
Distributed machine learning with communication

constraints

Yuchen Zhang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-47

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-47.html

May 11, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Distributed Machine Learning with Communication Constraints

by

Yuchen Zhang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Michael I. Jordan, Co-chair
Professor Martin J. Wainwright, Co-chair

Associate Professor Benjamin Recht
Assistant Professor Aditya Guntuboyina

Spring 2016

Distributed Machine Learning with Communication Constraints

Copyright 2016
by

Yuchen Zhang

1

Abstract

Distributed Machine Learning with Communication Constraints

by

Yuchen Zhang

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Michael I. Jordan, Co-chair

Professor Martin J. Wainwright, Co-chair

Distributed machine learning bridges the traditional fields of distributed systems and ma-
chine learning, nurturing a rich family of research problems. Classical machine learning
algorithms process the data by a single-thread procedure, but as the scale of the dataset
and the complexity of the models grow rapidly, it becomes prohibitively slow to process on a
single machine. The usage of distributed computing involves several fundamental trade-offs.
On one hand, the computation time is reduced by allocating the data to multiple computing
nodes. But since the algorithm is parallelized, there are compromises in terms of accuracy
and communication cost. Such trade-offs puts our interests in the intersection of multiple
areas, including statistical theory, communication complexity theory, information theory and
optimization theory.

In this thesis, we explore theoretical foundations of distributed machine learning under
communication constraints. We study the trade-offs between communication and computa-
tion, as well as the trade-off between communication and learning accuracy. In particular
settings, we are able to design algorithms that don’t compromise on either side. We also
establish fundamental limits that apply to all distributed algorithms. In more detail, this
thesis makes the following contributions:

• We propose communication-efficient algorithms for statistical optimization. These al-
gorithms achieve the best possible statistical accuracy and suffer the least possible
computation overhead.

• We extend the same algorithmic idea to non-parametric regression, proposing an algo-
rithm which also guarantees the optimal statistical rate and superlinearly reduces the
computation time.

• In the general setting of regularized empirical risk minimization, we propose a dis-
tributed optimization algorithm whose communication cost is independent of the data
size, and is only weakly dependent on the number of machines.

2

• We establish lower bounds on the communication complexity of statistical estimation
and linear algebraic operations. These lower bounds characterize the fundamental
limits of any distributed algorithm.

• We design and implement a general framework for parallelizing sequential algorithms.
The framework consists of a programming interface and an execution engine. The
programming interface allows machine learning experts to implement the algorithm
without concerning any detail about the distributed system. The execution engine
automatically parallelizes the algorithm in a communication-efficient manner.

i

To my parents

ii

Contents

Contents ii

I Introduction and background 1

1 Introduction 2
1.1 Motivations . 2
1.2 Trade-offs in distributed computing . 3
1.3 Connections to existing work . 6
1.4 Contributions of this thesis . 11

2 Background 15
2.1 Background on empirical risk minimization 15
2.2 Background on reproducing kernels . 17
2.3 Background on self-concordant functions . 18
2.4 Background on communication complexity 22

II Distributed algorithms 24

3 Divide-and-conquer methods for statistical optimization 25
3.1 Problem set-up . 27
3.2 Theoretical results . 29
3.3 Performance on synthetic data . 37
3.4 Experiments with advertising data . 43
3.5 Proofs of technical results . 47

4 Divide-and-conquer methods for kernel ridge regression 69
4.1 Problem set-up . 70
4.2 Main results and their consequences . 71
4.3 Proofs of the main theorem and related results 77
4.4 Experimental results . 81
4.5 Proofs of technical results . 87

iii

5 Distributed optimization of self-concordant loss 98
5.1 Communication efficiency of distributed convex optimization algorithms . . . 99
5.2 Outline of our approach . 100
5.3 Inexact damped Newton method . 102
5.4 The DiSCO algorithm . 107
5.5 Stochastic analysis . 113
5.6 Numerical experiments . 122
5.7 Proofs of technical results . 126

III Theories of distributed computing 135

6 Communication complexity of statistical estimation 136
6.1 Background and problem set-up . 138
6.2 Main results and their consequences . 141
6.3 Proofs of main results . 147
6.4 Proofs of technical results . 158

7 Communication complexity of matrix rank estimation 171
7.1 Problem formulation . 173
7.2 Bounds for deterministic algorithms . 174
7.3 Bounds for randomized algorithms . 175
7.4 Proofs of main results . 182
7.5 Connections to other problems . 189
7.6 Proof of technical results . 190

IV Distributed systems 194

8 Programming interface for parallelizing stochastic algorithms 195
8.1 Shared and local variables . 197
8.2 Programming with Splash . 198
8.3 Strategy for parallelization . 199
8.4 Convergence analysis . 205
8.5 Experiments . 207
8.6 Technical details . 212

9 Conclusion and future directions 221
9.1 Conclusion on distributed algorithms . 221
9.2 Conclusion on theories of distributed computing 223
9.3 Conclusion on machine learning systems . 223

Bibliography 225

iv

Acknowledgments

There are so many people that I want to sincerely thank for their presence during the five
years of my PhD career. Without their help, I would not have been able to enjoy research and
life at Berkeley as much as I did. I am grateful to be able to acknowledge their contributions
here, and apologize if I forgot to mention some of them in the coming paragraphs.

The two people that influenced me the most are my research advisers: Michael Jordan and
Martin Wainwright. Although both of them are prestigious professors, I got the feeling that
they are my peers during the discussion of research problems — they are extremely friendly,
patient, open-minded and curious to new ideas. The culture in Mike and Martin’s groups is
unique. I was encouraged by both advisers to pursue different research directions, and enjoy
the complete freedom to choose topics that interest me. During my earlier years at Berkeley,
I was surprised to find out that the group’s interests are so diversified, that it is difficult to
describe my advisers’ research field in short words. Later I realized that it was this vibrant
culture that creates an ideal environment for conducting high-quality research. Outside of
the academic world, I got enormous positive energy from my advisers regarding the attitude
towards life. Mike taught me to make career decisions following my internal passion, instead
of driven by secondary factors such as money or people’s perspective. Martin convinced me
of the same thing during our chats in his office and at the restaurant. In addition, both of
them demonstrated me the ideal way of securing a work-life balance.

I also want to thank John Duchi, who helped me so much during my first two years at
Berkeley when both of us were members of Mike and Martin’s group. As a junior graduate
student, I had very little idea on research, writing and presentation. It was John who guided
me to take the first step, and until now he is my role model in being a successful young
researcher. In addition, I would like to thank Pieter Abbeel who was my temporary adviser
for the first year, and Aditya Guntuboyina, who meets me regularly every week to teach me
tons of statistics.

I had three wonderful internships at Google, Microsoft Research and Baidu. I must thank
my mentor Vanja Josifovski at Google, who shared his great insight with me in addressing
real problems. I appreciated the constructive discussions with Alex Smola and Amr Ahmed.
At Microsoft, I enjoyed a wonderful summer internship with Lin Xiao. Lin is extremely
nice, humorous, and always has a sharp theoretical insight. The collaboration with Lin has
renewed my understanding on the field of optimization. I also thank Denny Zhou, who is a
fantastic collaborator and friend at MSR. At Baidu, I want to thank my mentor Lin Yan and
all colleagues in the fresh-search team. Although the internship was short, I have learnt a lot
in contributing to real products. I am also grateful for Baidu for funding my PhD through
scholarships.

I own credit to many people who are at Berkeley and who used to be at Berkeley. First,
I want to express gratitude for the collaboration with Xi Chen. Xi is not only a great
collaborator, but also a great friend who shared with me his invaluable understandings on
the academic job market. I also want to thank Sivaraman Balakrishnan, Chi Jin and Jason
Lee. It was a great pleasure to work with you guys on theoretical problems. I am grateful

v

for Ben Recht for being the chair of my Qual Exam committee and standing in my thesis
committee, and for providing extremely useful feedbacks. I would like to thank my peer
fellows in the EECS department and the Statistics department: Andre Wibisono, Xinghao
Pan, Robert Nishihara, Philipp Moritz, Ahmed El Alaoui, Nihar Shah, Mert Pilanci, Yuting
Wei, Fanny Yang, Aaditya Ramdas, Yudong Chen and Yun Yang: I have learnt much from
every one of you. I want to thank my roommate, Qi Zhang, for our endless debates have
made the life so much fun.

Finally, I cannot find the right words to thank my parents who have loved and supported
me throughout this PhD. If it weren’t for their constant motivation and belief, I would have
probably never made this far and I owe all my success to them. A very special thanks to Wei,
I am very fortunate to have your love and support, as well as your companion in Beijing,
San Francisco Bay Area, Lijiang, Japan and New York.

1

Part I

Introduction and background

2

Chapter 1

Introduction

The marriage of distributed computing and machine learning nurtures a rich family of re-
search problems. On one side, since traditional distributed systems were designed to serve as
a general computing platform, distributed computing theorists study relevant topics — com-
munication complexity [110], consensus [112, 111] and coding theory [19] — to understand
the properties of such systems. On the other side, machine learning researchers care about
finding regular patterns from noisy datasets, thus this necessities the study of statistical the-
ory [74, 205], information theory [53] and optimization algorithms [154]. Distributed machine
learning bridges the two fields, thus puts our interests in the intersection of the above two
groups of topics. In this thesis, we explore the theoretical foundation of distributed machine
learning, and in particular show how theoretical understanding leads to novel algorithms and
practical systems.

1.1 Motivations

Machine learning techniques have helped scientists to discover principles of the nature which
were often hidden behind large amounts of noisy observations. For instance, the Large
Hadron Collider (LHC) was built to record collisions between protons and ions, which happen
billions of times per second. Scientists are interested in some particular physics process, such
as when a Higgs boson decaying into two tau particles, but this decay is a small signal buried
in background noise. Machine learning techniques can help identifying such subtle events
from the overwhelmingly noisy observations [212, 3]. Machine learning was also heavily used
to process satellite data in atmospheric physics [108], and to analyze the genome sequencing
data in genomics [51, 123].

The common character of the above applications is their need to process massive amount
of data. Since the datasets are automatically collected, they easily reach terabytes or
petabytes in scale. For example, the worldwide LHC computing grid can generate one
petabyte of data per month [193], taking up to 250,000 standard DVDs to record. As an-
other example, the size of sequencing data generated on human genomes will reach 250

3

petabytes in 3-5 years [61]. Even a subset of these datasets cannot fit into a single computer.
Thus, distributed computing becomes an inevitable choice.

The same scalability issue arises in the artificial intelligence research where the Inter-
net serves as a major data source. For instance, to learn a ranking function for a search
engine, the learning algorithm resorts to the search logs that were collected from billions
of users [36, 165, 44]. Storing and processing such large-scale data necessitates distributed
computing. In applications like computer vision and natural language processing, researchers
train very complex models that involves billions of parameters, such as convolutional neu-
ral networks for image classification [109, 201, 194] or long-short term memory models for
machine translation [90, 11]. Distributed machine learning algorithms are employed to learn
such models across thousands of machines [57, 46, 1, 148].

Traditionally, the performance of machine learning algorithms have been evaluated in
two dimensions. The first is the statistical accuracy, measuring how close the acquired
knowledge is to the truth, or how accurate the prediction is made on new instances. The
second is the computational efficiency, measured by the CPU time on a single processor.
The study of distributed machine learning adds a third dimension called communication
efficiency. It measures the overhead of exchanging messages across the network. Studies
on a variety of distributed computing platforms confirm that communication can become
a significant bottleneck on algorithmic efficiency [218, 178, 140, 40, 70]. In particular, the
overhead for a single message exchange can be long enough for thousands or more floating-
point operations [218]. Without a carefully designed protocol, the communication time will
dominate the computation time.

In this thesis, we study algorithms, theories and systems for machine learning when the
communication efficiency is a constraint. We examine how the classical design and analysis
of learning algorithms can often fail to address the challenge of distributed computing, then
we seek to obtain new solutions to address the challenge, as well as rigorous theoretical
interpretation to these solutions.

1.2 Trade-offs in distributed computing

Given the distributed nature of the system, there are fundamental trade-offs which must be
taken into account. In this section, we interpret how these trade-offs correspond to critical
challenges that we will address in this thesis.

1.2.1 Communication versus computation

There is an fundamental trade-off between computation and communication. Indeed, when
a sequential algorithm is parallelized across multiple machines, all computing nodes need to
synchronize their states during the execution of the algorithm, which incurs communication
cost. Although parallelization reduces the computation time, it often incurs nonneglible
communication overhead.

4

We illustrate this trade-off using a concrete example. A typical example is the application
of the stochastic gradient descent (SGD). Suppose that we want to minimize an objective
function f : Θ → R with respect to parameter θ ∈ Θ. The SGD algorithm starts from a
fixed initial parameter θ(0). At iteration t, it takes a noisy gradient vector gt with respect to
the parameter θ(t), such that E[gt] = ∇f(θ(t)), then the algorithm updates the vector by:

θ(t+1) = θ(t) − ηtgt, (1.1)

where ηt is the stepsize of iteration t. Typically, the SGD algorithm terminates when the
parameter θ(t) converges to a stationary point.

Typically SGD takes a large number of iterations to converge. To utilize the computation
power of a distributed system, we want to perform the update formula (1.1) in parallel. More
precisely, we consider the following approach: at the t-th iteration, every machine computes
an independent copy of the noisy gradient based on its local data. The stochastic gradient is
then computed as an average of local noisy gradients: g(t) = 1

m

∑m
i=1 g

(t)
i where g

(t)
i represents

the noisy gradient on the i-th machine. Since averaging reduces the variance, if m > 1, then
the averaged gradient g(t) will have less variance than any of the local gradients. It is known
that using gradients with reduced variance accelerates the SGD convergence [see e.g. 59].
Thus, for achieving any pre-specified error bound, the computation time of SGD will be
reduced by using m > 1 machines.

However, since computing the averaged gradient g(t) requires aggregating the local infor-
mation on m machines, it is necessary for these machines to synchronize. At each iteration,
the noisy gradients are aggregated at a master node, then the updated parameter is broad-
casted from the master node to all machines. Since each round of communication is an
all-reduce operation [56], it can be implemented in O(m) time for star-shaped networks, or
in O(log(m)) time for fully connected networks. In either case, the communication time
grows with the number of machines. It means that the more parallel machines we use, the
less iterations that SGD requires to converge to a desired accuracy, but the more time that
we have to spend on communication.

The communication overhead can become a severe performance bottleneck on commodity
clusters. For example, an Amazon EC2 node takes a few micro-seconds to process a single
data point for SGD, but it takes hundreds of micro-seconds to perform one round of map-
reduce operation. Thus, if the stochastic gradients are computed on single data points, then
the time of communication will be two orders-of-magnitude greater than that of computation.
This phenomenon raises open questions on algorithm design. If we want to fully utilize
the computation resource in a distributed system, we have to be careful in preserving the
communication efficiency.

1.2.2 Communication versus accuracy

Even without the concern of computation overhead, there is a trade-off between the commu-
nication cost and the statistical accuracy. This is because that communication is an essential

5

step to aggregate useful information across separate locations. Let’s consider examples in
a typical statistical estimation setting. In this setting, the data is stored on multiple ma-
chines, but they are are i.i.d. drawn from a common distribution Pθ, where θ is a parameter
that characterizes the properties of the distribution. The goal of statistical estimation is
to estimate θ. Without communication, the estimation can be performed on a single ma-
chine. It can still be a reasonable estimation because the data is identically distributed on
all machines. However, the small amount of local data makes the estimation less accurate.
To achieve a high accuracy, it is necessary to aggregate information across machines, which
incurs communication cost. If the communication cost is a main bottleneck on algorithmic
efficiency, then we want to impose a budget B on communication. More precisely, at most B
bits of data is allowed to be exchanged across the network. Under this constraint, we want
to answer the following question: what is the best possible accuracy that can be achieved for
statistical estimation? And further more, what is the algorithm that achieves this optimal
rate?

The trade-off between communication and accuracy is a more practical concern when the
data is high-dimensional. For a concrete example, suppose that a design matrix X ∈ R

n×d

is stored separately on many machines, where n is the number of data points and d is the
dimension of each point. The goal is to compute the rank of X in order to explore the
structure of the data. Although the computation result can be encoded in O(log(d)) bits,
the communication cost is substantially higher than that. In particular, we assume that the
i-th machine has ni data points, so that its local design matrix is Xi ∈ R

ni×d. A simple
algorithm is the following: the i-th machine computes the covariance matrix XT

i Xi and send
it to the master node, then the master node aggregates the local covariance matrices to
compute XTX, using which the rank of X is obtained. Although this algorithm computes
the exact rank of the matirx, its communication cost is O(d2), which might be too expensive
for large d. To give the reader a concrete idea of how expensive it is, the URL Reputation
dataset in the UCI machine learning repository [28] contains n = 2, 396, 130 data points
with d = 3, 231, 961 dimensions. As a result, roughly 10 trillion matrix entries will be
communicated. An alternative algorithm is to transmit all data points to a single node
to compute the rank, but it is still communication inefficient. Given the situation, it is
reasonable to consider approximate algorithms, which allows the result to be inexact, but is
a good enough approximation to the exact rank. Again, we want to impose a budget B on
the total number of bits exchanged across the network, and asking what is the best possible
approximation rate under the communication constraint.

1.2.3 Efficiency versus ease of implementation

Another important trade-off is between the algorithmic efficiency and the ease of imple-
mentation. Remember that to implement a distributed algorithm, one has to manage the
collaboration between all computing nodes in the distributed system. Converting an existing
single-thread algorithm to a distributed algorithm is challenging, even given pre-implemented
message passing interfaces [e.g. 79, 215]. This is because that many decisions must be cor-

6

rectly made to build an efficient implementation. These decisions include the design of the
data partitioning scheme, the design of communication protocols and conflict management,
fault tolerance, etc. Thus, it is desirable to have a general and user-friendly programming
interface that can convert existing algorithms to parallellized algorithms. In addition, there
should be an execution engine that can efficiently execute the converted algorithms on a
distributed system.

1.3 Connections to existing work

In this section, we survey some of the existing lines of research that explore themes related
to the work in this thesis. Since the topics covered by this thesis are broad, we will start by
surveying the core problem – distributed statistical optimization. Then we review related ar-
eas, including non-parametric regression, minimax theory, communication complexity theory
and machine learning systems.

1.3.1 Distributed statistical optimization

Many machine learning tasks can be formulated as a statistical optimization problem. Given
the following objective function:

f(θ) =
1

n

n∑

j=1

φ(θ; zj), (1.2)

the goal is to find a minimizer of the population risk E[f(θ)], where the expectation is taken
with respect to the random data points zj. Here, the data points {zj}nj=1 are i.i.d. sampled
from an underlying distribution. The function φ(·; zj) is the loss function on the j-th data
point. For example, we obtain linear regression if φ is chosen as the least-square loss; we
obtain logistic regression or support vector machine if φ is chosen as the logistic loss or the
hinge loss.

Since the population risk E[f(θ)] is unavailable, a popular work-around is to compute a
minimizer of the empirical function f . This approach is called empirical risk minimization
(ERM) and it is well-studied in literature. In particular, approaches based on VC theory [208,
207], metric entropy [105, 74], Rademacher and Gaussian complexities [16, 117, 202] have all
contributed to characterizing the statistical property of the empirical risk minimizer.

If the function φ(θ; z) is convex respective to θ, then the empirical risk minimizer can
be computed via convex optimization methods. Among other algorithms, the full gradient
method and its accelerated variants [156, 180, 17, 155] are easy to parallelize under the map-
reduce framework. But for objective functions with large condition numbers (see definition
in Section 1.4.4), these methods often requires taking many passes over the data before
converging to a satisfactory accuracy. It thus makes them less efficient in processing large-
scale datasets. The stochastic gradient method and its variants [226, 31, 195, 114, 216]

7

achieves the same accuracy by taking a substantial less number of passes over the data. But
because of the incremental nature of these algorithms, each individual update relies on the
outcome of all previous updates, which makes them difficult to parallelize.

Recent years witnessed a flurry of research on distributed approaches to solving large-scale
statistical optimization problems. Nedić and Ozdaglar [151], Ram et al. [168] and Johansson
et al. [98] studied incremental sub-gradient methods, which involve every machine minimiz-
ing its own objective function while exchanging information locally with other machines in
the network over a time-varying topology. Duchi et al. [64] studied a distributed dual av-
eraging algorithm. Dekel et al. [59] proposed a mini-batch training approach to accelerate
the optimization on smooth functions, and Duchi et al. [65] extended the method to nons-
mooth optimization. Recht et al. [172] and Agarwal and Duchi [4] studied the parallelized
SGD algorithm with asynchronous communication. Jaggi et al. [97] proposed a distributed
dual coordinate ascent algorithm. Shamir et al. [189] proposed a distributed approximate
newton-type method, which communicates like a first-order method, but converges like a
second-order method for quadratic optimization.

Despite the rich literature, most algorithms involve high communication cost. In partic-
ular, their iteration complexity have similar or worse dependency on the condition number
as the classical accelerated gradient method. This suggests researchers to look into further
structures of the problem. In statistical optimization setting, we have made the critical
assumption that the data points {zj}nj=1 are i.i.d. sampled. Under this assumption, we will
present novel alogrithms that enjoy better communication efficiency, both in theory and in
practice.

1.3.2 Non-parametric regression

Non-parametric regression is a classical problem in machine learning and statistics. The
goal is to fit an “infinite dimensional” model, such as a function, from a finite dataset. This
topic is interesting to the theme of this thesis, because the traditional algorithms for non-
parametric methods are often computationally expensive, thus using distributed computing
may substantially improve the computation efficiency.

The goal of non-parametric regression is to find a function f ∈ F which minimizes the
population risk E[(f(x) − y)2]. Here, we assume that the pair (x, y) are randomly sampled
from an underlying distribution, and the function f belongs to a predefined function class F .
When the population risk is usually unavailable, one computes an estimate of function f
based on a finite set of n samples. Researchers have studied a wide range of such estimators
(see the books by Gyorfi et al. [82], Wasserman [211] and van de Geer [74] for examples).
One class of methods, known as regularized M-estimators [74], are based on minimizing a
regularized version of the empirical risk. If the function class F is a reproducing kernel
Hilbert space (RKHS), then the corresponding non-parametric regression problem is called
kernel ridge regression (KRR). It is one of the most widely-used non-parametric method in
practice [see e.g. 87, 192].

8

The standard implementation of KRR requires O(n2) time and O(n3) memory, which is
prohibitively expensive for large sample size n. As a consequence, approximations have been
designed to avoid the expense of finding an exact minimizer. One family of approaches is
based on low-rank approximation of the kernel matrix; examples include kernel PCA [183],
the incomplete Cholesky decomposition [71], or Nystrom sampling [213]. These methods
reduce the time complexity to O(dn2) or O(d2n) where d≪ n is the preserved rank. In this
thesis, we propose a communication-efficient distributed algorithm for solving this problem.
The algorithm has rigorous theoretical guarantees, and enjoys better computation efficiency
then existing approaches.

1.3.3 Minimax theory

The fundamental limit of statistical estimation has been studied by the minimax theory. We
review the related literature as it is relavant to our study of fundamental limits under the
communication constraint.

In a statistical estimation setting, the data points are sampled from an underlying dis-
tribution Pθ ∈ P characterized by the parameter θ. The goal is to estimate θ based on the
data points. The minimax error of an estimation problem can be described in the following
game-theoretic setting: the statistician chooses an optimal data-based estimator θ̂, then the
adversary chooses a worst-case parameter θ so that the distribution Pθ generates the data
Z ∈ Zn consisting of n i.i.d. samples. The minimax error is then defined as:

Mn(P ,Θ) := inf
θ̂

sup
θ∈Θ

Eθ[‖θ̂(Z)− θ‖22]. (1.3)

There are a variety of techniques for providing lower bounds on the minimax risk (1.3).
These techniques use information theoretic arguments to prove that, as long as the sample
size n is finite, the data doesn’t provide sufficient information to distinguish the true pa-
rameter θ with some alternative parameter θ′ which is close to θ. As a consequence, any
estimator suffers a positive estimation error. When the lower bound on the minimax error is
tight (when it matches the upper bound achieved by a concrete estimator), it characterizes
the intrinsic hardness of the estimation problem.

The minimax error can be lower bounded by several techniques, including the classicial Le
Cam’s method [115, 223]. The Le Cam’s method reduces the parameter estimation problem
to a binary hypothesis testing problem, then uses an information theoretic argument to
establish a lower bound on the testing error. A more general method for lower bounding the
testing error is based on Fano’s method, beginning with the pioneering work of Hasminskii
and Ibragimov [104, 96], and followed by more recent works in a variety of settings [e.g.
24, 223, 219, 25, 170, 81, 37]. Fano’s method is often more general than the Le Cam’s
method because it is capable of addressing multiple-hypothesis testing. In special settings,
the Assouads lemma [7] is also a useful tool for proving minimax lower bounds. See Yu’s
paper [223] for a comprehensive survey on Le Cam’s method, Fano’s method and Assound’s
lemma.

9

In this thesis, we borrow ideas from the minimax theory, but the problem to be solved is
different. In the classical setting (i.e., equation (1.3)), the estimator θ̂ can perform arbitrary
computation on the data Z. In our setting, the data is separately stored, thus computing
θ̂ involves inter-machine communication. We are interested in characterizing the minimax
error rate under a pre-defined communication constraint.

1.3.4 Communication complexity theory

The research on communication complexity has a long history, dating back to the seminal
work of Yao [221] and Abelson [2]. In the basic setting of communication complexity, two
players Alice and Bob wish to compute a function f : X × Y → {0, 1} where X and Y are
arbitrary finite sets. Alice holds an input x ∈ X, Bob y ∈ Y , and they wish to evaluate
f(x, y) while minimizing the number of bits communicated. See the books by Kushilevitz
and Nisan [110], Lee and Shraibman [118] and Hromkovič [94] for a complete survey on this
topic.

In this thesis, we are interested in a particular case: the inputs are matrices and the
output is a linear algebraic function on the matrix. For example, suppose that, x and y are
n-by-n matrices and the function f is the rank of the matrix x + y. Note that the rank
of the matrix can be encoded in O(log(n)) bits, but the communication cost for computing
this rank may be substantially higher than that. Bounding the communication complexity
is challenging because the target function has no closed-form expression.

Characterizing the communication complexity of linear algebraic operations is a funda-
mental question, and here we review existing literatures. For the problem of rank testing,
Chu and Schnitger [47, 48] prove the Ω(n2) communication complexity lower bound for de-
terministically testing the singularity of integer-valued matrices. A successful algorithm for
this task is required to distinguish two types of matrices—the singular matrices and the non-
singular matrices with arbitrarily small eigenvalues—a requirement that is often too severe
for practical applications. Luo and Tsitsiklis [135] prove an Ω(n2) lower bound for computing
one entry of A−1, applicable to exact algorithms (with no form of error allowed). However,
the lower bound doesn’t apply to approximate algorithms which are widely used in practice.
For randomized algorithms, Li et al. [200, 122] prove Ω(n2) lower bounds for the problems
of rank testing, computing a matrix inverse, and solving a set of linear equations over finite
fields. To the best of our knowledge, it is not known whether the same lower bounds hold
for matrices in the real field. In other related work, Clarkson and Woodruff [49] give an
Ω(r2) space lower bound in the streaming model for distinguishing between matrices of rank
r and r − 1. However, such a space lower bound in the streaming model does not imply a
communication complexity lower bound in the interactive communication model studied in
this thesis.

In this thesis, we establish upper and lower bound for computing the rank of a dis-
tributively stored matrix. We allow the algorithm to output approximate solutions. In
this setting, there is an algorithm achieving much better communication efficiency than the
lower bounds mentioned above. We also establish lower bounds that matches the new upper

10

bound, and demonstrate that the performance gap between deterministic algorithms and
randomized algorithms is big.

1.3.5 Distributed machine learning systems

Distributed machine learning systems have been implemented for a variety of applications
and are based on different programming paradigms. Related frameworks include param-
eter servers [164, 57, 6, 121], Petuum [217], Naiad [149] and GraphLab [131]. There are
also machine learning systems built on existing platforms, including Mahout [73] based on
Hadoop [72] and MLI [196] based on Apache Spark [224]. These systems provide simple
programming interfaces, so that the user can implement an efficient distributed algorithm
without dealing with low-level communication protocols.

Most of these frameworks are efficient in parallelizing batch algorithms, that is, the algo-
rithm which processes a large bulk of data points in every iteration. If the batch is big, then
the computation time will be higher than the communication time, so that communication
will no longer be an efficiency bottleneck. However, none of these systems are explicitly de-
signed for parallelizing (sequential) stochastic algorithms (e.g. SGD), which are most popular
for processing large-scale datasets. Stochastic algorithms are difficult to parallelize because
the algorithmic step on every data point relies on the outcome of processing all previous
data points. One contribution of this thesis will be designing a user-friendly programming
interface for parallelizing stochastic algroithms on Apache Spark [224].

Before presenting our framework, we provide a detailed review of existing works. Ma-
hout and MLI, both adopting the iterative MapReduce [56] framework, are designed for batch
algorithms. The parameter servers, Petuum and Naiad provide user-definable update primi-
tives such as (get, set) on variables or (pull, push) on messages, under which a distributed
stochastic algorithm can be implemented. However, a typical stochastic algorithm updates
its parameters in every iteration, which involves expensive inter-node communication. In
practice, we found that the per-iteration computation usually takes a few microseconds, but
pushing an update from one Amazon EC2 node to another takes milliseconds. Thus, the
communication cost dominates the computation cost. If the communication is asynchronous,
then the algorithm will easily diverge because of the significant latency.

GraphLab asynchronously schedules communication using a graph abstraction, which
guarantees the serializability of the algorithm. Many stochastic algorithms can be written
as a graph-based program. For the SGD algorithm, one constructs a vertex for every sample
and every feature, and connects an edge between the vertices if the sample processes a
particular feature. However, when the individual feature is shared among many samples,
running SGD on this graph will cause many conflicts, which significantly restricts the degree
of parallelism. Such a paradigm is efficient only if the feature is very sparse.

11

1.4 Contributions of this thesis

This section highlights our contribution to address the challenges in Section 1.2. At high
level, the goal of this thesis is to solve the following problems:

• Designing communication-efficient algorithms for machine learning. The algorithm
should be able to achieve optimal statistical accuracy, utilizing the power of distributed
computing to reduce the computation overhead, and make sure that the communication
overhead won’t be an efficiency bottleneck.

• Characterizing the fundamental trade-offs between communication and accuracy. For a
pre-specified communication budget, we want to characterize the best possible accuracy
that can be achieved by any algoithm satisfying the budget constraint.

• Designing and implementing a programming paradigm for distributed computing, so
that the machine learning experts can implement their favorite algorithms without
knowing details about the distributed system. The system should be able to automat-
ically parallelize the algorithm in a communication efficient manner.

To achieve the goals of this thesis, we present novel algorithms, theories and systems.
The rest of this section describes the details of our contribution.

1.4.1 Distributed algorithms

The first two chapters are devoted to divide-and-conquer methods. Divide-and-conquer
is a natural approach to distributed computation. It splits a big problem into smaller sub-
problems, solving them separately before merging into a global solution. It is a communication-
efficient approach because the algorithm requires only one round of synchronization at the
end. However, the merged solution is not equal to the solution computed by a centralized
program, thus the algorithm usually suffers sub-optimal performance.

Perhaps the simplest divide-and-conquer algorithm for distributed statistical optimiza-
tion is what we term the average mixture (Avgm) algorithm. It is an appealingly simple
method: given m different machines and a dataset of size N , first assign to each machine
a (distinct) dataset of size n = N/m, then have each machine i compute the empirical
minimizer θi on its fraction of the data, and finally average all the parameter estimates θi
across the machines. This approach has been studied for some classification and estimation
problems by Mcdonald et al. [142] and McDonald et al. [143], as well as for certain stochastic
approximation methods by Zinkevich et al. [238]. To the best of our knowledge, however, no
work has shown rigorously that the Avgm procedure generally has greater efficiency than
the naive approach of using n = N/m samples on a single machine.

In Chapter 3, we present two main results for divide-and-conquer statistical optimization.
First, we provide a sharp analysis of the Avgm algorithm, showing that under a reasonable
set of conditions on the population risk, and under the condition that m < n, it can achieve

12

the optimal statistical accuracy using all N samples. Second, we develop a novel extension
of simple averaging. It is based on an appropriate form of resampling [68, 84, 161], which
we refer to as the subsampled average mixture (Savgm) approach. At a high level, the
Savgm algorithm distributes samples evenly among m processors or computers as before,
but instead of simply returning the empirical minimizer, each processor further subsamples
its own dataset in order to estimate the bias of its own estimate, and returns a subsample-
corrected estimate. We establish that the Savgm algorithm has mean-squared error decaying
as O(m−1n−1+n−3). As long as m < n2, the subsampled method again matches the optimal
statistical rate. Thus the Savgm method is more robust to a high degree of parallelism
than Avgm. The theories presented in this section are complemented by experiments on a
large-scale click prediction problem.

In Chapter 4, we extend the idea of divide-and-conquer to non-parametric regression.
The algorithm is still simple: we partition the dataset of size N randomly into m equal sized
subsets, and we compute the kernel ridge regression estimate f̂i for each of the i = 1, . . . ,m
subsets independently, with a careful choice of the regularization parameter. The estimates
are then averaged via f̄ = (1/m)

∑m
i=1 f̂i. Our main theoretical result gives conditions under

which the average f̄ achieves the minimax rate of convergence over the underlying Hilbert
space. Even using naive implementations of KRR and with single-thread computing, this
decomposition gives time and memory complexity scaling as O(N3/m2) and O(N2/m2), re-
spectively, while the traditional algorithm requires O(N3) and O(N2) time and space (see
Section 1.3.2). As concrete examples, our theory guarantees that the number of subsets
m may grow nearly linearly for finite-rank or Gaussian kernels and polynomially in N for
Sobolev spaces, which in turn allows for substantial reductions in computational cost. Our
approach dovetails naturally with parallel and distributed computation: we are guaran-
teed superlinear speedup with m parallel processors (though we must still communicate the
function estimates from each processor). The theoretical results are complemented by exper-
iments on the Yahoo! music year prediction problem, which confirms that the new algorithm
is orders-of-magnitude faster than the traditional approach for KRR.

In Chapter 5, we explore a more general setting of statistical optimization where the as-
sumptions made in Chapter 3 fails. In particular, the Avgm algorithm requires the objective
function to be strongly convex. Here, we consider a more general setup, where the objective
function is not strongly convex but regularized by the squared ℓ2-norm. The regularization
parameter is decreasing at the rate 1/

√
N as in the standard setting of supervised learning.

In this setting, the Avgm algorithm will suffer from sub-optimal performance. In this chap-
ter, we propose a communication-efficient distributed algorithm called DiSCO to minimize
the regularized loss. We analyze its iteration complexity and communication efficiency, and
discuss the results for distributed ridge regression, logistic regression and binary classification
with a smoothed hinge loss. We prove that the required number of communication rounds of
the algorithm does not increase with the sample size, and only grows slowly with the number
of machines. Experiments confirm that, the DiSCO algorithm achieves the state-of-the-art
efficiency on large-scale distributed optimization, outperforming the ADMM algorithm [34],
the accelerated full gradient method [156], and the L-BFGS quasi-Newton method [159].

13

1.4.2 Theories of distributed computing

While there is a rich literature on statistical minimax theory [e.g. 96, 223, 219, 205], little
of it characterizes the effects of limiting communication. In other areas, ranging from theo-
retical computer science [221, 2, 110], decentralized detection and estimation [204, 136], to
information theory [e.g. 85, 69], there is a substantial literature on communication complex-
ity, but they don’t share the same setups as in machine learning problems. Our theoretical
results targets at bridging this gap.

In Chapter 6, we formulate and study the problem of distributed statistical estimation.
We consider two variants, one based on protocols that engage in only a single round of
message-passing, and the other based on interactive protocols that can use multiple rounds of
communication. The main question of interest is the following: how must the communication
budget B scale as a function of the sample size n at each machine, the total number of
machines m, and the problem dimension d so that the distributed protocol matches the
accuracy of the best centralized estimator?

A trivial lower bound on the communication budget is the number of bits reqiured to
encode the problem solution. However, for some important problems, we demonstrate that
the communication requirement must be exponentially greater. For example, we show that
for problems such as location estimation in Gaussian and binomial families, the amount of
communication must scale linearly in the product dm of the dimension number of machines
m, which is exponentially larger than the O(d logm) bits required to specify the problem
or communicate its solution. The same conclusion can be extended to linear regression and
probit regression. To exhibit these gaps, we provide lower bounds using novel information-
theoretic techniques. We also establish sharp upper bounds to demonstrate the tightness of
the lower bounds.

In Chapter 7, we study an alternative setting, where the goal is to compute the generalized
rank of a matrix: given an n × n matrix and a constant c ≥ 0, estimate the number of
eigenvalues that are greater than c. We demonstrate that the rank estimation problem is of
essential importance in practice, and it is connected to several other important problems in
linear algebra and convex optimization. In the distributed setting, the matrix of interest is
the sum of m matrices held by separate machines. The question is how many bits have to
be communicated to yield a good enough approximate solution. Differing from traditional
communication complexity setups, the quantity that we compute here doesn’t have a closed
form expression.

For this seemingly simple problem, we show that any deterministic algorithm must com-
municate Ω(n2) bits, which is order-equivalent to transmitting the whole matrix. It implies
that no deterministic algorithm can be communication efficient. In contrast, we propose
a randomized algorithm that communicates only O(n) bits. We demonstrate the sharp-
ness of the upper bound by proving a Ω(n) lower bound on the randomized communication
complexity.

14

1.4.3 Distributed systems

As described in Section 1.3.5, stochastic algorithms are efficient approaches to solving ma-
chine learning and optimization problems, but no existing distributed machine learning
framework is explicitly designed for parallelizing stochastic algorithms. In Chapter 8, we
present a general framework called Splash for parallelizing stochastic algorithms on multi-
node distributed systems. Splash consists of a programming interface and an execution
engine. Using the programming interface, the user develops sequential stochastic algorithms
without concerning any detail about distributed computing. The algorithm is then auto-
matically parallelized by a communication-efficient execution engine.

Theoretically, we prove that Splash achieves the optimal rate of convergence for par-
allelizing SGD, assuming that the objective function is smooth and strongly convex. We
conduct extensive experiments on a variety of stochastic algorithms, including algorithms
for logistic regression, collaborative filtering and topic modeling. The experiments verify
that Splash can yield orders-of-magnitude speedups over single-thread stochastic algorithms
and over state-of-the-art batch algorithms.

Besides its performance, Splash is a contribution on the distributed computing systems
front, providing a flexible interface for the implementation of stochastic algorithms. We build
Splash on top of Apache Spark [224], a popular distributed data-processing framework for
batch algorithms. Splash takes the standard Resilient Distributed Dataset (RDD) of Spark
as input and generates an RDD as output. The data structure also supports default RDD
operators such as Map and Reduce, ensuring convenient interaction with Spark. Because
of this integration, Splash works seamlessly with other data analytics tools in the Spark
ecosystem, enabling a single system to address the entire analytics pipeline.

1.4.4 Previously published works

The results in this thesis are based on the previously published works with several collab-
orators. Chapter 3 and Chapter 4 are based on joint works with John Duchi and Martin
Wainwright [231, 233]. Chapter 5 is a joint work with Lin Xiao [230]. Chapter 6 is based
on a joint work with John Duchi, Michael Jordan and Martin Wainwright [232]. Chapter 7
is based on a joint work with Michael Jordan and Martin Wainwright [234]. Chapter 8 is a
joint work with Michael Jordan [228].

15

Chapter 2

Background

In this chapter, we set up concepts and backgrounds that will be frequently used throughout
the thesis. The primary goal is to present high-level concepts and lemmas that serve as
a preliminary for a broad class of problems. In later chapters, the formulation of specific
problems will be presented in more details. The reader is encouraged to read this chapter
before delving into the technical details of later chapters.

2.1 Background on empirical risk minimization

In many chapters of this thesis, we will be focusing on the empirical risk minimization (ERM)
approach for solving statistical optimization problems. Consider the problem

minimize
θ∈Rd

Ez[φ(θ, z)], (2.1)

where z is a random vector whose probability distribution is supported on a set Z ⊂ R
p, and

the cost function φ : Rd × Z → R is convex in θ for every z ∈ Z. The expected objective
function f0 := Ez[φ(θ, z)] is referred to as the population risk.

In general, evaluating the expected objective function with respect to z is intractable,
even if the distribution is given. The idea of ERM is to approximate the solution to (2.1)
by solving a deterministic problem defined over a large number of i.i.d. (independent and
identically distributed) samples generated from the distribution of z [see, e.g. 191, Chapter 5].
Suppose our distributed computing system consists of m machines, and each has access to n
samples zi,1, . . . , zi,n, for i = 1, . . . ,m. Then each machine can evaluate a local empirical loss
function

fi(θ) =:
1

n

n∑

j=1

φ(θ, zi,j), i = 1, . . . ,m.

Our goal is to minimize the overall empirical loss defined with all mn samples:

f(θ) =:
1

m

m∑

i=1

fi(θ) =
1

mn

m∑

i=1

n∑

j=1

φ(θ, zi,j). (2.2)

16

Examples As a concrete example, we consider ERM of linear predictors for supervised
learning. In this case, each sample has the form zi,j = (xi,j, yi,j) ∈ R

d+1, where xi,j ∈ R
d is a

feature vector and yi,j can be a target response in R (for regression) or a discrete label (for
classification). Examples of the loss function include

• linear regression: x ∈ R
d, y ∈ R, and φ(θ, (x, y)) = (y − θTx)2.

• logistic regression: x ∈ R
d, y ∈ {+1,−1}, and φ(θ, (x, y)) = log(1 + exp(−y(θTx))).

• hinge loss: x ∈ R
d, y ∈ {+1,−1}, and φ(θ, (x, y)) = max

{
0, 1− y(θTx)

}
.

For stability and generalization purposes, we often add a regularization term (λ/2)‖θ‖22 to
make the empirical loss function strongly convex. More specifically, we modify the definition
of fi(θ) as

fi(θ) =:
1

n

n∑

j=1

φ(θ, zi,j) +
λ

2
‖θ‖22, i = 1, . . . ,m. (2.3)

For example, when φ is the hinge loss, this formulation yields the support-vector machine [52].

Notations Before continuing, we define the general notations that will be used in solving
ERM. We use ℓ2 to denote the usual Euclidean norm ‖θ‖2 = (

∑d
j=1 θ

2
j)

1
2 . The ℓ2-operator

norm of a matrix A ∈ R
d1×d2 is its maximum singular value, defined by

|||A|||2 := sup
v∈Rd2 ,‖v‖2≤1

‖Av‖2.

A convex function f is λ-strongly convex on a set U ⊆ R
d if for arbitrary u, v ∈ U we have

f(u) ≥ f(v) + 〈∇f(v), u− v〉+ λ

2
‖u− v‖22 .

where ∇f(v) or f ′(v) denotes the gradient of function f at point v. If f is not differentiable,
we may replace ∇f with any subgradient of f . If f is twice differentiable, we use ∇2f(u) or
f ′′ to denote the Hessian matrix at point u. Then the definition of λ-strongly convexity is
equivalent of saying

∇2f(u) � λI, ∀u ∈ U.
Similarly the function is called L-smooth if

∇2f(u) � LI, ∀u ∈ U.

The value κ = L/λ ≥ 1 is called the condition number of f , which is a key quantity in
characterizing the complexity of iterative optimization algorithms.

We let ⊗ denote the Kronecker product, and for a pair of vectors u, v, we define the
outer product u⊗ v = uv⊤. For a three-times differentiable function f , we denote the third

17

derivative tensor by ∇3f , so that for each u ∈ dom f the operator ∇3f(u) : Rd×d → R
d is

linear and satisfies the relation

[
∇3f(u)(v ⊗ v)

]
i
=

d∑

j,k=1

(
∂3

∂ui∂uj∂uk
F (u)

)
vjvk.

We denote the indicator function of an event E by 1(E), which is 1 if E is true and 0 otherwise.

2.2 Background on reproducing kernels

The method of kernel ridge regression is based on the idea of a reproducing kernel Hilbert
space. We provide only a very brief coverage of the basics here, referring the reader to one
of the many books on the topic [210, 192, 20, 80] for further details. Any symmetric and
positive semidefinite kernel function K : X × X → R defines a reproducing kernel Hilbert
space (RKHS for short). For a given distribution P on X , the Hilbert space is strictly
contained in L2(P). For each x ∈ X , the function z 7→ K(z, x) is contained with the Hilbert
space H; moreover, the Hilbert space is endowed with an inner product 〈·, ·〉H such that
K(·, x) acts as the representer of evaluation, meaning

〈f,K(x, ·)〉H = f(x) for f ∈ H. (2.4)

We let ‖g‖H :=
√
〈g, g〉H denote the norm in H, and similarly ‖g‖2 := (

∫
X g(x)

2dP(x))1/2 de-
notes the norm in L2(P). Under suitable regularity conditions, Mercer’s theorem guarantees
that the kernel has an eigen-expansion of the form

K(x, x′) =
∞∑

j=1

µjφj(x)φj(x
′),

where µ1 ≥ µ2 ≥ · · · ≥ 0 are a non-negative sequence of eigenvalues, and {φj}∞j=1 is an
orthonormal basis for L2(P).

From the reproducing relation (2.4), we have 〈φj, φj〉H = 1/µj for any j and 〈φj, φj′〉H = 0
for any j 6= j′. For any f ∈ H, by defining the basis coefficients θj = 〈f, φj〉L2(P) for

j = 1, 2, . . ., we can expand the function in terms of these coefficients as f =
∑∞

j=1 θjφj, and
simple calculations show that

‖f‖22 =
∫

X
f 2(x)dP(x) =

∞∑

j=1

θ2j , and ‖f‖2H = 〈f, f〉H =
∞∑

j=1

θ2j
µj

.

Consequently, we see that the RKHS can be viewed as an elliptical subset of the sequence
space ℓ2(N) as defined by the non-negative eigenvalues {µj}∞j=1.

18

Kernel ridge regression Suppose that we are given a data set {(xi, yi)}Ni=1 consisting of
N i.i.d. samples drawn from an unknown distribution P over X ×R. The goal of kernel ridge
regression is to estimate the function that minimizes the mean-squared error E[(f(X)−Y)2],
where the expectation is taken jointly over (X, Y) pairs. It is well-known that the optimal
function is the conditional mean f ∗(x) := E[Y | X = x]. In order to estimate the unknown
function f ∗, we consider an M -estimator that is based on minimizing a combination of the
least-squares loss defined over the dataset with a weighted penalty based on the squared
Hilbert norm,

f̂ := argmin
f∈H

{
1

N

N∑

i=1

(f(xi)− yi)2 + λ ‖f‖2H
}
, (2.5)

where λ > 0 is a regularization parameter. When H is a reproducing kernel Hilbert space,
then the estimator (2.5) is known as the kernel ridge regression estimate, or KRR for short. It
is a natural generalization of the ordinary ridge regression estimate [91] to the non-parametric
setting.

By the representer theorem for reproducing kernel Hilbert spaces [210], any solution to
the KRR program (2.5) must belong to the linear span of the kernel functions {K(·, xi), i =
1, . . . , N}. This fact allows the computation of the KRR estimate to be reduced to an N -
dimensional quadratic program, involving theN2 entries of the kernel matrix {K(xi, xj),i, j =
1, . . . , n}. On the statistical side, a line of past work [74, 227, 39, 197, 95] has provided bounds

on the estimation error of f̂ as a function of N and λ.

2.3 Background on self-concordant functions

The theory of self-concordant functions were developed by Nesterov and Nemirovski for the
analysis of interior-point methods [157]. It will be a very useful tool for our analysis in
Chapter 5. Roughly speaking, a function is called self-concordant if its third derivative can
be controlled, in a specific way, by its second derivative. Suppose the function f : Rd → R

has continuous third derivatives. We use f ′′(w) ∈ R
d×d to denote its Hessian at w ∈ R

d, and
use f ′′′(w)[u] ∈ R

d×d to denote the limit

f ′′′(w)[u] =: lim
t→0

1

t

(
f ′′(w + tu)− f ′′(w)

)
.

Definition 1. A convex function f : Rd → R is self-concordant with parameter Mf if the
inequality

∣∣uT (f ′′′(w)[u])u
∣∣ ≤Mf

(
uTf ′′(w)u

)3/2

holds for any w ∈ dom(f) and u ∈ R
d. In particular, a self-concordant function with

parameter 2 is called standard self-concordant.

19

The reader may refer to the books [157, 154] for detailed treatment of self-concordance.
In particular, the following lemma [154, Corollary 4.1.2] states that any self-concordant
function can be rescaled to become standard self-concordant.

Lemma 1. If a function f is self-concordant with parameter Mf , then
M2

f

4
f is standard

self-concordant (with parameter 2).

In the rest of this section, we show that several popular regularized empirical loss func-
tions for linear regression and binary classification are either self-concordant or can be well
approximated by self-concordant functions.

First we consider regularized linear regression (ridge regression) with

f(w) =
1

N

N∑

i=1

(yi − wTxi)
2 +

λ

2
‖w‖22.

To simplify notation, here we use a single subscript i running from 1 to N = mn, instead
of the double subscripts {i, j} used in the introduction. Since f is a quadratic function,
its third derivatives are all zero. Therefore, it is self-concordant with parameter 0, and by
definition is also standard self-concordant.

For binary classification, we consider the following regularized empirical loss function

ℓ(w) =:
1

N

N∑

i=1

ϕ(yiw
Txi) +

γ

2
‖w‖22, (2.6)

where xi ∈ X ⊂ R
d, yi ∈ {−1, 1}, and ϕ : R → R is a convex surrogate function for

the binary loss function which returns 0 if yi = sign(wTxi) and 1 otherwise. We further
assume that the elements of X are bounded, that is, we have supx∈X ‖x‖2 ≤ B for some
finite B. Under this assumption, the following lemma shows that the regularized loss ℓ(w)
is self-concordant.

Lemma 2. Assume that γ > 0 and there exist Q > 0 and α ∈ [0, 1) such that |ϕ′′′(t)| ≤
Q(ϕ′′(t))1−α for every t ∈ R. Then:

(a) The function ℓ(w) defined by equation (2.6) is self-concordant with parameter B1+2αQ
γ1/2+α .

(b) The scaled function f(w) = B2+4αQ2

4γ1+2α ℓ(w) is standard self-concordant.

20

Proof We need to bound the third derivative of ℓ appropriately. Using equation (2.6) and
the assumption on ϕ, we have

∣∣uT (ℓ′′′(w)[u])u
∣∣ ≤ 1

N

N∑

i=1

∣∣ϕ′′′(yiw
Txi)(yiu

Txi)
3
∣∣

(i)

≤ Q

N

N∑

i=1

(
(uTxi)

2ϕ′′(yiw
Txi)

)1−α
(B‖u‖2)1+2α

(ii)

≤ B1+2αQ

(
1

N

N∑

i=1

(uTxi)
2ϕ′′(yiw

Txi)

)1−α

(‖u‖2)1+2α

(iii)

≤ B1+2αQ
(
uT ℓ′′(w)u

)1−α
(‖u‖2)1+2α.

In the above derivation, inequality (i) uses the property that |yi| = 1 and |uTxi| ≤ B‖u‖2,
inequality (ii) uses Hölder’s inequality and concavity of (·)1−α, and inequality (iii) uses the
fact that the additional regularization term in ℓ(w) is convex.

Since ℓ is γ-strongly convex, we have uT ℓ′′(w)u ≥ γ‖u‖22. Thus, we can upper bound ‖u‖2
by ‖u‖2 ≤ γ−1/2(uT ℓ′′(w)u)1/2. Substituting this inequality into the above upper bound com-
pletes the proof of part (a). Given part (a), part (b) follows immediately from Lemma 1.

It is important to note that the self-concordance of ℓ essentially relies on the regularization
parameter γ being positive. If γ = 0, then the function will no longer be self-concordant,
as pointed out by Bach [9] on logistic regression. Since we have the freedom to choose ϕ,
Lemma 2 handles a broad class of empirical loss functions. Next, we take the logistic loss
and a smoothed hinge loss as two concrete examples.

Logistic regression For logistic regression, we minimize the objective function (2.6) where
ϕ is the logistic loss: ϕ(t) = log(1 + e−t). We can calculate the second and the third
derivatives of ϕ(t):

ϕ′′(t) =
et

(et + 1)2
,

ϕ′′′(t) =
et(1− et)
(et + 1)3

=
1− et
1 + et

ϕ′′(t) .

Since |1−et

1+et
| ≤ 1 for all t ∈ R, we conclude that |ϕ′′′(t)| ≤ ϕ′′(t) for all t ∈ R. This implies

that the condition in Lemma 2 holds with Q = 1 and α = 0. Therefore, the regularized
empirical loss ℓ(w) is self-concordant with parameter B/

√
γ, and the scaled loss function

f(w) = (B2/(4γ))ℓ(w) is standard self-concordant.

Smoothed hinge loss In classification tasks, it is sometimes more favorable to use the
hinge loss ϕ(t) = max{0, 1−t} than using the logistic loss. We consider a family of smoothed

21

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

3.5

4

Argument Value

F
un

ct
io

n
V

al
ue

p=3
p=5
p=10
p=20

Figure 2.1: Smoothed hinge loss ϕp with p = 3, 5, 10, 20.

hinge loss functions ϕp parametrized by a positive number p ≥ 3. The function is defined by

ϕp(t) =

3
2
− p−2

p−1
− t for t < −p−3

p−1
,

3
2
− p−2

p−1
− t+ (t+(p−3)/(p−1))p

p(p−1)
for −p−3

p−1
≤ t < 1− p−3

p−1
,

p+1
p(p−1)

− t
p−1

+ 1
2
(1− t)2 for 1− p−3

p−1
≤ t < 1,

(2−t)p

p(p−1)
for 1 ≤ t < 2,

0 for t ≥ 2.

(2.7)

We plot the functions ϕp for p = 3, 5, 10, 20 on Figure 2.1. As the plot shows, ϕp(t) is zero
for t > 2, and it is a linear function with unit slope for t < −p−3

p−1
. These two linear zones

are connected by three smooth non-linear segments on the interval [−p−3
p−1

, 2].
The smoothed hinge loss ϕp satisfies the condition of Lemma 2 with Q = p − 2 and

α = 1
p−2

. To see this, we note that the third derivative of ϕp(t) is nonzero only when

t ∈ [−p−3
p−1

, 1− p−3
p−1

] and when t ∈ [1, 2]. On the first interval, we have

ϕ′′
p(t) =

(
t+

p− 3

p− 1

)p−2

, ϕ′′′
p (t) = (p− 2)

(
t+

p− 3

p− 1

)p−3

.

On the second interval, we have

ϕ′′
p(t) = (2− t)p−2 , ϕ′′′

p (t) = −(p− 2) (2− t)p−3 .

For both cases we have the inequality

|ϕ′′′
p (t)| ≤ (p− 2)(ϕ′′

p(t))
1− 1

p−2 ,

22

which means Q = p − 2 and α = 1
p−2

. Therefore, according to Lemma 2, the regularized

empirical loss ℓ(w) is self-concordant with parameter

Mp =
(p− 2)B1+ 2

p−2

γ
1
2
+ 1

p−2

, (2.8)

and the scaled loss function f(w) = (M2
p/4)ℓ(w) is standard self-concordant.

2.4 Background on communication complexity

We provide some basic background on communication complexity theory; see the books [118,
110] for more details. The standard set-up in multi-party communication complexity is as
follows: suppose that there are m players (equivalently, agents, machines, etc.), and for
i ∈ {1, . . . ,m}, player i holds an input string xi. In the standard form of communication
complexity, the goal is to compute a joint function F (x1, . . . , xm) of all m input strings
with as little communication between machines as possible. In this paper, we analyze a
communication scheme known as the public blackboard model, in which each player can
write messages on a common blackboard to be read by all other players. A distributed
protocol Π consists of a coordinated order in which players write messages on the blackboard.
Each message is constructed from the player’s local input and the earlier messages on the
blackboard. At the end of the protocol, some player outputs the value of F (x1, . . . , xm)
based on the information she collects through the process. The communication cost of a
given protocol Π, which we denote by C(Π), is the maximum number of bits written on the
blackboard given an arbitrary input.

In a deterministic protocol, all messages must be deterministic functions of the local input
and previous messages. The deterministic communication complexity computing function
F , which we denote by D(F), is defined by

D(F) := min
{
C(Π) : Π is a deterministic protocol that correctly computes F

}
. (2.9)

In other words, the quantity D(F) is the communication cost of the most efficient determin-
istic protocol.

A broader class of protocols are those that allow some form of randomization. In the
public randomness model, each player has access to an infinite-length random string, and
their messages are constructed from the local input, the earlier messages and the random
string. Let Pǫ(F) be the set of randomized protocols that correctly compute the function F
on any input with probability at least 1− ǫ. The randomized communication complexity of
computing function F with failure probability ǫ is given by

Rǫ(F) := min
{
C(Π) | Π ∈ Pǫ(F)

}
. (2.10)

23

Example As a concrete example, let’s assume that there are two players, Alice and Bob,
holding binary strings x and y. The function F (x, y) returns 1 if x = y and returns 0
otherwise. Suppose that the length of x and y are both equal to n. A trivial upper bound on
the deterministic communication complexity is equal to n, because Bob can send the whole
string y to Alice, which costs n bits. It can be proved that n is also a lower bound on the
deterministic communication complexity [118]. That is, there is no deterministic algorithm
computing this function F whose communication cost is lower than n.

For randomized algorithms, both Alice and Bob have access to a random string. In fact,
we can assume that they have access to a shared random string, which doesn’t change the
randomized communication complexity [118]. There is an communication-efficient protocol
to compute F (x, y): Bob uses the random string to compute a b-bit random hashing function
h(y), such that if x 6= y, then the probability that h(x) 6= h(y) is equal to 1 − 2−b. Bob
sends the string h(y) to Alice, then Alice compares h(x) to h(y) to determine the value of
F (x, y). The random hashing function’s property implies that this protocol computes the
correct value of F (x, y) with probability at least 1 − 2−b. Thus, we get an upper bound
O(log(1/ǫ)) on the randomized communication complexity. It can be proved that the lower
bound also matches the order of log(1/ǫ).

This example shows that some randomized algorithm can be order-of-magnitude more
efficient than any deterministic algorithm. This conclusion not only holds for the equality
comparison problem, but also holds for many other distributed computing problems.

24

Part II

Distributed algorithms

25

Chapter 3

Divide-and-conquer methods for
statistical optimization

In this chapter, we study communication-efficient algorithms for statistical optimization. In
a centralized setting, the problem of statistical optimization is often solved via empirical
risk minimization (ERM). There are many procedures for solving ERM, among them are
standard convex programming approaches [e.g. 33] as well as stochastic approximation and
optimization algorithms [174, 88, 152]. When the size of the dataset becomes extremely
large, however, it may be infeasible to store all of the data on a single computer, or at least
to keep the data in memory. Accordingly, we need distributed and communication-efficient
procedures for empirical risk minimization.

It can be difficult within a purely optimization-theoretic setting to show explicit ben-
efits arising from distributed computation. In statistical settings, however, distributed
computation can lead to gains in computational efficiency, as shown by a number of au-
thors [4, 59, 172, 65]. Within the family of distributed algorithms, there can be significant
differences in communication complexity: different computers must be synchronized, and
when the dimensionality of the data is high, communication can be prohibitively expensive.
Thus, the communication cost of a less carefully design algorithm can easily dominate the
computation cost.

With this context, perhaps the simplest algorithm for distributed statistical estimation
is what we term the average mixture (Avgm) algorithm. It is an appealingly simple method:
given m different machines and a dataset of size N , first assign to each machine a (distinct)
dataset of size n = N/m, then have each machine i compute the empirical minimizer θi on its
fraction of the data, and finally average all the parameter estimates θi across the machines.
This approach has been studied for some classification and estimation problems by Mcdonald
et al. [142] and McDonald et al. [143], as well as for certain stochastic approximation methods
by Zinkevich et al. [238]. Given an empirical risk minimization algorithm that works on one
machine, the procedure is straightforward to implement and is extremely communication
efficient, requiring only a single round of communication. It is also relatively robust to
possible failures in a subset of machines and/or differences in speeds, since there is no

26

repeated synchronization. When the local estimators are all unbiased, it is clear that the the
Avgm procedure will yield an estimate that is essentially as good as that of an estimator
based on all N samples. However, many estimators used in practice are biased, and so it
is natural to ask whether the method has any guarantees in a more general setting. To the
best of our knowledge, however, no work has shown rigorously that the Avgm procedure
generally has greater efficiency than the naive approach of using n = N/m samples on a
single machine.

In Section 3.2, we provide a sharp analysis of the Avgm algorithm, showing that under a
reasonable set of conditions on the population risk, it can indeed achieve substantially better
rates than the naive approach. More concretely, we provide bounds on the mean-squared
error (MSE) that decay as O((nm)−1 + n−2). Whenever the number of machines m is less
than the number of samples n per machine, this guarantee matches the best possible rate
achievable by a centralized algorithm having access to all N = nm samples. In the special
case of optimizing log likelihoods, the pre-factor in our bound involves the trace of the Fisher
information, a quantity well-known to control the fundamental limits of statistical estimation.
We also show how the result extends to stochastic programming approaches, exhibiting a
stochastic gradient-descent based procedure that also attains convergence rates scaling as
O((nm)−1), but with slightly worse dependence on different problem-specific parameters.

Our second contribution is to develop a novel extension of simple averaging. It is based
on an appropriate form of resampling, which we refer to as the subsampled average mixture
(Savgm) approach. At a high level, the Savgm algorithm distributes samples evenly among
m processors or computers as before, but instead of simply returning the empirical mini-
mizer, each processor further subsamples its own dataset in order to estimate the bias of its
own estimate, and returns a subsample-corrected estimate. We establish that the Savgm

algorithm has mean-squared error decaying as O(m−1n−1 + n−3). As long as m < n2, the
subsampled method again matches the centralized gold standard in the first-order term, and
has a second-order term smaller than the standard averaging approach.

In Sections 3.3 and 3.4, we perform a detailed empirical evaluation of both the Avgm and
Savgm procedures. Using simulated data from normal and non-normal regression models,
we explore the conditions under which the Savgm algorithm yields better performance than
the Avgm algorithm; in addition, we study the performance of both methods relative to an
oracle baseline that uses all N samples. We also study the sensitivity of the algorithms to
the number of splits m of the data, and in the Savgm case, we investigate the sensitivity
of the method to the amount of resampling. These simulations show that both Avgm

and Savgm have favorable performance, even when compared to the unattainable “gold
standard” procedure that has access to all N samples. In Section 3.4, we complement
our simulation experiments with a large logistic regression experiment that arises from the
problem of predicting whether a user of a search engine will click on an advertisement. This
experiment is large enough—involving N ≈ 2.4 × 108 samples in d ≈ 740, 000 dimensions
with a storage size of approximately 55 gigabytes—that it is difficult to solve efficiently on
one machine. Consequently, a distributed approach is essential to take full advantage of this
data set. Our experiments on this problem show that Savgm—with the resampling and

27

correction it provides—gives substantial performance benefits over naive solutions as well as
the averaging algorithm Avgm.

3.1 Problem set-up

We begin by setting up our decision-theoretic framework for empirical risk minimization, af-
ter which we describe our algorithms and the assumptions we require for our main theoretical
results.

3.1.1 Empirical risk minimization

Let {φ(·; x), x ∈ X} be a collection of real-valued and convex loss functions, each defined
on a set containing the convex set Θ ⊆ R

d. Let P be a probability distribution over the
sample space X . Assuming that each function x 7→ φ(θ; x) is P -integrable, the population
risk f0 : Θ→ R is given by

f0(θ) := EP [φ(θ;X)] =

∫

X
φ(θ; x)dP (x). (3.1)

Our goal is to estimate the parameter vector minimizing the population risk, namely the
quantity

θ∗ := argmin
θ∈Θ

f0(θ) = argmin
θ∈Θ

∫

X
φ(θ; x)dP (x), (3.2)

which we assume to be unique. In practice, the population distribution P is unknown to
us, but we have access to a collection S of samples from the distribution P . Empirical risk
minimization is based on estimating θ∗ by solving the optimization problem

Ŵθ ∈ argmin
θ∈Θ

{ 1

|S|
∑

x∈S
φ(θ; x)

}
. (3.3)

Throughout the chapter, we impose some regularity conditions on the parameter space,
the risk function f0, and the instantaneous loss functions φ(·; x) : Θ→ R. These conditions
are standard in classical statistical analysis ofM -estimators. Our first assumption deals with
the relationship of the parameter space to the optimal parameter θ∗.

Assumption A (Parameters). The parameter space Θ ⊂ R
d is a compact convex set, with

θ∗ ∈ intΘ and ℓ2-radius R = max
θ∈Θ
‖θ − θ∗‖2.

In addition, the risk function is required to have some amount of curvature. We formalize
this notion in terms of the Hessian of f0:

Assumption B (Local strong convexity). The population risk is twice differentiable, and
there exists a parameter λ > 0 such that ∇2f0(θ

∗) � λId×d.

28

Here ∇2f0(θ) denotes the d×d Hessian matrix of the population objective f0 evaluated at θ,
and we use � to denote the positive semidefinite ordering (i.e., A � B means that A−B is
positive semidefinite.) This local condition is milder than a global strong convexity condition
and is required to hold only for the population risk f0 evaluated at θ∗. It is worth observing
that some type of curvature of the risk is required for any method to consistently estimate
the parameters θ∗.

3.1.2 Averaging methods

Consider a data set consisting of N = mn samples, drawn i.i.d. according to the distribution
P . In the distributed setting, we divide this N -sample data set evenly and uniformly at
random among a total of m processors. (For simplicity, we have assumed the total number
of samples is a multiple of m.) For i = 1, . . . ,m, we let S1,i denote the data set assigned to
processor i; by construction, it is a collection of n samples drawn i.i.d. according to P , and
the samples in subsets S1,i and S1,j are independent for i 6= j. In addition, for each processor
i we define the (local) empirical distribution P1,i and empirical objective f1,i via

P1,i :=
1

|S1|
∑

x∈S1,i

δx, and f1,i(θ) :=
1

|S1,i|
∑

x∈S1,i

φ(θ; x). (3.4)

With this notation, the Avgm algorithm is very simple to describe.

Average mixture algorithm:

(1) For each i ∈ {1, . . . ,m}, processor i uses its local dataset S1,i to compute the local
empirical minimizer

θ1,i ∈ argmin
θ∈Θ

{ 1

|S1,i|
∑

x∈S1,i

φ(θ; x)

︸ ︷︷ ︸
f1,i(θ)

}
. (3.5)

(2) These m local estimates are then averaged together—that is, we compute

θ1 =
1

m

m∑

i=1

θ1,i. (3.6)

The subsampled average mixture (Savgm) algorithm is based on an additional level of
sampling on top of the first, involving a fixed subsampling rate r ∈ [0, 1]. It consists of the
following additional steps:

29

Subsampled average mixture algorithm:

(1) Each processor i draws a subset S2,i of size ⌈rn⌉ by sampling uniformly at random
without replacement from its local data set S1,i.

(2) Each processor i computes both the local empirical minimizers θ1,i from equation (3.5)
and the empirical minimizer

θ2,i ∈ argmin
θ∈Θ

{ 1

|S2,i|
∑

x∈S2,i

φ(θ; x)

︸ ︷︷ ︸
f2,i(θ)

}
. (3.7)

(3) In addition to the previous average (3.6), the Savgm algorithm computes the bootstrap
average θ2 :=

1
m

∑m
i=1 θ2,i, and then returns the weighted combination

θSavgm :=
θ1 − rθ2
1− r . (3.8)

The intuition for the weighted estimator (3.8) is similar to that for standard bias cor-
rection procedures using the bootstrap or subsampling [68, 84, 161]. Roughly speaking, if
b0 = θ∗ − θ1 is the bias of the first estimator, then we may approximate b0 by the subsam-
pled estimate of bias b1 = θ∗ − θ2. Then, we use the fact that b1 ≈ b0/r to argue that
θ∗ ≈ (θ1 − rθ2)/(1− r). The re-normalization enforces that the relative “weights” of θ1 and
θ2 sum to 1.

The goal of this chapter is to understand under what conditions—and in what sense—the
estimators (3.6) and (3.8) approach the oracle performance, by which we mean the error of
a centralized risk minimization procedure that is given access to all N = nm samples.

3.2 Theoretical results

Having described the Avgm and Savgm algorithms, we now turn to statements of our main
theorems on their statistical properties, along with some consequences and comparison to
past work.

3.2.1 Smoothness conditions

In addition to our previously stated assumptions on the population risk, we require reg-
ularity conditions on the empirical risk functions. It is simplest to state these in terms
of the functions θ 7→ φ(θ; x), and we note that, as with Assumption B, we require these
to hold only locally around the optimal point θ∗, in particular within some Euclidean ball
U = {θ ∈ R

d | ‖θ∗ − θ‖2 ≤ ρ} ⊆ Θ of radius ρ > 0.

30

Assumption C (Smoothness). There are finite constants G,H such that the first and the
second partial derivatives of φ exist and satisfy the bounds

E[‖∇φ(θ;X)‖82] ≤ G8 and E[
∣∣∣∣∣∣∇2φ(θ;X)−∇2f0(θ)

∣∣∣∣∣∣8
2
] ≤ H8 for all θ ∈ U .

In addition, for any x ∈ X , the Hessian matrix ∇2φ(θ; x) is L(x)-Lipschitz continuous,
meaning that

∣∣∣∣∣∣∇2φ(θ′; x)−∇2φ(θ; x)
∣∣∣∣∣∣

2
≤ L(x) ‖θ′ − θ‖2 for all θ, θ′ ∈ U . (3.9)

We require that E[L(X)8] ≤ L8 and E[(L(X)− E[L(X)])8] ≤ L8 for some finite constant L.

It is an important insight of our analysis that some type of smoothness condition on the
Hessian matrix, as in the Lipschitz condition (3.9), is essential in order for simple averaging
methods to work. This necessity is illustrated by the following example:

Example 1 (Necessity of Hessian conditions). Let X be a Bernoulli variable with parameter
1
2
, and consider the loss function

φ(θ; x) =

{
θ2 − θ if x = 0

θ21(θ≤0) + θ if x = 1,
(3.10)

where 1(θ≤0) is the indicator of the event {θ ≤ 0}. The associated population risk is f0(θ) =
1
2
(θ2 + θ21(θ≤0)). Since |f ′

0(w)− f ′
0(v)| ≤ 2|w− v|, the population risk is strongly convex and

smooth, but it has discontinuous second derivative. The unique minimizer of the population
risk is θ∗ = 0, and by an asymptotic expansion given in Section 3.5.1, it can be shown that
E[θ1,i] = Ω(n− 1

2). Consequently, the bias of θ1 is Ω(n− 1
2), and the Avgm algorithm using

N = mn observations must suffer mean squared error E[(θ1 − θ∗)2] = Ω(n−1).

The previous example establishes the necessity of a smoothness condition. However, in a
certain sense, it is a pathological case: both the smoothness condition given in Assumption C
and the local strong convexity condition given in Assumption B are relatively innocuous for
practical problems. For instance, both conditions will hold for standard forms of regression,
such as linear and logistic, as long as the population data covariance matrix is not rank
deficient and the data has suitable moments. Moreover, in the linear regression case, one
has L = 0.

