
Scalable Network Forensics

Matthias Vallentin

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-55

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-55.html

May 12, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Scalable Network Forensics

by

Matthias Vallentin

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Vern Paxson, Chair
Professor Michael Franklin
Professor David Brillinger

Spring 2016

Scalable Network Forensics

Copyright 2016

by

Matthias Vallentin

1

Abstract

Scalable Network Forensics

by

Matthias Vallentin

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Vern Paxson, Chair

Network forensics and incident response play a vital role in site operations, but for large
networks can pose daunting difficulties to cope with the ever-growing volume of activity and
resulting logs. On the one hand, logging sources can generate tens of thousands of events per
second, which a system supporting comprehensive forensics must somehow continually ingest.
On the other hand, operators greatly benefit from interactive exploration of disparate types
of activity when analyzing an incident, which often leaves network operators scrambling to
ferret out answers to key questions: How did the attackers get in? What did they do once
inside? Where did they come from? What activity patterns serve as indicators reflecting
their presence? How do we prevent this attack in the future?

Operators can only answer such questions by drawing upon high-quality descriptions of
past activity recorded over extended time. A typical analysis starts with a narrow piece
of intelligence, such as a local system exhibiting questionable behavior, or a report from
another site describing an attack they detected. The analyst then tries to locate the described
behavior by examining past activity, often cross-correlating information of different types to
build up additional context. Frequently, this process in turn produces new leads to explore
iteratively (“peeling the onion”), continuing and expanding until ultimately the analyst
converges on as complete of an understanding of the incident as they can extract from the
available information.

This process, however, remains manual and time-consuming, as no single storage system
efficiently integrates the disparate sources of data that investigations often involve. While
standard Security Information and Event Management (SIEM) solutions aggregate logs from
different sources into a single database, their data models omit crucial semantics, and they
struggle to scale to the data rates that large-scale environments require.

2

In this thesis we present the design, implementation, and evaluation of VAST (Visibility
Across Space and Time), a distributed platform for high-performance network forensics
and incident response that provides both continuous ingestion of voluminous event streams
and interactive query performance. VAST offers a type-rich data model to avoid loss of
critical semantics, allowing operators to express activity directly. Similarly, strong typing
persists throughout the entire system, enabling type-specific optimization at lower levels
while retaining type safety during querying for a less error-prone interaction.

A central contribution of this work concerns our novel type-specific indexes that directly
support the type’s common operations, e.g., top-k prefix search for IP addresses. We show
that composition of these indexes allows for a powerful and unified approach to fine-grained
data localization, which directly supports the workflows of security investigators. VAST
leverages a native implementation of the actor model to scale both intra-machine across
available CPU cores, and inter-machine over a cluster of commodity systems. Our evaluation
with real-world log and packet data demonstrates the system’s potential to support interactive
exploration at a level beyond what current systems offer. We release VAST as free open-source
software under a permissive license.

i

To my parents

ii

Contents

Contents ii

List of Figures v

List of Tables vii

List of Algorithms viii

1 Introduction 1
1.1 Use Cases . 2

1.1.1 Incident Response . 3
1.1.2 Network Troubleshooting . 4
1.1.3 Insider Abuse . 4

1.2 Goals . 5
1.2.1 Interactivity . 5
1.2.2 Scalability . 5
1.2.3 Expressiveness . 6

1.3 Outline . 6

2 Background 9
2.1 Literature Search . 9
2.2 Related Work . 12

2.2.1 Traditional Databases . 12
2.2.2 Modern Data Stores . 14
2.2.3 Distributed Computing . 16
2.2.4 Network Forensics Domain . 17

2.3 High-Level Message Passing . 19
2.3.1 Actor Model . 20
2.3.2 Implementations . 21

2.4 Accelerating Search . 25
2.4.1 Hash and Tree Indexes . 25
2.4.2 Inverted and Bitmap Indexes . 26

iii

2.4.3 Space-Time Trade-off . 27
2.4.4 Composition . 34

3 Architecture 39
3.1 Data Model . 39

3.1.1 Type System . 39
3.1.2 Query Language . 40

3.2 Components . 42
3.2.1 Import . 43
3.2.2 Archive . 46
3.2.3 Index . 48
3.2.4 Export . 54

3.3 Deployment . 57
3.3.1 Component Distribution . 57
3.3.2 Fault Tolerance . 59

3.4 Summary . 61

4 Implementation 62
4.1 Message Passing Challenges . 62

4.1.1 Adapting to Load Fluctuations with Flow Control 62
4.1.2 Resolving Routing Inefficiencies with Direct Connections 66

4.2 Composable and Type-Rich Indexing . 67
4.2.1 Boolean Index . 68
4.2.2 Integral Index . 68
4.2.3 Floating Point Index . 70
4.2.4 Duration & Time Index . 72
4.2.5 String Index . 72
4.2.6 IP Address Index . 77
4.2.7 Subnet Index . 78
4.2.8 Port Index . 79
4.2.9 Container Indexes . 79

4.3 Query Processing . 81
4.3.1 Expression Normalization . 81
4.3.2 Evaluating Expressions . 83
4.3.3 Finite State Machines . 84

4.4 Code Base . 84

5 Evaluation 88
5.1 Measurement Infrastructure . 88

5.1.1 Machines . 88
5.1.2 Data Sets . 89

5.2 Correctness . 91

iv

5.3 Throughput . 91
5.4 Latency . 97
5.5 Scaling . 102
5.6 Storage . 104

5.6.1 Archive Compression . 104
5.6.2 Index Overhead . 115

5.7 Summary . 115

6 Conclusion 117
6.1 Summary . 117
6.2 Outlook . 118

6.2.1 Systems Challenges . 118
6.2.2 Algorithmic Challenges . 119

Bibliography 120

A Multi-Component Range Queries 137

v

List of Figures

1.1 Thesis structure . 8

2.1 A summary of research on network forensics over the last decade 10
2.2 The actor model . 20
2.3 CAF performance compared to other actor model implementations 24
2.4 Efficient access of the base data through an index. 26
2.5 Juxtaposition of inverted and bitmap indexes 27
2.6 Design choices to map keys to identifier sets . 30
2.7 Illustrating how different encoding schemes work 31
2.8 Equality, range, and interval coding . 32
2.9 Value decomposition example . 35

3.1 The type system of VAST . 40
3.2 High-level system architecture of VAST . 42
3.3 VAST deployment styles . 42
3.4 Event ingestion overview . 43
3.5 Event ingestion at the archive . 47
3.6 Index architecture . 49
3.7 Index lookup . 50
3.8 Predicate cache at a partition . 52
3.9 Historic query architecture . 55
3.10 Candidate check optimization . 55
3.11 Continuous query architecture . 56
3.12 Client-server deployment . 57
3.13 Variation of client-server deployment for interactive processing 58
3.14 Cluster deployment showing distributed ingestion 59

4.1 Flow control signaling . 65
4.2 Message routing in CAF . 66
4.3 IEEE 754 double precision floating-point . 70
4.4 IEEE 754 floating-point index . 71
4.5 Appending to the string index . 74

vi

4.6 Expression normalization: hoisting . 82
4.7 Expression normalization: negation normal form (NNF) and negation absorbing 82
4.8 The query state machine. 84

5.1 Throughput measured at various points during import 92
5.2 Indexing runtime for event batches of size 65,536 94
5.3 CPU utilization when indexing Bro events . 95
5.4 CPU utilization per actor instance during import 96
5.5 Query pipeline reflecting various stages of single-node execution 98
5.6 Index latency (full computation of hits) as a function of cores. 99
5.7 CPU utilization during query execution . 100
5.8 CPU utilization per actor instance during export 101
5.9 Per-node CPU utilization during ingestion . 103
5.10 Index completion latency as a function of nodes 103
5.11 PCAP: Compression vs. Savings . 107
5.12 Bro: Compression vs. Savings . 108
5.13 PCAP: Decompression vs. Savings. 109
5.14 Bro: Decompression vs. Savings. 110
5.15 PCAP: Compression vs. Decompression . 111
5.16 Bro: Compression vs. Decompression . 112
5.17 PCAP: Compression vs. Decompression . 113
5.18 Bro: Compression vs. Decompression . 114

A.1 Evaluation tree for the algorithm RangeEval-Opt 137

vii

List of Tables

2.1 Related work evaluated with respect to network forensics. 13
2.2 Comparison of popular actor model implementations. 22
2.3 Our notation to formally describe inverted and bitmap indexes. 28
2.4 Established optimality results for coding schemes and query classes 33
2.5 Enumeration of bit vector compression algorithms. 34
2.6 Lookup algorithms for equality, range, and interval coding 38

3.1 VAST’s query language . 41
3.2 Potential data structures for meta indexes over event data 53

4.1 Summary of append and lookup operations on high-level indexes 86
4.2 Summary of append and lookup operations on high-level indexes 87

5.1 Data sets used for our evaluation . 89
5.2 Test queries for throughput and latency evaluation 90
5.3 Benchmark of various compression algorithms 105
5.4 Storage overhead relative to the base data . 115

viii

List of Algorithms

1 Assignment of IDs to a batch of events . 45
2 identifier serving requests for IDs . 46
3 StringLookup: looking up a value in the string index 75
A.1 RangeEval-Opt . 138

ix

Acknowledgments

I would like to express my sincere gratitude to a number of people who made this work
possible. Their continuous support, feedback, and encouragement provided the nourishing
environment for this dissertation to take on shape.

My heartfelt appreciation goes to Vern Paxson. His deeply respectful and tactful treatment
of his students made having him as my advisor an outstanding experience. I feel incredibly
fortunate to have had countless opportunities to interact with him. His visionary ideas,
coupled with a unique sense for abstraction and analytical rigor, never cease to inspire me.

Additionally, for over a decade, I am delighted to have known Robin Sommer as a colleague,
mentor, and friend. He patiently listened to all my fledgling architectural ideas and helped
separate the wheat from the chaff. His extensive experience and invaluable advice had a
profound impact on this project.

My gratitude extends to Seth Hall, whose unstoppable enthusiasm and desire to reap the
fruits from this work fueled my motivation and grounded it in an operational context. I
am also indebted to Dominik Charousset and his work on the C++ Actor Framework. Our
numerous technical discussions forged an enjoyable, organic collaboration.

Several others played a major role in completing this work. My full and genuine thanks to
David Brillinger and Michael Franklin for serving on my dissertation committee. Their advice
and comments significantly strengthened this work.

