figure 4.5
shows the throughput for each of our implementations for 5 threads. The throughput of
high-budget Hugo is within 4% of a system with no rollback protection. As predicted by the
latency figures, the throughput for low-budget Hugo is significantly lower for high PUT/GET
ratios. There are two reasons real systems based on Hugo will perform better: (a) the latency
issues can be resolved as discussed earlier, and (b) the rollback budget can be tuned and not
every request will exceed the budget in real systems. Every configuration of Hugo always
outperforms serialized continuity in terms of throughput.

CHAPTER 4. ROLLBACK PROTECTION (HUGO) 38

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8

la
te

n
cy

 (
s)

threads

No rollback protection and Hugo (high budget)
Serialized continuity (single thread)
Hugo (low budget), 100% PUT
Hugo (low budget), 75% PUT/25% GET
Hugo (low budget), 50% PUT/50% GET
Hugo (low budget), 25% PUT/75% GET
Hugo (low budget), 100% GET

Figure 4.4: Latency of requests for different configurations. The points indicate the average
latency, and the error bars 25th and 75th percentiles. The X-values are slightly offset from
their integer value to make the error bars easier to read. The dark shaded area is the range
of average request latencies of all configurations of the no rollback protection version and
Hugo (high budget). The light shaded area the is 25th through 75th percentile range of the
same.

 0

 10

 20

 30

 40

 50

 60

 70

100% PUT 75% PUT
25% GET

50% PUT
50% GET

25% PUT
75% GET

100% GET

th
ro

u
g

h
p

u
t

(r
eq

u
es

ts
/s

)

No rollback protection
Hugo (high budget)
Hugo (low budget)
Serialized continuity

Figure 4.5: Throughput of requests for different implementations. The number of concurrent
requests is 5 (but serialized continuity is limited at 1).

39

Chapter 5

Attestation Transparency

This chapter details our approach to use transparency to deter unauthorized access. Services
store a hash of the software that they are running in a public audit log, and (conceptually)
clients verify that the server is running code that matches a hash in the public audit log. This
means that insiders cannot make undetectable changes to the server-side code; at least in
principle, any such changes can be detected through examination of the public audit log. One
challenge is how to ensure that these servers can be used from legacy clients, such as existing
web browsers. We show how to achieve this goal by building on Certificate Transparency.

This chapter makes the following contributions:

Policy and update mechanism Although we describe services as unalterable, in fact,
updates will often be desirable to fix bugs, improve usability or security or add func-
tionality. Also, instances of a secure service should not be locked to a single platform.
We demonstrate how these goals can be achieved, without user-visible downtime for
updates, and without compromising security or privacy. Finally, secure services may—
under policy control specified by a user—be authorized to collaborate with other user
secure services while preserving the security promises; we show how this can be done
as well.

Legacy client support In a manner similar to the way Certificate Transparency protects
against CAs secretly issuing bad certificates, Attestation Transparency protects against
service providers secretly changing the services they provide. This transparency pro-
vides a public record linking domain names to service implementations. Today’s TLS
clients immediately reap the benefits of the transparency framework, except in some
cases when they are the victim of a targeted attack involving misissued certificates.

5.1 Overview

While we cannot absolutely prevent insiders from violating security, the transparency mech-
anism guarantees that such violations will be publicly detectable.

CHAPTER 5. ATTESTATION TRANSPARENCY 40

Users of a secure service must be able to verify that their client is connected to a specific
service that is known to provide those security properties. Legacy clients must be supported:
users must be able to obtain most of the security benefits without installing special software.
Beyond legacy clients there must be an incremental deployment path. Performance loss
compared to insecure services should be minimal. Services must also be updateable, and the
security properties must be maintained in the update process.

When the service is first created, it publishes its TLS public key in an attested statement
proving that the enclave was launched with a certain code and that that code generated the
key. Legacy clients not built with Attestation Transparency in mind won’t be able to verify
these attestations, but the key idea of our system is that another party can do so on their
behalf. Because the attestations are public, anyone can check what code the service will run,
that the code is secure, that it will never reveal its TLS private key, and that it protects
itself adequately from malicious insiders. This allows word to spread through out-of-band
channels that the service is trustworthy. For instance, an expert might inspect the code
published by good.com and determine that it is trustworthy and will never leak its TLS
private key; inspect the attestation and TLS certificate and determine that the TLS keypair
was generated by this enclave, and the public part is in the TLS certificate; and then spread
the word that good.com can be trusted.

Of course, a malicious insider at good.com could always take down the secure service and
replace it with malicious code, running outside an enclave. An attestation-aware client could
detect this (because the attestation will change), but a legacy client could not. However,
this attack is detectable. To mount such an attack, the insider would need to generate a
TLS keypair and get a new certificate issued for it (because legacy clients expect to connect
over TLS), and hand the new private key to the malicious code. This is detectable because
it triggers issuance of a new certificate for good.com. In particular, we use Certificate
Transparency to detect issuance of new certificates. In our design, secure services publicly
commit to always publish a new attestation any time they update the service or obtain a new
certificate. Thus, issuance of a new certificate without a corresponding published attestation
indicates an attack or error. Crucially, because all of this information is public, anyone can
monitor the published information and detect these situations, providing transparency.

Because our design focuses on transparency about what code the service will run, we call
it Attestation Transparency. It extends Certificate Transparency to allow publishing these
independently-auditable attestations. Legacy clients can rely on Certificate Transparency
to ensure that attacks will be publicly detectable, while future attestation-aware clients can
verify attestations themselves.

A diagram of the entire system is shown in Figure 5.1.