3.2.2 Bounds for simple averaging

We now turn to our first theorem that provides guarantees on the statistical error associated
with the Avgm procedure. We recall that θ∗ denotes the minimizer of the population objec-
tive function f0, and that for each i ∈ {1, . . . ,m}, we use Si to denote a dataset of n inde-
pendent samples. For each i, we use θi ∈ argminθ∈Θ{ 1n

∑
x∈Si

φ(θ; x)} to denote a minimizer

of the empirical risk for the dataset Si, and we define the averaged vector θ = 1
m

∑m
i=1 θi.

The following result bounds the mean-squared error between this averaged estimate and the
minimizer θ∗ of the population risk.

31

Theorem 1. Under Assumptions A through C, the mean-squared error is upper bounded as

E

[∥∥θ − θ∗
∥∥2
2

]
≤ 2

nm
E

[∥∥∇2f0(θ
∗)−1∇φ(θ∗;X)

∥∥2
2

]
(3.11)

+
c

λ2n2

(
H2 log d+

L2G2

λ2

)
E

[∥∥∇2f0(θ
∗)−1∇φ(θ∗;X)

∥∥2
2

]

+O(m−1n−2) +O(n−3),

where c is a numerical constant.

A slightly weaker corollary of Theorem 1 makes it easier to parse. In particular, note that

∥∥∇2f0(θ
∗)−1∇φ(θ∗; x)

∥∥
2

(i)

≤
∣∣∣∣∣∣∇2f0(θ

∗)−1
∣∣∣∣∣∣
2
‖∇φ(θ∗; x)‖2

(ii)

≤ 1

λ
‖∇φ(θ∗; x)‖2 , (3.12)

where step (i) follows from the inequality |||Ax|||2 ≤ |||A||| ‖x‖2, valid for any matrix A and
vector x; and step (ii) follows from Assumption B. In addition, Assumption C implies
E[‖∇φ(θ∗;X)‖22] ≤ G2, and putting together the pieces, we have established the following.

Corollary 1. Under the same conditions as Theorem 1,

E

[∥∥θ − θ∗
∥∥2
2

]
≤ 2G2

λ2nm
+
cG2

λ4n2

(
H2 log d+

L2G2

λ2

)
+O(m−1n−2) +O(n−3). (3.13)

This upper bound shows that the leading term decays proportionally to (nm)−1, with
the pre-factor depending inversely on the strong convexity constant λ and growing propor-
tionally with the bound G on the loss gradient. Although easily interpretable, the upper
bound (3.13) can be loose, since it is based on the relatively weak series of bounds (3.12).

The leading term in our original upper bound (3.11) involves the product of the gradient
∇φ(θ∗;X) with the inverse Hessian. In many statistical settings, including the problem
of linear regression, the effect of this matrix-vector multiplication is to perform some type
of standardization. When the loss φ(·; x) : Θ → R is actually the negative log-likelihood
ℓ(x | θ) for a parametric family of models {Pθ}, we can make this intuition precise. In
particular, under suitable regularity conditions [e.g. 119, Chapter 6], we can define the
Fisher information matrix

I(θ∗) := E
[
∇ℓ(X | θ∗)∇ℓ(X | θ∗)⊤

]
= E[∇2ℓ(X | θ∗)].

Recalling that N = mn is the total number of samples available, let us define the neighbor-
hood B2(θ, t) := {θ′ ∈ R

d : ‖θ′ − θ‖2 ≤ t}. Then under our assumptions, the Hájek-Le Cam

minimax theorem [206, Theorem 8.11] guarantees for any estimator ŴθN based on N sam-
ples that

lim
c→∞

lim inf
N→∞

sup
θ∈B2(θ∗,c/

√
N)

N Eθ

[∥∥ŴθN − θ
∥∥2
2

]
≥ tr(I(θ∗)−1).

In connection with Theorem 1, we obtain:

32

Corollary 2. In addition to the conditions of Theorem 1, suppose that the loss functions
φ(·; x) are the negative log-likelihood ℓ(x | θ) for a parametric family {Pθ, θ ∈ Θ}. Then the
mean-squared error is upper bounded as

E

[∥∥θ1 − θ∗
∥∥2
2

]
≤ 2

N
tr(I(θ∗)−1) +

cm2 tr(I(θ∗)−1)

λ2N2

(
H2 log d+

L2G2

λ2

)
+O(mN−2),

where c is a numerical constant.

Proof Rewriting the log-likelihood in the notation of Theorem 1, we have ∇ℓ(x | θ∗) =
∇φ(θ∗; x) and all we need to note is that

I(θ∗)−1 = E
[
I(θ∗)−1∇ℓ(X | θ∗)∇ℓ(X | θ∗)⊤I(θ∗)−1

]

= E

[(
∇2f0(θ

∗)−1∇φ(θ∗;X)
) (
∇2f0(θ

∗)−1∇φ(θ∗;X)
)⊤]

.

Now apply the linearity of the trace and use the fact that tr(uu⊤) = ‖u‖22.

Except for the factor of two in the bound, Corollary 2 shows that Theorem 1 essentially
achieves the best possible result. The important aspect of our bound, however, is that we
obtain this convergence rate without calculating an estimate on allN = mn samples: instead,
we calculate m independent estimators, and then average them to attain the convergence
guarantee. We remark that an inspection of our proof shows that, at the expense of worse
constants on higher order terms, we can reduce the factor of 2/mn on the leading term in
Theorem 1 to (1 + c)/mn for any constant c > 0; as made clear by Corollary 2, this is
unimprovable, even by constant factors.

As noted in the introduction, our bounds are certainly to be expected for unbiased
estimators, since in such cases averaging m independent solutions reduces the variance by
1/m. In this sense, our results are similar to classical distributional convergence results
in M -estimation: for smooth enough problems, M -estimators behave asymptotically like
averages [206, 119], and averaging multiple independent realizations reduces their variance.
However, it is often desirable to use biased estimators, and such bias introduces difficulty
in the analysis, which we explore more in the next section. We also note that in contrast
to classical asymptotic results, our results are applicable to finite samples and give explicit
upper bounds on the mean-squared error. Lastly, our results are not tied to a specific model,
which allows for fairly general sampling distributions.

3.2.3 Bounds for subsampled mixture averaging

When the number of machines m is relatively small, Theorem 1 and Corollary 1 show that
the convergence rate of the Avgm algorithm is mainly determined by the first term in the
bound (3.11), which is at most G2

λ2mn
. In contrast, when the number of processors m grows,

the second term in the bound (3.11), in spite of being O(n−2), may have non-negligible effect.

33

This issue is exacerbated when the local strong convexity parameter λ of the risk f0 is close
to zero or the Lipschitz continuity constant H of ∇φ is large. This concern motivated our
development of the subsampled average mixture (Savgm) algorithm, to which we now return.

Due to the additional randomness introduced by the subsampling in Savgm, its anal-
ysis requires an additional smoothness condition. In particular, recalling the Euclidean
ρ-neighborhood U of the optimum θ∗, we require that the loss function φ is (locally) smooth
through its third derivatives.

Assumption D (Strong smoothness). For each x ∈ X , the third derivatives of φ are
M(x)-Lipschitz continuous, meaning that

∥∥(∇3φ(θ; x)−∇3φ(θ′; x)
)
(u⊗ u)

∥∥
2
≤M(x) ‖θ − θ′‖2 ‖u‖

2
2 for all θ, θ′ ∈ U , and u ∈ R

d,

where E[M8(X)] ≤M8 for some constant M <∞.

It is easy to verify that Assumption D holds for least-squares regression with M = 0. It also
holds for various types of non-linear regression problems (e.g., logistic, multinomial etc.) as
long as the covariates have finite eighth moments.

With this set-up, our second theorem establishes that bootstrap sampling yields improved
performance:

Theorem 2. Under Assumptions A through D, the output θSavgm = (θ1− rθ2)/(1− r) of the
bootstrap Savgm algorithm has mean-squared error bounded as

E

[∥∥θSavgm − θ∗
∥∥2
2

]
≤ 2 + 3r

(1− r)2 ·
1

nm
E

[∥∥∇2f0(θ
∗)−1∇φ(θ∗;X)

∥∥2
2

]
(3.14)

+ c

(
M2G6

λ6
+
G4L2d log d

λ4

)(
1

r(1− r)2
)
n−3 +O

(
1

(1− r)2m
−1n−2

)

for a numerical constant c.

Comparing the conclusions of Theorem 2 to those of Theorem 1, we see that the the
O(n−2) term in the bound (3.11) has been eliminated. The reason for this elimination is
that subsampling at a rate r reduces the bias of the Savgm algorithm to O(n−3), whereas
in contrast, the bias of the Avgm algorithm induces terms of order n−2. Theorem 2 suggests
that the performance of the Savgm algorithm is affected by the subsampling rate r; in order
to minimize the upper bound (3.14) in the regime m < N2/3, the optimal choice is of the
form r ∝ C

√
m/n = Cm3/2/N where C ≈ (G2/λ2)max{MG/λ, L

√
d log d}. Roughly, as the

number of machines m becomes larger, we may increase r, since we enjoy averaging affects
from the Savgm algorithm.

Let us consider the relative effects of having larger numbers of machines m for both the
Avgm and Savgm algorithms, which provides some guidance to selecting m in practice. We

34

define σ2 = E[‖∇2f0(θ
∗)−1∇φ(θ∗;X)‖22] to be the asymptotic variance. Then to obtain the

optimal convergence rate of σ2/N , we must have

1

λ2
max

{
H2 log d, L2G2

} m2

N2
σ2 ≤ σ2

N
or m ≤ N

1
2

√
λ2

max{H2 log d, L2G2/λ2} (3.15)

in Theorem 1. Applying the bound of Theorem 2, we find that to obtain the same rate we
require

max

{
M2G2

λ6
,
L2d log d

λ4

}
G4m3

rN3
≤ (1 + r)σ2

N
or m ≤ N

2
3

(
λ4r(1 + r)σ2

max {M2G6/λ2, G4L2d log d}

) 1
3

.

Now suppose that we replace r with Cm3/2/N as in the previous paragraph. Under the
conditions σ2 ≈ G2 and r = o(1), we then find that

m ≤ N
2
3

(
λ2σ2m3/2

G2 max
{
MG/λ, L

√
d log d

}
N

) 1
3

or m ≤ N
2
3

(
λ2

max
{
MG/λ, L

√
d log d

}
) 2

3

.

(3.16)
Comparing inequalities (3.15) and (3.16), we see that in both casesmmay grow polynomially
with the global sample size N while still guaranteeing optimal convergence rates. On one
hand, this asymptotic growth is faster in the subsampled case (3.16); on the other hand, the
dependence on the dimension d of the problem is more stringent than the standard averaging
case (3.15). As the local strong convexity constant λ of the population risk shrinks, both
methods allow less splitting of the data, meaning that the sample size per machine must be
larger. This limitation is intuitive, since lower curvature for the population risk means that
the local empirical risks associated with each machine will inherit lower curvature as well,
and this effect will be exacerbated with a small local sample size per machine. Averaging
methods are, of course, not a panacea: the allowed number of partitions m does not grow
linearly in either case, so blindly increasing the number of machines proportionally to the
total sample size N will not lead to a useful estimate.

In practice, an optimal choice of r may not be apparent, which may necessitate cross val-
idation or another type of model evaluation. We leave as intriguing open questions whether
computing multiple subsamples at each machine can yield improved performance or reduce
the variance of the Savgm procedure, and whether using estimates based on resampling
the data with replacement, as opposed to without replacement as considered here, can yield
improved performance.

3.2.4 Time complexity

In practice, the exact empirical minimizers assumed in Theorems 1 and 2 may be unavailable.
Instead, we need to use a finite number of iterations of some optimization algorithm in order
to obtain reasonable approximations to the exact minimizers. In this section, we sketch an

35

argument that shows that both the Avgm algorithm and the Savgm algorithm can use such
approximate empirical minimizers, and as long as the optimization error is sufficiently small,
the resulting averaged estimate achieves the same order-optimal statistical error. Here we
provide the arguments only for theAvgm algorithm; the arguments for the Savgm algorithm
are analogous.

More precisely, suppose that each processor runs a finite number of iterations of some
optimization algorithm, thereby obtaining the vector θ′i as an approximate minimizer of the
objective function f1,i. Thus, the vector θ

′
i can be viewed as an approximate form of θi, and

we let θ
′
= 1

m

∑m
i=1 θ

′
i denote the average of these approximate minimizers, which corresponds

to the output of the approximate Avgm algorithm. With this notation, we have

E

[∥∥θ′ − θ∗
∥∥2
2

] (i)

≤ 2E[
∥∥θ − θ∗

∥∥2
2
] + 2E

[∥∥θ′ − θ
∥∥2
2

] (ii)

≤ 2E[
∥∥θ − θ∗

∥∥2
2
] + 2E[‖θ′1 − θ1‖22],

(3.17)
where step (i) follows by triangle inequality and the elementary bound (a+ b)2 ≤ 2a2 + 2b2;
step (ii) follows by Jensen’s inequality. Consequently, suppose that processor i runs enough
iterations to obtain an approximate minimizer θ′1 such that

E[‖θ′i − θi‖22] = O((mn)−2). (3.18)

When this condition holds, the bound (3.17) shows that the average θ
′
of the approximate

minimizers shares the same convergence rates provided by Theorem 1.
But how long does it take to compute an approximate minimizer θ′i satisfying condi-

tion (3.18)? Assuming processing one sample requires one unit of time, we claim that this
computation can be performed in time O(n log(mn)). In particular, the following two-stage
strategy, involving a combination of stochastic gradient descent (see the following subsection
for more details) and standard gradient descent, has this complexity:

(1) As shown in the proof of Theorem 1, with high probability, the empirical risk f1 is
strongly convex in a ball Bρ(θ1) of constant radius ρ > 0 around θ1. Consequently,
performing stochastic gradient descent on f1 for O(log2(mn)/ρ2) iterations yields an
approximate minimizer that falls within Bρ(θ1) with high probability [e.g. 152, Propo-
sition 2.1]. Note that the radius ρ for local strong convexity is a property of the
population risk f0 we use as a prior knowledge.

(2) This initial estimate can be further improved by a few iterations of standard gradient
descent. Under local strong convexity of the objective function, gradient descent is
known to converge at a geometric rate [see, e.g. 159, 33], so O(log(1/ǫ)) iterations will
reduce the error to order ǫ. In our case, we have ǫ = (mn)−2, and since each iteration
of standard gradient descent requires O(n) units of time, a total of O(n log(mn)) time
units are sufficient to obtain a final estimate θ′1 satisfying condition (3.18).

Overall, we conclude that the speed-up of the Avgm relative to the naive approach of
processing all N = mn samples on one processor, is at least of order m/ log(N).

36

3.2.5 Stochastic gradient descent with averaging

The previous strategy involved a combination of stochastic gradient descent and standard
gradient descent. In many settings, it may be appealing to use only a stochastic gradient
algorithm, due to their ease of their implementation and limited computational requirements.
In this section, we describe an extension of Theorem 1 to the case in which each machine
computes an approximate minimizer using only stochastic gradient descent.

Stochastic gradient algorithms have a lengthy history in statistics, optimization, and
machine learning [174, 163, 152, 167]. Let us begin by briefly reviewing the basic form of
stochastic gradient descent (SGD). Stochastic gradient descent algorithms iteratively update
a parameter vector θt over time based on randomly sampled gradient information. Specifi-
cally, at iteration t, a sample Xt is drawn at random from the distribution P (or, in the case
of a finite set of data {X1, . . . , Xn}, a sample Xt is chosen from the data set). The method
then performs the following two steps:

θt+
1
2 = θt − ηt∇φ(θt;Xt) and θt+1 = argmin

θ∈Θ

{∥∥θ − θt+ 1
2

∥∥2
2

}
. (3.19)

Here ηt > 0 is a stepsize, and the first update in (3.19) is a gradient descent step with respect

to the random gradient ∇φ(θt;Xt). The method then projects the intermediate point θt+
1
2

back onto the constraint set Θ (if there is a constraint set). The convergence of SGD methods
of the form (3.19) has been well-studied, and we refer the reader to the papers by Polyak
and Juditsky [163], Nemirovski et al. [152], and Rakhlin et al. [167] for deeper investigations.

To prove convergence of our stochastic gradient-based averaging algorithms, we require
the following smoothness and strong convexity condition, which is an alternative to the
Assumptions B and C used previously.

Assumption E (Smoothness and Strong Convexity II). There exists a function L : X → R+

such that ∣∣∣∣∣∣∇2φ(θ; x)−∇2φ(θ∗; x)
∣∣∣∣∣∣

2
≤ L(x) ‖θ − θ∗‖2 for all x ∈ X ,

and E[L2(X)] ≤ L2 <∞. There are finite constants G and H such that

E[‖∇φ(θ;X)‖42] ≤ G4, and E[
∣∣∣∣∣∣∇2φ(θ∗;X)

∣∣∣∣∣∣4
2
] ≤ H4 for each fixed θ ∈ Θ.

In addition, the population function f0 is λ-strongly convex over the space Θ, meaning that

∇2f0(θ) � λId×d for all θ ∈ Θ. (3.20)

Assumption E does not require as many moments as does Assumption C, but it does require
each moment bound to hold globally, that is, over the entire space Θ, rather than only in
a neighborhood of the optimal point θ∗. Similarly, the necessary curvature—in the form of
the lower bound on the Hessian matrix ∇2f0—is also required to hold globally, rather than
only locally. Nonetheless, Assumption E holds for many common problems; for instance, it
holds for any linear regression problem in which the covariates have finite fourth moments

37

and the domain Θ is compact.

The averaged stochastic gradient algorithm (SGDavgm) is based on the following two
steps:

(1) Given some constant c > 1, each machine performs n iterations of stochastic gradient
descent (3.19) on its local dataset of n samples using the stepsize ηt =

c
λt
, then outputs

the resulting local parameter θ′i.

(2) The algorithm computes the average θ
n
= 1

m

∑m
i=1 θ

′
i.

The following result characterizes the mean-squared error of this procedure in terms of the
constants

α := 4c2 and β := max

{⌈
cH

λ

⌉
,
cα3/4G3/2

(c− 1)λ5/2

(
α1/4LG1/2

λ1/2
+

4G+HR

ρ3/2

)}
.

Theorem 3. Under Assumptions A and E, the output θ
n
of the Savgm algorithm has

mean-squared error upper bounded as

E

[∥∥θn − θ∗
∥∥2
2

]
≤ αG2

λ2mn
+

β2

n3/2
. (3.21)

Theorem 3 shows that the averaged stochastic gradient descent procedure attains the
optimal convergence rate O(N−1) as a function of the total number of observations N = mn.
The constant and problem-dependent factors are somewhat worse than those in the earlier
results we presented in Theorems 1 and 2, but the practical implementability of such a
procedure may in some circumstances outweigh those differences. We also note that the
second term of order O(n−3/2) may be reduced to O(n(2−2k)/k) for any k ≥ 4 by assuming
the existence of kth moments in Assumption E; we show this in passing after our proof of
the theorem in Section 3.5.4. It is not clear whether a bootstrap correction is possible for
the stochastic-gradient based estimator; such a correction could be significant, because the
term β2/n3/2 arising from the bias in the stochastic gradient estimator may be non-trivial.
We leave this question to future work.

3.3 Performance on synthetic data

In this section, we report the results of simulation studies comparing the Avgm, Savgm, and
SGDavgm methods, as well as a trivial method using only a fraction of the data available
on a single machine. For each of our simulated experiments, we use a fixed total number
of samples N = 100,000, but we vary the number of parallel splits m of the data (and
consequently, the local dataset sizes n = N/m) and the dimensionality d of the problem
solved.

38

For our experiments, we simulate data from one of three regression models:

y = 〈u, x〉+ ε, (3.22)

y = 〈u, x〉+
d∑

j=1

vjx
3
j + ε, or (3.23)

y = 〈u, x〉+ h(x)|ε|, (3.24)

where ε ∼ N(0, 1), and h is a function to be specified. Specifically, the data generation proce-
dure is as follows. For each individual simulation, we choose fixed vector u ∈ R

d with entries
ui distributed uniformly in [0, 1] (and similarly for v), and we set h(x) =

∑d
j=1(xj/2)

3. The
models (3.22) through (3.24) provide points on a curve from correctly-specified to grossly mis-
specified models, so models (3.23) and (3.24) help us understand the effects of subsampling
in the Savgm algorithm. (In contrast, the standard least-squares estimator is unbiased for
model (3.22).) The noise variable ε is always chosen as a standard Gaussian variate N(0, 1),
independent from sample to sample.

In our simulation experiments we use the least-squares loss

φ(θ; (x, y)) :=
1

2
(〈θ, x〉 − y)2.

The goal in each experiment is to estimate the vector θ∗ minimizing f0(θ) := E[φ(θ; (X, Y))].
For each simulation, we generate N samples according to either the model (3.22) or (3.24).
For eachm ∈ {2, 4, 8, 16, 32, 64, 128}, we estimate θ∗ = argminθ f0(θ) using a parallel method
with data split into m independent sets of size n = N/m, specifically

(i) The Avgm method

(ii) The Savgm method with several settings of the subsampling ratio r

(iii) The SGDavgm method with stepsize ηt = d/(10(d+t)), which gave good performance.

In addition to (i)–(iii), we also estimate θ∗ with

(iv) The empirical minimizer of a single split of the data of size n = N/m

(v) The empirical minimizer on the full dataset (the oracle solution).

3.3.1 Averaging methods

For our first set of experiments, we study the performance of the averaging methods (Avgm
and Savgm), showing their scaling as the number of splits of data—the number of machines
m—grows for fixed N and dimensions d = 20 and d = 200. We use the standard regression
model (3.22) to generate the data, and throughout we let Ŵθ denote the estimate returned
by the method under consideration (so in the Avgm case, for example, this is the vector

39

2 4 8 16 32 64 128
0

0.02

0.04

0.06

0.08

0.1

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM
SGD−AVGM
Single
All

2 4 8 16 32 64 128
0

5

10

15

20

Number m of machines
M

ea
n

S
qu

ar
e

E
rr

or

AVGM
SGD−AVGM
Single
All

(a) d = 20 (b) d = 200

Figure 3.1. The error ‖Ŵθ − θ∗‖22 versus number of machines, with standard errors across
twenty simulations, for solving least squares with data generated according to the normal
model (3.22). The oracle least-squares estimate using allN samples is given by the line “All,”
while the line “Single” gives the performance of the naive estimator using only n = N/m
samples.

2 4 8 16 32 64 128
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM −All
SGD-AVGM −All

2 4 8 16 32 64 128
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM −All
SGD-AVGM −All

(a) d = 20 (b) d = 200

Figure 3.2. Comparison of Avgm and SGDavgm methods as in Figure 3.1 plotted on

logarithmic scale. The plot shows ‖Ŵθ − θ∗‖22 − ‖θN − θ∗‖22, where θN is the oracle least-
squares estimator using all N data samples.

Ŵθ := θ1). The data samples consist of pairs (x, y), where x ∈ R
d and y ∈ R is the target

value. To sample each x vector, we choose five distinct indices in {1, . . . , d} uniformly at
random, and the entries of x at those indices are distributed as N(0, 1). For the model (3.22),
the population optimal vector θ∗ is u.

40

In Figure 3.1, we plot the error ‖Ŵθ − θ∗‖22 of the inferred parameter vector Ŵθ for the
true parameters θ∗ versus the number of splits m, or equivalently, the number of separate
machines available for use. We also plot standard errors (across twenty experiments) for

each curve. As a baseline in each plot, we plot as a red line the squared error ‖ŴθN − θ∗‖22
of the centralized “gold standard,” obtained by applying a batch method to all N samples.

From the plots in Figure 3.1, we can make a few observations. The Avgm algorithm
enjoys excellent performance, as predicted by our theoretical results, especially compared to
the naive solution using only a fraction 1/m of the data. In particular, if Ŵθ is obtained
by the batch method, then Avgm is almost as good as the full-batch baseline even for m as
large as 128, though there is some evident degradation in solution quality. The SGDavgm

(stochastic-gradient with averaging) solution also yields much higher accuracy than the naive
solution, but its performance degrades more quickly than the Avgm method’s as m grows.
In higher dimensions, both the Avgm and SGDavgm procedures have somewhat worse
performance; again, this is not unexpected since in high dimensions the strong convexity
condition is satisfied with lower probability in local datasets.

We present a comparison between the Avgm method and the SGDavgm method with
somewhat more distinguishing power in Figure 3.2. For these plots, we compute the gap be-
tween the Avgm mean-squared-error and the unparallel baseline MSE, which is the accuracy
lost due to parallelization or distributing the inference procedure across multiple machines.
Figure 3.2 shows that the mean-squared error grows polynomially with the number of ma-
chines m, which is consistent with our theoretical results. From Corollary 2, we expect the
Avgm method to suffer (lower-order) penalties proportional to m2 as m grows, while Theo-
rem 3 suggests the somewhat faster growth we see for the SGDavgm method in Figure 3.2.
Thus, we see that the improved run-time performance of the SGDavgm method—requiring
only a single pass through the data on each machine, touching each datum only once—comes
at the expense of some loss of accuracy, as measured by mean-squared error.

3.3.2 Subsampling correction

We now turn to developing an understanding of the Savgm algorithm in comparison to the
standard average mixture algorithm, developing intuition for the benefits and drawbacks
of the method. Before describing the results, we remark that for the standard regression
model (3.22), the least-squares solution is unbiased for θ∗, so we expect subsampled averaging
to yield little (if any) improvement. The Savgm method is essentially aimed at correcting
the bias of the estimator θ1, and de-biasing an unbiased estimator only increases its variance.
However, for the mis-specified models (3.23) and (3.24) we expect to see some performance
gains. In our experiments, we use multiple sub-sampling rates to study their effects, choosing
r ∈ {0.005, 0.01, 0.02, 0.04}, where we recall that the output of the Savgm algorithm is the

vector Ŵθ := (θ1 − rθ2)/(1− r).
We begin with experiments in which the data is generated as in the previous section. That

is, to generate a feature vector x ∈ R
d, choose five distinct indices in {1, . . . , d} uniformly at

41

2 4 8 16 32 64 128
0.7

0.8

0.9

1

1.1

1.2

1.3x 10
−3

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM
SAVGM (r=0.005)
SAVGM (r=0.01)
SAVGM (r=0.02)
All

2 4 8 16 32 64 128
0.05

0.1

0.15

0.2

0.25

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM
SAVGM (r=0.01)
SAVGM (r=0.02)
SAVGM (r=0.04)
All

(a) d = 20 (b) d = 200

Figure 3.3. The error ‖Ŵθ − θ∗‖22 plotted against the number of machines m for the
Avgm and Savgm methods, with standard errors across twenty simulations, using the
normal regression model (3.22). The oracle estimator is denoted by the line “All.”

2 4 8 16 32 64 128
1

1.1

1.2

1.3

1.4

1.5

1.6x 10
−3

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM
SAVGM (r=0.005)
SAVGM (r=0.01)
SAVGM (r=0.02)
All

2 4 8 16 32 64 128
0.1

0.15

0.2

0.25

0.3

0.35

Number m of machines

M
ea

n
S

qu
ar

e
E

rr
or

AVGM
SAVGM (r=0.01)
SAVGM (r=0.02)
SAVGM (r=0.04)
All

(a) d = 20 (b) d = 200

Figure 3.4. The error ‖Ŵθ − θ∗‖22 plotted against the number of machines m for the Avgm
and Savgm methods, with standard errors across twenty simulations, using the non-normal
regression model (3.24). The oracle estimator is denoted by the line “All.”

random, and the entries of x at those indices are distributed as N(0, 1). In Figure 3.3, we
plot the results of simulations comparing Avgm and Savgm with data generated from the
normal regression model (3.22). Both algorithms have have low error rates, but the Avgm

method is slightly better than the Savgm method for both values of the dimension d and
all and sub-sampling rates r. As expected, in this case the Savgm method does not offer
improvement over Avgm, since the estimators are unbiased. (In Figure 3.3(a), we note that
the standard error is in fact very small, since the mean-squared error is only of order 10−3.)

42

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Number m of machines

‖
θ
−

θ
∗
‖
2 2

Avgm

Savgm (r = (d/n)2/3)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Number m of machines
‖
θ
−

θ
∗
‖
2 2

Avgm

Savgm (r = (d/n)2/3)

(a) d = 20 (b) d = 40

Figure 3.5. The error ‖Ŵθ − θ∗‖22 plotted against the number of machines m for the Avgm
and Savgm methods using regression model (3.23).

To understand settings in which subsampling for bias correction helps, in Figure 3.4, we
plot mean-square error curves for the least-squares regression problem when the vector y is
sampled according to the non-normal regression model (3.24). In this case, the least-squares
estimator is biased for θ∗ (which, as before, we estimate by solving a larger regression problem
using 10N data samples). Figure 3.4 shows that both the Avgm and Savgm method still
enjoy good performance; in some cases, the Savgm method even beats the oracle least-
squares estimator for θ∗ that uses all N samples. Since the Avgm estimate is biased in this
case, its error curve increases roughly quadratically withm, which agrees with our theoretical
predictions in Theorem 1. In contrast, we see that the Savgm algorithm enjoys somewhat
more stable performance, with increasing benefit as the number of machines m increases.
For example, in case of d = 200, if we choose r = 0.01 for m ≤ 32, choose r = 0.02 for
m = 64 and r = 0.04 for m = 128, then Savgm has performance comparable with the oracle
method that uses all N samples. Moreover, we see that all the values of r—at least for the
reasonably small values we use in the experiment—provide performance improvements over
a non-subsampled distributed estimator.

For our final simulation, we plot results comparing Savgm with Avgm in model (3.23),
which is mis-specified but still a normal model. We use a simpler data generating mechanism,
specifically, we draw x ∼ N(0, Id×d) from a standard d-dimensional normal, and v is chosen
uniformly in [0, 1]; in this case, the population minimizer has the closed form θ∗ = u +
3v. Figure 3.5 shows the results for dimensions d = 20 and d = 40 performed over 100
experiments (the standard errors are too small to see). Since the model (3.23) is not that
badly mis-specified, the performance of the Savgm method improves upon that of the Avgm
method only for relatively large values ofm, however, the performance of the Savgm is always
at least as good as that of Avgm.

43

Feature Name Dimension Description
Query 20000 Word tokens appearing in the query.
Gender 3 Gender of the user
Keyword 20000 Word tokens appearing in the purchase keywords.
Title 20000 Word tokens appearing in the ad title.
Advertiser 39191 Advertiser’s ID
AdID 641707 Advertisement’s ID.
Age 6 Age of the user
UserFreq 25 Number of appearances of the same user.
Position 3 Position of advertisement on search page.
Depth 3 Number of ads in the session.
QueryFreq 25 Number of occurrences of the same query.
AdFreq 25 Number of occurrences of the same ad.
QueryLength 20 Number of words in the query.
TitleLength 30 Number of words in the ad title.
DespLength 50 Number of words in the ad description.
QueryCtr 150 Average click-through-rate for query.
UserCtr 150 Average click-through-rate for user.
AdvrCtr 150 Average click-through-rate for advertiser.
WordCtr 150 Average click-through-rate for keyword advertised.
UserAdFreq 20 Number of times this user sees an ad.
UserQueryFreq 20 Number of times this user performs a search.

Table 3.1: Features used in online advertisement prediction problem.

3.4 Experiments with advertising data

Predicting whether a user of a search engine will click on an advertisement presented to
him or her is of central importance to the business of several internet companies, and in this
section, we present experiments studying the performance of the Avgm and Savgm methods
for this task. We use a large dataset from the Tencent search engine, soso.com [199], which
contains 641,707 distinct advertisement items with N = 235,582,879 data samples.

Each sample consists of a so-called impression, which in the terminology of the informa-
tion retrieval literature [e.g., see the book by 139], is a list containing a user-issued search,
the advertisement presented to the user in response to the search, and a label y ∈ {+1,−1}
indicating whether the user clicked on the advertisement. The ads in our dataset were
presented to 23,669,283 distinct users.

Transforming an impression into a useable set of regressors x is non-trivial, but the
Tencent dataset provides a standard encoding. We list the features present in the data in
Table 3.1, along with some description of their meaning. Each text-based feature—that is,
those made up of words, which are Query, Keyword, and Title—is given a “bag-of-words”
encoding [139]. This encoding assigns each of 20,000 possible words an index, and if the word

44

appears in the query (or Keyword or Title feature), the corresponding index in the vector
x is set to 1. Words that do not appear are encoded with a zero. Real-valued features,
corresponding to the bottom fifteen features in Table 3.1 beginning with “Age”, are binned
into a fixed number of intervals [−∞, a1], a1a2, . . . , ak∞, each of which is assigned an index
in x. (Note that the intervals and number thereof vary per feature, and the dimension of the
features listed in Table 3.1 corresponds to the number of intervals). When a feature falls into
a particular bin, the corresponding entry of x is assigned a 1, and otherwise the entries of
x corresponding to the feature are 0. Each feature has one additional value for “unknown.”
The remaining categorical features—gender, advertiser, and advertisement ID (AdID)—are
also given {0, 1} encodings, where only one index of x corresponding to the feature may be
non-zero (which indicates the particular gender, advertiser, or AdID). This combination of
encodings yields a binary-valued covariate vector x ∈ {0, 1}d with d = 741,725 dimensions.
Note also that the features incorporate information about the user, advertisement, and query
issued, encoding information about their interactions into the model.

Our goal is to predict the probability of a user clicking a given advertisement as a function
of the covariates in Table 3.1. To do so, we use a logistic regression model to estimate the
probability of a click response

P (y = 1 | x; θ) := 1

1 + exp(−〈θ, x〉) ,

where θ ∈ R
d is the unknown regression vector. We use the negative logarithm of P as the

loss, incorporating a ridge regularization penalty. This combination yields instantaneous loss

φ(θ; (x, y)) = log (1 + exp(−y 〈θ, x〉)) + λ

2
‖θ‖22 . (3.25)

In all our experiments, we assume that the population negative log-likelihood risk has local
strong convexity as suggested by Assumption B. In practice, we use a small regularization
parameter λ = 10−6 to ensure fast convergence for the local sub-problems.

For this problem, we cannot evaluate the mean-squared error ‖Ŵθ − θ∗‖22, as we do
not know the true optimal parameter θ∗. Consequently, we evaluate the performance of
an estimate Ŵθ using log-loss on a held-out dataset. Specifically, we perform a five-fold
validation experiment, where we shuffle the data and partition it into five equal-sized subsets.
For each of our five experiments, we hold out one partition to use as the test set, using the
remaining data as the training set for inference. When studying the Avgm or Savgm

method, we compute the local estimate θi via a trust-region Newton-based method [159]
implemented by LIBSVM [43].

The dataset is too large to fit in the memory of most computers: in total, four splits
of the data require 55 gigabytes. Consequently, it is difficult to provide an oracle training
comparison using the full N samples. Instead, for each experiment, we perform 10 passes of
stochastic dual coordinate ascent (SDCA) [185] and 10 passes of stochastic gradient descent
(SGD) through the dataset to get two rough baselines of the performance attained by the

45

8 16 32 64 128
0.1295

0.13

0.1305

0.131

0.1315

0.132

Number of machines m

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

SAVGM (r=0.1)
SAVGM (r=0.25)

Avgm

1 2 3 4 5 6 7 8 9 10
0.1295

0.13

0.1305

0.131

0.1315

0.132

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

Number of Passes

SDCA
SGD

(a) (b)

Figure 3.6. The negative log-likelihood of the output of the Avgm, Savgm, and stochastic
methods on the held-out dataset for the click-through prediction task. (a) Performance of
the Avgm and Savgm methods versus the number of splits m of the data. (b) Performance
of SDCA and SGD baselines as a function of number of passes through the entire dataset.

empirical minimizer for the entire training dataset. Figure 3.6(b) shows the hold-out set
log-loss after each of the sequential passes through the training data finishes. Note that
although the SDCA enjoys faster convergence rate on the regularized empirical risk [185],
the plot shows that the SGD has better generalization performance.

In Figure 3.6(a), we show the average hold-out set log-loss (with standard errors) of the
estimator θ1 provided by the Avgm method versus number of splits of the data m, and we
also plot the log-loss of the Savgm method using subsampling ratios of r ∈ {.1, .25}. The
plot shows that for small m, both Avgm and Savgm enjoy good performance, comparable
to or better than (our proxy for) the oracle solution using all N samples. As the number of
machines m grows, however, the de-biasing provided by the subsampled bootstrap method
yields substantial improvements over the standard Avgm method. In addition, even with
m = 128 splits of the dataset, the Savgm method gives better hold-out set performance than
performing two passes of stochastic gradient on the entire dataset ofm samples; withm = 64,
Savgm enjoys performance as strong as looping through the data four times with stochastic
gradient descent. This is striking, since doing even one pass through the data with stochastic
gradient descent gives minimax optimal convergence rates [163, 5]. In ranking applications,
rather than measuring negative log-likelihood, one may wish to use a direct measure of
prediction error; to that end, Figure 3.7 shows plots of the area-under-the-curve (AUC)
measure for the Avgm and Savgm methods; AUC is a well-known measure of prediction
error for bipartite ranking [139]. Broadly, this plot shows a similar story to that in Figure 3.6.

It is instructive and important to understand the sensitivity of the Savgm method to the
value of the resampling parameter r. We explore this question in Figure 3.8 using m = 128
splits, where we plot the log-loss of the Savgm estimator on the held-out data set versus the
subsampling ratio r. We choose m = 128 because more data splits provide more variable

46

8 16 32 64 128
0.784

0.785

0.786

0.787

0.788

0.789

0.79

0.791

Number of machines m

A
re

a
un

de
r

R
O

C
 c

ur
ve

SAVGM (r=0.1)
SAVGM (r=0.25)

Avgm

Figure 3.7. The area-under-the-curve (AUC) measure of ranking error for the output of
the Avgm and Savgm methods for the click-through prediction task.

0 0.1 0.2 0.3 0.4 0.5
0.1302

0.1304

0.1306

0.1308

0.131

N
eg

at
iv

e
Lo

g−
Li

ke
lih

oo
d

Sub-sampling Rate r

SAVGM (m=128)

Figure 3.8. The log-loss on held-out data for the Savgm method applied with m = 128
parallel splits of the data, plotted versus the sub-sampling rate r.

performance in r. For the soso.com ad prediction data set, the choice r = .25 achieves
the best performance, but Figure 3.8 suggests that mis-specifying the ratio is not terribly
detrimental. Indeed, while the performance of Savgm degrades to that of the Avgmmethod,
a wide range of settings of r give improved performance, and there does not appear to be a
phase transition to poor performance.

47

3.5 Proofs of technical results

3.5.1 The necessity of smoothness

Here we show that some version of the smoothness conditions presented in Assumption C
are necessary for averaging methods to attain better mean-squared error than using only
the n samples on a single processor. Given the loss function (3.10), let n0 =

∑n
i=1 1(Xi=0)

to be the count of 0 samples. Using θ1 as shorthand for θ1,i, we see by inspection that the
empirical minimizer θ1 is

θ1 =

{
n0

n
− 1

2
when n0 ≤ n/2

1− n
2n0

otherwise.

For simplicity, we may assume that n is odd. In this case, we obtain that

E[θ1] =
1

4
+ E

[n0

n
1(n0<n/2)

]
− E

[
n

2n0

1(n0>n/2)

]

=
1

4
+

1

2n

⌊n/2⌋∑

i=0

(
n

i

)
i

n
− 1

2n

n∑

i=⌈n/2⌉

(
n

i

)
n

2i
=

1

4
+

1

2n

⌊n/2⌋∑

i=0

(
n

i

)[
i

n
− n

2(n− i)

]

by the symmetry of the binomial. Adding and subtracting 1
2
from the term within the braces,

noting that P (n0 < n/2) = 1/2, we have the equality

E[θ1] =
1

2n

⌊n/2⌋∑

i=0

(
n

i

)[
i

n
− n

2(n− i) +
1

2

]
=

1

2n

⌊n/2⌋∑

i=0

(
n

i

)
i(n− 2i)

2n(n− i) .

If Z is distributed normally with mean 1/2 and variance 1/(4n), then an asymptotic expan-
sion of the binomial distribution yields

(
1

2

)n ⌊n/2⌋∑

i=0

(
n

i

)
i(n− 2i)

2n(n− i) = E

[
Z(1− 2Z)

2− 2Z
| 0 ≤ Z ≤ 1

2

]
+ o(n−1/2)

≥ 1

2
E

[
Z − 2Z2 | 0 ≤ Z ≤ 1

2

]
+ o(n−1/2) = Ω(n− 1

2),

the final equality following from standard calculations, since E[|Z|] = Ω(n−1/2).

3.5.2 Proof of Theorem 1

Although Theorem 1 is in terms of bounds on 8th order moments, we prove a somewhat more
general result in terms of a set of (k0, k1, k2) moment conditions given by

E[‖∇φ(θ;X)‖k02] ≤ Gk0 , E[
∣∣∣∣∣∣∇2φ(θ;X)−∇2f0(θ)

∣∣∣∣∣∣k1
2
] ≤ Hk1 ,

E[L(X)k2] ≤ Lk2 and E[(L(X)− E[L(X)])k2] ≤ Lk2

48

for θ ∈ U . (Recall the definition of U prior to Assumption C). Doing so allows sharper
control if higher moment bounds are available. The reader should recall throughout our
arguments that we have assumed min{k0, k1, k2} ≥ 8. Throughout the proof, we use f1 and
θ1 to indicate the local empirical objective and empirical minimizer of machine 1 (which have
the same distribution as those of the other processors), and we recall the notation 1(E) for
the indicator function of the event E .

Before beginning the proof of Theorem 1 proper, we begin with a simple inequality that
relates the error term θ− θ∗ to an average of the errors θi− θ∗, each of which we can bound
in turn. Specifically, a bit of algebra gives us that

E[
∥∥θ − θ∗

∥∥2
2
] = E

[∥∥∥∥
1

m

m∑

i=1

θi − θ∗
∥∥∥∥
2

2

]

=
1

m2

m∑

i=1

E[‖θi − θ∗‖22] +
1

m2

∑

i 6=j

E[〈θi − θ∗, θj − θ∗〉]

≤ 1

m
E[‖θ1 − θ∗‖22] +

m(m− 1)

m2
‖E[θ1 − θ∗]‖22

≤ 1

m
E[‖θ1 − θ∗‖22] + ‖E[θ1 − θ∗]‖

2
2 . (3.26)

Here we used the definition of the averaged vector θ and the fact that for i 6= j, the vectors
θi and θj are statistically independent, they are functions of independent samples. The
upper bound (3.26) illuminates the path for the remainder of our proof: we bound each
of E[‖θi − θ∗‖22] and ‖E[θi − θ∗]‖

2
2. Intuitively, since our objective is locally strongly convex

by Assumption B, the empirical minimizing vector θ1 is a nearly unbiased estimator for θ∗,
which allows us to prove the convergence rates in the theorem.

We begin by defining three events—which we (later) show hold with high probability—
that guarantee the closeness of θ1 and θ∗. In rough terms, when these events hold, the
function f1 behaves similarly to the population risk f0 around the point θ∗; since f0 is
locally strongly convex, the minimizer θ1 of f1 will be close to θ

∗. Recall that Assumption C
guarantees the existence of a ball Uρ = {θ ∈ R

d : ‖θ − θ∗‖2 < ρ} of radius ρ ∈ (0, 1) such
that ∣∣∣∣∣∣∇2φ(θ; x)−∇2φ(θ′; x)

∣∣∣∣∣∣
2
≤ L(x) ‖θ − θ′‖2

for all θ, θ′ ∈ Uρ and any x, where E[L(X)k2] ≤ Lk2 . In addition, Assumption B guarantees
that ∇2f0(θ

∗) � λI. Now, choosing the potentially smaller radius δρ = min{ρ, ρλ/4L}, we

49

can define the three “good” events

E0 :=
{
1

n

n∑

i=1

L(Xi) ≤ 2L

}
,

E1 :=
{∣∣∣∣∣∣∇2f1(θ

∗)−∇2f0(θ
∗)
∣∣∣∣∣∣
2
≤ ρλ

2

}
, and (3.27)

E2 :=
{
‖∇f1(θ∗)‖2 ≤

(1− ρ)λδρ
2

}
.

We then have the following lemma:

Lemma 3. Under the events E0, E1, and E2 previously defined (3.27), we have

‖θ1 − θ∗‖2 ≤
2 ‖∇f1(θ∗)‖2
(1− ρ)λ , and ∇2f1(θ) � (1− ρ)λId×d.

The proof of Lemma 3 relies on some standard optimization guarantees relating gradients to
minimizers of functions (e.g. [33], Chapter 9), although some care is required since smooth-
ness and strong convexity hold only locally in our problem. As the argument is somewhat
technical, we defer it to Appendix 3.5.5.

Our approach from here is to give bounds on E[‖θ1 − θ∗‖22] and ‖E[θ1 − θ∗]‖
2
2 by careful

Taylor expansions, which allows us to bound E[
∥∥θ1 − θ∗

∥∥2
2
] via our initial expansion (3.26).

We begin by noting that whenever the events E0, E1, and E2 hold, then ∇f1(θ1) = 0, and
moreover, by a Taylor series expansion of ∇f1 between θ∗ and θ1, we have

0 = ∇f1(θ1) = ∇f1(θ∗) +∇2f1(θ
′)(θ1 − θ∗)

where θ′ = κθ∗ + (1− κ)θ1 for some κ ∈ [0, 1]. By adding and subtracting terms, we have

0 = ∇f1(θ∗) + (∇2f1(θ
′)−∇2f1(θ

∗))(θ1 − θ∗)
+ (∇2f1(θ

∗)−∇2f0(θ
∗))(θ1 − θ∗) +∇2f0(θ

∗)(θ1 − θ∗). (3.28)

Since ∇2f0(θ
∗) � λI, we can define the inverse Hessian matrix Σ−1 := [∇2f0(θ

∗)]−1, and
setting ∆ := θ1− θ∗, we multiply both sides of the Taylor expansion (3.28) by Σ−1 to obtain
the relation

∆ = −Σ−1∇f1(θ∗) + Σ−1(∇2f1(θ
∗)−∇2f1(θ

′))∆ + Σ−1(∇2f0(θ
∗)−∇2f1(θ

∗))∆. (3.29)

Thus, if we define the matrices P = ∇2f0(θ
∗) − ∇2f1(θ

∗) and Q = ∇2f1(θ
∗) − ∇2f1(θ

′),
equality (3.29) can be re-written as

θ1 − θ∗ = −Σ−1∇f1(θ∗) + Σ−1(P +Q)(θ1 − θ∗). (3.30)

Note that equation (3.30) holds when the conditions of Lemma 3 hold, and otherwise we may
simply assert only that ‖θ1 − θ∗‖2 ≤ R. Roughly, we expect the final two terms in the error

50

expansion (3.30) to be of smaller order than the first term, since we hope that θ1 − θ∗ → 0
and additionally that the Hessian differences decrease to zero at a sufficiently fast rate. We
now formalize this intuition.

Inspecting the Taylor expansion (3.30), we see that there are several terms of a form
similar to (∇2f0(θ

∗) − ∇2f1(θ
∗))(θ1 − θ∗); using the smoothness Assumption C, we can

convert these terms into higher order terms involving only θ1 − θ∗. Thus, to effectively
control the expansions (3.29) and (3.30), we must show that higher order terms of the form
E[‖θ1 − θ∗‖k2], for k ≥ 2, decrease quickly enough in n.

Control of E[‖θ1 − θ∗‖k2]: Recalling the events (3.27), we define E := E0∩E1∩E2 and then
observe that

E[‖θ1 − θ∗‖k2] = E[1(E) ‖θ1 − θ∗‖k2] + E[1(Ec) ‖θ1 − θ∗‖k2]

≤ 2kE[1(E) ‖∇f1(θ∗)‖k2]
(1− ρ)kλk + P(Ec)Rk

≤ 2kE[‖∇f1(θ∗)‖k2]
(1− ρ)kλk + P(Ec)Rk,

where we have used the bound ‖θ − θ∗‖2 ≤ R for all θ ∈ Θ, from Assumption A. Our goal

is to prove that E[‖∇f1(θ∗)‖k2] = O(n−k/2) and that P(Ec) = O(n−k/2). We move forward
with a two lemmas that lay the groundwork for proving these two facts:

Lemma 4. Under Assumption C, there exist constants C and C ′ (dependent only on the
moments k0 and k1 respectively) such that

E[‖∇f1(θ∗)‖k02] ≤ C
Gk0

nk0/2
, and (3.31)

E[
∣∣∣∣∣∣∇2f1(θ

∗)−∇2f0(θ
∗)
∣∣∣∣∣∣k1

2
] ≤ C ′ log

k1/2(2d)Hk1

nk1/2
. (3.32)

See Appendix 3.5.6 for the proof of this claim.
As an immediate consequence of Lemma 4, we see that the events E1 and E2 defined

by (3.27) occur with reasonably high probability. Indeed, recalling that E = E0 ∩ E1 ∩ E2,
Boole’s law and the union bound imply

P(Ec) = P(Ec0 ∪ Ec1 ∪ Ec2)
≤ P(Ec0) + P(Ec1) + P(Ec2)

≤ E[| 1
n

∑n
i=1 L(Xi)− E[L(X)]|k2]

Lk2
+

2k1E[|||∇2f1(θ
∗)−∇2f0(θ

∗)|||k12]

ρk1λk1
+

2k0E[‖∇f1(θ∗)‖k02]

(1− ρ)k0λk0δk0ρ

≤ C2
1

nk2/2
+ C1

logk1/2(2d)Hk1

nk1/2
+ C0

Gk0

nk0/2
(3.33)

51

for some universal constants C0, C1, C2, where in the second-to-last line we have invoked the
moment bound in Assumption C. Consequently, we find that

P(Ec)Rk = O(Rk(n−k1/2 + n−k2/2 + n−k0/2) for any k ∈ N.

In summary, we have proved the following lemma:

Lemma 5. Let Assumptions B and C hold. For any k ∈ N with k ≤ min{k0, k1, k2}, we
have

E[‖θ1 − θ∗‖k2] = O
(
n−k/2 · Gk

(1− ρ)kλk + n−k0/2 + n−k1/2 + n−k2/2

)
= O

(
n−k/2

)
,

where the order statements hold as n→ +∞.

Now recall the matrix Q = ∇2f1(θ
∗) −∇2f1(θ

′) defined following equation (3.29). The fol-
lowing result controls the moments of its operator norm:

Lemma 6. For k ≤ min{k2, k1, k0}/2, we have E[|||Q|||k2] = O(n−k/2).

Proof We begin by using Jensen’s inequality and Assumption C to see that

|||Q|||k ≤ 1

n

n∑

i=1

∣∣∣∣∣∣∇2φ(θ′;Xi)−∇2φ(θ∗;Xi)
∣∣∣∣∣∣k ≤ 1

n

n∑

i=1

L(Xi)
k ‖θ′ − θ∗‖k2 .

Now we apply the Cauchy-Schwarz inequality and Lemma 5, thereby obtaining

E[|||Q|||k2] ≤ E

[(
1

n

n∑

i=1

L(Xi)
k

)2
] 1

2

E

[
‖θ1 − θ∗‖2k2

] 1
2
= O

(
Lk Gk

(1− ρ)kλkn
−k/2

)
,

where we have used Assumption C again.

Lemma 5 allows us to control the first term from our initial bound (3.26) almost im-
mediately. Indeed, using our last Taylor expansion (3.30) and the definition of the event
E = E0 ∩ E1 ∩ E2, we have

E[‖θ1 − θ∗‖22] = E

[
1(E)

∥∥−Σ−1∇f1(θ∗) + Σ−1(P +Q)(θ1 − θ∗)
∥∥2
2

]
+ E[1(Ec) ‖θ1 − θ∗‖22]

≤ 2E
[∥∥Σ−1∇f1(θ∗)

∥∥2
2

]
+ 2E

[∥∥Σ−1(P +Q)(θ1 − θ∗)
∥∥2
2

]
+ P(Ec)R2,

where we have applied the inequality (a+ b)2 ≤ 2a2 +2b2. Again using this same inequality,
then applying Cauchy-Schwarz and Lemmas 5 and 6, we see that

E

[∥∥Σ−1(P +Q)(θ1 − θ∗)
∥∥2
2

]
≤ 2

∣∣∣∣∣∣Σ−1
∣∣∣∣∣∣2
2

(
E[|||P |||22 ‖θ1 − θ∗‖

2
2] + E[|||Q|||22 ‖θ1 − θ∗‖

2
2]
)

≤ 2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2

(√
E[|||P |||42]E[‖θ1 − θ∗‖

4
2] +

√
E[|||Q|||42]E[‖θ1 − θ∗‖

4
2]

)

= O(n−2),

52

where we have used the fact that min{k0, k1, k2} ≥ 8 to apply Lemma 6. Combining these
results, we obtain the upper bound

E[‖θ1 − θ∗‖22] ≤ 2E
[∥∥Σ−1∇f1(θ∗)

∥∥2
2

]
+O(n−2), (3.34)

which completes the first part of our proof of Theorem 1.

Control of ‖E[θ1 − θ∗]‖22: It remains to consider the ‖E[θ1 − θ∗]‖22 term from our initial
error inequality (3.26). When the events (3.27) occur, we know that all derivatives exist, so
we may recursively apply our expansion (3.30) of θ1 − θ∗ to find that

θ1 − θ∗ = −Σ−1∇f1(θ∗) + Σ−1(P +Q)(θ1 − θ∗)
= −Σ−1∇f1(θ∗) + Σ−1(P +Q)

[
−Σ−1∇f1(θ∗) + Σ−1(P +Q)(θ1 − θ∗)

]
︸ ︷︷ ︸

=:v

(3.35)

where we have introduced v as shorthand for the vector on the right hand side. Thus, with
a bit of algebraic manipulation we obtain the relation

θ1 − θ∗ = 1(E)v + 1(Ec)(θ1 − θ∗) = v + 1(Ec)(θ1 − θ∗)− 1(Ec)v = v + 1(Ec)(θ1 − θ∗ − v). (3.36)

Now note that E[∇f1(θ∗)] = 0 thus

E[v] = E
[
−Σ−1∇f1(θ∗) + Σ−1(P +Q)[−Σ−1∇f1(θ∗) + Σ−1(P +Q)(θ1 − θ∗)]

]

= E
[
Σ−1(P +Q)Σ−1 [(P +Q)(θ1 − θ∗)−∇f1(θ∗)]

]
.

Thus, by re-substituting the appropriate quantities in (3.36) and applying the triangle in-
equality, we have

‖E[θ1 − θ∗]‖2
≤
∥∥E[Σ−1(P +Q)Σ−1 ((P +Q)(θ1 − θ∗)−∇f1(θ∗))]

∥∥
2
+
∥∥E[1(Ec)(θ1 − θ∗ − v)]

∥∥
2

≤
∥∥E[Σ−1(P +Q)Σ−1 ((P +Q)(θ1 − θ∗)−∇f1(θ∗))]

∥∥
2
+ E[1(Ec) ‖θ1 − θ∗‖2]

+ E
[
1(Ec)

∥∥−Σ−1∇f1(θ∗) + Σ−1(P +Q)Σ−1 [−∇f1(θ∗) + (P +Q)(θ1 − θ∗)]
∥∥
2

]
. (3.37)

Since ‖θ1 − θ∗‖2 ≤ R by assumption, we have

E[1(Ec) ‖θ1 − θ∗‖2] ≤ P(Ec)R (i)
= O(Rn−k/2)

for any k ≤ min{k2, k1, k0}, where step (i) follows from the inequality (3.33). Hölder’s
inequality also yields that

E
[
1(Ec)

∥∥Σ−1(P +Q)Σ−1∇f1(θ∗)
∥∥
2

]
≤ E

[
1(Ec)

∣∣∣∣∣∣Σ−1(P +Q)
∣∣∣∣∣∣
2

∥∥Σ−1∇f1(θ∗)
∥∥
2

]

≤
√
P(Ec)E

[∣∣∣∣∣∣Σ−1(P +Q)
∣∣∣∣∣∣4
2

]1/4
E

[∥∥Σ−1∇f1(θ∗)
∥∥4
2

]1/4
.

53

Recalling Lemmas 4 and 6, we have E[|||Σ−1(P +Q)|||42] = O(log2(d)n−2), and we similarly

have E[‖Σ−1∇f1(θ∗)‖42] = O(n−2). Lastly, we have P(Ec) = O(n−k/2) for k ≤ min{k0, k1, k2},
whence we find that for any such k,

E
[
1(Ec)

∥∥Σ−1(P +Q)Σ−1∇f1(θ∗)
∥∥
2

]
= O

(√
log(d)n−k/4−1

)
.

We can similarly apply Lemma 5 to the last remaining term in the inequality (3.37) to obtain
that for any k ≤ min{k2, k1, k0},

E
[
1(Ec)

∥∥−Σ−1∇f1(θ∗) + Σ−1(P +Q)
[
−Σ−1∇f1(θ∗) + Σ−1(P +Q)(θ1 − θ∗)

]∥∥
2

]

= O(n−k/2 + n−k/4−1).

Applying these two bounds, we find that

‖E[θ1 − θ∗]‖2 ≤
∥∥E
[
Σ−1(P +Q)Σ−1 ((P +Q)(θ1 − θ∗)−∇f1(θ∗))

]∥∥
2
+O(n−k) (3.38)

for any k such that k ≤ min{k0, k1, k2}/2 and k ≤ min{k0, k1, k2}/4 + 1.
In the remainder of the proof, we show that part of the bound (3.38) still consists only

of higher-order terms, leaving us with an expression not involving θ1− θ∗. To that end, note
that

E

[∥∥Σ−1(P +Q)Σ−1(P +Q)(θ1 − θ∗)
∥∥2
2

]
= O(n−3)

by three applications of Hölder’s inequality, the fact that ‖Ax‖2 ≤ |||A|||2 ‖x‖2, and Lem-
mas 4, 5 and 6. Coupled with our bound (3.38), we use the fact that (a+ b)2 ≤ 2a2 +2b2 to
obtain

‖E[θ1 − θ∗]‖22 ≤ 2
∥∥E[Σ−1(P +Q)Σ−1∇f1(θ∗)]

∥∥2
2
+O(n−3). (3.39)

We focus on bounding the remaining expectation. We have the following series of inequalities:

∥∥E[Σ−1(P +Q)Σ−1∇f1(θ∗)]
∥∥
2

(i)

≤ E
[∣∣∣∣∣∣Σ−1(P +Q)

∣∣∣∣∣∣
2

∥∥Σ−1∇f1(θ∗)
∥∥
2

]

(ii)

≤
(
E

[∣∣∣∣∣∣Σ−1(P +Q)
∣∣∣∣∣∣2

2

]
E

[∥∥Σ−1∇f1(θ∗)
∥∥2
2

]) 1
2

(iii)

≤
(
2E
[∣∣∣∣∣∣Σ−1P

∣∣∣∣∣∣2
2
+
∣∣∣∣∣∣Σ−1Q

∣∣∣∣∣∣2
2

]
E

[∥∥Σ−1∇f1(θ∗)
∥∥2
2

]) 1
2
.

Here step (i) follows from Jensen’s inequality and the fact that ‖Ax‖2 ≤ |||A|||2 ‖x‖2; step (ii)
uses the Cauchy-Schwarz inequality; and step (iii) follows from the fact that (a + b)2 ≤
2a2 + 2b2. We have already bounded the first two terms in the product in our proofs; in
particular, Lemma 4 guarantees that E[|||P |||22] ≤ CH log d/n, while

E[|||Q|||22] ≤ E

[
1

n

n∑

i=1

L(Xi)
4

] 1
2

E[‖θ1 − θ∗‖42]
1
2 ≤ C

L2G2

(1− ρ)2λ2 · n
−1

54

for some numerical constant C (recall Lemma 6). Summarizing our bounds on |||P |||2 and
|||Q|||2, we have

∥∥E
[
Σ−1(P +Q)Σ−1∇f1(θ∗)

]∥∥2
2

≤ 2
∣∣∣∣∣∣Σ−1

∣∣∣∣∣∣2
2

(
2H2(log d+ 1)

n
+ 2C

L2G2

(1− ρ)2λ2n +O(n−2)

)
E

[∥∥Σ−1∇f1(θ∗)
∥∥2
2

]
. (3.40)

From Assumption C we know that E[‖∇f1(θ∗)‖22] ≤ G2/n and |||Σ−1|||2 ≤ 1/λ, and hence we
can further simplify the bound (3.40) to obtain

‖E[θ1 − θ∗]‖22 ≤
C

λ2

(
H2 log d+ L2G2/λ2(1− ρ)2

n

)
E

[∥∥Σ−1∇f1(θ∗)
∥∥2
2

]
+O(n−3)

=
C

λ2

(
H2 log d+ L2G2/λ2(1− ρ)2

n2

)
E

[∥∥Σ−1∇φ(θ∗;X)
∥∥2
2

]
+O(n−3)

for some numerical constant C, where we have applied our earlier inequality (3.39). Noting
that we may (without loss of generality) take ρ < 1

2
, then applying this inequality with the

bound (3.34) on E[‖θ1 − θ∗‖22] we previously proved to our decomposition (3.26) completes
the proof.

3.5.3 Proof of Theorem 2

Our proof of Theorem 2 begins with a simple inequality that mimics our first inequality (3.26)
in the proof of Theorem 1. Recall the definitions of the averaged vector θ1 and subsampled
averaged vector θ2. Let θ1 denote the minimizer of the (an arbitrary) empirical risk f1, and
θ2 denote the minimizer of the resampled empirical risk f2 (from the same samples as θ1).
Then we have

E

[∥∥∥∥
θ1 − rθ2
1− r − θ∗

∥∥∥∥
2

2

]
≤
∥∥∥∥E
[
θ1 − rθ2
1− r − θ

∗
]∥∥∥∥

2

2

+
1

m
E

[∥∥∥∥
θ1 − rθ2
1− r − θ

∗
∥∥∥∥
2

2

]
. (3.41)

Thus, parallel to our proof of Theorem 1, it suffices to bound the two terms in the decom-
position (3.41) separately. Specifically, we prove the following two lemmas.

Lemma 7. Under the conditions of Theorem 2,

∥∥∥∥E
[
θ1 − rθ2
1− r − θ

∗
]∥∥∥∥

2

2

≤ O(1) 1

r(1− r)2
(
M2G6

λ6
+
G4L2

λ4
d log d

)
1

n3
. (3.42)

Lemma 8. Under the conditions of Theorem 2,

E
[
‖θ1 − θ∗ − r(θ2 − θ∗)‖22

]
≤ (2 + 3r)E

[∥∥∇2f0(θ
∗)−1∇f1(θ∗)

∥∥2
2

]
+O(n−2) (3.43)

55

In conjunction, Lemmas 7 and 8 coupled with the decomposition (3.41) yield the desired
claim. Indeed, applying each of the lemmas to the decomposition (3.41), we see that

E

[∥∥∥∥
θ1 − rθ2
1− r − θ∗

∥∥∥∥
2

2

]
≤ 2 + 3r

(1− r)2mE

[∥∥∇2f0(θ
∗)−1∇f1(θ∗)

∥∥2
2

]

+O
(

1

(1− r)2m
−1n−2

)
+O

(
1

r(1− r)2n
−3

)
,

which is the statement of Theorem 2.
The remainder of our argument is devoted to establishing Lemmas 7 and 8. Before

providing their proofs (in Section 3.5.3.3 and 3.5.3.4 respectively), we require some further
set-up and auxiliary results. Throughout the rest of the proof, we use the notation

Y = Y ′ +Rk

for some random variables Y and Y ′ to mean that there exists a random variable Z such that
Y = Y ′+Z and E[‖Z‖22] = O(n−k).1 The symbolRk may indicate different random variables
throughout a proof and is notational shorthand for a moment-based big-O notation. We also
remark that if we have E[‖Z‖22] = O(akn−k), we have Z = ak/2Rk, since (ak/2)2 = ak. For
shorthand, we also say that E[Z] = O(h(n)) if ‖E[Z]‖2 = O(h(n)), which implies that if
Z = Rk then E[Z] = O(n−k/2), since

‖E[Z]‖2 ≤
√
E[‖Z‖22] = O(n−k/2).

3.5.3.1 Optimization Error Expansion

In this section, we derive a sharper asymptotic expansion of the optimization errors θ1− θ∗.
Recall our definition of the Kronecker product ⊗, where for vectors u, v we have u⊗v = uv⊤.
With this notation, we have the following expansion of θ1− θ∗. In these lemmas, R3 denotes
a vector Z for which E[‖Z‖22] ≤ cn−3 for a numerical constant c.

Lemma 9. Under the conditions of Theorem 2, we have

θ1 − θ∗ = −Σ−1∇f1(θ∗) + Σ−1(∇2f1(θ
∗)− Σ)Σ−1∇f1(θ∗) (3.44)

− Σ−1∇3f0(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)

+
(
M2G6/λ6 +G4L2d log(d)/λ4

)
R3.

We prove Lemma 9 in Appendix 3.5.7. The lemma requires careful moment control over the
expansion θ1 − θ∗, leading to some technical difficulty, but is similar in spirit to the results
leading to Theorem 1.

An immediately analogous result to Lemma 9 follows for our sub-sampled estimators.
Since we use ⌈rn⌉ samples to compute θ2, the second level estimator, we find

1 Formally, in our proof this will mean that there exist random vectors Y , Y ′, and Z that are measurable
with respect to the σ-field σ(X1, . . . , Xn), where Y = Y ′ + Z and E[‖Z‖2

2
] = O(n−k).

56

Lemma 10. Under the conditions of Theorem 2, we have

θ2 − θ∗ = −Σ−1∇f2(θ∗) + Σ−1(∇2f2(θ
∗)− Σ)Σ−1∇f2(θ∗)

− Σ−1∇3f0(θ
∗)
(
(Σ−1∇f2(θ∗))⊗ (Σ−1∇f2(θ∗))

)

+ r−
3
2

(
M2G6/λ6 +G4L2d log(d)/λ4

)
R3.

3.5.3.2 Bias Correction

Now that we have given Taylor expansions that describe the behavior of θ1− θ∗ and θ2− θ∗,
we can prove Lemmas 7 and 8 (though, as noted earlier, we defer the proof of Lemma 8
to Appendix 3.5.3.4). The key insight is that expectations of terms involving ∇f2(θ∗) are
nearly the same as expectations of terms involving ∇f1(θ∗), except that some corrections for
the sampling ratio r are necessary.

We begin by noting that

θ1 − rθ2
1− r − θ

∗ =
θ1 − θ∗
1− r − r

θ2 − θ∗
1− r . (3.45)

In Lemmas 9 and 10, we derived expansions for each of the right hand side terms, and since

E[Σ−1∇f1(θ∗)] = 0 and E[Σ−1∇f2(θ∗)] = 0,

Lemmas 9 and 10 coupled with the rewritten correction (3.45) yield

E[θ1 − θ∗ − r(θ2 − θ∗)] = −rE[Σ−1(∇2f2(θ
∗)− Σ)Σ−1∇f2(θ∗)]

+ E[Σ−1(∇2f1(θ
∗)− Σ)Σ−1∇f1(θ∗)]

+ rE[Σ−1∇3f0(θ
∗)
(
(Σ−1∇f2(θ∗))⊗ (Σ−1∇f2(θ∗))

)
]

− E[Σ−1∇3f0(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)
]

+O(1)r−1/2
(
M2G6/λ6 +G4L2d log(d)/λ4

)
n−3/2. (3.46)

Here the remainder terms follow because of the r−3/2R3 term on θ2 − θ∗.

3.5.3.3 Proof of Lemma 7

To prove the claim in the lemma, it suffices to show that

rE[Σ−1(∇2f2(θ
∗)− Σ)Σ−1∇f2(θ∗)] = E[Σ−1(∇2f1(θ

∗)− Σ)Σ−1∇f1(θ∗)] (3.47)

and

rE[Σ−1∇3f0(θ
∗)
(
(Σ−1∇f2(θ∗))⊗ (Σ−1∇f2(θ∗))

)
]

= E[Σ−1∇3f0(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)
] (3.48)

57

Indeed, these two claims combined with the expansion (3.46) yield the bound (3.42) in
Lemma 7 immediately.

We first consider the difference (3.47). To make things notationally simpler, we define
functions A : X → R

d×d and B : X → R
d via A(x) := Σ−1(∇2φ(θ∗; x) − Σ) and B(x) :=

Σ−1∇φ(θ∗; x). If we let S1 = {X1, . . . , Xn} be the original samples and S2 = {Y1, . . . , Yrn}
be the subsampled dataset, we must show

rE

[
1

(rn)2

rn∑

i,j

A(Yi)B(Yj)

]
= E

[
1

n2

n∑

i,j

A(Xi)B(Xj)

]
.

Since the Yi are sampled without replacement (i.e., from P directly), and E[A(Xi)] = 0 and
E[B(Xi)] = 0, we find that E[A(Yi)B(Yj)] = 0 for i 6= j, and thus

rn∑

i,j

E[A(Yi)B(Yj)] =
rn∑

i=1

E[A(Yi)B(Yi)] = rnE[A(Y1)B(Y1)].

In particular, we see that the equality (3.47) holds:

r

(rn)2

rn∑

i,j

E[A(Yi)B(Yj)] =
r

rn
E[A(Y1)B(Y1)] =

1

n
E[A(X1)B(X1)]

=
1

n2

n∑

i,j

E[A(Xi)B(Xj)].

The statement (3.48) follows from analogous arguments.

3.5.3.4 Proof of Lemma 8

The proof of Lemma 8 follows from that of Lemmas 9 and 10. We first claim that

θ1 − θ∗ = −Σ−1∇f1(θ∗) +R2 and θ2 − θ∗ = −Σ−1∇f2(θ∗) + r−1R2. (3.49)

The proofs of both claims similar, so we focus on proving the second statement. Using the
inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) and Lemma 10, we see that

E

[∥∥θ2 − θ∗ + Σ−1∇f2(θ∗)
∥∥2
2

]
≤ 3E

[∥∥Σ−1(∇2f2(θ
∗)− Σ)Σ−1∇f2(θ∗)

∥∥2
2

]

+ 3E
[∥∥Σ−1∇3f0(θ

∗)
(
(Σ−1∇f2(θ∗))⊗ (Σ−1∇f2(θ∗))

)∥∥2
2

]

+ 3r−3O(n−3). (3.50)

58

We now bound the first two terms in inequality (3.50). Applying the Cauchy-Schwarz in-
equality and Lemma 4, the first term can be upper bounded as

E

[∥∥Σ−1(∇2f2(θ
∗)− Σ)Σ−1∇f2(θ∗)

∥∥2
2

]

≤
(
E

[∣∣∣∣∣∣Σ−1(∇2f2(θ
∗)− Σ)

∣∣∣∣∣∣4
2

]
E

[∥∥Σ−1∇f2(θ∗)
∥∥4
2

])1/2

=
(
r−2)O(log2(d)n−2) · r−2O(n−2)

)1/2
= r−2O(n−2),

where the order notation subsumes the logarithmic factor in the dimension. Since ∇3f0(θ
∗) :

R
d2 → R

d is linear, the second term in the inequality (3.50) may be bounded completely
analogously as it involves the outer product Σ−1∇f2(θ∗) ⊗ Σ−1∇f2(θ∗). Recalling the
bound (3.50), we have thus shown that

E

[∥∥θ2 − θ∗ + Σ−1∇f2(θ∗)
∥∥2
2

]
= r−2O(n−2),

or θ2 − θ∗ = −Σ−1∇f2(θ∗) + r−1R2. The proof of the first equality in equation (3.49) is
entirely analogous.