I have received great support from the International Computer Science Institute (ICSI). In
particular, I am grateful for my fabulous two office mates Johanna Amann and Mobin Javed,
who always had an open ear for my unformed ideas. I thank the whole ICSI staff for making
this such a pleasant stay, and in particular Maria Eugenia Quintana for her healthy, positive
attitude. Also thanks to Christian Kreibich for our brainstorming sessions on devising apt
plots for visualizing data, and to Nicholas Weaver for reliably playing devil’s advocate.

Moreover, my thanks go to the operational security team at the Lawrence Berkeley National
Laboratory (LBNL), and particularly Aashish Sharma for his real-world perspectives on
incident response. Special thanks to Yahel Ben-David for his support on everything wireless,
to Keith Lehigh for sharing insights from his immensely large network, to Gregory Bell for his
stimulating ideas, and to Mark Allman for coining the term VAST. Many others impacted this
work. In particular, I thank Samir Al-Sheikh, Justin Azoff, Scott Campbell, Vlad Grigorescu,
Andreas Reuter, Fabrice Ryba, Robert Schmidt, Thomas Schmidt, Audrey Sillers, Pedro
Simoes, Adam Slagell, Vincent Stoffer, and Matthias Wählisch. This work was supported by
National Science Foundation grants 0716640, 1161799, 1237265, 1348077, and by U.S. ARL
MURI grant W911NF-09-1-0553.

Finally, I express my deepest gratitude and admiration to my parents and my sister. Without
their unconditional love and perpetuating support, I would have never reached this point.

1

Chapter 1

Introduction

One cannot not communicate.

Paul Watzlawick

Large networks never sleep. Computers continuously emit a stream of activity as an artifact
of their communication. On the one hand, humans generate this activity, fueled by their
deep desire for omnipresent connectivity. Mobile devices aggressively attempt to jump on
available wireless networks, retrieving their latest content feeds while sending upstream a
wealth of collected user telemetry in order to deliver an even richer, more personalized,
and fully captivating user experience. To keep up with these steep user demands, network
operators of enterprise networks continually expand their backend infrastructure by providing
more computational resources, storage capacity, and bandwidth. On the other hand, closed
feedback control systems operate independently of human input, relying on a wealth of
sensors to steer decision making. Microwaves, cars, and power plants receive more and more
networking capabilities to automatically monitor and synchronize state changes. Overall,
today’s countless devices form an omnipresent communication network, perpetually relaying
information.

The network attack surface increases as a side effect of this endless growth. Operators struggle
to defend both a network’s perimeter and its deep interior. The larger network, the more
complex it behaves and the harder it becomes to defend. Once connected to the Internet, any
device unwillingly exposes itself to a horde of attackers waiting for the user to make a mistake:
by visiting a malicious website, leaving open a vulnerable service, or simply ignoring security
indicators which warn about potentially intercepted communication. Attacks constitute a
constituent part of large networks. Operators and security staff spend a significant amount
of time quarantining infected hosts, notifying administrators, and implementing protective
measures to prevent future occurrences of similar attacks.

In addition to the continuous process of establishing secure network operations, security
analysts also perform retrospective analysis of attacks. During the investigation of a security

CHAPTER 1. INTRODUCTION 2

incident, the network activity footprint becomes essential data. Analysts rely on it, scrambling
to ferret out answers to key questions: How did the attackers get in? What did they do once
inside? Where did they come from? What activity patterns serve as indicators reflecting
their presence? How do we prevent this attack in the future? Operators can only answer such
questions by drawing upon high-quality logs of past activity recorded over extended time.

Incident analysis often starts with a narrow piece of intelligence, typically a local system
exhibiting questionable behavior, or a report from another site describing an attack they
detected. The analyst then tries to locate the described behavior by examining logs of
past activity, often cross-correlating information of different types to build up additional
context. Frequently, this process in turn produces new leads to explore iteratively (“peeling
the onion”), continuing and expanding until ultimately the analyst converges on as complete
of an understanding of the incident as they can extract from the available information [8].

This process, however, suffers from fragmentation across space: analysis remains manual and
time-consuming, as no single system efficiently integrates the numerous sources of data (e.g.,
system status messages, firewall alerts, notices from intrusion detection systems, network
monitoring logs) that investigations often involve. The lack of uniform analysis procedures
forces security analysts to agglomerate relevant activity from disparate sources to construct a
coherent picture, with cumbersome and error-prone ad-hoc data processing methodologies.
Existing security information and event management (SIEM) solutions aggregate logs from
different sources into a single database, but their data models omit crucial type semantics,
and they struggle to scale to the data rates that large-scale environments require.

Furthermore, this process suffers from fragmentation across time: existing methods of
processing events relating to past activity starkly differ from how analysts express activity
occurring in the future. For example, sifting through logs to find an infected machine follows
a very different methodology compared to configuring a firewall to block the same incident in
the future. This discrepancy prevents analysts from “closing the loop” efficiently: after a
successful post-mortem investigation, an analyst must transfer the gained insight to a domain
with different idiosyncrasies.

Based on these needs, and drawing upon extensive experience working closely with operational
security staff, we set out in this thesis to address the inherent deficiencies of this process:
we design and implement VAST (Visibility Across Space and Time), a system to streamline
network forensics at scale.

1.1 Use Cases

The term forensic stems from the Latin word forensis, the adjective corresponding to the
noun forum. In Roman times, the forum was a marketplace to exchange goods, as well as a
social place to give speeches and exchange opinions [100]. During criminal trials, the forum

CHAPTER 1. INTRODUCTION 3

served as court of justice, hearing and deciding disputes [79, 167]. Therefore, the adjective
forensic has predominantly a juridical connotation today.

More broadly, forensics (or forensic science) as a discipline encompasses methods and means
to collect evidence during an investigation, often in a criminal context. Digital forensics
applies this notion to digital technology and crime scenes [159]. This thesis has network
forensics as its central theme, a branch of digital forensics which involves reconstructing the
activities which led to a security incident [185].

Our perspectives regarding the practice and requirements for network forensics stem from close
contact with operational security staff at the Lawrence Berkeley National Laboratory (LBL)
and the Bro [147, 30] community, which includes numerous incident responders and operators
from large networks. In the process we have assisted and observed forensic analyses and
gained a deeper understanding of prevalent use cases in the domain, which we introduce in
the following.

1.1.1 Incident Response

After a security breach occurs, the tasked analyst must quickly isolate the scope and impact
of the issue to provide actionable determinations, such as the need to remove connectivity,
rebuild systems, and/or reauthenticate users. The analysis often starts with a narrow piece of
intelligence, typically a local system exhibiting questionable or clearly problematic behavior,
or a report from another site (facing similar threats) of a particular sequence of activity that
they identified as associated with a successful attack on their own systems. Sometimes the
information is less discriminating, such as a new list of malicious IP addresses, domains,
URLs, or malware executables.

Starting with this intelligence, the analyst tries to locate the described behavior by examining
logs of past activity. Often this entails cross-correlating entries from multiple logs of different
types. Upon locating the activity directly corresponding to the intelligence, the analyst then
begins interactive procedure of gathering additional context associated with the activity—
again drawing upon multiple logs—and inspecting the findings for relevance. Not infrequently
this context in turn suggests additional exploration to undertake, for example by producing
new items of intelligence relating to how an attacker behaved or how to locate additional
systems exhibiting similar activity. At this point the analysis iterates (“peeling the onion”),
continuing and expanding until ultimately the analyst converges on as complete of an
understanding of the incident as they can extract from the available information.

To close the loop after completing the investigation of an incident, the analyst ideally codifies
the accumulated knowledge (for example, the full set of contextual indicators of a system
compromise or the presence of the attacker) and installs rules in the site’s security monitoring
to receive notifications if the activity ever occurs in the future. Doing so may further involve
what-if checks on historic log data to gauge the degree to which these rules may result in
false positives.

CHAPTER 1. INTRODUCTION 4

Today, the process of configuring the monitor works fully separate from the analysis procedure;
the analyst must hand-translate the findings from their investigation in order to express their
detection in the rule language(s) used by the site’s monitoring.

1.1.2 Network Troubleshooting

Configuration bugs rarely manifest in an obvious manner, rather, operators have to pinpoint
the error by sifting through heaps of logs from diverse sources. The more context and
perspectives operators can draw upon, the more confidence in the analysis develops, but
the layered, modular structure of network architecture and protocols renders this process a
complex task.

When being confronted with a high-level user complaint (consider the example of email system
failures), the operator typically kicks off the analysis by spot-checking a dashboard with
aggregate statistics about the present state. These aggregates cover information across the
whole network stack, ranging from link-layer to application-specific details, and ideally exist
in various temporal granularities, such as seconds, hours, and days. A natural representation
of this data is in the form of time series, allowing operators to apply numerous statistical
techniques for data exploration and correlation. For example, an operator may look at
aggregates of mail traffic to find a significant drop in connections, and then check DNS
requests involving the mail server to notice that the DNS server generates only sporadic
replies. Finally, the operator inspects the DNS activity more closely, revealing that the server
process entered an out-of-memory crash cycle due to a torrent of requests from infected
machines in a student dormitory.

Unlike incident response, which exhibits a bottom-up characteristic in that typical analysis
begins with a concrete fact and then turns into a wider search, network troubleshooting
resembles a top-down process, starting from abstract symptoms requiring deeper investigation.

1.1.3 Insider Abuse

Insider abuse is difficult to apprehend because authorized actions form a policy violation
only when analyzed in context. To illustrate, consider an employee accessing a sensitive
document on an internal machine, copying it to their laptop, and then exfiltrating it via email
from there. While each action in isolation does not appear to reflect malicious activity, the
sequence of actions constitutes a policy violation. Investigating potential instances of such
attacks often require reinspecting activity previously deemed benign, again using a “peeling
the onion” approach.

A carefully orchestrated insider attack often manifests over long periods of time, with
piecemeal extraction of sensitive data to stay under the radar of monitoring systems. From
a detection standpoint, this requires relating specific, temporally distant data points. The
analyst must stitch together pieces of evidence to reconstruct puzzle pieces into a coherent

CHAPTER 1. INTRODUCTION 5

chain of actions. Looking for descriptions of activity that substantiate the case frequently
appears like searching for a needle in a haystack.

The Snowden leaks have demonstrated the efficacy of a carefully orchestrated exfiltration
process. Today’s massive storage systems can archive copious amounts of data, but it remains
an open challenge to efficiently access and correlate the subsets relevant to an investigation.