Policy model

To verify that a secure service will act “as promised”, the user must verify that (a) the
service code correctly implements the intended behavior and (b) no other program on the
same computer will be able to interfere with the operation of the service code or observe its

CHAPTER 5. ATTESTATION TRANSPARENCY 41

……………...

www.

www.

TLS Connection

Secure Enclave

Server

Certificate request &

Attested statement

www.

Certification

Authority

Certificate

Transparency log

Attestation

Transparency log

User

Transparency

log monitor

TLS

Cert

TLS private key

1.

2(a)

2(b)

3.

4.

5(a)

5(b)

Figure 5.1: Overview of Attestation Transparency. (1) The secure service emits the cer-
tificate request and attested statement. (2) The attested statement and certificate are sub-
mitted to the Attestation and Certificate Transparency logs. (3) The secure service receives
the certificate produced by the CA. (4) The user can now establish a regular TLS connec-
tion with the secure service. (5) The transparency log monitor independently monitors the
transparency logs for possible violations.

CHAPTER 5. ATTESTATION TRANSPARENCY 42

memory. The mechanisms described below allow a service to prove to a user what service
code will execute on the server enclave. Thus, in principle, a user could examine all of the
code and convince themselves that it will act “as expected” and will provide all the desired
security guarantees. However, in practice few users will be able to do this: code analysis is
expensive and beyond the capabilities of most end users.

To address this challenge, we provide several flexible mechanisms to enable users to verify
that the service code will meet their needs (§5.5). One option is that the user may rely on
a cryptographically signed statement from the secure service developer naming both the
service identity and the (user comprehensible) promised behavior. Since the developer can
produce the implementation corresponding to the identity, it can be verified by third parties
or used as a basis for legal recourse in the case the service does not, in fact, conform to the
promised behavior. Alternatively, a user can rely on either an authority (for example, in the
case of an enterprise service, the enterprise “IT” department) or an auditor to decide which
services are trustworthy. The authority cryptographically signs a statement representing
that the service code conforms with expected behavior in all respects. These can be securely
and automatically checked if so designated. Alternatively, a user may rely on a set of
reviewers of the secure service code who cryptographically sign such statements. Reviewers
might have different motivations, some altruistic and some self-serving. Further, a user may
employ policy rules to automatically determine if the specified behaviors are adequate. For
example, the user may insist that the EFF examine the service and certify that it meets
a designated privacy policy, and that a consumer agency or a product reviewer also sign a
conformance statement, and that the developer be one of a named set of developers that the
user feels comfortable with. There are other alternatives that ensure compliance with the
user’s needs and relieve the user of the need to conduct extensive reviews themselves.

Usually, a user will use the same policy model to decide whether an update meets those
same specified needs and, if it does, whether user data accessible to previous versions can be
made available to subsequent versions.

5.2 Client verification of secure services

The previous section described how to construct a secure service. This section will explain
how a client connecting to such a service can verify that service.

Consider the simple scenario in which the server sends an attestation A(Ienclave) to the
client as part of establishing a secure channel. The client will need to verify both the attes-
tation and the identity. As a straw-man proposal, envision a service provider distributing a
client program that includes a fixed identity and can verify attestations expected for a par-
ticular service. This would require users to install a different client per service they want to
use. Additionally, since the identity is fixed in the client, service updates would also require
a client update.

A more general client could contain the logic to be able to verify all possible attestation
mechanisms, as well as maintain a list of all acceptable identities. Done naively, this would

CHAPTER 5. ATTESTATION TRANSPARENCY 43

be worse logistically, since now a new client needs to be distributed for every service update.

5.3 Attestation Transparency

Instead of creating this new verification mechanism that clients would need to implement,
we build a verification mechanism on top of an existing mechanism that clients already know
how to use: Public-Key Infrastructure. Under our proposed scheme, all the client needs to
do to trust the secure service is verify the TLS server certificate using standard existing
methods.

Our scheme, called Attestation Transparency, is an extension of the Certificate Trans-
parency framework [38]. Remember that in our unalterable secure service model, demon-
strating posession of K−1server by an entity implies that it is a secure service instance. The
core idea of Attestation Transparency is that a secure service provider publishes (once) in
the Attestation Transparency log an attested statement A(Ienclave, Kserver). With this, they
announce to the world that an entity possessing K−1server is an instance of Ienclave. The secure
service provider also obtains a valid TLS server certificate for Kserver through normal means
and inputs it into the enclave. The certificate binds a Common Name (CN) to the key Kserver,
and the published attested statement binds that to the identity Ienclave. When a client es-
tablishes a TLS connection with the enclave, it verifies the certificate and the enclave uses
its K−1server to sign the key exchange, after which the client has established a secure channel
with the enclave. The whole process is depicted in Figure 5.1 on page 41.

An Attestation Transparency monitor performs a similar function to a Certificate Trans-
parency monitor. The AT monitor continuously watches the CT logs for certificates issued
to the CN identifying the secure service it is interested in. Once a new certificate with public
key K is logged, the monitor checks the AT logs to see if any attested statements A(I,K)
with that same key K exist. If such an attested statement does exist, the monitor checks
whether the identity I is valid for that service. If the identity is invalid, or no attested
statement was found in the log, the monitor raises the alarm.

To prevent spamming, an AT log might require proof of existence of a valid certificate in
the CT logs before accepting statements for submission. As such, there can be a short period
of time where a certificate will exist in the CT logs without a corresponding statement in the
AT logs. Monitors will need to take this into account and choose an appropriate wait time
(e.g. two maximum merge delays) before raising the alarm. This wait time is the maximum
time during which clients could be vulnerable to attack, before it could be noticed.