We now apply the equalities (3.49) to obtain the result of the lemma. We have

E
[
‖θ1 − θ∗ − r(θ2 − θ∗)‖22

]
= E

[∥∥−Σ−1∇f1(θ∗) + rΣ−1∇f2(θ∗) +R2

∥∥2
2

]
.

Using the inequality (a+ b)2 ≤ (1 + η)a2 + (1 + 1/η)b2 for any η ≥ 0, we have

(a+ b+ c)2 ≤ (1 + η)a2 + (1 + 1/η)(b+ c)2

≤ (1 + η)a2 + (1 + 1/η)(1 + α)b2 + (1 + 1/η)(1 + 1/α)c2

for any η, α ≥ 0. Taking η = 1 and α = 1/2, we obtain (a + b + c)2 ≤ 2a2 + 3b2 + 6c2, so
applying the triangle inequality, we have

E
[
‖θ1 − θ∗ − r(θ2 − θ∗)‖22

]
= E

[∥∥−Σ−1∇f1(θ∗) + rΣ−1∇f2(θ∗) +R2

∥∥2
2

]
(3.51)

≤ 2E
[∥∥Σ−1∇f1(θ∗)

∥∥2
2

]
+ 3r2E

[∥∥Σ−1∇f2(θ∗)
∥∥2
2

]
+O(n−2).

Since f2 is a sub-sampled version of f1, algebraic manipulations yield

E

[∥∥Σ−1∇f2(θ∗)
∥∥2
2

]
=

n

rn
E

[∥∥Σ−1∇f1(θ∗)
∥∥2
2

]
=

1

r
E

[∥∥Σ−1∇f1(θ∗)
∥∥2
2

]
. (3.52)

Combining equations (3.51) and (3.52), we obtain the desired bound (3.43).

59

3.5.4 Proof of Theorem 3

We begin by recalling that if θn denotes the output of performing stochastic gradient on one
machine, then from the inequality (3.26) we have the upper bound

E[
∥∥θn − θ∗

∥∥2
2
] ≤ 1

m
E[‖θn − θ∗‖22] + ‖E[θn − θ∗]‖

2
2 .

To prove the error bound (3.21), it thus suffices to prove the inequalities

E[‖θn − θ∗‖22] ≤
αG2

λ2n
, and (3.53)

‖E[θn − θ∗]‖22 ≤
β2

n3/2
. (3.54)

Before proving the theorem, we introduce some notation and a few preliminary results. Let
gt = ∇φ(θt;Xt) be the gradient of the tth sample in stochastic gradient descent, where we
consider running SGD on a single machine. We also let

Π(v) := argmin
θ∈Θ

{
‖θ − v‖22

}

denote the projection of the point v onto the domain Θ.
We now state a known result, which gives sharp rates on the convergence of the iterates

{θt} in stochastic gradient descent.

Lemma 11 (Rakhlin et al., 2011). Assume that E[‖gt‖22] ≤ G2 for all t. Choosing ηt =
c
λt

for some c ≥ 1, for any t ∈ N we have

E

[∥∥θt − θ∗
∥∥2
2

]
≤ αG2

λ2t
where α = 4c2.

With these ingredients, we can now turn to the proof of Theorem 3. Lemma 11 gives the
inequality (3.53), so it remains to prove that θ

n
has the smaller bound (3.54) on its bias. To

that end, recall the neighborhood Uρ ⊂ Θ in Assumption E, and note that

θt+1 − θ∗ = Π(θt − ηtgt − θ∗)
= θt − ηtgt − θ∗ + 1(θt+1 6∈Uρ)

(
Π(θt − ηtgt)− (θt − ηtgt)

)

since when θ ∈ Uρ, we have Π(θ) = θ. Consequently, an application of the triangle inequality
gives
∥∥E[θt+1 − θ∗]

∥∥
2
≤
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+ E[

∥∥(Π(θt − ηtgt)− (θt − ηtgt))1(θt+1 /∈ Uρ)
∥∥
2
].

By the definition of the projection and the fact that θt ∈ Θ, we additionally have
∥∥Π(θt − ηtgt)− (θt − ηtgt)

∥∥
2
≤
∥∥θt − (θt − ηtgt))

∥∥
2
≤ ηt ‖gt‖2 .

60

Thus, by applying Hölder’s inequality (with the conjugate choices (p, q) = (4, 4
3
)) and As-

sumption E, we have

∥∥E[θt+1 − θ∗]
∥∥
2
≤
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+ ηtE[‖gt‖2 1(θt+1 6∈Uρ)]

≤
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+ ηt

4

√
E[‖gt‖42]

(
E[1

4/3
(θt 6∈Uρ)

]
)3/4

≤
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+ ηtG

(
P(θt 6∈ Uρ)

)3/4

≤
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+ ηtG

(
E ‖θt+1 − θ∗‖22

ρ2

)3/4

, (3.55)

the inequality (3.55) following from an application of Markov’s inequality. By applying
Lemma 11, we finally obtain

∥∥E[θt+1 − θ∗]
∥∥
2
≤
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+ ηtG

(
αG2

λ2ρ2t

)3/4

=
∥∥E[θt − ηtgt − θ∗]

∥∥
2
+
cα3/4G5/2

λ5/2ρ3/2
· 1

t7/4
. (3.56)

Now we turn to controlling the rate at which θt − ηtgt goes to zero. Let φt(·) = φ(·;Xt)
be shorthand for the loss evaluated on the tth data point. By defining

rt = gt −∇φt(θ
∗)−∇2φt(θ

∗)(θt − θ∗),

a bit of algebra yields
gt = ∇φt(θ

∗) +∇2φt(θ
∗)(θt − θ∗) + rt.

Since θt belongs to the σ-field of X1, . . . , Xt−1, the Hessian ∇2φt(θ
∗) is (conditionally) inde-

pendent of θt and

E[gt] = ∇2f0(θ
∗)E[θt − θ∗] + E[rt1(θt∈Uρ)] + E[rt1(θt /∈Uρ)]. (3.57)

If θt ∈ Uρ, then Taylor’s theorem implies that rt is the Lagrange remainder

rt = (∇2φt(θ
′)−∇2φt(θ

∗))(θ′ − θ∗),

where θ′ = κθt + (1 − κ)θ∗ for some κ ∈ [0, 1]. Applying Assumption E and Hölder’s
inequality, we find that since θt is conditionally independent of Xt,

E
[∥∥rt1(θt∈Uρ)

∥∥
2

]
≤ E

[∣∣∣∣∣∣∇2φ(θ′;Xt)−∇2φ(θ∗;Xt)
∣∣∣∣∣∣ ∥∥θt − θ∗

∥∥
2
1(θt∈Uρ)

]

≤ E

[
L(Xt)

∥∥θt − θ∗
∥∥2
2

]
= E[L(Xt)]E[

∥∥θt − θ∗
∥∥2
2
]

≤ LE
[∥∥θt − θ∗

∥∥2
2

]
≤ αLG2

λ2t
.

61

On the other hand, when θt 6∈ Uρ, we have the following sequence of inequalities:

E
[∥∥rt1(θt 6∈Uρ)

∥∥
2

] (i)

≤ 4

√
E[‖rt‖42]

(
P(θt 6∈ Uρ)

)3/4

(ii)

≤ 4

√
33
(
E[‖gt‖42] + E[‖∇φt(θ∗)‖42] + E[‖∇2φt(θ∗)(θt − θ∗)‖42]

) (
P(θt 6∈ Uρ)

)3/4

≤ 33/4
4
√
G4 +G4 +H4R4

(
P(θt 6∈ Uρ)

)3/4

(iii)

≤ 3(G+HR)

(
αG2

λ2ρ2t

)3/4

.

Here step (i) follows from Hölder’s inequality (again applied with the conjugates (p, q) =
(4, 4

3
)); step (ii) follows from Jensen’s inequality, since (a + b + c)4 ≤ 33(a4 + b4 + c4); and

step (iii) follows from Markov’s inequality, as in the bounds (3.55) and (3.56). Combining
our two bounds on rt, we find that

E[‖rt‖2] ≤
αLG2

λ2t
+

3α3/4G3/2(G+HR)

λ3/2ρ3/2
· 1

t3/4
. (3.58)

By combining the expansion (3.57) with the bound (3.58), we find that

∥∥E[θt − ηtgt − θ∗]
∥∥
2
=
∥∥E[(I − ηt∇2f0(θ

∗))(θt − θ∗) + ηtrt]
∥∥
2

≤
∥∥E[(I − ηt∇2f0(θ

∗))(θt − θ∗)]
∥∥
2
+
cαLG2

λ3t2
+

3cα3/4G3/2(G+HR)

λ5/2ρ3/2
· 1

t7/4
.

Using the earlier bound (3.56), this inequality then yields

∥∥E[θt+1 − θ∗]
∥∥
2
≤
∣∣∣∣∣∣I − ηt∇tf0(θ

∗)
∣∣∣∣∣∣

2

∥∥E[θt − θ∗]
∥∥
2
+
cα3/4G3/2

λ5/2t7/4

(
α1/4LG1/2

λ1/2t1/4
+

4G+HR

ρ3/2

)
.

We now complete the proof via an inductive argument using our immediately preceding
bounds. Our reasoning follows a similar induction given by Rakhlin et al. [167]. First, note
that by strong convexity and our condition that |||∇2f0(θ

∗)||| ≤ H, we have

∣∣∣∣∣∣I − ηt∇2f0(θ
∗)
∣∣∣∣∣∣ = 1− ηtλmin(∇2f0(θ

∗) ≤ 1− ηtλ

whenever 1− ηtH ≥ 0. Define τ0 = ⌈cH/λ⌉; then for t ≥ t0 we obtain

∥∥E[θt+1 − θ∗]
∥∥
2
≤ (1− c/t)

∥∥E[θt − θ∗]
∥∥
2
+

1

t7/4
· cα

3/4G3/2

λ5/2

(
α1/4LG1/2

λ1/2t1/4
+

4G+HR

ρ3/2

)
.

(3.59)
For shorthand, we define two intermediate variables

at =
∥∥E(θt − θ∗)

∥∥
2

and b =
cα3/4G3/2

λ5/2

(
α1/4LG1/2

λ1/2
+

4G+HR

ρ3/2

)
.

62

Inequality (3.59) then implies the inductive relation at+1 ≤ (1 − c/t)at + b/t7/4. Now we
show that by defining β = max{τ0R, b/(c− 1)}, we have at ≤ β/t3/4. Indeed, it is clear that
a1 ≤ τ0R. Using the inductive hypothesis, we then have

at+1 ≤
(1− c/t)β

t3/4
+

b

t7/4
=
β(t− 1)

t7/4
− β(c− 1)− b

t2
≤ β(t− 1)

t7/4
≤ β

(t+ 1)3/4
.

This completes the proof of the inequality (3.54).

Remark If we assume kth moment bounds instead of 4th, i.e., E[|||∇2φ(θ∗;X)|||k2] ≤ Hk

and E[‖gt‖k2] ≤ Gk, we find the following analogue of the bound (3.59):

∥∥E[θt+1 − θ∗]
∥∥
2
≤ (1− c/t)

∥∥E[θt − θ∗]
∥∥
2

+
1

t
2k−1

k

· cα
k−1
k G

2k−2
k

λ
3k−2

k

[(
541/k + 1

)
G+ 541/kHR

ρ
2k−2

k

+
α1/kLG2/k

λ2/kt1/k

]
.

In this case, if we define

b =
cα

k−1
k G

2k−2
k

λ
3k−2

k

[(
541/k + 1

)
G+ 541/kHR

ρ
2k−2

k

+
α1/kLG2/k

λ2/k

]
and β = max

{
τ0R,

b

c− 1

}
,

we have the same result except we obtain the bound ‖E[θn − θ∗]‖22 ≤ β2/n
2k−2

k .

3.5.5 Proof of Lemma 3

We first prove that under the conditions given in the lemma statement, the function f1 is
(1−ρ)λ-strongly convex over the ball U :=

{
θ ∈ R

d : ‖θ − θ∗‖2 < δρ
}
around θ∗. Indeed, fix

γ ∈ U , then use the triangle inequality to conclude that

∣∣∣∣∣∣∇2f1(γ)−∇2f0(θ
∗)
∣∣∣∣∣∣

2
≤
∣∣∣∣∣∣∇2f1(γ)−∇2f1(θ

∗)
∣∣∣∣∣∣
2
+
∣∣∣∣∣∣∇2f1(θ

∗)−∇2f0(θ
∗)
∣∣∣∣∣∣

2

≤ L ‖γ − θ∗‖2 +
ρλ

2
.

Here we used Assumption C on the first term and the fact that the event E1 holds on the
second. By our choice of δρ ≤ ρλ/4L, this final term is bounded by λρ. In particular, we
have

∇2f0(θ
∗) � λI so ∇2f1(γ) � λI − ρλI = (1− ρ)λI,

which proves that f1 is (1− ρ)λ-strongly convex on the ball U .
In order to prove the conclusion of the lemma, we argue that since f1 is (locally) strongly

convex, if the function f1 has small gradient at the point θ∗, it must be the case that the
minimizer θ1 of f1 is near θ

∗. Then we can employ reasoning similar to standard analyses of

63

optimality for globally strongly convex functions [e.g. 33, Chapter 9]. By definition of (the
local) strong convexity on the set U , for any θ′ ∈ Θ, we have

f1(θ
′) ≥ f1(θ

∗) + 〈∇f1(θ∗), θ′ − θ∗〉+
(1− ρ)λ

2
min

{
‖θ∗ − θ′‖22 , δ2ρ

}
.

Rewriting this inequality, we find that

min
{
‖θ∗ − θ′‖22 , δ2ρ

}
≤ 2

(1− ρ)λ [f1(θ
′)− f1(θ∗) + 〈∇f1(θ∗), θ′ − θ∗〉]

≤ 2

(1− ρ)λ [f1(θ
′)− f1(θ∗) + ‖∇f1(θ∗)‖2 ‖θ′ − θ∗‖2] .

Dividing each side by ‖θ′ − θ∗‖2, then noting that we may set θ′ = κθ1 + (1 − κ)θ∗ for any
κ ∈ [0, 1], we have

min

{
κ ‖θ1 − θ∗‖2 ,

δ2ρ
κ ‖θ1 − θ∗‖2

}
≤ 2 [f1(κθ1 + (1− κ)θ∗)− f1(θ∗)]

κ(1− ρ)λ ‖θ1 − θ∗‖2
+

2 ‖∇f1(θ∗)‖2
(1− ρ)λ .

Of course, f1(θ1) < f1(θ
∗) by assumption, so we find that for any κ ∈ (0, 1) we have the

strict inequality

min

{
κ ‖θ1 − θ∗‖2 ,

δ2ρ
κ ‖θ1 − θ∗‖2

}
<

2 ‖∇f1(θ∗)‖2
(1− ρ)λ ≤ δρ,

the last inequality following from the definition of E2. Since this holds for any κ ∈ (0, 1), if
‖θ1 − θ∗‖2 > δρ, we may set κ = δρ/ ‖θ1 − θ∗‖2, which would yield a contradiction. Thus,
we have ‖θ1 − θ∗‖2 ≤ δρ, and by our earlier inequalities,

‖θ1 − θ∗‖22 ≤
2

(1− ρ)λ [f1(θ1)− f1(θ∗) + ‖∇f1(θ∗)‖2 ‖θ1 − θ∗‖2] ≤
2 ‖∇f1(θ∗)‖2
(1− ρ)λ ‖θ1 − θ∗‖2 .

Dividing by ‖θ1 − θ∗‖2 completes the proof.

3.5.6 Moment bounds

In this appendix, we state two useful moment bounds, showing how they combine to provide
a proof of Lemma 4. The two lemmas are a vector and a non-commutative matrix variant of
the classical Rosenthal inequalities. We begin with the case of independent random vectors:

Lemma 12 (de Acosta, 1981, Theorem 2.1). Let k ≥ 2 and Xi be a sequence of independent
random vectors in a separable Banach space with norm ‖·‖ and E[‖Xi‖k] <∞. There exists
a finite constant Ck such that

E

[∣∣∣∣
∥∥∥∥

n∑

i=1

Xi

∥∥∥∥− E

[∥∥∥∥
n∑

i=1

Xi

∥∥∥∥
]∣∣∣∣

k]
≤ Ck

(

n∑

i=1

E[‖Xi‖2]
)k/2

+
n∑

i=1

E[‖Xi‖k]

 .

64

We say that a random matrix X is symmetrically distributed if X and −X have the same
distribution. For such matrices, we have:

Lemma 13 (Chen et al., 2012, Theorem A.1(2)). Let Xi ∈ R
d×d be independent and sym-

metrically distributed Hermitian matrices. Then

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

Xi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤
√
2e log d

∣∣∣∣
∣∣∣∣
∣∣∣∣
(n∑

i=1

E
[
X2

i

])1/2∣∣∣∣
∣∣∣∣
∣∣∣∣+ 2e log d

(
E[max

i
|||Xi|||k]

)1/k
.

Equipped with these two auxiliary results, we turn to our proof Lemma 4. To prove the
first bound (3.31), let 2 ≤ k ≤ k0 and note that by Jensen’s inequality, we have

E[‖∇f1(θ∗)‖k2] ≤ 2k−1
E

[∣∣ ‖∇f1(θ∗)‖2 − E[‖∇f1(θ∗)‖2]
∣∣k
]
+ 2k−1

E [‖∇f1(θ∗)‖2]
k .

Again applying Jensen’s inequality, E[‖∇φ(θ∗;X)‖22] ≤ G2. Thus by recalling the definition
∇f1(θ∗) = 1

n

∑n
i=1∇φ(θ∗;Xi) and applying the inequality

E[‖∇f1(θ∗)‖2] ≤ E[‖∇f1(θ∗)‖22]1/2 ≤ n−1/2G,

we see that Lemma 12 implies E
[
‖∇f1(θ∗)‖k2

]
is upper bounded by

2k−1Ck

(

1

n2

n∑

i=1

E[‖∇φ(θ;Xi)‖22]
)k/2

+
1

nk

n∑

i=1

E[‖∇φ(θ∗;Xi)‖k2]

+ 2k−1

E[‖∇f1(θ∗)‖2]k

≤ 2k−1 Ck

nk/2

(
1

n

n∑

i=1

E[‖∇φ(θ∗;Xi)‖22]
)k/2

+
1

nk/2

n∑

i=1

E[‖∇φ(θ∗;Xi)‖k2]

+

2k−1Gk

nk/2
.

Applying Jensen’s inequality yields

(
1

n

n∑

i=1

E[‖∇φ(θ∗;Xi)‖22]
)k/2

≤ 1

n

n∑

i=1

E[‖∇φ(θ∗;Xi)‖22]k/2 ≤ Gk,

completes the proof of the inequality (3.31).
The proof of the bound (3.32) requires a very slightly more delicate argument involving

symmetrization step. Define matrices Zi =
1
n
(∇2φ(θ∗;Xi)−∇2f0(θ

∗)). If εi ∈ {±1} are
i.i.d. Rademacher variables independent of Zi, then for any integer k in the interval [2, k2],
a standard symmetrization argument [e.g. 117, Lemma 6.3] implies that

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

Zi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤ 2E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

εiZi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

. (3.60)

65

Now we may apply Lemma 13, since the matrices εiZi are Hermitian and symmetrically
distributed; by expanding the definition of the Zi, we find that

E

[∣∣∣∣∣∣∇2f1(θ
∗)−∇2f0(θ

∗)
∣∣∣∣∣∣k
]1/k
≤ 5
√

log d

∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1

n2

n∑

i=1

E[(∇2φ(θ;Xi)−∇2f0(θ
∗))2]

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣

+ 4e log d
(
n−k

E[max
i

∣∣∣∣∣∣∇2φ(θ∗;Xi)−∇2f0(θ
∗)
∣∣∣∣∣∣k]
)1/k

.

Since the Xi are i.i.d., we have
∣∣∣∣
∣∣∣∣
∣∣∣∣
(

1

n2

n∑

i=1

E[(∇2φ(θ;Xi)−∇2f0(θ
∗))2]

)1/2∣∣∣∣
∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣
∣∣∣∣n−1/2

E

[(
∇2φ(θ∗;X)−∇2f0(θ

∗)
)2]1/2

∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ n−1/2
E

[∣∣∣∣∣∣∇2φ(θ∗;X)−∇2f0(θ
∗)
∣∣∣∣∣∣2
]1/2

by Jensen’s inequality, since
∣∣∣∣∣∣A1/2

∣∣∣∣∣∣ = |||A|||1/2 for semidefinite A. Finally, noting that

1

nk
E

[
max

i

∣∣∣∣∣∣∇2φ(θ∗;Xi)−∇2f0(θ
∗)
∣∣∣∣∣∣k
]
≤ n

nk
E

[∣∣∣∣∣∣∇2φ(θ∗;X)−∇2f0(θ
∗)
∣∣∣∣∣∣k
]
≤ n1−kHk

completes the proof of the second bound (3.32).

3.5.7 Proof of Lemma 9

The proof follows from a slightly more careful application of the Taylor expansion (3.28).
The starting point in our proof is to recall the success events (3.27) and the joint event
E := E0 ∩ E1 ∩ E2. We begin by arguing that we may focus on the case where E holds. Let
C denote the right hand side of the equality (3.44) except for the remainder R3 term. By
Assumption C, we follow the bound (3.33) (with min{k0, k1, k2} ≥ 8) to find that

E
[
1(Ec) ‖θ1 − θ∗‖22

]
= O

(
R2n−4

)
,

so we can focus on the case where the joint event E = E0 ∩ E1 ∩ E2 does occur.
Defining ∆ = θ1 − θ∗ for notational convenience, on E we have that for some κ ∈ [0, 1],

with θ′ = (1− κ)θ1 + κθ∗,

0 = ∇f1(θ∗) +∇2f1(θ
∗)∆ +∇3f1(θ

′)(∆⊗∆)

= ∇f1(θ∗) +∇2f0(θ
∗)∆ +∇3f0(θ

∗)(∆⊗∆)

+ (∇2f1(θ
∗)−∇2f0(θ

∗))∆ + (∇3f1(θ
′)−∇3f0(θ

∗))(∆⊗∆).

Now, we recall the definition Σ = ∇2f0(θ
∗), the Hessian of the risk at the optimal point, and

solve for the error ∆ to see that

∆ = −Σ−1∇f1(θ∗)− Σ−1(∇2f1(θ
∗)− Σ)∆− Σ−1∇3f1(θ

∗)(∆⊗∆)

+ Σ−1(∇3f0(θ
∗)−∇3f1(θ

′))(∆⊗∆) (3.61)

66

on the event E . As we did in the proof of Theorem 1, specifically in deriving the recursive
equality (3.35), we may apply the expansion (3.30) of ∆ = θ1−θ∗ to obtain a clean asymptotic
expansion of ∆ using (3.61). Recall the definition P = ∇2f0(θ

∗) − ∇2f1(θ
∗) for shorthand

here (as in the expansion (3.30), though we no longer require Q).
First, we claim that

1(E)(∇3f0(θ
∗)−∇3f1(θ

′))(∆⊗∆) =
(
M2G6/λ6 +G4L2d log(d)/λ4

)
R3. (3.62)

To prove the above expression, we add and subtract ∇3f1(θ
∗) (and drop 1(E) for simplicity).

We must control

(∇3f0(θ
∗)−∇3f1(θ

∗))(∆⊗∆) + (∇3f1(θ
∗)−∇3f1(θ

′))(∆⊗∆).

To begin, recall that |||u⊗ v|||2 =
∣∣∣∣∣∣uv⊤

∣∣∣∣∣∣
2
= ‖u‖2 ‖v‖2. By Assumption D, on the event E

we have that ∇3f1 is (1/n)
∑n

i=1M(Xi)-Lipschitz, so defining Mn = (1/n)
∑n

i=1M(Xi), we
have

E

[
1(E)

∥∥(∇3f1(θ
∗)−∇3f1(θ

′)
)
(∆⊗∆)

∥∥2
2

]
≤ E

[
M2

n ‖θ∗ − θ′‖22 ‖∆‖
4
2

]

≤ E
[
M8

n

]1/4
E
[
‖θ1 − θ∗‖82

]3/4 ≤ O(1)M2 G6

λ6n3

by Hölder’s inequality and Lemma 5. The remaining term we must control is the derivative
difference E[‖(∇3f1(θ

∗)−∇3f0(θ
∗))(∆⊗∆)‖22]. Define the random vector-valued function

G = ∇(f1 − f0), and let Gj denote its jth coordinate. Then by definition we have

(∇3f1(θ
∗)−∇3f0(θ

∗))(∆⊗∆) =
[
∆⊤(∇2G1(θ

∗))∆ · · · ∆⊤(∇2Gd(θ
∗))∆

]⊤ ∈ R
d.

Therefore, by the Cauchy-Schwarz inequality and the fact that x⊤Ax ≤ |||A|||2 ‖x‖
2
2,

E

[∥∥(∇3f1(θ
∗)−∇3f0(θ

∗))(∆⊗∆)
∥∥2
2

]
=

d∑

j=1

E

[(
∆⊤(∇2Gj(θ

∗))∆
)2]

≤
d∑

j=1

(
E
[
‖∆‖82

]
E

[∣∣∣∣∣∣∇2Gj(θ
∗)
∣∣∣∣∣∣4
2

])1/2
.

Applying Lemma 5 yields that E[‖∆‖82] = O(G8/(λ2n)4). Introducing the shorthand notation
g(·; x) := ∇φ(·; x)−∇f0(·), we can write

∇2Gj(θ
∗) =

1

n

n∑

i=1

∇2gj(θ
∗;Xi)

For every coordinate j, the random matrices ∇2gj(θ
∗;Xi) (i = 1, . . . , n) are i.i.d. and mean

zero. By Assumption C, we have |||∇2gj(θ
∗;Xi)|||2 ≤ 2L(Xi), whence we have

E[
∣∣∣∣∣∣∇2gj(θ

∗;Xi)
∣∣∣∣∣∣8

2
] ≤ 28L8.

67

Applying Lemma 13, we obtain

E

[∣∣∣∣∣∣∇2Gj(θ
∗)
∣∣∣∣∣∣4
2

]
≤ O(1)L4n−2 log2(d),

and hence

E

[∥∥(∇3f1(θ
∗)−∇3f0(θ

∗))(∆⊗∆)
∥∥2
2

]
≤ O(1)G

4L2

λ4
d log(d)n−3,

which implies the desired result (3.62). From now on, terms of the form R3 will have no
larger constants than those in the equality (3.62), so we ignore them.

Now we claim that

1(E)∇3f1(θ
∗)(∆⊗∆) = ∇3f1(θ

∗)((Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))) +R3. (3.63)

Indeed, applying the expansion (3.30) to the difference ∆ = θ1 − θ∗, we have on E that

∆⊗∆ = (Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗)) + (Σ−1P∆)⊗ (Σ−1P∆)

− (Σ−1P∆)⊗ (Σ−1∇f1(θ∗))− (Σ−1∇f1(θ∗))⊗ (Σ−1P∆).

We can bound each of the second three outer products in the equality above similarly; we
focus on the last for simplicity. Applying the Cauchy-Schwarz inequality, we have

E

[∣∣∣∣∣∣(Σ−1∇f1(θ∗))⊗ (Σ−1P∆)
∣∣∣∣∣∣2
2

]
≤
(
E

[∥∥Σ−1∇f1(θ∗)
∥∥4
2

]
E

[∥∥Σ−1P (θ1 − θ∗)
∥∥4
2

]) 1
2
.

From Lemmas 5 and 6, we obtain that

E

[∥∥Σ−1∇f1(θ∗)
∥∥4
2

]
= O(n−2) and E

[∥∥Σ−1P (θ1 − θ∗)
∥∥4
2

]
= O(n−4)

after an additional application of Cauchy-Schwarz for the second expectation. This shows
that

(Σ−1∇f1(θ∗))⊗ (Σ−1P∆) = R3,

and a similar proof applies to the other three terms in the outer product ∆⊗∆. Using the
linearity of ∇3f1(θ

∗), we see that to prove the equality (3.63), all that is required is that

1(Ec)∇3f1(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)
= R3. (3.64)

For this, we apply Hölder’s inequality several times. Indeed, we have

E

[∥∥1(Ec)∇3f1(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)∥∥2
2

]

≤ E[1(Ec)]
1/4

E

[∥∥∇3f1(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)∥∥8/3
2

]3/4

≤ E[1(Ec)]
1/4

E

[∣∣∣∣∣∣∇3f1(θ
∗)
∣∣∣∣∣∣8/3 ∥∥Σ−1∇f1(θ∗)

∥∥16/3
2

]3/4

≤ E[1(Ec)]
1/4

E

[∣∣∣∣∣∣∇3f1(θ
∗)
∣∣∣∣∣∣8
]1/4

E

[∥∥Σ−1∇f1(θ∗)
∥∥8
2

]2/4
= O(n−1 · L2 · n−2).

68

For the final asymptotic bound, we used equation (3.33) to bound E[1(Ec)], used the fact
(from Assumption C) that E[L(X)8] ≤ L8 to bound the term involving∇3f1(θ

∗), and applied
Lemma 4 to control E[‖Σ−1∇f1(θ∗)‖82]. Thus the equality (3.64) holds, and this completes
the proof of the equality (3.63).

For the final step in the lemma, we claim that

−1(E)Σ−1(∇2f1(θ
∗)− Σ)∆ = Σ−1(∇2f1(θ

∗)− Σ)Σ−1∇f1(θ∗) +R3. (3.65)

To prove (3.65) requires an argument completely parallel to that for our claim (3.63). As
before, we use the expansion (3.30) of the difference ∆ to obtain that on E ,

−Σ−1(∇2f1(θ
∗)− Σ)∆

= Σ−1(∇2f1(θ
∗)− Σ)Σ−1∇f1(θ∗)− Σ−1(∇2f1(θ

∗)− Σ)Σ−1P∆.

Now apply Lemmas 5 and 6 to the final term after a few applications of Hölder’s inequality.
To finish the equality (3.65), we argue that 1(Ec)Σ

−1(∇2f1(θ
∗)−Σ)Σ−1∇f1(θ∗) = R3, which

follows exactly the line of reasoning used to prove the remainder (3.64).
Applying equalities (3.62), (3.63), and (3.65) to our earlier expansion (3.61) yields that

∆ = 1(E)
[
− Σ−1∇f1(θ∗)− Σ−1(∇2f1(θ

∗)− Σ)∆− Σ−1∇3f1(θ
∗)(∆⊗∆)

+ Σ−1(∇3f0(θ
∗)−∇3f1(θ

′))(∆⊗∆)
]
+ 1(Ec)∆

= −Σ−1∇f1(θ∗) + Σ−1(∇2f1(θ
∗)− Σ)Σ−1∇f1(θ∗)

− Σ−1∇3f1(θ
∗)
(
(Σ−1∇f1(θ∗))⊗ (Σ−1∇f1(θ∗))

)
+R3 + 1(Ec)∆.

Finally, the bound (3.33) implies that E[1(Ec) ‖∆‖22] ≤ P(Ec)R2 = O(n−4), which yields the
claim.

69

Chapter 4

Divide-and-conquer methods for
kernel ridge regression

This chapter devotes to generalizing the divide-and-conquer method to non-parametric re-
gression. In non-parametric regression, the statistician receives N samples of the form
{(xi, yi)}Ni=1, where each xi ∈ X is a covariate and yi ∈ R is a real-valued response, and
the samples are drawn i.i.d. from some unknown joint distribution P over X × R. The goal
is to estimate a function f̂ : X → R that can be used to predict future responses based on
observing only the covariates. Kernel ridge regression is a classical non-parametric regression
method and is widely used in practice [see e.g. 87, 192]. Past work has established bounds on
the estimation error for RKHS-based methods [106, 144, 74, 227], which have been refined
and extended in more recent work [e.g., 197].

Although the statistical aspects of kernel ridge regression (KRR) are well-understood, the
computation of the KRR estimate can be challenging for large datasets. In a standard imple-
mentation [179], the kernel matrix must be inverted, which requires O(N3) time and O(N2)
memory. Such scalings are prohibitive when the sample size N is large. As a consequence,
approximations have been designed to avoid the expense of finding an exact minimizer. One
family of approaches is based on low-rank approximation of the kernel matrix; examples
include kernel PCA [183], the incomplete Cholesky decomposition [71], or Nyström sam-
pling [213]. These methods reduce the time complexity to O(dN2) or O(d2N), where d≪ N
is the preserved rank. The associated prediction error has only been studied very recently.
A second line of research has considered early-stopping of iterative optimization algorithms
for KRR, including gradient descent [222, 169] and conjugate gradient methods [29], where
early-stopping provides regularization against over-fitting and improves run-time. If the
algorithm stops after t iterations, the aggregate time complexity is O(tN2).

In this chapter, we study a different decomposition-based approach. The algorithm is
appealing in its simplicity: we partition the dataset of size N randomly into m equal sized
subsets, and we compute the kernel ridge regression estimate f̂i for each of the i = 1, . . . ,m
subsets independently, with a careful choice of the regularization parameter. The estimates
are then averaged via f̄ = (1/m)

∑m
i=1 f̂i. Our main theoretical result gives conditions under

70

which the average f̄ achieves the minimax rate of convergence over the underlying Hilbert
space. Even using naive implementations of KRR, this decomposition gives time and mem-
ory complexity scaling as O(N3/m2) and O(N2/m2), respectively. Moreover, our approach
dovetails naturally with parallel and distributed computation: we are guaranteed super-
linear speedup with m parallel processors (though we must still communicate the function
estimates from each processor). It demonstrates the potential benefits of divide-and-conquer
approaches for nonparametric and infinite-dimensional regression problems.

One difficulty in solving each of the sub-problems independently is how to choose the reg-
ularization parameter. Due to the infinite-dimensional nature of non-parametric problems,
the choice of regularization parameter must be made with care [e.g., 87]. An interesting con-
sequence of our theoretical analysis is in demonstrating that, even though each partitioned
sub-problem is based only on the fraction N/m of samples, it is nonetheless essential to reg-
ularize the partitioned sub-problems as though they had all N samples. Consequently, from
a local point of view, each sub-problem is under-regularized. This “under-regularization”
allows the bias of each local estimate to be very small, but it causes a detrimental blow-up
in the variance. However, as we prove, the m-fold averaging underlying the method reduces
variance enough that the resulting estimator f̄ still attains optimal convergence rate.

4.1 Problem set-up

We begin with the background and notation required for a precise statement of our problem.

4.1.1 Kernel ridge regression

Suppose that we are given a data set {(xi, yi)}Ni=1 consisting of N i.i.d. samples drawn
from an unknown distribution P over X × R, and our goal is to estimate the function
that minimizes the mean-squared error E[(f(X) − Y)2], where the expectation is taken
jointly over (X, Y) pairs. It is well-known that the optimal function is the conditional mean
f ∗(x) := E[Y | X = x]. In order to estimate the unknown function f ∗, we consider an M -
estimator that is based on minimizing a combination of the least-squares loss defined over
the dataset with a weighted penalty based on the squared Hilbert norm,

f̂ := argmin
f∈H

{
1

N

N∑

i=1

(f(xi)− yi)2 + λ ‖f‖2H
}
, (4.1)

where λ > 0 is a regularization parameter. When H is a reproducing kernel Hilbert space,
then the estimator (4.1) is known as the kernel ridge regression estimate, or KRR for short. It
is a natural generalization of the ordinary ridge regression estimate [91] to the non-parametric
setting.

By the representer theorem for reproducing kernel Hilbert spaces [210], any solution to
the KRR program (4.1) must belong to the linear span of the kernel functions {K(·, xi), i =

71

1, . . . , N}. This fact allows the computation of the KRR estimate to be reduced to an N -
dimensional quadratic program, involving theN2 entries of the kernel matrix {K(xi, xj), i, j =
1, . . . , n}. On the statistical side, a line of past work [74, 227, 39, 197, 95] has provided bounds

on the estimation error of f̂ as a function of N and λ.

4.2 Main results and their consequences

We now turn to the description of our algorithm, followed by the statements of our main
results, namely Theorems 4. The theorem provides an upper bound on the mean-squared
prediction error for any trace class kernel. As we illustrate, the theorem provides concrete
results when applied to specific classes of kernels. Indeed, as a corollary, we establish that
our distributed KRR algorithm achieves minimax-optimal rates for three different kernel
classes, namely finite-rank, Gaussian, and Sobolev.

4.2.1 Algorithm and assumptions

The divide-and-conquer algorithm Fast-KRR is easy to describe. Rather than solving the
kernel ridge regression problem (4.1) on all N samples, the Fast-KRR method executes the
following three steps:

1. Divide the set of samples {(x1, y1), . . . , (xN , yN)} evenly and uniformly at random into
the m disjoint subsets S1, . . . , Sm ⊂ X × R, such that every subset contains N/m
samples.

2. For each i = 1, 2, . . . ,m, compute the local KRR estimate

f̂i := argmin
f∈H

{
1

|Si|
∑

(x,y)∈Si

(f(x)− y)2 + λ ‖f‖2H
}
. (4.2)

3. Average together the local estimates and output f̄ = 1
m

∑m
i=1 f̂i.

This description actually provides a family of estimators, one for each choice of the regular-
ization parameter λ > 0. Our main result applies to any choice of λ, while our corollaries
for specific kernel classes optimize λ as a function of the kernel.

We now describe our main assumptions. Our first assumption, for which we have two
variants, deals with the tail behavior of the basis functions {φj}∞j=1.

Assumption F. For some k ≥ 2, there is a constant ρ <∞ such that E[φj(X)2k] ≤ ρ2k for
all j ∈ N.

In certain cases, we show that sharper error guarantees can be obtained by enforcing a
stronger condition of uniform boundedness.

72

Assumption F′. There is a constant ρ <∞ such that supx∈X |φj(x)| ≤ ρ for all j ∈ N.

Assumption F′ holds, for example, when the input x is drawn from a closed interval and the
kernel is translation invariant, i.e. K(x, x′) = ψ(x − x′) for some even function ψ. Given
input space X and kernel K, the assumption is verifiable without the data.

Recalling that f ∗(x) := E[Y | X = x], our second assumption involves the deviations of
the zero-mean noise variables Y − f ∗(x). In the simplest case, when f ∗ ∈ H, we require only
a bounded variance condition:

Assumption G. The function f ∗ ∈ H, and for x ∈ X , we have E[(Y − f ∗(x))2 | x] ≤ σ2.

When the function f ∗ 6∈ H, we require a slightly stronger variant of this assumption. For
each λ ≥ 0, define

f ∗
λ = argmin

f∈H

{
E
[
(f(X)− Y)2

]
+ λ ‖f‖2H

}
. (4.3)

Note that f ∗ = f ∗
0 corresponds to the usual regression function. As f ∗ ∈ L2(P), for each

λ ≥ 0, the associated mean-squared error σ2
λ(x) := E[(Y − f ∗

λ(x))
2 | x] is finite for almost

every x. In this more general setting, the following assumption replaces Assumption G:

Assumption G′. For any λ ≥ 0, there exists a constant τλ <∞ such that τ 4λ = E[σ4
λ(X)].

4.2.2 Statement of main results

With these assumptions in place, we are now ready for the statements of our main results.
All of our results give bounds on the mean-squared estimation error E[‖f̄ − f ∗‖22] associated
with the averaged estimate f̄ based on an assigning n = N/m samples to each ofm machines.
Both theorem statements involve the following three kernel-related quantities:

tr(K) :=
∞∑

j=1

µj, γ(λ) :=
∞∑

j=1

1

1 + λ/µj

, and βd =
∞∑

j=d+1

µj. (4.4)

The first quantity is the kernel trace, which serves a crude estimate of the “size” of the kernel
operator, and assumed to be finite. The second quantity γ(λ), familiar from previous work
on kernel regression [227], is the effective dimensionality of the kernel K with respect to
L2(P). Finally, the quantity βd is parameterized by a positive integer d that we may choose
in applying the bounds, and it describes the tail decay of the eigenvalues of K. For d = 0,
note that β0 = trK. Finally, both theorems involve a quantity that depends on the number
of moments k in Assumption F:

b(n, d, k) := max

{√
max{k, log(d)}, max{k, log(d)}

n1/2−1/k

}
. (4.5)

Here the integer d ∈ N is a free parameter that may be optimized to obtain the sharpest
possible upper bound. (The algorithm’s execution is independent of d.)

73

Theorem 4. With f ∗ ∈ H and under Assumptions F and G, the mean-squared error of the
averaged estimate f̄ is upper bounded as

E

[∥∥f̄ − f ∗∥∥2
2

]
≤
(
8 +

12

m

)
λ ‖f ∗‖2H +

12σ2γ(λ)

N
+ inf

d∈N

{
T1(d) + T2(d) + T3(d)

}
, (4.6)

where

T1(d) =
8ρ4 ‖f ∗‖2H tr(K)βd

λ
, T2(d) =

4 ‖f ∗‖2H + 2σ2/λ

m

(
µd+1 +

12ρ4 tr(K)βd
λ

)
, and

T3(d) =

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k

µ0 ‖f ∗‖2H

(
1 +

2σ2

mλ
+

4 ‖f ∗‖2H
m

)
,

and C denotes a universal (numerical) constant.

Theorem 4 is a general result that applies to any trace-class kernel. Although the state-
ment appears somewhat complicated at first sight, it yields concrete and interpretable guar-
antees on the error when specialized to particular kernels, as we illustrate in Section 4.2.3.

Before doing so, let us make a few heuristic arguments in order to provide intuition. In
typical settings, the term T3(d) goes to zero quickly: if the number of moments k is suitably
large and number of partitionsm is small—say enough to guarantee that (b(n, d, k)γ(λ)/

√
n)k =

O(1/N)—it will be of lower order. As for the remaining terms, at a high level, we show
that an appropriate choice of the free parameter d leaves the first two terms in the upper
bound (4.6) dominant. Note that the terms µd+1 and βd are decreasing in d while the term
b(n, d, k) increases with d. However, the increasing term b(n, d, k) grows only logarithmically
in d, which allows us to choose a fairly large value without a significant penalty. As we show
in our corollaries, for many kernels of interest, as long as the number of machines m is not
“too large,” this tradeoff is such that T1(d) and T2(d) are also of lower order compared to
the two first terms in the bound (4.6). In such settings, Theorem 4 guarantees an upper
bound of the form

E

[∥∥f̄ − f ∗∥∥2
2

]
= O(1) ·

[
λ ‖f ∗‖2H︸ ︷︷ ︸

Squared bias

+
σ2γ(λ)

N︸ ︷︷ ︸
Variance

]
. (4.7)

This inequality reveals the usual bias-variance trade-off in non-parametric regression; choos-
ing a smaller value of λ > 0 reduces the first squared bias term, but increases the second
variance term. Consequently, the setting of λ that minimizes the sum of these two terms is
defined by the relationship

λ ‖f ∗‖2H ≃ σ2γ(λ)

N
. (4.8)

This type of fixed point equation is familiar from work on oracle inequalities and local
complexity measures in empirical process theory [15, 106, 74, 227], and when λ is chosen so

74

that the fixed point equation (4.8) holds this (typically) yields minimax optimal convergence
rates [15, 106, 227, 39]. In Section 4.2.3, we provide detailed examples in which the choice λ∗

specified by equation (4.8), followed by application of Theorem 4, yields minimax-optimal
prediction error (for the Fast-KRR algorithm) for many kernel classes.

4.2.3 Some consequences

We now turn to deriving some explicit consequences of our main theorems for specific classes
of reproducing kernel Hilbert spaces. In each case, our derivation follows the broad outline
given the the remarks following Theorem 4: we first choose the regularization parameter λ
to balance the bias and variance terms, and then show, by comparison to known minimax
lower bounds, that the resulting upper bound is optimal. Finally, we derive an upper bound
on the number of subsampled data sets m for which the minimax optimal convergence rate
can still be achieved. Throughout this section, we assume that f ∗ ∈ H.

4.2.3.1 Finite-rank Kernels

Our first corollary applies to problems for which the kernel has finite rank r, meaning that its
eigenvalues satisfy µj = 0 for all j > r. Examples of such finite rank kernels include the linear
kernelK(x, x′) = 〈x, x′〉

Rd , which has rank at most r = d; and the kernelK(x, x) = (1+xx′)m

generating polynomials of degree m, which has rank at most r = m+ 1.

Corollary 3. For a kernel with rank r, consider the output of the Fast-KRR algorithm with
λ = r/N . Suppose that Assumption G and Assumptions F (or F′) hold, and that the number
of processors m satisfy the bound

m ≤ c
N

k−4
k−2

r2
k−1
k−2ρ

4k
k−2 log

k
k−2 r

(Assumption F) or m ≤ c
N

r2ρ4 logN
(Assumption F′),

where c is a universal (numerical) constant. For suitably large N , the mean-squared error is
bounded as

E

[∥∥f̄ − f ∗∥∥2
2

]
= O(1)σ

2r

N
. (4.9)

For finite-rank kernels, the rate (4.9) is known to be minimax-optimal, meaning that
there is a universal constant c′ > 0 such that

inf
f̃

sup
‖f∗‖H≤1

E[‖f̃ − f ∗‖22] ≥ c′
r

N
, (4.10)

where the infimum ranges over all estimators f̃ based on observing all N samples (and with
no constraints on memory and/or computation). This lower bound follows from Theorem
2(a) of Raskutti et al. [171] with s = d = 1.

75

4.2.3.2 Polynomially Decaying Eigenvalues

Our next corollary applies to kernel operators with eigenvalues that obey a bound of the
form

µj ≤ C j−2ν for all j = 1, 2, . . ., (4.11)

where C is a universal constant, and ν > 1/2 parameterizes the decay rate. We note that
equation (4.4) assumes a finite kernel trace tr(K) :=

∑∞
j=1 µj. Since tr(K) appears in

Theorem 4, it is natural to use
∑∞

j=1Cj
−2ν as an upper bound on tr(K). This upper bound

is finite if and only if ν > 1/2.
Kernels with polynomial decaying eigenvalues include those that underlie for the Sobolev

spaces with different orders of smoothness [e.g. 26, 80]. As a concrete example, the first-
order Sobolev kernelK(x, x′) = 1+min{x, x′} generates an RKHS of Lipschitz functions with
smoothness ν = 1. Other higher-order Sobolev kernels also exhibit polynomial eigendecay
with larger values of the parameter ν.

Corollary 4. For any kernel with ν-polynomial eigendecay (4.11), consider the output of the

Fast-KRR algorithm with λ = (1/N)
2ν

2ν+1 . Suppose that Assumption G and Assumption F
(or F′) hold, and that the number of processors satisfy the bound

m ≤ c

(
N

2(k−4)ν−k
(2ν+1)

ρ4k logkN

) 1
k−2

(Assumption F) or m ≤ c
N

2ν−1
2ν+1

ρ4 logN
(Assumption F′),

where c is a constant only depending on ν. Then the mean-squared error is bounded as

E

[∥∥f̄ − f ∗∥∥2
2

]
= O

((σ2

N

) 2ν
2ν+1

)
. (4.12)

The upper bound (4.12) is unimprovable up to constant factors, as shown by known
minimax bounds on estimation error in Sobolev spaces [198, 205]; see also Theorem 2(b)
of Raskutti et al. [171].

4.2.3.3 Exponentially Decaying Eigenvalues

Our final corollary applies to kernel operators with eigenvalues that obey a bound of the
form

µj ≤ c1 exp(−c2j2) for all j = 1, 2, . . ., (4.13)

for strictly positive constants (c1, c2). Such classes include the RKHS generated by the
Gaussian kernel K(x, x′) = exp(−‖x− x′‖22).

76

Corollary 5. For a kernel with sub-Gaussian eigendecay (4.13), consider the output of the
Fast-KRR algorithm with λ = 1/N . Suppose that Assumption G and Assumption F (or F′)
hold, and that the number of processors satisfy the bound

m ≤ c
N

k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

(Assumption F) or m ≤ c
N

ρ4 log2N
(Assumption F′),

where c is a constant only depending on c2. Then the mean-squared error is bounded as

E

[∥∥f̄ − f ∗∥∥2
2

]
= O

(
σ2

√
logN

N

)
. (4.14)

The upper bound (4.14) is minimax optimal; see, for example, Theorem 1 and Example 2 of
the recent paper by Yang et al. [220].

4.2.3.4 Summary

Each corollary gives a critical threshold for the number m of data partitions: as long as m
is below this threshold, the decomposition-based Fast-KRR algorithm gives the optimal rate
of convergence. It is interesting to note that the number of splits may be quite large: each
grows asymptotically withN whenever the basis functions have more than four moments (viz.
Assumption F). Moreover, the Fast-KRR method can attain these optimal convergence rates
while using substantially less computation than standard kernel ridge regression methods,
as it requires solving problems only of size N/m.

4.2.4 The choice of regularization parameter

In practice, the local sample size on each machine may be different and the optimal choice
for the regularization λ may not be known a priori, so that an adaptive choice of the regu-
larization parameter λ is desirable [e.g. 205, Chapters 3.5–3.7]. We recommend using cross-
validation to choose the regularization parameter, and we now sketch a heuristic argument
that an adaptive algorithm using cross-validation may achieve optimal rates of convergence.
(We leave fuller analysis to future work.)

Let λn be the (oracle) optimal regularization parameter given knowledge of the sampling
distribution P and eigen-structure of the kernel K. We assume (cf. Corollary 4) that there is
a constant ν > 0 such that λn ≍ n−ν as n→∞. Let ni be the local sample size for each ma-
chine i and N the global sample size; we assume that ni ≫

√
N (clearly, N ≥ ni). First, use

local cross-validation to choose regularization parameters Ŵλni
and Ŵλn2

i /N
corresponding

to samples of size ni and n
2
i /N , respectively. Heuristically, if cross validation is successful, we

expect to have Ŵλni
≃ n−ν

i and Ŵλn2
i /N
≃ N νn−2ν

i , yielding that Ŵλni

2
/Ŵλn2

i /N
≃ N−ν .

With this intuition, we then compute local estimates

f̂i := argmin
f∈H

1

ni

∑

(x,y)∈Si

(f(x)− y)2 + Ŵλ(i) ‖f‖2H where Ŵλ(i) :=
Ŵλ2ni

Ŵλn2
i /N

(4.15)

77

and global average estimate f̄ =
∑m

i=1
ni

N
f̂i as usual. Notably, we have Ŵλ(i) ≃ λN in this

heuristic setting. Using formula (4.15) and the average f̄ , we have

E

[∥∥f̄ − f ∗∥∥2
2

]
= E

[∥∥∥∥
m∑

i=1

ni

N

(
f̂i − E[f̂i]

)∥∥∥∥
2

2

]
+

∥∥∥∥∥
m∑

i=1

ni

N

(
E[f̂i]− f ∗

)∥∥∥∥∥

2

2

≤
m∑

i=1

n2
i

N2
E

[∥∥f̂i − E[f̂i]
∥∥2
2

]
+max

i∈[m]

{∥∥E[f̂i]− f ∗∥∥2
2

}
. (4.16)

Using Lemmas 14 and 15 from the proof of Theorem 4 to come and assuming that Ŵλn is con-
centrated tightly enough around λn, we obtain ‖E[f̂i]− f ∗‖22 = O(λN ‖f ∗‖2H) by Lemma 14

and that E[‖f̂i − E[f̂i]‖22] = O(γ(λN)
ni

) by Lemma 15. Substituting these bounds into inequal-
ity (4.16) and noting that

∑
i ni = N , we may upper bound the overall estimation error

as

E

[∥∥f̄ − f ∗∥∥2
2

]
≤ O(1) ·

(
λN ‖f ∗‖2H +

γ(λN)

N

)
.

While the derivation of this upper bound was non-rigorous, we believe that it is roughly
accurate, and in comparison with the previous upper bound (4.7), it provides optimal rates
of convergence.

4.3 Proofs of the main theorem and related results

We now turn to the proofs of Theorem 4 and Corollaries 3 through 5. This section contains
only a high-level view of proof of Theorem 4; we defer more technical aspects to Section 4.5.

4.3.1 Proof of Theorem 4

Using the definition of the averaged estimate f̄ = 1
m

∑m
i=1 f̂i, a bit of algebra yields

E[
∥∥f̄ − f ∗∥∥2

2
] = E[

∥∥(f̄ − E[f̄]) + (E[f̄]− f ∗)
∥∥2
2
]

= E[
∥∥f̄ − E[f̄]

∥∥2
2
] +
∥∥E[f̄]− f ∗∥∥2

2
+ 2E[〈f̄ − E[f̄],E[f̄]− f ∗〉L2(P)]

= E

[∥∥∥∥
1

m

m∑

i=1

(f̂i − E[f̂i])

∥∥∥∥
2

2

]
+
∥∥E[f̄]− f ∗∥∥2

2
,

where we used the fact that E[f̂i] = E[f̄] for each i ∈ [m]. Using this unbiasedness once

more, we bound the variance of the terms f̂i − E[f̄] to see that

E

[∥∥f̄ − f ∗∥∥2
2

]
=

1

m
E

[
‖f̂1 − E[f̂1]‖22

]
+ ‖E[f̂1]− f ∗‖22

≤ 1

m
E

[
‖f̂1 − f ∗‖22

]
+ ‖E[f̂1]− f ∗‖22, (4.17)

78

where we have used the fact that E[f̂i] minimizes E[‖f̂i − f‖22] over f ∈ H.
The error bound (4.17) suggests our strategy: we upper bound E[‖f̂1−f ∗‖22] and ‖E[f̂1]−

f ∗‖22 respectively. Based on equation (4.2), the estimate f̂1 is obtained from a standard kernel
ridge regression with sample size n = N/m and ridge parameter λ. Accordingly, the following
two auxiliary results provide bounds on these two terms, where the reader should recall the
definitions of b(n, d, k) and βd from equation (4.4). In each lemma, C represents a universal
(numerical) constant.

Lemma 14 (Bias bound). Under Assumptions F and G, for each d = 1, 2, . . ., we have

‖E[f̂]− f ∗‖22 ≤ 8λ ‖f ∗‖2H +
8ρ4 ‖f ∗‖2H tr(K)βd

λ
+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k

µ0 ‖f ∗‖2H . (4.18)

Lemma 15 (Variance bound). Under Assumptions F and G, for each d = 1, 2, . . ., we have

E[‖f̂ − f ∗‖22] ≤ 12λ ‖f ∗‖2H +
12σ2γ(λ)

n

+

(
2σ2

λ
+ 4 ‖f ∗‖2H

)(
µd+1 +

12ρ4 tr(K)βd
λ

+

(
Cb(n, d, k)

ρ2γ(λ)√
n

)k

‖f ∗‖22

)
. (4.19)

The proofs of these lemmas, contained in Section 4.5.1 and 4.5.2 respectively, constitute one
main technical contribution of this chapter. Given these two lemmas, the remainder of the
theorem proof is straightforward. Combining the inequality (4.17) with Lemmas 14 and 15
yields the claim of Theorem 4.

Remarks: The proofs of Lemmas 14 and 15 are somewhat complex, but to the best of our
knowledge, existing literature does not yield significantly simpler proofs. We now discuss
this claim to better situate our technical contributions. Define the regularized population
minimizer f ∗

λ := argminf∈H{E[(f(X)−Y)2]+λ ‖f‖2H}. Expanding the decomposition (4.17)
of the L2(P)-risk into bias and variance terms, we obtain the further bound

E

[∥∥f̄ − f ∗∥∥2
2

]
≤ ‖E[f̂1]− f ∗‖22 +

1

m
E

[
‖f̂1 − f ∗‖22

]

= ‖E[f̂1]− f ∗‖22︸ ︷︷ ︸
:=T1

+
1

m

(
‖f ∗

λ − f ∗‖22︸ ︷︷ ︸
:=T2

+E

[
‖f̂1 − f ∗‖22

]
− ‖f ∗

λ − f ∗‖22︸ ︷︷ ︸
:=T3

)
= T1 +

1

m
(T2 + T3).

In this decomposition, T1 and T2 are bias and approximation error terms induced by the
regularization parameter λ, while T3 is an excess risk (variance) term incurred by minimizing
the empirical loss.

This upper bound illustrates three trade-offs in our subsampled and averaged kernel
regression procedure:

79

• The trade-off between T2 and T3: when the regularization parameter λ grows, the bias
term T2 increases while the variance term T3 converges to zero.

• The trade-off between T1 and T3: when the regularization parameter λ grows, the bias
term T1 increases while the variance term T3 converges to zero.

• The trade-off between T1 and the computation time: when the number of machines m
grows, the bias term T1 increases (as the local sample size n = N/m shrinks), while
the computation time N3/m2 decreases.

Theoretical results in the KRR literature focus on the trade-off between T2 and T3, but in
the current context, we also need an upper bound on the bias term T1, which is not relevant
for classical (centralized) analyses.

With this setting in mind, Lemma 14 tightly upper bounds the bias T1 as a function of
λ and n. An essential part of the proof is to characterize the properties of E[f̂1], which is
the expectation of a nonparametric empirical loss minimizer. We are not aware of existing
literature on this problem, and the proof of Lemma 14 introduces novel techniques for this
purpose.

On the other hand, Lemma 15 upper bounds E[‖f̂1 − f ∗‖22] as a function of λ and n.
Past work has focused on bounding a quantity of this form, but for technical reasons, most
work [e.g. 74, 145, 15, 227] focuses on analyzing the constrained form

f̂i := argmin
‖f‖H≤C

1

|Si|
∑

(x,y)∈Si

(f(x)− y)2, (4.20)

of kernel ridge regression. While this problem traces out the same set of solutions as that
of the regularized kernel ridge regression estimator (4.2), it is non-trivial to determine a
matched setting of λ for a given C. Zhang [225] provides one of the few analyses of the
regularized ridge regression estimator (4.2) (or (4.1)), providing an upper bound of the form

E[‖f̂ − f ∗‖22] = O(λ + 1/λ
n
), which is at best O(1√

n
). In contrast, Lemma 15 gives upper

bound O(λ + γ(λ)
n
); the effective dimension γ(λ) is often much smaller than 1/λ, yielding a

stronger convergence guarantee.

4.3.2 Proof of Corollary 3

We first present a general inequality bounding the size of m for which optimal convergence
rates are possible. We assume that d is chosen large enough such that we have log(d) ≥ k
and d ≥ N . In the rest of the proof, our assignment to d will satisfy these inequalities. In
this case, inspection of Theorem 4 shows that if m is small enough that

(√
log d

N/m
ρ2γ(λ)

)k

1

mλ
≤ γ(λ)

N
,

80

then the term T3(d) provides a convergence rate given by γ(λ)/N . Thus, solving the expres-
sion above for m, we find

m log d

N
ρ4γ(λ)2 =

λ2/km2/kγ(λ)2/k

N2/k
or m

k−2
k =

λ
2
kN

k−2
k

γ(λ)2
k−1
k ρ4 log d

.

Taking (k − 2)/k-th roots of both sides, we obtain that if

m ≤ λ
2

k−2N

γ(λ)2
k−1
k−2ρ

4k
k−2 log

k
k−2 d

, (4.21)

then the term T3(d) of the bound (4.6) is O(γ(λ)/N).
Now we apply the bound (4.21) in the case in the corollary. Let us take d = max{r,N}.

Notice that βd = βr = µr+1 = 0. We find that γ(λ) ≤ r since each of its terms is bounded
by 1, and we take λ = r/N . Evaluating the expression (4.21) with this value, we arrive at

m ≤ N
k−4
k−2

r2
k−1
k−2ρ

4k
k−2 log

k
k−2 d

.

If we have sufficiently many moments that k ≥ logN , and N ≥ r (for example, if the basis
functions φj have a uniform bound ρ, then k can be chosen arbitrarily large), then we may

take k = logN , which implies that N
k−4
k−2 = Ω(N), r2

k−1
k−2 = O(r2) and ρ

4k
k−2 = O(ρ4) ; and

we replace log d with logN . Then so long as

m ≤ c
N

r2ρ4 logN

for some constant c > 0, we obtain an identical result.

4.3.3 Proof of Corollary 4

We follow the program outlined in our remarks following Theorem 4. We must first choose

λ on the order of γ(λ)/N . To that end, we note that setting λ = N− 2ν
2ν+1 gives

γ(λ) =
∞∑

j=1

1

1 + j2νN− 2ν
2ν+1

≤ N
1

2ν+1 +
∑

j>N
1

2ν+1

1

1 + j2νN− 2ν
2ν+1

≤ N
1

2ν+1 +N
2ν

2ν+1

∫

N
1

2ν+1

1

u2ν
du = N

1
2ν+1 +

1

2ν − 1
N

1
2ν+1 .

Dividing by N , we find that λ ≈ γ(λ)/N , as desired. Now we choose the truncation pa-
rameter d. By choosing d = N t for some t ∈ R+, then we find that µd+1 . N−2νt and an
integration yields βd . N−(2ν−1)t. Setting t = 3/(2ν − 1) guarantees that µd+1 . N−3 and

81

βd . N−3; the corresponding terms in the bound (4.6) are thus negligible. Moreover, we
have for any finite k that log d & k.

Applying the general bound (4.21) on m, we arrive at the inequality

m ≤ c
N− 4ν

(2ν+1)(k−2)N

N
2(k−1)

(2ν+1)(k−2)ρ
4k
k−2 log

k
k−2 N

= c
N

2(k−4)ν−k
(2ν+1)(k−2)

ρ
4k
k−2 log

k
k−2 N

.

Whenever this holds, we have convergence rate λ = N− 2ν
2ν+1 . Now, let Assumption F′ hold.

Then taking k = logN , the above bound becomes (to a multiplicative constant factor)

N
2ν−1
2ν+1 /ρ4 logN as claimed.

4.3.4 Proof of Corollary 5

First, we set λ = 1/N . Considering the sum γ(λ) =
∑∞

j=1 µj/(µj + λ), we see that for

j ≤
√
(logN)/c2, the elements of the sum are bounded by 1. For j >

√
(logN)/c2, we make

the approximation

∑

j≥
√

(logN)/c2

µj

µj + λ
≤ 1

λ

∑

j≥
√

(logN)/c2

µj . N

∫ ∞

√
(logN)/c2

exp(−c2t2)dt = O(1).

Thus we find that γ(λ)+1 ≤ c
√
logN for some constant c. By choosing d = N2, we have that

the tail sum and (d+ 1)-th eigenvalue both satisfy µd+1 ≤ βd . c−1
2 N−4. As a consequence,

all the terms involving βd or µd+1 in the bound (4.6) are negligible.
Recalling our inequality (4.21), we thus find that (under Assumption F), as long as the

number of partitions m satisfies

m ≤ c
N

k−4
k−2

ρ
4k
k−2 log

2k−1
k−2 N

,

the convergence rate of f̄ to f ∗ is given by γ(λ)/N ≃ √logN/N . Under the boundedness
assumption F′, as we did in the proof of Corollary 3, we take k = logN in Theorem 4. By
inspection, this yields the second statement of the corollary.

4.4 Experimental results

In this section, we report the results of experiments on both simulated and real-world data
designed to test the sharpness of our theoretical predictions.

82

256 512 1024 2048 4096 8192

10
−4

10
−3

Total number of samples (N)

M
ea

n
sq

ua
re

 e
rr

or

m=1
m=4
m=16
m=64

256 512 1024 2048 4096 8192

10
−4

10
−3

10
−2

Total number of samples (N)
M

ea
n

sq
ua

re
 e

rr
or

m=1
m=4
m=16
m=64

(a) With under-regularization (b) Without under-regularization

Figure 4.1. The squared L2(P)-norm between between the averaged estimate f̄ and the
optimal solution f∗. (a) These plots correspond to the output of the Fast-KRR algorithm:
each sub-problem is under-regularized by using λ ≃ N−2/3. (b) Analogous plots when each
sub-problem is not under-regularized—that is, with λ = n−2/3 = (N/m)−2/3 chosen as if
there were only a single dataset of size n.

4.4.1 Simulation studies

We begin by exploring the empirical performance of our subsample-and-average methods
for a non-parametric regression problem on simulated datasets. For all experiments in this
section, we simulate data from the regression model y = f ∗(x) + ε for x ∈ [0, 1], where
f ∗(x) := min(x, 1−x) is 1-Lipschitz, the noise variables ε ∼ N(0, σ2) are normally distributed
with variance σ2 = 1/5, and the samples xi ∼ Uni[0, 1]. The Sobolev space of Lipschitz
functions on [0, 1] has reproducing kernel K(x, x′) = 1 + min{x, x′} and norm ‖f‖2H =

f 2(0)+
∫ 1

0
(f ′(z))2dz. By construction, the function f ∗(x) = min(x, 1−x) satisfies ‖f ∗‖H = 1.

The kernel ridge regression estimator f̂ takes the form

f̂ =
N∑

i=1

αiK(xi, ·), where α = (K + λNI)−1 y, (4.22)

and K is the N ×N Gram matrix and I is the N ×N identity matrix. Since the first-order
Sobolev kernel has eigenvalues [80] that scale as µj ≃ (1/j)2, the minimax convergence rate
in terms of squared L2(P)-error is N−2/3 (see e.g. [205, 198, 39]).

By Corollary 4 with ν = 1, this optimal rate of convergence can be achieved by Fast-KRR
with regularization parameter λ ≈ N−2/3 as long as the number of partitions m satisfies
m . N1/3. In each of our experiments, we begin with a dataset of size N = mn, which we

partition uniformly at random into m disjoint subsets. We compute the local estimator f̂i
for each of the m subsets using n samples via (4.22), where the Gram matrix is constructed

using the ith batch of samples (and n replaces N). We then compute f̄ = (1/m)
∑m

i=1 f̂i.

83

0 0.2 0.4 0.6 0.8 1
10

−5

10
−4

10
−3

10
−2

10
−1

M
ea

n
sq

ua
re

 e
rr

or

N=256
N=512
N=1024
N=2048
N=4096
N=8192

log(m)/ log(N)

Figure 4.2. The mean-square error curves for fixed sample size but varied number of
partitions. We are interested in the threshold of partitioning number m under which the
optimal rate of convergence is achieved.

Our experiments compare the error of f̄ as a function of sample size N , the number of
partitions m, and the regularization λ.

In Figure 4.4.1(a), we plot the error ‖f̄ − f ∗‖22 versus the total number of samples N ,
where N ∈ {28, 29, . . . , 213}, using four different data partitions m ∈ {1, 4, 16, 64}. We ex-
ecute each simulation 20 times to obtain standard errors for the plot. The black circled
curve (m = 1) gives the baseline KRR error; if the number of partitions m ≤ 16, Fast-KRR
has accuracy comparable to the baseline algorithm. Even with m = 64, Fast-KRR’s per-
formance closely matches the full estimator for larger sample sizes (N ≥ 211). In the right
plot Figure 4.4.1(b), we perform an identical experiment, but we over-regularize by choosing
λ = n−2/3 rather than λ = N−2/3 in each of the m sub-problems, combining the local esti-
mates by averaging as usual. In contrast to Figure 4.4.1(a), there is an obvious gap between
the performance of the algorithms when m = 1 and m > 1, as our theory predicts.

It is also interesting to understand the number of partitions m into which a dataset
of size N may be divided while maintaining good statistical performance. According to
Corollary 4 with ν = 1, for the first-order Sobolev kernel, performance degradation should
be limited as long as m . N1/3. In order to test this prediction, Figure 4.2 plots the mean-
square error ‖f̄ − f ∗‖22 versus the ratio log(m)/ log(N). Our theory predicts that even as the
number of partitions m may grow polynomially in N , the error should grow only above some
constant value of log(m)/ log(N). As Figure 4.2 shows, the point that ‖f̄ − f ∗‖2 begins to
increase appears to be around log(m) ≈ 0.45 log(N) for reasonably large N . This empirical
performance is somewhat better than the (1/3) thresholded predicted by Corollary 4, but it
does confirm that the number of partitions m can scale polynomially with N while retaining

84

N m = 1 m = 16 m = 64 m = 256 m = 1024

212
Error 1.26 · 10−4 1.33 · 10−4 1.38 · 10−4

N/A N/A
Time 1.12 (0.03) 0.03 (0.01) 0.02 (0.00)

213
Error 6.40 · 10−5 6.29 · 10−5 6.72 · 10−5

N/A N/A
Time 5.47 (0.22) 0.12 (0.03) 0.04 (0.00)

214
Error 3.95 · 10−5 4.06 · 10−5 4.03 · 10−5 3.89 · 10−5

N/A
Time 30.16 (0.87) 0.59 (0.11) 0.11 (0.00) 0.06 (0.00)

215
Error

Fail
2.90 · 10−5 2.84 · 10−5 2.78 · 10−5

N/A
Time 2.65 (0.04) 0.43 (0.02) 0.15 (0.01)

216
Error

Fail
1.75 · 10−5 1.73 · 10−5 1.71 · 10−5 1.67 · 10−5

Time 16.65 (0.30) 2.21 (0.06) 0.41 (0.01) 0.23 (0.01)

217
Error

Fail
1.19 · 10−5 1.21 · 10−5 1.25 · 10−5 1.24 · 10−5

Time 90.80 (3.71) 10.87 (0.19) 1.88 (0.08) 0.60 (0.02)

Table 4.1. Timing experiment giving ‖f̄ − f∗‖22 as a function of number of partitions m
and data size N , providing mean run-time (measured in second) for each number m of
partitions and data size N .

minimax optimality.
Our final experiment gives evidence for the improved time complexity partitioning pro-

vides. Here we compare the amount of time required to solve the KRR problem using the
naive matrix inversion (4.22) for different partition sizes m and provide the resulting squared
errors ‖f̄ − f ∗‖22. Although there are more sophisticated solution strategies, we believe this
is a reasonable proxy to exhibit Fast-KRR’s potential. In Table 4.1, we present the results
of this simulation, which we performed in Matlab using a Windows machine with 16GB of
memory and a single-threaded 3.4Ghz processor. In each entry of the table, we give the
mean error of Fast-KRR and the mean amount of time it took to run (with standard de-
viation over 10 simulations in parentheses; the error rate standard deviations are an order
of magnitude smaller than the errors, so we do not report them). The entries “Fail” corre-
spond to out-of-memory failures because of the large matrix inversion, while entries “N/A”
indicate that ‖f̄ − f ∗‖2 was significantly larger than the optimal value (rendering time im-
provements meaningless). The table shows that without sacrificing accuracy, decomposition
via Fast-KRR can yield substantial computational improvements.

4.4.2 Real data experiments

We now turn to the results of experiments studying the performance of Fast-KRR on the task
of predicting the year in which a song was released based on audio features associated with
the song. We use the Million Song Dataset [21], which consists of 463,715 training examples
and a second set of 51,630 testing examples. Each example is a song (track) released between
1922 and 2011, and the song is represented as a vector of timbre information computed about

85

0 200 400 600 800 1000
80

80.5

81

81.5

82

82.5

83

Training runtime (sec)

M
ea

n
sq

ua
re

 e
rr

or

Fast−KRR
Nystrom Sampling
Random Feature Approx.

Figure 4.3. Results on year prediction on held-out test songs for Fast-KRR, Nyström
sampling, and random feature approximation. Error bars indicate standard deviations over
ten experiments.

the song. Each sample consists of the pair (xi, yi) ∈ R
d × R, where xi ∈ R

d is a d = 90-
dimensional vector and yi ∈ [1922, 2011] is the year in which the song was released. (For
further details, see Bertin-Mahieux et al. [21]).