1.2 Goals

Based on these needs, and drawing upon our experience working closely with operational
security staff, we formulate three key goals for a system supporting the forensic process.

1.2.1 Interactivity

The potential damage that an attacker can wreak inside an organization grows quickly as a
function of time, making fast detection and containment a vital concern. Per §1.1, forensic
investigations exhibit a highly iterative workflow, in which analysts repeatedly query a system
to inspect various data subsets to support their case. Often, a “taste” of the full query result
suffices to perform a decision in this triaging phase. We thus postulate query “taste” latencies
in the order of seconds for the analysis to remain viable.

Analyst time is a scarce and costly resource. The more cases security staff can solve per unit
time, the higher the return on invest. Aside from the economic benefit, an interactive system
also boosts productivity [66]—a synergy which amplifies the utility of forensic analysts.

1.2.2 Scalability

Large networks generate a torrent of data relevant for post-facto investigations. Archiving and
retrieving this data requires a scalable system, which efficiently utilizes available resources—
both within a single machine as well as across multiple machines.

For intra-machine scalability, a system should carefully multiplex its computational tasks over
the available CPU cores, as well as schedule I/O accesses to intelligently harness persistent
storage devices without incurring high latencies. For inter-machine scalability, a system
should distribute its data and computation over multiple machines. Adding a new node to a
system should increase its capacity linearly.

But scaling does not only imply growing in size and power, it also means shrinking when
the system runs over-provisioned. For example, a system which replicates its components
over multiple machines for redundancy or load-balancing could consolidate its footprint by
migrating state to a smaller set of machines, allowing for powering off the freed capacities.

CHAPTER 1. INTRODUCTION 6

1.2.3 Expressiveness

Data comes in many formats and some exhibit more structure than others. For example, one
event may represent simply the unavailability of a resource as a boolean flag, while another
contains detailed, hierarchical information about protocol data (e.g., a HTTP request with
query parameters belonging to a TCP session represented as connection 4-tuple). Since
network forensics encompasses correlation of data from various sources, a supporting system
must accommodate and represent them uniformly without losing structural information.

In addition to retaining structure, keeping and assigning type information during data
import avoids losing domain-specific semantics, which can prove valuable later at search time.
Rich typing also allows analysts to work within their domain, as opposed to spending time
translating their workflows to lower-level system primitives. Moreover, a strict type system
enables powerful system optimizations. For example, when an analyst looks for an IP address
instead of a plain string, type-specific optimizations can speed up the search.

1.3 Outline

We structure this thesis according to Figure 1.1 and briefly summarize the remaining chapters
in the following.

§2: Background. We begin with summarizing the status quo of network forensics, finding
a strikingly thin treatment of this field in an academic context. In §2.2, we then
branch out to related work in the systems community, to assemble the building blocks
necessary to build a scalable system for network forensics. In particular, we look at a
high-performance messaging substrate in §2.3 and indexing techniques to accelerate
search in §2.4.

§3: Architecture. In this chapter we present the design of our VAST system which enables
scalable network forensics. After introducing VAST’s rich-typed data model in §3.1, we
present in §3.2 each component in detail.

§4: Implementation. In this chapter we look under the hood VAST and highlight key
aspects of the implementation. We discuss challenges with the underlying message-
passing framework in §4.1 and then shift our attention to high-level indexing in §4.2.
Thereafter, we explain in §4.3 how VAST achieves an efficient query processing engine.

§5: Evaluation. In this chapter we evaluate VAST along several dimensions. After intro-
ducing our measurement infrastructure and data sets in §5.1, we show how we ensure
correctness of operation in §5.2. In §5.3, we examine throughput during data ingestion
and indexing. In §5.4, we look at the responsiveness of queries by examining the
execution pipeline. We seek to understand intra-machine and inter-machine scaling in
§5.5, and finish with a quantification of storage overhead in §5.6.

CHAPTER 1. INTRODUCTION 7

§6: Conclusion. The last chapter concludes the thesis. We summarize key insights and
lessons learned in §6.1. Throughout the course of this dissertation project numerous
fruitful ideas beyond the scope of this thesis emerged, which we sketch in §6.2.

CHAPTER 1. INTRODUCTION 8

Introduction
§1

Background
§2

Architecture
§3

Implementation
§4

Evaluation
§5

Conclusion
§6

Figure 1.1: Thesis structure.

9

Chapter 2

Background

Technological progress has merely provided us
with more efficient means for going backwards.

Aldous Huxley

Before designing and implementing a system for network forensics, we take a close look
at existing solutions, analyzing their contributions and shortcomings. In §2.1, we begin
with a comprehensive study of the field of network forensics from an academic standpoint.
Afterwards, we broaden our view in §2.2 to discuss existing technology for data-intensive
applications at scale. We summarize work ranging from traditional databases, modern data
stores, and frameworks for distributed computation. Then we step down to a lower level of
system design and study the communication layer of distributed systems. In §2.3 we focus on
flexible message passing abstractions that form the cornerstone of our system, enabling it to
scale both within a single machine as well as over a cluster of multiple machines. Efficient
search is another pillar in a system which must perform lookups in massive data archives.
In §2.4 we summarize apt database technology to answer high-dimensional queries.

2.1 Literature Search

The academic treatment of large-scale network forensics is strikingly thin. We concluded
this after comprehensively examining 4,795 papers and 181 presentations of 13 security and
systems conferences on forensics (FIRST, DFRWS), security (USENIX Security, ACM CCS,
IEEE S&P, NDSS, ACSAC, USENIX HotSec), databases (VLDB), and systems (USENIX
LISA, USENIX ATC, SOSP, USENIX NSDI). As we illustrate in Figure 2.1, the last decade
of research on network forensics paints a fragmented picture: only occasional interest, even
in security-centric venues. Let us walk through the existing landscape.

The Digital Forensic Research Workshop (DFRWS) annual conference primarily covers tradi-
tional host-based forensics, with network forensic only appearing occasionally. For example,

CHAPTER 2. BACKGROUND 10

2 3

1 3 1

1

1 1 1

1 1

1

1 1

2 3

Network
Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics
Network

Forensics

Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis
Forensic
Analysis Forensics

Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness
Situational
Awareness

Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response
Network Forensics
and Live Response

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Large Scale
Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android &
Network Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

Android & Web
Forensics

2 3

1 3 1

1

1 1 1

1 1

1

1 1

2 3

FIRST

DFRWS

USENIX
Security

ACM
CCS

IEEE
S&P

NDSS

ACSAC

USENIX
HotSec

VLDB

USENIX
NSDI

SOSP

USENIX
ATC

USENIX
LISA

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
Year

Ve
nu

e

SYSTEMS

DATABASES

SECURITY

FORENSICS

Figure 2.1: A summary of research on network forensics over the last decade in relevant
venues, based on analysis of 4,795 papers and 181 presentations. Each number reflects the
publications per venue relevant to central network forensics issues, which sum up to 13 in
total.

the session Network Forensics and Live Response in 2011 covered file carving [22], anonymizing
NetFlow data [169], and presented a framework for network-wide “live” forensics [51], i.e.,
investigating an incident by looking at state from running machines, as opposed to searching
through archives of past data. In the following year, the session Large Scale Forensics
emphasized the scaling aspect, but merely at the scope of host-level forensics [83, 68]. The

CHAPTER 2. BACKGROUND 11

session Android & Network Forensics in 2015 introduced work on mobile-device network
forensics at small scales [194]. Similarly, the Forum of Incident Response and Security
Teams (FIRST) hosts annual meetings where field exports give presentations. FIRST covered
unified logging in 2005 [171], but the very theme of network forensics did not come up until
2015, and then with a narrow, small-scale focus [98], or high-level experience report from a
proprietary system [101, 27]. Even forensics-centric venues like DFRWS and FIRST do not
appear to face the underlying systems challenges that arise with network forensics at larger
scales.

In 2011 and 2014, USENIX Security featured a Forensics Analysis session, but with a focus on
single-machine forensics. The Annual Computer Security Applications Conference (ACSAC)
in 2005 included work on network forensics, which utilizes evidence graphs for multi-stage
attack detection [196]. In 2010, ACSAC covered host-based forensics in one paper, and in 2011,
a Situational Awareness session—without an emphasis on network forensics. In 2013, one
paper presented techniques to automatically normalize and extract knowledge from enterprise
logs (e.g., IP-to-host mappings and communication profiles), as well as support the incident
response process by flagging suspicious users based on behavioral analysis [206]. The USENIX
HotSec workshop in 2008 featured a Network Forensics track where a concept paper [8],
written by colleagues, precisely laments the insufficiently available tooling and proposes
guidelines for designing an apt system. In fact, this paper marks the starting point for this
thesis project. In 2011, one HotSec paper emphasizes the research opportunities in digital
forensics, because existing solutions does not translate into readily usable technology [193], or
simply do not scale [82]. In 2012, the USENIX Annual Technical Conference (ATC) published
work on a key issue in network forensics [181]: the absence of adequate tools to support the
domain-specific workflows efficiently (see §2.2.4). In 2015, USENIX ATC brought back the
theme, although with a narrower focus on network-level flows [119]. At the USENIX Large
Installation System Administration (LISA) conference in 2005, the operationally driven need
for a unified representation of authentication log data came up [168], as well as the topic
of network awareness, albeit at the level of network packets only [102]. Field practitioners
regularly articulate the need for a unified view on activity [49, 171, 82, 191], and we explicitly
state this aspect as a necessary design goal for a network forensics system in §1.2. In
2010, LISA brought back network awareness along with a packet-oriented tool for passive
service discovery and heuristics-based intrusion detection [21], as well as the theme of unified
log analysis [153] and correlation [115]. While these topics relate to important aspects in
network forensics, the presented solutions do not support the iterative peeling-the-onion
workflow of security analysts. The 2011 USENIX Symposium on Networked Systems Design
and Implementation (NSDI) featured research which introduces a high-level framework for
network event analysis [191]. The proposed language allows for expressing composable
behavior models, which represent a sequence of states. In addition to traditional boolean
filter operations, the language supports notions of causal behavior relationships, partial/total
ordering, concurrent operations, and value dependencies. Implementing such a framework
into a scalable system for interactive forensic analyses remains an open challenge for future

CHAPTER 2. BACKGROUND 12

work.