5.4 Incremental deployment — logs

While from the previous description it sounds like the AT log is separate from the CT log,
this is not necessarily the case. Instead, attested statements can be included in a certificate

CHAPTER 5. ATTESTATION TRANSPARENCY 44

as a X.509 Certificate extension.1 The secure service can output the attested statement in the
requested extensions section of its certificate signing request. As Certificate Transparency
is already being deployed, this means Attestation Transparency does not require any new
infrastructure. We propose minor changes to CT to support AT, along with an incremental
deployment path towards a smoother process in the future.

Fake attestation certificates

Currently the only data that can be included in the CT logs are certificates and precertifi-
cates.2 To prevent spam, the only certificates accepted in the logs are those signed by a
known CA.

In order to publish attested statements in the CT logs, we propose that CT logs also
accept (pre)certificates from an ‘Attestation Authority’ (AA). This is a fake Certification
Authority that only issues pre-certificates and is not trusted by regular TLS clients. The
AA follows a simple procedure: it takes as input a certificate, a Signed Certificate Timestamp
and a certificate signing request that includes a statement as an extension. The AA verifies
the certificate and SCT and it verifies the CSR includes the same public key. It will then
issue a precertificate with the same Subject Name and public key, including the statement
extension and a pointer to the real certificate. The AA will only issue one precertificate per
real certificate.

Attested statement log entries

An alternate first step in the deployment process is to move the Attestation Authority’s
responsibilities into the CT log server. This requires a change in the CT specification to add
a new entry type for attested statements. The inputs for the submission procedure will be
the same, the verification and spam protection measures will be the same, only the output
will be an attested statement-type entry in the CT log as well as an SCT for this entry.

While this setup increases the functionality and complexity of the CT log, it reduces the
logistical complexity compared to using an Attestation Authority.

Certificate extensions

It would be much more convenient to just include the attested statement as an extension in
the actual valid end-entity TLS certificate. This would eliminate the need for any changes
to the current CT system. It would also solve the issue of a potential delay between the
appearance of the certificate and the attested statement in the logs.

It is currently practically infeasible to obtain certificates with such an extension. We con-
tacted a total of 9 subsidiaries of the largest 6 Certification Authorities (Comodo, Symantec

1We have allocated OID arc 1.3.6.1.4.1.4995.1000.4.1 for this purpose.
2Precertificates are similar to regular certificates, conveying the same information. However, they are

constructed in such a way that they can’t be used in place of a regular certificate.

CHAPTER 5. ATTESTATION TRANSPARENCY 45

Group, Go Daddy Group, GlobalSign, DigiCert, StartCom) to see if they would issue cer-
tificates with this extension. Of the CAs we contacted, 5 did not respond to our inquiry
or did not understand the request, 3 were unable to provide such certificates, and 1 was
unsure whether it would be possible, but if it was, it would cost an additional US$5,000. We
considered (ab)using an existing extension, but were unable to find a suitable one for the
type of data we’d want to include.

We encourage CAs to support Attestation Transparency extensions in the future.

5.5 Validating enclave identities

The previous discussion depends on being able to determine what is a valid enclave identity.
This is mostly a matter of policy, and as such we present a mechanism that supports different
policies. For each service, some entity or a group of entities—known as the policy adminis-
trator—is in charge of verifying the policy for an enclave identity. The policy administrator
maintains a private key for each service policy. After verification, the policy administrator
signs the enclave code indicating that the policy was met. For example, the EFF could
establish a service that audits code for privacy violations and certify complying code by
signing it. These compliance certificates can be used as an automated or semi-automated
mechanism by client software to determine whether it trusts the code.

When a system runs such a signed enclave, it will issue attestation statements of the
form A(Isigner : Ienclave, Kserver). An AT monitor will maintain a list of policy administrators
it trusts for a specific CN. Now, the monitor need not itself verify the enclave identity in an
AT log entry, it can instead rely on a valid signature from the policy administrator.

Handling updates

This mechanism also enables code updates to services by having an old version of the service
check the policy for the new version. This check is embedded in the code for the old service,
and has undergone the same vetting process as the rest of the code. The whole process for
updating from an old service S1 to a new service S2 is as follows.

D
S2−−−−−−−−→ P (5.1)

When a developer D is ready to update their service, they will send their binary S2 and
optionally documenting materials to the policy administrator P .

P
SigP (I2)−−−−−−−−−−−−→ D (5.2)

The administrator will verify that the new code meets the policy and sign it.

SP : S2
CSR(K),A(P :I2,K)−−−−−−−−−−−−−−−−−−→ CA,AT (5.3)

CHAPTER 5. ATTESTATION TRANSPARENCY 46

The service provider SP will launch the signed enclave S2, which will output a certificate
signing request including the attested statement. The service provider submits the CSR to
a CA and the attested statement will be published to the AT logs.

CA
CertCA(K)−−−−−−−−−−−−−→ SP : S2,CT (5.4)

CA will sign a certificate. The certificate will be submitted to the CT logs. With this
publication, the policy administrator has announced to the world that Ienclave conforms to the
policy established by Isigner. The service provider inputs the certificate into the signed enclave
and launches the service. AT monitors will see the new service with the new certificate and
can use the CT/AT log to verify that everything is in order.

S2
secure channel←−−−−−−−−−−−−−→ S1 (5.5)

S2 establishes a mutually authenticated secure channel with S1. Both sides must verify
the code identity of the other side through attestation, as well as check the Certificate
Transparency proofs for their keys. Doing both validates the service code and ensures that
there is a public record for this particular service instance.

S2
Proof(A(P :I2,K)∈AT)−−−−−−−−−−−−−−−−−−−→ S1 (5.6)

S2 provides S1—which is configured to accept policy statements from policy administrator
P—with proof that an attestation A(P : I2, K) appears in the AT logs.