Our experiments with this dataset use the Gaussian radial basis kernel

K(x, x′) = exp

(
−‖x− x

′‖22
2σ2

)
. (4.23)

We normalize the feature vectors x so that the timbre signals have standard deviation 1,
and select the bandwidth parameter σ = 6 via cross-validation. For regularization, we set
λ = N−1; since the Gaussian kernel has exponentially decaying eigenvalues (for typical
distributions on X), Corollary 5 shows that this regularization achieves the optimal rate of
convergence for the Hilbert space.

In Figure 4.3, we compare the time-accuracy curve of Fast-KRR with two approximation-
based methods, plotting the mean-squared error between the predicted release year and
the actual year on test songs. The first baseline is Nyström subsampling [213], where the
kernel matrix is approximated by a low-rank matrix of rank r ∈ {1, . . . , 6} × 103. The
second baseline approach is an approximate form of kernel ridge regression using random
features [166]. The algorithm approximates the Gaussian kernel (4.23) by the inner product
of two random feature vectors of dimensions D ∈ {2, 3, 5, 7, 8.5, 10} × 103, and then solves
the resulting linear regression problem. For the Fast-KRR algorithm, we use seven partitions

86

32 38 48 64 96 128 256
80

82

84

86

88

90

Number of partitions (m)

M
ea

n
sq

ua
re

 e
rr

or

Fast−KRR
KRR with 1/m data

Figure 4.4. Comparison of the performance of Fast-KRR to a standard KRR estimator
using a fraction 1/m of the data.

m ∈ {32, 38, 48, 64, 96, 128, 256} to test the algorithm. Each algorithm is executed 10 times
to obtain standard deviations (plotted as error-bars in Figure 4.3).

As we see in Figure 4.3, for a fixed time budget, Fast-KRR enjoys the best performance,
though the margin between Fast-KRR and Nyström sampling is not substantial. In spite of
this close performance between Nyström sampling and the divide-and-conquer Fast-KRR al-
gorithm, it is worth noting that with parallel computation, it is trivial to accelerate Fast-KRR
m times; parallelizing approximation-based methods appears to be a non-trivial task. More-
over, as our results in Section 4.2 indicate, Fast-KRR is minimax optimal in many regimes.
We note in passing that standard linear regression with the original 90 features, while quite
fast with runtime on the order of 1 second (ignoring data loading), has mean-squared-error
90.44, which is significantly worse than the kernel-based methods.

Our final experiment provides a sanity check: is the final averaging step in Fast-KRR even
necessary? To this end, we compare Fast-KRR with standard KRR using a fraction 1/m of
the data. For the latter approach, we employ the standard regularization λ ≈ (N/m)−1. As
Figure 4.4 shows, Fast-KRR achieves much lower error rates than KRR using only a fraction
of the data. Moreover, averaging stabilizes the estimators: the standard deviations of the
performance of Fast-KRR are negligible compared to those for standard KRR.

87

f̂ Empirical KRR minimizer based on n samples
f ∗ Optimal function generating data, where yi = f ∗(xi) + εi
∆ Error f̂ − f ∗

ξx RKHS evaluator ξx := K(x, ·), so 〈f, ξx〉 = 〈ξx, f〉 = f(x)

Σ̂ Operator mapping H → H defined as the outer product Σ̂ := 1
n

∑n
i=1 ξxi

⊗ ξxi
,

so that Σ̂f = 1
n

∑n
i=1 〈ξxi

, f〉 ξxi

φj jth orthonormal basis vector for L2(P)
δj Basis coefficients of ∆ or E[∆ | X] (depending on context), i.e. ∆ =

∑∞
j=1 δjφj

θj Basis coefficients of f ∗, i.e. f ∗ =
∑∞

j=1 θjφj

d Integer-valued truncation point
M Diagonal matrix with M = diag(µ1, . . . , µd)

Q Diagonal matrix with Q = (Id×d + λM−1)
1
2

Φ n× d matrix with coordinates Φij = φj(xi)

v↓ Truncation of vector v. For v =
∑

j νjφj ∈ H, defined as v↓ =
∑d

j=1 νjφj; for

v ∈ ℓ2(N) defined as v↓ = (v1, . . . , vd)
v↑ Untruncated part of vector v, defined as v↑ = (vd+1, vd+1, . . .)
βd The tail sum

∑
j>d µj

γ(λ) The sum
∑∞

j=1 1/(1 + λ/µj)

b(n, d, k) The maximum max{
√

max{k, log(d)},max{k, log(d)}/n1/2−1/k}
Table 4.2: Notation used in proofs

4.5 Proofs of technical results

4.5.1 Proof of Lemma 14

This section is devoted to the bias bound stated in Lemma 14. Let X = {xi}ni=1 be shorthand

for the design matrix, and define the error vector ∆ = f̂−f ∗. By Jensen’s inequality, we have
‖E[∆]‖2 ≤ E[‖E[∆ | X]‖2], so it suffices to provide a bound on ‖E[∆ | X]‖2. Throughout
this proof and the remainder of the chapter, we represent the kernel evaluator by the function
ξx, where ξx := K(x, ·) and f(x) = 〈ξx, f〉 for any f ∈ H. Using this notation, the estimate

f̂ minimizes the empirical objective

1

n

n∑

i=1

(〈ξxi
, f〉H − yi)

2 + λ ‖f‖2H . (4.24)

This objective is Fréchet differentiable, and as a consequence, the necessary and sufficient
conditions for optimality [132] of f̂ are that

1

n

n∑

i=1

ξxi
(〈ξxi

, f̂ − f ∗〉H − εi) + λf̂ =
1

n

n∑

i=1

ξxi
(〈ξxi

, f̂〉H − yi) + λf̂ = 0, (4.25)

88

where the last equation uses the fact that yi = 〈ξxi
, f ∗〉H+εi. Taking conditional expectations

over the noise variables {εi}ni=1 with the design X = {xi}ni=1 fixed, we find that

1

n

n∑

i=1

ξxi
〈ξxi

,E[∆ | X]〉+ λE[f̂ | X] = 0.

Define the sample covariance operator Σ̂ := 1
n

∑n
i=1 ξxi

⊗ ξxi
. Adding and subtracting λf ∗

from the above equation yields

(Σ̂ + λI)E[∆ | X] = −λf ∗. (4.26)

Consequently, we see we have ‖E[∆ | X]‖H ≤ ‖f ∗‖H, since Σ̂ � 0.
We now use a truncation argument to reduce the problem to a finite dimensional problem.

To do so, we let δ ∈ ℓ2(N) denote the coefficients of E[∆ | X] when expanded in the basis
{φj}∞j=1:

E[∆ | X] =
∞∑

j=1

δjφj, with δj = 〈E[∆ | X], φj〉L2(P). (4.27)

For a fixed d ∈ N, define the vectors δ↓ := (δ1, . . . , δd) and δ
↑ := (δd+1, δd+2, . . .) (we suppress

dependence on d for convenience). By the orthonormality of the collection {φj}, we have

‖E[∆ | X]‖22 = ‖δ‖
2
2 = ‖δ↓‖22 + ‖δ↑‖22. (4.28)

We control each of the elements of the sum (4.28) in turn.

Control of the term ‖δ↑‖22: By definition, we have

‖δ↑‖22 =
µd+1

µd+1

∞∑

j=d+1

δ2j ≤ µd+1

∞∑

j=d+1

δ2j
µj

(i)

≤ µd+1 ‖E[∆ | X]‖2H (ii)≤ µd+1 ‖f ∗‖2H , (4.29)

where inequality (i) follows since ‖E[∆ | X]‖2H =
∑∞

j=1

δ2j
µj
; and inequality (ii) follows from

the bound ‖E[∆ | X]‖H ≤ ‖f ∗‖H, which is a consequence of equality (4.26).

Control of the term ‖δ↓‖22: Let (θ1, θ2, . . .) be the coefficients of f ∗ in the basis {φj}. In
addition, define the matrices Φ ∈ R

n×d by

Φij = φj(xi) for i ∈ {1, . . . , n}, and j ∈ {1, . . . , d}

and M = diag(µ1, . . . , µd) ≻ 0 ∈ R
d×d. Lastly, define the tail error vector v ∈ R

n by

vi :=
∑

j>d

δjφj(xi) = E[∆↑(xi) | X].

89

Let l ∈ N be arbitrary. Computing the (Hilbert) inner product of the terms in equation (4.26)
with φl, we obtain

−λ θl
µl

= 〈φl,−λf ∗〉 =
〈
φl, (Σ̂ + λ)E[∆ | X]

〉

=
1

n

n∑

i=1

〈φl, ξxi
〉 〈ξxi

,E[∆ | X]〉+ λ 〈φl,E[∆ | X]〉 = 1

n

n∑

i=1

φl(xi)E[∆(xi) | X] + λ
δl
µl

.

We can rewrite the final sum above using the fact that ∆ = ∆↓ +∆↑, which implies

1

n

n∑

i=1

φl(xi)E[∆(xi) | X] =
1

n

n∑

i=1

φl(xi)

(d∑

j=1

φj(xi)δj +
∑

j>d

φj(xi)δj

)

Applying this equality for l = 1, 2, . . . , d yields

(
1

n
ΦTΦ + λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦTv. (4.30)

We now show how the expression (4.30) gives us the desired bound in the lemma. By
definining the shorthand matrix Q = (I + λM−1)1/2, we have

1

n
ΦTΦ + λM−1 = I + λM−1 +

1

n
ΦTΦ− I = Q

(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Q.

As a consequence, we can rewrite expression (4.30) to

(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦTv. (4.31)

We now present a lemma bounding the terms in equality (4.31) to control δ↓.

Lemma 16. The following bounds hold:

∥∥λQ−1M−1θ↓
∥∥2
2
≤ λ ‖f ∗‖2H , and (4.32a)

E

[∥∥∥∥
1

n
Q−1ΦTv

∥∥∥∥
2

2

]
≤ ρ4 ‖f ∗‖2H tr(K)βd

λ
. (4.32b)

Define the event E :=
{∣∣∣∣∣∣Q−1

(
1
n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣ ≤ 1/2
}
. Under Assumption F with moment

bound E[φj(X)2k] ≤ ρ2k, there exists a universal constant C such that

P(Ec) ≤
(
max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}
Cρ2γ(λ)√

n

)k

. (4.33)

90

We defer the proof of this lemma to Appendix 4.5.1.1.
Based on this lemma, we can now complete the proof. Whenever the event E holds, we

know that I +Q−1((1/n)ΦTΦ− I)Q−1 � (1/2)I. In particular, we have

‖Qδ↓‖22 ≤ 4
∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦTv

∥∥2
2

on E , by Eq. (4.31). Since ‖Qδ↓‖22 ≥ ‖δ↓‖22, the above inequality implies that

‖δ↓‖22 ≤ 4
∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦTv

∥∥2
2

Since E is X-measureable, we thus obtain

E
[
‖δ↓‖22

]
= E

[
1(E)‖δ↓‖22

]
+ E

[
1(Ec)‖δ↓‖22

]

≤ 4E
[
1(E)

∥∥λQ−1M−1θ↓ + (1/n)Q−1ΦTv
∥∥2
2

]
+ E

[
1(Ec)‖δ↓‖22

]
.

Applying the bounds (4.32a) and (4.32b), along with the elementary inequality (a + b)2 ≤
2a2 + 2b2, we have

E
[
‖δ↓‖22

]
≤ 8λ ‖f ∗‖2H +

8ρ4 ‖f ∗‖2H tr(K)βd
λ

+ E
[
1(Ec)‖δ↓‖22

]
. (4.34)

Now we use the fact that by the gradient optimality condition (4.26),

‖E[∆ | X]‖22 ≤ µ0 ‖E[∆ | X]‖2H ≤ µ0 ‖f ∗‖2H
Recalling the shorthand (4.5) for b(n, d, k), we apply the bound (4.33) to see

E
[
1(Ec)‖δ↓‖22

]
≤ P(Ec)µ0 ‖f ∗‖2H ≤

(
Cb(n, d, k)ρ2γ(λ)√

n

)k

µ0 ‖f ∗‖2H

Combining this with the inequality (4.34), we obtain the desired statement of Lemma 14.

4.5.1.1 Proof of Lemma 16

Proof of bound (4.32a): Beginning with the proof of the bound (4.32a), we have

∥∥Q−1M−1θ↓
∥∥2
2
= (θ↓)T (M2 + λM)−1θ↓

≤ (θ↓)T (λM)−1θ↓ =
1

λ
(θ↓)TM−1θ↓ ≤ 1

λ
‖f ∗‖2H .

Multiplying both sides by λ2 gives the result.

Proof of bound (4.32b): Next we turn to the proof of the bound (4.32b). We begin by
re-writing Q−1ΦTv as the product of two components:

1

n
Q−1ΦTv = (M + λI)−1/2

(
1

n
M1/2ΦTv

)
. (4.35)

91

The first matrix is a diagonal matrix whose operator norm is bounded:

∣∣∣∣∣∣(M + λI)−1/2
∣∣∣∣∣∣ = max

j∈[d]

1√
µj + λ

≤ 1√
λ
. (4.36)

For the second factor in the product (4.35), the analysis is a little more complicated. Let
Φℓ = (φl(x1), . . . , φl(xn)) be the ℓth column of Φ. In this case,

∥∥M1/2ΦTv
∥∥2
2
=

d∑

ℓ=1

µℓ(Φ
T
ℓ v)

2 ≤
d∑

ℓ=1

µℓ ‖Φℓ‖22 ‖v‖
2
2 , (4.37)

using the Cauchy-Schwarz inequality. Taking expectations with respect to the design {xi}ni=1

and applying Hölder’s inequality yields

E[‖Φℓ‖22 ‖v‖
2
2] ≤

√
E[‖Φℓ‖42]

√
E[‖v‖42].

We bound each of the terms in this product in turn. For the first, we have

E[‖Φℓ‖42] = E

[(n∑

i=1

φ2
ℓ(Xi)

)2]
= E

[n∑

i,j=1

φ2
ℓ(Xi)φ

2
ℓ(Xj)

]
≤ n2

E[φ4
ℓ(X1)] ≤ n2ρ4

since the Xi are i.i.d., E[φ
2
ℓ(X1)] ≤

√
E[φ4

ℓ(X1)], and E[φ4
ℓ(X1)] ≤ ρ4 by assumption. Turning

to the term involving v, we have

v2i =

(∑

j>d

δjφj(xi)

)2

≤
(∑

j>d

δ2j
µj

)(∑

j>d

µjφ
2
j(xi)

)

by Cauchy-Schwarz. As a consequence, we find

E[‖v‖42] = E

[(
n
1

n

n∑

i=1

v2i

)2]
≤ n2 1

n

n∑

i=1

E[v4i] ≤ n
n∑

i=1

E

[(∑

j>d

δ2j
µj

)2(∑

j>d

µjφ
2
j(Xi)

)2]

≤ n2
E

[
‖E[∆ | X]‖4H

(∑

j>d

µjφ
2
j(X1)

)2]
,

since the Xi are i.i.d. Using the fact that ‖E[∆ | X]‖H ≤ ‖f ∗‖H, we expand the second
square to find

1

n2
E[‖v‖42] ≤ ‖f ∗‖4H

∑

j,k>d

E
[
µjµkφ

2
j(X1)φ

2
k(X1)

]
≤ ‖f ∗‖4H ρ4

∑

j,k>d

µjµk = ‖f ∗‖4H ρ4
(∑

j>d

µj

)2

.

Combining our bounds on ‖Φℓ‖2 and ‖v‖2 with our initial bound (4.37), we obtain the
inequality

E

[∥∥M1/2ΦTv
∥∥2
2

]
≤

d∑

l=1

µℓ

√
n2ρ4

√√√√n2 ‖f ∗‖4H ρ4
(∑

j>d

µj

)2

= n2ρ4 ‖f ∗‖2H
(∑

j>d

µj

) d∑

l=1

µℓ.

92

Dividing by n2, recalling the definition of βd =
∑

j>d µj, and noting that tr(K) ≥ ∑d
l=1 µℓ

shows that

E

[∥∥∥∥
1

n
M1/2ΦTv

∥∥∥∥
2

2

]
≤ ρ4 ‖f ∗‖2H βd tr(K).

Combining this inequality with our expansion (4.35) and the bound (4.36) yields the claim (4.32b).

Proof of bound (4.33): We consider the expectation of the norm of Q−1(1
n
ΦTΦ− I)Q−1. For

each i ∈ [n], πi := (φ1(xi), . . . , φd(xi))
T ∈ R

d, then πT
i is the i-th row of the matrix Φ ∈ R

n×d.
Then we know that

Q−1

(
1

n
ΦTΦ− I

)
Q−1 =

1

n

n∑

i=1

Q−1(πiπ
T
i − I)Q−1.

Define the sequence of matrices

Ai := Q−1(πiπ
T
i − I)Q−1

Then the matrices Ai = AT
i ∈ R

d×d. Note that E[Ai] = 0 and let εi be i.i.d. {−1, 1}-valued
Rademacher random variables. Applying a standard symmetrization argument [116], we find
that for any k ≥ 1, we have

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣
∣∣∣∣
∣∣∣∣
k
]
= E

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

Ai

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

k

 ≤ 2kE

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
1

n

n∑

i=1

εiAi

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

k

 . (4.38)

Lemma 17. The quantity E

[∣∣∣∣∣∣ 1
n

∑n
i=1 εiAi

∣∣∣∣∣∣k
]1/k

is upper bounded by

√
e(k ∨ 2 log(d))

ρ2
∑d

j=1
1

1+λ/µj√
n

+
4e(k ∨ 2 log(d))

n1−1/k

(d∑

j=1

ρ2

1 + λ/µj

)
. (4.39)

We take this lemma as given for the moment, returning to prove it shortly. Recall the
definition of the constant γ(λ) =

∑∞
j=1 1/(1 + λ/µj) ≥

∑d
j=1 1/(1 + λ/µj). Then using our

symmetrization inequality (4.38), we have

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣Q−1

(
1

n
ΦTΦ− I

)
Q−1

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]

≤ 2k
(√

e(k ∨ log(d))
ρ2γ(λ)√

n
+

4e(k ∨ 2 log(d))

n1−1/k
ρ2γ(λ)

)k

≤ max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}k (
Cρ2γ(λ)√

n

)k

, (4.40)

93

where C is a numerical constant. By definition of the event E , we see by Markov’s inequality
that for any k ∈ R, k ≥ 1,

P(Ec) ≤
E

[∣∣∣∣∣∣Q−1
(
1
n
ΦTΦ− I

)∣∣∣∣∣∣k
]

2−k
≤ max

{√
k ∨ log(d),

k ∨ log(d)

n1/2−1/k

}k (
2Cρ2γ(λ))√

n

)k

.

This completes the proof of the bound (4.33).

It remains to prove Lemma 17, for which we make use of the following result, due to Chen
et al. [45, Theorem A.1(2)].

Lemma 18. Let Xi ∈ R
d×d be independent symmetrically distributed Hermitian matrices.

Then

E

[∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

Xi

∣∣∣∣
∣∣∣∣
∣∣∣∣
k]1/k

≤
√
e(k ∨ 2 log d)

∣∣∣∣
∣∣∣∣
∣∣∣∣

n∑

i=1

E[X2
i]

∣∣∣∣
∣∣∣∣
∣∣∣∣
1/2

+ 2e(k ∨ 2 log d)
(
E[max

i
|||Xi|||k]

)1/k
.

(4.41)

The proof of Lemma 17 is based on applying this inequality with Xi = εiAi/n, and then
bounding the two terms on the right-hand side of inequality (4.41).

We begin with the first term. Note that for any symmetric matrix Z, we have the matrix
inequalities 0 � E[(Z − E[Z])2] = E[Z2]− E[Z]2 � E[Z2], so

E[A2
i] = E[Q−1(πiπ

T
i − I)Q−2(πiπ

T
i − I)Q−1] � E[Q−1πiπ

T
i Q

−2πiπ
T
i Q

−1].

Instead of computing these moments directly, we provide bounds on their norms. Since πiπ
T
i

is rank one and Q is diagonal, we have

∣∣∣∣∣∣Q−1πiπ
T
i Q

−1
∣∣∣∣∣∣ = πT

i (I + λM−1)−1πi =
d∑

j=1

φj(xi)
2

1 + λ/µj

.

We also note that, for any k ∈ R, k ≥ 1, convexity implies that

(d∑

j=1

φj(xi)
2

1 + λ/µj

)k

=

(∑d
l=1 1/(1 + λ/µℓ)∑d
l=1 1/(1 + λ/µℓ)

d∑

j=1

φj(xi)
2

1 + λ/µj

)k

≤
(d∑

l=1

1

1 + λ/µℓ

)k
1∑d

l=1 1/(1 + λ/µℓ)

d∑

j=1

φj(xi)
2k

1 + λ/µj

,

so if E[φj(Xi)
2k] ≤ ρ2k, we obtain

E

[(d∑

j=1

φj(xi)
2

1 + λ/µj

)k]
≤
(d∑

j=1

1

1 + λ/µj

)k

ρ2k. (4.42)

94

The sub-multiplicativity of matrix norms implies
∣∣∣∣∣∣(Q−1πiπ

T
i Q

−1)2
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣Q−1πiπ
T
i Q

−1
∣∣∣∣∣∣2,

and consequently we have

E
[∣∣∣∣∣∣(Q−1πiπ

T
i Q

−1)2
∣∣∣∣∣∣] ≤ E

[(
πT
i (I + λM−1)−1πi

)2] ≤ ρ4
(d∑

j=1

1

1 + λ/µj

)2

,

where the final step follows from inequality (4.42). Combined with first term on the right-
hand side of Lemma 18, we have thus obtained the first term on the right-hand side of
expression (4.39).

We now turn to the second term in expression (4.39). For real k ≥ 1, we have

E[max
i
|||εiAi/n|||k] =

1

nk
E[max

i
|||Ai|||k] ≤

1

nk

n∑

i=1

E[|||Ai|||k]

Since norms are sub-additive, we find that

|||Ai|||k ≤ 2k−1

(d∑

j=1

φj(xi)
2

1 + λ/µj

)k

+2k−1
∣∣∣∣∣∣Q−2

∣∣∣∣∣∣k = 2k−1

(d∑

j=1

φj(xi)
2

1 + λ/µj

)k

+2k−1

(
1

1 + λ/µ1

)k

.

Since ρ ≥ 1 (recall that the φj are an orthonormal basis), we apply inequality (4.42), to find
that

E[max
i
|||εiAi/n|||k] ≤

1

nk−1

[
2k−1

(d∑

j=1

1

1 + λ/µj

)k

ρ2k + 2k−1

(
1

1 + λ/µ1

)k

ρ2k
]
.

Taking kth roots yields the second term in the expression (4.39).

4.5.2 Proof of Lemma 15

This proof follows an outline similar to Lemma 14. We begin with a simple bound on ‖∆‖H:

Lemma 19. Under Assumption G, we have E[‖∆‖2H | X] ≤ 2σ2/λ+ 4 ‖f ∗‖2H.

Proof We have

λ E[‖f̂‖2H | {xi}ni=1] ≤ E

[
1

n

n∑

i=1

(f̂(xi)− f ∗(xi)− εi)2 + λ‖f̂‖2H | {xi}ni=1

]

(i)

≤ 1

n

n∑

i=1

E[ε2i | xi] + λ ‖f ∗‖2H
(ii)

≤ σ2 + λ ‖f ∗‖2H ,

95

where inequality (i) follows since f̂ minimizes the objective function (4.1); and inequality
(ii) uses the fact that E[ε2i | xi] ≤ σ2. Applying the triangle inequality to ‖∆‖H along with
the elementary inequality (a+ b)2 ≤ 2a2 + 2b2, we find that

E[‖∆‖2H | {xi}ni=1] ≤ 2 ‖f ∗‖2H + 2E[‖f̂‖2H | {xi}ni=1] ≤
2σ2

λ
+ 4 ‖f ∗‖2H ,

which completes the proof.

With Lemma 19 in place, we now proceed to the proof of the theorem proper. Recall
from Lemma 14 the optimality condition

1

n

n∑

i=1

ξxi
(〈ξxi

, f̂ − f ∗〉 − εi) + λf̂ = 0. (4.43)

Now, let δ ∈ ℓ2(N) be the expansion of the error ∆ in the basis {φj}, so that ∆ =
∑∞

j=1 δjφj,
and (again, as in Lemma 14), we choose d ∈ N and truncate ∆ via

∆↓ :=
d∑

j=1

δjφj and ∆↑ := ∆−∆↓ =
∑

j>d

δjφj.

Let δ↓ ∈ R
d and δ↑ denote the corresponding vectors for the above. As a consequence of the

orthonormality of the basis functions, we have

E[‖∆‖22] = E[‖∆↓‖22] + E[‖∆↑‖22] = E[‖δ↓‖22] + E[‖δ↑‖22]. (4.44)

We bound each of the terms (4.44) in turn.
By Lemma 19, the second term is upper bounded as

E[‖∆↑‖22] =
∑

j>d

E[δ2j] ≤
∑

j>d

µd+1

µj

E[δ2j] = µd+1E[‖∆↑‖2H] ≤ µd+1

(
2σ2

λ
+ 4 ‖f ∗‖2H

)
. (4.45)

The remainder of the proof is devoted the bounding the term E[‖∆↓‖22] in the decomposi-
tion (4.44). By taking the Hilbert inner product of φk with the optimality condition (4.43),
we find as in our derivation of the matrix equation (4.30) that for each k ∈ {1, . . . , d}

1

n

n∑

i=1

d∑

j=1

φk(xi)φj(xi)δj +
1

n

n∑

i=1

φk(xi)(∆
↑(xi)− εi) + λ

δk
µk

= 0.

Given the expansion f ∗ =
∑∞

j=1 θjφj, define the tail error vector v ∈ R
n by vi =

∑
j>d δjφj(xi),

and recall the definition of the eigenvalue matrix M = diag(µ1, . . . , µd) ∈ R
d×d. Given the

matrix Φ defined by its coordinates Φij = φj(xi), we have
(
1

n
ΦTΦ + λM−1

)
δ↓ = −λM−1θ↓ − 1

n
ΦTv +

1

n
ΦT ε. (4.46)

96

As in the proof of Lemma 14, we find that
(
I +Q−1

(
1

n
ΦTΦ− I

)
Q−1

)
Qδ↓ = −λQ−1M−1θ↓ − 1

n
Q−1ΦTv +

1

n
Q−1ΦT ε, (4.47)

where we recall that Q = (I + λM−1)1/2.
We now recall the bounds (4.32a) and (4.33) from Lemma 16, as well as the previously

defined event E := {
∣∣∣∣∣∣Q−1

(
1
n
ΦTΦ− I

)
Q−1

∣∣∣∣∣∣ ≤ 1/2}. When E occurs, the expression (4.47)
implies the inequality

‖∆↓‖22 ≤ ‖Qδ↓‖22 ≤ 4
∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦTv + (1/n)Q−1ΦT ε

∥∥2
2
.

When E fails to hold, Lemma 19 may still be applied since E is measureable with respect to
{xi}ni=1. Doing so yields

E[‖∆↓‖22] = E[1(E)‖∆↓‖22] + E[1(Ec)‖∆↓‖22]
≤ 4E

[∥∥−λQ−1M−1θ↓ − (1/n)Q−1ΦTv + (1/n)Q−1ΦT ε
∥∥2
2

]
+ E

[
1(Ec)E[‖∆↓‖22 | {xi}ni=1]

]

≤ 4E

[∥∥∥∥λQ−1M−1θ↓ +
1

n
Q−1ΦTv − 1

n
Q−1ΦT ε

∥∥∥∥
2

2

]
+ P(Ec)

(
2σ2

λ
+ 4 ‖f ∗‖2H

)
. (4.48)

Since the bound (4.33) still holds, it remains to provide a bound on the first term in the
expression (4.48).

As in the proof of Lemma 14, we have ‖λQ−1M−1θ↓‖22 ≤ λ ‖f ∗‖2H via the bound (4.32a).
Turning to the second term inside the norm, we claim that, under the conditions of Lemma 15,
the following bound holds:

E

[∥∥(1/n)Q−1ΦTv
∥∥2
2

]
≤ ρ4 tr(K)βd(2σ

2/λ+ 4 ‖f ∗‖2H)
λ

. (4.49)

This claim is an analogue of our earlier bound (4.32b), and we prove it shortly. Lastly, we
bound the norm of Q−1ΦT ε/n. Noting that the diagional entries of Q−1 are 1/

√
1 + λ/µj,

we have

E

[∥∥Q−1ΦT ε
∥∥2
2

]
=

d∑

j=1

n∑

i=1

1

1 + λ/µj

E[φ2
j(Xi)ε

2
i]

Since E[φ2
j(Xi)ε

2
i] = E[φ2

j(Xi)E[ε
2
i | Xi]] ≤ σ2 by assumption, we have the inequality

E

[∥∥(1/n)Q−1ΦT ε
∥∥2
2

]
≤ σ2

n

d∑

j=1

1

1 + λ/µj

.

The last sum is bounded by (σ2/n)γ(λ). Applying the inequality (a+b+c)2 ≤ 3a2+3b2+3c2

to inequality (4.48), we obtain

E
[
‖∆↓‖22

]
≤ 12λ ‖f ∗‖2H +

12σ2γ(λ)

n
+

(
2σ2

λ
+ 4 ‖f ∗‖2H

)(
12ρ4 tr(K)βd

λ
+ P(Ec)

)
.

97

Applying the bound (4.33) to control P(Ec) and bounding E[‖∆↑‖22] using inequality (4.45)
completes the proof of the lemma.

It remains to prove bound (4.49). Recalling the inequality (4.36), we see that

∥∥(1/n)Q−1ΦTv
∥∥2
2
≤
∣∣∣∣∣∣Q−1M−1/2

∣∣∣∣∣∣2 ∥∥(1/n)M1/2ΦTv
∥∥2
2
≤ 1

λ

∥∥(1/n)M1/2ΦTv
∥∥2
2
. (4.50)

Let Φℓ denote the ℓth column of the matrix Φ. Taking expectations yields

E

[∥∥M1/2ΦTv
∥∥2
2

]
=

d∑

l=1

µℓE[〈Φℓ, v〉2] ≤
d∑

l=1

µℓE
[
‖Φℓ‖22 ‖v‖

2
2

]
=

d∑

l=1

µℓE
[
‖Φℓ‖22 E

[
‖v‖22 | X

]]
.

Now consider the inner expectation. Applying the Cauchy-Schwarz inequality as in the proof
of the bound (4.32b), we have

‖v‖22 =
n∑

i=1

v2i ≤
n∑

i=1

(∑

j>d

δ2j
µj

)(∑

j>d

µjφ
2
j(Xi)

)
.

Notably, the second term is X-measureable, and the first is bounded by ‖∆↑‖2H ≤ ‖∆‖2H.
We thus obtain

E

[∥∥M1/2ΦTv
∥∥2
2

]
≤

n∑

i=1

d∑

l=1

µℓE

[
‖Φℓ‖22

(∑

j>d

µjφ
2
j(Xi)

)
E[‖∆‖2H | X]

]
. (4.51)

Lemma 19 provides the bound 2σ2/λ+ 4 ‖f ∗‖2H on the final (inner) expectation.
The remainder of the argument proceeds precisely as in the bound (4.32b). We have

E[‖Φℓ‖22 φj(Xi)
2] ≤ nρ4

by the moment assumptions on φj, and thus

E

[∥∥M1/2ΦTv
∥∥2
2

]
≤

d∑

l=1

∑

j>d

µℓµjn
2ρ4
(
2σ2

λ
+ 4 ‖f ∗‖2H

)
≤ n2ρ4βd tr(K)

(
2σ2

λ
+ 4 ‖f ∗‖2H

)
.

Dividing by λn2 completes the proof.

98

Chapter 5

Distributed optimization of
self-concordant loss

In this chapter, we study a more general setup of empirical risk minimization — when
the loss function is not necessarily strongly convex, but regularized by a squared ℓ2-norm.
The regularization parameter may diminish to zero as a function of the data size. Recall
the notations introduced in Chapter 2. Our distributed computing system consists of m
machines, and each has access to n samples zi,1, . . . , zi,n, for i = 1, . . . ,m. Then each
machine can evaluate a local empirical loss function

fi(w) =:
1

n

n∑

j=1

φ(w, zi,j), i = 1, . . . ,m.

Our goal is to minimize the overall empirical loss defined with all mn samples:

f(w) =:
1

m

m∑

i=1

fi(w) =
1

mn

m∑

i=1

n∑

j=1

φ(w, zi,j). (5.1)

For stability and generalization purposes, we often add a regularization term (λ/2)‖w‖22 to
make the empirical loss function strongly convex. More specifically, we modify the definition
of fi(w) as

fi(w) =:
1

n

n∑

j=1

φ(w, zi,j) +
λ

2
‖w‖22, i = 1, . . . ,m. (5.2)

Our goal is to develop communication-efficient distributed algorithms, which try to use
a minimal number of communication rounds to reach certain precision in minimizing f(w).

99

5.1 Communication efficiency of distributed convex

optimization algorithms

We assume that each communication round requires only simple map-reduce type of oper-
ations, such as broadcasting a vector in R

d to the m machines and computing the sum or
average ofm vectors in R

d. Typically, if a distributed iterative algorithm takes T iterations to
converge, then it communicates at least T rounds (usually one or two communication rounds
per iteration). Therefore, we can measure the communication efficiency of a distributed al-
gorithm by its iteration complexity T (ǫ), which is the number of iterations required by the
algorithm to find a solution wT such that f(wT)− f(w⋆) ≤ ǫ.

For a concrete discussion, we make the following assumption:

Assumption H. The function f : Rd → R is twice continuously differentiable, and there
exist constants L ≥ λ > 0 such that

λI � f ′′(w) � LI, ∀w ∈ R
d,

where f ′′(w) denotes the Hessian of f at w, and I is the d× d identity matrix.

Functions that satisfy Assumption H are often called L-smooth and λ-strongly convex.
The value κ = L/λ ≥ 1 is called the condition number of f , which is a key quantity
in characterizing the complexity of iterative algorithms. We focus on ill-conditioned cases
where κ≫ 1.

A straightforward approach for minimizing f(w) is distributed implementation of the
classical gradient descent method. More specifically, at each iteration k, each machine com-
putes the local gradient f ′

i(wk) ∈ R
d and sends it to a master node to compute f ′(wk) =

(1/m)
∑m

i=1 f
′
i(wk). The master node takes a gradient step to compute wk+1, and broadcasts

it to each machine for the next iteration. The iteration complexity of this method is the
same as the classical gradient method: O(κ log(1/ǫ)), which is linear in the condition num-
ber κ (e.g., [154]). If we use accelerated gradient methods [154, 155, 126], then the iteration
complexity can be improved to O(√κ log(1/ǫ)).

Another popular technique for distributed optimization is to use the alternating direction
method of multipliers (ADMM); see, e.g., [34, Section 8]. Under the assumption that each
local function fi is L-smooth and λ-strongly convex, the ADMM approach can achieve linear
convergence, and the best known complexity is O(√κ log(1/ǫ)) [60]. This turns out to be
the same order as for accelerated gradient methods. In this case, ADMM can actually
be considered as an accelerated primal-dual first-order method; see the discussions in [42,
Section 4].

The polynomial dependence of the iteration complexity on the condition number can be
unsatifactory. For machine learning applications, both the precision ǫ and the regularization
parameter λ should decrease while the overall sample size mn increases, typically on the
order of Θ(1/

√
mn) (e.g., [32, 187]). This translates into the condition number κ being

Θ(
√
mn). In this case, the iteration complexity, and thus the number of communication

100

rounds, scales as (mn)1/4 for both accelerated gradient methods and ADMM (with careful
tuning of the penalty parameter). This suggests that the number of communication rounds
grows with the total sample size.

Despite the rich literature on distributed optimization (e.g., [22, 168, 34, 4, 64, 59, 172,
231, 188]), most algorithms involve high communication cost. In particular, their iteration
complexity have similar or worse dependency on the condition number as the methods dis-
cussed above. It can be argued that the iteration complexity O(√κ log(1/ǫ)) cannot be
improved in general for distributed first-order methods — after all, it is optimal for central-
ized first-order methods under the same assumption that f(w) is L-smooth and λ-strongly
convex [153, 154]. Thus in order to obtain better communication efficiency, we need to look
into further problem structure and/or alternative optimization methods. And we need both
in this chapter.

First, we note that the above discussion on iteration complexity does not exploit the
fact that each function fi is generated by, or can be considered as, SAA of a stochastic
optimization problem. Since the data zi,j are i.i.d. samples from a common distribution, the
local empirical loss functions fi(w) = (1/n)

∑n
j=1 φ(w, zi,j) will be similar to each other if

the local sample size n is large. Under this assumption, Zhang et al. [231] studied a one-shot
averaging scheme that approximates the minimizer of function f by simply averaging the
minimizers of fi. For a fixed condition number, the one-shot approach is communication
efficient because it achieves optimal dependence on the overall sample size mn (in the sense
of statistical lower bounds). But their conclusion doesn’t allow the regularization parameter
λ to decrease to zero as n goes to infinity (see discussions in [190]).

Exploiting the stochastic nature alone seems not enough to overcome ill-conditioning in
the regime of first-order methods. This motivates the development of distributed second-
order methods. Recently, Shamir et al. [190] proposed a distributed approximate Newton-
type (DANE) method. Their method takes advantage of the fact that, under the stochastic
assumptions of SAA, the Hessians f ′′

1 , f
′′
2 , . . . , f

′′
m are similar to each other. For quadratic

loss functions, DANE is shown to converge in Õ
(
(L/λ)2n−1 log(1/ǫ)

)
iterations with high

probability, where the notation Õ(·) hides additional logarithmic factors involving m and d.
If λ ∼ 1/

√
mn as in machine learning applications, then the iteration complexity becomes

Õ(m log(1/ǫ)), which scales linearly with the number of machinesm, not the total sample size
mn. However, the analysis in [190] does not guarantee that DANE has the same convergence
rate on non-quadratic functions.

5.2 Outline of our approach

We propose a communication-efficient distributed second-order method for minimizing the
overall empirical loss f(w) defined in (5.1). Our method is based on an inexact damped
Newton method. Assume f(w) is strongly convex and has continuous second derivatives. In
the exact damped Newton method (e.g., [154, Section 4.1.5]), we first choose an initial point

101

w0 ∈ R
d, and then repeat

wk+1 = wk −
1

1 + δ(wk)
∆wk, k = 0, 1, 2, . . . , (5.3)

where ∆wk and δ(wk) are the Newton step and the Newton decrement, respectively, defined
as

∆wk = [f ′′(wk)]
−1f ′(wk) ,

δ(wk) =
√
f ′(wk)T [f ′′(wk)]−1f ′(wk) =

√
(∆wk)Tf ′′(wk)∆wk . (5.4)

Since f is the average of f1, . . . , fm, its gradient and Hessian can be written as

f ′(wk) =
1

m

m∑

i=1

f ′
i(wk), f ′′(wk) =

1

m

m∑

i=1

f ′′
i (wk). (5.5)

In order to compute ∆wk in a distributed setting, the naive approach would require
all the machines to send their gradients and Hessians to a master node (say machine 1).
However, the task of transmitting the Hessians (which are d×d matrices) can be prohibitive
for large dimensions d. A better alternative is to use the conjugate gradient (CG) method
to compute ∆wk as the solution to a linear system f ′′(wk)∆wk = f ′(wk). Each iteration of
the CG method requires a matrix-vector product of the form

f ′′(wk)v =
1

m

m∑

i=1

f ′′
i (wk)v,

where v is some vector in R
d. More specifically, the master node can broadcast the vector v

to each machine, each machine computes f ′′
i (wk)v ∈ R

d locally and sends it back to the
master node, which then forms the average f ′′(wk)v and performs the CG update. Due
to the iterative nature of the CG method, we can only compute the Newton direction and
Newton decrement approximately, especially with limited number of communication rounds.

The overall method has two levels of loops: the outer-loop of the damped Newton method,
and the inner loop of the CG method for computing the inexact Newton steps. A similar
approach (using a distributed truncated Newton method) was proposed in [237, 125] for
ERM of linear predictors, and it was reported to perform very well in practice. However,
the total number of CG iterations (each takes a round of communication) may still be high.

First, consider the outer loop complexity. It is well-known that Newton-type methods
have asymptotic superlinear convergence. However, in classical analysis of Newton’s method
(e.g., [33, Section 9.5.3]), the number of steps needed to reach the superlinear convergence
zone still depends on the condition number; more specifically, it scales quadratically in κ.
To solve this problem, we resort to the machinery of self-concordant functions [157, 154].
For self-concordant empirical losses, we show that the iteration complexity of the inexact
damped Newton method has a much weaker dependence on the condition number.

102

Second, consider the inner loop complexity. The convergence rate of the CG method also
depends on the condition number κ: it takes O(√κ log(1/ε)) CG iterations to compute an
ε-precise Newton step. Thus we arrive at the dilemma that the overall complexity of the CG-
powered inexact Newton method is no better than accelerated gradient methods or ADMM.
To overcome this difficulty, we exploit the stochastic nature of the problem and propose to
use a preconditioned CG (PCG) method for solving the Newton system. Roughly speaking,
if the local Hessians f ′′

1 (wk), . . . , f
′′
m(wk) are “similar” to each other, then we can use any

local Hessian f ′′
i (wk) as a preconditioner. Without loss of generality, let P = f ′′

1 (wk) + µI,
where µ is an estimate of the spectral norm ‖f ′′

1 (wk)− f ′′(wk)‖2. Then we use CG to solve
the pre-conditioned linear system

P−1f ′′(wk)∆wk = P−1f ′(wk),

where the preconditioning (multiplication by P−1) can be computed locally at machine 1
(the master node). The convergence rate of PCG depends on the condition number of the
matrix P−1f ′′(wk), which is close to 1 if the spectral norm ‖f ′′

1 (wk)− f ′′(wk)‖2 is small.
To exactly characterize the similarity between f ′′

1 (wk) and f
′′(wk), we rely on stochastic

analysis in the framework of SAA or ERM. We show that with high probability, ‖f ′′
1 (wk)−

f ′′(wk)‖2 decreases as Õ(
√
d/n) in general, and Õ(

√
1/n) for quadratic loss. Therefore,

when n is large, the preconditioning is very effective and the PCG method converges to
sufficient precision within a small number of iterations. The stochastic assumption is also
critical for obtaining an initial point w0 which further brings down the overall iteration
complexity.

Combining the above ideas, we propose and analyze an algorithm for Distributed Self-
Concordant Optimization (DiSCO, which also stands for Distributed Second-Order method,
or Distributed Stochastic Convex Optimization). We show that several popular empirical loss
functions in machine learning, including ridge regression, regularized logistic regression and a
(new) smoothed hinge loss, are actually self-concordant. For ERM with these loss functions,
Table 5.1 lists the number of communication rounds required by DiSCO and several other
algorithms to find an ǫ-optimal solution. As the table shows, the communication cost of
DiSCO weakly depends on the number of machines m and on the feature dimension d, and
is independent of the local sample size n (excluding logarithmic factors). Comparing to
DANE [190], DiSCO not only improves the communication efficiency on quadratic loss, but
also handles non-quadratic classification tasks.

5.3 Inexact damped Newton method

In this section, we propose and analyze an inexact damped Newton method for minimizing
self-concordant functions. Without loss of generality, we assume the objective function
f : Rd → R is standard self-concordant (see background in Chapter 2). In addition, we
assume that Assumption H holds. Our method is described in Algorithm 1. If we let ǫk = 0
for all k ≥ 0, then vk = [f ′′(wk)]

−1f ′(wk) is the exact Newton step and δk is the Newton

103

Number of Communication Rounds Õ(·)
Algorithm Ridge Regression Binary Classification

(quadratic loss) (logistic loss, smoothed hinge loss)

Accelerated Gradient (mn)1/4 log(1/ǫ) (mn)1/4 log(1/ǫ)

ADMM (mn)1/4 log(1/ǫ) (mn)1/4 log(1/ǫ)

DANE [190] m log(1/ǫ) (mn)1/2 log(1/ǫ)

DiSCO (our algorithm) m1/4 log(1/ǫ) m3/4d1/4 +m1/4d1/4 log(1/ǫ)

Table 5.1. Communication efficiency of several distributed algorithms for ERM of linear
predictors, when the regularization parameter λ in (5.2) is on the order of 1/

√
mn. All

results are deterministic or high probability upper bounds, except that the last one, DiSCO
for binary classification, is a bound in expectation (with respect to the randomness in gen-
erating the i.i.d. samples). For DiSCO, the dependence on ǫ can be improved to log log(1/ǫ)
with superlinear convergence.

Algorithm 1: Inexact damped Newton method

input: initial point w0 and specification of a nonnegative sequence {ǫk}.
repeat for k = 0, 1, 2, . . .

1. Find a vector vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ ǫk.

2. Compute δk =
√
vTk f

′′(wk)vk and update wk+1 = wk − 1
1+δk

vk.

until a stopping criterion is satisfied.

decrement defined in (5.4), so the algorithm reduces to the exact damped Newton method
given in (5.3). But here we allow the computation of the Newton step (hence also the Newton
decrement) to be inexact and contain approximation errors.

The explicit account of approximation errors is essential for distributed optimization. In
particular, if f(w) = (1/m)

∑m
i=1 fi(w) and the components fi locate on separate machines,

then we can only perform Newton updates approximately with limited communication bud-
get. Even in a centralized setting on a single machine, analysis of approximation errors can
be important if the Newton system is solved by iterative algorithms such as the conjugate
gradient method.

Before presenting the convergence analysis, we need to introduce two auxiliary functions

ω(t) = t− log(1 + t), t ≥ 0,

ω∗(t) = −t− log(1− t), 0 ≤ t < 1.

These two functions are very useful for characterizing the properties of self-concordant func-
tions; see [154, Section 4.1.4] for a detailed account. Here, we simply note that ω(0) =
ω∗(0) = 0, both are strictly increasing for t ≥ 0, and ω∗(t)→∞ as t→ 1.

104

We also need to define two auxiliary vectors

ũk = [f ′′(wk)]
−1/2f ′(wk),

ṽk = [f ′′(wk)]
1/2vk.

The norm of the first vector, ‖ũk‖2 =
√
f ′(wk)T [f ′′(wk)]−1f ′(wk), is the exact Newton decre-

ment. The norm of the second one is ‖ṽk‖2 = δk, which is computed during each iteration
of Algorithm 1. Note that we do not compute ũk or ṽk in Algorithm 1. They are intro-
duced solely for the purpose of convergence analysis. The following Theorem is proved in
Section 5.7.1.

Theorem 5. Suppose f : Rd → R is a standard self-concordant function and Assumption H
holds. If we choose the sequence {ǫk}k≥0 in Algorithm 1 as

ǫk = β(ρ/L)1/2‖f ′(wk)‖2 with β = 1/20, (5.6)

then:

(a) For any k ≥ 0, we have f(wk+1) ≤ f(wk)− 1
2
ω(‖ũk‖2).

(b) If ‖ũk‖2 ≤ 1/6, then we have ω(‖ũk+1‖2) ≤ 1
2
ω(‖ũk‖2).

As mentioned before, when ǫk = 0, the vector vk = [f ′′(wk)]
−1f ′(wk) becomes the exact

Newton step. In this case, we have ṽk = ũk, and it can be shown that f(wk+1) ≤ f(wk) −
ω(‖ũk‖2) for all k ≥ 0 and the exact damped Newton method has quadratic convergence
when ‖ũk‖2 is small (see [154, Section 4.1.5]). With the approximation error ǫk specified
in (5.6), we have

‖ṽk − ũk‖2 ≤ ‖(f ′′(wk))
−1/2‖2‖f ′′(wk)vk − f ′(wk)‖2 ≤ ρ−1/2ǫk

= βL−1/2‖f ′(wk)‖2 ≤ β‖ũk‖2,
which implies

(1− β)‖ũk‖2 ≤ ‖ṽk‖2 ≤ (1 + β)‖ũk‖2. (5.7)

Section 5.7.1 shows that when β is sufficiently small, the above inequality leads to the
conclusion in part (a). Compared with the exact damped Newton method, the guaranteed
reduction of the objective value per iteration is cut by half.

Part (b) of Theorem 5 suggests a linear rate of convergence when ‖ũk‖2 is small. This
is slower than the quadratic convergence rate of the exact damped Newton method, due
to the allowed approximation errors in computing the Newton step. However, when vk is
computed through a distributed iterative algorithm (like the distributed PCG algorithm in
Section 5.4.2), a smaller ǫk would require more local computational effort and more rounds
of inter-machine communication. The choice in equation (5.6) is a reasonable trade-off in
practice.

Using Theorem 5, we can derive the iteration complexity of Algorithm 1 for obtaining an
arbitrary accuracy. We present this result as a corollary.

105

Corollary 6. Suppose f : Rd → R is a standard self-concordant function and Assumption H
holds. If we choose the sequence {ǫk} in Algorithm 1 as in (5.6), then for any ǫ > 0, we have
f(wk)− f(w⋆) ≤ ǫ whenever k ≥ K where

K =

⌈
f(w0)− f(w⋆)

1
2
ω(1/6)

⌉
+

⌈
log2

(2ω(1/6)
ǫ

)⌉
. (5.8)

Here ⌈t⌉ denotes the smallest nonnegative integer that is larger or equal to t.

Proof Since ω(t) is strictly increasing for t ≥ 0, part (a) of Theorem 5 implies that if
‖ũk‖2 > 1/6, one step of Algorithm 1 decreases the value of f(w) by at least a constant
1
2
ω(1/6). So within at most K1 = ⌈f(w0)−f(w⋆)

1
2
ω(1/6)

⌉ iterations, we are guaranteed that ‖ũk‖2 ≤
1/6.

According to [154, Theorem 4.1.13], if ‖ũk‖2 < 1, then we have

ω(‖ũk‖2) ≤ f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2). (5.9)

Moreover, it is easy to check that ω∗(t) ≤ 2ω(t) for 0 ≤ t ≤ 1/6. Therefore, using part (b)
of Theorem 5, we conclude that when k ≥ K1,

f(wk)− f(w⋆) ≤ 2ω(‖ũk‖2) ≤ 2(1/2)k−K1ω(‖ũK1‖2) ≤ 2(1/2)k−K1ω(1/6).

Bounding the right-hand side of the above inequality by ǫ, we have f(wk) − f(w⋆) ≤ ǫ

whenever k ≥ K1 +
⌈
log2

(
2ω(1/6)

ǫ

)⌉
= K, which is the desired result.

We note that when ‖ũk‖2 ≤ 1/6 (as long as k ≥ K1), we have f(wk)− f(w⋆) ≤ 2ω(1/6).
Thus for ǫ > 2ω(1/6), it suffices to have k ≥ K1.

5.3.1 Stopping criteria

We discuss two stopping criteria for Algorithm 1. The first one is based on the strong
convexity of f , which leads to the inequality (e.g., [154, Theorem 2.1.10])

f(wk)− f(w⋆) ≤
1

2λ
‖f ′(wk)‖22.

Therefore, we can use the stopping criterion ‖f ′(wk)‖2 ≤
√
2λǫ, which implies f(wk) −

f(w⋆) ≤ ǫ. However, this choice can be too conservative in practice (see discussions in [33,
Section 9.1.2]).

Another choice for the stopping criterion is based on self-concordance. Using the fact
that ω∗(t) ≤ t2 for 0 ≤ t ≤ 0.68 (see [33, Section 9.6.3]), we have

f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2) ≤ ‖ũk‖22 (5.10)

106

provided ‖ũk‖2 ≤ 0.68. Since we do not compute ‖ũk‖2 (the exact Newton decrement)
directly in Algorithm 1, we can use δk as an approximation. Using the inequality (5.7), and
noticing that ‖ṽk‖2 = δk, we conclude that

δk ≤ (1− β)√ǫ

implies f(wk) − f(w⋆) ≤ ǫ when ǫ ≤ 0.682. Since δk is computed at each iteration of
Algorithm 1, this can serve as a good stopping criterion.

5.3.2 Scaling for non-standard self-concordant functions

In many applications, we need to deal with empirical loss functions that are not standard
self-concordant; see the examples in Section 2.3. Suppose a regularized loss function ℓ(w)
is self-concordant with parameter Mℓ > 2. By Lemma 1, the scaled function f = ηℓ with
η = M2

ℓ /4 is standard self-concordant. We can apply Algorithm 1 to minimize the scaled
function f , and rewrite it in terms of the function ℓ and the scaling constant η.

Using the sequence {ǫk} defined in (5.6), the condition for computing vk in Step 1 is

‖f ′′(wk)vk − f ′(wk)‖2 ≤ β(λ/L)1/2‖f ′(wk)‖2.

Let λℓ and Lℓ be the strong convexity and smoothness parameters of the function ℓ. With
the scaling, we have λ = ηλℓ and L = ηLℓ, thus their ratio (the condition number) does not
change. Therefore the above condition is equivalent to

‖ℓ′′(wk)vk − ℓ′(wk)‖2 ≤ β(λℓ/Lℓ)
1/2‖ℓ′(wk)‖2. (5.11)

In other words, the precision requirement in Step 1 is scaling invariant.
Step 2 of Algorithm 1 can be rewritten as

wk+1 = wk −
vk

1 +
√
η ·
√
vTk ℓ

′′(wk)vk
. (5.12)

Here, the factor η explicitly appears in the formula. By choosing a larger scaling factor η, the
algorithm chooses a smaller stepsize. This adjustment is intuitive because the convergence of
Newton-type method relies on local smoothness conditions. By multiplying a large constant
to ℓ, the function’s Hessian becomes less smooth, so that the stepsize should shrink.

In terms of complexity analysis, if we target to obtain ℓ(wk)−ℓ(w⋆) ≤ ǫ, then the iteration
bound in (5.8) becomes

⌈
η
(
ℓ(w0)− ℓ(w⋆)

)
1
2
ω(1/6)

⌉
+

⌈
log2

(2ω(1/6)
ηǫ

)⌉
. (5.13)

For ERM problems in supervised learning, the self-concordant parameter Mℓ, and hence
the scaling factor η = M2

ℓ /4, can grow with the number of samples. For example, the

107

regularization parameter γ in (2.6) often scales as 1/
√
N where N = mn is the total number

of samples. Lemma 2 suggests that η grows on the order of
√
mn. A larger η will render

the second term in (5.13) less relevant, but the first term grows with the sample size mn.
In order to counter the effect of the growing scaling factor, we need to choose the initial
point w0 judiciously to guarantee a small initial gap. This will be explained further in the
next sections.

5.4 The DiSCO algorithm

In this section, we adapt the inexact damped Newton method (Algorithm 1) to a distributed
system, in order to minimize

f(w) =
1

m

m∑

i=1

fi(w), (5.14)

where each function fi can only be evaluated locally at machine i. This involves two ques-
tions: (1) how to set the initial point w0 and (2) how to compute the inexact Newton step
vk in a distributed manner. After answering these two questions, we will present the overall
DiSCO algorithm and analyze its communication complexity.

5.4.1 Initialization

In accordance with the averaging structure in (5.14), we choose the initial point based on
averaging. More specifically, we let

w0 =
1

m

m∑

i=1

Ŵi, (5.15)

where each Ŵi is the solution to a local optimization problem at machine i:

Ŵi = arg min
w∈Rd

{
fi(w) +

ρ

2
‖w‖22

}
, i = 1, . . . ,m. (5.16)

Here ρ ≥ 0 is a regularization parameter, which we will discuss in detail in the context of
stochastic analysis in Section 5.5. Roughly speaking, if each fi is constructed with n i.i.d.
samples as in (5.2), then we can choose ρ ∼ 1/

√
n to make E[f(w0) − f(w⋆)] decreasing as

O(1/√n). In this section, we simply regard it as an input parameter.
Here we comment on the computational cost of solving (5.16) locally at each machine.

Suppose each fi(w) has the form in (5.2), then the local optimization problems in (5.16)
become

Ŵi = arg min
w∈Rd

{
1

n

n∑

j=1

φ(w, zi,j) +
λ+ ρ

2
‖w‖22

}
, i = 1, . . . ,m. (5.17)

108

The finite average structure of the above objective function can be effectively exploited by
the stochastic average gradient (SAG) method [175, 181] or its new variant SAGA [58]. Each
step of these methods processes only one component function φ(w, zi,j), picked uniformly at
random. Suppose fi(w) is L-smooth, then SAG returns an ǫ-optimal solution with O

(
(n +

L+ρ
λ+ρ

) log(1/ǫ)
)
steps of stochastic updates. For ERM of linear predictors, we can also use

the stochastic dual coordinate ascent (SDCA) method [186], which has the same complexity.
We also mention some recent progress in accelerated stochastic coordinate gradient methods
[184, 127, 229], which can be more efficient both in theory and practice.

5.4.2 Distributed computing of the inexact Newton step

In each iteration of Algorithm 1, we need to compute an inexact Newton step vk such that
‖f ′′(wk)vk − f ′(wk)‖2 ≤ ǫk. This boils down to solving the Newton system f ′′(wk)vk =
f ′(wk) approximately. When the objective f has the averaging form (5.14), its Hessian and
gradient are given in (5.5). In the setting of distributed optimization, we propose to use a
preconditioned conjugate gradient (PCG) method to solve the Newton system.

To simplify notation, we use H to represent f ′′(wk) and use Hi to represent f ′′
i (wk).

Without loss of generality, we define a preconditioning matrix using the local Hessian at the
first machine (the master node):

P =: H1 + µI,

where µ > 0 is a small regularization parameter. Algorithm 2 describes our distributed PCG
method for solving the preconditioned linear system

P−1Hvk = P−1f ′(wk).

In particular, the master machine carries out the main steps of the classical PCG algorithm
(e.g., [76, Section 10.3]), and all machines (including the master) compute the local gradients
and Hessians and perform matrix-vector multiplications. Communication between the mas-
ter and other machines are used to form the overall gradient f ′(wk) and the matrix-vector
products

Hu(t) =
1

m

m∑

i=1

f ′′
i (wk)u

(t), Hv(t) =
1

m

m∑

i=1

f ′′
i (wk)v

(t).

We note that the overall Hessian H = f ′′(wk) is never formed and the master machine only
stores and updates the vectors Hu(t) and Hv(t).

As explained in Section 5.2, the motivation for preconditioning is that when H1 is suf-
ficiently close to H, the condition number of P−1H might be close to 1, which is much
smaller than that of H itself. As a result, the PCG method may converge much faster than
CG without preconditioning. The following lemma characterizes the extreme eigenvalues of
P−1H based on the closeness between H1 and H.

109

Algorithm 2: Distributed PCG algorithm (given wk and µ, compute vk and δk)

master machine (i = 1) machines i = 1, . . . ,m

input: wk ∈ R
d and µ ≥ 0.

let H = f ′′(wk) and P = f ′′
1 (wk) + µI.

communication:
broadcasts wk to other machines; −−−−−−→ compute f ′

i(wk)
aggregate f ′

i(wk) to form f ′(wk). ←−−−−−−
initialization: compute ǫk given in (5.6) and set

v(0) = 0, s(0) = P−1r(0),
r(0) = f ′(wk), u(0) = s(0).

repeat for t = 0, 1, 2 . . . ,

1. communication:

broadcast u(t) and v(t); −−−−−−→ compute f ′′
i (wk)u

(t)

aggregate to form Hu(t) and Hv(t). ←−−−−−− compute f ′′
i (wk)v

(t)

2. compute αt =
〈r(t),s(t)〉

〈u(t),Hu(t)〉 and update

v(t+1) = v(t) + αtu
(t),

r(t+1) = r(t) − αtHu
(t).

3. compute βt =
〈r(t+1),s(t+1)〉

〈r(t),s(t)〉 and update

s(t+1) = P−1r(t+1),

u(t+1) = s(t+1) + βtu
(t).

until ‖r(t+1)‖2 ≤ ǫk

return vk = v(t+1), rk = r(t+1), and δk =
√
vTkHv

(t) + α(t)vTkHu
(t).

Lemma 20. Suppose Assumption H holds. If ‖H1 −H‖2 ≤ µ, then we have

σmax(P
−1H) ≤ 1, (5.18)

σmin(P
−1H) ≥ ρ

ρ+ 2µ
. (5.19)

Here ‖ · ‖2 denote the spectral norm of a matrix, and σmax(·) and σmin(·) denote the largest
and smallest eigenvalues of a diagonalizable matrix, respectively.

Proof Since both P and H are symmetric and positive definite, all eigenvalues of P−1H
are positive real numbers (e.g., [93, Section 7.6]). The eigenvalues of P−1H are identical to

110

that of P−1/2HP−1/2. Thus, it suffices to prove inequalities (5.18) and (5.19) for the matrix
P−1/2HP−1/2. To prove inequality (5.18), we need to show that H � P = H1 + µI. This is
equivalent to H−H1 � µI, which is a direct consequence of the assumption ‖H1−H‖2 ≤ µI.

Similarly, the second inequality (5.19) is equivalent to H � ρ
ρ+2µ

(H1 + µI), which is the

same as 2µ
ρ
H − µI � H1 −H. Since H � ρI (by Assumption H), we have 2µ

ρ
H − µI � µI.

The additional assumption ‖H1 − H‖2 ≤ µI implies µI � H1 − H, which complete the
proof.

By Assumption H, the condition number of the Hessian matrix is κ(H) = L/λ, which
can be very large if λ is small. Lemma 20 establishes that the condition number of the
preconditioned linear system is

κ(P−1H) =
σmax(P

−1H)

σmin(P−1H)
= 1 +

2µ

λ
, (5.20)

provided that ‖H1−H‖2 ≤ µ. When µ is small (comparable with λ), the condition number
κ(P−1H) is close to one and can be much smaller than κ(H). Based on classical convergence
analysis of the CG method (e.g., [133, 8]), the following lemma shows that Algorithm 2
terminates in O(

√
1 + µ/ρ) iterations. See Section 5.7.2 for the proof.

Lemma 21. Suppose Assumption H holds and assume that ‖H1 −H‖2 ≤ µ. Let

Tµ =

⌈√
1 +

2µ

ρ
log

(
2
√
L/λ‖f ′(wk)‖2

ǫk

)⌉
.

Then Algorithm 2 terminates in Tµ iterations and the output vk satisfies ‖Hvk − f ′(wk)‖2 ≤
ǫk.

When the tolerance ǫk is chosen as in (5.6), the iteration bound Tµ is independent of
f ′(wk), i.e.,

Tµ =

⌈√
1 +

2µ

ρ
log

(
2L

βρ

)⌉
. (5.21)

Under Assumption H, we always have ‖H1 −H‖2 ≤ L. If we choose µ = L, then Lemma 21

implies that Algorithm 2 terminates in Õ(
√
L/ρ) iterations. where the notation Õ(·) hides

logarithmic factors. In practice, however, the matrix norm ‖H1 −H‖2 is usually much
smaller than L due to the stochastic nature of fi. Thus, we can choose µ to be a tight
upper bound on ‖H1 −H‖2, and expect the algorithm terminating in Õ(

√
µ/ρ) iterations.

In Section 5.5, we show that if the local empirical losses fi are constructed with n i.i.d.
samples from the same distribution, then ‖H1 −H‖2 ∼ 1/

√
n with high probability. As a

consequence, the iteration complexity of Algorithm 2 is upper bounded by Õ(1+λ−1/2n−1/4).

We wrap up this section by discussing the computation and communication complexities
of Algorithm 2. The bulk of computation is at the master machine, especially computing

111

Algorithm 3: DiSCO

input: parameters ρ, µ ≥ 0 and precision ǫ > 0.
initialize: compute w0 according to (5.15) and (5.16).
repeat for k = 0, 1, 2, . . .

1. Run Algorithm 2: given wk and µ, compute vk and δk.

2. Update wk+1 = wk − 1
1+δk

vk.

until δk ≤ (1− β)√ǫ.
output: Ŵ = wk+1.

the vector s(t) = P−1r(t) in Step 3, which is equivalent to minimize the quadratic function
(1/2)sTPs− sT r(t). Using P = f ′′

1 (wk)+µI and the form of f1(w) in (5.2), this is equivalent
to

s(t) = argmin
s∈Rd

{
1

n

n∑

j=1

sTφ′′(wk, zi,j)s

2
+ 〈r(t), s〉+ λ+ µ

2
‖s‖22

}
. (5.22)

This problem has the same structure as (5.17), and an ǫ-optimal solution can be obtained
with O

(
(n + L+µ

λ+µ
) log(1/ǫ)

)
stochastic-gradient type of steps (see discussions at the end of

Section 5.4.1).
As for the communication complexity, we need one round of communication at the be-

ginning of Algorithm 2 to compute f ′(wk). Then, each iteration takes one round of commu-
nication to compute Hu(t) and Hv(t). Thus, the total rounds of communication is bounded
by Tµ + 1.

5.4.3 Communication efficiency of DiSCO

Putting everything together, we present the DiSCO algorithm in Algorithm 3. Here we
study its communication efficiency. Recall that by one round of communication, the master
machine broadcasts a message of O(d) bits to all machines, and every machine processes the
aggregated message and sends a message of O(d) bits back to the master. The following
proposition gives an upper bound on the number of communication rounds taken by the
DiSCO algorithm.

Theorem 6. Assume that f is a standard self-concordant function and it satisfies Assump-
tion H. Suppose the input parameter µ in Algorithm 3 is an upper bound on ‖f ′′

1 (wk)− f ′′(wk)‖2
for all k ≥ 0. Then for any ǫ > 0, in order to find a solution Ŵ satisfying f(Ŵ)−f(w⋆) < ǫ,
the total number of communication rounds T is bounded by

T ≤ 1 +

(⌈
f(w0)− f(w⋆)

1
2
ω(1/6)

⌉
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉)(
2 +

√
1 +

2µ

ρ
log

(
2L

βρ

))
. (5.23)

112

Algorithm 4: Adaptive DiSCO

input: parameters ρ ≥ 0 and µ0 > 0, and precision ǫ > 0.
initialize: compute w0 according to (5.15) and (5.16).
repeat for k = 0, 1, 2, . . .

1. Run Algorithm 2 up to Tµk
PCG iterations, with output vk, δk, rk and ǫk.

2. if ‖rk‖2 > ǫk then
set µk := 2µk and go to Step 1;

else
set µk+1 := µk/2 and go to Step 3.

3. Update wk+1 = wk − 1
1+δk

vk.

until δk ≤ (1− β)√ǫ.
output: Ŵ = wk+1.

Ignoring logarithmic terms and universal constants, the rounds of communication T is bounded
by

Õ
((
f(w0)− f(w⋆) + log(1/ǫ)

)√
1 + 2µ/λ

)
.

Proof First we notice that the number of communication rounds in each call of Algo-
rithm 2 is no more than 1 + Tµ, where Tµ is given in (5.21), and the extra 1 accounts for
the communication round to form f ′(wk). Corollary 6 states that in order to guarantee
f(wk) − f(w⋆) ≤ ǫ, the total number of calls of Algorithm 2 in DiSCO is bounded by K
given in (5.8). Thus the total number of communication rounds is bounded by 1+K(1+Tµ),
where the extra one count is for computing the initial point w0 defined in (5.15).

It can be hard to give a good a priori estimate of µ that satisfies the condition in
Theorem 6. In practice, we can adjust the value of µ adaptively while running the algorithm.
Inspired by a line search procedure studied in [155], we propose an adaptive DiSCO method,
described in Algorithm 4. The following proposition bounds the rounds of communication
required by this algorithm.

Theorem 7. Assume that f is a standard self-concordant function and it satisfies As-
sumption H. Let µmax be the largest value of µk generated by Algorithm 4, i.e., µmax =
max{µ0, µ1, . . . , µK} where K is the number of outer iterations. Then for any ǫ > 0, in

order to find a solution Ŵ satisfying f(Ŵ)− f(w⋆) < ǫ, the total number of communication
rounds T is bounded by

T ≤ 1 +

(
2

⌈
f(w0)− f(w⋆)

ω(1/6)

⌉
+ 2

⌈
log2

(
2ω(1/6)

ǫ

)⌉
+ log2

(
µmax

µ0

))
×

(
2 +

√
1 +

2µmax

ρ
log

(
2L

βρ

))
.

113

Proof Let nk be the number of calls to Algorithm 2 during the kth iteration of Algorithm 4.
We have

µk+1 =
1

2
µk2

nk−1 = µk2
nk−2,

which implies

nk = 2 + log2
µk+1

µk

.

The total number of calls to Algorithm 2 is

NK =
K−1∑

k=0

nk =
K−1∑

k=0

(
1 + log2

µk+1

µk

)
= 2K + log2

µK

µ0

≤ 2K + log2
µmax

µ0

.

Since each call of Algorithm 2 involves no more than Tµmax + 1 communication rounds, we
have

T ≤ 1 +NK(Tµmax + 1).

Plugging in the expression of K in (5.8) and Tµmax in (5.21), we obtain the desired result.

From the above proof, we see that the average number of calls to Algorithm 2 at each

iteration is 2 + 1
K
log2

(
µK

µ0

)
, roughly twice as the non-adaptive Algorithm 3. Ignoring log-

arithmic terms and universal constants, the number of communication round T used by
Algorithm 4 is bounded by

Õ
((
f(w0)− f(w⋆) + log2(1/ǫ)

)√
1 + 2µmax/λ

)
.

In general, we can update µk in Algorithm 4 as follows:

µk :=

{
θincµk if ‖rk‖2 > ǫk,
µk/θdec if ‖rk‖2 ≤ ǫk,

with any θinc > 1 and θdec ≥ 1 (see [155]). We have used θinc = θdec = 2 to simplify
presentation.

5.5 Stochastic analysis

From Theorems 6 and 7 of the previous section, we see that the communication complexity
of the DiSCO algorithm mainly depends on two quantities: the initial objective gap f(w0)−
f(w⋆) and the upper bound µ on the spectral norms ‖f ′′

1 (wk) − f ′′(wk)‖2 for all k ≥ 0. As
we discussed in Section 5.3.2, the initial gap f(w0) − f(w⋆) may grow with the number of
samples due to the scaling used to make the objective function standard self-concordant.
On the other hand, the upper bound µ may decrease as the number of samples increases
based on the intuition that the local Hessians and the global Hessian become similar to each

114

other. In this section, we show how to exploit the stochastic origin of the problem to mitigate
the effect of objective scaling and quantify the notion of similarity between local and global
Hessians. These lead to improved complexity results.

We focus on the setting of distributed optimization of regularized empirical loss. That
is, our goal is to minimize f(w) = (1/m)

∑m
i=1 fi(w), where

fi(w) =
1

n

n∑

j=1

φ(w, zi,j) +
λ

2
‖w‖22, i = 1, . . . ,m. (5.24)

We assume that zi,j are i.i.d. samples from a common distribution. Our theoretical analysis
relies on refined assumptions on the smoothness of the loss function φ. In particular, we
assume that for any z in the sampling space Z, the function φ(·, z) has bounded first deriva-
tive in a compact set, and its second derivatives are bounded and Lipschitz continuous. We
formalize these statements in the following assumption.

Assumption I. There are finite constants (V0, G, L,M), such that for any z ∈ Z:

(i) φ(w, z) ≥ 0 for all w ∈ R
d, and φ(0, z) ≤ V0;

(ii) ‖φ′(w, z)‖2 ≤ G for any ‖w‖2 ≤
√
2V0/ρ;

(iii) ‖φ′′(w, z)‖2 ≤ L− ρ for any w ∈ R
d;

(iv) ‖φ′′(u, z)− φ′′(w, z)‖2 ≤M‖u− w‖2 for any u, w ∈ R
d.