Overall, our examination of existing work in the field suggests that network forensics received
very selective attention. The 13 venues we inspected include a total of 13 publications relating
to central network forensics questions. We witness several attempts to improve the status quo
in this domain, but available solutions fail to meet systems challenges we postulate in §1.2:
network forensics at scale requires both real-time data ingestion as well as an interactive
query engine grounded in a flexible data model. Therefore, we now take take a closer look at
available technology at the database and systems community, with the goal of identifying
architectural building blocks to assemble a system that can meet the requirements of network
forensics at scale.

In §2.2, we conduct a survey of related work, ranging from databases, over modern distributed
computing frameworks, as well as more research specific to network forensics outside the
previously examined venues. Thereafter, we turn to two architectural cornerstones we deem
crucial for network forensics at scale: high-performance message passing (§2.3) and indexing
to accelerate search (§2.4).

2.2 Related Work

In this section we contextualize related work, evaluating existing solutions with respect to their
aptitude for the domain per the uses cases in §1.1. Since network forensics involves handling
massive amounts of data, the following discussion concentrates on work in databases (§2.2.1
and §2.2.2), distributed systems (§2.2.3), as well as domain-specific solutions (§2.2.4). We
summarize the main aspects of the existing landscape with respect to the requirements of
network forensics in Table 2.1.

2.2.1 Traditional Databases

Traditional relational database management systems (DBMS) exist since the 1970s and
still find wide application today in scenarios requiring transactional semantics with strong
consistency guarantees. These systems use the popular structured query language (SQL) as
universal means to access data, which expresses queries in a flexible, declarative style [37, 106].
Two common DBMS workload distinctions have emerged over time: online transactional
processing (OLTP) and online analytical processing (OLAP) systems. OLTP workloads
consist of numerous short transactions in the form of inserts, updates, and deletes. System
evaluations typically express the performance of OLTP systems in transactions per second.
OLAP workloads occur in data warehouses [46] and consist of complex, high-dimensional
queries over read-mostly data sets. Data imports often take place periodically in batches,
following the extract-transorm-load (ETL) paradigm [189]. A common database deployment
not only keeps day-to-day operations data (such as employees, salaries, clients, orders) in a

CHAPTER 2. BACKGROUND 13

Capabilities
Generic Network Forensics

G
en

er
ic

C
om

p
u

ta
ti

o
n

S
tr

ea
m

P
ro

ce
ss

in
g

C
om

p
le

x
Q

u
er

ie
s

H
o
ri

zo
n
ta

l
S

ca
la

b
il

it
y

C
on

ti
n
u

ou
s

In
g
es

ti
on

R
ic

h
D

at
a

M
o
d

el

T
y
p

e
S

af
et

y

In
te

ra
ct

iv
e

S
ea

rc
h

It
er

at
iv

e
A

n
al

y
si

s

Relational DBMS
(e.g., PostgreSQL [150], MySQL [138], Oracle [144]) 7 7 3 7 7 3 3 3 7

Streaming Databases
(e.g., Borealis [1], STREAM [11], TimeStream [152]) 7 3 3 7 3 3 3 3 7

Data Warehouses
(e.g., Hive [183], Greenplum [50], Avatara [203]) 7 7 3 3 7 3 3 3 3

NoSQL Stores
(e.g., Redis [156], MongoDB [137], Riak [160]) 7 7 7 3 3 7 7 7 7

MapReduce
(e.g., Hadoop [94]) 3 7 3 3 •∗ 3 3 7 7

Distributed Computation
(e.g., Spark [209], DryadLINQ [208]) 3 3 3 3 3 3 3 •† •†
Log Aggregators
(e.g., splunk [24]) 7 7 7 3 3 3 7 3 7

T
e
ch

n
o
lo
g
ie
s

VAST 7 7 7 3 3 3 3 3 3
∗ Decoupled from query execution engine.
† Only when working set fits into memory.

Table 2.1: Related work evaluated with respect to its aptitude for the domain
of network forensics.

relational DBMS which faces OLTP workloads, but also for decision support and analytics a
data warehouse, which exhibits OLAP workloads.

While DBMS execute historical queries over data that already exists on permanent storage,
data stream management systems (DSMS) [35, 87] answer continuous queries that operate
on data after issuing the query. Put differently, a historical query transports the query to
the data, whereas a continuous query routes the data through the query. Once the original
data has traveled past a continuous query, the engine discards it. Thus, streaming databases
do not offer persistence, besides snapshotting query state and meta data. DSMS often rely
on synopsis data structures (e.g., HyperLogLog [74, 96], Count-Min Sketch [56], Bloom
filters [26, 179]) to succinctly summarize and retain certain aspects of the original data.

CHAPTER 2. BACKGROUND 14

Per §1.1, in the domain of network forensics analysts gather evidence to arrive at a best
possible explanation for an incident. This reasoning involves investigation of immutable
descriptions of activity from the past. Modification of data in the OLTP sense does not
occur. (However, modification may occur during aging out old data in more space-efficient
representations.) Therefore, data warehousing and OLAP-style workloads predominate in
network forensics. However, conventional ETL systems only support bulk loading, as opposed
to continuously integrating data as it arrives. When it comes to archiving network activity,
there exists no opportunity to interrupt the query execution and bulk-load the system.
Queries must execute along in the presence of a continuous ingestion process.

Streaming databases have also relevance for network forensics. While post-facto analysis
examines past data via historical queries, incident response further encompasses a preventative
aspect, namely to ensure that the investigated security incident or similar attack can be
detected again in the future. To close the loop, the analyst installs the developed historical
query as continuous query, ideally by simply flipping a switch. In this sense, the domain
requires a streaming capability in addition to the data warehousing capability. The idea to
unify the two analysis styles is not new [158], but existing prototypes do not scale beyond a
single machine and do not offer interactive, OLAP-style querying.

2.2.2 Modern Data Stores

Modern data-hungry applications demand high scalability and performance, which traditional
DBMS cannot provide due to their monolithic system architecture. NoSQL stores [36] have
emerged as a new breed of databases to specifically overcome these limitations by focusing on
(i) horizontal scalability, (ii) a simple programmatic interface, typically in the form of key-
value access, (iii) weaker consistency than ACID (atomicity, consistency, isolation, durability),
commonly referred to as BASE (basically available, soft state, eventually consistent), and
(iv) replication and fault tolerance via partitioning and replication. NoSQL stores primarily
find application in OLTP workload scenarios [177], but typical network forensics queries
exhibit OLAP characteristics: users ask fine-grained high-dimensional queries as opposed
to performing sheer key-value lookups. Consequently, we only consider NoSQL stores as a
building block as part of a bigger system, instead of solution by itself; e.g., in conjunction
with indexing where a lookup yields keys to access the base data.

Unlike NoSQL stores, data warehouses [46] aim for answering high-dimensional queries over
large bodies of immutable data in a timely manner. Leading vendors in this space, such as
Oracle, Teradata, SAP [163], and EMC Greenplum [50], address the growing demand for
large-scale analytics in real-time with proprietary parallelization techniques. Big Internet
companies, such as Google, Facebook, Twitter, LinkedIn, assemble their big data stack out of
a combination of techniques to cover a broad range of use cases [166]. Their ecosystem features
dedicated frameworks for cluster management, data storage, and distributed processing—
including specific solutions for data warehousing [183, 184, 118, 203, 95].

CHAPTER 2. BACKGROUND 15

A particularly notable data warehouse is Google’s Dremel [133], a system which stores semi-
structured data in situ in a columnar format, using a SQL interface for ad-hoc queries having
interactive response times. Queries execute in a serving tree structure where intermediate
nodes aggregate results from their children. This hierarchical form of aggregation enables an
efficient scalable execution platform outside the MapReduce [59] paradigm.

Another data warehouse from Google is Mesa [91], which supports real-time data import and
query functionality, designed for fault-tolerant, multi-datacenter deployments. The system
exhibits a relational data model, supports aggregation at various resolutions, and can handle
evolving schemata. Like many large-scale systems from Google, Mesa leverages existing
infrastructure: Colossus, the successor of the Google File System (GFS) [85], as distributed
filesystem for bulk storage, BigTable [42] for storing meta data, and MapReduce [59] for
query execution.

VAST shares similarities with the objectives of Dremel and Mesa: answering high-dimensional
queries consisting of multiple predicates over large bodies of immutable data. While Mesa
stores its data in tables and relies on indexes primarily to accelerate seek times, VAST
exclusively uses indexes to compute query results. This improves latency, but comes at the
cost of a limited query language imposed by the index operations.

Vertica offers a commercial version [116] of their column store C-Store [176]. Like Mesa, the
system aims for supporting both analytic real-time workloads and transactional updates.
The open-source data warehouse Druid [205] also relies on columnar storage. To accelerate
filter lookups, Druid additionally uses indexes. The system architecture places specific
functionality into dedicated nodes responsible for, e.g., data ingestion, historical queries, and
client interaction. Unlike Druid, VAST separates deployment from program logic, which
allows for flexible operation in a single operating system process or over a cluster of machines.
VAST also relies on indexes to accelerate search, but does not decompose the base data into
columnar format. Instead VAST stores the base data in compressed blocks in a key-value
store. Although this design provides only row-based access and not arbitrary query execution,
it simplifies sharing of the base data with other applications. In the future, we may investigate
decomposition of the base data in columnar format or interface it with other storage layers.

ElasticSearch [69] is a commercial, document-oriented database built on top of Apache
Lucene [126], which provides a full-text inverted index (see §2.4.2). ElasticSearch effectively
wraps Lucene behind a RESTful [73] API. Partitioning and replication provide horizontal
scaling and fault-tolerance. Since all data arrives in JSON format, ElasticSearch uses
“mappings” to define a schema that translates JSON to Lucene data types. Similarly, Solr [173]
builds on top of Lucene to provide a distributed indexing solution. As of this writing, Lucene
(and thereby ElasticSearch and Solr) does not support IPv6 addresses, which renders it
unsuitable for network forensics today. It neither supports schema evolution, nor handles
container types. VAST features a flexible, semi-structured data model and has support for
IPv6 addresses as well as containers. Moreover, VAST can ingest high-volume streams of
input data, ranging from raw network packets to high-level application logs.

CHAPTER 2. BACKGROUND 16

2.2.3 Distributed Computing

Aside from database technology, distributed compute architectures provide scalable general-
purpose execution platforms to efficiently process large bodies of data. These systems offer
data-parallel execution engines spanning multiple nodes. These architectures focus less on
sophisticated storage structures, but rather on distributed algorithms.