S2
sealed data←−−−−−−−−−−−−− S1 (5.7)

S1 will subsequently transfer its sealed data to S2.
The update process can be performed without downtime for the users. Users can keep

using the old version of the service as long as its certificate is still valid. Once the new
certificate has been obtained and the required publications in the Transparency logs have
been made for the updated service, it can start accepting connections. From then on, clients
will see the new certificate and Transparency log proofs, indicating that they are now using
the updated service.

5.6 Enclave policies

A policy shall at least require that the TLS private key will not be leaked and that updates
shall be considered valid only when accompanied with a proof that they appear in the
Attestation Transparency logs. While a policy administrator may issue a signed policy
statement erroneously, the statement will be ineffective until published. Once published,
others can hold the policy administrator accountable. It is also important that an entity
controlling a Certificate Transparency log signing key must not also be an entity controlling

CHAPTER 5. ATTESTATION TRANSPARENCY 47

a policy signing key. Such an entity would be able to issue signed policy statements and
obtain a signed ‘proof of inclusion’ from the log without actually publishing the statement.

Policies can cover a variety of use cases from most transparent to not transparent. Care
must be taken when a single party has a fair amount of control over what would be considered
a secure service under their policy. Such constructions should always be paired with the
ability for independent entities to verify their claims post facto using transparency. We
propose the following policies:

Open-source reproducible builds

The software developer publishes their source code publicly with a mechanism for repro-
ducible builds. The same developer doubles as the policy administrator and builds the
binary and signs it before handing it off to the service provider.

Independent audit

The software developer hands their source code to an independent auditor. The auditor
vets the secure service and describes the security properties the service has in a policy. It
will sign the binary and publish the policy. When, later, the developer submits an updated
version of the software, the auditor checks whether it meets the security requirements per
the established policy.

As an extension to this scheme, an independent auditor could maintain several standard
policies. For example they might have a ‘secure IMAP service’ policy. Anyone will be
able to write software that adheres to the policy, and the auditor can verify and sign all
such software. This effectively creates an interoperable system of secure IMAP services,
where data can be transferred from one service to the other while maintaining the security
properties.

Self-published with legal obligations

The software developer hands their source code to a publisher. The publisher builds the
binary and signs it before handing it off to the service provider. The publisher also promises
(e.g. by incorporating a clause in their terms and conditions) that enclaves they sign exhibit
certain properties.

Enterprise-local audit

An enterprise might maintain a set of policies for secure services it runs internally. They can
have an internal audit team that vets service updates. This way they can have the benefits
of protection from insider attacks as well as local control.

CHAPTER 5. ATTESTATION TRANSPARENCY 48

5.7 Incremental deployment — clients

We present an incremental deployment path for Attestation Transparency that makes it
immediately useful for today’s clients while improving security guarantees for future clients.

Current clients

Initially, clients without Certificate Transparency support will benefit from the existence
of the CT/AT ecosystem, as independent entities can monitor the published certificates
and statements. However, there are no guarantees for such clients and targeted attacks
are possible. While the CT logs might include a valid certificate for some domain, a client
without CT support can be presented with a valid certificate that does not appear in the
logs, and the client would be none the wiser.

Clients supporting Certificate Transparency

Once clients support Certificate Transparency, a process which is already in motion, they
will get most of the benefits of Attestation Transparency as well. Suppose a service has
subscribed to our secure service paradigm, promising to publish in the AT log in conjunction
with the CT log. Then, by checking the Signed Certificate Timestamps when setting up a
connection, a client can be sure that the server published its attestation if it has one. A user
still needs to rely on manual verification or word-of-mouth to know whether a particular
service at a particular domain is in fact a secure service.

Clients supporting Attestation Transparency

A client that can check the attested statements will be able to indicate to the user that it is
in fact connected to a secure service.

Clients supporting remote attestation

Clients supporting remote attestation get even stronger guarantees than those just support-
ing Certificate Transparency. With remote attestation, a client can verify that the server
they are connected to is actually running inside a secure enclave. This is helpful in case a
server’s TLS private key got leaked inadvertently. A third party could run a modified ser-
vice with the TLS private key thus impersonating the secure service under the previous three
mechanisms. When using remote attestation directly, this third party could not produce a
correct attestation if the service were modified.

49

Chapter 6

Discussion and open research
questions

6.1 Limitations

The research in this dissertation does not address availability questions at all. Denial of
service is a valid attack that an adversary might perform. Worse, destruction of user data
is also possible. In order to get the cloud environment closer to the desktop model, these
issues need to be resolved.

In order for a user to be able to fully trust a ‘secure web application’ as defined in the
previous section, they need to know that the data they see or the input they provide is
handled securely. The current web hardly provides such mechanisms. JavaScript and CSS
on a page can arbitrarily change page elements to re-order information, capture user input,
or even read cross-origin data [60]. More research effort is needed to provide the user with
a secure and trustworthy user interface on the web.

The security of our system relies on an adversary not being able to break in to the secure
enclave. Even if the hardware is infallible—which it isn’t—a simple software bug could
leak sensitive information or provide an attacker with code execution capabilities. Bugs
are exacerbated by being completely transparent about the code running on a machine.
The transparency makes it much easier for an attacker to automate exploitation of known
vulnerabilities. We propose using only safe languages such as Rust to write secure services,
but even then there is no guarantee against compiler bugs or developer errors. Further
guarantees could be obtained by using formal methods.

While SGX in theory provides good isolation, in practice it might have security flaws.
In addition, SGX does not aim to protect against side-channel attacks [32]. The operating
system is in an excellent position to mount side-channel attacks as well as Iago attacks [15].
SGX also has software components that are critical to its security, which might be more
easily compromised than the hardware [19]. Compromise of SGX on the system running
the secure service provides an attacker with access similar to that of directly compromising

CHAPTER 6. DISCUSSION AND OPEN RESEARCH QUESTIONS 50

the secure service. But, even if SGX is broken, future systems might provide better secure
enclave functionality that can be used for the secure service design in this paper.