For the regularized empirical loss in (5.24), condition (iii) in the above assumption implies
ρI � f ′′

i (w) � LI for i = 1, . . . ,m, which in turn implies Assumption H.
Recall that the initial point w0 is obtained as the average of the solutions tom regularized

local optimization problems; see equations (5.15) and (5.16). The following lemma shows
that expected value of the initial gap f(w0)− f(w⋆) decreases with order 1/

√
n as the local

sample size n increases. The proof uses the notion and techniques of uniform stability for
analyzing the generalization performance of ERM [32]. See Section 5.7.3 for the proof.

Lemma 22. Suppose that Assumption I holds and E[‖w⋆‖22] ≤ D2 for some constant D > 0.

If we choose ρ =
√
6G√
nD

in (5.16) to compute Ŵi, then the initial point w0 = 1
m

∑m
i=1 Ŵi

satisfies

max{‖w⋆‖2, ‖w0‖2} ≤
√

2V0
ρ

(5.25)

and

E[f(w0)− f(w⋆)] ≤
√
6GD√
n

. (5.26)

Here the expectation is taken with respect to the randomness in generating the i.i.d. data.

115

Next, we show that with high probability, ‖f ′′
i (w)− f ′′(w)‖2 ∼

√
d/n for any i ∈

{1, . . . ,m} and for any vector w in an ℓ2-ball. Thus, if the number of samples n is large, the
Hessian matrix of f can be approximated well by that of fi. The proof uses random matrix
concentration theories [137]. We defer the proof to Section 5.7.4.

Lemma 23. Suppose Assumption I holds. For any r > 0 and any i ∈ {1, . . . ,m}, we have
with probability at least 1− δ,

sup
‖w‖2≤r

‖f ′′
i (w)− f ′′(w)‖2 ≤ µr,δ,

where

µr,δ =: min

L,

√
32L2d

n
·

√

log
(
1 +

rM
√
2n

L

)
+

log(md/δ)

d

 . (5.27)

If φ(w, zi,j) are quadratic functions in w, then we have M = 0 in Assumption I. In

this case, Lemma 23 implies ‖f ′′
i (w)− f ′′(w)‖2 ∼

√
1/n. For general non-quadratic loss,

Lemma 23 implies ‖f ′′
i (w)− f ′′(w)‖2 ∼

√
d/n. We use this lemma to obtain an upper

bound on the spectral norm of the Hessian distances ‖f ′′
1 (wk)− f ′′(wk)‖2, where the vectors

wk are generated by Algorithm 1.

Corollary 7. Suppose Assumption I holds and the sequence {wk}k≥0 is generated by Algo-

rithm 1. Let r =
(

2V0

ρ
+ 2G

ρ

√
2V0

ρ

)1/2
. Then with probability at least 1 − δ, we have for all

k ≥ 0,

‖f ′′
1 (wk)− f ′′(wk)‖2 ≤ min

L,

√
32L2d

n
·

√

log
(
1 +

rM
√
2n

L

)
+

log(md/δ)

d

 . (5.28)

Proof We begin by upper bounding the ℓ2-norm of wk, for k = 0, 1, 2 . . ., generated by
Algorithm 1. By Theorem 5, we have f(wk) ≤ f(w0) for all k ≥ 0. By Assumption I (i), we
have φ(w, z) ≥ 0 for all w ∈ R

d and z ∈ Z. As a consequence,

ρ

2
‖wk‖22 ≤ f(wk) ≤ f(w0) ≤ f(0) +G‖w0‖2 ≤ V0 +G‖w0‖2.

Substituting ‖w0‖2 ≤
√
2V0/ρ (see Lemma 22) into the above inequality yields

‖wk‖2 ≤
(
2V0
ρ

+
2G

ρ

√
2V0
ρ

)1/2

= r.

Thus, we have ‖wk‖2 ≤ r for all k ≥ 0. Applying Lemma 23 establishes the corollary.

116

Here we remark that the dependence on d of the upper bound in (5.28) comes from
Lemma 23, where the bound needs to hold for all point in a d-dimensional ball with radius r.
However, for the analysis of the DiSCO algorithm, we only need the matrix concentration
bound to hold for a finite number of vectors w0, w1, . . . , wK , instead of for all vectors satisfying
‖w‖2 ≤ r. Thus we conjecture that the bound in (5.28), especially its dependence on the
dimension d, is too conservative and very likely can be tightened.

We are now ready to present the main results of our stochastic analysis. The following
theorem provides an upper bound on the expected number of communication rounds required
by the DiSCO algorithm to find an ǫ-optimal solution. Here the expectation is taken with
respect to the randomness in generating the i.i.d. data set {zi,j}.

Theorem 8. Let Assumption I hold. Assume that the regularized empirical loss function f
is standard self-concordant, and its minimizer w⋆ = argminw f(w) satisfies E[‖w⋆‖22] ≤ D2

for some constant D > 0. Let the input parameters to Algorithm 3 be ρ =
√
6G√
nD

and µ = µr,δ

in (5.27) with

r =

(
2V0
ρ

+
2G

ρ

√
2V0
ρ

)1/2

, δ =
GD√
n
·
√
λ/(4L)

4V0 + 2G2/λ
. (5.29)

Then for any ǫ > 0, the total number of communication rounds T required to reach f(Ŵ)−
f(w⋆) ≤ ǫ is bounded by

E[T] ≤ 1 +

(
C1 +

6

ω(1/6)
· GD√

n

)(
2 + C2

(
1 + 2

√
32L2d C3

ρ2n

)1/2)
,

where C1, C2, C3 are Õ(1) or logarithmic terms:

C1 =

(
1 +

⌈
log2

(
2ω(1/6)

ǫ

)⌉)(
1 +

1√
n
· GD

4V0 + 2G2/λ

)
,

C2 = log

(
2L

βρ

)
,

C3 = log

(
1 +

rM
√
2n

L

)
+

log(dm/δ)

d
.

In particular, ignoring numerical constants and logarithmic terms, we have

E[T] = Õ
((

log(1/ǫ) +
GD

n1/2

)(
1 +

L1/2d1/4

ρ1/2n1/4

))
.

Proof Suppose Algorithm 3 terminates in K iterations, and let tk be the number of
conjugate gradient steps in each call of Algorithm 2, for k = 0, 1, . . . , K − 1. For any
given µ > 0, we define Tµ as in (5.21). Let A denotes the event that tk ≤ Tµ for all

117

k ∈ {0, . . . , K − 1}. Let Ā be the complement of A, i.e., the event that tk > Tµ for some
k ∈ {0, . . . , K − 1}. In addition, let the probabilities of the events A and Ā be 1− δ and δ
respectively. By the law of total expectation, we have

E[T] = E[T |A]P(A) + E[T |Ā]P(Ā) = (1− δ)E[T |A] + δ E[T |Ā].

When the event A happens, we have T ≤ 1+K(Tµ+1) where Tµ is given in (5.21); otherwise
we have T ≤ 1 +K(TL + 1), where

TL =

√
2 +

2L

λ
log

(
2L

βλ

)
(5.30)

is an upper bound on the number of PCG iterations in Algorithm 2 when the event Ā
happens (see the analysis in Section 5.7.5). Since Algorithm 2 always return a vk such
that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ ǫk, the outer iteration count K share the same bound (5.8),
which depends on the random variable f(w0)−f(w⋆). However, Tµ and TL are deterministic
constants. So we have

E[T] ≤ 1 + (1− δ)E[K(Tµ + 1)|A] + δ E[K(TL + 1)|Ā]
= 1 + (1− δ)(Tµ + 1)E[K|A] + δ(TL + 1)E[K|Ā]. (5.31)

Next we bound E[K|A] and E[K|Ā] separately. To bound E[K|A], we use

E[K] = (1− δ)E[K|A] + δ E[K|Ā] ≥ (1− δ)E[K|A]

to obtain
E[K|A] ≤ E[K]/(1− δ). (5.32)

In order to bound E[K|Ā], we derive a deterministic bound on f(w0)−f(w⋆). By Lemma 22,
we have ‖w0‖2 ≤

√
2V0/λ, which together with Assumption I (ii) yields

‖f ′(w)‖2 ≤ G+ λ‖w‖2 ≤ G+
√

2λV0.

Combining with the strong convexity of f , we obtain

f(w0)− f(w⋆) ≤
1

2λ
‖f ′(w0)‖22 ≤

1

2λ

(
G+

√
2λV0

)2
≤ 2V +

G2

λ
.

Therefore by Corollary 6,

K ≤ Kmax =: 1 +
4V0 + 2G2/λ

ω(1/6)
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉
, (5.33)

where the additional 1 counts compensate for removing one ⌈·⌉ operator in (5.8).

118

Using inequality (5.31), the bound on E[K|A] in (5.32) and the bound on E[K|Ā]
in (5.33), we obtain

E[T] ≤ 1 + (Tµ + 1)E[K] + δ(TL + 1)Kmax.

Now we can bound E[K] by Corollary 6 and Lemma 22. More specifically,

E[K] ≤ E[f(w0)− f(w⋆)]
1
2
ω(1/6)

+

⌈
log2

(2ω(1/6)
ǫ

)⌉
+ 1 = C0 +

2
√
6

ω(1/6)
· GD√

n
, (5.34)

where C0 = 1 + ⌈log2(2ω(1/6)/ǫ)⌉. With the choice of δ in (5.29) and the definition of TL
in (5.30), we have

δ(TL + 1)Kmax =
GD√
n
·
√
λ/(4L)

4V0 + 2G2/λ

(
2 +

√
2 +

2L

λ
log

(
2L

βλ

))(
C0 +

4V0 + 2G2/λ

ω(1/6)

)

=

(
C0√
n
· GD

4V0 + 2G2/λ
+

1

ω(1/6)
· GD√

n

)(√
λ

L
+ C2

√
λ

2L
+

1

2

)

≤
(
C0√
n
· GD

4V0 + 2G2/λ
+

1

ω(1/6)
· GD√

n

)(
2 + C2

√
1 +

2µ

λ

)

=

(
C0√
n
· GD

4V0 + 2G2/λ
+

1

ω(1/6)
· GD√

n

)
(Tµ + 1)

Putting everything together, we have

E[T] ≤ 1 +

(
C0 +

C0√
n
· GD

4V0 + 2G2/λ
+

2
√
6 + 1

ω(1/6)
· GD√

n

)
(Tµ + 1)

≤ 1 +

(
C1 +

6

ω(1/6)
· GD√

n

)
(Tµ + 1).

Replacing Tµ by its expression in (5.21) and applying Corollary 7, we obtain the desired
result.

According to Theorem 8, we need to set the two input parameters ρ and µ in Algorithm 3
appropriately to obtain the desired communication efficiency. Using the adaptive DiSCO
method given in Algorithm 4, we can avoid the explicit specification of µ = µr,δ defined
in (5.27) and (5.29). This is formalized in the following theorem.

Theorem 9. Let Assumption I hold. Assume that the regularized empirical loss function f is
standard self-concordant, and its minimizer w⋆ = argminw f(w) satisfies E[‖w⋆‖22] ≤ D2 for

some constant D > 0. Let the input parameters to Algorithm 4 be ρ =
√
6G√
nD

and any µ0 > 0.

Then the total number of communication rounds T required to reach f(Ŵ) − f(w⋆) ≤ ǫ is
bounded by

E[T] = Õ
((

log(1/ǫ) +
GD

n1/2

)(
1 +

L1/2d1/4

ρ1/2n1/4

))
.

119

Proof In Algorithm 4, the parameter µk is automatically tuned such that the number of
PCG iterations in Algorithm 2 is no more than Tµk

. By Corollary 7, with probability at
least 1− δ, we have

max{µ0, . . . , µK} ≤ 2µr,δ

where µr,δ is defined in (5.27), and r and δ are given in (5.29). Therefore we can use the
same arguments in the proof of Theorem 8 to show that

E[T] ≤ 1 +

(
C̃1 +

6

ω(1/6)
· GD√

n

)(
2 + C2

(
1 + 4

√
32L2d C3

ρ2n

)1/2)

where

C̃1 =

(
2 + 2

⌈
log2

(
2ω(1/6)

ǫ

)⌉
+ log2

(
L

µ0

))(
1 +

1√
n
· GD

4V0 + 2G2/λ

)
,

and C2 and C3 are the same as given in Theorem 8. Ignoring constants and logarithmic
terms, we obtain the desired result.

Remarks The expectation bounds on the rounds of communication given in Theorems 8
and 9 are obtained by combining two consequences of averaging over a large number of i.i.d.
local samples. One is the expected reduction of the initial gap f(w0)− f(w⋆) (Lemma 22),
which helps to mitigate the effect of objective scaling used to make f standard self-concordant.
The other is a high-probability bound that characterizes the similarity between the local and
global Hessians (Corollary 7). If the empirical loss f is standard self-concordant without scal-
ing, then we can regard f(w0) − f(w⋆) as a constant, and only need to use Corollary 7 to
obtain a high-probability bound. This is demonstrated for the case of linear regression in
Section 5.5.1.

For applications where the loss function needs to be rescaled to be standard self-concordant,
the convexity parameter λ as well as the “constants” (V0, G, L,M) in Assumption I also need
to be rescaled. If the scaling factor grows with n, then we need to rely on Lemma 22 to
balance the effects of scaling. As a result, we only obtain bounds on the expected number
of communication rounds. These are demonstrated in Section 5.5.2 for binary classification
with logistic regression and a smoothed hinge loss.

5.5.1 Application to linear regression

We consider linear regression with quadratic regularization (ridge regression). More specifi-
cally, we minimize the overall empirical loss function

f(w) =
1

mn

m∑

i=1

n∑

j=1

(yi,j − wTxi,j)
2 +

λ

2
‖w‖22, (5.35)

120

where the i.i.d. instances (xi,j , yi,j) are sampled from X × Y . We assume that X ⊂ R
d and

Y ⊂ R are bounded: there exist constants Bx and By such that ‖x‖2 ≤ Bx and |y| ≤ By for
any (x, y) ∈ X × Y . It can be shown that the least-squares loss φ(w, (x, y)) = (y − wTx)2

satisfies Assumption I with

V0 = B2
y , G = 2Bx

(
By + BxBy

√
2/λ
)
, L = λ+ 2B2

x, M = 0.

Thus we can apply Theorems 8 and 9 to obtain an expectation bound on the number of
communication rounds for DiSCO. For linear regression, however, we can obtain a stronger
result.

Since f is a quadratic function, it is self-concordant with parameter 0, and by definition
also standard self-concordant (with parameter 2). In this case, we do not need to rescale
the objective function, and can regard the initial gap f(w0) − f(w⋆) as a constant. As a
consequence, we can directly apply Theorem 6 and Corollary 7 to obtain a high probability
bound on the communication complexity, which is stronger than the expectation bounds in
Theorems 8 and 9. In particular, Theorem 6 states that if

∥∥f ′′
1 (wk)− f ′′(wk)

∥∥
2
≤ µ, for all k = 0, 1, 2, . . . , (5.36)

then the number of communication rounds T is bounded as

T ≤ 1 +

(⌈
f(w0)− f(w⋆)

ω(1/6)

⌉
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉)(
2 +

√
1 +

2µ

λ
log

(
2L

βλ

))
.

Since there is no scaling, the initial gap f(w0)− f(w⋆) can be considered as a constant. For
example, we can simply pick w0 = 0 and have

f(0)− f(w⋆) ≤ f(0) =
1

N

N∑

i=1

y2i ≤ B2
y .

By Corollary 7 and the fact that M = 0 for quadratic functions, the condition (5.36) holds
with probability at least 1− δ if we choose

µ =

√
32L2d

n

√
log(md/δ)

d
=

8L√
n

√
2 log(md/δ). (5.37)

Further using L ≤ λ+ 2B2
x, we obtain the following corollary.

Corollary 8. Suppose we apply DiSCO (Algorithm 3) to minimize f(w) defined in (5.35)
with the input parameter µ in (5.37), and let T be the total number of communication rounds
required to find an ǫ-optimal solution. With probability at least 1− δ, we have

T = Õ
((

1 +
Bx

λ1/2n1/4

)
log(1/ǫ) log(md/δ)

)
. (5.38)

121

We note that the same conclusion also holds for the adaptive DiSCO algorithm (Algo-
rithm 4), where we do not need to specify the input parameter µ based on (5.37). For the
adaptive DiSCO algorithm, the bound in (5.38) holds for any δ ∈ (0, 1).

The communication complexity guaranteed by Corollary 8 is strictly better than that of
distributed implementation of the accelerated gradient method and ADMM (cf. Table 5.1).
If we choose λ = Θ(1/

√
mn), then Corollary 8 implies

T = Õ
(
m1/4 log(1/ǫ)

)

with high probability. The DANE algorithm [190], under the same setting, converges in

Õ(m log(1/ǫ)) iterations with high probability (and each iteration requires two rounds of
communication). Thus DiSCO enjoys a better communication efficiency.

5.5.2 Application to binary classification

For binary classification, we consider the following regularized empirical loss function

ℓ(w) =:
1

mn

m∑

i=1

n∑

j=1

ϕ(yi,jw
Txi,j) +

γ

2
‖w‖22, (5.39)

where xi,j ∈ X ⊂ R
d, yi,j ∈ {−1, 1}, and ϕ : R → R is a convex surrogate function for

the binary loss. We further assume that the elements of X are bounded, i.e., we have
supx∈X ‖x‖2 ≤ B for some finite B.

Under the above assumptions, Lemma 2 gives conditions on ϕ for ℓ to be self-concordant.
As we have seen in Section 2.3, the function ℓ usually needs to be scaled by a large factor
to become standard self-concordant. Let the scaling factor be η, we can use DiSCO to
minimize the scaled function f(w) = ηℓ(w). Next we discuss the theoretical implications for
logistic regression and the smoothed hinge loss constructed in Section 2.3. These results are
summarized in Table 5.1.

Logistic Regression For logistic regression, we have ϕ(t) = log(1 + e−t). In Section 2.3,
we have shown that the logistic loss satisfies the condition of Lemma 2 with Q = 1 and
α = 0. Consequently, with the factor η = B2

4γ
, the rescaled function f(w) = ηℓ(w) is

standard self-concordant. If we express f in the standard form

f(w) =
1

mn

m∑

i=1

n∑

j=1

φ(yi,jw
Txi,j) +

λ

2
‖w‖22, (5.40)

then we have φ(w, (x, y)) = ηϕ(ywTx) and λ = ηγ. It is easy to check that Assumption I
holds with

V0 = η log(2), G = ηB, L = η(B2/4 + γ), M = ηB3/10,

which all containing the scaling factor η. Plugging these scaled constants into Theorems 8
and 9, we have the following corollary.

122

Corollary 9. For logistic regression, the number of communication rounds required by
DiSCO to find an ǫ-optimal solution is bounded by

E[T] = Õ
((

log(1/ǫ) +
B3D

γn1/2

)(
1 +

Bd1/4

γ1/2n1/4

))
.

In the specific case when γ = Θ(1/
√
mn), Corollary 9 implies

E[T] = Õ
(
m3/4d1/4 +m1/4d1/4 log(1/ǫ)

)
.

If we ignore logarithmic terms, then the expected number of communication rounds is inde-
pendent of the sample size n, and only grows slowly with the number of machines m.

Smoothed Hinge Loss We consider minimizing ℓ(w) in (5.39) where the loss function ϕ
is the smoothed hinge loss defined in (2.7), which depends on a parameter p ≥ 3. Using
Lemma 2, we have shown in Section 2.3 that ℓ(w) is self-concordant with parameter Mp

given in (2.8). As a consequence, by choosing

η =
M2

p

4
=

(p− 2)2B2+ 4
p−2

4γ1+
2

p−2

,

the function f(w) = ηℓ(w) is standard self-concordant. If we express f in the form of (5.40),
then φ(w, (x, y)) = ηϕp(yw

Tx) and λ = ηγ. It is easy to verify that Assumption I holds with

V0 = η, G = ηB, L = η(B2 + λ), M = η(p− 2)B3.

If we choose p = 2 + log(1/γ), then applying Theorems 8 and 9 yields the following result.

Corollary 10. For the smoothed hinge loss ϕp defined in (2.7) with p = 2 + log(1/γ), the
total number of communication rounds required by DiSCO to find an ǫ-optimal solution is
bounded by

E[T] = Õ
((

log(1/ǫ) +
B3D

γn1/2

)(
1 +

Bd1/4

γ1/2n1/4

))
.

Thus, the smoothed hinge loss enjoys the same communication efficiency as the logistic loss.

5.6 Numerical experiments

In this section, we conduct numerical experiments to compare the DiSCO algorithm with
several state-of-the-art distributed optimization algorithms: the ADMM algorithm (e.g.,
[34]), the accelerated full gradient method (AFG) [154, Section 2.2], the L-BFGS quasi-
Newton method (e.g., [159, Section 7.2]), and the DANE algorithm [190].

123

Dataset name number of samples number of features sparsity

Covtype 581,012 54 22%

RCV1 20,242 47,236 0.16%

News20 19,996 1,355,191 0.04%

Table 5.2: Summary of three binary classification datasets.

The algorithms ADMM, AFG and L-BFGS are well known and each has a rich litera-
ture. In particular, using ADMM for empirical risk minimization in a distributed setting is
straightforward; see [34, Section 8]. For AFG and L-BFGS, we use the simple distributed im-
plementation discussed in Section 5.1: at each iteration k, each machine computes the local
gradients f ′

i(wk) and sends it to the master machine to form f ′(wk) = (1/m)
∑m

i=1 f
′
i(wk), and

the master machine executes the main steps of the algorithm to compute wk+1. The iteration
complexities of these algorithms stay the same as their classical analysis for a centralized
implementation, and each iteration usually involves one or two rounds of communication.

Here we briefly describe the DANE (Distributed Approximate NEwton) algorithm pro-
posed by Shamir et al. [190]. Each iteration of DANE takes two rounds of communication to
compute wk+1 from wk. The first round of communication is used to compute the gradient
f ′(wk) = (1/m)

∑m
i=1 f

′
i(wk). Then each machine solves the local minimization problem

vk+1,i = arg min
w∈Rd

{
fi(w)− 〈f ′

i(wk)− f ′(wk), w〉+
µ

2
‖w − wk‖22

}
,

and take a second round of communication to compute wk+1 = (1/m)
∑m

i=1 vk+1,i. Here
µ ≥ 0 is a regularization parameter with a similar role as in DiSCO. For minimizing the
quadratic loss in (5.35), the iteration complexity of DANE is Õ((L/λ)2n−1 log(1/ǫ)). As
summarized in Table 5.1, if the condition number L/λ grows as

√
mn, then DANE is more

efficient than AFG and ADMM when n is large. However, the same complexity cannot be
guaranteed for minimizing non-quadratic loss functions. According to the analysis in [190],
the convergence rate of DANE on non-quadratic functions might be as slow as the ordinary
full gradient descent method.

5.6.1 Experiment setup

For comparison, we solve three binary classification tasks using logistic regression. The
datasets are obtained from the LIBSVM datasets [43] and summarized in Table 5.2. These
datasets are selected to cover different relations between the sample size N = mn and the
feature dimensionality d: N ≫ d (Covtype [27]), N ≈ d (RCV1 [120]) and N ≪ d (News20
[103, 113]). For each dataset, our goal is to minimize the regularized empirical loss function:

ℓ(w) =
1

N

N∑

i=1

log(1 + exp(−yi(wTxi))) +
γ

2
‖w‖22

124

m Covtype RCV1 News20

4

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

16

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication
Lo

g
Lo

ss

ADMM
AFG
L−BFGS
DANE
DiSCO

64

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

0 20 40 60 80 100
−12

−10

−8

−6

−4

−2

0

Rounds of Communication

Lo
g

Lo
ss

ADMM
AFG
L−BFGS
DANE
DiSCO

Figure 5.1. Comparing DiSCO with other distributed optimization algorithms. We splits
each dataset evenly to m machines, with m ∈ {4, 16, 64}. Each plot above shows the

reduction of the logarithmic gap log10(ℓ(Ŵ)− ℓ(w⋆)) (the vertical axis) versus the number
of communication rounds (the horizontal axis) taken by each algorithm.

where xi ∈ R
d and yi ∈ {−1, 1}. The data have been normalized so that ‖xi‖ = 1 for all

i = 1, . . . , N . The regularization parameter is set to be γ = 10−5.
We describe some implementation details. In Section 5.5.2, the theoretical analysis sug-

gests that we scale the function ℓ(w) by a factor η = B2/(4γ). Here we have B = 1 due
to the normalization of the data. In practice, we find that DiSCO converges faster without
rescaling. Thus, we use η = 1 for all experiments. For Algorithm 3, we choose the input
parameters µ = m1/2µ0, where µ0 is chosen manually. In particular, we used µ0 = 0 for
Covtype, µ0 = 4× 10−4 for RCV1, and µ0 = 2× 10−4 for News20. For the distributed PCG
method (Algorithm 2), we choose the stopping precision ǫk = ‖f ′(wk)‖2/10.

Among other methods in comparison, we manually tune the penalty parameter of ADMM
and the regularization parameter µ for DANE to optimize their performance. For AFG, we
used an adaptive line search scheme [155, 126] to speed up its convergence. For L-BFGS,
we adopted the memory size 30 (number of most recent iterates and gradients stored) as a

125

2E−5 8E−5 32E−5 128E−5
−15

−10

−5

0

Value of µ

Lo
g

Lo
ss

DANE (40th round)
DiSCO (40th round)

2E−5 8E−5 32E−5 128E−5
−15

−10

−5

0

Value of µ

Lo
g

Lo
ss

DANE (40th round)
DiSCO (40th round)

2E−5 8E−5 32E−5 128E−5
−15

−10

−5

0

Value of µ

Lo
g

Lo
ss

DANE (40th round)
DiSCO (40th round)

Covtype RCV1 News20

Figure 5.2. Comparing the sensitivity of DiSCO and DANE with respect to the regular-
ization parameter µ, when the datasets are split on m = 16 machines. We varied µ from

10−5 to 128 × 10−5. The vertical axis is the logarithmic gap log10(ℓ(Ŵ) − ℓ(w⋆)) after 40
rounds of communications.

general rule of thumb suggested in [159],
We want to evaluate DiSCO not only on wk, but also in the middle of calculating vk, to

show its progress after each round of communication. To this end, we follow equation (5.12)

to define an intermediate solution Ŵ t
k for each iteration t of the distributed PCG method

(Algorithm 2):

Ŵ t
k = wk −

v(t)

1 +
√
η
(
v(t))T ℓ′′(wk)v(t)

)1/2 ,

and evaluate the associated objective function ℓ(Ŵ t
k). This function value is treated as a

measure of progress after each round of communication.

5.6.2 Performance evaluation

It is important to note that different algorithms take different number of communication
rounds per iteration. ADMM requires one round of communication per iteration. For AFG
and L-BFGS, each iteration consists of at least two rounds of communications: one for finding
the descent direction, and another one or more for searching the stepsize. For DANE, there
are also two rounds of communications per iteration, for computing the gradient and for
aggregating the local solutions. For DiSCO, each iteration in the inner loop takes one round of
communication, and there is an additional round of communication at the beginning of each
inner loop. Since we are interested in the communication efficiency of the algorithms, we plot
their progress in reducing the objective value with respect to the number of communication
rounds taken.

We plot the performance of ADMM, AFG, L-BFGS, DANE and DiSCO in Figure 5.1.
According to the plots, DiSCO converges substantially faster than ADMM and AFG. It
is also notably faster than L-BFGS and DANE. In particular, the convergence speed (and
the communication efficiency) of DiSCO is more robust to the number of machines in the
distributed system. For m = 4, the performance of DiSCO is somewhat comparable to that

126

of DANE. As m grows to 16 and 64, the convergence of DANE becomes significantly slower,
while the performance of DiSCO only degrades slightly. This coincides with the theoretical
analysis: the iteration complexity of DANE is proportional tom, but the iteration complexity
of DiSCO is proportional to m1/4.

Since both DANE and DiSCO take a regularization parameter µ, we study their sensitiv-
ity to the choices of this parameter. Figure 5.2 shows the performance of DANE and DiSCO
with the value of µ varying from 10−5 to 128× 10−5. We observe that the curves of DiSCO
are relatively smooth and stable. In contrast, the curves of DANE exhibit sharp valley at
particular values of µ. This suggests that DiSCO is more robust to the non-optimal choice
of parameters.

5.7 Proofs of technical results

5.7.1 Proof of Theorem 5

First, we recall the definitions of the two auxiliary functions

ω(t) = t− log(1 + t), t ≥ 0,

ω∗(t) = −t− log(1− t), 0 ≤ t < 1,

which form a pair of convex conjugate functions.
We notice that Step 2 of Algorithm 1 is equivalent to

wk+1 − wk =
vk

1 + δk
=

vk
1 + ‖ṽk‖2

,

which implies

‖[f ′′(wk)]
1/2(wk+1 − wk)‖2 =

‖ṽk‖2
1 + ‖ṽk‖2

< 1. (5.41)

When inequality (5.41) holds, Nesterov [154, Theorem 4.1.8] has shown that

f(wk+1) ≤ f(wk) + 〈f ′(wk), wk+1 − wk〉+ ω∗
(
‖[f ′′(wk)]

1/2(wk+1 − wk)‖2
)
.

Using the definition of functions ω and ω∗, and with some algebraic operations, we obtain

f(wk+1) ≤ f(wk)−
〈ũk, ṽk〉
1 + ‖ṽk‖2

− ‖ṽk‖2
1 + ‖ṽk‖2

+ log(1 + ‖ṽk‖2)

= f(wk)− ω(‖ũk‖2) +
(
ω(‖ũk‖2)− ω(‖ṽk‖2)

)
+
〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

. (5.42)

By the second-order mean-value theorem, we have

ω(‖ũk‖2)− ω(‖ṽk‖2) = ω′(‖ṽk‖2)(‖ũk‖2 − ‖ṽk‖2) +
1

2
ω′′(t) (‖ũk‖2 − ‖ṽk‖2)2

127

for some t satisfying

min{‖ũk‖2, ‖ṽk‖2} ≤ t ≤ max{‖ũk‖2, ‖ṽk‖2}.

Using the inequality (5.7), we can upper bound the second derivative ω′′(t) as

ω′′(t) =
1

(1 + t)2
≤ 1

1 + t
≤ 1

1 + min{‖ũk‖2, ‖ṽk‖2}
≤ 1

1 + (1− β)‖ũk‖2
.

Therefore,

ω(‖ũk‖2)− ω(‖ṽk‖2) =
(‖ũk‖2 − ‖ṽk‖2)‖ṽk‖2

1 + ‖ṽk‖2
+

1

2
ω′′(t) (‖ũk‖2 − ‖ṽk‖2)2

≤ ‖ũk − ṽk‖2‖ṽk‖2
1 + (1− β)‖ũk‖2

+
(1/2)‖ũk − ṽk‖22
1 + (1− β)‖ũk‖2

≤ β(1 + β)‖ũk‖22 + (1/2)β2‖ũk‖22
1 + (1− β)‖ũk‖2

In addition, we have

〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

≤ ‖ũk − ṽk‖2‖ṽk‖2
1 + ‖ṽk‖2

≤ β(1 + β)‖ũk‖22
1 + (1− β)‖ũk‖2

.

Combining the two inequalities above, and using the relation t2/(1+ t) ≤ 2ω(t) for all t ≥ 0,
we obtain

ω(‖ũk‖2)− ω(‖ṽk‖2) +
〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

≤
(
2β(1 + β) + (1/2)β2

) ‖ũk‖22
1 + (1− β)‖ũk‖2

=

(
2β + (5/2)β2

(1− β)2
)

(1− β)2‖ũk‖22
1 + (1− β)‖ũk‖2

≤
(
2β + (5/2)β2

(1− β)2
)
2ω
(
(1− β)‖ũk‖2

)

≤
(
4β + 5β2

1− β

)
ω
(
‖ũk‖2

)
.

In the last inequality above, we used the fact that for any t ≥ 0 we have ω((1 − β)t) ≤
(1− β)ω(t), which is the result of convexity of ω(t) and ω(0) = 0; more specifically,

ω((1− β)t) = ω(β · 0 + (1− β)t) ≤ βω(0) + (1− β)ω(t) = (1− β)ω(t).

Substituting the above upper bound into inequality (5.42) yields

f(wk+1) ≤ f(wk)−
(
1− 4β + 5β2

1− β

)
ω(‖ũk‖2). (5.43)

128

With inequality (5.43), we are ready to prove the statements of the lemma. In particular,
Part (a) of the Lemma holds for any 0 ≤ β ≤ 1/10.

For part (b), we assume that ‖ũk‖2 ≤ 1/6. According to [154, Theorem 4.1.13], when
‖ũk‖2 < 1, it holds that for every k ≥ 0,

ω(‖ũk‖2) ≤ f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2). (5.44)

Combining this sandwich inequality with inequality (5.43), we have

ω(‖ũk+1‖2) ≤ f(wk+1)− f(w⋆)

≤ f(wk)− f(w⋆)− ω(‖ũk‖2) +
4β + 5β2

1− β ω(‖ũk‖2)

≤ ω∗(‖ũk‖2)− ω(‖ũk‖2) +
4β + 5β2

1− β ω(‖ũk‖2). (5.45)

It is easy to verify that ω∗(t)−ω(t) ≤ 0.26ω(t) for all t ≤ 1/6, and (4β+5β2)/(1−β) ≤ 0.23
if β ≤ 1/20. Applying these two inequalities to inequality (5.45) completes the proof.

It should be clear that other combinations of the value of β and bound on ‖ũk‖2 are also
possible. For example, for β = 1/10 and ‖ũk‖2 ≤ 1/10, we have ω(‖ũk+1‖2) ≤ 0.65ω(‖ũk‖2).

5.7.2 Proof of Lemma 21

It suffices to show that the algorithm terminates at iteration t ≤ Tµ − 1, because when the
algorithm terminates, it outputs a vector vk which satisfies ‖Hvk − f ′(wk)‖2 = ‖r(t+1)‖2 ≤ ǫk.
Denote by v∗ = H−1f ′(wk) the solution of the linear system Hvk = f ′(wk). By the classical
analysis on the preconditioned conjugate gradient method (e.g., [133, 8]), Algorithm 2 has
the convergence rate

(v(t) − v∗)TH(v(t) − v∗) ≤ 4

(√
κ− 1√
κ+ 1

)2t

(v∗)THv∗, (5.46)

where κ = 1+ 2µ/ρ is the condition number of P−1H given in (5.20). For the left-hand side
of inequality (5.46), we have

(v(t) − v∗)TH(v(t) − v∗) = (r(t))TH−1r(t) ≥ ‖r
(t)‖22
L

.

For the right-hand side of inequality (5.46), we have

(v∗)THv∗ = (f ′(wk))
TH−1f ′(wk) ≤

‖f ′(wk)‖22
ρ

.

Combining the above two inequalities with inequality (5.46), we obtain

‖r(t)‖2 ≤ 2

√
L

λ

(√
κ− 1√
κ+ 1

)t

‖f ′(wk)‖2 ≤ 2

√
L

λ

(
1−

√
ρ

ρ+ 2µ

)t

‖f ′(wk)‖2.

129

To guarantee that ‖r(t)‖2 ≤ ǫk, it suffices to have

t ≥
log
(

2
√

L/λ‖f ′(wk)‖2
ǫk

)

− log
(
1−

√
ρ

ρ+2µ

) ≥
√

1 +
2µ

λ
log

(
2
√
L/λ‖f ′(wk)‖2

ǫk

)
,

where in the last inequality we used − log(1 − x) ≥ x for 0 < x < 1. Comparing with the
definition of Tµ, this is the desired result.

5.7.3 Proof of Lemma 22

First, we prove inequality (5.25). Recall that w⋆ and Ŵi minimizes f(w) and fi(w)+
ρ
2
‖w‖22.

Since both function are ρ-strongly convex, we have

ρ

2
‖w⋆‖22 ≤ f(w⋆) ≤ f(0) ≤ V0,

ρ

2
‖Ŵi‖22 ≤ fi(Ŵi) +

ρ

2
‖Ŵi‖22 ≤ fi(0) ≤ V0,

which implies ‖w⋆‖2 ≤
√

2V0

ρ
and ‖Ŵi‖2 ≤

√
2V0

ρ
. Then inequality (5.25) follows since w0 is

the average over {Ŵi}mi=1.
In the rest of Section 5.7.3, we prove inequality (5.26). Let z be a random variable in

Z ⊂ R
p with an unknown probability distribution. We define a regularized population risk:

R(w) = Ez[φ(w, z)] +
λ+ ρ

2
‖w‖22.

Let S be a set of n i.i.d. samples in Z from the same distribution. We define a regularized
empirical risk

rS(w) =
1

n

∑

z∈S
φ(w, z) +

λ+ ρ

2
‖w‖22,

and its minimizer
ŴS = argmin

w
rS(w).

The following lemma states that the population risk of ŴS is very close to its empirical risk.
The proof is based on the notion of stability of regularized empirical risk minimization [32].

Lemma 24. Suppose Assumption I holds and S is a set of n i.i.d. samples in Z. Then we
have

ES

[
R(ŴS)− rS(ŴS)

]
≤ 2G2

ρn
.

130

Proof Let S = {z1, . . . , zn}. For any k ∈ {1, . . . , n}, we define a modified training set S(k)

by replacing zk with another sample z̃k, which is drawn from the same distribution and is
independent of S. The empirical risk on S(k) is defined as

r
(k)
S (w) =

1

n

∑

z∈S(k)

φ(w, z) +
λ+ ρ

2
‖w‖22.

and let Ŵ
(k)
S = argminw r

(k)
S (w). Since both rS and r

(k)
S are ρ-strongly convex, we have

rS(Ŵ
(k)
S)− rS(ŴS) ≥

ρ

2
‖Ŵ (k)

S − ŴS‖22
r
(k)
S (ŴS)− r(k)S (Ŵ

(k)
S) ≥ ρ

2
‖Ŵ (k)

S − ŴS‖22.

Summing the above two inequalities, and noticing that

rS(w)− r(k)S (w) =
1

n
(φ(w, zk)− φ(w, z̃k)),

we have

‖Ŵ (k)
S − ŴS‖22 ≤

1

ρn

(
φ(Ŵ

(k)
S , zk)− φ(Ŵ (k)

S , z̃k)− φ(ŴS, zk) + φ(ŴS, z̃k)
)
. (5.47)

By Assumption I (ii) and the facts ‖ŴS‖2 ≤
√
2V0/λ and ‖Ŵ (k)

S ‖2 ≤
√
2V0/λ, we have

∣∣φ(Ŵ (k)
S , z)− φ(ŴS, z)

∣∣ ≤ G‖Ŵ (k)
S − ŴS‖2, ∀ z ∈ Z.

Combining the above Lipschitz condition with (5.47), we obtain

‖Ŵ (k)
S − ŴS‖22 ≤

2G

ρn
‖Ŵ (k)

S − ŴS‖2.

As a consequence, we have ‖Ŵ (k)
S − ŴS‖2 ≤ 2G

ρn
, and therefore

∣∣φ(Ŵ (k)
S , z)− φ(ŴS, z)

∣∣ ≤ 2G2

ρn
, ∀ z ∈ Z. (5.48)

In the terminology of learning theory, this means that empirical minimization over the reg-
ularized loss rS(w) has uniform stability 2G2/(ρn) with respect to the loss function φ; see
[32].

For any fixed k ∈ {1, . . . , n}, since z̃k is independent of S, we have

ES

[
R(ŴS)− rS(ŴS)

]
= ES

[
Ez̃k [φ(ŴS, z̃k)]−

1

n

n∑

j=1

φ(ŴS, zj)

]

= ES,z̃k

[
φ(ŴS, z̃k)− φ(ŴS, zk)

]

= ES,z̃k

[
φ(ŴS, z̃k)− φ(Ŵ (k)

S , z̃k)
]
,

131

where the second equality used the fact that ES[φ(ŴS, zj) has the same value for all j =
1, . . . , n, and the third equality used the symmetry between the pairs (S, zk) and (S(k), z̃k)
(also known as the renaming trick; see [32, Lemma 7]). Combining the above equality
with (5.48) yields the desired result.

Next, we consider a distributed system with m machines, where each machine has a local
dataset Si of size n, for i = 1, . . . ,m. To simplify notation, we denote the local regularized
empirical loss function and its minimizer by ri(w) and Ŵi, respectively. We would like to

bound the excessive error when applying Ŵi to a different dataset Sj. Notice that

ESi,Sj

[
rj(Ŵi)− rj(Ŵj)

]

= ESi,Sj

[
rj(Ŵi)− ri(Ŵi)

]
︸ ︷︷ ︸

v1

+ESi,Sj

[
ri(Ŵi)− rj(ŴR)

]
︸ ︷︷ ︸

v2

+ESj

[
rj(ŴR)− rj(Ŵj)

]
︸ ︷︷ ︸

v3

(5.49)

where ŴR is the constant vector minimizing R(w). Since Si and Sj are independent, we
have

v1 = ESi

[
ESj

[rj(Ŵi)]− ri(Ŵi)
]
= ESi

[
R(Ŵi)− ri(Ŵi)] ≤

2G2

ρn
,

where the inequality is due to Lemma 24. For the second term, we have

v2 = ESi

[
ri(Ŵi)− ESj

[rj(ŴR)]
]
= ESi

[
ri(Ŵi)− ri(ŴR)

]
≤ 0.

It remains to bound the third term v3. We first use the strong convexity of rj to obtain (e.g.,
[154, Theorem 2.1.10])

rj(ŴR)− rj(Ŵj) ≤
‖r′j(ŴR)‖22

2ρ
, (5.50)

where r′j(ŴR) denotes the gradient of rj at ŴR. If we index the elements of Sj by z1, . . . , zn,
then

r′j(ŴR) =
1

n

n∑

k=1

(
φ′(ŴR, zk) + (ρ+ ρ)ŴR

)
. (5.51)

By the optimality condition of ŴR = argminw R(w), we have for any k ∈ {1, . . . , n},

Ezk

[
φ′(ŴR, zk) + (λ+ ρ)ŴR

]
= 0.

Therefore, according to (5.51), the gradient rj(ŴR) is the average of n independent and
zero-mean random vectors. Combining (5.50) and (5.51) with the definition of v3 in (5.49),

132

we have

v3 ≤
ESj

[∑n
k=1 ‖φ′(ŴR, zk) + (ρ+ ρ)ŴR‖22

]

2ρn2

=

∑n
k=1 ESj

[
‖φ′(ŴR, zk) + (ρ+ ρ)ŴR‖22

]

2ρn2

≤
∑n

k=1 E[‖φ′(ŴR, zk)‖22]
2ρn2

≤ G2

2ρn
.

In the equality above, we used the fact that φ′(ŴR, zk)+(λ+ρ)ŴR are i.i.d. zero-mean random
variables; so the variance of their sum equals the sum of their variances. The last inequality
above is due to Assumption I (ii) and the fact that ‖ŴR‖2 ≤

√
2V0/(λ+ ρ) ≤

√
2V0/λ.

Combining the upper bounds for v1, v2 and v3, we have

ESi,Sj

[
rj(Ŵi)− rj(Ŵj)

]
≤ 3G2

ρn
. (5.52)

Recall the definition of f(w) as

f(w) =
1

mn

m∑

i=1

n∑

k=1

φ(w, zi,k) +
λ

2
‖w‖22,

where zi,k denotes the kth sample at machine i. Let r(w) = 1
m

∑m
j=1 rj(w); then we have

r(w) = f(w) +
ρ

2
‖w‖22. (5.53)

We compare the value r(Ŵi), for any i ∈ {1, . . . ,m}, with the minimum of r(w):

r(Ŵi)−min
w
r(w) =

1

m

m∑

j=1

rj(Ŵi)−min
w

1

m

m∑

j=1

rj(w)

≤ 1

m

m∑

j=1

rj(Ŵi)−
1

m

m∑

j=1

min
w
rj(w)

=
1

m

m∑

j=1

(
rj(Ŵi)− rj(Ŵj)

)
.

Taking expectation with respect to all the random data sets S1, . . . , Sm and using (5.52), we
obtain

E[r(Ŵi)−min
w
r(w)] ≤ 1

m

n∑

j=1

E[rj(Ŵi)− rj(Ŵj)] ≤
3G2

ρn
. (5.54)

133

Finally, we bound the expected value of f(Ŵi):

E[f(Ŵi)] ≤ E[r(Ŵi)] ≤ E

[
min
w
r(w)

]
+

3G2

ρn

≤ E

[
f(w⋆) +

ρ

2
‖w⋆‖22

]
+

3G2

ρn

≤ E [f(w⋆)] +
ρD2

2
+

3G2

ρn
,

where the first inequality holds because of (5.53), the second inequality is due to (5.54), and

the last inequality follows from the assumption that E[‖w⋆‖2] ≤ D2. Choosing ρ =
√

6G2

nD2

results in E[f(Ŵi)− f(w⋆)] ≤
√
6GD√
n

for every i ∈ {1, . . . ,m}. Since w0 =
1
m

∑m
i=1 Ŵi, using

the convexity of function f yields E[f(w0)− f(w⋆)] ≤
√
6GD√
n

, which is the desired result.

5.7.4 Proof of Lemma 23

We consider the regularized empirical loss functions fi(w) defined in (5.24). For any two
vectors u, w ∈ R

d satisfying ‖u− w‖2 ≤ ε, Assumption I (iv) implies

‖f ′′
i (u)− f ′′

i (w)‖2 ≤Mε.

Let B(0, r) be the ball in R
d with radius r, centered at the origin. Let N cov

ε (B(0, r)) be
the covering number of B(0, r) by balls of radius ε, i.e., the minimum number of balls of
radiusr ε required to cover B(0, r). We also define Npac

ε (B(0, r)) as the packing number of
B(0, r), i.e., the maximum number of disjoint balls whose centers belong to B(0, r). It is
easy to verify that

N cov
ε (B(0, r)) ≤ Npac

ε/2 (B(0, r)) ≤ (1 + 2r/ε)d .

Therefore, there exist a set of points U ⊆ R
d with cardinality at most (1+ 2r/ε)d, such that

for any vector w ∈ B(0, r), we have

min
u∈U
‖f ′′

i (w)− f ′′
i (u)‖2 ≤Mε. (5.55)

We consider an arbitrary point u ∈ U and the associated Hessian matrices for the func-
tions fi(w) defined in (5.24). We have

f ′′
i (u) =

1

n

n∑

j=1

(φ′′(u, zi,j) + ρI) , i = 1, . . . ,m.

The components of the above sum are i.i.d. matrices which are upper bounded by LI. By
the matrix Hoeffding’s inequality [137, Corollary 4.2], we have

P [‖f ′′
i (u)− E[f ′′

i (u)]‖2 > t] ≤ d · e− nt2

2L2 .

134

Note that E[f ′′
1 (w)] = E[f ′′(w)] for any w ∈ B(0, r). Using the triangular inequality and

inequality (5.55), we obtain

‖f ′′
1 (w)− f ′′(w)]‖2 ≤ ‖f ′′

1 (w)− E[f ′′
1 (w)]‖2 + ‖f ′′(w)− E[f ′′(w)]‖2

≤ 2 max
i∈{1,...,m}

‖f ′′
i (w)− E[f ′′

i (w)]‖2

≤ 2 max
i∈{1,...,m}

(
max
u∈U
‖f ′′

i (u)− E[f ′′
i (u)]‖2 +Mε

)
. (5.56)

Applying the union bound, we have with probability at least

1−md(1 + 2r/ε)d · e− nt2

2L2 ,

the inequality ‖f ′′
i (u)− E[f ′′

i (u)]‖2 ≤ t holds for every i ∈ {1, . . . ,m} and every u ∈ U .
Combining this probability bound with inequality (5.56), we have

P

[
sup

w∈B(0,r)

‖f ′′
1 (w)− f ′′(w)‖2 > 2t+ 2Mε

]
≤ md (1 + 2r/ε)d · e− nt2

2L2 . (5.57)

As the final step, we choose ε =
√
2L√
nM

and then choose t to make the right-hand side of

inequality (5.57) equal to δ. This yields the desired result.

5.7.5 More analysis on the number of PCG iterations

Here we analyze the number of iterations of the distributed PCG method (Algorithm 2) when
µ is misspecified, i.e., when µ used in P = H1+µI is not an upper bound on ‖H1−H‖2. For
simplicity of discussion, we assume that Assumption H holds, ‖H1 − H‖2 ≤ L and µ ≤ L.
In this case, we can show (using similar arguments for proving Lemma 20):

σmax((H1 + µI)−1H) ≤ 2L

L+ µ
,

σmin((H1 + µI)−1H) ≥ λ

L+ µ+ λ
.

Hence the condition number of the preconditioned linear system is

κµ,L =
2L

λ

(
1 +

λ

L+ µ

)
≤ 2 +

2L

λ
,

and the number of PCG iterations is bounded by (cf. Section 5.7.2)

⌈
√
κµ,L log

(
2L

βλ

)⌉
≤
√

2 +
2L

λ
log

(
2L

βλ

)
.

This gives the bound on number of PCG iterations in (5.30).

135

Part III

Theories of distributed computing

136

Chapter 6

Communication complexity of
statistical estimation

In this chapter, we study the communication complexity of statistical estimation problems.
Suppose we are interested in estimating some parameter θ(P) of an unknown distribution P ,
based on a dataset of N i.i.d. observations. In the distributed setting, there are m different
machines, and each machine is assigned a subset of the sample of size n = ⌊N

m
⌋. Each machine

may perform arbitrary operations on its own subset of data, and it then communicates results
of these intermediate computations to the other processors or to a central fusion node. In
this chapter, we try to answer the following question: what is the minimal number of bits
that must be exchanged in order to achieve (up to constant factors) the optimal estimation
error realized by a centralized scheme?

While, there is a very rich literature on statistical minimax (e.g. [96, 223, 219, 205]),
little of it characterizes the effects of limiting communication. In other areas, ranging from
theoretical computer science [221, 2, 110], decentralized detection and estimation (e.g., [204,
136]), to information theory (e.g., [85, 69]), there is of course a substantial literature on
communication complexity. While related to these bodies of work, our problem formulation
and results differ in several ways.

• In theoretical computer science [221, 2, 110], the prototypical problem is the distributed
computation of a bivariate function θ : X × Y → Θ, defined on two discrete sets X
and Y , using a protocol that exchanges bits between processsors. The most classical
problem is to find a protocol that computes θ(x, y) correctly for all (x, y) ∈ X × Y ,
and exchanges the smallest number of bits to do so. More recent work studies random-
ization and introduces information-theoretic measures for communication complex-
ity [41, 13, 14], where the problem is to guarantee that θ(x, y) is computed correctly
with high probability under a given (known) distribution P on x and y. In contrast,
our goal is to recover characteristics an unknown distribution P based on observa-
tions drawn from P . Though this difference is somewhat subtle, it makes work on
communication complexity difficult to apply in our settings. However, lower bounds

137

on the estimation of population quantities θ(P) based on communication-constrained
observations—including those we present here—do imply lower bounds in classical
communication complexity settings.

• Work in decentralized detection and estimation also studies limits of communication.
For example, Tsitsiklis and Luo [203] provide lower bounds on the difficulty of dis-
tributed convex optimization, and Luo and Tsitsiklis [135] study limits on certain
distributed algebraic computations. In these problems, as in other early work in
communication complexity, data held by the distributed parties may be chosen ad-
versarially, which precludes conclusions about statistical estimation. Other work in
distributed control provides lower bounds on consensus and averaging, but in settings
where messages sent are restricted to be of particular smooth forms [160]. Study of
communication complexity has also given rise to interesting algorithmic schemes; for
example, Luo [134] considers architectures in which machines may send only a single
bit to a centralized processor; for certain problems, he shows that if each machine re-
ceives a single one-dimensional sample, it is possible to achieve the optimal centralized
rate to within constant factors.

• Information theorists have also studied problems of studied estimation; for instance, see
the paper [85] for an overview. In particular, this body of work focuses on the problem
of testing a hypothesis or estimating a parameter from samples {(xi, yi)}ni=1 where
{(xi)}ni=1 and {(yi)}ni=1 are correlated but stored separately in two machines. Han and
Amari [85] study estimation error for encoding rates R > 0, or with sequences of rates
Rn converging to zero as the sample size n increases. In contrast to these asymptotic
formulations—which often allow more communication than is required to attain the
centralized (unconstrained) minimax rates in our settings—our goal is to study fixed
bounds on rates (say of the form Rn ≤ t/n) for finite sample sizes n, and ask when it
is possible to achieve the minimax statistical rate.

We formulate and study two decentralized variants of the centralized statistical minimax
risk, one based on protocols that engage in only a single round of message-passing, and the
other based on interactive protocols that can use multiple rounds of communication. The
main question of interest is the following: how must the communication budget B scale
as a function of the sample size n at each machine, the total number of machines m, and
the problem dimension d so that the decentralized minimax risk matches the centralized
version up to constant factors? For some problems, we exhibit an exponential gap between
this communication requirement and the number of bits required to describe the problem
solution (up to statistical precision); for instance, see Theorems 10 and 11 for results of
this type. For example, we show that for problems such as location estimation in Gaussian
and binomial families, the amount of communication must scale linearly in the product dm
of the dimension number of machines m, which is exponentially larger than the O(d logm)
bits required to specify the problem or communicate its solution. To exhibit these gaps, we
provide lower bounds using information-theoretic techniques, with the main novel ingredient

138

being certain forms of quantitative data processing inequalities. We also establish (nearly)
sharp upper bounds, some of which are based on recent work by a subset of current authors
on practical schemes for distributed estimation (see Zhang et al. [231]).

Notation: For a random variable X, we let PX denote the probability measure on X,
so that PX(S) = P (X ∈ S), and we abuse notation by writing pX for the probability
mass function or density of X, depending on the situation, so that pX(x) = P (X = x)
in the discrete case and denotes the density of X at x when pX is a density. We use log
to denote log-base e and log2 for log in base 2. For discrete random variable X, we let
H(X) = −∑x pX(x) log pX(x) denote the (Shannon) entropy (in ents), and for probability
distributions P,Q on a set X , with densities p, q with respect to a base measure µ, we write
the KL-divergence as

Dkl (P ||Q) :=
∫

X
p(x) log

p(x)

q(x)
dµ(x).

The mutual information I(X;Y) between random variables X and Y where Y has distribu-
tion PY is defined as

I(X;Y) := EPX

[
Dkl (PY (· | X)||PY (·))

]
=

∫
Dkl (PY (· | X = x)||PY (·)) dPX(x).

We let ∨ and ∧ denote maximum and minimum, respectively, so that a∨ b = max{a, b}. For
an integer k ≥ 1, we use [k] as shorthand for the set {1, . . . , k}. We let a1:n be shorthand for
a sequence a1, . . . , an, and the notation an & bn means there is a numerical constant c > 0
such that an ≥ cbn for all n. Given a set A, we let σ(A) denote the Borel σ-field on A.

6.1 Background and problem set-up

In this section, we begin by giving background on the classical notion of minimax risk in
statistics. We then introduce two distributed variants of the minimax risk based on the
notions of independent and interactive protocols, respectively.

6.1.1 Classical minimax risk

For a family of probability distributions P , consider a function θ : P → Θ ⊆ R
d. A canonical

example throughout the chapter is the mean function, namely θ(P) = EP [X]. Another simple
example is the median θ(P) = medP (X), or more generally, quantiles of the distribution P .
Now suppose that we are given a collection of N observations, say X1:N := {X1, . . . XN},
drawn i.i.d. from some unknown member P of P . Based on the sample X1:N , our goal is to
estimate the parameter θ(P), and an estimator θ̂ is a measurable function of the N -vector
X1:N ∈ XN into Θ.

We assess the quality of an estimator θ̂ = θ̂(XN
1) via its mean-squared error

R(θ̂, θ(P)) := EP

[
‖θ̂(X1:N)− θ(P)‖22

]
,

139

where the expectation is taken over the sample X1:N . For an estimator θ̂, the function
P 7→ R(θ̂, θ(P)) defines the risk function of θ̂ over the family P . Taking the supremum all
P ∈ P yields the worst-case risk of the estimator. The minimax rate for the family P is
defined in terms of the best possible estimator for this worst-case criterion, namely via the
saddle point criterion

MN(θ,P) := inf
θ̂
sup
P∈P

R(θ̂, θ(P)), (6.1)

where the infimum ranges over all measurable functions of the data X1:N . Many papers in
mathematical statistics study the classical minimax risk (6.1), and its behavior is precisely
characterized for a range of problems [96, 223, 219, 205]. We consider a few instances of such
problems in the sequel.

6.1.2 Distributed protocols

The classical minimax risk (6.1) imposes no constraints on the choice of estimator θ̂. In this
section, we introduce a refinement of the minimax risk that calibrates the effect of commu-
nication constraints. Suppose we have a collection of m distinct computers or processing
units. Assuming for simplicity1 that N is a multiple of m, we can then divide our full data
set X1:N into a family of m subsets, each containing n = N

m
distinct observations, with X(i)

denoting the subset assigned to machine i ∈ [m] = {1, . . . ,m}. With this set-up, our goal
is to estimate θ(P) via local operations at each machine i on the data subset X(i) while
performing a limited amount of communication between machines.

More precisely, our focus is a class of distributed protocols Π, in which at each round
t = 1, 2, . . ., machine i sends a message Yt,i that is a measurable function of the local data
X(i) and potentially of past messages. It is convenient to model this message as being sent
to a central fusion center. Let Ȳt = {Yt,i}i∈[m] denote the collection of all messages sent at
round t. Given a total of T rounds, the protocol Π collects the sequence (Ȳ1, . . . , ȲT), and

constructs an estimator Ŵθ := Ŵθ(Ȳ1, . . . , ȲT). The length Lt,i of message Yt,i is the minimal

number of bits required to encode it, and the total L =
∑T

t=1

∑m
i=1 Lt,i of all messages sent

corresponds to the total communication cost of the protocol. Note that the communication
cost is a random variable, since the length of the messages may depend on the data, and the
protocol may introduce auxiliary randomness.

It is useful to distinguish two different protocol classes, namely independent versus in-
teractive. An independent protocol Π is based on a single round (T = 1) of communication
in which machine i sends a single message Y1,i to the fusion center. Since there are no past
messages, the message Y1,i can depend only on the local sample X(i). Given a family P , the

1Although we assume in this chapter that every machine has the same amount of data, our techniques
are sufficiently general to allow for different sized subsets for each machine.

140

class of independent protocols with budget B ≥ 0 is

Aind(B,P) =
{

independent protocols Π such that sup
P∈P

EP

[m∑

i=1

Li

]
≤ B

}
.

(For simplicity, we use Yi to indicate the message sent from processor i and Li to denote its
length in the independent case.) It can be useful in some situations to have more granular
control on the amount of communication, in particular by enforcing budgets on a per-machine
basis. In such cases, we introduce the shorthand B1:m = (B1, . . . , Bm) and define

Aind(B1:m,P) =
{
independent protocols Π such that sup

P∈P
EP [Li] ≤ Bi for i ∈ [m]

}
.

In contrast to independent protocols, the class of interactive protocols allows for interac-
tion at different stages of the message passing process. In particular, suppose that machine
i sends message Yt,i to the fusion center at time t, which then posts it on a “public black-
board,” where all machines may read Yt,i (this posting and reading incurs no communication
cost). We think of this as a global broadcast system, which may be natural in settings in
which processors have limited power or upstream capacity, but the centralized fusion center
can send messages without limit. In the interactive setting, the message Yt,i is a measur-
able function of the local data X(i) and the past messages Ȳ1:t−1. The family of interactive
protocols with budget B ≥ 0 is

Ainter(B,P) =
{
interactive protocols Π such that sup

P∈P
EP [L] ≤ B

}
.

6.1.3 Distributed minimax risks

We can now define the distributed minimax risks that are the central objects of study in
this chapter. Our goal is to characterize the best achievable performance of estimators θ̂
that are functions of the vector of messages Ȳ T

1 := (Ȳ1, . . . , ȲT). As in the classical minimax

setting (6.1), we measure the quality of a protocol Π and estimator θ̂ by the mean-squared
error

R(θ̂, θ(P)) := EP,Π

[
‖θ̂(Ȳ T

1)− θ(P)‖22
]
,

where the expectation is now taken over the randomness in the messages, which is due to
both their dependence on the underlying data as well as possible randomness in the protocol.
Given a communication budget B, the minimax risk for independent protocols is

M
ind

n,m(θ,P , B) := inf
Π∈Aind(B,P)

inf
Ŵθ

sup
P∈P

R
(
θ̂, θ(P)

)
. (6.2)

Here, the infimum is taken jointly over all independent procotols Π that satisfy the budget
constraint B, and over all estimators Ŵθ that are measurable functions of the messages in the

141

protocol. The minimax risk (6.2) should also be understood to depend on both the number
of machines m and the individual sample size n (we leave this implicit on the right hand side
of definition (6.2)). We define the minimax risk for interactive protocols, denoted by M

inter

n,m ,
analogously, where we instead take the infimum over the class of interactive protocols. These
communication-dependent minimax risks are the central objects in this chapter: they provide
a sharp characterization of the optimal estimation rate as a function of the communication
budget B.

6.2 Main results and their consequences

We now turn to the statement of our main results, along with some discussion of their
consequences. We begin with a rather simple bound based on the metric entropy of the
parameter space; it confirms the natural intuition that any procedure must communicate at
least as many bits as are required to describe a problem solution. We show that this bound
is tight for certain problems, but our subsequent more refined techniques allow substantially
sharper guarantees.

6.2.1 Lower bound based on metric entropy

We begin with a general but relatively naive lower bound that depends only on the geometric
structure of the parameter space, as captured by its metric entropy. In particular, given a
subset Θ ⊂ R

d, we say {θ1, . . . , θK} are δ-separated if ‖θi − θj‖2 ≥ δ for i 6= j. We then
define the packing entropy of Θ as

EΘ(δ) := log2max
{
M ∈ N | {θ1, . . . , θM} ⊂ Θ are δ-separated

}
.

It is straightforward to see that the packing entropy continuous from the right and non-
increasing in δ, so that the inverse function E−1

Θ (B) := sup{δ | EΘ(δ) ≥ B} is well-defined.
With this definition, we have the following claim:

Proposition 1. For any family of distributions P and parameter set Θ = θ(P), the inter-
active minimax risk is lower bounded as

M
inter

n,m (θ,P , B) ≥ 1

8

(
E−1
Θ (2B + 2)

)2
.

We prove this proposition in Section 6.3.1. The same lower bound trivially holds for
M

ind

n,m(θ,P , B), as any independent protocol is a special case of an interactive protocol.
Although Proposition 1 is a relatively generic statement, not exploiting any particular struc-
ture of the problem, it is in general unimprovable by more than constant factors, as the
following example illustrates.

Example 2 (Bounded mean estimation). Suppose our goal is to estimate the mean θ = θ(P)
of a class of distributions P supported on the interval [0, 1], so that Θ = θ(P) = [0, 1].

142

Suppose that a single machine (m = 1) receives n i.i.d. observations Xi according to P . The
packing entropy has lower bound EΘ(δ) ≥ log2(1/δ), and consequently, Proposition 1 implies
that the distributed minimax risk is lower bounded as

M
ind

n,m(θ,P , B) ≥M
inter

n,m (θ,P , B) ≥ 1

8

(
2−2B−2

)2
.

Setting B = 1
4
log2 n yields the lower bound M

ind

n,m(θ,P([0, 1]), B) ≥ 1
128n

.
This lower bound is sharp up to the constant pre-factor; it can be achieved by the follow-

ing simple method. Given its n observations, the single machine computes the sample mean
Xn := 1

n

∑n
i=1Xi. The sample mean must lie in the interval [0, 1], and so can be quantized

to accuracy 1
n
using log2 n bits, and this quantized version θ̂ can be transmitted. A straight-

forward calculation shows that E[(θ̂ − θ)2] ≤ 2
n
, and Proposition 1 yields an order-optimal

bound. �

6.2.2 Independent protocols in multi-machine settings

We would like to study how the budget B—the number of bits required to achieve the mini-
max rate—scales with the number of machines m. For our first set of results in this setting,
we consider the non-interactive case, where each machine i sends messages Yi independently
of all the other machines. These results serve as pre-cursors to our later results on interactive
protocols.

We first provide lower bounds for mean estimation in the d-dimensional normal location
family model:

Nd := {N(θ, σ2Id×d) | θ ∈ Θ = [−1, 1]d}. (6.3)

Here each machine receives an i.i.d. sample of size n from a normal distribution N(θ, σ2Id×d)
with unknown mean θ. The following result provides a lower bound on the distributed
minimax risk with independent communication:

Theorem 10. Given a communication budget Bi for each machine i = 1, . . . ,m, there exists
a universal (numerical) constant c such that

M
ind

n,m(θ,Nd, B1:m) ≥ c
σ2d

mn
min

{mn
σ2

,
m

logm
,

m

(
∑m

i=1 min{1, Bi

d
}) logm ∨ 1

}
. (6.4)

See Section 6.3.4 for the proof of this claim.

Given centralized access to the full mn-sized sample, the minimax rate for the mean-
squared error is σ2d

mn
(e.g. Lehmann and Casella [119]). This optimal rate is achieved by the

sample mean. Consequently, the lower bound (6.4) shows that each machine individually
must communicate at least d

logm
bits for a decentralized procedure to match the centralized

rate. If we ignore logarithmic factors, this lower bound is achievable by the following simple
procedure:

143

(i) First, each machine computes the sample mean of its local data, and truncates it to
the interval [−1− σ√

n
, 1 + σ√

n
].

(ii) Next, each machine quantizes each coordinate of the resulting estimate to precision σ2

mn
,

using O(1) d log mn
σ2 bits to do so.

(iii) The machines send these quantized averages to the fusion center usingB = O(1) dm log n
σ2

total bits.

(iv) Finally, the fusion center averages them, obtaining an estimate with mean-squared
error of the order σ2d

mn
.

The techniques we develop also apply to other families of probability distributions, and
we finish our discussion of independent communication protocols by presenting a result that
gives lower bounds sharp to numerical constant prefactors. In particular, we consider mean
estimation for the family Pd of distributions supported on the compact set [−1, 1]d. One
instance of such a distribution is the Bernoulli family taking values on the Boolean hypercube
{−1, 1}d.
Proposition 2. Assume that each of m machines receives a single observation (n = 1) from
a distribution in Pd. There exists a universal constant c > 0 such that

M
ind

n,m(θ,Pd, B1:m) ≥ c
d

m
min

{
m,

m∑m
i=1 min{1, Bi

d
}
}
,

where Bi is the budget for machine i.

See Section 6.3.3 for the proof.

The standard minimax rate for d-dimensional mean estimation on Pd scales as d/m,
which is achieved by the sample mean. Proposition 2 shows that to achieve this scaling, we
must have

∑m
i=1 min{1, Bi

d
} & m, showing that each machine must send Bi & d bits. This

lower bound is also achieved by a simple scheme:

(i) Each machine i receives an observation Xi ∈ [−1, 1]d. Based on this observation. it
generates a Bernoulli random vector Zi = (Zi1, . . . , Zid) with Zij ∈ {0, 1} taking the
value 1 with probability (1 +Xij)/2, independently across coordinates.

(ii) Machine i uses d bits to send the vector Zi ∈ {0, 1}d to the fusion center.

(iii) The fusion center then computes the average θ̂ = 1
m

∑m
i=1(2Zi − 1). This average is

unbiased, and its expected squared error is bounded by d/m.

Note that for both the normal location family of Theorem 10 and the simpler bounded
single observation model in Proposition 2, there is an exponential gap between the infor-
mation required to describe the problem to the minimax mean squared error of d

mn
—which

scales as as O(1)d log(mn)—and the number of bits that must be communicated, which
scales nearly linearly in m. See also our discussion following Theorem 11.

144

6.2.3 Interactive protocols in multi-machine settings

Having provided results on mean estimation in the non-interactive setting, we now turn to the
substantially harder setting of distributed statistical inference where feedback is permitted.
As described in Section 6.1.2, in the interactive setting the fusion center may freely broadcast
every message received to all other machines in the network. This freedom allows more
powerful algorithms, rendering the task of proving lower bounds more challenging.

Let us begin by considering the uniform location family Ud = {Pθ, θ ∈ [−1, 1]d}, where
Pθ is the uniform distribution on the rectangle [θ1− 1, θ1+1]× · · ·× [θd− 1, θd+1]. For this
problem, a direct application of Proposition 1 gives a nearly sharp result:

Proposition 3. Consider the uniform location family Ud with n i.i.d. observations per ma-
chine:

(a) There are universal (numerical) constants c1, c2 > 0 such that

M
inter

n,m (θ,U , B) ≥ c1 max

{
exp

(
−c2

B

d

)
,

d

(mn)2

}
.

(b) Conversely, given a budget of B = d
[
2 log2(2mn) + log(m)(⌈log2 d⌉ + 2 log2(2mn))

]

bits, there is a universal constant c such that

M
inter

n,m (θ,U , B) ≤ c
d

(mn)2
.

See Section 6.3.5 for the proof of this claim.

If each of themmachines receives n observations, we have a total sample size ofmn, so the
minimax rate over all centralized procedures scales as d/(mn)2 (for instance, see Lehmann
and Casella [119]). Consequently, Proposition 3(b) shows that the number of bits required to
achieve the centralized rate has only logarithmic dependence on the number m of machines.
Part (a) shows that this logarithmic dependence onm is unavoidable: at least B & d log(mn)
bits are necessary to attain the optimal rate of d

(mn)2
.

It is natural to wonder whether such logarithmic dependence holds more generally. The
following result shows that it does not: for some problems, the dependence on m must
be (nearly) linear. In particular, we reconsider estimation in the normal location family
model (6.3), showing a lower bound that is nearly identical to that of Theorem 10.

Theorem 11. For i = 1, . . . ,m, assume that each machine receives an i.i.d. sample of size
n from a normal location model (6.3) and that there is a total communication budget B.
Then there exists a universal (numerical) constant c such that

M
inter

n,m (θ,Nd, B) ≥ c
σ2d

mn
min

{mn
σ2

,
m

(B/d+ 1) logm
∨ 1
}
. (6.5)

145

See Section 6.3.6 for the proof of this claim.

Theorem 11 is analogous to, but slightly weaker than, the corresponding lower bound
from Theorem 10 for the non-interactive setting. In particular, the lower bound (6.5) shows
that at least B & dm

logm
bits are required for any distributed procedure—even allowing fully

interactive communication—to attain the centralized minimax rate. Thus, in order to achieve
the minimax rate up to logarithmic factors, the total number of bits communicated must
scale (nearly) linearly with the product of the dimension d and number of machines m.

Moreover, these two theorems show that there is an exponential gap between the number
of bits required to communicate the problem solution and the number required to compute it
in a distributed manner. More specifically, assuming (for simplicity) that σ2 = 1, describing a
solution of the normal mean estimation problem to accuracy d

mn
in squared ℓ2-error requires

at most O(1)d log(mn) bits. On the other hand, these two theorems show that nearly
dm bits must be communicated. This linear scaling in m is dramatically different from—
exponentially worse than—the logarithmic scaling for the uniform family. Establishing sharp
communication-based lower bounds thus requires careful study of the underlying family of
distributions.

Note that in both Theorems 10 and 11, the upper and lower bounds differ by logarithmic
factors in the sample size n and number of machines m. It would be interesting to close
this minor gap. Another open question is whether the distributed minimax rates for the
independent and interactive settings are the same up to constant factors, or whether their
scaling actually differs in terms of these logarithmic factors.