The MapReduce [59] paradigm remains the cornerstone of distributed compute frameworks.
Popularized through its open source implementation Hadoop [198], the model enables com-
putation of arbitrary functions over a cluster of commodity machines using two primitives: a
map function to generate intermediate key-value pairs, and a reduce function to merge pairs
sharing the same key. The runtime orchestrates the distributed execution of these functions,
handles data transfers and inter-node communication, and guarantees fault-tolerance by
restarting failed jobs on different machines. MapReduce jobs execute off a distributed filesys-
tem [85, 170, 146] in which the runtime also stores the result. This incurs high I/O load during
the initial full data scan and when storing the result at the end. Although one can avoid
touching the filesystem for intermediate results by relying on in-memory pipelines [55], the
fundamentally batch-oriented nature of this execution model remains. In network forensics,
a typical workflow involves several iterations over a query until having located the relevant
amount of information. With MapReduce-based execution, each query iteration translates
into a separate job, which cannot deliver an interactive experience.

The availability of Hadoop spawned numerous high-level query engines [148, 139, 183, 23]
which offer declarative languages which compile queries into a sequence of MapReduce jobs,
and therefore inherit the same limitations. Dryad [105] provides a domain-specific language
consisting of higher-level constructs to build an acyclic dataflow graph. In contrast to
MapReduce where the runtime sets up the dataflow graph, Dryad requires users to specify
the low-level communication patterns. The framework also targets batch processing and
materializes results to the filesystem.

Spark [209] distributes data over the main memory of available machines in a cluster. After
having pre-loaded a working set in memory, the provided functional primitives allow for
efficient data sharing between stages of computation. Spark introduces the notion of a resilient
distributed dataset (RDD), a parallel data structure which provides fault-tolerance by tracking
the transformations applied to it. In addition to operating on preloaded working sets, Spark
also offers a streaming mode in which computations occur in small deterministic batches
on top of the RDD model [210]. Spark also offers a Succinct RDD [4], an optimization
for search, which stores the base data in situ in compressed, flat files. This representation
does not require decompression when searched. Succinct leverages suffix trees internally,
which support point, wildcard, and lexicographical lookup on strings. Other data types (e.g.,
arithmetic, compound) require transformations into strings to maintain a lexicographical
ordering. Succinct exhibits high preprocessing costs and modest sequential throughput,
rendering it inappropriate for high-volume scenarios such as network forensics, where a
continuous stream of data arrives. When the working set fits in memory, Succinct offers

CHAPTER 2. BACKGROUND 17

competitive performance, but not when primarily executing off the filesystem.

In summary, security analysts can rarely define a working set a priori, which can result in
thrashing due to frequent loading and evicting data from memory. For example, assume that
data partitions reside on the filesystem sorted by time. Since there can only be one sort
order, a lookup along a different dimension (e.g., a spatial aspect, such as an IP address)
can exhibit poor locality and spread over numerous partitions. A complex query may even
require a full scan of all partitions, in which case distributed in-memory computing provides
no benefit over MapReduce execution. Therefore, we envision VAST going hand-in-hand
with Spark, where VAST quickly pinpoints a tractable working set and then hands it off to
Spark for more complex analysis if needed.

2.2.4 Network Forensics Domain

In addition to general-purpose systems, there exist several approaches which aim for directly
supporting the inherent workflows of the network forensics domain. Most approaches operate
on raw network traffic and offer search capabilities at varying granularity.

The Bro network security monitor [147, 30] offers a high-level platform for network analysis
along with a type-rich, event-based scripting language. Bro reassembles raw packets into
transport-layer byte streams, which protocol analyzers then dissect into fine-grained streams
of application-specific events. User can write handlers for these events to perform arbitrary
computation. Bro also ships with a library of scripts which record the protocol activity in
detailed log files. In previous work, we developed the Bro cluster [187] to scale the analysis
to multi-Gbps links. In this mode, a load-balancer dispatches the stream of packets over a
set of backend nodes, such that packets from the same connection arrive at the same node.
Since Bro produces only log files and does not come with a persistence component, manual
search quickly runs into scalability issues. VAST complements Bro by providing a scalable
solution for persistence that can natively ingest its logs.

The Time Machine [130] records raw network traffic and builds tree indexes (see §2.4.1)
for a limited set of packet headers fields. To cope with large traffic volumes, the system
tracks connections and foregoes packets belonging to the same flow after the connection byte
stream has reached a certain threshold. The choice of tree-based indexes prevents efficient
composition of hits. For example, querying both IP source and destination address requires an
index which spans both fields. Such a design does not scale to higher dimensions. Similarly,
pcapIndex [75] indexes packet headers, but relies on bitmap indexes (see §2.4.2) for better
composability. VAST represents a superset of both Time Machine and pcapIndex: it supports
the same cutoff functionality. In VAST, packets simply constitute a special type of input.

FloSIS [119] provides a higher-level interface to bulk traffic storage at the granularity of flows
instead of packets. To efficiently access flow data, FloSIS uses a two-stage indexing approach.
At the first level, 4 Bloom filters [26] (for the connection 4-tuple) and 2 timestamps (for
beginning and end) track whether a data partition does not contain the queried data and can

CHAPTER 2. BACKGROUND 18

be skipped. At the second level, sorted arrays of flow meta data provide a logarithmic lookup
method to the base data. Similar to the Time Machine and pcapIndex, the system operates
exclusively on network traffic and exhibits an architecture only suitable for this form of data.

NetStore [86] is a column store also geared towards flow archiving. It includes two indexes to
accelerate search: (i) an interval tree to select the appropriate partition based on a temporal
constraint, and (ii) inverted indexes over the connection 5-tuple. NetStore can handle
insertion rates on the order of 10 K records/second, and exhibits average query latencies on
the order of 10s of seconds over a data set containing 62 M records, each of which contains
12 fixed-size numeric fields. These performance figures remain too low for an interactive
query experience at already moderate data volumes, and the system architecture does not
scale beyond single-machine deployments.

NET-Fli [76] is a single-machine NetFlow indexer which leverages bitmap indexes to accelerate
search. The systems comes with a promising (though patented) bit vector encoding scheme,
COMPAX. NET-Fli sustains import rates up to 0.5–1.2 M NetFlow records per second
(with 12 numeric fields per record), with room for an order-of-magnitude improvement when
offloading index construction to a GPU [77]. From a high-level view, VAST exhibits a similar
conceptual architecture: the base data resides in an archive, with horizontally partitioned
bitmap indexes pointing back into it. However, VAST differs in several salient points. First,
VAST integrates this dichotomous archive-index design into a distributed architecture to scale
beyond single machine deployments. Second, rather than targeting only specific data sources,
such as packets or NetFlow records, VAST offers a generic data model which then maps to
type-specific bitmap index layouts. Third, we distribute VAST as open-source software under
a permissive BSD licence free of patents, allowing the community to reuse it as a building
block for higher-level applications.

The separation of base data into archive and partitioned index also exists in other systems [181].
A notable variation includes a separate meta index to identify the relevant main index
partitions to load during a query. This multi-stage indexing resembles multi-resolution
indexes [172], except that the top-level index points to partitions as opposed to individual
data records.

Splunk [24] is a commercial log aggregation system focusing on time-series data. Unlike many
other systems, splunk applies typing at search time while internally keeping data as plain
strings. As new event data arrives, splunk tokenizes it into keywords and builds inverted
indexes over the keywords as well as over event meta data [136]. For a query execution
backend, splunk implements its own MapReduce engine which operates on partitions divided
by time. The late binding of type information incurs significant performance hits during
result materialization, especially when dealing with massive data volumes. The lack of
internal typing also prevents type-specific storage and query optimizations. Furthermore,
splunk cannot dynamically adapt its use of CPU resources to changes in workload, e.g., users
statically configure the numbers of threads per indexers. VAST follows the opposite approach
strong typing enables type-specific optimizations and provides a type-safe query language to

CHAPTER 2. BACKGROUND 19

prevent analysts from making subtle mistakes.

In summary, we find that existing work in the field consists of carefully engineered low-
level solutions to solve the problem for a specific type of input. However, comprehensive
network forensics draws from numerous data sources. We believe a system must not tailor
its architecture to a specific data format, and instead should operate on higher-level notions
of data types. Some systems exhibit a promising architecture that separates base data and
composable indexes. For a scalable system, we must integrate these ideas into a distributed
system. In the following, we shift the focus away from holistic systems and discuss the
lower-level primitives required to design a scalable distributed system.

2.3 High-Level Message Passing

Network forensics at scale requires processing massive volumes of data in short time spans.
To handle the high data ingestion rates while supporting interactive search, a system in this
domain must meet ambitious throughput and latency requirements—by resorting to either
expensive, special-purpose hardware or a cluster of commodity machines. The latter model
often qualifies as the only choice for operators in face of limited budgets.

When designing a distributed system, performance and scale become chief concerns. How
well does the system utilize the native parallelism of modern multi-core CPUs? Does it scale
up linearly with the number of nodes, and does it also scale down to smaller workloads?
By scaling down, we mean low fixed overhead and effortless deployment in small setups. A
flexible, efficient architecture exploits all available resources, both within the same machine
as well as across multiple instances.

Today, developers rely on vastly different techniques to bridge the gap between intra-machine
and inter-machine scaling. On the one hand, performance-attentive developers employ low-
level concurrency primitives (e.g., tasks, threads, semaphores) to squeeze out maximum
performance on a single machine. The implementation results in complex, tightly coupled,
and difficult to compose systems. On the other hand, deploying software across machines
involves network communication in the form of message passing. Socket management and
serialization account for a substantial fraction of the code base, with complicated platform-
specific event-loop APIs that result in inversion of control : a fragmentation of program logic
due to callback registration with the asynchronous runtime.

Combining these two styles in a single application creates a complex code base, difficult
to maintain and communicate to new contributors. Developers should not have to rely
on system-specific idiosyncrasies to harness the available resources of modern hardware
and networks. Instead, a flexible runtime should offer a unified abstraction that allows for
expressing concurrent control flow safely, independent of deployment, and without sacrificing
performance. In §2.3.1 we present the architectural primitive to achieve this goal, and describe
how we select an implementation optimal for our purposes in §2.3.2.

CHAPTER 2. BACKGROUND 20

Figure 2.2: The actor model [97]. Each vertex represents an actor. All actors execute
concurrently, but each instance sequentially processes one message at a time. The dotted
frames represent process boundaries. Actors can both communicate within the same process
as well as talk to actors in different processes or remote nodes.