6.2 Adoption

The growth of remote attestation technology usage is hampered by a fractured ecosystem.
Vendors need to come together to develop standards around remote attestation. In §5.4 we
proposed standardizing the Attestation Transparency certificate extension. Additionally, the
validation of remote attestations needs to be standardized. At the very least, there needs
to be a registry of algorithms and a directory of vendor public key material. There should
also be a standard way to open a secure channel with a third party authenticated by their
remote attestation.

This dissertation proposes writing new applications as secure services. While the secure
enclave interface abstraction and the Rust language should largely prevent application de-
velopers from doing insecure things, it is not clear that those means are sufficient. It is not
clear what skills are required of an application developer to keep their application secure,
and similarly what toolsets and engineering aids a developer could benefit from. This could
be investigated.

Previous Trusted Computing approaches have not seen much practical use. This could
be due to substantial security issues with the required hardware [69]. Our scheme differs
from most approaches in that the required hardware and software support is only needed
on the server side. A single entity can decide to adopt our approach and make it happen
without being dependent on their customer’s hardware or software choices.

Some service providers may be reluctant to adopt our scheme. However, we believe there
is motivation to strongly consider it. The ITIF has predicted that the U.S. cloud computing
industry could lose up to $35 billion by 2016 due to loss of trust in the post-Snowden era [29].
Forrester Research has predicted that losses could eventually be up to $180 billion [59]. Our
scheme provides a mechanism that partially addresses these trust concerns.

Even so, people—enterprises, developers, individuals—need to be aware of the security
and privacy risks of cloud computing, before they will even contemplate mitigating those
risks. It is the opinion of this author that there is a lack of this awareness, and especially so
among individuals and small-business owners. Even developers might not be cognizant of the
risks or they might be too complacent towards their employers to fully realize them. Anno
2016, people put their faith in systems that are completely opaque, but unlike Kafka’s K.
they lack the mistrust to ask critical questions about those systems. The only benefactors are
large corporations who are able to collect massive amounts of information about everything
and everyone with little to no oversight. This problem will only be exacerbated by the rise
of the “Internet of Things.”

The people or their governments must act to demand their digital freedom and privacy.
However, I doubt many people will be enticed to act from reading this dissertation. The best
I can hope for is to impart some wisdom on a stray academic or developer, and I will do so

CHAPTER 6. DISCUSSION AND OPEN RESEARCH QUESTIONS 51

by quoting the wisdom of others. Philip Rogaway wrote an excellent piece on cryptographic
science [52] which you should read in its entirety if you work in computer security. I think
the main takeaway of the essay is that you should “regard ordinary people as those whose
needs you ultimately aim to satisfy.” In your work, are you empowering the people or taking
away their control? Taking away control can be very subtle. If you take something that
people can do very well on their own computer but are instead positing it as a centralized
cloud service with no alternatives, you have taken away their control.

Another thing Rogaway touches on in his essay is the improper balance between certain
types of cryptography research. I’m convinced that this balance is also missing in the tech
sector as a whole. Former Facebook engineer Jeffrey Hammerbacher said “The best minds of
my generation are thinking about how to make people click ads. That sucks.” [66] Tying this
back to the previous quote, if you are in fact making people click on ads you are definitely not
empowering them. Similarly, former Google engineer Mikey Dickerson said “We allocate our
resources to the point where we have thousands of engineers working on things like picture-
sharing apps, when we’ve already got dozens of picture-sharing apps.” [21] He is right and
there are real problems in the world in need of solving. You don’t have to work on solving
the many problems I posed in this chapter, but please, whatever you do, work on something
relevant.

52

Chapter 7

Conclusion

These are the security properties and practicality goals defined in the introduction:

S1a. Handle user data securely (privacy).

S1b. Handle user data securely (integrity).

S1c. Handle user data securely (freshness).

S2. Protect against insider attacks.

S3. Service operation verifiable by clients.

P1. Practical performance.

P2. Incremental deployment with legacy client support.

P3. Support for software updates.

The different pieces of this dissertation—secure services, Hugo and Attestation Transparency—
together achieves all these.

We built secure services (§3) using secure enclaves (§2.3), achieving privacy (S1a), in-
tegrity (S1b), protection against insider attacks (S2) and performance (P1). This brings to
clients the benefits of the cloud—including scalability, availability, elasticity, maintainability—
while guarding against principal attacks (e.g. from insiders) that make cloud usage worri-
some.

Hugo, a system for rollback protection (§4), provides freshness (S1c). It provides ‘plug-
in’ style protection against rollback attacks for long-running services running inside secure
enclaves. Hugo is concurrent, preserves obliviousness of the application and supports a
variety of trusted counter backends. We introduce the notion of the rollback budget, providing
a way to quantitatively specify a trade-off between performance and rollback protection.
Hugo has excellent performance, achieving up to 13× the throughput and 50% of the latency
of existing schemes.

CHAPTER 7. CONCLUSION 53

Remote attestation (§2.3) provides verifiable operation (S3) while Attestation Trans-
parency (§5) enables legacy and future clients (P2) as well as software updates (P3) through
its policy mechanism. We have presented a system enabling flexible policy options to let
users meaningfully choose security properties. Policies can be established by anyone, includ-
ing software developers, auditors, independent organizations and communities. The policies
are enforced through a compulsory transparency mechanism that brings malicious intent to
light. This deters bad actors since they can be easily identified for purposes of legal action
or reputation damage.