6.2.4 Consequences for regression

The problems of mean estimation studied in the previous section, though simple in appear-
ance, are closely related to other, more complex problems. In this section, we show how lower
bounds on mean estimation can be used to establish lower bounds for distributed estimation
in two standard but important generalized linear models [86]: linear regression and probit
regression.

6.2.4.1 Linear regression

Let us begin with a distributed instantiation of linear regression with fixed design matrices.
Concretely, suppose that each of m machines has stored a fixed design matrix A(i) ∈ R

n×d

and then observes a response vector b(i) ∈ R
d from the standard linear regression model

b(i) = A(i)θ + ε(i), (6.6)

where ε(i) ∼ N(0, σ2In×n) are independent noise vectors. Our goal is to estimate the unknown
regression vector θ ∈ Θ = [−1, 1]d, identical for each machine. Our result involves the

146

smallest and largest eigenvalues of the rescaled design matrices via the quantities

λ2max := max
i∈{1,...,m}

λmax(A
(i)⊤A(i))

n
, and λ2min := min

i∈{1,...,m}

κL(A
(i)⊤A(i))

n
> 0. (6.7)

Corollary 11. Given the linear regression model (6.6), there is a universal positive constant
c such that

M
inter

n,m (θ,P , B) ≥ c
σ2d

λ2maxmn
min

{
λ2maxmn

σ2
,

m

(B/d+ 1) logm
∨ 1

}
. (6.8a)

Conversely, given a budgets Bi ≥ dm log(mn), there is a universal constant c′ such that

M
ind

n,m(θ,P , B1:m) ≤
c′

λ2min

σ2d

mn
. (6.8b)

It is a classical fact (e.g. [119]) that the minimax rate for d-dimensional linear regression
scales as dσ2/(nm). Part (a) of Corollary 11 shows this optimal rate is attainable only if
the total budget B grows as dm

logm
. Part (b) of the corollary shows that the minimax rate is

achievable—even using an independent protocol—with budgets that match the lower bound
to within logarithmic factors.
Proof The upper bound (6.8b) follows from the results of Zhang et al. [231]. Their
results imply that the upper bound can be achieved by solving each regression problem
separately, quantizing the (local) solution vectors Ŵθ(i) ∈ [−1, 1]d to accuracy 1

mn
using

Bi = ⌈d log2(mn)⌉ bits and performing a form of approximate averaging.
In order to prove the lower bound (6.8a), we show that solving an arbitrary Gaussian

mean estimation problem can be reduced to solving a specially constructed linear regression
problem. This reduction allows us to apply the lower bound from Theorem 11. Given θ ∈ Θ,
consider the Gaussian mean model

X(i) = θ + w(i), where w(i) ∼ N
(
0,

σ2

λ2maxn
Id×d

)
.

Each machine i has its own design matrix A(i), and we use it to construct a response vector

b(i) ∈ R
n. Since λmax(A

(i)⊤A(i)/n) ≤ λ2max, the matrix Σ(i) := σ2In×n − σ2

λ2
maxn

A(i)(A(i))⊤ is
positive semidefinite. Consequently, we may form a response vector via

b(i) = A(i)X(i) + z(i) = A(i)θ + A(i)w(i) + z(i), z(i) ∼ N(0,Σ(i)) independent of w(i). (6.9)

The independence of w(i) and z(i) guarantees that b(i) ∼ N(A(i)θ, σ2In×n), so the pair
(b(i), A(i)) is faithful to the regression model (6.6).

Now consider a protocol Π ∈ Ainter(B,P) that can solve any regression problem to within

accuracy δ, so that E[‖Ŵθ − θ‖22] ≤ δ2. By the previously described reduction, the proto-
col Π can also solve the mean estimation problem to accuracy δ, in particular via the pair
(A(i), b(i)) described in expression (6.9). Combined with this reduction, the corollary thus
follows from Theorem 11.

147

6.2.4.2 Probit regression

We now turn to the problem of binary classification, in particular considering the probit
regression model. As in the previous section, each of m machines has a fixed design matrix
A(i) ∈ R

n×d, where A(i,k) denotes the kth row of A(i). Machine i receives n binary responses
Z(i) = (Z(i,1), . . . , Z(i,n)), drawn from the conditional distribution

P
(
Z(i,k) = 1 | A(i,k), θ

)
= Φ(A(i,k)θ) for some fixed θ ∈ Θ = [−1, 1]d, (6.10)

where Φ(·) denotes the standard normal CDF. The log-likelihood of the probit model (6.10)
is concave (cf. [33, Exercise 3.54]). Under condition (6.7) on the design matrices, we have:

Corollary 12. Given the probit model (6.10), there is a universal constant c > 0 such that

M
inter

n,m (θ,P , B1:m) ≥ c
d

λ2maxmn
min

{
λ2maxmn,

m

(B/d+ 1) logm

}
. (6.11a)

Conversely, given a budgets Bi ≥ d log(mn), there is a universal constant c′ such that

M
ind

n,m(θ,P , B1:m) ≤
c′

λ2min

d

mn
. (6.11b)

Proof As in Corollary 11, the upper bound (6.11b) follows from the results of Zhang et al.
[231].

Turning to the lower bound (6.11a), our strategy is to show that probit regression is at
least as hard as linear regression, in particular by demonstrating that any linear regression
problem can be solved via estimation in a specially constructed probit model. Given an ar-
bitrary regression vector θ ∈ Θ, consider a linear regresion problem (6.6) with noise variance
σ2 = 1. We construct the binary responses for our probit regression (Z(i,1), . . . , Z(i,n)) by

Z(i,k) =

{
1 if b(i,k) ≥ 0,

0 otherwise.
(6.12)

By construction, we have P(Z(i,k) = 1 | A(i), θ) = Φ(A(i,k)θ) as desired for our model (6.10).
By inspection, any protocol Π ∈ Ainter(B,P) solving the probit regression problem provides
an estimator with the same mean-squared error as the original linear regression problem via
the construction (6.12). Consequently, the lower bound (6.11a) follows from Corollary 11.

6.3 Proofs of main results

We now turn to the proofs of our main results, deferring more technical results to Section 6.4.

148

6.3.1 Proof of Proposition 1

This result is based on the classical reduction from estimation to testing (e.g., [96]). For a
given δ > 0, introduce the shorthand M = 2EΘ(2δ) for the 2δ packing number, and form a
collection of points {θ1, . . . , θM} that form a maximal 2δ-packing of Θ. Now consider any
family of conditional distributions {P (· | ν), ν ∈ [M]} such that θ

(
P (· | ν)

)
= θν .

Suppose that we sample an index V uniformly at random from [M], and then draw
a sample X ∼ P (· | V). The associated testing problem is to determine the underlying
instantiation of the randomly chosen index. Let Y = (Y1, . . . , YT) denote the messages sent

by the protocol Π, and let Ŵθ(Y) denote any estimator of θ based on Y . Any such estimator
defines a testing function via

ŴV := argmin
ν∈V

‖Ŵθ(Y)− θν‖2.

Since {θν}ν∈V is a 2δ-packing, we are guaranteed that ‖Ŵθ(Y)− θν‖2 ≥ δ whenever ŴV 6=
V , whence

max
ν∈V

E
[
‖Ŵθ(Y)− θν‖22

]
≥
∑

ν∈V
P(V = ν)E

[
‖Ŵθ(Y)− θV ‖22 | V = ν

]

≥
∑

ν∈V
δ2P(V = ν)P(ŴV 6= V | V = ν) = δ2 P(ŴV 6= V). (6.13)

It remains to lower bound the testing error P(ŴV 6= V). Fano’s inequality [53, Chapter 2]
yields

P(ŴV 6= V) ≥ 1− I(V ;Y) + 1

EΘ(2δ)
.

Finally, the mutual information can be upper bounded as

I(V ;Y)
(i)

≤ H(Y)
(ii)

≤ B, (6.14)

where inequality (i) is an immediate consequence of the definition of mutual information,
and inequality (ii) follows from Shannon’s source coding theorem [53]. Combining inequali-
ties (6.13) and (6.14) yields

M
inter

n,m (θ,P , B) ≥ δ2
{
1− B + 1

EΘ(2δ)
}

for any δ > 0.

Because 1 − B+1
EΘ(2δ)

≥ 1
2
for any any choice of δ such that 2δ ≤ E−1

Θ (2B + 2), setting δ =
1
2
E−1
Θ (2B + 2) yields the claim.

149

6.3.2 A slight refinement

We now describe a slight refinement of the classical reduction from estimation to testing that
underlies many of the remaining proofs. It is somewhat more general, since we no longer
map the original estimation problem to a strict test, but rather a test that allows errors.
We then leverage some variants of Fano’s inequality developed by a subset of the current
authors [63].

Defining V = {−1,+1}d, we consider an indexed family of probability distributions
{P (· | ν)}ν∈V ⊂ P . Each member of this family defines the parameter θν := θ(P (· | ν)) ∈ Θ.
In particular, suppose that we construct the distributions such that θν = δν, where δ > 0 is
a fixed quantity that we control. For any ν 6= ν ′, we are then guaranteed that

‖θν − θν′‖2 = 2δ
√
dham(ν, ν ′) ≥ 2δ

where dham(ν, ν
′) is the Hamming distance between ν, ν ′ ∈ V . This lower bound shows that

{θν}ν∈V is a special type of 2δ-packing, in that the squared ℓ2-distance grows proportionally
to the Hamming distance between the indices ν and ν ′.

Now suppose that we draw an index V from V uniformly at random, then drawing a
sample X from the distribution P (· | V). Fixing t ≥ 0, the following lemma [63] reduces the
problem of estimating θ to finding a point ν ∈ V within distance t of the random variable V .

Lemma 25. Let V be uniformly sampled from V. For any estimator Ŵθ and any t ≥ 0, we
have

sup
P∈P

E[‖Ŵθ − θ(P)‖22] ≥ δ2 (⌊t⌋+ 1) inf
Ŵν

P
(
dham(Ŵν, V) > t

)
,

where the infimum ranges over all testing functions Ŵν mapping the observations X to V.

Setting t = 0, we recover the standard reduction from estimation to testing as used in the
proof of Proposition 1. The lemma allows for some additional flexibility in that it suffices to
show that, for some t > 0 to be chosen, it is difficult to identify V within a Hamming radius
of t. The following variant [63] of Fano’s inequality controls this type of error probability:

Lemma 26. Let V → X → ŴV be a Markov chain, where V is uniform on V. For any
t ≥ 0, we have

P(dham(ŴV, V) > t) ≥ 1− I(V ;X) + log 2

log |V|
Nt

,

where Nt := max
ν∈V
|{ν ′ ∈ V : dham(ν, ν

′) ≤ t}| is the size of the largest t-neighborhood in V.

We thus have a clear avenue for obtaining lower bounds: constructing a large packing
set V with (1) relatively small t-neighborhoods, and (2) such that the mutual information
I(V ;X) can be controlled. Given this set-up, the remaining technical challenge is the devel-
opment of quantitative data processing inequalities, which allow us to characterize the effect

150

of bit-constraints on the mutual information I(V ;X). In general, these bounds are signifi-
cantly tighter than the trivial upper bound used in the proof of Proposition 1. Examples of
such inequalities in the sequel include Lemmas 27, 30, and 33.

6.3.3 Proof of Proposition 2

Given an index ν ∈ V , suppose that each machine i receives a d-dimensional sample X(i)

with coordinates independently sampled according to

P (Xj = νj | ν) =
1 + δνj

2
and P (Xj = −νj | ν) =

1− δνj
2

.

Note that by construction, we have θν = δν = Eν [X], as well as

max
xj

P (xj | ν)
P (xj | ν ′)

≤ 1 + δ

1− δ = eα where α := log 1+δ
1−δ

. (6.15)

Moreover, note that for any pair (i, j), the sample X
(i)
j , when conditioned on Vj, is indepen-

dent of the variables {X(i)
j′ : j′ 6= j} ∪ {Vj′ : j′ 6= j}.

Recalling that Yi denotes the message sent by machine i, consider the Markov chain
V → X(i) → Yi. By the usual data processing inequality [53], we have I(V ;Yi) ≤ I(X(i);Yi).
The following result is a quantitative form of this statement, showing how the likelihood
ratio bound (6.15) causes a contraction in the mutual information.

Lemma 27. Under the preceding conditions, we have

I(V ;Yi) ≤ 2(e2α − 1)2 I(X(i);Yi).

See Section 6.4.2.1 for the proof of this result. It is similar in spirit to recent results of
Duchi et al. [66, Theorems 1–3], who establish quantitative data processing inequalities in
the context of privacy-preserving data analysis. Our proof, however, is different, as we have
the Markov chain V → X → Y , and instead of a likelihood ratio bound on the channel
X → Y as in the paper [66], we place a likelihood ratio bound on V → X.

Next we require a certain tensorization property of the mutual information, valid in the
case of independent protocols:

Lemma 28. When Yi is a function only of X(i), then

I(V ;Y1:m) ≤
m∑

i=1

I(V ;Yi).

See Section 6.4.2.2 for a proof of this claim.

151

We can now complete the proof of the proposition. Using Lemma 27, we have

I(V ;Yi) ≤ 2

(
e2 log

1+δ
1−δ − 1

)2

I(X(i);Yi) = 2
((1 + δ)2

(1− δ)2 − 1
)2 ≤ 80δ2I(X(i);Yi),

valid for δ ∈ [0, 1/5]. Applying Lemma 28 yields

I(V ;Y1:m) ≤
m∑

i=1

I(V ;Yi) ≤ 80δ2
m∑

i=1

I(Yi;X
(i)).

The remainder of the proof is broken into two cases, namely d ≥ 10 and d < 10.

Case d ≥ 10: By the definition of mutual information, we have

I(Yi;X
(i)) ≤ min{H(Yi), H(X(i))} ≤ min{Bi, d},

where the final step follows since H(X(i)) ≤ d and H(Yi) ≤ Bi, the latter inequality following
from Shannon’s source coding theorem [53]. Putting together the pieces, we have

I(V ;Y1:m) ≤ 80δ2
m∑

i=1

min{Bi, d}.

Combining this upper bound on mutual information with Lemmas 25 and 26 yields the lower
bound

M
ind

n,m(θ,P , B1:m) ≥ δ2(⌊d/6⌋+ 1)

(
1− 80δ2

∑m
i=1 min{Bi, d}+ log 2

d/6

)
.

The choice δ2 = min{1/25, d/960∑m
i=1 min{Bi, d}} guarantees that the expression inside

parentheses in the previous display is lower bounded by 2/25, which completes the proof for
d ≥ 10.

Case d < 10: In this case, we make use of Le Cam’s method instead of Fano’s method.
More precisely, by reducing to a smaller dimensional problem, we may assume without loss
of generality that d = 1, and we set V = {−1, 1}. Letting V be uniformly distributed on V ,
the Bayes error for binary hypothesis testing is (e.g. [223, 205, Chapter 2])

inf
Ŵν

P(Ŵν 6= V) =
1

2
− 1

2
‖P1 − P−1‖TV .

As θν = δν by construction, the reduction from estimation to testing in Lemma 25 implies

inf
Ŵθ

max
P∈{P1,P−1}

E[‖Ŵθ − θ(P)‖22] ≥ δ2
(
1

2
− 1

2
‖P1 − P−1‖TV

)
.

152

Finally, as we show in Section 6.4.2.3, we have the following consequence of Pinsker’s in-
equality:

‖PY (· | V = ν)− PY (· | V = ν ′)‖2TV ≤ 2I(Y ;V). (6.16)

Thus

M
ind

n,m(θ,P , B1:m) ≥ δ2
(
1

2
− 1

2

√
2I(V ;Y1:m)

)
. (6.17)

Arguing as in the previous case (d ≥ 10), we have the upper bound I(X(i);Yi) ≤ min{Bi, 1},
and hence

M
ind

n,m(θ,P , B1:m) ≥ δ2
[
1

2
− 7

(
δ2

m∑

i=1

min{Bi, 1}
) 1

2
]
.

Setting δ2 = min
{

1
25
, 1
400

∑m
i=1 min{Bi,1}

}
completes the proof.

6.3.4 Proof of Theorem 10

This proof follows a similar outline to that of Proposition 2. We assume that the sample X(i)

at machine i contains ni independent observations from the multivariate normal distribution,
and we will use the fact that ni ≡ n at the end of the proof, demonstrating that the proof
technique is sufficiently general to allow for different sized subsets in each machine. We
represent the ith as a d × ni matrix X(i) ∈ R

d×ni . We use X(i,k) and X
(i)
j to denote,

respectively, the kth column and jth row of this matrix. Throughout this argument, we
assume that m ≥ 5; otherwise, Proposition 1 provides a stronger result.

As in the previous section, we consider a testing problem in which the index V ∈
{−1,+1}d is drawn uniformly at random. Our first step is to provide a quantitative data
processing inequality analogous to Lemma 27, but which applies in somewhat more general
settings. To that end, we abstract a bit from our current setting, and consider a model such
that for any (i, j), we assume that given Vj, the jth row row X

(i)
j is conditionally independent

of all other rows {X(i)
j′ : j′ 6= j} and all other packing indices {Vj′ : j′ 6= j}. In addition,

letting PXj
denote the probability measure of X

(i)
j , we assume that there exist measurable

sets Gj ⊂ range(X
(i)
j) such that

sup
S∈σ(Gj)

PXj
(S | V = ν)

PXj
(S | V = ν ′)

≤ exp(α),

Let Ej be a {0, 1}-valued indicator variable for the event X
(i)
j ∈ Gj (i.e. Ej = 1 iff X

(i)
j ∈ Gj,

and we leave the indexing on i implicit). We have the following bound:

Lemma 29. Under the conditions stated in the preceding paragraph, we have

I(V ;Yi) ≤ 2
(
e4α − 1

)2
I(X(i);Yi) +

d∑

j=1

H(Ej) +
d∑

j=1

P (Ej = 0).

153

See Section 6.4.3.1 for the proof of this claim.

Our next step is to bound the terms involving the indicator variables Ej. Fixing some
δ > 0, for each ν ∈ {−1, 1}d define θν = δν, and conditional on V = ν ∈ {−1, 1}d, let X(i,k),
k = 1, . . . , ni, be drawn i.i.d. from a N(θν , σ

2Id×d) distribution. The following lemma applies
to any pair of non-negative numbers (a, δ) such that

max
i∈[m]

√
niaδ

σ2
≤ 1

4
and a ≥ δmax

i∈[m]

√
ni. (6.18)

It also involves the binary entropy function h2(p) := −p log2(p)− (1− p) log2(1− p).

Lemma 30. For any pair (a, δ) satisfying condition (6.18), we have

I(V ;Yi) ≤
dniδ

2

σ2
, and (6.19a)

I(V ;Yi) ≤ 128
δ2a2

σ4
niH(Yi) + d h2(p

∗
i) + d p∗i , (6.19b)

where p∗i := min
{
2 exp

(
− (a−√

niδ)
2

2σ2

)
, 1
2

}
.

With the bounds (6.19a) and (6.19b) on the mutual information I(Yi;V), we may now
divide our proof into two cases: when d < 10 and d ≥ 10.

Case d ≥ 10: In this case, we require an additional auxiliary result, which we prove via
Lemma 30. (See Section 6.4.3.3 for the proof of this claim.)

Lemma 31. For all δ ∈
[
0, σ

16
(logm maxi ni)

− 1
2

]
, we have

m∑

i=1

I(V ;Yi) ≤ δ2
m∑

i=1

ni

σ2
min

{
128 · 16 logm ·H(Yi), d

}
+ d

(
2

49
+ 2 · 10−5

)
. (6.20)

Combining the upper bound (6.20) on the mutual information with the minimax lower
bounds in Lemmas 25 and 26, and noting that 6(2/49 + 2 · 10−5) + 6 log 2/d ≤ 2/3 when
d ≥ 10 yields the following minimax bound:

M
ind

n,m(θ,P , B1:m) ≥ δ2
(
⌊d/6⌋+ 1

)(1

3
− 6δ2

∑m
i=1 ni min{128 · 16 logm ·H(Yi), d}

dσ2

)
.

(6.21)

Using this result, we now complete the proof of the theorem By Shannon’s source coding
theorem, we have H(Yi) ≤ Bi, whence the minimax bound (6.21) becomes

δ2
(
⌊d/6⌋+ 1

)(1

3
− 6δ2

∑m
i=1 ni min{128 · 16Bi logm, d}

dσ2

)
.

154

In particular, if we choose

δ2 = min

{
1,

σ2

162 maxi ni logm
,

dσ2

36
∑m

i=1 ni min{128 · 16Bi logm, d}

}
, (6.22)

we obtain
1

3
− δ26

∑m
i=1 ni min{128 · 16Bi logm, d}

dσ2
≥ 1

6
,

which yields the minimax lower bound

M
ind

n,m(θ,P , B1:m)

≥ 1

6

(
⌊d/6⌋+ 1

)
min

{
1,

σ2

162 maxi ni logm
,

dσ2

36
∑m

i=1 ni min{128 · 16Bi logm, d}

}
.

To obtain inequality (6.4), we simplify by assuming that ni ≡ n for all i and perform simple
algebraic manipulations, noting that the minimax lower bound dσ2/(nm) holds indepen-
dently of any communication budget.

Case d < 10: As in the proof of Proposition 2, we cover this case by reducing to dimension
d = 1 and applying Le Cam’s method, in particular via the lower bound (6.17). Substituting
in the δ2 assignment (6.22) and the relation H(Yi) ≤ Bi into Lemmas 28 and 31, we find
that

I(V ;Y1:m) ≤
m∑

i=1

I(V ;Yi) ≤
1

36
+

2

49
+ 2 · 10−5 <

1

8
.

Applying Le Cam’s method to this upper bound implies the lower bound M
ind

n,m(θ,P , B1:m) ≥
δ2/4, which completes the proof.

6.3.5 Proof of Proposition 3

Proposition 3 involves both a lower and upper bound. We prove the upper bound by exhibit-
ing a specific interactive protocol Π∗, and the lower bound via an application of Proposition 1.

Proof of lower bound: Applying Proposition 1 requires a lower bound on the packing
entropy of Θ = [−1, 1]d. By a standard volume argument [12], the 2δ-packing entropy has
lower bound

EΘ(2δ) ≥ log2
Volume(Θ)

Volume({x ∈ Rd : ‖x‖2 ≤ 2δ}) ≥ d log
(1

2δ

)
.

Inverting the relation B = EΘ(δ) = EΘ(1/(mn)) yields the lower bound.

155

Proof of upper bound: Consider the following communication protocol Π∗ ∈ Ainter(B,P):

(i) Each machine i ∈ [m] computes its local minimum a
(i)
j = min{X(i,k)

j : k ∈ [n]} for each
coordinate j ∈ [d].

(ii) Machine 1 broadcasts the vector a(1), where each of its components is quantized to
accuracy (mn)−2 in [−2, 2], rounding down, using 2d log2(2mn) bits. Upon receiving the

broadcast, all machines initialize global minimum variables sj ← a
(1)
j for j = 1, . . . , d.

(iii) In the order i = 2, 3, . . . ,m, machine i performs the following operations:

(i) Find all indices j such that a
(i)
j < sj, calling this set Ji. For each index j ∈

Ji, machine i updates sj ← a
(i)
j , and then broadcasts the list of indices Ji

(which requires |Ji| ⌈log2 d⌉ bits) and the associated values sj, using a total of
|Ji| ⌈log2 d⌉+ 2|Ji| log(2mn) bits.

(ii) All other machines update their local vectors s after receiving machine i’s update.

(iv) One machine outputs Ŵθ = s+ 1.

Using the protocol Π∗ above, it is clear that for each j ∈ [d] we have computed the global
minimum

s∗j = min
{
X

(i,k)
j | i ∈ [m], k ∈ [n]

}

to within accuracy 1/(mn)2 (because of quantization). As a consequence, classical conver-

gence analyses (e.g. [119]) yield that the estimator Ŵθ = s+1 achieves the minimax optimal

convergence rate E[‖Ŵθ − θ‖22] ≤ c d
(mn)2

, where c > 0 is a numerical constant.
It remains to understand the communication complexity of the protocol Π∗. To do so,

we study steps 2 and 3. In Step 2, machine 1 sends a 2d log2(2mn)-bit message as Y1. In
Step 3, machine i sends |Ji|(⌈log2 d⌉+ 2 log2(2mn)) bits, that is, at most

d∑

j=1

1(
a
(i)
j <min{a(1)j ,...,a

(i−1)
j }

)(⌈log2 d⌉+ 2 log2(2mn))

bits, as no message is sent for index j if a
(i)
j ≥ min{a(1)j , . . . , a

(i−1)
j }. By inspection, this event

happens with probability bounded by 1/i, so we find that the expected length of message Yi
is

E[Li] ≤
d(⌈log2 d⌉+ 2 log2(2mn))

i
.

Putting all pieces together, we obtain that

E[L] =
m∑

i=1

E[Li] ≤ 2d log(2mn) +
m∑

i=2

d(⌈log2 d⌉+ 2 log2(2mn))

i

≤ d
[
2 log2(2mn) + log(m)(⌈log d⌉+ 2 log2(2mn))

]
.

156

6.3.6 Proof of Theorem 11

As in the proof of Theorem 10, we choose V ∈ {−1, 1}d uniformly at random, and for some
δ > 0 to be chosen, we define the parameter vector θ := δV . Suppose that machine i draws
a sample X(i) ∈ R

d×n of size n i.i.d. according to a N(θ, σ2Id×d) distribution. We denote the
full sample—across all machines—along dimension j by Xj . In addition, for each j ∈ [d], we
let V\j denote the coordinates of V ∈ {−1, 1}d except the jth coordinate.

Although the local samples are independent, since we now allow for interactive protocols,
the messages can be dependent: the sequence of random variables Y = (Y1, . . . , YT) is
generated in such a way that the distribution of Yt is (X

(it), Y1:t−1)-measurable, where it ∈
{1, . . . ,m} is the machine index upon which Yt is based (i.e. the machine sending message
Yt). We assume without loss of generality that the sequence {i1, i2, . . . , } is fixed in advance:
if the choice of index it is not fixed but chosen based on Y1:t−1 and X, we simply say there
exists a default value (say no communication or Yt =⊥) that indicates “nothing” and has no
associated bit cost.

To prove our result, we require an analogue of Lemma 29 (cf. the proof of Theorem 10).
Assuming temporarily that d = 1, we prove our analogue for one-dimensional interactive pro-
tocols, and in the sequel, we show how it is possible to we reduce multi-dimension problems
to this statement. As in the proof of Theorem 10, we abstract a bit from our specific setting,
instead assuming a likelihood ratio constraint, and provide a data processing inequality for
our setting. Let V be a Bernoulli variable uniformly distributed on {−1, 1}, and let PX(i)

denote the probability measure of the ith sample X(i) ∈ R
n. Suppose there is a (measurable)

set G such that for any ν, ν ′ ∈ {−1, 1}, we have

sup
S∈σ(G)

PX(i)(S | ν)
PX(i)(S | ν ′) ≤ eα. (6.23)

Finally, let E be a {0, 1}-valued indicator variable for the event ∩m
i=1{X(i) ∈ G}.

Lemma 32. Under the previously stated conditions, we have

I(V ;Y) ≤ 2
(
e4α − 1

)2
I(X;Y) +H(E) + P (E = 0).

See Section 6.4.4.1 for the proof.
Using this lemma as a building block, we turn to the case that X(i) is d-dimensional.

Making an explicit choice of the set G, we obtain the following concrete bound on the
mutual information. The lemma applies to any pair (a, δ) of non-negative reals such that

√
naδ

σ2
≤ 1

4
and a ≥ δ

√
n,

and, as in Lemma 30, involves the binary entropy function h2(p) := −p log(p)−(1−p) log(1−
p).

157

Lemma 33. Under the preceding conditions, we have

I(Vj;Y | V\j) ≤ 128
δ2na2

σ4
I(Xj ;Y | V\j) +mh2(p

∗) +mp∗

where p∗ := min
{
2 exp

(
− (a−√

nδ)2

2σ2

)
, 1
2

}
.

We prove the lemma in Section 6.4.4.2.
To apply Lemma 33, we require two further intermediate bounds on mutual information

terms. By the chain rule for mutual information [53], we have

I(V ;Y) =
d∑

j=1

I(Vj ;Y | V1:j−1) =
d∑

j=1

[H(Vj | V1:j−1)−H(Vj | Y, V1:j−1)]

(i)
=

d∑

j=1

[H(Vj | V\j)−H(Vj | Y, V1:j−1)],

where equality (i) follows since the variable Vj is independent of V\j . Since conditioning can
only reduce entropy, we have H(Vj | Y, V1:j−1) ≥ H(Vj | Y, V\j), and hence

I(V ;Y) ≤
d∑

j=1

[H(Vj | V\j)−H(Vj | Y, V\j)] =
d∑

j=1

I(Vj;Y | V\j). (6.24)

Turning to our second intermediate bound, by the definition of the conditional mutual
information, we have

d∑

j=1

I(Xj;Y | V−j) =
d∑

j=1

[H(Xj | V\j)−H(Xj | Y, V\j)]

(i)
= H(X)−

d∑

j=1

H(Xj | Y, V\j)

(ii)

≤ H(X)−
d∑

j=1

H(Xj | Y, V)

(iii)

≤ H(X)−H(X | Y, V) = I(X;Y, V),

where equality (i) follows by the independence of Xj and V\j , inequality (ii) because con-
ditioning reduces entropy, and inequality (iii) because H(X | Y, V) ≤ ∑j H(Xj | Y, V).
Noting that I(X;V, Y) ≤ H(V, Y) ≤ H(Y) + d, we conclude that

d∑

j=1

I(Xj ;Y | V\j) ≤ I(X;V, Y) ≤ H(Y) + d. (6.25)

158

We can now complete the proof of the theorem. Combining inequalities (6.24) and (6.25)
with Lemma 33 yields

I(V ;Y) ≤ 128
δ2na2

σ4
(H(Y) + d) +md h2(p

∗) +mdp∗, (6.26)

where we recall that p∗ = {2 exp
(
− (a−√

nδ)2

2σ2

)
, 1
2
}.

Inequality (6.26) is the analog of inequality (6.19b) in the proof of Theorem 10; accord-
ingly, we may follow the same steps to complete the proof. The case d < 10 is entirely
analogous; the case d ≥ 10 involves a few minor differences that we describe here.

Setting a = 4σ
√
logm, choosing some δ in the interval [0, σ

16
√
n logm

], and then applying

the bound (6.26), we find that

I(V ;Y) ≤ δ2
128 · 16n logm

σ2
(H(Y) + d) + d

(
2

49
+ 2 · 10−5

)
.

Combining this upper bound on the mutual information with Lemmas 25 and 26, we find
that

M
inter

n,m (θ,P , B) ≥ δ2(⌊d/6⌋+ 1)

[
1

3
− (128 · 16 · 6)δ2 (H(Y) + d)n logm

dσ2

]

≥ δ2(⌊d/6⌋+ 1)

[
1

3
− (128 · 16 · 6)δ2 (B + d)n logm

dσ2

]
,

where the second step follows since H(Y) ≤ B, by the source coding theorem [53]. Setting

δ2 = min

{
1,

σ2

256n logm
,

dσ2

2048 · 36 · n(B + d) logm

}
= min

{
1,

dσ2

2048 · 36 · n(B + d) logm

}
,

we obtain

M
inter

n,m (θ,P , B) ≥ δ2
⌊d/6⌋+ 1

6
= min

{
1,

dσ2

2048 · 36 · n(B + d) logm

} ⌊d/6⌋+ 1

6

Noting that Minter

n,m (θ,P , B) ≥M
inter

n,m (θ,P ,∞) & σ2d
nm

completes the proof.

6.4 Proofs of technical results

6.4.1 Contractions in total variation distance

As noted in the main body of the chapter, our results rely on certain quantitative data
processing inequalities. They are inspired by results on information contraction under privacy
constraints developed by a subset of the current authors (Duchi et al. [66]). In this section,

159

A B

C D

Figure 6.1: Graphical model for Lemma 34

we present a technical result—a contraction in total variation distance—that underlies many
of our proofs of the data processing inequalities (Lemmas 27, 29, and 32).

Consider a random vector (A,B,C,D) with joint distribution PA,B,C,D, where A, C and
D take on discrete values. Denoting the conditional distribution of A given B by PA|B,
suppose that (A,B,C,D) respect the conditional independence properties defined by the
directed graphical model in Figure 6.1. In analytical terms, we have

PA,B,C,D = PAPB|APC|A,BPD|B,C . (6.27)

In addition, we assume that there exist functions Ψ1 : A×σ(C)→ R+ and Ψ2 : B×σ(C)→ R+

such that
PC(S | A,B) = Ψ1(A, S)Ψ2(B, S) (6.28)

for any (measureable) set S in the range C of C. Since C is assumed discrete, we abuse
notation and write P (C = c | A,B) = Ψ1(A, c)Ψ2(B, c). Lastly, suppose that

sup
S∈σ(B)

PB(S | A = a)

PB(S | A = a′)
≤ exp(α) for all a, a′ ∈ A. (6.29)

The following lemma applies to the absolute difference

∆(a, C,D) :=
∣∣P (A = a | C,D)− P (A = a | C)

∣∣.

Lemma 34. Under conditions (6.27), (6.28), and (6.29), we have

∆(a, C,D) ≤ 2
(
e2α − 1

)
min

{
P (A = a | C), P (A = a | C,D)

}
‖PB(· | C,D)− PB(· | C)‖TV .

Proof By assumption, A is independent of D given {B,C}. Thus we may write

∆(a, C,D) =
∣∣∣
∫
P (A = a | B = b, C)

(
dPB(b | C,D)− dPB(b | C)

)∣∣∣.

160

Combining this equation with the relation
∫
B P (A = a | C)

(
dPB(b | C,D)−dPB(b | C)

)
= 0,

we find that

∆(a, C,D) =
∣∣∣
∫

B

(
P (A = a | B = b, C)− P (A = a | C)

)(
dPB(b | C,D)− dPB(b | C)

)∣∣∣.

Using the fact that |
∫
f(b)dµ(b)| ≤ supb{|f(b)|}

∫
|dµ(b)| for any signed measure µ on B,

we conclude from the previous equality that for any version PA(· | B,C) of the conditional
probability of A given {B,C} that since

∫
|dµ| = ‖µ‖TV,

∆(a, C,D) ≤ 2 sup
b∈B
{|P (A = a | B = b, C)− P (A = a | C)|} ‖PB(· | C,D)− PB(· | C)‖TV .

Thus, to prove the lemma, it is sufficient to show2 that for any b ∈ B

|P (A = a | B = b, C)− P (A = a | C)| ≤ (e2α − 1)min{P (A = a | C), P (A = a | C,D)}.
(6.30)

To prove this upper bound, we consider the joint distribution (6.27) and likelihood ratio
bound (6.29). The distributions {PB(· | A = a)}a∈A are all absolutely continuous with
respect to one another by assumption (6.29), so it is no loss of generality to assume that
there exists a density pB(· | A = a) for which P (B ∈ S | A = a) =

∫
pB(b | A = a)dµ(b), for

some fixed measure µ and for which the ratio pB(b | A = a)/pB(b | A = a′) ∈ [e−α, eα] for all
b. By elementary conditioning we have for any SB ∈ σ(B) and c ∈ C that

P (A = a | B ∈ SB, C = c)

=
P (A = a,B ∈ SB, C = c)

P (B ∈ SB, C = c)

=
P (B ∈ SB, C = c | A = a)P (A = a)∑

a′∈A P (A = a′)P (B ∈ SB, C = c | A = a′)

=
P (A = a)

∫
SB
P (C = c | B = b, A = a)pB(b | A = a)dµ(b)

∑
a′∈A P (A = a′)

∫
SB
P (C = c | B = b, A = a′)pB(b | A = a′)dµ(b)

,

where for the last equality we used the conditional independence assumptions (6.27). But
now we recall the decomposition formula (6.28), and we can express the likelihood functions
by

P (A = a | B ∈ SB, C = c) =
P (A = a)

∫
SB

Ψ1(a, c)Ψ2(b, c)pB(b | A = a)dµ(b)
∑

a′ P (A = a′)
∫
SB

Ψ1(a′, c)Ψ2(b, c)pB(b | A = a′)dµ(b)
.

As a consequence, there is a version of the conditional distribution of A given B and C such
that

P (A = a | B = b, C = c) =
P (A = a)Ψ1(a, c)pB(b | A = a)∑
a′ P (A = a′)Ψ1(a′, c)pB(b | A = a′)

. (6.31)

2 If P (A = a | C) is undefined, we simply set it to have value 1 and assign P (A = a | B,C) = 1 as well.

161

Define the shorthand

β =
P (A = a)Ψ1(a, c)∑

a′∈A P (A = a′)Ψ1(a′, c)
.

We claim that

e−αβ ≤ P (A = a | B = b, C = c) ≤ eαβ. (6.32)

Assuming the correctness of bound (6.32), we establish inequality (6.30). Indeed, P (A = a |
C = c) is a weighted average of P (A = a | B = b, C = c), so we also have the same upper
and lower bound for P (A = a | C), that is

e−αβ ≤ P (A = a | C) ≤ eαβ.

The conditional independence assumption that A is independent of D given B,C (recall
Figure 6.1 and the product (6.27)) implies

P (A = a | C = c,D = d) =

∫

B
P (A = a | B = b, C = c,D = d)dPB(b | C = c,D = d)

=

∫

B
P (A = a | B = b, C = c)dPB(b | C = c,D = d),

and the final integrand belongs to β[e−α, eα]. Combining the preceding three displayed
expressions, we find that

|P (A = a | B = b, C)− P (A = a | C)| ≤
(
eα − e−α

)
β

≤
(
eα − e−α

)
eα min

{
P (A = a | C), P (A = a | C,D)

}
.

This completes the proof of the upper bound (6.30).
It remains to prove inequality (6.32). We observe from expression (6.31) that

P (A = a | B = b, C) =
P (A = a)Ψ1(a, C)∑

a′∈A P (A = a′)Ψ1(a′, C)
pB(b|A=a′)
pB(b|A=a)

.

By the likelihood ratio bound (6.29), we have pB(b | A = a′)/pB(b | A = a) ∈ [e−α, eα], and
combining this with the above equation yields inequality (6.32).

6.4.2 Auxiliary results for Proposition 2

In this appendix, we collect the proofs of auxiliary results involved in the proof of Proposi-
tion 2.

162

6.4.2.1 Proof of Lemma 27

Let Y = Yi; throughout the proof we suppress the dependence on the index i (and similarly
let X = X(i) denote a single fixed sample). We begin with the observation that by the chain
rule for mutual information,

I(V ;Y) =
d∑

j=1

I(Vj;Y | V1:j−1).

Using the definition of mutual information and non-negativity of the KL-divergence, we have

I(Vj;Y | V1:j−1) = EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
| V1:j−1

]]

≤ EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)

+Dkl

(
PVj

(· | V1:j−1)||PVj
(· | Y, V1:j−1)

)
| V1:j−1

]]
.

Now, we require an argument that builds off of our technical Lemma 34. We claim that
Lemma 34 implies that

|P (Vj = νj | V1:j−1, Y)− P (Vj = νj | V1:j−1)|
≤ 2(e2α − 1)min {P (Vj = νj | V1:j−1, Y), P (Vj = νj | V1:j−1)}
×
∥∥PXj

(· | V1:j−1, Y)− PXj
(· | V1:j−1)

∥∥
TV
. (6.33)

Indeed, making the identification

Vj → A, Xj → B, V1:j−1 → C, Y → D,

the random variables satisfy the condition (6.27) clearly, condition (6.28) because V1:j−1 is
independent of Vj and Xj , and condition (6.29) by construction. This gives inequality (6.33)
by our independence assumptions. Expanding our KL divergence bound, we have

Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
+Dkl

(
PVj

(· | V1:j−1)||PVj
(· | Y, V1:j−1)

)

=
∑

νj

(
PVj

(νj | Y, V1:j−1)− PVj
(νj | V1:j−1)

)
log

PVj
(νj | Y, V1:j−1)

PVj
(νj | V1:j−1)

.

Now, using the elementary inequality for a, b ≥ 0 that
∣∣∣log a

b

∣∣∣ ≤ |a− b|
min{a, b} ,

inequality (6.33) implies that

(
PVj

(νj | Y, V1:j−1)− PVj
(νj | V1:j−1)

)
log

PVj
(νj | Y, V1:j−1)

PVj
(νj | V1:j−1)

≤ (PVj
(νj | Y, V1:j−1)− PVj

(νj | V1:j−1))
2

min{PVj
(νj | Y, V1:j−1), PVj

(νj | V1:j−1)}
≤ 4(e2α − 1)2min

{
PVj

(νj | Y, V1:j−1), PVj
(νj | V1:j−1)

}∥∥PXj
(· | V1:j−1, Y)− PXj

(· | V1:j−1)
∥∥2
TV
.

163

Substituting this into our bound on KL-divergence, we obtain

I(Vj;Y | V1:j−1) = EV1:j−1

[
EY

[
Dkl

(
PVj

(· | Y, V1:j−1)||PVj
(· | V1:j−1)

)
| V1:j−1

]]

≤ 4(e2α − 1)2EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y)− PXj

(· | V1:j−1)
∥∥2
TV
| V1:j−1

]]
.

Using Pinsker’s inequality, we then find that

EV1:j−1

[
EY

[∥∥PXj
(· | V1:j−1, Y)− PXj

(· | V1:j−1)
∥∥2
TV
| V1:j−1

]]

≤ 1

2
EV1:j−1

[
EY

[
Dkl

(
PXj

(· | Y, V1:j−1)||PXj
(· | V1:j−1)

)
| V1:j−1

]]
=

1

2
I(Xj;Y | V1:j−1).

In particular, we have

I(Vj;Y | V1:j−1) ≤ 2
(
e2α − 1

)2
I(Xj;Y | V1:j−1). (6.34)

Lastly, we argue that I(Xj;Y | V1:j−1) ≤ I(Xj;Y | X1:j−1). Indeed, we have by definition
that

I(Xj;Y | V1:j−1)
(i)
= H(Xj)−H(Xj | Y, V1:j−1)

(ii)

≤ H(Xj)−H(Xj | Y, V1:j−1, X1:j−1)

(iii)
= H(Xj | X1:j−1)−H(Xj | Y,X1:j−1) = I(Xj ;Y | X1:j−1).

Here, equality (i) follows since Xj is independent of V1:j−1, inequality (ii) because condition-
ing reduces entropy, and equality (iii) because Xj is independent of X1:j−1. Thus

I(V ;Y) =
d∑

j=1

I(Vj ;Y | V1:j−1) ≤ 2(e2α − 1)2
d∑

j=1

I(Xj;Y | X1:j−1) = 2(e2α − 1)2I(X;Y),

which completes the proof.

6.4.2.2 Proof of Lemma 28

By assumption, the message Yi is constructed based only on X(i). Therefore, we have

I(V ;Y1:m) =
m∑

i=1

I(V ;Yi | Y1:i−1) =
m∑

i=1

H(Yi | Y1:i−1)−H(Yi | V, Y1:i−1)

≤
m∑

i=1

H(Yi)−H(Yi | V, Y1:i−1)

=
m∑

i=1

H(Yi)−H(Yi | V) =
m∑

i=1

I(V ;Yi)

where we have used that conditioning reduces entropy and Yi is conditionally independent
of Y1:i−1 given V .

164

6.4.2.3 Proof of inequality (6.16)

Let Pν be shorthand for PY (· | V = ν). The triangle inequality implies that

‖Pν − Pν′‖TV ≤ ‖Pν − (1/2)(Pν + Pν′)‖TV +
1

2
‖Pν − Pν′‖TV ,

and similarly swapping the roles of ν ′ and ν, whence

‖Pν − Pν′‖TV ≤ 2min{‖Pν − (1/2)(Pν′ + Pν)‖TV , ‖Pν′ − (1/2)(Pν′ + Pν)‖TV}.

By Pinsker’s inequality, we thus have the upper bound

‖Pν − Pν′‖2TV ≤ 2min{Dkl (Pν ||(1/2)(Pν + Pν′)) , Dkl (Pν′ ||(1/2)(Pν + Pν′))}
≤ Dkl (Pν ||(1/2)(Pν + Pν′)) +Dkl (Pν′ ||(1/2)(Pν + Pν′)) = 2I(Y ;V)

by the definition of mutual information.

6.4.3 Auxiliary results for Theorem 10

In this appendix, we collect the proofs of auxiliary results involved in the proof of Theorem 10.

6.4.3.1 Proof of Lemma 29

This proof is similar to that Lemma 27, but we must be careful when conditioning on events
of the form X

(i)
j ∈ Gj. For notational simplicity, we again suppress all dependence of X and

Y on the machine index i. Our goal is to prove that

I(Vj ;Y | V1:j−1) ≤ H(Ej) + P (Ej = 0) + 2
(
e4α − 1

)2
I(Xj;Y | V1:j−1). (6.35)

Up to the additive terms, this is equivalent to the earlier bound (6.34) in the proof of
Lemma 27, so that proceeding mutatis mutandis completes the proof. We now turn to
proving inequality (6.35).

We begin by noting that I(X;Y | Z) ≤ I(X,W ;Y | Z) for any random variables
W,X, Y, Z, because conditioning reduces entropy:

I(X;Y | Z) = H(Y | Z)−H(Y | X,Z) ≤ H(Y | Z)−H(Y | W,X,Z) = I(X,W ;Y | Z).
(6.36)

As a consequence, recalling the random variable Ej (the indicator of Xj ∈ Gj), we have

I(Vj;Y | V1:j−1) ≤ I(Vj;Y,Ej | V1:j−1) = I(Vj;Y | Ej, V1:j−1) + I(Vj;Ej | V1:j−1)

≤ I(Vj ;Y | Ej, V1:j−1) +H(Ej | V1:j−1)

= I(Vj;Y | Ej, V1:j−1) +H(Ej), (6.37)

where the final equality follows because Ej is independent of V1:j−1. Comparing to inequal-
ity (6.35), we need only control the first term in the bound (6.37).

165

To that end, note that given Ej, the variable Vj is independent of V1:j−1, X1:j−1, Vj+1:d,
and Xj+1:d. Moreover, by the assumption in the lemma we have for any S ∈ σ(Gj) that

PXj
(S | V = ν, Ej = 1)

PXj
(S | V = ν ′, Ej = 1)

=
PXj

(S | V = ν)

PXj
(Xj ∈ Gj | V = ν)

PXj
(Xj ∈ Gj | V = ν ′)

PXj
(Xj ∈ S | V = ν ′)

≤ exp(2α).

Applying Lemma 34 yields that the difference

∆j := P (Vj = νj | V1:j−1, Y, Ej = 1)− P (Vj = νj | V1:j−1, Ej = 1)

is bounded as

|∆j| ≤ 2
(
e4α − 1

) ∥∥PXj
(· | V1:j−1, Y, Ej = 1)− PXj

(· | V1:j−1, Ej = 1)
∥∥
TV

×min
{
P (Vj = νj | V1:j−1, Y, Ej = 1), P (Vj = νj | V1:j−1, Ej = 1)

}

(cf. the inequality (6.33) in the proof of Lemma 27). Proceeding as in the proof of Lemma 27,
this expression leads to the bound

I(Vj;Y | V1:j−1, Ej = 1) ≤ 2
(
e4α − 1

)2
I(Xj;Y | V1:j−1, Ej = 1). (6.38)

By the definition of conditional mutual information,

I(Vj;Y | Ej, V1:j−1) = P (Ej = 1)I(Vj;Y | V1:j−1, Ej = 1) + P (Ej = 0)I(Vj;Y | V1:j−1, Ej = 0)

≤ I(Vj;Y | V1:j−1, Ej = 1) + P (Ej = 0) log 2,

where the inequality follows because Vj ∈ {−1, 1}. But combining this inequality with the
bounds (6.38) and (6.37) gives the desired result (6.35).

6.4.3.2 Proof of Lemma 30

In order to prove inequality (6.19a), we note that V → X(i) → Yi forms a Markov chain.
Thus, the classical data-processing inequality [53] implies that

I(V ;Yi) ≤ I(V ;X(i)) ≤
ni∑

k=1

I(V ;X(i,k)).

Let Pν denote the conditional distribution of X(i,k) given V = ν. Then the convexity of the
KL-divergence establishes inequality (6.19a) via

I(V ;X(i,k)) ≤ 1

|V|2
∑

ν,ν′∈V
Dkl (Pν ||Pν′) =

δ2

2σ2

1

|V|2
∑

ν,ν′∈V
‖ν − ν ′‖22 =

dδ2

σ2
.

To prove inequality (6.19b), we apply Lemma 29. First, consider two one-dimensional
normal distributions, each with ni independent observations and variance σ2, but where one
has mean δ and the other mean −δ. For fixed a ≥ 0, the ratio of their densities is

exp(− 1
2σ2

∑ni

l=1(xl − δ)2)
exp(− 1

2σ2

∑ni

l=1(xl + δ)2)
= exp

(
δ

σ2

ni∑

l=1

xl

)
≤ exp

(√
niδa

σ2

)

166

whenever |∑l xl| ≤
√
nia. As a consequence, we see that by taking the sets

Gj =

{
x ∈ R

ni :

∣∣∣∣
ni∑

l=1

xl

∣∣∣∣ ≤
√
nia

}
,

we satisfy the conditions of Lemma 29 with the quantity α defined as α =
√
niδa/σ

2. In
addition, when α ≤ 1.2564, we have exp(α)− 1 ≤ 2α, so under the conditions of the lemma,
exp(4α) − 1 = exp(4

√
niδa/σ

2) − 1 ≤ 8
√
niδa/σ

2. Recalling the definition of the indicator

random variable Ej = 1{X(i)
j ∈ Gj} from Lemma 29, we obtain

I(V ;Yi) ≤ 128
δ2a2

σ4
niI(X

(i);Yi) +
d∑

j=1

H(Ej) +
d∑

j=1

P (Ej = 0). (6.39)

Comparing this inequality with inequality (6.19b), we see that we must bound the probability
of the event Ej = 0.

Bounding P (Ej = 0) is not challenging, however. From standard Gaussian tail bounds,
we have for Zl distributed i.i.d. according to N(δ, σ2) that

P (Ej = 0) = P

(∣∣∣∣
ni∑

l=1

Zl

∣∣∣∣ ≥
√
nia

)

= P

(ni∑

l=1

(Zl − δ) ≥
√
nia− nδ

)
+ P

(ni∑

l=1

(Zl − δ) ≤ −
√
nia− nδ

)

≤ 2 exp

(
− (a−√niδ)

2

2σ2

)
. (6.40)

Since h2(p) ≤ h2(
1
2
) and I(V ;Yi) ≤ d log 2 regardless, this provides the bounds on the entropy

and probability terms in inequality (6.39) to yield the result (6.19b).

6.4.3.3 Proof of Lemma 31

Combining inequalities (6.19a) and (6.19b) yields

I(V ;Yi) ≤
niδ

2

σ2
min

{
128

a2

σ2
H(Yi), d

}
+ d h2

(
min

{
2 exp

(
− (a−√niδ)

2

2σ2

)
,
1

2

})

+ 2d exp

(
− (a−√niδ)

2

2σ2

)
,

(6.41)

true for all a, δ ≥ 0 and ni, σ
2 such that

√
niaδ ≤ 1.2564σ2/4 and a ≥ δ

√
ni.

Now, we consider each of the terms in the bound in inequality (6.41) in turn, finding
settings of δ and a so that each term is small. Let us set a = 4σ

√
logm. We begin with the

third term in the bound (6.41), where we note that by definining δ3 as the positive root of

δ23 :=
σ2

16 · 16 log(m)maxi ni

, (6.42)

167

then for 0 ≤ δ ≤ δ3 the conditions
√
niaδ

σ2 ≤ 1.2564
4

and
√
niδ ≤ a in Lemma 30 are satisfied.

In addition, we have (a−√niδ)
2 ≥ (4− 1/256)2σ2 logm ≥ 15σ2 logm for 0 ≤ δ ≤ δ3, so for

such δ

m∑

i=1

2 exp

(
− (a−√niδ)

2

2σ2

)
≤ 2m exp(−(15/2) logm) =

2

m15/2
< 2 · 10−5.

Secondly, we have h2(q) ≤ (6/5)
√
q for q ≥ 0. As a consequence, we see that for δ2 chosen

identically to the choice (6.42) for δ3, we have

m∑

i=1

2h2

(
2 exp

(
− (a−√niδ2)

2

2σ2

))
≤ 12m

5

√
2 exp(−(15/4) logm) <

2

49
.

In particular, with the choice a = 4σ
√
logm and for all 0 ≤ δ ≤ δ3, inequality (6.41) implies

the desired bound (6.20).

6.4.4 Auxiliary results for Theorem 11

In this appendix, we collect the proofs of auxiliary results for Theorem 11.

6.4.4.1 Proof of Lemma 32

We state an intermediate claim from which Lemma 32 follows quickly. Let us temporarily
assume that the set G in the statement of the lemma is G = range(X(i)), so that there is no
restriction on the distributions PX(i) , that is, the likelihood ratio bound (6.23) holds for all
measurable sets S. We claim that in this case,

I(V ;Y) ≤ 2
(
e2α − 1

)2
I(X;Y). (6.43)

Assuming that we have established inequality (6.43), the proof of Lemma 32 follows, mutatis
mutandis, as in the proof of Lemma 29 from Lemma 27.

Let us now prove the claim (6.43). By the chain-rule for mutual information, we have

I(V ;Y) =
T∑

t=1

I(V ;Yt | Y1:t−1).

Let PYt(· | Y1:t−1) denote the (marginal) distribution of Yt given Y1:t−1 and define PV (· | Y1:t)
to be the distribution of V conditional on Y1:t. Then we have by marginalization that

PV (· | Y1:t−1) =

∫
PV (· | Y1:t−1, yt)dPYt(yt | Y1:t−1)

and thus

I(V ;Yt | Y1:t−1) = EY1:t−1

[
EYt

[
Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) | Y1:t−1

]]
.

168

We now bound the above KL divergence using the assumed likelihood ratio bound on PX in
the lemma (when G = X , the entire sample space).

By the nonnegativity of the KL divergence, we have

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1))

≤ Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) +Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))

=
∑

ν∈V

(
pV (ν | Y1:t−1)− pV (ν | Y1:t)

)
log

pV (ν | Y1:t−1)

pV (ν | Y1:t)
where pV denotes the p.m.f. of V .

Next we claim that the difference ∆t :=
∣∣pV (ν | Y1:t−1) − pV (ν | Y1:t)

∣∣ is upper bounded
as

|∆t| ≤ 2
(
e2nα − 1

)
min

{
pV (ν | Y1:t−1), pV (ν | Y1:t)

}
‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖TV .

(6.44)

Deferring the proof of this claim to the end of this section, we give the remainder of the
proof. First, by a first-order convexity argument, we have

| log a− log b| ≤ |a− b|
min{a, b} for any a, b > 0.

Combining this bound with inequality (6.44) yields

∆t log
pV (ν | Y1:t−1)

pV (ν | Y1:t)
≤ ∆2

t

min{pV (ν | Y1:t−1), pV (ν | Y1:t)}
≤ 4
(
e2nα − 1

)2
min

{
pV (ν | Y1:t−1), pV (ν | Y1:t)

}
‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV .

Since pV is a p.m.f., we have the following upper bound on the symmetrized KL divergence
between PV (· | Y1:t) and PV (· | Y1:t−1):

Dkl (PV (· | Y1:t)||PV (· | Y1:t−1)) +Dkl (PV (· | Y1:t−1)||PV (· | Y1:t))
≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

∑

ν∈V
min

{
pV (ν | Y1:t−1), pV (ν | Y1:t)

}

≤ 4
(
e2nα − 1

)2 ‖PX(it)(· | Y1:t)− PX(it)(· | Y1:t−1)‖2TV

≤ 1

2
Dkl (PX(it)(· | Y1:t)||PX(it)(· | Y1:t−1)) ,

where the final step follows from Pinsker’s inequality. Taking expectations, we have

1

2
EY1:t−1

[
EYt

[
Dkl (PX(it)(· | Y1:t)||PX(it)(· | Y1:t−1)) | Y1:t−1

]]
=

1

2
I(X(it);Yt | Y1:t−1).

Finally, because conditioning reduces entropy (recall inequality (6.36)), we have

I(X(it);Yt | Y1:t−1) ≤ I(X;Yt | Y1:t−1).

By the chain rule for mutual information, we have
∑T

t=1 I(X;Yt | Y1:t−1) = I(X;Y), so the
proof is complete.

169

Proof of inequality (6.44) It remains to prove inequality (6.44): in order to do so, we
establish a one-to-one correspondence between the variables in Lemma 34 and the variables
in inequality (6.44). Let us begin by making the identifications

V → A X(it) → B Y1:t−1 → C Yt → D.

For Lemma 34 to hold, we must verify conditions (6.27), (6.28), and (6.29). For condi-
tion (6.27) to hold, Yt must be independent of V given {Y1:t−1, X

(it)}. Since the distribution
of PYt(· | Y1:t−1, X

(it)) is measurable-{Y1:t−1, X
(it)}, condition (6.29) is satisfied by the as-

sumption in Lemma 32.
Finally, for condition (6.28) to hold, we must be able to factor the conditional probability

of Y1:t−1 given {V,X(it)} as

P (Y1:t−1 = y1:t−1 | V,X(it)) = Ψ1(V, y1:t−1)Ψ2(X
(it), y1:t−1). (6.45)

To prove this decomposition, notice that

P (Y1:t−1 = y1:t−1 | V,X(it)) =
t−1∏

k=1

P (Yk = yk | Y1:k−1, V,X
(it)).

For any k ∈ {1, . . . , t− 1}, if ik = it—that is, the message Yk is generated based on sample
X(it) = X(ik)—then Yk is independent of V given {X(it), Y1:k−1}. Thus, PYk

(· | Y1:k−1, V,X
(it))

is measurable-{X(it), Y1:k−1}. If the kth index ik 6= it, then Yk is independent of X(it) given
{Y1:k−1, V } by construction, which means PYk

(· | Y1:k−1, V,X
(it)) = PYk

(· | Y1:k−1, V), thereby
verifying the decomposition (6.45). Thus, we have verified that each of the conditions of
Lemma 34 holds, so that inequality (6.44) follows.

6.4.4.2 Proof of Lemma 33

To prove Lemma 33, fix an arbitrary realization ν\j ∈ {−1, 1}d−1 of V\j . Conditioning on
V\j = ν\j, note that νj ∈ {−1, 1}, and consider the distributions of the jth coordinate of

each (local) sample X
(i)
j ∈ R

n,

P
X

(i)
j
(· | Vj = νj, V\j = ν\j) and P

X
(i)
j
(· | Vj = −νj, V\j = ν\j).

We claim that these distributions—with appropriate constants—satisfy the conditions of
Lemma 32. Indeed, fix a ≥ 0, take the set G = {x ∈ R

n | ‖x‖1 ≤
√
na}, and set the

log-likelihood ratio parameter α =
√
nδa/σ2. Then the random variable Ej = 1 if X

(i)
j ∈ G

for all i = 1, . . . ,m, and we may apply precisely proof of Lemma 32 (we still obtain the
factorization (6.45) by conditioning everything on V\j = ν\j). Thus we obtain

I(Vj;Y | V\j = ν\j) ≤ 2
(
e4α − 1

)2
I(Xj ;Y | V\j = ν\j)

+H(Ej | V\j = ν\j) + P (Ej = 0 | V\j = ν\j).
(6.46)

170

Of course, the event Ej is independent of V\j by construction, so that P (Ej = 0 | V\j) =
P (Ej = 0) and H(Ej | V\j = ν\j) = H(Ej), and standard Gaussian tail bounds (cf. the proof
of Lemma 30 and inequality (6.40)) imply that

H(Ej) ≤ mh2

(
2 exp

(
− (a−√nδ)2

2σ2

))
and P (Ej = 0) ≤ 2m exp

(
− (a−√nδ)2

2σ2

)
.

Thus by integrating over V\j = ν\j, inequality (6.46) implies the lemma.

171

Chapter 7

Communication complexity of matrix
rank estimation

In this chapter, we study a specific linear algebraic problem: computing the generalized
rank of a matrix. Given a parameter c ≥ 0, the generalized rank of an n × n positive
semidefinite matrix A corresponds to the number of eigenvalues that are larger than c. It
is denoted by rank(A, c), with the usual rank corresponding to the special case c = 0. Note
that the generalized rank of a matrix cannot be represented as a closed-form expression of
the matrix. In the distributed setting, the matrix A is stored across multiple machines, and
we are interested in the communication complexity of this problem.

Estimating the generalized rank of a matrix is useful for many applications. In the con-
text of large-scale principal component analysis (PCA) [67, 100], it is overly expensive to
compute the full eigendecomposition before deciding when to truncate it. Thus, an im-
portant first step is to estimate the rank of the matrix of interest in order to determine
how many dimensions will be sufficient to describe the data. The rank also provides use-
ful information for determining the tuning parameter of robust PCA [38] and collaborative
filtering algorithms [177, 173]. In the context of numerical linear algebra, a number of eigen-
solvers [182, 162, 176] for large-scale scientific applications are based on divide-and-conquer
paradigms. It is a prerequisite of these algorithms to know the approximate number of eigen-
values located in a given interval. Estimating the generalized rank of a matrix is also needed
in the context of sampling-based methods for randomized numerical linear algebra [83, 138].
For these methods, the rank of a matrix determines the number of samples required for a
desired approximation accuracy.

Motivated by large-scale data analysis problems, we study the generalized rank estimation
problem in a distributed setting, in which the matrix A can be decomposed as the the sum
of m matrices

A :=
m∑

i=1

Ai, (7.1)

where each matrix Ai is stored on a separate machine i. Thus, a distributed algorithm needs

172

to communicate between m machines to perform the estimation. There are other equivalent
formulations of this problem. For example, suppose that machine i has a design matrix
Xi ∈ R

n×Ni and we want to determine the rank of the aggregated design matrix

X := (X1, X2, . . . , Xm) ∈ R
n×N where N :=

∑m
i=1Ni.

Recall that the singular values of matrix X are equal to the square root of the eigenvalues
of the matrix XXT . If we define Ai := XiX

T
i , then equation (7.1) implies that

A =
m∑

i=1

Ai =
m∑

i=1

XiX
T
i = XXT .

Thus, determining the generalized rank of the matrix X reduces to the problem of deter-
mining the rank of the matrix A. In this chapter, we focus on the formulation given by
equation (7.1).

The standard way of computing the generalized matrix rank, or more generally of com-
puting the number of eigenvalues within a given interval, is to exploit Sylvester’s law of
inertia [77]. Concretely, if the matrix A − cI admits the decomposition A − cI = LDLT ,
where L is unit lower triangular and D is diagonal, then the number of eigenvalues of matrix
A that are greater than c is the same as the number of positive entries in the diagonal of
D. While this method yields an exact count, in the distributed setting it requires commu-
nicating the entire matrix A. Due to bandwidth limitations and network delays, the Θ(n2)
communication cost is a significant bottleneck on the algorithmic efficiency. For a matrix of
rank r, the power method [77] can be used to compute the top r eigenvalues, which reduces
the communication cost to Θ(rn). However, this cost is still prohibitive for moderate sizes
of r. Recently, Napoli et al. [150] studied a more efficient randomized approach for approx-
imating the eigenvalue counts based on Chebyshev polynomial approximation of high-pass
filters. When applying this algorithm to the distributed setting, the communication cost is
Θ(pn), where p is the degree of Chebyshev polynomials. However, the authors note that
polynomials of high degree can be necessary.

In this chapter, we study the communication complexity of distributed algorithms for the
problem of generalized rank estimation, in both the deterministic and randomized settings.
We establish upper bounds by deriving practical, communication-efficient algorithms, and
we also establish complexity-theoretic lower bounds. Our first main result shows that no
deterministic algorithm is efficient in terms of communication. In particular, communicating
Ω(n2) bits is necessary for all deterministic algorithms to approximate the matrix rank with
constant relative error. That such algorithms cannot be viewed as efficient is due to the
fact that by communicating O(n2) bits, we are able to compute all eigenvalues and the
corresponding eigenvectors. In contrast to the inefficiency of deterministic algorithms, we
propose a randomized algorithm that approximates matrix rank by communicating Õ(n)
bits. When the matrix is of rank r, the relative approximation error is 1/

√
r. Under the

same relative error, we show that Ω(n) bits of communication is necessary, establishing the
optimality of our algorithm. This is in contrast with the Ω(rn) communication complexity

173

lower bound for randomized PCA [101]. The difference shows that estimating the eigenvalue
count using a randomized algorithm is easier than estimating the top r eigenpairs.

7.1 Problem formulation

In this section, we begin with more details on the problem of estimating generalized matrix
ranks, as well as the notations on communication complexity.

7.1.1 Generalized matrix rank

Given an n× n positive semidefinite matrix A, we use σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) ≥ 0 to
denote its ordered eigenvalues. For a given constant c ≥ 0, the generalized rank of order c is
given by

rank(A, c) =
n∑

k=1

I[σk(A) > c], (7.2)

where I[σk(A) > c] is a 0-1-valued indicator function for the event that σk(A) is larger than
c. Since rank(A, 0) is equal to the usual rank of a matrix, we see the motivation for using
the generalized rank terminology. We assume that ‖A‖2 = σ1(A) ≤ 1 so that the problem
remains on a standardized scale.

In an m-machine distributed setting, the matrix A can be decomposed as a sum A =∑m
i=1Ai, where the n× n matrix Ai is stored on machine i. We study distributed protocols,

to be specified more precisely in the following section, in which each machine i performs
local computation involving the matrix Ai, and the machines then exchange messages so to
arrive at an estimate r̂(A) ∈ [n] := {0, . . . , n}. Our goal is to obtain an estimate that is
close to the rank of the matrix in the sense that

(1− δ)rank(A, c1) ≤ r̂(A) ≤ (1 + δ)rank(A, c2), (7.3)

where c1 > c2 ≥ 0 and δ ∈ [0, 1) are user-specified constants. The parameter δ ∈ [0, 1)
upper bounds the relative error of the approximation. The purpose of assuming different
thresholds c1 and c2 in bound (7.3) is to handle the ambiguous case when the matrix A has
many eigenvalues smaller but very close to c1. If we were to set c1 = c2, then any estimator
r̂(A) would be strictly prohibited to take these eigenvalues into account. However, since
these eigenvalues are so close to the threshold, distinguishing them from other eigenvalues
just above the threshold is obviously difficult (but for an uninteresting reason). Setting
c1 > c2 allows us to expose the more fundamental sources of difficulty in the problem of
estimating generalized matrix ranks.

174

7.1.2 Communication complexity

We have introduced the basic concepts of communication complexity in Chapter 2. In this
chapter, we adopt the bulk of the framework of communication complexity, but with one
minor twist in how we define “correctness” in computing the function. For our problem, each
machine is a player, and the ith player holds the matrix Ai. Our function of interest is given by
F (A1, . . . , Am) = rank(

∑m
i=1Ai). The public blackboard setting corresponds to a broadcast-

free model, in which each machine can send messages to a master node, then the master
node broadcasts the messages to all other machines without additional communication cost.

Let us now clarify the notion of “correctness” used in this chapter. In the standard com-
munication model, a protocol Π is said to correctly compute the function F if the output of
the protocol is exactly equal to F (A1, . . . , Am). In this chapter, we allow approximation er-
rors in the computation, as specified by the parameters (c1, c2), which loosen the matrix rank
to the generalized matrix ranks, and the tolerance parameter δ ∈ (0, 1). More specifically,
we say:

Definition 2. A protocol Π correctly computes the rank of the matrix A up to tolerances
(c1, c2, δ) if the output r̂(A) satisfies inequality (7.3).

Given this definition of correctness, we denote the deterministic communication com-
plexity of the rank estimation problem by D(c1, c2, δ), and the corresponding randomized
communication complexity by Rǫ(c1, c2, δ). The goal of this chapter is to study these two
quantities, especially their dependence on the dimension n of matrices.

In addition to allowing for approximation error, our analysis—in contrast to most classical
communication complexity—allows the input matrices {Ai}mi=1 to take real values. However,
doing so does not make the problem substantially harder. Indeed, in order to approximate
the matrices in elementwise ℓ∞-norm up to τ rounding error, it suffices to discretize each
matrix entry using O(log(1/τ)) bits. As we discuss in more detail in the sequel, this type of
discretization has little effect on the communication complexity.

7.2 Bounds for deterministic algorithms

We begin by studying the communication complexity of deterministic algorithms. Here
our main result shows that the trivial algorithm—the one in which each machine transmits
essentially its whole matrix—is optimal up to logarithmic factors. In the statement of the
theorem, we assume that the n-dimensional matrix A is known to have rank in the interval1

[r, 2r] for some integer r ≤ n/4.

Theorem 12. For matrices A with rank in the interval [r, 2r]:

(a) For all 0 ≤ c2 < c1 and δ ∈ (0, 1), we have D(c1, c2, δ) = O
(
mrn log

(
mrn
c1−c2

))
.

1We use an interval assumption, as the problem becomes trivial if the rank is fixed exactly.

175

(b) For two machines m = 2, constants 0 ≤ c2 < c1 < 1/20 and δ ∈ (0, 1/12), we have
D(c1, c2, δ) = Ω(rn).

When the matrix A has rank r that grows proportionally with its dimension n, the lower
bound in part (b) shows that deterministic communication complexity is surprisingly large:
it scales as Θ(n2), which is as large as transmitting the full matrices. Up to logarithmic
factors, this scaling is matched by the upper bound in part (a). It is proved by analyzing
an essentially trivial algorithm: for each index i = 2, . . . ,m, machine i encodes a reduced

rank representation of the matrix Ai, representing each matrix entry by log2

(
12mrn
c1−c2

)
bits.

It sends this quantized matrix Ãi to the first machine. Given these received messages, the
first machine then computes the matrix sum Ã := A1 +

∑m
i=2 Ãi, and it outputs r̂(A) to be

the largest integer k such that σk(Ã) > (c1 + c2)/2.
On the other hand, in order to prove the lower bound, we consider a two-party rank

testing problem. Consider two agents holding matrices A1 and A2, respectively, such that
the matrix sum A := A1 + A2 has operator norm at most one. Suppose that exactly one of
the two following conditions are known to hold:

• the matrix A has rank r, or

• the matrix A has rank between 6r
5

and 2r, and in addition its (6r/5)th eigenvalue is
lower bounded as σ 6r

5
(A) > 1

20
.

The goal is to decide which case is true by exchanging the minimal number of bits between
the two agents. Denoting this problem by RankTest, the proof of part (a) proceeds by
showing first that D(RankTest) = Ω(rn), and then reducing from the RankTest problem to
the matrix rank estimation problem. See Section 7.4.1 for the proof.

7.3 Bounds for randomized algorithms

We now turn to the study of randomized algorithms, for which we see that the communication
complexity is substantially lower. In Section 7.3.1, we propose a randomized algorithm with
Õ(n) communication cost, and in Section 7.3.3, we establish a lower bound that matches
this upper bound in various regimes.

7.3.1 Upper bounds via a practical algorithm

In this section, we present an algorithm based on uniform polynomial approximations for
estimating the generalized matrix rank. Let us first provide some intuition for the algorithm
before defining it more precisely. For a fixed pair of scalars c1 > c2 ≥ 0, consider the function

176

Hc1,c2 : R→ [0, 1] given by

Hc1,c2(x) :=

1 if x > c1

0 if x < c2
x−c2
c1−c2

otherwise.