2.3.1 Actor Model

The actor model [97] offers a paradigm that unifies concurrency and distribution. In this model,
computational entities—called actors—execute independently and in parallel. Using unique,
location-independent addresses, actors communicate asynchronously solely via message
passing. Because actors do not share state, data races cannot occur by design. Each actor
posseses a message queue called a mailbox [5], from which it dequeues and sequentially
processes one message at a time. The actor’s behavior determines how to process the next
message. In response to a message, the behavior can include any of the following three actions:
(i) create (or spawn) new actors, (ii) send messages to other actors, or (iii) designate the
behavior to use for the next message in the mailbox.

Figure 2.2 visualizes an exemplary topology in the form of a directed graph. A vertex represents
an actor instance and an edge between two actors indicates that one actor references another,
either by spawning or sending messages to it. Throughout this thesis, we reference specific
actor types in small caps font.

A related model of computation is communicating sequential processes (CSP) [99], in which
processes communicate with other processes via synchronous channels. As a result, the sender
cannot transmit before the receiver is ready. This creates a tighter coupling compared to
the asynchronous fire-and-forget semantics of actor messaging. Moreover, CSP emphasizes
the channel as opposed to its endpoints: actors have a location-independent address whereas
processes remain anonymous. In the context of distributed systems, the focus on endpoints
provides a powerful advantage: unlike CSP, the actor model contains a flexible failure
propagation model based on monitors, links, and hierarchical supervision trees [13]. These
primitives allow for isolating failure domains and implementing local recovery strategies,
and thus constitute an essential capability at scale, where component failure is the norm

CHAPTER 2. BACKGROUND 21

rather than the exception. For these reasons, we deem the actor model a superior fit for our
requirements.

2.3.2 Implementations

Designing a scalable high-performance architecture for modern distributed systems poses an
ambitious set of challenges. The actor model provides an excellent fit for this task, but an
implementation of this paradigm must meet the following requirements in order to qualify as
viable choice in practice.

Native Performance An efficient runtime not only scales across machines, but also maxi-
mizes resource utilization within a machine. Many actor runtimes execute in an abstract
machine. Most notably, Erlang [12] provided the first industrial-strength implemen-
tation as a dynamically typed language, which still finds wide application today. But
statically typed languages also feature implementations, such as the Akka framework [7]
in Java or Scala.

Type Safety The set of all valid messages an actor can process constitutes its interface.
An actor model implementation can either check the message validity at runtime or at
compile time. Runtime type checking facilitates rapid prototyping and enables loosely
coupled systems, but requires extensive unit testing to ensure correctness. Conversely,
compile-time type checking can guarantee correct operation, but comes at the cost of
higher development times and tighter coupling, because the sender must have available
interface definitions of the receiver.

Heterogeneous Targets Actors offer a single abstraction to separate program logic from
deployment. When communicating within the same process, the runtime typically
delivers a message by enqueuing a light-weight pointer in the receiver’s mailbox. When
communicating across process boundaries, the runtime serializes the message, sends
it over the network, and deserializes it on the other end before the receiver handles
it. In addition to efficient in-memory and network-level messaging, a runtime may
also feature GPU actors in the form of OpenCL [143] kernels. This opens up new
opportunities to harness the massive SIMD parallelism offered by modern graphics
cards, which proves particularly effective for offloading expensive computation, such as
index construction [9, 77].

There exist numerous general-purpose implementations of the actor model, each of which
makes different design choices in a trade-off space of safety, usability, and performance.
Table 2.2 summarizes our comparison of various existing implementations, which we describe
according to the features below.

CHAPTER 2. BACKGROUND 22

Features

N
at

iv
e

E
x
ec

u
ti

on

G
ar

b
ag

e
C

ol
le

ct
io

n

P
at

te
rn

M
at

ch
in

g

C
op

y
-O

n
-W

ri
te

M
es

sa
gi

n
g

F
ai

lu
re

P
ro

p
ag

at
io

n

D
y
n
am

ic
B

eh
av

io
rs

C
om

p
il
e-

T
im

e
T

y
p

e
C

h
ec

k
in

g

R
u
n
-T

im
e

T
y
p

e
C

h
ec

k
in

g

E
x
ch

an
ge

ab
le

S
ch

ed
u
le

r

N
et

w
or

k
A

ct
or

s

G
P

U
A

ct
or

s

B
ac

ke
n
d

Erlang [13] 7 3 3 7 3 3 7 3 3 3 7 BEAM
Elixir [70] 7 3 3 7 3 3 7 3 7 3 7 BEAM
Akka/Scala [7] 7 3 3 7 3 3 3 3 3 3 7 JVM
SALSA Lite [62] 7 3 7 7 7 7 3 3 7 •† 7 JVM
Actor Foundry [2] 7 3 3 7 7 3 7 3 7 3 7 JVM
Pulsar [151] 7 3 3 7 3 3 7 3 7 3 7 JVM
Pony [47] 3 3 3 7 7 7 3 3 7 3 7 LLVM
Charm++ [109] 3 •∗ 7 7 7 7 3 3 7 3 7 C++

Theron [182] 3 •∗ 7 7 7 3 7 3 7 3 7 C++

libprocess [124] 3 •∗ 7 7 3 7 3 7 7 3 7 C++

Im
p
le

m
e
n
ta

ti
o
n
s

CAF [44] 3 •∗ 3 3 3 3 3 3 3 3 3 C++

∗ Via reference counting, as opposed to tracing garbage collection.
† Only in SALSA, not SALSA Lite.

Table 2.2: Comparison of popular actor model implementations.

Native Execution. Frameworks which compile down to native instructions can deliver
superior performance compared to those running in abstract machines, but at the same
time cannot provide as effective fault isolation.

Garbage Collection. Many runtimes which execute in abstract machines run with tracing
garbage collection as opposed to reference counting. While this simplifies the pro-
gramming model, it introduces non-deterministic performance spikes which in practice
require excessive tuning to achieve comparable performance.

Pattern Matching. Most functional languages offer pattern matching as a first-class prim-
itive to define functions. The ability to express messages as typed tuples and apply
pattern matching to select a specific message handler provides a natural form of multiple
dispatch in actor model implementations.

Copy-On-Write Messaging. An actor runtime with copy-on-write messaging offers an
environment free of data races, since it avoids by design mutable access to message

CHAPTER 2. BACKGROUND 23

contents from multiple threads of execution. Moreover, multiple actor instances can
work with the same message instance without incurring a copy when only performing
read-only accesses. Data-intensive applications especially benefit from this feature.

Failure Propagation. The flexible failure propagation in the actor model (via monitors,
links, and hierarchical supervision trees [13]) proves highly valuable in large-scale
distribution systems.

Dynamic Behaviors. By definition of the actor model, an actor can change its behavior
as a reaction to a message. This feature facilitates, for example, the implementation of
concepts such as finite state machines.

Compile-Time Type Checking. Static type checking catches message type incompatibili-
ties already during the compilation phase. For example, a program would not compile
if an actor sends a message that a receiver cannot handle. The compiler needs access
to the type system of the actor runtime to enforce the type checks.

Run-Time Type Checking. A weaker form of type safety offers run-time type checking,
where the actor receiving a message determines whether it can handle it. Many library-
based solutions offer this guarantee, as it requires less intricate interaction with the
host language’s type system.

Exchangeable Scheduler. The actor runtime includes a scheduler which maps execution
of actors to hardware threads. Some applications require a high throughput while others
demand a low latency. A flexible runtime allows for tuning the scheduler according to
its needs, e.g., make adjustments regarding throughput, latency, and fairness.

Network Actors. The ability to send a message to an actor on a remote machine in the
same way as to a local actor creates a network-transparent system which decouples
deployment from logic.

GPU Actors. Spawning actors on general-purpose graphics cards allows for offloading
compute-intensive tasks.

Backend. The backend describes the target environment or host language of the actor model
implementation.

To better understand the performance characteristics between the different implementa-
tions, we summarize experiment results from previous work in Figure 2.3. The C++ Actor
Framework (CAF) [44] outperforms all other implementations in terms of CPU performance,
memory utilization, and scaling. Even message passing frameworks which operate at lower
levels, such as OpenMPI [80], do not exhibit distinguishable performance, as Figure 2.3(d)
illustrates. This shows that a high degree of abstraction does not necessarily impose a
performance penalty. Moreover, CAF supports both weakly and strongly typed actors, but

CHAPTER 2. BACKGROUND 24

4 8 1 2 1 6 2 0 2 4 2 8 3 2 3 6 4 0 4 4 4 8 5 2 5 6 6 0 6 40

5 0

1 0 0

1 5 0

2 0 0

2 5 0

 A c t o r F o u n d r y
 C A F
 C h a r m
 E r l a n g
 S a l s a L i t e
 S c a l aTim

e [
s]

N u m b e r o f C o r e s [#]
(a) Runtime as a function of cores.

4 8 1 6 3 2 6 41

2

4

8

1 6
 A c t o r F o u n d r y
 C A F
 C h a r m
 E r l a n g
 S a l s a L i t e
 S c a l a
 I d e a l

Sp
ee

du
p

N u m b e r o f C o r e s [#]
(b) Speedup as a function of cores.

C A F C h a r m E r l a n g A c t o r F o u n d r y S a l s a L i t e S c a l a
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0
8 0 0
9 0 0

1 0 0 0
1 1 0 0

Re
sid

en
t S

et
Siz

e [
MB

]

(c) Memory consumption during execution.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 60
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0

8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 61 0 0

1 5 0

2 0 0

2 5 0

Tim
e [

s]

N u m b e r o f W o r k e r N o d e s [#]

 C A F
 O p e n M P I

(d) Overhead compared to OpenMPI [80].

Figure 2.3: CAF performance compared to other actor model implementations [43]. Re-
produced with permission. Figures (a)–(c) illustrate a mixed-case scenario, which involves
number factorization while stressing the actor runtime at the same time. Figure (d) shows
the overhead of CAF compared to OpenMPI [80] for computing Mandelbrot images.

without introducing tight coupling between sender and receiver. To this end, CAF features
a globally checked type system where users register message types. CAF also supports
subtyping: partial knowledge of an interface suffices to send messages as long as the used
subset does not violate the type system. To the best of our knowledge, only CAF supports a
general-purpose actor runtime which subsumes in-memory, network-based, and GPU actors
under a single, location-transparent programming model. For these reasons, we deem CAF a
superior choice for our requirements.