We have extended the certificate transparency model to code, providing a technical mech-
anism for users to rely on the security principal which ultimately ensures security properties—
code. In addition, we provide flexible trust models that allow any user to meaningfully adduce
behavior guarantees from actual implementations. We demonstrate that resulting systems
can be nearly as efficient and scalable as existing services and provide strong protection from
mischievous providers, foreign governments and sloppy cloud data center operations.

All proposed mechanisms include incremental deployment paths which make our tech-
niques usable now for present-day clients, whereas future deployment will increase security
guarantees.

In conclusion, we have presented a flexible, practical mechanism to build secure Internet
services. Combined, the design of secure services, Hugo, and Attestation Transparency
provide a trustworthy cloud computing solution that can be deployed today.

54

Bibliography

[1] Comodo, DigiNotar Attacks Expose Crumbling Foundation of CA System. ThreatPost,
2011.

[2] Devdatta Akhawe, Francois Marier, Frederik Braun, and Joel Weinberger. Subresource
Integrity. W3C working draft, W3C, July 2015.

[3] Devdatta Akhawe, Prateek Saxena, and Dawn Song. Privilege Separation in HTML5
Applications. In 21st USENIX Security Symposium, pages 429–444. USENIX, August
2012.

[4] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative Technol-
ogy for CPU Based Attestation and Sealing. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy, 2013.

[5] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap archi-
tecture. In IEEE Symposium on Security and Privacy, pages 65–71, 1997.

[6] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an
untrusted cloud with haven. In Proceedings of the 11th Symposium on Operating Systems
Design and Implementation (OSDI), 2014.

[7] Jethro G. Beekman. secserv. https://jbeekman.nl/projects/secserv, 2016.

[8] Jethro G. Beekman. sgx-utils. https://jbeekman.nl/projects/sgx-utils, 2016.

[9] Daniel J Bernstein. Curve25519: new Diffie-Hellman speed records. In Proceedings of
the 9th International Conference on Theory and Practice of Public-Key Cryptography
(PKC), 2006.

[10] Sören Bleikertz, Sven Bugiel, Hugo Ideler, Stefan Nürnberger, and Ahmad-Reza
Sadeghi. Client-controlled cryptography-as-a-service in the cloud. In Proceedings of the
11th International Conference on Applied Cryptography and Network Security, pages
19–36, 2013.

[11] Rick Boivie and Peter Williams. SecureBlue++: CPU support for secure execution.
Technical report, IBM Research Report, 2013.

https://jbeekman.nl/projects/secserv
https://jbeekman.nl/projects/sgx-utils

BIBLIOGRAPHY 55

[12] Kirk Brannock, Prashant Dewan, Frank McKeen, and Uday Savagaonkar. Providing a
Safe Execution Environment. Intel Technology Journal, 13(2):36–51, 2009.

[13] Shakeel Butt, H. Andrés Lagar-Cavilla, Abhinav Srivastava, and Vinod Ganapathy. Self-
service cloud computing. In Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pages 253–264, 2012.

[14] David Champagne and Ruby B. Lee. Scalable architectural support for trusted software.
In Proceedings of the 16th International Symposium on High-Performance Computer
Architecture (HPCA), 2010.

[15] Stephen Checkoway and Hovav Shacham. Iago attacks: Why the system call api is a
bad untrusted rpc interface. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’13, pages 253–264. ACM, 2013.

[16] Liqun Chen, Rainer Landfermann, Hans Löhr, Markus Rohe, Ahmad-Reza Sadeghi,
and Christian Stüble. A protocol for property-based attestation. In Proceedings of the
1st ACM Workshop on Scalable Trusted Computing, pages 7–16, 2006.

[17] Yanpei Chen, Vern Paxson, and Randy H. Katz. What’s new about cloud comput-
ing security? Technical Report UCB/EECS-2010-5, EECS Department, University of
California, Berkeley, 2010.

[18] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. Internet X.509
Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.
RFC 5280 (Proposed Standard), May 2008. Updated by RFC 6818.

[19] Victor Costan and Srinivas Devadas. Intel SGX explained. Cryptology ePrint Archive,
Report 2016/086, 2016. https://eprint.iacr.org/2016/086.

[20] Victor Costan, Ilia Lebedev, and Srinivas Devadas. Sanctum: Minimal hardware ex-
tensions for strong software isolation. In Proceedings of the 25th USENIX Security
Symposium, 2016.

[21] Mikey Dickerson. One year after healthcare.gov: Where are we now? Keynote, Velocity
Conference. https://www.youtube.com/watch?v=7Vc8sxhy2I4, September 2014.

[22] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 what have we learnt in 20 years
of L4 microkernels? In Proceedings of the 24th ACM Symposium on Operating Systems
Principles (SOSP), 2013.

[23] Ed Felten. A court order is an insider attack, 2013.

[24] Bill Gates. Subject: Trustworthy computing. https://www.wired.com/2002/01/

bill-gates-trustworthy-computing/, 2002.

https://eprint.iacr.org/2016/086
https://www.youtube.com/watch?v=7Vc8sxhy2I4
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/
https://www.wired.com/2002/01/bill-gates-trustworthy-computing/

BIBLIOGRAPHY 56

[25] Shay Gueron. Intel advanced encryption standard (AES) new instructions set. Intel
Corporation white paper, 2012.

[26] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng
Zhang, and Brian Zill. Ironclad Apps: End-to-End Security via Automated Full-System
Verification. In 11th USENIX Symposium on Operating Systems Design and Implemen-
tation, pages 165–181. USENIX Association, October 2014.

[27] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Carlos Rozas, Vinay Phegade,
and Juan del Cuvillo. Using Innovative Instructions to Create Trustworthy Software
Solutions. In Proceedings of the 2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, 2013.