(7.4)

As illustrated in Figure 7.1, it is a piecewise linear approximation to a step function. The
squared function H2

c1,c2
is useful in that it can be used to sandwich the generalized ranks of

a matrix A. In particular, given a positive semidefinite matrix A with ordered eigenvalues
σ1(A) ≥ σ2(A) ≥ . . . ≥ σn(A) ≥ 0, observe that we have

rank(A, c1) ≤
n∑

i=1

H2
c1,c2

(σi(A)) ≤ rank(A, c2). (7.5)

Our algorithm exploits this sandwich relation in estimating the generalized rank.

−1 0 1 2

0

0.2

0.4

0.6

0.8

1

value of x

fu
nc

tio
n

va
lu

e

Hc1,c2(x)

Figure 7.1: An illustration of the function x 7→ Hc1,c2(x) with c1 = 0.5 and c2 = 0.1.

In particular, suppose that we can find a polynomial function f : R → R such that
f ≈ Hc1,c2 , and which is extended to a function on the cone of PSD matrices in the standard
way. Observe that if σ is an eigenvalue of A, then the spectral mapping theorem [23] ensures
that f(σ) is an eigenvalue of f(A). Consequently, letting g ∼ N(0, In×n) be a standard
Gaussian vector, we have the useful relation

E

[
‖f(A)g‖22

]
=

n∑

i=1

f 2(σi(A)) ≈
n∑

i=1

H2
c1,c2

(σi(A)). (7.6)

Combined with the sandwich relation (7.5), we see that a polynomial approximation f to
the function Hc1,c2 can be used to estimate the generalized rank.

If f is a polynomial function of degree p, then the vector f(A)g can be computed through
p rounds of communication. In more detail, in one round of communciation, we can first

177

compute the matrix-vector product Ag =
∑m

i=1Aig. Given the vector Ag, a second round of
communication suffices to compute the quantity A2g. Iterating a total of p times, the first
machine is equipped with the collection of vectors {g, Ag,A2g, . . . , Apg}, from which it can
compute f(A)g.

Let us now consider how to obtain a suitable polynomial approximation of the function
Hc1,c2 . The most natural choice is a Chebyshev polynomial approximation of the first kind:
more precisely, since Hc1,c2 is a continuous function with bounded variation, classical the-
ory [141, Theorem 5.7] guarantees that the Chebyshev expansion converges uniformly to
Hc1,c2 over the interval [0, 1]. Consequently, we may assume that there is a finite-degree
Chebyshev polynomial q1 of the first kind such that

sup
x∈[0,1]

|q1(x)−Hc1,c2(x)| ≤ 0.1. (7.7a)

50 100 150 200

10
−6

10
−4

10
−2

Degree

A
pp

ro
xi

m
at

io
n

E
rr

or

Composite Polynomial
Chebyshev Expansion

100 200 300 400 500 600
10

−5

10
−4

10
−3

10
−2

10
−1

Degree

A
pp

ro
xi

m
at

io
n

E
rr

or

Composite Polynomial
Chebyshev Expansion

(a) Thresholds (c1, c2) = (0.2, 0.1) (b) Thresholds (c1, c2) = (0.02, 0.01)

Figure 7.2. Comparison of the composite polynomial approximation in Algorithm 6 with
the Chebyshev polynomial expansion. The error is measured with the ℓ∞-norm on the inter-
val [0, c2] ∪ [c1, 1]. The composite polynomial approximation achieves a linear convergence
rate as the degree is increased, while the Chebyshev expansion converges at a much slower
rate.

By increasing the degree of the Chebyshev polynomial, we could reduce the approximation
error (set to 0.1 in the expansion (7.7a)) to an arbitrarily small level. However, a very high
degree could be necessary to obtain an arbitrary accuracy. Instead, our strategy is to start
with the Chebyshev polynomial q1 that guarantees the 0.1-approximation error (7.7a), and
then construct a second polynomial q2 such that the composite polynomial function f = q2◦q1
has an approximation error, when measured over the intervals [0, c2] and [c1, 1] of interest,
that converges linearly in the degree of function f . More precisely, consider the polynomial
of degree 2p+ 1 given by

q2(x) =
1

B(p+ 1, p+ 1)

∫ x

0

tp(1− t)pdt where B(·, ·) is the Beta function. (7.7b)

178

Lemma 35. Consider the composite polynomial f(x) := q2(q1(x)), where the base polyno-
mials q1 and q2 were previously defined in equations (7.7a) and (7.7b) respectively. Then
f(x) ∈ [0, 1] for all x ∈ [0, 1], and moreover

|f(x)−Hc1,c2(x)| ≤ 2−p for all x ∈ [0, c2] ∪ [c1, 1]. (7.8)

See Section 7.6.1 for the proof.
Figure 7.2 provides a comparison of the error in approximating Hc1,c2 for the standard

Chebyshev polynomial and the composite polynomial. In order to conduct a fair comparison,
we show the approximations obtained by Chebyshev and composite polynomials of the same
final degree, and we evaluate the ℓ∞-norm approximation error on interval [0, c2] ∪ [c1, 1]—
namely, for a given polynomial approximation h, the quantity

Error(h) := sup
x∈[0,c2]∪[c1,1]

|h(x)−Hc1,c2(x)|.

As shown in Figure 7.2 shows, the composite polynomial function achieves a linear conver-
gence rate with respect to its degree. In contrast, the convergence rate of the Chebyshev
expansion is sub-linear, and substantially slower than that of the composite function. The
comparison highlights the advantage of our approach over the method only based on Cheby-
shev expansions.

Given the composite polynomial f = q2 ◦ q1, we first evaluate the vector f(A)g in a
two-stage procedure. In the first stage, we evaluate q1(A)g, q

2
1(A)g, . . ., q

2p+1
1 (A)g using the

Clenshaw recurrence [50], a procedure proven to be numerically stable [141]. The details
are given in Algorithm 5. In the second stage, we substitute the coefficients of q2 so as to
evaluate q2(q1(A))b. The overall procedure is summarized in Algorithm 6.

Algorithm 5: Evaluation of Chebyshev Polynomial

Input: m machines hold A1, A2, . . . , Am ∈ R
n×n; vector v ∈ R

d; Chebyshev
polynomial expansion q(x) = 1

2
a0T0(x) +

∑d
i=1 aiTi(x).

Output: matrix-vector product q(A)v.

1. Initialize vector bd+1 = bd+2 = 0 ∈ R
n.

2. For j = d, . . . , 1, 0: the first machine broadcasts bj+1 to all other machines. Machine i
computes Aibj+1 and sends it back to the first machine. The first machine computes

bj :=
(
4

m∑

i=1

Aibj+1

)
− 2bj+1 − bj+2 + ajv.

3. Output 1
2
(a0v + b1 − b3);

The following result provides a guarantee for the overall procedure (combination of Al-
gorithm 5 and Algorithm 6) when run with degree p = ⌈log2(2n)⌉:

179

Algorithm 6: Randomized Algorithm for Rank Estimation

Input: Each of m machines hold matrices A1, A2, . . . , Am ∈ R
n×n. Tolerance

parameters (c1, c2), polynomial degree p, and number of repetitions T .

1. (a) Find a Chebyshev expansion q1 of the function Hc1,c2 satisfying the uniform
bound (7.7a).

(b) Define the degree 2p+ 1 polynomial function q2 by equation (7.7b).

2. (a) Generate a random Gaussian vector g ∼ N(0, In×n).

(b) Apply Algorithm 5 to compute q1(A)g, and sequentially apply the same
algorithm to compute q21(A)g, . . . , q

2p+1
1 (A)g.

(c) Evaluate the vector y := f(A)g = q2(q1(A))g on the first machine.

3. Repeat Step 2 for T times, obtaining a collection of n-vectors {y1, . . . , yT}, and
output the estimate r̂(A) = 1

T

∑T
i=1 ‖yi‖22.

Theorem 13. For any 0 ≤ δ < 1, with probability at least 1 − 2 exp
(
−Tδ2rank(A,c1)

32

)
, the

output of Algorithm 6 satisfies the bounds

(1− δ)rank(A, c1)− 1 ≤ r̂(A) ≤ (1 + δ)(rank(A, c2) + 1). (7.9)

Moreover, we have the following upper bound on the randomized communication complexity
of estimating the generalized matrix rank:

Rǫ

(
c1, c2, 1/

√
rank(A, c1)

)
= Õ(mn). (7.10)

We show in Section 7.3.3 that the upper bound (7.10) is unimprovable up to the logarith-
mic pre-factors. For now, let us turn to the results of some numerical experiments using
Algorithm 6, which show that in addition to being an order-optimal algorithm, it is also
practically useful.

7.3.2 Numerical experiments

Given m = 2 machines, suppose that machine i (for i = 1, 2) receives Ni = 1000 data points
of dimension n = 1000. Each data point x is independently generated as x = a + ε, where
a ∼ N(0, λΣ) and ε ∼ N(0, σ2In×n) are random Gaussian vectors. Here Σ ∈ R

n×n is a
low-rank covariance matrix of the form Σ :=

∑r
i=1 uiu

T
i , where {ui}ri=1 are an orthonormal

set of vectors in R
n drawn uniformly at random. The goal is to estimate the rank r from

the observed N1 +N2 = 2000 data points.
Let us now describe how to estimate the rank using the covariance matrix of the samples.

Notice that E[xxT] = λ2Σ+σ2In×n, of which there are r eigenvalues equal to λ+σ2 and the

180

0 0.2 0.4 0.6 0.8 1
0

50

100

150

200

Eigenvalue

C
ou

nt

5 10 15 20 25 30
0

100

200

300

400

Iteration

M
ea

n
S

qu
ar

ed
 E

rr
or

Napoli et al. (degree = 12)
p = 0 (degree = 4)
p = 1 (degree = 12)
p = 5 (degree = 44)

(a) Eigenvalue Distribution (b) Rank Estimation Error

Figure 7.3. Panel (a): distribution of eigenvalues of matrix A. Panel (b): mean squared
error of rank estimation versus the number of iterations for the baseline method by Napoli
et al. [150], and three versions of Algorithm 6 (with parameters p ∈ {0, 1, 5}).

remaining eigenvalues are equal to σ2. Letting xi,j ∈ R
n denote the j-th data point received

by machine i, that machine can compute the local sample covariance matrix

Ai =
1

N1 +N2

Ni∑

j=1

xi,jx
T
i,j , for i = 1, 2.

The full sample covariance matrix is given by the sum A := A1 + A2, and its rank can be
estimated using Algorithm 6.

In order to generate the data, we choose the parameters r = 100, λ = 0.4 and σ2 = 0.1.
These choices motivate the thresholds c1 = λ + σ2 = 0.5 and c2 = σ2 = 0.1 in Algorithm 6.
We illustrate the behavior of the algorithm for three different choices of the degree parameter
p—specifically, p ∈ {0, 1, 5}—and for a range of repetitions T ∈ {1, 2, . . . , 30}. Letting r̂(A)
denote the output of the algorithm, we evaluate the mean squared error, E[(r̂(A) − r)2],
based on 100 independent runs of the algorithm.

We plot the results of this experiment in Figure 7.3. Panel (a) shows the distribution of
eigenvalues of the matrix A. In this plot, there is a gap between the large eigenvalues gener-
ated by the low-rank covariance matrix Σ, and small eigenvalues generated by the random
Gaussian noise, showing that the problem is relatively easy to solve in the centralized setting.
Panel (b) shows the estimation error achieved by the communication-efficient distributed al-
gorithm; notice how the estimation error stabilizes after T = 30 repetitions or iterations. We
compare our algorithm for p ∈ {0, 1, 5}, corresponding to polynomial approximations with
degree in {4, 12, 44}. For the case p = 0, the polynomial approximation is implemented by
the Chebyshev expansion. For the case p = 1 and p = 5, the approximation is achieved by
the composite function f . As a baseline method, we also implement Napoli et al.’s algo-
rithm [150] in the distributed setting. In particular, their method replaces the function f in
Algorithm 6 by a Chebyshev expansion of the high-pass filter I(x ≥ c1+c2

2
). It is observed

181

that both the Chebyshev expansion with p = 0 and the baseline method incur a large bias in
the rank estimate, while the composite function’s estimation errors are substantially smaller.
After T = 30 iterations, Algorithm 6 with p = 1 achieves a mean squared error close to 10,
which means that the relative error of the estimation is around 3%.

7.3.3 Lower Bound

It is natural to wonder if the communication efficiency of Algorithm 6 is optimal. The
following theorem shows that, in order to achieve the same 1/

√
r relative error, it is necessary

to send Ω(n) bits. As in our upper bound, we assume that the matrix A satisfies the spectral
norm bound ‖A‖2 ≤ 1. Given an arbirary integer r in the interval [16, n/4], suppose that the
generalized matrix ranks satisfy the sandwich relation r ≤ rank(A, c1) ≤ rank(A, c2) ≤ 2r.
Under these conditions, we have the following guarantee:

Theorem 14. For any c1, c2 satisfying c1 < 2c2 ≤ 1 and any ǫ ≤ ǫ0 for some numerical
constant ǫ0, we have

Rǫ

(
c1, c2, 1/

√
r
)
= Ω(n). (7.11)

See Section 7.4.3 for the proof of this lower bound.

According to Theorem 14, for matrices with true rank in the interval [16, n/2], the com-
munication complexity for estimating the rank with relative error 1/

√
r is lower bounded by

Ω(n). This lower bound matches the upper bound provided by Theorem 13. In particular,
choosing r = 16 yields the worst-case lower bound

Rǫ(c1, c2, 1/4) = Ω(n),

showing that Ω(n) bits of communication are necessary for achieving a constant relative
error. This lower bound is not trivial relative to the coding length of the correct answer:
given that the matrix rank is known to be between r and 2r, this coding length scales only
as Ω(log r).

There are several open problems suggested by the result of Theorem 14. First, it would
be interesting to strengthen the lower bound (7.11) from Ω(n) to Ω(mn), incorporating the
natural scaling with the number of machines m. Doing so requires a deeper investigation
into the multi-party structure of the problem. Another open problem is to lower bound the
communication complexity for arbitrary values of the tolerance parameter δ, say as small as
1/r. When δ is very small, communicating O(mn2) bits is an obvious upper bound, and we
are not currently aware of better upper bounds. On the other hand, whether it is possible
to prove an Ω(n2) lower bound for small δ remains an open question.

182

7.4 Proofs of main results

In this section, we provide the proofs of our main results, with the proofs of some more
technical lemmas deferred to Section 7.6.

7.4.1 Proof of Theorem 12

Let us begin with our first main result on the deterministic communication complexity of
the generalized rank problem.

7.4.1.1 Proof of lower bound

We first prove the lower bound stated in part (a) of Theorem 12. Let us recall the RankTest
problem previously described after the statement of Theorem 12. Alice holds a matrix
A1 ∈ R

n×n and Bob holds a matrix A2 ∈ R
n×n such that the matrix sum A := A1 + A2

has operator norm at most one. Either the matrix A has rank r, or the matrix A has rank
between 6r

5
and 2r, and in addition its 6r/5 eigenvalue is lower bounded as σ 6r

5
(A) > 1

20
. The

RankTest problem is to decide which of these two mutually exclusive alternatives holds. The
following lemma provides a lower bound on the deterministic communication complexity of
this problem:

Lemma 36. For any r ≤ n/4, we have D(RankTest) = Ω(rn).

We use Lemma 36 to lower bound D(c1, c2, δ), in particular by reducing to it from the
RankTest problem. Given a RankTest instance, since there arem ≥ 2 machines, the first two
machines can simulate Alice and Bob, holding A1 and A2 respectively. All other machines
hold a zero matrix. Suppose that c1 ≤ 1/20 and δ ≤ 1/12. If there is an algorithm achieving
the bound (7.3), then if A = A1 + A2 is of rank r, then

r̂(A) ≤ (1 + δ)rank(A, c2) ≤
(
1 +

1

12

)
r =

13r

12
. (7.12a)

Otherwise, the 6r
5
-th eigenvalue of A is greater than 1/20, so that

r̂(A) ≥ (1− δ)rank(A, c1) ≥
(
1− 1

12

)6r
5

=
11r

10
>

13r

12
. (7.12b)

In conjunction, inequality (7.12a) and (7.12b) show that we can solve the RankTest prob-
lem by testing whether or not r̂(A) ≤ 13r

12
. Consequently, the deterministic communication

complexity D(c1, c2, δ) is lower bounded by the communication complexity of RankTest.

In order to complete the proof of Theorem 12(a), it remains to prove Lemma 36, and
we do so using a randomized construction. Let us say that a matrix Q ∈ R

r×n is sampled
from the orthogonal ensemble if it is sampled in the following way: let U ∈ R

n×n be a
matrix uniformly sampled from the group of orthogonal matrices, then Q is the sub-matrix
consisting of the first r rows of U . We have the following claim.

183

Lemma 37. Given matrices Q1 ∈ R
r×n and Q2 ∈ R

r×n independently sampled from the
orthogonal ensemble, we have σ 6r

5
(QT

1Q1 +QT
2Q2) >

1
10

with probability at least 1− e− 3rn
100 .

See Section 7.6.2 for the proof.

Taking Lemma 37 as given, introduce the shorthand N = ⌊ rn
50
⌋. Suppose that we inde-

pendently sample 2N matrices of dimensions r×n from the orthogonal ensemble. Since there
are 2N(2N − 1)/2 distinct pairs of matrices in our sample, the union bound in conjunction
with Lemma 37 implies that

P

[
∀i 6= j : σ 6r

5
(QT

i Qi +QT
j Qj) >

1

10

]
≥ 1− 2N(2N − 1)

2
exp

(
− 3rn

100

)
. (7.13)

With our choice of N , it can be verified that the right-hand side of inequality (7.13) is
positive. Thus, there exists a realization of orthogonal matrices Q1, . . . , Q2N ∈ R

r×n such
that for all i 6= j we have σ 6r

5
(QT

i Qi +QT
j Qj) >

1
10
.

We use this collection of orthogonal matrices in order to reduce the classical Equality
problem to the rank estimation problem. In the Equality problem, Alice has a binary string
x1 ∈ {0, 1}N and Bob has another binary string x2 ∈ {0, 1}N , and their goal is to compute
the function

Equality(x1, x2) =

{
1 if x1 = x2;

0 otherwise;

It is well-known [110] that the deterministic communication complexity of the Equality

problem is D(Equality) = N + 1.
In order to perform the reduction, given binary strings x1 and x2 of lengthN , we construct

two matrices A1 and A2 such that their sum A = A1 +A2 has rank r if and only if x1 = x2.
Since both x1 and x2 are of length N , each of them encodes an integer between 1 and 2N .

Defining A1 =
QT

x1
Qx1

2
and A2 =

QT
x2

Qx2

2
, the triangle inequality guarantees that

‖A‖2 ≤ ‖A1‖2 + ‖A2‖2 =
‖QT

x1
Qx1‖2 + ‖QT

x2
Qx2‖2

2
≤ 1,

showing that A satisfies the required operator norm bound. If x1 = x2, then A = QT
x1
Qx1 ,

which is a matrix of rank r. If x1 6= x2, then by our construction of Qx1 and Qx2 , we know
that the matrix A has rank between 6r

5
and 2r and moreover that σ 6r

5
(A) > 1

20
. Thus,

we can output Equality(x1, x2) = 1 if we detect the rank of matrix A to be r and out-
put Equality(x1, x2) = 0 otherwise. Using this protocol, the Equality evaluation is always
correct. As a consequence, the deterministic communication complexity of RankTest is lower
bounded by that of Equality. Finally, noting thatD(RankTest) ≥ D(Equality) = N + 1 > rn

50

completes the proof.

184

7.4.1.2 Proof of upper bound

In order to prove the upper bound stated in part (b), we analyze the algorithm described
following the theorem statement. If the matrix A =

∑m
i=1Ai has rank at most 2r, then

given the PSD nature of the component matrices, each matrix Ai also has rank at most 2r.
Consequently, we can find a factorization of the form Ai = BiB

T
i where Bi ∈ R

n×r. Let B̃i

be a quantization of the matrix Bi, allocating log2
(
12mrn
c1−c2

)
bits to each entry. Note that each

machine must transmit at most rn log2

(
12mrn
c1−c2

)
bits in order to convey the quantized matrix

B̃i.
Let us now analyze the approximation error. By our choice of quantization, we have

|||B̃i −Bi|||op ≤ |||B̃i −Bi|||F ≤
√
2rn

c1 − c2
12mrn

=
c1 − c2

6m
√
2rn

.

Defining Ãi = B̃iB̃
T
i we have

|||Ãi − Ai|||F ≤ |||B̃i − Bi|||F
√
2rn
(
|||Bi|||op + |||B̃i|||op

)
≤ c1 − c2

6m

(
2 +

c1 − c2
6m
√
2rn

)

≤ c1 − c2
2m

,

where the final inequality follows as long as c1−c2
6m

√
2rn
≤ 1.

Consequently, the sum Ã =
∑m

i=1 Ãi satisfies the bound

‖Ã− A‖F ≤
m∑

i=2

‖Ãi − Ai‖F ≤
(c1 − c2)

2
.

Applying the Wielandt-Hoffman inequality [93] yields the upper bound

|σk(Ã)− σk(A)| ≤ ‖Ã− A‖F ≤ (c1 − c2)/2 for all k ∈ [n]. (7.14)

Recalling that r̂(A) is the largest integer k such that σk(Ã) > (c1 + c2)/2, inequality (7.14)
implies that

(c1 + c2)/2 ≥ σr̂(A)+1(Ã) ≥ σr̂(A)+1(A)− (c1 − c2)/2,

which implies σr̂(A)+1(A) ≤ c1. This upper bound verifies that r̂(A) ≥ r̂(A, c1). On the other
hand, inequality (7.14) also yields

(c1 + c2)/2 < σr̂(A)(Ã) ≤ σr̂(A)(A) + (c1 − c2)/2,

which implies σr̂(A)(A) > c2 and r̂(A) ≤ r̂(A, c2). Combining the above two inequalities
yields the claim (7.3).

185

7.4.2 Proof of Theorem 13

We split the proof into two parts, corresponding to the upper bounds (7.9) and (7.10)
respectively.

Proof of upper bound (7.9): Let λj be the j-th largest eigenvalue of A and let vj be the
associated eigenvector. Let function f be defined as f(x) := q2(q1(x)). Using basic linear
algebra, we have

‖y‖22 =
n∑

j=1

f 2(λj)(v
T
j g)

2. (7.15)

Since g is an isotropic Gaussian random vector, the random variables Zj = (vTj g)
2 are i.i.d.,

each with χ2 distribution with one degree of freedom. To analyze the concentration behavior
of Z variables, we recall the notion of a sub-exponential random variable.

A random variable Y is called sub-exponential with parameter (σ2, β) if E[Y] = 0 and
the moment generating function is upper bounded as E[etY] ≤ et

2σ2/2 for all |t| ≤ 1/β.
The following lemma, proved in Section 7.6.3, characterizes some basic properties of sub-
exponential random variables.

Lemma 38. (a) If Z ∼ χ2, then both Z − 1 and 1− Z are sub-exponential with parameter
(4, 4).

(b) Given an independent sequence {Yi}ni=1 in which Yi is sub-exponential with parameter
(σ2

i , βi), then for any choice of non-negative weights {α}ni=1, the weighted sum
∑n

i=1 αiYi
is sub-exponential with parameters (

∑n
i=1 α

2
iσ

2
i ,maxi∈[n]{αiβi}).

(c) If Y is sub-exponential with parameter (σ2, β), then

P
[
Y ≥ t

]
≤ e−

t2

2σ2 for all t ∈ [0, σ
2

β
).

We consider ‖y‖22 as well as the associated lower bound L =
∑rank(A,c1)

j=1 f 2(λj)(v
T
j b)

2. By

parts (a) and (b) of Lemma 38, the variable ‖y‖22 − E[‖y‖22] is sub-exponential with pa-
rameter (4

∑n
i=1 f

2(λi), 4), and the variable E[L] − L is sub-exponential with parameter

(4
∑rank(A,c1)

i=1 f 2(λi), 4). In order to apply part (c) of Lemma 38, we need upper bounds on

the sum
∑n

i=1 f
2(λi), as well as upper/lower bounds on the sum

∑rank(A,c1)
i=1 f 2(λi). For the

first sum, we have

n∑

j=1

f 2(λj) =

rank(A,c2)∑

j=1

f 2(λj) +
n∑

j=rank(A,c2)+1

f 2(λj)

≤ rank(A, c2) + n2−p

≤ rank(A, c2) + 1. (7.16)

186

where the last two inequalities use Lemma 35 and the fact that p = ⌈log2(2n)⌉. For the
second sum, using Lemma 35 implies that

rank(A, c1) ≥
rank(A,c1)∑

i=1

f 2(λi) ≥ rank(A, c1)(1− 2−p)2

(i)

≥ rank(A, c1)(1− 1/(2n))2
(ii)

≥ rank(A, c1)− 1.

where inequality (i) follows since 2−p ≤ 1/(2n); inequality (ii) follows since (1− 1/(2n))2 ≥
1− 1/n. Thus, we have

E[‖y‖22] ≤ rank(A, c2) + 1 and E[L] ≥ rank(A, c1)− 1. (7.17)

Putting together the pieces, we see that ‖y‖22 − E[‖y‖22] is sub-exponential with parameter
(4(rank(A, c2) + 1), 4) and E[L]− L is sub-exponential with parameter (4 rank(A, c1), 4).

Let r̂ be the average of T independent copies of ‖y‖2, and let r̂L be the average of T
independent copies of L. By Lemma 38 (b), we know that r̂ − E[r̂] is sub-exponential with
parameter (4(rank(A, c2) + 1)/T, 4/T), and E[r̂L] − r̂L is sub-exponential with parameter
(4 rank(A, c1)/T, 4/T). Plugging these parameters into Lemma 38 (c), for any 0 ≤ δ < 1,
we find that

P

[
r̂ ≤ E[r̂] + δ(rank(A, c2) + 1)

]
≥ 1− exp

(
− Tδ2(rank(A, c2) + 1)

32

)
(7.18a)

P

[
r̂L ≥ E[r̂L]− δrank(A, c1)

]
≥ 1− exp

(
− Tδ2rank(A, c1)

32

)
. (7.18b)

Combining inequalities (7.17), (7.18a), and (7.18b) yields

P

[
(1− δ)rank(A, c1)− 1 ≤ r̂L ≤ r̂ ≤ (1 + δ)(rank(A, c2) + 1)

]
≤ 1− 2e−

Tδ2rank(A,c1)
32 , (7.19)

which completes the proof of inequality (7.9).

Proof of upper bound (7.10): It remains to show to establish the upper bound (7.10) on
the randomized communication complexity. The subtle issue is that in a discrete message
model, we cannot calculate f(A)g without rounding errors. Indeed, in order to make the
rounding error of each individual message bounded by τ , each machine needs O(n log(1/τ))
bits to encode a message. Consequently, the overall communication complexity scales as
O(Tmdpn log(1/τ)), where T is the number of iterations of Algorithm 6; m is the number
of machines, the quantities d and p are the degrees of q1 and q2, and n is the matrix di-
menson. With the choices given, we have d = O(1) and p = O(log n). In order to make
inequality (7.9) hold with probability at least 1−ǫ, the upper bound (7.19) suggests choosing
T = Θ(log(1/ǫ)).

187

Finally, we need to upper bound the quantity O(log(1/τ)). In order to do so, let us
revisit Algorithm 6 to see how rounding errors affect the final output. For each integer
k = 1, . . . , 2p + 1, let us denote by δk the error of evaluating qk1(A)g using Algorithm 5. It
is known [141, Chapter 2.4.2] that the rounding error of evaluating a Chebyshev expansion
is bounded by mdτ . Thus, we have δk+1 ≤ ‖q1(A)‖2δk + mdτ . Since ‖q1(A)‖2 ≤ 1.1 by
construction, we have the upper bound

δk ≤ 10(1.1k+1 − 1)mdτ. (7.20)

For a polynomial of the form q2(x) =
∑2p+1

i=0 aix
i, we have y =

∑2p+1
i=0 aiq

i
1(A)b. As a

consequence, there is a universal constant C such that error in evaluating y is bounded by

C

2p+1∑

i=0

δi|ai| ≤ C ′ (1.1)2p+1mdτ

2p+1∑

i=0

|ai|.

By the definition of the polynomial q2 and the binomial theorem, we have

2p+1∑

i=0

|ai| ≤
2p

B(p+ 1, p+ 1)
=

2p(2p+ 1)!

(p!)2
≤ 23p.

Putting the pieces together, in order to make the overall error small, it suffices to choose
τ of the order (mdn)−12−4p. Doing so ensures that log(1/τ) = O(p log(mdn)), which when
combined with our earlier upper bounds on d, p and T , establishes the claim (7.10).

7.4.3 Proof of Theorem 14

In order to prove Theorem 14, it suffices to consider the two-player setting, since the first
two machines can always simulate the two players Alice and Bob. Our proof proceeds via
reduction from the 2-SUM problem [214], in which Alice and Bob have inputs (U1, . . . , Ur)
and (V1, . . . , Vr), where each Ui and Vi are subsets of {1, . . . , L}. It is promised that for
every index i ∈ {1, . . . , r}, the intersection of Ui and Vi contains at most one element. The
goal is to compute the sum

∑r
i=1 |Ui ∩ Vi| up to an additive error of

√
r/2. Woodruff and

Zhang [214] showed that randomized communication complexity of the 2-SUM problem is
lower bounded as Ω(rL).

We note here that when r ≥ 16, the same communication complexity lower bound holds
if we allow the additive error to be 2

√
r. To see this, suppose that Alice and Bob have inputs

of length r/16 instead of r. By replicating their inputs 16 times, each of Alice and Bob can
begin with an input of length r. Assume that by using some algorithm, they can compute
the 2-SUM for the replicated input with additive error at most 2

√
r. In this way, they have

computed the 2-SUM for the original input with additive error at most
√
r/8. Note that√

r/8 =
√
r/16/2. The lower bound on the 2-SUM problem implies that the communication

cost of the algorithm is Ω(rL/16), which is on the same order of Ω(rL).

188

To perform the reduction, let L = ⌊n/r−1⌋. Since r ≤ n/2, we have L ≥ 1. Suppose that
Alice and Bob are given subsets (U1, . . . , Ur) and (V1, . . . , Vr), which define an underlying
instance of the 2-SUM problem. Based on these subsets, we construct two n-dimensional
matrices A1 and A2 and the matrix sum A := A1 + A2; we then argue that any algorithm
that can estimate the generalized matrix rank of A can solve the underlying 2-SUM problem.

The reduction consists of the following steps. First, Alice constructs a matrix X of
dimensions rL × n as follows. For each i ∈ {1, . . . , r} and j ∈ {1, . . . , L}, define t(i, j) =
(i − 1)L + j, and let Xt(i,j) denote the associated row of X. Letting et(i,j) ∈ R

n denote the
canonical basis vector (with a single one in entry t(i, j)), we define

Xt(i,j) =

{
et(i,j) if j ∈ Ui

0 otherwise.

Second, Bob constructs a matrix Y of dimensions rL × n following the same rule as Alice,
but using the subset (V1, . . . , VL) in place of (U1, . . . , UL). Now define the n× n matrices

A1 := c2

(
XTX +

r∑

i=1

erL+ie
T
rL+i

)
and A2 := c2

(
Y TY +

r∑

i=1

erL+ie
T
rL+i

)
.

With these definitions, it can be verified that ‖A‖2 ≤ 2c2 ≤ 1, and moreover that all eigen-
values of A are either equal to 2c2 or at most c2. Since c1 < 2c2, the quantities rank(A, c1)
and rank(A, c2) are equal, and equal to the number of eigenvalues at 2c2. The second term
in the definition of A1 and A2 ensures that there are at least r eigenvalues equal to 2c2.
For all (i, j) pairs such that j ∈ Ui ∩ Vi, the construction of X and Y implies that there
are two corresponding rows in X and Y equal to each other, and both of them are canon-
ical basis vectors. Consequently, they create a 2c2 eigenvalue in matrix A. Overall, we
have rank(A, c1) = rank(A, c2) = r +

∑r
i=1 |Ui ∩ Vi|, Since the problem set-up ensures that

|Ui ∩ Vi| ≤ 1, we conclude r ≤ rank(A, c1) ≤ 2r.

Now suppose that there is a randomized algorithm estimating the rank of A such that

(1− δ)rank(A, c1) ≤ r̂(A) ≤ (1 + δ)rank(A, c2).

Introducing the shorthand s :=
∑k

i=1 |Ui ∩ Vi|, when δ = 1/
√
r, we have

r + s− (r + s)/
√
r ≤ r̂(A) ≤ r + s+ (r + s)/

√
r.

Thus, the estimator r̂(A) − r computes s up to additive error (r + s)/
√
r, which is upper

bounded by 2
√
r. It means that the rank estimation algorithm solves the 2-SUM problem. As

a consequence, the randomized communication complexity of the rank estimation problem
is lower bounded by Ω(rL) = Ω(n).

189

7.5 Connections to other problems

In this chapter, we have studied the problem of estimating the generalized rank of matrices.
Our main results are to show that in the deterministic setting, sending Θ(n2) bits is both
necessary and sufficient in order to obtain any constant relative error. In contrast, when
randomized algorithms are allowed, this scaling is reduced to Θ̃(n).

Our work suggests an important problem, one whose resolution has a number of inter-
esting consequences. In the current chapter, we establish the Θ̃(n) scaling of communication
complexity for achieving a relative error δ = 1/

√
r where r is the matrix rank. Moreover,

Algorithm 6 does not guarantee higher accuracies (e.g., δ = 1/r), and as discussed in Sec-
tion 7.3.3, it is unknown whether the Ω(n) lower bound is tight. The same question remains
open even for the special case when all the matrix eigenvalues are either greater than constant
c or equal to zero. In this special case, if we were to set c1 = c and c2 = 0 in Algorithm 6,
then it would compute ordinary matrix rank with relative error δ = 1/

√
r. Although the

problem is easier in the sense that all eigenvalue are promised to lie in the subset {0}∪ (c, 1],
we are currently not aware of any algorithm with Õ(n) communication cost achieving better
error rate. On the other hand, proving a tight lower bound for arbitrary δ remains an open
problem.

The special case described above is of fundamental interest because it can be reduced
to many classical problems in linear algebra and convex optimization, as we describe here.
More precisely, if there is an algorithm solving any of these problems, then it can be used for
computing the matrix rank with relative error δ = 0. On the other hand, if we obtain a tight
lower bound for computing the matrix rank, then it implies a lower bound for a larger family
of problems. We list a subset of these problems giving a rough intuition for the reduction.

To understand the connection, we begin by observing that the problem of rank computa-
tion can be reduced to that of matrix rank testing, in which the goal is to determine whether
a given matrix sum A := A1 + · · ·+Am has rank at most r− 1, or rank at least r, assuming
that all eigenvalues belong to {0} ∪ (c,+∞). If there is an algorithm solving this problem
for arbitrary integer r ≤ n, then we can use it for computing the rank. The reduction is
by performing a series of binary searches, each step deciding whether the rank is above or
below a threshold. In turn, the rank test problem can be further reduced to the following
problems:

Singularity testing: The goal of singularity testing is to determine if the sum of matrices
B := B1 + · · ·+ Bm is singular, where machine i stores the PSD matrix Bi. Algorithms for
singularity testing can be used for rank testing. The reduction is by using a public random
coin to generate a shared random projection matrix Q ∈ R

r×n on each machine and then
setting Bi := QAiQ

T . The inclusion of the public coin only increases the communication
complexity by a moderate amount [118], in particular by an additive term O(log(n)). On
the other hand, with high probability the matrix A has rank at most r− 1 if and only if the
matrix B is singular.

190

Solving linear equations: Now suppose that machine i stores a strictly positive definite
matrix Ci and a vector y. The goal is to compute the vector x satisfying Cx = y for
C := C1 + · · ·+ Cm. Algorithms for solving linear equations can be used for the singularity
test. In particular, let Ci := Bi + λI and take y to be a random Gaussian vector. If the
matrix B is singular, then the norm ‖x‖2 → ∞ as λ → 0. Otherwise, it remains finite as
λ→ 0. Thus, we can test for λ = 1, 1

2
, 1
4
, 1
8
, . . . to decide if the matrix is singular. Note that

the solution need not be exact, since we only test if the ℓ2-norm remains finite.

Convex optimization: Suppose that each machine has a strictly convex function fi, and
the overall goal is to compute a vector x that minimizes the function x 7→ f(x) := f1(x) +
· · · + fm(x). The algorithms solving this problem can be used for solving linear equations.
In particular, for a strictly positive definite matrix Ci, the function fi(x) :=

1
2
xTCix− 1

m
yTx

is strictly convex, and with these chocies, the function f is uniquely minimized at C−1y.
(Since the linear equation solver doesn’t need to be exact, the solution here is also allowed
to be approximate.)

This reduction chain suggests the importance of studying matrix rank estimation, espe-
cially for characterizing lower bounds on communication complexity. We hope the results in
this paper are a meaningful first step in exploring this problem area.

7.6 Proof of technical results

7.6.1 Proof of Lemma 35

The function q2 is monotonically increasing on [0, 1]. In addition, we have q2(0) = 0 and
q2(1) = 1, and hence q2(z) ∈ [0, 1] for all z ∈ [0, 1]. Let us refine this analysis on two
end intervals: namely, z ∈ [−0.1, 0.1] and z ∈ [0.9, 1.1]. For z ∈ [−0.1, 0.1], it is easy to
observe from the definition of q2 that q2(z) ≥ 0. Moreover, for z ∈ [−0.1, 0.1] we have
|z(1− z)| ≤ 0.11. Thus,

q2(z) =

∫ z

0
tp(1− t)pdt

∫ 1

0
tp(1− t)pdt

≤
∫ z

0
tp(1− t)pdt

∫ 0.6

0.4
tp(1− t)pdt

≤ 0.1× (0.11)p

0.2× (0.24)p
< 2−p.

The function q2 is symmetric in the sense that q2(z) + q2(1− z) = 1. Thus, for z ∈ [0.9, 1.1],
we have q2(z) = 1− q2(1− z) ∈ [1− 2−p, 1]. In summary, we have proved that

0 ≤ q2(z) ≤ 1 for z ∈ [−0.1, 1.1], (7.21a)

q2(z) ≤ 2−p for z ∈ [−0.1, 0.1], (7.21b)

q2(z) ≥ 1− 2−p for z ∈ [0.9, 1.1]. (7.21c)

By the standard uniform Chebyshev approximation, we are guaranteed that q1(x) ∈
[−0.1, 1.1] for all x ∈ [0, 1]. Thus, inequality (7.21a) implies that q2(q1(x)) ∈ [0, 1] for
all x ∈ [0, 1]. If x ∈ [0, c2], then q1(x) ∈ [−0.1, 0.1], and thus inequality (7.21b) implies

191

q2(q1(x)) ≤ 2−p. If x ∈ [c1, 1], then q1(x) ∈ [0.9, 1.1], and thus inequality (7.21c) implies
q2(q1(x)) ≥ 1− 2−p. Combining the last two inequalities yields that

|q2(q1(x))−Hc1,c2(x)| ≤ 2−p for all x ∈ [0, c2] ∪ [c1, 1].

7.6.2 Proof of Lemma 37

Let qt be the t-th row of Q2, and let Q(t) ∈ R
r+t be the matrix whose first r rows are the

rows of Q1, and its remaining t rows are q1, . . . , qt. Let q
‖
t+1 be the projection of qt+1 to the

subspace generated by the rows of Q(t) and let q⊥t+1 := qt+1 − q‖t+1. We have

(Q(t+1))TQ(t+1) = (Q(t))TQ(t) + qTt qt = (Q(t))TQ(t) + (q
‖
t+1)

T q
‖
t+1 + (q⊥t+1)

T q⊥t+1

� (Q(t))TQ(t) + (q⊥t+1)
T q⊥t+1.

This inequality yields the lower bound

QT
1Q1 +QT

2Q2 � QT
1Q1 +

r∑

t=1

(q⊥t)
T q⊥t , (7.22)

where � denotes ordering in the positive semidefinite cone. Note that the rows of Q1 and
{q⊥t }rt=1 are mutually orthogonal. To prove that the 6k

5
-th largest eigenvalue of QT

1Q1+Q
T
2Q2

is greater than 1/10, it suffices to prove that there are at least r/5 vectors in {q⊥t }rt=1 which
satisfy ‖q⊥t ‖22 > 1/10.

Let S1 be the linear subspace generated by q1, . . . , qt−1 and let S⊥
1 be its orthogonal

subspace. The vector qt is uniformly sampled from a unit sphere in S⊥
1 . Let S2 be the linear

subspace generated by the rows of Q(t−1). Since Q(t−1) has r + t− 1 rows, the subspace has
at most r + t − 1 dimensions. Without loss of generality, we assume that S2 has r + t − 1
dimensions (otherwise, we expand it to reach the desired dimensionality). We let S⊥

2 be the
orthogonal subspace of S2. By definition, q⊥t is the projection of qt to S⊥

2 (or a linear space
that contains S⊥

2 if the subspace S2 has been expanded to reach the r+ t−1 dimensionality).
Let q′t be the projection of qt to S⊥

1 ∩ S⊥
2 , then we have

‖q⊥t ‖22 ≥ ‖q′t‖22. (7.23)

Note that S⊥
1 is of dimension n − t + 1 and S⊥

2 is of dimension n − r − t + 1. Thus, the
dimension of S⊥

1 ∩S⊥
2 is at least n− r− 2t+2. Constructing q′t is equivalent to projecting a

random vector in the (n− t+1)-dimension sphere to a (n− r− 2t+2)-dimension subspace.
It is a standard result (e.g. [54, Lemma 2.2]) that

P

[
‖q′t‖22 ≤ β · n− r − 2t+ 2

n− t+ 1

]
≤ exp

(n− r − 2t+ 2

2
(1− β + log(β))

)
for any β < 1.

Setting β = 0.3 and using the fact that t ≤ r ≤ n/4, we find that

P

[
‖q′t‖22 ≤ 1/10

]
≤ exp

(n− n/4− n/2 + 2

2
(1− 0.3 + log(0.3))

)
≤ exp(−n/16). (7.24)

192

Defining the event Et := {‖q′t‖22 ≤ 1/10}, note that inequality (7.24) yields P[Et] ≤ exp(−n/16).
Since q′t is the projection of a random unit vector to a subspace of constant dimension, the
events {Ej}tj=1 are mutually independent, and hence

P

[
at least 4k

5
events in {Ej}tj=1 occur

]
≤
(

r

4r/5

)
(exp(−n/16)) 4r

5 ≤ exp
(r log(r)

5
− rn

20

)

≤ exp
(
− 3rn

100

)
,

where the last inequality follows since any integer r satisfies log(r) ≤ 2r
5
≤ n

10
. Thus, with

probability at least 1 − exp(−3rn
100

), there are at least r/5 rows satisfying ‖q′t‖22 > 1/10.
Combining this result with inequality (7.22) and (7.23) completes the proof.

7.6.3 Proof of Lemma 38

The claimed facts about sub-exponential random variables are standard [35], but we provide
proofs here for completeness.

Part (a): Let Z be χ2 variable with one degree of freedom. Its moment generating function
takes the form

E[exp(t(Z − 1))] = (1− 2t)−1/2e−t for t < 1/2.

Some elementary algebra shows that (1 − 2t)−1/2e−t ≤ e2t
2
for any t ∈ [−1/4, 1/4]. Thus,

we have E[exp(t(Z − 1))] ≤ e2t
2
for |t| ≤ 1/4, verifying the recentered variable X = Z − 1

is sub-exponential with parameter (4, 4). Also by the moment generating function of Z, we
have

E[exp(t(1− Z))] = (1 + 2t)−1/2et for t > −1/2.

Replacing t by −t and comparing with the previous conclusion reveals that 1 − Z is sub-
exponential with parameter (4, 4).

Part (b): Suppose that Z1, . . . , Zn are independent and Zi is sub-exponential with param-
eter (σ2

i , βi). By the definition of sub-exponential random variable, we have

E

[
exp

(
t

n∑

i=1

αiZi

)]
=

n∏

i=1

E[exp(tαiZi)] ≤
n∏

i=1

exp((tαi)
2σ2/2) = exp

(t2∑n
i=1 α

2
iσ

2
i

2

)

for all t ≤ maxi∈[n]{1/(αiβi)}. This bound establishes that
∑n

i=1 αiZi is sub-exponential
with parameter (

∑n
i=1 α

2
iσ

2
i ,maxi∈[n]{αiβi}), as claimed.

193

Part (c): Notice that P[Z ≥ t] = P[eλZ ≥ eλt] with any λ > 0. Applying Markov’s
inequality yields

P[Z ≥ t] ≤ E[exp(λZ)]

eλt
≤ exp

(
− λt+ λ2σ2

2

)
for λ ≤ 1/β,

where the last step follows since Z is sub-exponential with parameter (σ2, β). Notice that
the minimum of −λt + λ2σ2

2
occurs when λ∗ = t/σ2. Since t < σ2/β, we have λ∗ < 1/β,

verifying the validness of λ∗. Plugging λ∗ in the previous inequality completes the proof.

194

Part IV

Distributed systems

195

Chapter 8

Programming interface for
parallelizing stochastic algorithms

In this chapter, we present a general framework for parallelizing stochastic algorithms for
machine learning applications. Stochastic algorithms process a large-scale dataset by se-
quentially processing random subsamples. This processing scheme makes the per-iteration
cost of the algorithm much cheaper than that of batch processing algorithms while still
yielding effective descent. Indeed, for convex optimization, the efficiency of stochastic gra-
dient descent (SGD) and its variants has been established both in theory and in practice
[226, 31, 216, 62, 181, 99]. For non-convex optimization, stochastic methods achieve state-of-
the-art performance on a broad class of problems, including matrix factorization [107], neural
networks [109] and representation learning [209]. Stochastic algorithms are also widely used
in the Bayesian setting for finding approximations to posterior distributions; examples in-
clude Markov chain Monte Carlo, expectation propagation [147] and stochastic variational
inference [92].

Although classical stochastic approximation procedures are sequential, it is clear that
they also present opportunities for parallel and distributed implementations that may yield
significant additional speedups. One active line of research studies asynchronous parallel
updating schemes in the setting of a lock-free shared memory [172, 64, 129, 236, 89]. When
the time delay of concurrent updates are bounded, it is known that such updates preserve
statistical correctness [4, 129]. Such asynchronous algorithms yield significant speedups on
multi-core machines. On distributed systems connected by commodity networks, however,
the communication requirements of such algorithms can be overly expensive. If messages are
frequently exchanged across the network, the communication cost will easily dominate the
computation cost.

There has also been a flurry of research studying the implementation of stochastic algo-
rithms in the fully distributed setting [238, 231, 158, 75, 128]. Although promising results
have been reported, the implementations proposed to date have their limitations—they have
been designed for specific algorithms, or they require careful partitioning of the data to avoid
inconsistency.

196

In this paper, we propose a general framework for parallelizing stochastic algorithms on
multi-node distributed systems. Our framework is called Splash (System for Parallelizing
Learning Algorithms with Stochastic Methods). Splash consists of a programming inter-
face and an execution engine. Using the programming interface, the user develops sequential
stochastic algorithms without thinking about issues of distributed computing. The algorithm
is then automatically parallelized by the execution engine. The parallelization is communi-
cation efficient, meaning that its separate threads don’t communicate with each other until
all of them have processed a large bulk of data. Thus, the inter-node communication need
not be a performance bottleneck.

Programming Interface The programming interface is designed around a key paradigm:
implementing incremental updates that processes weighted data. Unlike existing distributed
machine learning systems [57, 217, 121, 149] which requires the user to explicitly specify a
distributed algorithm, Splash asks the user to implement a processing function that takes
an individual data element as input to incrementally update the corresponding variables.
When this function is iteratively called on a sequence of samples, it defines a sequential
stochastic algorithm. It can also be called in a distributed manner for constructing parallel
algorithms, which is the job of the execution engine. This programming paradigm allows
one algorithmic module working on different computing environments, no matter if it is a
single-core processor or a large-scale cluster. As a consequence, the challenge of parallelizing
these algorithms has been transferred from the developer side to the system side.

To ensure parallelizability, the user is asked to implement a slightly stronger version of
the base sequential algorithm: it needs to be capable of processing weighted samples. An m-
weighted sample tells the processing function that the sample appears m times consecutively
in the sequence. Many stochastic algorithms can be generalized to processing weighted sam-
ples without sacrificing computational efficiency. We will demonstrate SGD and collapsed
Gibbs sampling as two concrete examples. Since the processing of weighted samples can be
carried out within a sequential paradigm, this requirement does not force the user to think
about a distributed implementation.

Execution Engine In order to parallelize the algorithm, Splash converts a distributed
processing task into a sequential processing task using distributed versions of averaging and
reweighting. During the execution of the algorithm, we let every thread sequentially process
its local data. The local updates are iteratively averaged to construct the global update.
Critically, however, although averaging reduces the variance of the local updates, it doesn’t
reduce their bias. In contrast to the sequential case in which a thread processes a full se-
quence of random samples, in the distributed setting every individual thread touches only
a small subset of samples, resulting in a significant bias relative to the full update. Our
reweighting scheme addresses this problem by feeding the algorithm with weighted samples,
ensuring that the total weight processed by each thread is equal to the number of samples in
the full sequence. This helps individual threads to generate nearly-unbiased estimates of the

197

full update. Using this approach, Splash automatically detects the best degree of parallelism
for the algorithm.

Theoretically, we prove that Splash achieves the optimal rate of convergence for par-
allelizing SGD, assuming that the objective function is smooth and strongly convex. We
conduct extensive experiments on a variety of stochastic algorithms, including algorithms
for logistic regression, collaborative filtering and topic modeling. The experiments verify
that Splash can yield orders-of-magnitude speedups over single-thread stochastic algorithms
and over state-of-the-art batch algorithms.

Besides its performance, Splash is a contribution on the distributed computing systems
front, providing a flexible interface for the implementation of stochastic algorithms. We build
Splash on top of Apache Spark [224], a popular distributed data-processing framework for
batch algorithms. Splash takes the standard Resilient Distributed Dataset (RDD) of Spark
as input and generates an RDD as output. The data structure also supports default RDD
operators such as Map and Reduce, ensuring convenient interaction with Spark. Because
of this integration, Splash works seamlessly with other data analytics tools in the Spark
ecosystem, enabling a single system to address the entire analytics pipeline.

8.1 Shared and local variables

In this paper, we focus on the stochastic algorithms which take the following general form. At
step t, the algorithm receives a data element zt and a vector of shared variables vt. Based on
these values the algorithm performs an incremental update ∆(zt, vt) on the shared variable:

vt+1 ← vt +∆(zt, vt) (8.1)

For example, stochastic gradient descent (SGD) fits this general framework. Letting x denote
a random data element x and letting w denote a parameter vector, SGD performs the update:

t← t+ 1 and w ← w − ηt∇ℓ(w; x) (8.2)

where ℓ(·; x) is the loss function associated with the element and ηt is the stepsize at time t.
In this case both w and t are shared variables.

There are several stochastic algorithms using local variables in their computation. Every
local variable is associated with a specific data element. For example, the collapsed Gibbs
sampling algorithm for LDA [78] maintains a topic assignment for each word in the corpus.
Suppose that a topic k ∈ {1, . . . , K} has been sampled for a word w, which is in document
d. The collapsed Gibbs sampling algorithm updates the word-topic counter nwk and the
document-topic counter ndk by

nwk ← nwk + 1 and ndk ← ndk + 1. (8.3)

198

The algorithm iteratively resample topics for every word until the model parameters con-
verge. When a new topic is sampled for the word w, the following operation removes the old
topic before drawing the new one:

nwk ← nwk − 1 and ndk ← ndk − 1. (8.4)

Update (8.3) and update (8.4) are executed at different stages of the algorithm but they
share the same topic k. Thus, there should be a local variable associated with the word w
storing the topic. Splash supports creating and updating local variables during the algorithm
execution.

The usage of local variables can sometimes be tricky. Since the system carries out au-
tomatic reweighting and rescaling (refer to Section 8.3.2), any improper usage of the local
variable may cause inconsistent scaling issues. The system thus provides a more robust
interface called “delayed operator” which substitutes the functionality of local variables in
many situations. In particular, the user can declare an operation such as (8.4) as a delayed
operation and suspend its execution to the next time when the same element is processed.
The scaling consistency of the delay operation is guaranteed by the system.

Shared variables and local variables are stored separately. In particular, shared variables
are replicated on every data partition. Their values are synchronized. The local variables, in
contrast, are stored with the associated data elements and will never be synchronized. This
storage scheme optimizes the communication efficiency and allows for convenient element-
wise operations.

8.2 Programming with Splash

Splash allows the user to write self-contained Scala applications using its programming inter-
face. The goal of the programming interface is to make distributed computing transparent
to the user. Splash extends Apache Spark to provide an abstraction called a Parametrized
RDD for storing and maintaining the distributed dataset. The Parametrized RDD is based
on the Resilient Distributed Dataset (RDD) [224] used by Apache Spark. It can be created
from a standard RDD object:

val paramRdd = new ParametrizedRDD(rdd).

We provide a rich collection of interfaces to convert the components of Parametrized RDD
to standard RDDs, facilitating the interaction between Splash and Spark. To run algorithms
on the Parametrized RDD, the user creates a function called process which implements the
stochastic algorithm, then calls the method

paramRdd.run(process)

to start running the algorithm. In the default setting, the execution engine takes a full
pass over the dataset by calling run() once. This is called one iteration of the algorithm

199

execution. The inter-node communication occurs only at the end of the iteration. The user
may call run() multiple times to take multiple passes over the dataset.

The process function is implemented using the following format:

def process(elem : Any, weight : Int, sharedVar : VarSet, localVar : VarSet){. . . }

It takes four arguments as input: a single element elem, the weight of the element, the shared
variable sharedVar and the local variable localVar associated with the element. The goal
is to update sharedVar and localVar according to the input.

Splash provides multiple ways to manipulate these variables. Both local and shared vari-
ables are manipulated as key-value pairs. The key must be a string; the value can be either
a real number or an array of real numbers. Inside the process implementation, the value
of local or shared variables can be accessed by localVar.get(key) or sharedVar.get(key).
The local variable can be updated by setting a new value for it:

localVar.set(key, value)

The shared variable is updated by operators. For example, using the add operator, the
expression

sharedVar.add(key, delta)

adds a scalar delta to the variable. The SGD updates (8.2) can be implemented via several
add operators. Other operators supported by the programming interface, including delayed
add and multiply, are introduced in Section 8.3.2. Similar to the standard RDD, the user
can perform map and reduce operations directly on the Parametrized RDD. For example,
after the algorithm terminates, the expression

val loss = paramRdd.map(evalLoss).sum()

evaluates the element-wise losses and aggregates them across the dataset.

8.3 Strategy for parallelization

In this section, we first discuss two naive strategies for parallelizing a stochastic algorithm and
their respective limitations. These limitations motivate the strategy that Splash employs.

8.3.1 Two naive strategies

We denote by ∆(S) the incremental update on variable v after processing the set of sam-
ples S. Suppose that there are m threads and each thread processes a subset Si of S.

200

If the i-th thread increments the shared variable by ∆(Si), then the accumulation scheme
constructs a global update by accumulating local updates:

vnew = vold +
m∑

i=1

∆(Si). (8.5)

The scheme (8.5) provides a good approximation to the full update if the batch size |Di| is
sufficiently small [4]. However, frequent communication is necessary to ensure a small batch
size. For distributed systems connected by commodity networks, frequent communication is
prohibitively expensive, even if the communication is asynchronous.

Applying scheme (8.5) on a large batch may easily lead to divergence. Taking SGD as an
example: if all threads starts from the same vector wold, then after processing a large batch,
the new vector on each thread will be close to the optimal solution w∗. If the variable is
updated by formula (8.5), then we have

wnew − w∗ = wold − w∗ +
m∑

i=1

∆(Si) ≈ wold − w∗ +
m∑

i=1

(w∗ − wold) = (m− 1)(w∗ − wold).

Clearly SGD will diverge if m ≥ 3.
One way to avoid divergence is to multiply the incremental change by a small coefficient.

When the coefficient is 1/m, the variable is updated by

vnew = vold +
1

m

m∑

i=1

∆(Si). (8.6)

This averaging scheme usually avoids divergence. However, since the local updates are com-
puted on 1/mth of S, they make little progress comparing to the full sequential update. Thus
the algorithm converges substantially slower than its sequential counterpart after processing
the same amount of data. See Section 8.3.4 for an empirical evidence of this claim.

8.3.2 Our strategy

We now turn to describe the Splash strategy for combining parallel updates. First we
introduce the operators that Splash supports for manipulating shared variables. Then we
illustrate how conflicting updates are combined by the reweighting scheme.

Operators The programming interface allows the user to manipulate shared variables
inside their algorithm implementation via operators. An operator is a function that maps a
real number to another real number. Splash supports three types of operators: add, delayed
add and multiply. The system employs different strategies for parallelizing different types of
operators.

201

The add operator is the the most commonly used operator. When the operation is
performed on variable v, the variable is updated by v ← v + δ where δ is a user-specified
scalar. The SGD update (8.2) can be implemented using this operator.

The delayed add operator performs the same mapping v ← v+ δ; however, the operation
will not be executed until the next time that the same element is processed by the sys-
tem. Delayed operations are useful in implementing sampling-based stochastic algorithms.
In particular, before the new value is sampled, the old value should be removed. This “re-
verse” operation can be declared as a delayed operator when the old value was sampled, and
executed before the new value is sampled. See Section 8.3.3 for a concrete example.

The multiply operator scales the variable by v ← γ · v where γ is a user-specified scalar.
The multiply operator is especially efficient for scaling high-dimensional arrays. The array
multiplication costs O(1) computation time, independent of the dimension of the array. The
fast performance is achieved by a “lazy update” scheme. For every array u, there is a variable
V maintaining the product of all multipliers applied to the array. The multiply operator
updates V ← γ · V with O(1) time. For the i-th element ui, a variable Vi maintains the
product of all multipliers applied to the element. When the element is accessed, the system
updates ui and Vi by

ui ←
V

Vi
· ui and Vi ← V.

In other words, we delay the multiplication on individual element until it is used by the
program. As a consequence, those infrequently used elements won’t be a bottleneck on the
algorithm’s performance. See Section 8.3.3 for a concrete example.

Reweighting Assume that there are m thread running in parallel. Note that all Splash
operators are linear transformations. When these operators are applied sequentially, they
merge into a single linear transformation. Let Si be the sequence of samples processed by
thread i, which is a fraction 1/m of the full sequence S. For an arbitrary shared variable v,
we can write thread i’s transformation of this variable in the following form:

v ← Γ(Si) · v +∆(Si) + T (Si), (8.7)

Here, both Γ(Si), ∆(Si) and T (Si) are thread-level operators constructed by the execution
engine: Γ(Si) is the aggregated multiply operator, ∆(Si) is the term resulting from the add
operators, and T (Si) is the term resulting from the delayed add operators executed in the
current iteration. A detailed construction of Γ(Si), ∆(Si) and T (Si) is given in Section 8.6.1.

As discussed in Section 8.3.1, directly combining these transformations leads to divergence
or slow convergence (or both). The reweighting scheme addresses this dilemma by assigning
weights to the samples. Since the update (8.7) is constructed on a fraction 1/m of the full
sequence S, we reweight every element by m in the local sequence. After reweighting, the
data distribution of Si will approximate the data distribution of S. If the update (8.7) is
a (randomized) function of the data distribution of Si, then it will approximate the full
sequential update after the reweighting, thus generating a nearly unbiased update.

202

More concretely, the algorithm manipulates the variable by taking sample weights into
account. An m-weighted sample tells the algorithm that it appears m times consecutively
in the sequence. We rename the transformations in (8.7) by Γ(mSi), ∆(mSi) and T (mSi),
emphasizing that they are constructed by processing m-weighted samples. Then we redefine
the transformation of thread i by

v ← Γ(mSi) · v +∆(mSi) + T (mSi) (8.8)

and define the global update by

vnew =
1

m

m∑

i=1

(
Γ(mGi) · vold +∆(mSi)

)
+

m∑

i=1

T (mSi). (8.9)

Equation (8.9) combines the transformations of all threads. The terms Γ(mSi) and ∆(mSi)
are scaled by a factor 1/m because they were constructed onm times the amount of data. The
term T (mSi) is not scaled, because the delayed operators were declared in earlier iterations,
independent of the reweighting. Finally, the scaling factor 1/m should be multiplied to all
delayed operators declared in the current iteration, because these delayed operators were
also constructed on m times the amount of data.

Determining the degree of parallelism To determine the thread number m, the exe-
cution engine partitions the available cores into different-sized groups. Suppose that group i
contains mi cores. These cores will execute the algorithm tentatively on mi parallel threads.
The best thread number is then determined by cross-validation and is dynamically updated.
The cross-validation requires the user to implement a loss function, which takes the variable
set and an individual data element as input to return the loss value. See Section 8.6.2 for a
detailed description. To find the best degree of parallelism, the base algorithm needs to be
robust in terms of processing a wide range of sample weights.

8.3.3 Generalizing stochastic algorithms

Many stochastic algorithms can be generalized to processing weighted samples without sac-
rificing computational efficiency. The most straightforward generalization is to repeat the
single-element update m times. For example, one can generalize the SGD updates (8.2) by

t← t+m and w ← w − ηt,m∇ℓ(w; x) (8.10)

where ηt,m :=
∑t

i=t−m+1 ηi is the sum of all stepsizes in the time interval [t−m + 1, t], and
ηi is the stepsize for the unit-weight sequential SGD. If m is large, computing ηt,m might be
expensive. We may approximate it by

ηt,m ≈
∫ t+1

t−m+1

ηzdz

203

if the right-hand side has a closed-form solution, or simply approximate it by ηt,m ≈ mηt.
In many applications, the loss function ℓ(w; x) can be decomposed as ℓ(w; x) := f(w; x)+

λ
2
‖w‖22 where the second term is the ℓ2-norm regularization. Thus, we have ∇ℓ(w; x) =
∇f(w; x) + λw. If the feature vector x is sparse, then ∇f(w; x) is usually sparse as well. In
this case, we have a more efficient implementation of (8.10):

t← t+m (via add operator),

w ← (1− ηt,mλ) · w (via multiply operator),

w ← w − ηt,m∇f(w; x) (via add operator).

Note that the multiply operator has complexity O(1). Thus, the overall complexity is pro-
portional to the number of non-zero components of ∇f(w; x). If ∇f(w; x) is a sparse vector,
then this update will be more efficient than (8.10). It demonstrates the benefit of combining
different types of operators.

Note that equation (8.10) scales the stepsize with respect to m, which might be unsafe m
is very large. Karampatziakis and Langford [102] propose a robust approach to dealing with
large importance weights in SGD. The programming interface allows the user to implement
the approach by Karampatziakis and Langford [102].

We take the collpased Gibbs sampling algorithm for LDA as a second example. The
algorithm iteratively draw a word w from document d, and sample the topic of w by

P (topic = k|d, w) ∝ (ndk + α)(nwk + β)

nk + βW
. (8.11)

Here, W is the size of the vocabulary; ndk is the number of words in document d that has
been assigned topic k; nwk is the total number of times that word w is assigned to topic k
and nk :=

∑
w nwk. The constants α and β are hyper-parameters of the LDA model. When

a topic k is sampled for the word, the algorithm updates nwk and ndk by (8.3). When a new
topic will be sampled for the same word, the algorithm removes the old topic k by (8.4). If
the current word has weight m, then we can implement the algorithm by

nwk ← nwk +m and ndk ← ndk +m (via add operator), (8.12)

nwk ← nwk −m and ndk ← ndk −m (via delayed add operator). (8.13)

As a consequence, the update (8.12) will be executed instantly. The update (8.13) will be
executed at the next time when the same word is processed.

8.3.4 A toy example

We present a toy example illustrating the strategy described in Section 8.3.2. Consider
the following convex optimization problem. There are N = 3, 000 two-dimensional vectors
represented by x1, . . . , xN , such that xi is randomly and independently drawn from the
normal distribution x ∼ N(0, I2×2). The goal is to find a two-dimensional vector w which

204

-2 -1 0 1 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(a) Optimal solution

(b) Solution with full data

(c) Local solutions with unit-weight data

(d) Average local solutions in (c)

(e) Accumulate local solutions in (c)

(f) Local solutions with weighted data

(g) Average local solutions in (f)

(29,8)

Figure 8.1. Comparing parallelization schemes on a simple convex optimization problem.
Totally N = 3, 000 samples are partitioned into m = 30 batches. Each batch is processed
by an independent thread running stochastic gradient descent. Each thread uses either
unit-weight data or weighted data (weight = 30). The local solutions are combined by
either averaging or accumulation. From the plot, we find that combining weighted solutions
achieves the best performance.

minimizes the weighted distance to all samples. More precisely, the loss function on sample
xi is defined by

ℓ(w; xi) := (xi − w)T
(

1 0
0 1

100

)
(xi − w)

and the overall objective function is L(w) := 1
N

∑N
i=1 ℓ(w; xi). We want to find the vector

that minimizes the objective function L(w).
We use the SGD update (8.10) to solve the problem. The algorithm is initialized by

w0 = (−1,−1)T and the stepsize is chosen by ηt = 1/
√
t. For parallel execution, the

dataset is evenly partitioned into m = 30 disjoint subsets, such that each thread accesses
to a single subset, containing 1/30 faction of data. The sequential implementation and the
parallel implementations are compared in Figure 8.1. Specifically, we compare seven types
of implementations defined by different strategies:

(a) The exact minimizer of L(w).

(b) The solution of SGD achieved by taking a full pass over the dataset. The dataset contains
N = 3, 000 samples.

205

(c) The local solutions by 30 parallel threads. Each thread runs SGD by taking one pass
over its local data. The local dataset contains 100 samples.

(d) Averaging local solutions in (c). This is the averaging scheme described by formula (8.6).

(e) Aggregating local solutions in (c). This is the accumulation scheme described by for-
mula (8.5).

(f) The local solution by 30 parallel threads processing weighted data. Each element is
weighted by 30. Each thread runs SGD by taking one pass over its local data.

(g) Combining parallel updates by formula (8.9), setting sample weight m = 30. Under this
setting, formula (8.9) is equivalent to averaging local solutions in (f).

In Figure 8.1, we observe that solution (b) and solution (g) achieve the best performance.
Solution (b) is obtained by a sequential implementation of SGD: it is the baseline solution
that parallel algorithms target at approaching. Solution (g) is obtained by Splash with
the reweighting scheme. The solutions obtained by other parallelization schemes, namely
solution (d) and (e), have poor performances. In particular, the averaging scheme (d) has a
large bias relative to the optimal solution. The accumulation scheme (e) diverges far apart
from the optimal solution.

To see why Splash is better, we compare local solutions (c) and (f). They correspond to
the unweighted SGD and the weighted SGD respectively. We find that solutions (c) have a
significant bias but relatively small variance. In contrast, solutions (f) have greater variance
but much smaller bias. It verifies our intuition that reweighting helps to reduce the bias by
enlarging the local dataset. Note that averaging reduces the variance but doesn’t change the
bias. It explains why averaging works better with reweighting.

8.4 Convergence analysis

In this section, we study the SGD convergence when it is parallelized by Splash. The goal
of SGD is to minimize an empirical risk function

L(w) =
1

|S|
∑

x∈S
ℓ(w; x),

where S is a fixed dataset and w ∈ R
d is the vector to be minimized over. Suppose that

there are m threads running in parallel. At every iteration, thread i randomly draws (with
replacement) a subset of samples Si of length n from the dataset S. The thread sequentially
processes Si by SGD. The per-iteration update is

t← t+m and w ← w +
(
ΠW (w −mηt∇ℓ(w; x))− w

)
, (8.14)

206

where the sample weight is equal tom. We have generalized the update (8.10) by introducing
ΠW (·) as a projector to a feasible set W of the vector space. Projecting to the feasible set
is a standard post-processing step for an SGD iterate. At the end of the iteration, updates
are synchronized by equation (8.9). This is equivalent to computing:

tnew = told +mn and wnew =
1

m

m∑

i=1

(
wold +∆(mDi)

)
. (8.15)

We denote by w⋆ := argminw∈W L(w) the minimizer of the objective function, and denote
by wT the combined vector after the T -th iteration.

General convex function For general convex functions, we start by introducing three
additional terms. Let wk

i,j be the value of vector w at iteration k, when thread i is processing
the j-th element of Si. Let ηki,j be the stepsize associated with that update. We define a
weighted average vector:

wT =

∑T
k=1

∑m
i=1

∑n
j=1 η

k
i,jw

k
i,j∑T

k=1

∑m
i=1

∑n
j=1 η

k
i,j

.

Note that wT can be computed together with wT . For general convex L, the function value
L(wT) converges to L(w⋆). See Section 8.6.3 for the proof.

Theorem 15. Assume that ‖∇ℓ(w; x)‖2 is bounded for all (w, x) ∈ W × S. Also assume
that ηt is a monotonically decreasing function of t such that

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞.

Then we have
lim
T→∞

E[L(wT)− L(w∗)] = 0.

Smooth and strongly convex function We now turn to study smooth and strongly
convex objective functions. We make three assumptions on the objective function. As-
sumption J restricts the optimization problem in a bounded convex set. Assumption K and
Assumption L require the objective function to be sufficiently smooth and strongly convex
in that set.

Assumption J. The feasible set W ⊂ R
d is a compact convex set of finite diameter R.

Moreover, w⋆ is an interior point of W ; i.e., there is a set Uρ := {w ∈ R
d : ‖w − w⋆‖2 < ρ}

such that Uρ ⊂ W .

Assumption K. There are finite constants L, G and H such that ‖∇2L(w; x)−∇2ℓ(w⋆; x)‖2 ≤
L‖w − w⋆‖2, ‖∇ℓ(w; x)‖2 ≤ G and ‖∇2ℓ(w; x)‖2 ≤ H for all (w, x) ∈ W × S.

Assumption L. The objective function L is λ-strongly convex over the space W , meaning
that ∇2L(w) � λId×d for all w ∈ W .

207

As a preprocessing step, we construct an Euclidean ball B of diameter D := λ
4(L+G/ρ2)

which contains the optimal solution w⋆. The ball center can be found by running the se-
quential SGD for a constant number of steps. During the Splash execution, if the combined
vector wT /∈ B, then we project it to B, ensuring that the distance between wT and w⋆ is
bounded by D. Introducing this projection step simplifies the theoretical analysis, but it
may not be necessary in practice.

Under these assumptions, we provide an upper bound on the mean-squared error of
wT . The following theorem shows that the mean-square error decays as 1/(Tmn), inversely
proportionally to the total number of processed samples. It is the optimal rate of convergence
among all optimization algorithms which relies on noisy gradients [167]. See Section 8.6.4
for the proof.

Theorem 16. Under Assumptions J-L, if we choose the stepsize ηt =
2
λt
, then the output

wT has mean-squared error:

E
[
‖wT − w⋆‖22

]
≤ 4G2

λ2Tmn
+

C1

Tm1/2n3/2
+

C2

Tn2
, (8.16)

where C1 and C2 are constants independent of T , m and n.

When the local sample size n is sufficiently larger than the thread number m (which is
typically true), the last two terms on the right-hand side of bound (8.16) are negligibly small.
Thus, the mean-squared error is dominated by the first term, which scales as 1/(Tmn).