Moreover, we closely collaborated with the developers since the inception of CAF and continue
to do so on a regular basis. Indeed, use cases from VAST motivated several features available
in CAF today. This close collaboration allowed us not only to harness a powerful message-
passing middle layer, but also to shape it according to our needs. CAF also ships with a

CHAPTER 2. BACKGROUND 25

permissive BSD license.

2.4 Accelerating Search

Forensic analysts often sift through data in an explorative fashion (see §1.1). A selective probe
here, following a hunch there. “Why did a workstation connect to the customer database
at 3 a.m.? Why does the same machine send a torrent of outbound DNS TXT traffic to a
machine across the globe? Oh, apparently this happened every night since last week.” The
puzzle often reveals itself when putting together all the pieces, where each part can lead to
new threads of illuminating evidence.

To perform such analyses, enormous volumes of descriptions of activity must be readily
searchable. But sequential scans cannot deliver an interactive query experience at scale, as the
data size exceeds the aggregate memory capacity even of clusters of machines. Consequently,
supporting the inherently iterative analysis style requires a more selective form of data access.

2.4.1 Hash and Tree Indexes

An index grants efficient data access through an indirection, at the cost of additional data
structure. Common databases indexes,1 such as B-trees and hash tables [19, 112], provide a
fast entry point into the base data via a search key. These indexes constitute the building
block of traditional DBMS, due to their well-understood properties and robustness in various
workloads. We illustrate their high-level structure in in Figure 2.4. Either a tree or hash
table can yield an entry point into the base data at the bottom, from where sequential seeks
navigate through the individual records.

However, these traditional indexes do not compose efficiently during search in higher dimen-
sions: they require a total order on the key space, which does not exist for more than one
dimension. Even special higher-dimensional indexes still suffer from the “curse of dimension-
ality,” i.e., index space usage and lookup time quickly turn into exponential growth as the
number of predicates in the query expression increases [20, 81].

In forensic investigations, already simple queries exhibit a high dimensionality. To illustrate,
consider the query “give me all outbound DNS requests since last week,” which we can model
as a boolean expression with three predicates, A ∧ B ∧ C, where A represents outbound
connections, B DNS requests, and C connections with a timestamp within the last week.
From there, additional restrictions of the search space seem plausible, e.g., restrict the search
to specific IP addresses, UDP ports, or DNS record types. Thus, even simple analysis quickly
spans multiple dimensions.

1The database community uses “indexes” more frequently than “indices” as plural of “index.” Therefore,
we only use “indices” when referring to a set of positions in a sequence, whereas “indexes” when referring to
the data structure.

CHAPTER 2. BACKGROUND 26

(a) A tree index. (b) A hash table index.

Figure 2.4: Efficient access of the base data through an index.

2.4.2 Inverted and Bitmap Indexes

An index that does not suffer from the curse of dimensionality is the inverted index [112],
the building block of modern information retrieval. The inverted index maps search keys
to a set of identifiers representing the unique elements in the base data, as we illustrate in
Figure 2.5(a): keys A–D map to lists of identifiers (aka. position lists). An isomorphic data
structure is the bitmap index [199, 141], which we depict in Figure 2.5(b). It also maintains
a list of identifiers per lookup key, but in the form of bit vectors.2 The position of a 1-bit
represents the identifier. In our simplified example, key B maps to the bit vector 〈100001〉,
which corresponds to the set {0, 5}.
In our inverted index example, answering the query expression B ∨ (C ∧ D) translates to
retrieving the corresponding position lists LB = {0, 5}, LC = {2, 4, 5, 6}, LD = {2}, and
applying set operations on them: LB ∪ (LC ∩ LD) = {0, 2, 5}. Assuming the inverted index
maps keys to sorted arrays, the set operations involve merging the arrays. Decades of research
went into the question of how to perform these operations efficiently [103, 72, 18, 61, 15].
Similarly, the bitmap index evaluates the expression B ∨ (C ∧ D) by retrieving the bit
vectors BB = 〈100001〉, BC = 〈0010011〉, BD = 〈0010011〉, and then computing bitwise
BB | (BC & BD). As the bit vector size and number of operations increase, it becomes
important to choose an efficient evaluation algorithm [175, 201, 121]. Unlike tree and
hash indexes, which point directly into the base data, inverted and bitmap index lookups
scale linearly with the number of predicates in an expression, thereby posing an attractive
alternative for high-dimensional queries.

The isomorphic relationship of inverted and bitmap indexes allows us to treat them inter-
changeably in higher-level algorithmic reasoning [29]. In fact, there exist hybrid approaches

2The literature often uses the term “bitmap” to refer to a bit vector, i.e., a sequence of bits. We use the
term “bitmap” only in when referring to a “bitmap index,” a mapping from values to bit vectors.

CHAPTER 2. BACKGROUND 27

10 2 3 4 5 6 7 8 9

3

1

4

8

9

5

0

4

2

5

6

2

A B C D

(a) An inverted index.

0 1 1 0

1

10 2 3 4 5 6 7 8 9

0

0

1

1

0

1

2

3

4

5

0

1

0

0

0

0

0

1

0

1

0

0

1

0

0

A B C D

(b) A bitmap index.

Figure 2.5: Juxtaposition of inverted and bitmap indexes: two isomorphic data structures
which map lookup keys to identifier sets representing unique entries in the base data.

which combine both index types in a single data structure [38].

Currently, VAST implements its algorithms with bitmap indexes only. One reason is evolu-
tionary: we built an early prototype of VAST on top of a specific bitmap indexing library [200],
which we later replaced with our own abstractions. Another reason is technical: operations
from boolean algebra directly map to native CPU instructions, enabling a uniform algorithmic
framework for set intersection, union, and complement. In practice, bit vectors remain in
compressed form in memory, as we discuss in the next section, and bitwise operations do
not require decompression to perform set operations. In the future, we plan to investigate
adaptive and hybrid approaches, but a comparative study goes beyond the scope of this
thesis.

2.4.3 Space-Time Trade-off

Research on inverted and bitmap indexes strives for reducing the space requirements and
increasing speed—the space-time trade-off. Reducing space involves decreases the cardinality
or size, i.e., the number of distinct values (“columns”), or space of the identifier sets (“rows”).
At the same time, reduced space comes at the cost of time because the techniques induce
extra processing cycles during lookup. In the following, we present a unified discussion
of techniques which affect the space-time trade-off. Specifically, we explain binning, coding,
and compression. Before doing so, we introduce some common notation and terminology to
formalize the previously introduced concepts, which Table 2.3 summarizes.

2.4.3.1 Terminology

Let X be a finite domain of values representing the key space in index lookups. Without
loss of generality, we restrict X such that X ⊆ 2w for some constant w. An identifier set

CHAPTER 2. BACKGROUND 28

Notation Description

x ∈ X Value x from domain X
B Bit vector: sequence of 0s and 1s
|B| The number of 1s in B
B[i] The i-th bit of B
L ⊂ N+

0 Position list
|L| The number identifiers in L
W Inverted index
M Bitmap index
S Abstract identifier set: B or L
I Abstract index: W or M
|I| = N Index size: total values added
#I = C Index cardinality: distinct values
0 Identifier set with no identifiers
1 Identifier set with all identifiers
〈βk, . . . , β1〉 k-component base
〈xk, . . . , x1〉 Decomposed x according to β
Kβ = 〈Ik, . . . , I1〉 Multi-component index using β
EQ Equality query class
1RQ One-sided range query class
2RQ Two-sided range query class
RQ Range query class: 1RQ ∪ 2RQ

Notation Description

E Equality-encoded S
R Range-encoded S
I Interval-encoded S

Operation Description

A | B Bitwise OR
A & B Bitwise AND
A⊕B Bitwise XOR
¬A Bitwise NOT

A ∨ B Logical OR
A ∧ B Logical AND
A⊕B Logical XOR

A Logical NOT
A ∪B Union
A ∩B Intersection
A ∆ B Symmetric difference

A Complement

Table 2.3: Our notation to formally describe inverted and bitmap indexes.

S ⊂ N+
0 represents a finite set of identifiers which point to external base data (e.g., records,

tuples, documents, events). Each value x has associated with it one identifier α ∈ S, which
we denote by x(α) as needed. The representation of S can have two forms in our framework.
In the context of inverted indexes, S manifests as position list L, which simply contains
the integer values of S. In the context of bitmap indexes, S manifests as a bit vector B,
which is an ordered sequence of 0s and 1s. The size |S| reflects the number of identifiers
in S. For positions lists, size translates to the number of elements in the list, but for bit
vectors corresponds to the count (aka. Hamming weight, population count, or sideways sum),
i.e., the number of 1-bits. For example, the equivalent identifier sets B = 〈100101〉 and
L = {0, 3, 5} have both size |B| = |L| = 3. Let B[i] extract the i-th bit of a bit vector
B of n bits, where 0 ≤ i ≤ n. Then we can convert a bit vector into a position list by
L = {α | 0 ≤ α ≤ n ∧ B[α] = 1}. We define two special identifier sets: 0 represents the
empty identifier set and 1 the complete identifier set. In terms of bit vectors, they represent
a bit vector with all 0s and all 1s, respectively.

We define an inverted index W as a mapping from values to position lists, and a bitmap index
M as a mapping from values to bit vectors. That is, they both represent a mapping from
values to identifier sets. When the context does not require differentiation, we subsume them

CHAPTER 2. BACKGROUND 29

under index I that maps values to identifier sets. The index cardinality3 #I = C refers to
the number of distinct values in I, and the index size |I| = N to the total number of values
present in I.

The two basic primitives of an index I are adding new values and looking up existing values
under a logical predicate. Conceptually, adding a new value x(α) means the index adds α to
the identifier set of x and increases |I| by 1, but bumps #I only if x /∈ I beforehand. It is
possible to adds the same value x multiple times under different identifiers, i.e., the set of
all values in an index is given by {x(αi) | αi 6= αj ∧ 0 ≤ i 6= j < |I|}. After adding x for the
first time, x ∈ I holds true. A lookup produces an identifier set S describing all x ∈ I for
which a given query predicate matches. In particular, we distinguish the following classes of
predicates in accordance with the literature [40]:

EQ The class of equality queries concerns predicates involving operators to ◦ ∈ {=, 6=}.
The point lookup I ◦ x returns the identifier set S = {α | z(α) ◦ x ∧ z ∈ I}. Examples
of EQ-queries include I = 42 and I 6= 0.