[28] Hermann Härtig, Michael Hohmuth, Norman Feske, Christian Helmuth, Adam Lacko-
rzynski, Frank Mehnert, and Michael Peter. The Nizza secure-system architecture. In
Proceedings of the 1st International Conference on Collaborative Computing: Network-
ing, Applications and Worksharing (CollaborateCom), 2005.

[29] Information Technology and Innovation Foundation. How much will PRISM cost the
U.S. cloud computing industry?, 2013.

[30] Intel Corporation. Intel Software Guard Extensions Programming Reference, October
2014.

[31] Intel Corporation. Intel 64 and IA-32 Architectures, Software Developer’s Manual,
volume 2C: Instruction Set Reference, chapter 5: Safer Mode Extensions Reference.
2015.

[32] Intel Corporation. Intel Software Guard Extensions Enclave Writer’s Guide, 2015.

[33] Intel Corporation. Software guard extensions developer guide, 2016.

[34] Balachandra Reddy Kandukuri, Ramakrishna Paturi V, and Atanu Rakshit. Cloud
security issues. In Proceedings of the 6th IEEE International Conference on Services
Computing (SCC), 2009.

[35] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryption. White
paper, 2016.

[36] Nikolaos Karapanos, Alexandros Filios, Raluca Ada Popa, and Srdjan Capkun. Verena:
End-to-end integrity protection for web applications. In Proceedings of the 37th IEEE
Symposium on Security and Privacy (S&P), 2016.

[37] Beom Heyn Kim and David Lie. Caelus: Verifying the consistency of cloud services
with battery-powered devices. In Proceedings of the 36th IEEE Symposium on Security
and Privacy (S&P), 2015.

BIBLIOGRAPHY 57

[38] B. Laurie, A. Langley, and E. Kasper. Certificate Transparency. RFC 6962 (Experi-
mental), June 2013.

[39] Nate Lawson. Final post on Javascript crypto, 2010.

[40] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. TrInc: Small
trusted hardware for large distributed systems. In Proceedings of the 6th Symposium on
Networked Systems Design and Implementation (NSDI).

[41] Jinyuan Li, Maxwell Krohn, David Mazières, and Dennis Shasha. Secure untrusted
data repository (SUNDR). In Proceedings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), 2004.

[42] Min Li, Wanyu Zang, Kun Bai, Meng Yu, and Peng Liu. Mycloud: Supporting user-
configured privacy protection in cloud computing. In Proceedings of the 29th Annual
Computer Security Applications Conference, pages 59–68, 2013.

[43] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM:
A programming framework for secure computation. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P), 2015.

[44] John L. Manferdelli, Tom Roeder, and Fred B. Schneider. The CloudProxy Tao for
trusted computing. Technical Report UCB/EECS-2013-135, EECS Department, Uni-
versity of California, Berkeley, 2013. Source code available at https://github.com/

jlmucb/cloudproxy.

[45] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and Hiroshi
Isozaki. Flicker: An execution infrastructure for TCB minimization. In Proceedings of
the 3rd ACM European Conference on Computer Systems (EuroSys), 2008.

[46] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos Rozas, Hisham Shafi, Ved-
vyas Shanbhogue, and Uday Savagaonkar. Innovative Instructions and Software Model
for Isolated Execution. In Proceedings of the 2nd International Workshop on Hardware
and Architectural Support for Security and Privacy, 2013.

[47] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The program
counter security model: Automatic detection and removal of control-flow side channel
attacks. In Proceedings of the 8th International Conference on Information Security and
Cryptology (ICISC), 2005.

[48] The Open Group. SOA Source Book, chapter Service Oriented Architecture. 2011.

[49] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in commodity computers.
In 31st IEEE Symposium on Security and Privacy, pages 414–429, 2010.

https://github.com/jlmucb/cloudproxy
https://github.com/jlmucb/cloudproxy

BIBLIOGRAPHY 58

[50] Bryan Parno, Jacob R. Lorch, John R. Douceur, James Mickens, and Jonathan M.
McCune. Memoir: Practical state continuity for protected modules. In Proceedings of
the 32nd IEEE Symposium on Security and Privacy (S&P), 2011.

[51] Thomas Ptacek. Javascript Cryptography Considered Harmful, 2011.

[52] Phillip Rogaway. The moral character of cryptographic work. Cryptology ePrint
Archive, Report 2015/1162, 2015.

[53] Rust programming language. https://www.rust-lang.org/.

[54] P. Saint-Andre and J. Hodges. Representation and Verification of Domain-Based Appli-
cation Service Identity within Internet Public Key Infrastructure Using X.509 (PKIX)
Certificates in the Context of Transport Layer Security (TLS). RFC 6125 (Proposed
Standard), March 2011.

[55] Felix Schuster, Manuel Costa, Cedric Fournet, Christos Gkantsidis, Marcus Peinado,
Gloria Mainar-Ruiz, and Mark Russinovich. VC3: Trustworthy Data Analytics in the
Cloud Using SGX. In 36th IEEE Symposium on Security and Privacy, pages 38–54,
May 2015.

[56] Rohit Sinha, Manuel Costa, Akash Lal, Nuno P. Lopes, Sriram Rajamani, Sanjit A.
Seshia, and Kapil Vaswani. A design and verification methodology for secure isolated
regions. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), 2016.

[57] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. Moat: Verifying con-
fidentiality of enclave programs. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2015.

[58] Ryan Sleevi and Mark Watson. Web Cryptography API. W3C candidate recommenda-
tion, W3C, December 2014.

[59] James Staten. The cost of PRISM will be larger than ITIF projects. Forrester Research,
2013.

[60] Paul Stone. Pixel perfect timing attacks with HTML5. Presented at Black Hat USA
2013, 2013.