8.5 Experiments

In this section, we report the empirical performance of Splash on three machine learning
tasks: logistic regression, collaborative filtering and topic modeling. Our implementation
of Splash runs on an Amazon EC2 cluster with eight nodes. Each node is powered by an
eight-core Intel Xeon E5-2665 with 30GB of memory and was connected to a commodity
1GB network, so that the cluster contains 64 cores. For all experiments, we compare Splash
with MLlib v1.3 [146] — the official distributed machine learning library for Spark. We also
compare Splash against single-thread stochastic algorithms.

8.5.1 Logistic regression

We solve a digit recognition problem on the MNIST 8M dataset [130] using multi-class logistic
regression. The dataset contains 8 million hand-written digits. Each digit is represented by
a feature vector of dimension d = 784. There are ten classes representing the digits 0-9. The
goal is to minimize the following objective function:

L(w) :=
1

n

n∑

i=1

−〈wyi , xi〉+ log
(9∑

k=0

exp〈wk,xi〉
)

208

runtime (seconds)

0 100 200 300 400 500

lo
ss

 f
u
n
ct

io
n

0.45

0.5

0.55

0.6
Splash (SGD)
Single-thread SGD
MLlib (L-BFGS)

loss function value

0.460.470.480.49

sp
ee

d
u
p
 r

at
e

10

20

30

40
Over single-thread SGD
Over MLlib (L-BFGS)

(a) Loss function convergence (b) Splash speedup rates

Figure 8.2. Multi-class logistic regression on the MNIST 8M digit recognition dataset. (a)
The convergence of different methods; (b) The speedup over other methods for achieving
the same loss function value.

where xi ∈ R
d is the feature vector of the i-th element and yi ∈ {0, . . . , 9} is its label. The

vectors w0, . . . , w9 ∈ R
d are parameters of the logistic regression model.

Splash solves the optimization problem by SGD. We use equation (8.10) to generalize
SGD to processing weighted samples (the stepsize ηt,m is approximated by mηt). The step-
size ηt is determined by the adaptive subgradient method (AdaGrad) [62]. We compare
Splash against the single-thread SGD (with AdaGrad) and the MLlib implementation of
L-BFGS [159]. Note that MLlib also provides a mini-batch SGD method, but in practice we
found it converging substantially slower than L-BFGS.

Figure 8.2(a) shows the convergence plots of the three methods. Splash converges in a few
seconds to a good solution. The single-thread AdaGrad and the L-BFGS algorithm converges
to the same accuracy in much longer time. Figure 8.2(b) demonstrates Splash’s speedup over
other methods. When the target loss decreases, the speedup rate over the single-thread SGD
grows larger, while the speedup rate over MLlib drops lower. Thus, Splash is 15x - 30x faster
than MLlib. Note that Splash runs a stochastic algorithm and L-BFGS is a batch method.
It highlights the advantage of the stochastic method in processing large dataset.

8.5.2 Collaborative filtering

We now turn to a personalized movie recommendation task. For this task, we use the
Netflix prize dataset [18], which contains 100 million movie ratings made by 480k users on
17k movies. We split the dataset randomly into a training set and a test set, which contains
90% and 10% of the ratings respectively. The goal is to predict the ratings in the test set
given ratings in the training set.

The problem can be solved using collaborative filtering. Assume that each user i is
associated with a latent vector ui ∈ R

d, and each movie j is associated with a latent vector
vj ∈ R

d. The affinity score between the user and the movie is measure by the inner product

209

〈ui, vj〉. Given ratings in the training set, we define the objective function by:

L({ui}, {vj}) :=
∑

(i,j,rij)∈S

(
(〈ui, vj〉 − rij)2 + λ‖ui‖22 + λ‖vj‖22

)
, (8.17)

where S represents the training set; The triplet (i, j, rij) represents that the user i gives
rating rij to the movie j. In the training phase, we fit the user vectors {uj} and the movie
vectors {vj} by minimizing (8.17). In the testing phase, we predict the ratings of a user i
which might not be in the training set. Let {rij}j∈J be the observed ratings from the user,
we compute the user vector ui by

ui := arg min
u∈Rd

∑

j∈J
(〈u, vj〉 − rij)2 + λ‖u‖22,

then predict the ratings on other movies by 〈ui, vj〉. The prediction loss is measured by the
mean-squared error.

To minimize the objective function (8.17), we employ a SGD method. Let I be the set
of users. Let Ji represents the set of movies that user i has rated in the training set. We
define an objective function with respect to {vj} as:

L({vj}) := min
{ui}

L({ui}, {vj})

=
∑

i∈I

(
min
u∈Rd

{∑

j∈Ji

(〈u, vj〉 − rij)2 + λ‖u‖22
}
+ λ

∑

j∈Ji

‖vj‖22

)
, (8.18)

so that the movie vectors are obtained by minimizing (8.18). SGD suffices to solve this
problem because the objective function is a sum of individual losses.

In practice, we choose the dimension d = 100 and regularization parameter λ = 0.02.
Thus the number of parameters to be learned is 65 million. The movie vectors are initialized
by a random unit vector on the “first quadrant” (all coordinates are positive). Splash runs
the generalized SGD algorithm (8.10) with stepsizes determined by AdaGrad. We compare
Splash against the single-thread SGD method and the MLlib implementation of alternating
least square (ALS) method. The ALS method minimizes the objective function (8.17) by
alternating minimization with respect to {ui} and with respect to {vj}.

According to Figure 8.3, Splash converges much faster than the single-thread SGD and
the ALS. This is because that SGD can learn accurate movie vectors by processing a fraction
of the the data. For example, to achieve a prediction loss lower than 0.70, it takes Splash
only 13 seconds, processing 60% of the training set. To achieve the same prediction loss,
it takes the ALS 480 seconds, taking 40 passes over the full training set. In other words,
Splash features a 36x speedup over the MLlib.

8.5.3 Topic modeling

We use the NYTimes article dataset from the UCI machine learning repository [124]. The
dataset contains 300k documents and 100 million word tokens. The vocabulary size is 100k.

210

runtime (seconds)

0 100 200 300 400 500

p
re

d
ic

ti
o

n
 l

o
ss

0.8

1

1.2

1.4
Splash (SGD)
Single-thread SGD
MLlib (ALS)

Figure 8.3: Collaborative filtering on the Netflix prize dataset.

The goal is to learn K = 500 topics from these documents. Each topic is represented by a
multinomial distribution of words. The number of parameters to be learned is 200 million.

We employ the LDA model [30] and choose hyper-parameters α = β = 0.1. Splash runs
the generalized collapsed Gibbs sampling algorithm (8.12)-(8.13). We also use the over-
sampling technique [235], that is, for each word the algorithm independently samples 10
topics, each topic carrying 1/10 of the word’s weight. We compare Splash with the single-
thread collapsed Gibbs sampling algorithm and the MLlib implementation of the variational
inference (VI) method [30].

To evaluate the algorithm’s performance, we resort to the predictive log-likelihood metric
by Hoffman et al. [92]. In particular, we partition the dataset into a training set S and a
test set T . The test set contains 10k documents. For each test document in T , we partition
its words into a set of observed words wobs and held-out words who, keeping the sets of
unique words in wobs and who disjoint. We learn the topics from the training data S,
and then use that knowledge and the word set wobs to estimate the topic distribution for
the test documents. Finally, the predictive log-likelihood of the held-out words, namely
log p(wnew|wobs,S), are computed. The performance of the algorithm is measured by the
average predictive log-likelihood per held-out word.

Figure 8.4 plots the predictive log-likelihoods. Among the three methods, the single-
thread collapsed Gibbs sampling algorithm exhibits little progress in the first 3,000 seconds.
But when the algorithm is parallelized by Splash, it converges faster and better than the
MLlib implementation of variational inference (VI). In particular, Splash converges to a
predictive log-likelihoods of -8.12, while MLlib converges to -8.36. When measured at fixed
target scores, Splash is 3x - 6x faster than MLlib.

8.5.4 Runtime analysis

The runtime of a distributed algorithm can be decomposed into three parts: the computation
time, the waiting time and the communication time. The waiting time is the latency that
the fast threads wait for the slowest thread. The communication time is the amount of time

211

runtime (seconds)

0 1000 2000

p
re

d
ic

ti
v
e

lo
g
-l

ik
el

ih
o
o
d

-9

-8.5

-8
Splash (Gibbs)
Single-thread (Gibbs)
MLlib (VI)

Figure 8.4. Topic modeling on the NYTimes dataset. The LDA model learns K = 500
topics.

MNIST 8M (LR) Netflix (CF) NYTimes (LDA)

R
u

n
ti

m
e

p
er

 p
as

s

0

10

20

30

40

50

60

Computation time
Waiting time
Communication time

Figure 8.5. Runtime of Splash for taking one pass over the training set. Three machine
learning tasks: logistic regression (LR), collaborative filtering (CF) and topic modeling
(LDA)

spent on synchronization.
We present runtime analysis on the three machine lear.ning tasks. For logistic regression

and collaborative filtering, we let Splash workers synchronize five times per taking one pass
over the training set. For topic modeling, we let the workers synchronize once per taking one
pass. Figure 8.5 breaks down the runtime of Splash into the three parts. For the three tasks,
the waiting time is 16%, 21% and 26% of the computation time. This ratio will increase if
the algorithm is parallelized on more machines. In contrast, the communication time is 6%,
39% and 103% of the computation time — it is proportional to the number of parameters
to be learned and logarithmically proportional to the number of workers (via TreeReduce).
The communication time can be reduced by decreasing the synchronization frequency.

212

8.6 Technical details

In this section, we present technical details that have been omitted in the main text of the
chapter. Then we provide proofs of the convergence results.

8.6.1 Constructing linear transformation on a thread

When element-wise operators are sequentially applied, they merge into a single linear trans-
formation. Assume that after processing a local subset S, the resulting transformation can
be represented by

v ← Γ(S) · v +∆(S) + T (S)

where Γ(S) is the scale factor, ∆(S) is the term resulting from the element-wise add oper-
ators, and T (S) is the term resulting from the element-wise delayed add operators declared
before the last synchronization.

We construct Γ(S), ∆(S) and T (S) incrementally. Let P be the set of processed elements.
At the beginning, the set of processed elements is empty, so that we initialize them by

Γ(P) = 1, ∆(P) = 0 and ξ(P) = 0 for P = ∅.

After processing element z, we assume that the user has performed all types of operations,
resulting in a transformation taking the form

v ← γ(v + t) + δ (8.19)

where the scalars γ and δ result from instant operators and t results from the delayed
operator. Concatenating transformation (8.19) with the transformation constructed on set
P , we have

v ← γ ·
(
Γ(P) · v +∆(P) + T (P) + t

)
+ δ

= γ · Γ(P) · v +
(
γ ·∆(P) + δ

)
+
(
γ · T (P) + γt

)
.

Accordingly, we update the terms Γ, ∆ and T by

Γ(P ∪ {z}) = γ · Γ(P), ∆(P ∪ {z}) = γ ·∆(P) + δ and T (P ∪ {z}) = γ · T (P) + γt
(8.20)

and update the set of processed elements by P ← P ∪ {z}. After processing the entire local
subset, the set P will be equal to S, so that we obtain Γ(S), ∆(S) and T (S).

8.6.2 Determining thread number

Suppose that there are M available cores in the cluster. The execution engine partitions
these cores into several groups. Suppose that the i-th group contains mi cores. The group
sizes are determined by the following allocation scheme:

213

• Let 4m0 be the thread number adopted by the last iteration. Let 4m0 := 1 at the first
iteration.

• For i = 1, 2, . . . , if 8mi−1 ≤ M − ∑i−1
j=1mj, the let mi := 4mi−1. Otherwise, let

mi :=M −∑i−1
j=1mj. Terminate when

∑i
j=1mj =M .

It can be easily verified that the candidate thread numbers (which are the group sizes) in
the current iteration are at least as large as that of the last iteration. The candidate thread
numbers are 4m0, 16m0, . . . until they consume all of the available cores.

The i-th group is randomly allocated with mi Parametrized RDD partitions for training,
and allocated with another mi Parametrized RDD partitions for testing. In the training
phase, they execute the algorithm on mi parallel threads, following the parallelization strat-
egy described in Section 8.3.2. In the testing phase, the training results are broadcast to all
the partitions. The thread number associated with the smallest testing loss will be chosen.
The user is asked to provide an evaluation function ℓ : W × S → R which maps a variable-
sample pair to a loss value. This function, for example, can be chosen as the element-wise
loss for optimization problems, or the negative log-likelihood of probabilistic models. If the
user doesn’t specify an evaluation function, then the largest mi will be chosen by the system.

Once a thread number is chosen, its training result will be applied to all Parametrized
RDD partitions. The allocation scheme ensures that the largest thread number is at least
3/4 ofM . Thus, in case thatM is the best degree of parallelism, the computation power will
not be badly wasted. The allocation scheme also ensures that M will be the only candidate
of parallelism if the last iteration’s thread number is greater than M/2. Thus, the degree of
parallelism will quickly converge to M if it outperforms other degrees. Finally, the thread
number is not updated in every iteration. If the same thread number has been chosen by
multiple consecutive tests, then the system will continue using it for a long time, until some
retesting criterion is satisfied.

8.6.3 Proof of Theorem 15

We assume that ‖∇ℓ(w; x)‖2 ≤ G for any (w, x) ∈ W × S. The theorem will be established
if the following inequality holds:

T∑

k=1

m∑

i=1

n∑

j=1

2ηki,jE[L(w
k
i,j)− L(w⋆)] ≤ mE[‖w0 − w⋆‖2 − ‖wT − w⋆‖2] +G2

T∑

k=1

m∑

i=1

n∑

j=1

(ηki,j)
2

(8.21)

To see how inequality (8.21) proves the theorem, notice that the convexity of function L
yields

E[L(wj)− L(w∗)] ≤
∑T

k=1

∑m
i=1

∑n
j=1 η

k
i,jE[L(w

k
i,j)− L(w⋆)]∑T

k=1

∑m
i=1

∑n
j=1 η

k
i,j

.

214

Thus, inequality (8.21) implies

E[L(wj)− L(w∗)] ≤
mE[‖w0 − w⋆‖2 − ‖wT − w⋆‖2] +G2

∑T
k=1

∑m
i=1

∑n
j=1(η

k
i,j)

2

2
∑T

k=1

∑m
i=1

∑n
j=1 η

k
i,j

.

By the assumptions on ηt, it is easy to see that the numerator of right-hand side is bounded,
but the denominator is unbounded. Thus, the fraction converges to zero as T →∞.

It remains to prove inequality (8.21). We prove it by induction. The inequality trivially
holds for T = 0. For any integer k > 0, we assume that the inequality holds for T = k − 1.
At iteration k, every thread starts from the shared vector wk−1, so that wk

i,1 ≡ wk−1. For
any j ∈ {1, . . . , n}, let gki,j be a shorthand for ∇ℓ(wk

i,j; x). A bit of algebraric transformation
yields:

‖wk
i,j+1 − w⋆‖22 = ‖ΠW (wk

i,j − ηki,jgki,j)− w⋆‖22 ≤ ‖wk
i,j − ηki,jgki,j − w⋆‖22

= ‖wk
i,j − w⋆‖22 + (ηki,j)

2‖gki,j‖22 − 2ηki,j〈wk
i,j − w⋆, g

k
i,j〉,

where the inequality holds since w⋆ ∈ W and ΠW is the projection onto W . Taking ex-
pectation on both sides of the inequality and using the assumption that ‖gki,j‖2 ≤ G, we
have

E[‖wk
i,j+1 − w⋆‖22] ≤ E[‖wk

i,j − w⋆‖22] +G2(ηki,j)
2 − 2ηki,jE[〈wk

i,j − w⋆,∇L(wk
i,j)〉].

By the convexity of function L, we have 〈wk
i,j − w⋆,∇L(wk

i,j)〉 ≥ L(wk
i,j) − L(w⋆). Plugging

in this inequality, we have

2ηki,jE[L(w
k
i,j)− L(w⋆)] ≤ E[‖wk

i,j − w⋆‖22]− E[‖wk
i,j+1 − w⋆‖22] +G2(ηki,j)

2. (8.22)

Summing up inequality (8.22) for i = 1, . . . ,m and j = 1, . . . , n, we obtain

m∑

i=1

n∑

j=1

2ηki,jE[L(w
k
i,j)− L(w⋆)] ≤ mE[‖wk−1 − w⋆‖22]−

m∑

i=1

E[‖wk
i,n+1 − w⋆‖22]

+
m∑

i=1

n∑

j=1

G2(ηki,j)
2. (8.23)

Notice that wk = 1
m
wk

i,n+1. Thus, Jensen’s inequality implies

m∑

i=1

‖wk
i,n+1 − w⋆‖22 ≥ m‖wk − w⋆‖2.

Plugging this inequality to upper bound (8.23) yields

m∑

i=1

n∑

j=1

2ηki,jE[L(w
k
i,j)− L(w⋆)] ≤ mE[‖wk−1 − w⋆‖22 − ‖wk − w⋆‖22] +

m∑

i=1

n∑

j=1

G2(ηki,j)
2.

(8.24)

The induction is complete by combining upper bound (8.24) with the inductive hypothesis.

215

8.6.4 Proof of Theorem 16

Recall that wk is the value of vector w after iteration k. Let wk
i be the output of thread i

at the end of iteration k. According to the update formula, we have wk = ΠB(
1
m

∑m
i=1w

k
i),

where ΠB(·) is the projector to the set B. The set B contains the optimal solution w⋆. Since
projecting to a convex set doesn’t increase the point’s distance to the elements in the set,
and because that wk

i (i = 1, . . . ,m) are mutually independent conditioning on wk−1, we have

E[‖wk − w⋆‖22] ≤ E

[
E

[∥∥∥ 1

m

m∑

i=1

wk
i − w⋆

∥∥∥
2

2

∣∣∣wk−1
]]

=
1

m2

m∑

i=1

E[E[‖wk
i − w⋆‖22|wk−1]] +

1

m2

∑

i 6=j

E[E[〈wk
i − w⋆, w

k
j − w⋆〉|wk−1]]

=
1

m
E[‖wk

1 − w⋆‖22] +
m− 1

m
E[‖E[wk

1 |wk−1]− w⋆‖22] (8.25)

Equation (8.25) implies that we could upper bound the two terms on the right-hand side
respectively. To this end, we introduce three shorthand notations:

ak := E[‖wk − w⋆‖22],
bk := E[‖wk

1 − w⋆‖22],
ck := E[‖E[wk

1 |wk−1]− w⋆‖22].
Essentially, equation (8.25) implies ak ≤ 1

m
bk +

m−1
m
ck. Let a0 := ‖w0 − w⋆‖2 where w0 is

the initial vector. The following two lemmas upper bounds bk+1 and ck+1 as functions of ak.
We defer their proofs to the end of this section.

Lemma 39. For any integer k ≥ 0, we have

bk+1 ≤
k2

(k + 1)2
ak +

β1
(k + 1)2n

where β1 := 4G2/λ2.

Lemma 40. We have c1 ≤ β2
2/n

2 and for any integer k ≥ 1,

ck+1 ≤
k2

(k + 1)2
ak +

2β2
√
ak + β2

2/n

(k + 1)2n
where β2 := max

{
⌈2H/λ⌉R, 8G

2(L+G/ρ2)

λ3

}
.

Combining equation (8.25) with the results of Lemma (39) and Lemma (40), we obtain
an upper bound on a1:

a1 ≤
β1
mn

+
β2
2

n2
:= β3. (8.26)

Furthermore, Lemma (39) and Lemma (40) upper bound ak+1 as a function of ak:

ak+1 ≤
k2

(k + 1)2
ak +

β3 + 2β2
√
ak/n

(k + 1)2
. (8.27)

216

Using upper bounds (8.26) and (8.27), we claim that

ak ≤
β3 + 2β2

√
β3/n

k
for k = 1, 2, . . . (8.28)

By inequality (8.26), the claim is true for k = 1. We assume that the claim holds for k and
prove it for k + 1. Using the inductive hypothesis, we have ak ≤ β3. Thus, inequality (8.27)
implies

ak+1 ≤
k2

(k + 1)2
· β3 + 2β2

√
β3/n

k
+
β3 + 2β2

√
β3/n

(k + 1)2
=
β3 + 2β2

√
β3/n

(k + 1)n

which completes the induction. Note that both β1 and β2 are constants that are independent
of k, m and n. Plugging the definition of β3, we can rewrite inequality (8.28) as

ak ≤
4G2

λ2kmn
+

C1

km1/2n3/2
+

C2

kn2
.

where C1 and C2 are constants that are independent of k, m and n. This completes the
proof of the theorem.

8.6.4.1 Proof of Lemma 39

In this proof, we use wj as a shorthand to denote the value of vector w at iteration k + 1
when the first thread is processing the j-th element. We drop the notation’s dependence on
the iteration number and on the thread index since they are explicit from the context. Let
gj = ∇ℓ(wj; xj) be the gradient of loss function ℓ with respect to wj on the j-th element.
Let ηj be the stepsize parameter when wj is updated. It is easy to verify that ηj =

2
λ(kn+j)

.

We start by upper bounding the expectation of ‖wk+1
1 − w⋆‖22 conditioning on wk. By

the strong convexity of L and the fact that w⋆ minimizes L, we have

〈E[gj], wj − w⋆〉 ≥ L(wj)− L(w⋆) +
λ

2
‖wj − w⋆‖22 .

as well as

L(wj)− L(w⋆) ≥
λ

2
‖wj − w⋆‖22 .

Hence, we have

〈E[gj], wj − w⋆〉 ≥ λ ‖wj − w⋆‖22 (8.29)

Recall that ΠW (·) denotes the projection onto set W . By the convexity of W , we have
‖ΠW (u)− v‖2 ≤ ‖u− v‖2 for any u, v ∈ W . Using these inequalities, we have the following:

E[‖wj+1 − w⋆‖22|wk] = E[‖ΠW (wj − ηjgj)− w⋆‖22|wk]

≤ E[‖wj − ηjgj − w⋆‖22|wk]

= E[‖wj − w⋆‖22|wk]− 2ηjE
[
〈gj, wj − w⋆〉|wk

]
+ η2jE[‖gj‖22|wk].

217

Note that the gradient gj is independent of wj conditioning on wk−1. Thus, we have

E
[
〈gj, wj − w⋆〉|wk

]
= E[〈E[gj], wj − w⋆〉|wk] ≥ λE[‖wj − w⋆‖22 |wk].

where the last inequality follows from inequality (8.29). As a consequence, we have

E[‖wj+1 − w⋆‖22|wk] ≤ (1− 2ηjλ)E[‖wj − w⋆‖22|wk] + η2jG
2.

Plugging in ηj =
2

λ(kn+j)
, we obtain

E[‖wj+1 − w⋆‖22|wk] ≤
(
1− 4

kn+ j

)
E[‖wj − w⋆‖22|wk] +

4G2

λ2(kn+ j)2
. (8.30)

Case k = 0: We claim that any j ≥ 1,

E[‖wj − w⋆‖22] ≤
4G2

λ2j
(8.31)

Since w1
1 = wn+1, the claim establishes the lemma. We prove the claim by induction. The

claim holds for j = 1 because inequality (8.29) yields

‖w1 − w⋆‖22 ≤
〈E[g1], w1 − w⋆〉

λ
≤ G‖w1 − w⋆‖2

λ
⇒ ‖w1 − w⋆‖2 ≤ G/λ.

Otherwise, we assume that the claim holds for j. Then inequality (8.30) yields

E[‖wj+1 − w⋆‖22] ≤
(
1− 4

j

)
4G2

λ2j
+

4G2

λ2j2

=
4G2

λ2
j − 4 + 1

j2
≤ 4G2

λ2(j + 1)
,

which completes the induction.

Case k > 0: We claim that for any j ≥ 1,

E[‖wj − w⋆‖22|wk] ≤ 1

(kn+ j − 1)2

(
(kn)2‖wk − w⋆‖22 +

4G2(j − 1)

λ2

)
(8.32)

We prove (8.32) by induction. The claim is obviously true for j = 1. Otherwise, we assume
that the claim holds for j and prove it for j + 1. Since 1− 4

kn+j
≤ (kn+j−1

kn+j
)2, combining the

inductive hypothesis and inequality (8.30), we have

E[‖wj+1 − w⋆‖22|wk]

≤ 1

(kn+ j)2

(
(kn)2‖wk − w⋆‖22 +

4G2(j − 1)

λ2

)
+

4G2

λ2(kn+ j)2

=
1

(kn+ j)2

(
(kn)2‖wk − w⋆‖22 +

4G2j

λ2

)
.

which completes the induction. Note that claim (8.32) establishes the lemma since wk
1 =

wn+1.

218

8.6.4.2 Proof of Lemma 40

In this proof, we use wj as a shorthand to denote the value of vector w at iteration k + 1
when the first thread is processing the j-th element. We drop the notation’s dependence on
the iteration number and on the thread index since they are explicit from the context. Let
gj = ∇ℓ(wj; xj) be the gradient of loss function ℓ with respect to wj on the j-th element.
Let ηj be the stepsize parameter when wj is updated. It is easy to verify that ηj =

2
λ(kn+j)

.
Recall the neighborhood Uρ ⊂ W in Assumption J, and note that

wj+1 − w⋆ = ΠW (wj − ηjgj − w⋆)

= wj − ηjgj − w⋆ + I(wj+1 6∈ Uρ) (ΠW (wj − ηjgj)− (wj − ηjgj))

since when w ∈ Uρ, we have ΠW (w) = w. Consequently, an application of the triangle
inequality and Jensen’s inequality gives

‖E[wj+1 − w⋆|wk]‖2 ≤ ‖E[wj − ηjgj − w⋆|wk]‖2
+ E

[
‖(ΠW (wj − ηjgj)− (wj − ηjgj))1(wj+1 /∈ Uρ)‖2 |wk

]
.

By the definition of the projection and the fact that wj ∈ W , we additionally have

‖ΠW (wj − ηjgj)− (wj − ηjgj)‖2 ≤ ‖wj − (wj − ηjgj))‖2 ≤ ηj ‖gj‖2 .

Thus, by combining the above two inequalities, and applying Assumption K, we have

‖E[wj+1 − w⋆|wk]‖2 ≤ ‖E[wj − ηjgj − w⋆|wk]‖2 + ηjE[‖gj‖2 1(wj+1 6∈Uρ)|wk]

≤ ‖E[wj − ηjgj − w⋆|wk]‖2 + ηjG · P (wj 6∈ Uρ|wk)

≤ ‖E[wj − ηjgj − w⋆|wk]‖2 + ηjG ·
E[‖wj+1 − w⋆‖22|wk]

ρ2
, (8.33)

where the last inequality follows from the Markov’s inequality.
Now we turn to controlling the rate at which wj−ηj−gj goes to zero. Let ℓj(·) = ℓ(·; xj)

be a shorthand for the loss evaluated on the j-th data element. By defining

rj := gj −∇ℓj(w⋆)−∇2ℓj(w⋆)(wj − w⋆),

a bit of algebra yields

gj = ∇ℓj(w⋆) +∇2ℓj(w⋆)(wj − w⋆) + rj.

First, we note that E[∇ℓj(w⋆)|wk] = ∇L(w⋆) = 0. Second, the Hessian ∇2ℓj(w⋆) is indepen-
dent of wj. Hence we have

E[gj|wk] = E[∇ℓj(w⋆)] + E[∇2ℓj(w⋆)|wk] · E[wj − w⋆|wk] + E[rj|wk]

= ∇2L(w⋆)E[wj − w⋆|wk] + E[rj|wk]. (8.34)

219

Taylor’s theorem implies that rj is the Lagrange remainder

rj = (∇2ℓj(w
′)−∇2ℓj(w⋆))(w

′ − w⋆),

where w′ = κwj + (1− κ)w⋆ for some κ ∈ [0, 1]. Applying Assumption K, we find that

E[‖rj‖2|wk] ≤ E[‖∇2ℓj(w
′)−∇2ℓj(w⋆)‖2 ‖wj − w⋆‖2 |wk]

≤ LE[‖wj − w⋆‖22|wk]. (8.35)

By combining the expansion (8.34) with the bound (8.35), we find that

‖E[wj − ηjgj − w⋆|wk]‖2 =
∥∥E[(I − ηj∇2F0(w⋆))(wj − w⋆) + ηjrj|wk]

∥∥
2

≤ ‖(I − ηj∇2L(w⋆))E[wj − w⋆|wk]‖2 + ηjLE[‖wj − w⋆‖22|wk].

Using the earlier bound (8.33) and plugging in the assignment ηj =
2

λ(kn+j)
, this inequality

then yields

‖E[wj+1 − w⋆|wk]‖2 ≤
∥∥I − ηj∇2L(w⋆)

∥∥
2
‖E[wj − w⋆|wk]‖2

+
2

λ(kn+ j)

(
LE[‖wj − w⋆‖22|wk] +

GE[‖wj+1 − w⋆‖22|wk]

ρ2

)
. (8.36)

Next, we split the proof into two cases when k = 1 and k > 1.

Case k = 0: Note that by strong convexity and our condition that ‖∇2L(w⋆)‖2 ≤ H,
whenever ηjH ≤ 1 we have

‖I − ηj∇2L(w⋆)‖2 = 1− ηjλmin(∇2L(w⋆)) ≤ 1− ηjλ
Define τ0 = ⌈2H/λ⌉; then for j ≥ τ0, we have ηjH ≤ 1. As a consequence, inequality (8.31)
(in the proof of Lemma 39) and inequality (8.36) yield that for any j ≥ τ0,

‖E[wj+1 − w⋆]‖2 ≤ (1− 2/j) ‖E[wj − w⋆]‖2 +
8G2

λ3j2
(
L+G/ρ2

)
. (8.37)

As shorthand notations, we define two intermediate variables

ut = ‖E(wj − w⋆)‖2 and b1 =
8G2

λ3
(
L+G/ρ2

)
.

Inequality (8.37) then implies the inductive relation

uj+1 ≤ (1− 2/j)uj + b1/j
2 for any j ≥ τ0.

Now we claim that by defining b2 := max{τ0R, b1}, we have uj ≤ β/j. Indeed, it is clear
that uj ≤ τ0R/j for j = 1, 2, . . . , τ0. For t > τ0, using the inductive hypothesis, we have

uj+1 ≤
(1− 2/j)b2

j
+
b1
j2
≤ b2j − 2b2 + b2

j2
=
b2(j − 1)

j2
≤ b2
j + 1

.

This completes the induction and establishes the lemma for k = 0.

220

Case k > 0: Let uj = ‖E[wj − w⋆|wk]‖2 and δ = ‖wk − w⋆‖2 as shorthands. Combining
inequality (8.32) (in the proof of Lemma 39) and inequality (8.36) yield

uj+1 ≤
(
1− 2

kn+ j

)
uj +

2(L+G/ρ2)

λ(kn+ j)(kn+ j − 1)2

(
(kn)2δ2 +

4G2j

λ2

)

≤
(
1− 2

kn+ j

)
uj +

2(L+G/ρ2)

λ(kn+ j)(kn+ j − 1)kn

(
(kn)2δ2 +

4G2n

λ2

)

=
(kn+ j − 2)(kn+ j − 1)

(kn+ j − 1)(kn+ j)
uj +

b1knδ
2 + b2/k

(kn+ j − 1)(kn+ j)
(8.38)

where we have introduced shorthand notations b1 := 2(L+G/ρ2)
λ

and b2 := 8G2(L+G/ρ2)
λ3 . With

these notations, we claim that

uj ≤
(kn− 1)knδ + (j − 1)(b1knδ

2 + b2/k)

(kn+ j − 2)(kn+ j − 1)
. (8.39)

We prove the claim by induction. Indeed, since u1 = δ, the claim obviously holds for j = 1.
Otherwise, we assume that the claim holds for j, then inequality (8.38) yields

uj+1 ≤
(kn− 1)knδ + (j − 1)(b1knδ

2 + b2/k)

(kn+ j − 1)(kn+ j)
+

b1knδ
2 + b2/k

(kn+ j − 1)(kn+ j)

=
(kn− 1)knδ + j(b1knδ

2 + b2/k)

(kn+ j − 1)(kn+ j)
,

which completes the induction. As a consequence, a bit of algebraic transformation yields

‖E[wk+1
1 − w⋆|wk]‖2 = un+1 ≤

(kn− 1)knδ + n(b1knδ
2 + b2/k)

((k + 1)n− 1)(k + 1)n

≤ k2n2δ

(k + 1)2n2
+

nb1knδ
2

kn(k + 1)n
+

nb2/k

kn(k + 1)n

≤
(

k

k + 1

)2

δ +
b1δ

2

k + 1
+

b2
k(k + 1)n

=
k

k + 1

(
kδ + k+1

k
b1δ

2

k + 1
+

b2
k2n

)
(8.40)

By the fact that wk ∈ B, we have k+1
k
b1δ ≤ k+1

k
b1D ≤ 1. Thus, inequality (8.40) implies

‖E[wk+1
1 − w⋆|wk]‖22 ≤

(
k

k + 1

)2(
δ +

b2
k2n

)2

Taking expectation on both sides of the inequality, then applying Jensen’s inequality, we
obtain

E[‖E[wk+1
1 − w⋆|wk]‖22] ≤

k2E[δ2]

(k + 1)2
+

2b2
√
E[δ2] + b22/n

(k + 1)2n
.

Hence, the lemma is established.

221

Chapter 9

Conclusion and future directions

In this chapter, we summarize the key contributions made by the thesis, and suggest several
future directions. The chapter is organized in three sections, corresponding to the three
parts of the main content of the thesis. In each section, we first summarize the main ideas
presented in this part, then layout a roadmap for things that could likely follow.

9.1 Conclusion on distributed algorithms

In the first part of the thesis, we have presented three types of distributed algorithms for
statistical optimization. In Chapter 3, we analyzed the one-shot averaging algorithm and
proposed an improved algorithm using the technique of booststrap. The idea is to partition
the dataset randomly into multiple pieces, compute a local solution based on each piece of
data, then combine the local solutions by averaging. Despite the simplicity of this approach,
we have shown that it achieves the optimal statistical accuracy under particular conditions.
The most critical assumption of this chapter is the strong convexity assumption of the
population risk. This assumption is satisfied by the parametric models on many real datasets.
More precisely, we have shown that the simple one-shot averaging algorithm can tolerate
the number of parallel machines proportional to the square root of the total number of
samples. It means that we can parallelize the learning algorithm on thousands or more
machines. The degree of parallelisim may be further increased if we use the bootstrapping
bias correction technique. The advantage of the bootstrapping approach has been confirmed
both theoretically and empirically.

There are several interesting questions that remain open. First, the chapter makes an as-
sumption that the loss function must be third-order differentiable. This assumption might be
too strong for particular models, such as the support vector machine modelo, where the loss
function is continuous but not smooth. It is important to study the efficient parallelization of
optimization algorithms for these non-smooth loss functions. Second, we have assumed the
network topology to be star shaped or fully connected. it may also be interesting to study
the effects of subsampled or bootstrap-based estimators in other distributed environments.

222

In Chapter 4, we have extended the idea of divide-and-conquer method to non-parametric
learning. We focused on the problem of kernel ridge regression and demonstrated that the
optimal statistical accuracy can be achieved by a divide-and-conquer algorithm. The idea is
to train an estimator on each subset of data, with carefully chosen regularization parameters.
Then the local estimators are averaged to form the global estimator. We show that the divide-
and-conquer strategy substantially improves the computation efficiency, as the algorithm is
dependent on only a small portion of entries of the kernel matrix.

It is interesting to consider the number of kernel evaluations required to implement our
method. Recall that our method partitions the dataset into m pieces and quantifies γ(λ)
to be the effective dimension of the RKHS. Our estimator requires m sub-matrices of the
full kernel (Gram) matrix, each of size N/m × N/m. Since we require m ≤ N/γ2(λ),
in the best case, the algorithm requires at most Nγ2(λ) kernel evaluations. By contrast,
Bach [10] shows that Nyström-based subsampling can be used to form an estimator within a
constant factor of optimal as long as the number ofN -dimensional subsampled columns of the
kernel matrix scales roughly as the marginal dimension γ̃(λ) = N ‖diag(K(K + λNI)−1)‖∞.
Consequently, using roughly Nγ̃(λ) kernel evaluations, Nyström subsampling can achieve
optimal convergence rates. These two scalings–namely, Nγ2(λ) versus Nγ̃(λ)—are currently
not comparable: in some situations, such as when the data is not compactly supported, γ̃(λ)
can scale linearly with N , while in others it appears to scale roughly as the true effective
dimensionality γ(λ). A natural question arising from these lines of work is to understand
the true optimal scaling for these different estimators: is one fundamentally better than the
other? Are there natural computational tradeoffs that can be leveraged at large scale? As
datasets grow substantially larger and more complex, these questions should become even
more important.

In Chapter 5, we have proposed a distributed optimization algorithm for a broader class
of objective functions. We assume that the objective function may not be strongly convex.
Instead, it is regularized by a squared ℓ2-norm whose coefficient diminishes to zero as the
sample size grows to infinity. Under this setting, the simple averaging strategy is not able
to achieve the optimal convergence rate. The proposed DiSCO algorithm is an iterative
approach and it uses both the first-order information and the second-order information of
the objective function to speedup the convergence. The algorithm’s computation complexity
is as efficient as the first-order method, but its iteration complexity for achieving a particular
optimality gap is as low as second-order methods. As a consequence, we showed that the
iteration complexity of the algorithm doesn’t depend on the total number of data points in
the dataset.

The DiSCO algorithm has several limitations. It requires the objective function to be
self-concordant, which is not satisfiable by non-smooth functions. The efficiency of DiSCO
relies on the i.i.d. property of the data points, thus its convergence rate guarantee is not as
strong as those optimization methods for worst-case inputs. It is interesting to study new
algorithms that overcome these limitations. To simplify the problem, we may assume that
there are only two machines, but the data on these machines are not i.i.d., and the objective
function is the least-square loss for linear regression. Finding a communication-efficient

223

algorithm for solving this problem is of both theoretical and practical interest.

9.2 Conclusion on theories of distributed computing

In the second part of the thesis, we have studied fundamental limits of distributed algorithms.
In Chapter 6, we have established lower bounds on the amount of communication required
for several statistical estimation problems. Our lower bounds are information-theoretic in
nature, based on variants of Fano’s and Le Cam’s methods. In particular, they rely on
novel types of quantitative data processing inequalities that characterize the effect of bit
constraints on the mutual information between parameters and messages.

Several open questions remain in Chapter 6. Our arguments are somewhat complex,
and our upper and lower bounds differ by logarithmic factors. It would be interesting to
understand which of our bounds can be sharpened; tightening the upper bounds would lead
to interesting new distributed inference protocols, while improving the lower bounds could
require new technical insights. We believe it will also be interesting to explore the application
and extension of our results and techniques to other — perhaps more complex — problems
in statistical estimation.

In Chapter 7, we have studied the problem of estimating the generalized rank of n-by-n
matrices stored on multiple machines. Our main results are to show that in the deterministic
setting, sending Θ(n2) bits is both necessary and sufficient in order to obtain any constant
relative error. In contrast, when randomized algorithms are allowed, this scaling is reduced
to Θ̃(n).

We raised an open question of how to estimate the matrix rank with relative error δ ≪
1/
√
r where r is the matrix rank. In Section 7.5, we demonstrated the connection between

this open problem and the study of communication complexity for a broad class of linear
algebraic computation problems. We have shown that if one can prove a tight communication
complexity lower bound for estimating matrix rank with very small error, then it implies
tight lower bounds for the problems listed in Section 7.5. This connection suggests the
importance of studying matrix rank estimation, especially for characterizing lower bounds
on communication complexity. We hope that the results in Chapter 7 are a meaningful first
step in exploring this problem area.

9.3 Conclusion on machine learning systems

The last part of the thesis is devoted to practical machine learning systems. Chapter 8,
we have presented Splash — a general framework for parallelizing stochastic algorithms.
The programming paradigm of Splash is designed around a key concept: implementing
incremental updates that processes weighted data. This paradigm allows the system to au-
tomatically parallelize the algorithm on commodity clusters. On machine learning tasks,
Splash is orders-of-magnitude faster than state-of-the-art implementations adopting the it-

224

erative MapReduce. The fast performance is partially due to the superiority of stochastic
algorithms over the batch algorithm, and partially due to the communication-efficient fea-
ture of the system. In addition, Splash is built on top of Spark which allows it seamlessly
integrating with the existing data analytics stack.

For the parallelization strategy of Splash, we have provided theoretical analysis on
stochastic gradient descent, and proved the optimal rate of convergence for strongly con-
vex objective functions. It remains unknown if the same optimality guarantee holds for
general convex functions, and more generally, if it holds for other problems besides convex
optimization. These questions suggest theoretical studies of Splash for the future work. On
the computer systems front, we are interested in adapting the framework to a more diversi-
fied system. For example, it is still challenging to perform distributed machine learning on a
hybrid system of shared memories across cores and a network connecting machines. It is also
important to design a system which can efficiently run large-scale optimization algorithms
on GPU clusters, while simultaneously preserving the ease of implementation.

225

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow. org.

[2] H. Abelson. Lower bounds on information transfer in distributed computations. Jour-
nal of the ACM (JACM), 27(2):384–392, 1980.

[3] C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kegl, and D. Rousseau.
Learning to discover: the higgs boson machine learning challenge. URL http://higgsml.
lal. in2p3. fr/documentation, 2014.

[4] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In NIPS,
pages 873–881, 2011.

[5] A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic
lower bounds on the oracle complexity of convex optimization. IEEE Transactions on
Information Theory, 58(5):3235–3249, May 2012.

[6] A. Ahmed, M. Aly, J. Gonzalez, S. Narayanamurthy, and E. Smola. Scalable inference
in latent variable models. In In WSDM, pages 123–132, 2012.

[7] P. Assouad. Deux remarques sur l’estimation. Comptes rendus des séances de
l’Académie des sciences. Série 1, Mathématique, 296(23):1021–1024, 1983.

[8] M. Avriel. Nonlinear Programming: Analysis and Methods. Prentice-Hall, 1976.

[9] F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statis-
tics, 4:384–414, 2010.

[10] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Proceedings of
the Twenty Sixth Annual Conference on Computational Learning Theory, 2013.

[11] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[12] K. Ball. An elementary introduction to modern convex geometry. In S. Levy, editor,
Flavors of Geometry, pages 1–58. MSRI Publications, 1997.

226

[13] Z. Bar-Yossef, T. S. Jayram, R. Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In Foundations of Computer
Science, 2002. Proceedings. The 43rd Annual IEEE Symposium on, pages 209–218.
IEEE, 2002.

[14] B. Barak, M. Braverman, X. Chen, and A. Rao. How to compress interactive commu-
nication. SIAM Journal on Computing, 42(3):1327–1363, 2013.

[15] P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals
of Statistics, 33(4):1497–1537, 2005.

[16] P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. The Journal of Machine Learning Research, 3:463–482, 2003.

[17] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[18] J. Bennett and S. Lanning. The netflix prize. In Proceedings of KDD cup and workshop,
volume 2007, page 35, 2007.

[19] E. R. Berlekamp. Algebraic Coding Theory: Revised Edition. World Scientific, 2015.

[20] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer Academic, 2004.

[21] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song dataset.
In Proceedings of the 12th International Conference on Music Information Retrieval
(ISMIR), 2011.

[22] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, 1989.

[23] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. Springer-Verlag, New
York, NY, 1997.

[24] L. Birgé. Approximation dans les espaces métriques et théorie de l’estimation.
Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 65(2):181–237, 1983.

[25] L. Birgé and D. V. SARWATE. A new lower bound for multiple hypothesis testing.
IEEE transactions on information theory, 51(4):1611–1615, 2005.

[26] M. Birman and M. Solomjak. Piecewise-polynomial approximations of functions of the
classes W α

p . Sbornik: Mathematics, 2(3):295–317, 1967.

[27] J. A. Blackard, D. J. Dean, and C. W. Anderson. Covertype data set. In
K. Bache and M. Lichman, editors, UCI Machine Learning Repository, URL:
http://archive.ics.uci.edu/ml, 2013. University of California, Irvine, School of Infor-
mation and Computer Sciences.

227

[28] C. Blake and C. J. Merz. {UCI} repository of machine learning databases. 1998.

[29] G. Blanchard and N. Krämer. Optimal learning rates for kernel conjugate gradient
regression. In Advances in Neural Information Processing Systems 24, 2010.

[30] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. the Journal of
machine Learning research, 3:993–1022, 2003.

[31] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceed-
ings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[32] O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine Learn-
ing Research, 2:499–526, 2002.

[33] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[34] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2010.

[35] V. V. Buldygin and Y. V. Kozachenko. Metric Characterization of Random Variables
and Random Processes. American Mathematical Society, Providence, RI, 2000.

[36] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullen-
der. Learning to rank using gradient descent. In Proceedings of the 22nd international
conference on Machine learning, pages 89–96. ACM, 2005.

[37] E. J. Candes and M. A. Davenport. How well can we estimate a sparse vector? Applied
and Computational Harmonic Analysis, 34(2):317–323, 2013.

[38] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis?
Journal of the ACM, 58(3):11, 2011.

[39] A. Caponnetto and E. De Vito. Optimal rates for the regularized least-squares algo-
rithm. Foundations of Computational Mathematics, 7(3):331–368, 2007.

[40] F. Cappello and D. Etiemble. Mpi versus mpi+ openmp on the ibm sp for the nas
benchmarks. In Supercomputing, ACM/IEEE 2000 Conference, pages 12–12. IEEE,
2000.

[41] A. Chakrabart, Y. Shi, A. Wirth, and A. Yao. Informational complexity and the
direct sum problem for simultaneous message complexity. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 270–278. IEEE, 2001.

228

[42] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):
120–145, 2011.

[43] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[44] O. Chapelle and Y. Zhang. A dynamic bayesian network click model for web search
ranking. In Proceedings of the 18th international conference on World wide web, pages
1–10. ACM, 2009.

[45] R. Chen, A. Gittens, and J. A. Tropp. The masked sample covariance estimator: an
analysis using matrix concentration inequalities. Information and Inference, to appear,
2012.

[46] T. Chilimbi, Y. Suzue, J. Apacible, and K. Kalyanaraman. Project adam: Building
an efficient and scalable deep learning training system. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages 571–582, 2014.

[47] J. I. Chu and G. Schnitger. The communication complexity of several problems in
matrix computation. Journal of Complexity, 7(4):395–407, 1991.

[48] J. I. Chu and G. Schnitger. Communication complexity of matrix computation over
finite fields. Mathematical Systems Theory, 28(3):215–228, 1995.

[49] K. L. Clarkson and D. P. Woodruff. Numerical linear algebra in the streaming model.
In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
pages 205–214. ACM, 2009.

[50] C. Clenshaw. A note on the summation of Chebyshev series. Mathematics of Compu-
tation, 9(51):118–120, 1955.

[51] E. P. Consortium et al. An integrated encyclopedia of dna elements in the human
genome. Nature, 489(7414):57–74, 2012.

[52] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995.

[53] T. M. Cover and J. A. Thomas. Elements of Information Theory, Second Edition.
Wiley, 2006.

[54] S. Dasgupta and A. Gupta. An elementary proof of a theorem of Johnson and Lin-
denstrauss. Random Structures and Algorithms, 22(1):60–65, 2003.

[55] A. de Acosta. Inequalities for b-valued random vectors with applications to the strong
law of large numbers. The Annals of Probability, 9:157–161, 1981.

229

[56] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[57] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems, pages 1223–1231, 2012.

[58] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, editors, Advances in
Neural Information Processing Systems 27, pages 1646–1654. Curran Associates, Inc.,
2014.

[59] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online
prediction using mini-batches. The Journal of Machine Learning Research, 13(1):165–
202, 2012.

[60] W. Deng and W. Yin. On the global and linear convergence of the generalized alternat-
ing direction method of multipliers. CAAM Technical Report 12-14, Rice University,
2012.

[61] S. Deorowicz and S. Grabowski. Data compression for sequencing data. Algorithms
for Molecular Biology, 8(1):1, 2013.

[62] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. The Journal of Machine Learning Research, 12:2121–2159,
2011.

[63] J. C. Duchi and M. J. Wainwright. Distance-based and continuum fano inequalities
with applications to statistical estimation. arXiv [cs.IT], to appear, 2013.

[64] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed opti-
mization: convergence analysis and network scaling. Automatic Control, IEEE Trans-
actions on, 57(3):592–606, 2012.

[65] J. C. Duchi, P. L. Bartlett, and M. J. Wainwright. Randomized smoothing for stochas-
tic optimization. SIAM Journal on Optimization, 22(2):674–701, 2012.

[66] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax
rates. arXiv:1302.3203 [math.ST], 2013. URL http://arXiv.org/abs/1302.3203.

[67] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1(3):211–218, 1936.

[68] B. Efron and R. J. Tibshirani. An introduction to the bootstrap. CRC press, 1994.

http://arXiv.org/abs/1302.3203

230

[69] A. El Gamal and Y.-H. Kim. Network information theory. Cambridge university press,
2011.

[70] C. Evangelinos and C. Hill. Cloud computing for parallel scientific hpc applications:
Feasibility of running coupled atmosphere-ocean climate models on amazons ec2. ratio,
2(2.40):2–34, 2008.

[71] S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations.
The Journal of Machine Learning Research, 2:243–264, 2002.

[72] T. A. S. Foundation. Apache hadoop nextgen mapreduce (yarn).

[73] T. A. S. Foundation. Mahout project. 2012.

[74] S. A. Geer. Empirical Processes in M-estimation, volume 6. Cambridge university
press, 2000.

[75] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization
with distributed stochastic gradient descent. In SIGKDD, pages 69–77. ACM, 2011.

[76] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University
Press, Baltimore, MD, third edition, 1996.

[77] G. H. Golub and C. F. Van Loan. Matrix Computations, volume 3. JHU Press, 2012.

[78] T. L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228–5235, 2004.

[79] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable imple-
mentation of the mpi message passing interface standard. Parallel computing, 22(6):
789–828, 1996.

[80] C. Gu. Smoothing Spline ANOVA Models. Springer, 2002.

[81] A. Guntuboyina. Lower bounds for the minimax risk using-divergences, and applica-
tions. Information Theory, IEEE Transactions on, 57(4):2386–2399, 2011.

[82] L. Györfi, M. Kohler, A. Krzyzak, and H. Walk. A distribution-free theory of nonpara-
metric regression. Springer Science & Business Media, 2006.

[83] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM
Review, 53(2):217–288, 2011.

[84] P. Hall. The bootstrap and Edgeworth expansion. Springer Science & Business Media,
2013.

231

[85] T. S. Han and S.-I. Amari. Statistical inference under multiterminal data compression.
Information Theory, IEEE Transactions on, 44(6):2300–2324, 1998.

[86] T. Hastie and R. Tibshirani. Generalized additive models. Chapman & Hall, 1995.

[87] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The elements of statistical
learning: data mining, inference and prediction. The Mathematical Intelligencer, 27
(2):83–85, 2005.

[88] E. Hazan, A. Kalai, S. Kale, and A. Agarwal. Logarithmic regret algorithms for
online convex optimization. In Proceedings of the Nineteenth Annual Conference on
Computational Learning Theory, 2006.

[89] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and
E. P. Xing. More effective distributed ML via a stale synchronous parallel parameter
server. In NIPS, pages 1223–1231, 2013.

[90] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 9
(8):1735–1780, 1997.

[91] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12:55–67, 1970.

[92] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference.
The Journal of Machine Learning Research, 14(1):1303–1347, 2013.

[93] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[94] J. Hromkovič. Communication complexity and parallel computing. Springer Science &
Business Media, 2013.

[95] D. Hsu, S. Kakade, and T. Zhang. Random design analysis of ridge regression. In
Proceedings of the 25nd Annual Conference on Learning Theory, 2012.

[96] I. A. Ibragimov and R. Z. Has’ minskii. Statistical estimation: asymptotic theory,
volume 16. Springer Science & Business Media, 2013.

[97] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan, T. Hofmann, and M. I.
Jordan. Communication-efficient distributed dual coordinate ascent. In NIPS, pages
3068–3076, 2014.

[98] B. Johansson, M. Rabi, and M. Johansson. A randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on Opti-
mization, 20(3):1157–1170, 2009.

[99] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In NIPS, pages 315–323, 2013.

232

[100] I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2005.

[101] R. Kannan, S. S. Vempala, and D. P. Woodruff. Principal component analysis and
higher correlations for distributed data. In Proceedings of The 27th Conference on
Learning Theory, pages 1040–1057, 2014.

[102] N. Karampatziakis and J. Langford. Online importance weight aware updates. arXiv
preprint arXiv:1011.1576, 2010.

[103] S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of
large scale linear svms. Journal of Machine Learning Research, 6:341–361, 2005.

[104] R. Khas’ minskii. A lower bound on the risks of non-parametric estimates of densities
in the uniform metric. Theory of Probability & Its Applications, 23(4):794–798, 1979.

[105] A. N. Kolmogorov and V. M. Tikhomirov. ε-entropy and ε-capacity of sets in function
spaces. Uspekhi Matematicheskikh Nauk, 14(2):3–86, 1959.

[106] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk mini-
mization. Annals of Statistics, 34(6):2593–2656, 2006.

[107] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender
systems. Computer, (8):30–37, 2009.

[108] V. M. Krasnopolsky and M. S. Fox-Rabinovitz. Complex hybrid models combining
deterministic and machine learning components for numerical climate modeling and
weather prediction. Neural Networks, 19(2):122–134, 2006.

[109] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In NIPS, pages 1097–1105, 2012.

[110] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press,
1997.

[111] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems
(TOCS), 16(2):133–169, 1998.

[112] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[113] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth
International Conference on Machine Learning (ICML), pages 331–339, 1995.

[114] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. In
Advances in neural information processing systems, pages 905–912, 2009.

233

[115] L. Le Cam. Asymptotic methods in statistical decision theory. Springer Science &
Business Media, 2012.

[116] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, 1991.

[117] M. Ledoux and M. Talagrand. Probability in Banach Spaces: isoperimetry and pro-
cesses. Springer Science & Business Media, 2013.

[118] T. Lee and A. Shraibman. Lower bounds in communication complexity. Now Publishers
Inc, 2009.

[119] E. L. Lehmann and G. Casella. Theory of Point Estimation, Second Edition. Springer,
1998.

[120] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for
text categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

[121] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long,
E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter
server. In Proc. OSDI, pages 583–598, 2014.

[122] Y. Li, X. Sun, C. Wang, and D. P. Woodruff. On the communication complexity of
linear algebraic problems in the message passing model. In Distributed Computing,
pages 499–513. Springer, 2014.

[123] M. W. Libbrecht and W. S. Noble. Machine learning applications in genetics and
genomics. Nature Reviews Genetics, 16(6):321–332, 2015.

[124] M. Lichman. UCI machine learning repository, 2013. URL
http://archive.ics.uci.edu/ml.

[125] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-scale logistic regression and
linear support vector machines using Spark. In Proceedings of the IEEE Conference
on Big Data, Washington DC, USA, 2014.

[126] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its ho-
motopy contiuation for sparse optimization. Computational Optimization and Appli-
cations, published online, September 2014.

[127] Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method and
its application to regularized empirical risk minimization. Technical Report MSR-TR-
2014-94, Microsoft Research, 2014. arXiv:1407.1296.

[128] C. Liu, H.-c. Yang, J. Fan, L.-W. He, and Y.-M. Wang. Distributed nonnegative matrix
factorization for web-scale dyadic data analysis on mapreduce. In WWW, pages 681–
690. ACM, 2010.

http://archive.ics.uci.edu/ml

234

[129] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel
stochastic coordinate descent algorithm. arXiv preprint arXiv:1311.1873, 2013.

[130] G. Loosli, S. Canu, and L. Bottou. Training invariant support vector machines using
selective sampling. Large scale kernel machines, pages 301–320, 2007.

[131] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: a framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment, 5(8):716–727, 2012.

[132] D. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.

[133] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-
Wesley, New York, 1973.

[134] Z.-Q. Luo. Universal decentralized estimation in a bandwidth constrained sensor net-
work. IEEE Transactions on Information Theory, 51(6):2210–2219, 2005.

[135] Z.-Q. Luo and J. N. Tsitsiklis. On the communication complexity of distributed alge-
braic computation. Journal of the ACM, 40(5):1019–1047, 1993.

[136] Z.-Q. Luo and J. N. Tsitsiklis. Data fusion with minimal communication. Information
Theory, IEEE Transactions on, 40(5):1551–1563, 1994.

[137] L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell, J. A. Tropp, et al. Matrix concentra-
tion inequalities via the method of exchangeable pairs. The Annals of Probability, 42
(3):906–945, 2014.

[138] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and
Trends in Machine Learning, 3(2):123–224, 2011.

[139] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, 2008.

[140] R. P. Martin, A. M. Vahdat, D. E. Culler, and T. E. Anderson. Effects of communi-
cation latency, overhead, and bandwidth in a cluster architecture, volume 25. ACM,
1997.

[141] J. C. Mason and D. C. Handscomb. Chebyshev Polynomials. CRC Press, 2010.

[142] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, and G. S. Mann. Efficient large-
scale distributed training of conditional maximum entropy models. In Advances in
Neural Information Processing Systems, pages 1231–1239, 2009.

[143] R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the structured
perceptron. In Human Language Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 456–
464. Association for Computational Linguistics, 2010.

235

[144] S. Mendelson. Geometric parameters of kernel machines. In Proceedings of the Fifteenth
Annual Conference on Computational Learning Theory, pages 29–43, 2002.

[145] S. Mendelson. Improving the sample complexity using global data. Information Theory,
IEEE Transactions on, 48(7):1977–1991, 2002.

[146] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. arXiv
preprint arXiv:1505.06807, 2015.

[147] T. P. Minka. Expectation propagation for approximate Bayesian inference. In UAI,
pages 362–369. Morgan Kaufmann Publishers Inc., 2001.

[148] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan. Sparknet: Training deep networks
in spark. arXiv preprint arXiv:1511.06051, 2015.

[149] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad:
a timely dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, pages 439–455. ACM, 2013.

[150] E. Napoli, E. Polizzi, and Y. Saad. Efficient estimation of eigenvalue counts in an
interval. arXiv:1308.4275, 2013.

[151] A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. Automatic Control, IEEE Transactions on, 54(1):48–61, 2009.

[152] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–
1609, 2009.

[153] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in Opti-
mization. J. Wiley & Sons, New York, 1983.

[154] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer,
Boston, 2004.

[155] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013.

[156] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[157] Y. Nesterov and A. Nemirovski. Interior Point Polynomial Time Methods in Convex
Programming. SIAM, Philadelphia, 1994.

[158] D. Newman, P. Smyth, M. Welling, and A. U. Asuncion. Distributed inference for
latent Dirichlet allocation. In NIPS, pages 1081–1088, 2007.

236

[159] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition,
2006.

[160] A. Olshevsky and J. N. Tsitsiklis. Convergence speed in distributed consensus and
averaging. SIAM Journal on Control and Optimization, 48(1):33–55, 2009.

[161] D. N. Politis, J. P. Romano, and M. Wolf. Subsampling. Springer, 1999.

[162] E. Polizzi. Density-matrix-based algorithm for solving eigenvalue problems. Physical
Review B, 79(11):115112, 2009.

[163] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averag-
ing. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[164] R. Power and J. Li. Piccolo: Building fast, distributed programs with partitioned
tables. In OSDI, volume 10, pages 1–14, 2010.

[165] F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feedback.
In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, pages 239–248. ACM, 2005.

[166] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances
in Neural Information Processing Systems 20, 2007.

[167] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly
convex stochastic optimization. arXiv preprint arXiv:1109.5647, 2011.

[168] S. S. Ram, A. Nedić, and V. V. Veeravalli. Distributed stochastic subgradient projec-
tion algorithms for convex optimization. Journal of optimization theory and applica-
tions, 147(3):516–545, 2010.

[169] G. Raskutti, M. Wainwright, and B. Yu. Early stopping for non-parametric regression:
An optimal data-dependent stopping rule. In 49th Annual Allerton Conference on
Communication, Control, and Computing, pages 1318–1325, 2011.

[170] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax rates of estimation for high-
dimensional linear regression over-balls. Information Theory, IEEE Transactions on,
57(10):6976–6994, 2011.

[171] G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive
models over kernel classes via convex programming. Journal of Machine Learning
Research, 12:389–427, March 2012.

[172] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In NIPS, pages 693–701, 2011.

237

[173] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian
personalized ranking from implicit feedback. In UAI, pages 452–461. AUAI Press,
2009.

[174] H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

[175] N. L. Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an expo-
nential convergence rate for finite training sets. In Advances in Neural Information
Processing Systems 25, pages 2672–2680. 2012.

[176] T. Sakurai and H. Sugiura. A projection method for generalized eigenvalue problems
using numerical integration. Journal of Computational and Applied Mathematics, 159
(1):119–128, 2003.

[177] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering
recommendation algorithms. In Proceedings of the 10th International Conference on
the World Wide Web, pages 285–295. ACM, 2001.

[178] M. Satyanarayanan. Fundamental challenges in mobile computing. In Proceedings of
the fifteenth annual ACM symposium on Principles of distributed computing, pages
1–7. ACM, 1996.

[179] C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual
variables. In Proceedings of the 15th International Conference on Machine Learning,
pages 515–521. Morgan Kaufmann, 1998.

[180] M. Schmidt, N. L. Roux, and F. R. Bach. Convergence rates of inexact proximal-
gradient methods for convex optimization. In Advances in neural information process-
ing systems, pages 1458–1466, 2011.

[181] M. Schmidt, N. L. Roux, and F. Bach. Minimizing finite sums with the stochastic
average gradient. arXiv preprint arXiv:1309.2388, 2013.

[182] G. Schofield, J. R. Chelikowsky, and Y. Saad. A spectrum slicing method for the
Kohn–Sham problem. Computer Physics Communications, 183(3):497–505, 2012.

[183] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel
eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.

[184] S. Shalev-Shwartz and T. Zhang. Accelerated proximal stochastic dual coordinate
ascent for regularized loss minimization. arXiv:1309.2375.

[185] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for reg-
ularized loss minimization. arXiv preprint arXiv:1209.1873, 2012.

238

[186] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for reg-
ularized loss. The Journal of Machine Learning Research, 14(1):567–599, 2013.

[187] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K. Sridharan. Stochastic convex opti-
mization. In Proceedings of the 22nd Annual Conference on Learning Theory (COLT),
2009.

[188] O. Shamir and N. Srebro. On distributed stochastic optimization and learning. In
Proceedings of the 52nd Annual Allerton Conference on Communication, Control, and
Computing, 2014.

[189] O. Shamir, N. Srebro, and T. Zhang. Communication efficient distributed optimization
using an approximate newton-type method. arXiv preprint arXiv:1312.7853, 2013.

[190] O. Shamir, N. Srebro, and T. Zhang. Communication efficient distributed optimization
using an approximate Newton-type method. In Proceedings of the 31st International
Conference on Machine Learning (ICML). JMLR: W&CP volume 32, 2014.

[191] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on Stochastic Programming:
Modeling and Theory. MPS-SIAM Series on Optimization. SIAM-MPS, Philadelphia,
PA, 2009.

[192] J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge
university press, 2004.

[193] J. Shiers. The worldwide lhc computing grid (worldwide lcg). Computer physics com-
munications, 177(1):219–223, 2007.

[194] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[195] Y. Singer and J. C. Duchi. Efficient learning using forward-backward splitting. In
Advances in Neural Information Processing Systems, pages 495–503, 2009.

[196] E. R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M. J. Franklin,
M. Jordan, T. Kraska, et al. Mli: An api for distributed machine learning. In Data Min-
ing (ICDM), 2013 IEEE 13th International Conference on, pages 1187–1192. IEEE,
2013.

[197] I. Steinwart, D. Hush, and C. Scovel. Optimal rates for regularized least squares
regression. In Proceedings of the 22nd Annual Conference on Learning Theory, pages
79–93, 2009.

[198] C. J. Stone. Optimal global rates of convergence for non-parametric regression. Annals
of Statistics, 10(4):1040–1053, 1982.

239

[199] G. Sun. KDD cup track 2 soso.com ads prediction challenge, 2012. URL
http://www.kddcup2012.org/c/kddcup2012-track2. Accessed August 1, 2012.

[200] X. Sun and C. Wang. Randomized communication complexity for linear algebra prob-
lems over finite fields. In LIPIcs-Leibniz International Proceedings in Informatics,
volume 14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[201] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich. Going deeper with convolutions. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9, 2015.

[202] M. Talagrand. A new look at independence. The Annals of probability, pages 1–34,
1996.

[203] J. N. Tsitsiklis and Z.-Q. Luo. Communication complexity of convex optimization. In
Decision and Control, 1986 25th IEEE Conference on, pages 608–611. IEEE, 1986.

[204] J. N. Tsitsiklis et al. Decentralized detection. Advances in Statistical Signal Processing,
2(2):297–344, 1993.

[205] A. B. Tsybakov. Introduction to nonparametric estimation. revised and extended from
the 2004 french original. translated by vladimir zaiats, 2009.

[206] A. W. van der Vaart. Asymptotic Statistics. Cambridge series in statistical and prob-
abilistic mathematics. Cambridge University Press, 1998. ISBN 0-521-49603-9.

[207] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. In Measures of Complexity, pages 11–30. Springer,
2015.

[208] V. N. Vapnik and V. Vapnik. Statistical learning theory, volume 1. Wiley New York,
1998.

[209] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing
robust features with denoising autoencoders. In ICML, pages 1096–1103. ACM, 2008.

[210] G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference
Series in Applied Mathematics. SIAM, Philadelphia, PN, 1990.

[211] L. Wasserman. All of nonparametric statistics. Springer Science & Business Media,
2006.

[212] S. Whiteson and D. Whiteson. Machine learning for event selection in high energy
physics. Engineering Applications of Artificial Intelligence, 22(8):1203–1217, 2009.

http://www.kddcup2012.org/c/kddcup2012-track2

240

[213] C. Williams and M. Seeger. Using the nyström method to speed up kernel machines. In
Proceedings of the 14th Annual Conference on Neural Information Processing Systems,
number EPFL-CONF-161322, pages 682–688, 2001.

[214] D. P. Woodruff and Q. Zhang. An optimal lower bound for distinct elements in the
message passing model. In Symposium on Discrete Algorithms, pages 718–733. SIAM,
2014.

[215] D. Wyatt. Akka concurrency. Artima Incorporation, 2013.

[216] L. Xiao. Dual averaging method for regularized stochastic learning and online opti-
mization. In NIPS, pages 2116–2124, 2009.

[217] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar,
and Y. Yu. Petuum: A new platform for distributed machine learning on big data.
arXiv preprint arXiv:1312.7651, 2013.

[218] Z. Xu and K. Hwang. Modeling communication overhead: Mpi and mpl performance
on the ibm sp2. Parallel & Distributed Technology: Systems & Applications, IEEE, 4
(1):9–24, 1996.

[219] Y. Yang and A. Barron. Information-theoretic determination of minimax rates of
convergence. Annals of Statistics, pages 1564–1599, 1999.

[220] Y. Yang, M. Pilanci, and M. J. Wainwright. Randomized sketches for kernels: Fast
and optimal non-parametric regression. arXiv:1501.06195 [stat.ml], 2015.

[221] A. C.-C. Yao. Some complexity questions related to distributive computing (prelim-
inary report). In Proceedings of the eleventh annual ACM symposium on Theory of
computing, pages 209–213. ACM, 1979.

[222] Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2):289–315, 2007.

[223] B. Yu. Assouad, fano, and le cam. In Festschrift for Lucien Le Cam, pages 423–435.
Springer, 1997.

[224] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI. USENIX Association, 2012.

[225] T. Zhang. Leave-one-out bounds for kernel methods. Neural Computation, 15(6):
1397–1437, 2003.

[226] T. Zhang. Solving large scale linear prediction problems using stochastic gradient
descent algorithms. In ICML, page 116. ACM, 2004.

241

[227] T. Zhang. Learning bounds for kernel regression using effective data dimensionality.
Neural Computation, 17(9):2077–2098, 2005.

[228] Y. Zhang and M. I. Jordan. Splash: User-friendly programming interface for paral-
lelizing stochastic algorithms. arXiv preprint arXiv:1506.07552, 2015.

[229] Y. Zhang and L. Xiao. Stochastic primal-dual coordinate method for regularized em-
pirical risk minimization. Technical Report MSR-TR-2014-123, Microsoft Research,
2014. arXiv:1409.3257.

[230] Y. Zhang and L. Xiao. Communication-efficient distributed optimization of self-
concordant empirical loss. arXiv preprint arXiv:1501.00263, 2015.

[231] Y. Zhang, M. J. Wainwright, and J. C. Duchi. Communication-efficient algorithms for
statistical optimization. In Advances in Neural Information Processing Systems, pages
1502–1510, 2012.

[232] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright. Information-theoretic lower
bounds for distributed statistical estimation with communication constraints. In Ad-
vances in Neural Information Processing Systems, pages 2328–2336, 2013.

[233] Y. Zhang, J. Duchi, and M. Wainwright. Divide and conquer kernel ridge regression.
In Conference on Learning Theory, pages 592–617, 2013.

[234] Y. Zhang, M. J. Wainwright, and M. I. Jordan. Distributed estimation of generalized
matrix rank: Efficient algorithms and lower bounds. arXiv preprint arXiv:1502.01403,
2015.

[235] H. Zhao, B. Jiang, and J. Canny. Same but different: Fast and high-quality gibbs
parameter estimation. arXiv preprint arXiv:1409.5402, 2014.

[236] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel SGD for matrix
factorization in shared memory systems. In RecSys, pages 249–256. ACM, 2013.

[237] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. Distributed newton method for
regularized logistic regression. Technical report, Department of Computer Science,
National Taiwan University, 2014.

[238] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient
descent. In Advances in neural information processing systems, pages 2595–2603, 2010.

	Contents
	 Introduction and background
	Introduction
	Motivations
	Trade-offs in distributed computing
	Connections to existing work
	Contributions of this thesis

	Background
	Background on empirical risk minimization
	Background on reproducing kernels
	Background on self-concordant functions
	Background on communication complexity

	 Distributed algorithms
	Divide-and-conquer methods for statistical optimization
	Problem set-up
	Theoretical results
	Performance on synthetic data
	Experiments with advertising data
	Proofs of technical results

	Divide-and-conquer methods for kernel ridge regression
	Problem set-up
	Main results and their consequences
	Proofs of the main theorem and related results
	Experimental results
	Proofs of technical results

	Distributed optimization of self-concordant loss
	Communication efficiency of distributed convex optimization algorithms
	Outline of our approach
	Inexact damped Newton method
	The DiSCO algorithm
	Stochastic analysis
	Numerical experiments
	Proofs of technical results

	 Theories of distributed computing
	Communication complexity of statistical estimation
	Background and problem set-up
	Main results and their consequences
	Proofs of main results
	Proofs of technical results

	Communication complexity of matrix rank estimation
	Problem formulation
	Bounds for deterministic algorithms
	Bounds for randomized algorithms
	Proofs of main results
	Connections to other problems
	Proof of technical results

	 Distributed systems
	Programming interface for parallelizing stochastic algorithms
	Shared and local variables
	Programming with Splash
	Strategy for parallelization
	Convergence analysis
	Experiments
	Technical details

	Conclusion and future directions
	Conclusion on distributed algorithms
	Conclusion on theories of distributed computing
	Conclusion on machine learning systems

	Bibliography