[61] Raoul Strackx, Bart Jacobs, and Frank Piessens. ICE: A passive, high-speed, state-
continuity scheme. In Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC), 2014.

[62] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach to state continuity.
In Proceedings of the 25th USENIX Security Symposium, 2016.

https://www.rust-lang.org/

BIBLIOGRAPHY 59

[63] Trusted Computing Group. TPM Main Specification, 2011.

[64] Trusted Computing Group. PC client platform, TPM profile (PTP) specification, 2015.

[65] Trusted Computing Group. Trusted platform module library. ISO/IEC 11889:2015,
2015.

[66] Ashlee Vance. This tech bubble is different. Bloomberg Businessweek, April
2011. https://web.archive.org/web/20150202014230/http://www.bloomberg.

com/bw/magazine/content/11_17/b4225060960537.htm.

[67] Johannes Winter. Trusted Computing Building Blocks for Embedded Linux-based ARM
Trustzone Platforms. In Proceedings of the 3rd ACM Workshop on Scalable Trusted
Computing, pages 21–30. ACM, 2008.

[68] Edward Wobber, Mart́ın Abadi, Mike Burrows, and Butler Lampson. Authentication
in the Taos operating system. ACM Trans. Computer Systems, 12(1):3–32, 1994.

[69] Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel Trusted Execution Technology.
Presented at Black Hat DC 2009, 2009.

[70] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems. In Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P), 2015.

[71] Andrew C Yao. Protocols for secure computations. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), 1982.

https://web.archive.org/web/20150202014230/http://www.bloomberg.com/bw/magazine/content/11_17/b4225060960537.htm
https://web.archive.org/web/20150202014230/http://www.bloomberg.com/bw/magazine/content/11_17/b4225060960537.htm

60

Glossary

AT / Attestation Transparency A mechanism providing transparency of the code be-
hind Internet services, making it possible to detect surreptitious service changes. (as
presented in this dissertation, §5)

CA / Certification Authority A principal in PKI trusted with the issuance of certifi-
cates, which bind names to cryptographic public keys.

CT / Certificate Transparency [38] A mechanism providing transparency of certificate
issuance, making it possible to detect incorrectly issued certificates.

EK / Endorsement Key A key embedded in a TPM which is the hardware root-of-trust
for that TPM. Therefore it can be used as the identity of a TPM.

Hugo A framework and programming paradigm for protecting the freshness of persistent
state for long-running services. (as presented in this dissertation, §4)

identity A globally unique and unambiguous identifier for a security principal. When iden-
tifying software, this could be a measurement.

IPC / Inter Process Communication A mechanism for different processes to exchange
information.

(fully) isolated execution An execution environment for software that is isolated from
other processes on the same system such that the integrity of the computation is
guaranteed. This requires a break from the traditional hierarchical privilege model
of modern computing in which the hypervisor or Operating System is strictly more
powerful than the software it is running.

measurement A cryptographic hash of a piece of software as it would be loaded into
memory or executed. Since a change in the software will yield a different hash, a
measurement of software can be used as its identity.

PKI / Public Key Infrastructure A global infrastructure for the verifiable identification
of security principals and their cryptographic public keys using certificates. Certifica-
tion Authorities are tasked with the verification of identities of principals that wish to
obtain such a certificate for identification purposes.

GLOSSARY 61

PMA / Protected Module Architecture Hardware capable of running limited func-
tionality in an isolated execution environment.

remote attestation The ability to prove to third parties that you are running software
with a particular identity on your hardware.

rollback budget The amount of data could potentially be rolled back when an adversary is
trying to subvert the freshness of persistent data. (as presented in this dissertation, §4)

Rust [53] A fast and secure programming language that is capable of low-level control and
high-level abstractions.

SCT / Signed Certificate Timestamp A promise by a CT log that it will publish a
particular certificate in its logs soon.

sealing The authenticated encryption of data with an encryption key based on the identity
of the secure enclave and the platform it is running on.

secure enclave A trusted computing primitive providing fully isolated execution, sealing
and remote attestation.

secure service A service that stores and handles user data securely, preserving its confi-
dentiality and integrity, even in the face of malicious insiders. (as presented in this
dissertation, §3)

SGX / Software Guard Extensions An x86 instruction set extension by Intel, imple-
menting secure enclaves.

TCB / Trusted Computing Base The extent of hardware and software that must be
trusted to maintain its integrity in order to guarantee proper and secure functioning
of a system.

TLS / Transport Layer Security The most widely used protocol for establish secure
communication channels. Its predecessors were known as Secure Sockets Layer (SSL).

TPM / Trusted Platform Module A tamper-resistant cryptographic chip that can be
used to store cryptographic secrets and other information and which can interact with
the CPU of a system to securely capture the execution state of that system.

transparency Providing public information to allow the public to verify proper operation
of processes. See also Attestation Transparency and Certificate Transparency.

unalterable secure service A secure service which can be depended upon to not change
its functionality and therefore its security guarantees. (as presented in this disserta-
tion, §3)

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and related work
	Trustworthy computing
	Verifiable cloud services
	Secure Enclaves
	Intel Software Guard Extensions
	Rollback protection
	Services with untrusted servers
	Certificate Transparency

	Secure services
	Threat model
	Overview
	Interface
	High-level design
	Implementation
	Possible applications

	Rollback protection (Hugo)
	Overview
	Design of Hugo
	Obliviousness
	Counter backends
	Evaluation

	Attestation Transparency
	Overview
	Client verification of secure services
	Attestation Transparency
	Incremental deployment — logs
	Validating enclave identities
	Enclave policies
	Incremental deployment — clients

	Discussion and open research questions
	Limitations
	Adoption

	Conclusion
	Bibliography
	Glossary