1RQ The class of one-sided range queries describes inequality predicates with respect to the
total ordering of the value domain X. 1RQ-queries have the same format as EQ-queries
but use the operator set ◦ ∈ {<,≤,≥, >}. Examples of 1RQ-queries include I ≤ 42
and I > 0.

2RQ The class of to two-sided range queries brackets a value x ≤ I ≤ y where x ≤ y. A
lookup yields the identifier set S = {α | x ≤ z(α) ≤ y ∧ x ≤ y ∧ z ∈ I}. We can express
any 2RQ-query as a conjunction of two 1RQ-queries: x ≤ I ≤ y ≡ x ≤ I ∧ I ≤ y. An
example of a 2RQ-query includes 1900 ≤ I ≤ 2000.

RQ This class subsumes both 1RQ and 2RQ.

2.4.3.2 Binning

Binning reduces the index cardinality by grouping multiple values into a single one. It also
discretizes continuous values, such as time or floating-point numbers. A binning function
f : X → Z with |X| ≥ |Z| is a surjection, e.g., f : R→ Z with f(x) = bxc.
However, binning introduces false positives in the lookup process, which requires a candidate
check with the base data in order to fully resolve ambiguities. Choosing an apt binning
strategy depends on the value distribution and access patterns. Basic strategies include
equi-width binning to partition the value domain in equal-sized intervals, and equi-depth
binning strategy to group values such that each bin has the same sum of the frequencies of
occurrences of a value. More sophisticated algorithms to compute the bin boundaries can
outperform basic strategies by a factor of two in terms of candidate check time [162].

3Graham et al. [88] denote the cardinality of a set A by #A, which inspired us to adopt this notation.

CHAPTER 2. BACKGROUND 30

h(x)

Keys

Identifiers

Tree Hash Table Array

Base Data

Figure 2.6: Design choices to map keys to identifier sets. Value type, access patterns, and
index cardinality influence the choice of data structure (e.g., tree/trie, hash table, sorted
array).

A candidate check can easily dominate the entire query execution time, due to the material-
ization of the additional base data (high I/O costs) and extra post-processing. Therefore,
choosing an efficient binning strategy requires careful tuning and domain knowledge, or
advanced adaptive algorithms. A more robust method relies on constructing multiple indexes
in different resolutions [172], and then performing a lookup over multiple levels.

2.4.3.3 Coding

The coding scheme determines how an index incorporates new values (encoding) and looks
up existing ones (decoding). Two aspects of coding exist, one concerning the mapping of
values to identifier sets and the other the representation of the identifier sets themselves.

In general, mapping values to identifier sets requires an associative data structure. Figure 2.6
shows several exemplars: trees, hash tables, or arrays. Only trees and sorted arrays preserve
the order of values, which can prove useful when it comes to executing meta queries on keys
to select specific subsets of identifier sets, e.g., in range queries, when accessing all identifiers
with a common prefix, or in similarity queries.

In the following discussion, we only focus on sorted arrays to access identifier sets, because
they provide constant-time access by establishing a 1:1 relationship between array indices and
each x ∈ X. At first, this approach may seem naive because it becomes quickly prohibitive
for high index cardinalities, but binning and multi-component indexes (see below) render this
an advantageous approach, because it allows for ignoring the cost of identifier set retrieval
and supports all lookup operations due to the total ordering.

CHAPTER 2. BACKGROUND 31

0

1

2

3

4

5

6

7

8

9

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

(a) Equality.

0

1

2

3

4

5

6

7

8

9

R0 R1 R2 R3 R4 R5 R6 R7 R8

(b) Range.

0

1

2

3

4

5

6

7

8

9

I0 I1 I2 I3 I4

(c) Interval.

Figure 2.7: Illustrating how different coding schemes associate values with identifier sets for
C = 10: equality coding maintains one identifier set per value, range coding C − 1 identifier
sets representing a half-open range, and interval coding uses dC

2
e identifier sets covering

[x, x+ dC
2
− 1e]. We give give a concrete example in Figure 2.8.

To represent identifier sets, the literature distinguishes three main schemes, which we illustrate
in Figure 2.7:4

Equality Coding. This scheme associates each value with exactly one identifier set. The
index I consists of C identifier sets I = {E0, . . . , EC−1}. Encoding a value x(α) involves
appending α to Ex. EQ-queries take place in constant time, but RQ queries require
merging multiple identifier sets. The first row in Table 2.6 shows the lookup algorithms
for equality decoding.

Range Coding. This scheme associates each value with a range of identifier sets. The index
I consists of C − 1 identifier sets I = {R0, . . . ,RC−2}. Encoding a value x(α) involves
appending α to all Ri where i ≤ x. Without loss of generality, we can always assume
operator ≤, because the following identities allow for computing a lookup under the
remaining inequality operators [39]:

I < x ≡ I ≤ x− 1 (2.1)

I > x ≡ I ≤ x (2.2)

I ≥ x ≡ I ≤ x− 1 (2.3)

The second row in Table 2.6 shows the lookup algorithms for range decoding.

Interval Coding. This scheme splits the index into overlapping slices, each of which covers
half of the value space. The index I consists of dC

2
e identifier sets I = {I0, . . . , IdC2 e},

4Hybrid schemes further combine these schemes: equality-range, OREO, and equality-interval coding [40].

CHAPTER 2. BACKGROUND 32

2

1
3

Equality Range Interval

6

4
0
7
5

001

0
0

1
0

1
0

012

000

000
1

1
1

3

0

0
1

1
1

4

0

1
1

1
1

5

0

1
1

1
1

6

1

1
1111111
0000000
0000011

001

0
0

1
0

0
0

012

000

000
0

0
1

3

0

0
0

0
0

4

0

1
0

0
0

5

0

0
0

0
0

6

1

0
0

0
0

7

0

0
10000000
00000001
00000100

111

0
1

1
1

1
1

2-51-40-3

000

110
0

0
1

3-6

1

1
001 0
000 0
100 1

3

0
1
2

4
5
6
7

↵ x

Figure 2.8: Equality, range, and interval coding exemplified using bitmap indexes with
C = 8. Equality coding requires 8 identifier sets, range coding 7, and interval coding 4
identifier sets.

where Ix covers all values in the interval [x, x + m] with m = dC
2
− 1e.5 Encoding a

value x(α) therefore involves appending α to all identifier sets {I i | x ∈ [i, i+m]}. The
third row in Table 2.6 shows the lookup algorithms for interval decoding.

Figure 2.8 illustrates the coding schemes with bitmap index examples with C = 8. For the
equality-encoded bitmap index, the value 7(6) corresponds to a 1-bit in E7 at position 6. For
range encoding, the value 3(1) results in 1-bits in all bit vectors {Rz | 3 ≤ z} at position 1.
For interval coding, the value 0(5) has only a 1-bit in the bit vector for interval [0, 3], because
0 /∈ [z, z + 3] for all z > 0.

Optimality. Each coding scheme tailors its structure to a specific query class. Most
prominently, equality coding requires the least number of bit vector scans for EQ, whereas
range coding the least for 1RQ. This spawns the natural question “which scheme is optimal
for a specific query class?” In the following, we work with an existing notion of optimality
from the literature [39]. Let Time(S ′, C,Q) and Space(S ′, C,Q) denote the time and space
costs of a scheme for an index with cardinality C and query class Q. Time costs refer to the
number of identifier set accesses, and space costs to the number of identifier sets the encoding
requires. A coding scheme S is optimal with respect to a query class Q for a fixed cardinality
C, if there exists no other scheme S ′ such that:

1. Time(S ′, C,Q) ≤ Time(S, C,Q)

5There also exists a variation when C is odd [41].

CHAPTER 2. BACKGROUND 33

Coding
EQ Query
I = x

1RQ Query
I = x

2RQ Query
x ≤ I ≤ y

RQ Query
1RQ ∪ 2RQ

Equality 3 7 7 7

Range 3∗ 3 7 3

Interval 7† 3 3 3
∗ 3 iff C ≤ 5.
† 7 iff C ≥ 14.

Table 2.4: Established optimality results for coding schemes
and query classes [40]. Intuitively, a coding scheme is optimal
for a given index with cardinality C and query class if no
other scheme (of those compared) can dominate it with
respect to both space and time costs.

2. Space(S ′, C,Q) ≤ Space(S, C,Q)

3. at least one of inequality (1) or (2) is strict

We summarize established optimality results in Table 2.4. Multiple optimal schemes may
exist, where one strictly dominates the other in time or space, and the other dominates vice
versa.

2.4.3.4 Compression

While binning reduces the index cardinality, compression reduces the size of an index by
shrinking the space of the identifier sets. There exists a large body of research dealing with
the compression of position lists for inverted indexes [165, 120, 145]. Because we focus on
bitmap indexes in this thesis, we refer the interested reader to this literature.

Likewise, bit vector compression algorithms have received significant attention. We list
notable algorithms in Table 2.5. All shown algorithms operate on the basis of run-length
encoding (RLE), although there also exists a hybrid approach combining RLE with position
lists [38].

Compression renders bitmap indexes a viable data structure in practice. Previous work found
that inverted indexes occupy half the space of compressed bitmap indexes for some workloads,
and that bitmap indexes perform worse than inverted indexes at higher cardinalities [25].
However, newer compression methods [60, 76] compress twice as well, and attribute value
decomposition [39] provides an effective means to control the index cardinality. Bitmap indexes
also have the advantage that computing the complement merely involves flipping a bit, unlike
generating a new list of identifiers. While we see many point-wise comparisons [202, 60, 76, 93],
comprehensive and complete benchmarks of all known algorithms remain an open research
project.

CHAPTER 2. BACKGROUND 34

Algorithm Publication Patent-Free

BBC [10] 1995 7

WAH [201] 2004 7

COMPAX [76] 2010 7

CONCISE [52] 2010 3

WBC/EWAH [202, 121] 2010 3

PLWAH [60] 2010 7

DFWAH [164] 2011 3

PWAH [188] 2011 3

VLC [57, 65] 2011 3

VAL [92] 2014 3

Table 2.5: Enumeration of bit vector compression algorithms.

When we started the implementation of VAST, we could only choose between two algorithms,
EWAH [121] and CONCISE [52], because all other known algorithms at this time fell under
patent restrictions, preventing us from releasing our project as free open-source software. We
chose EWAH because it trades space for time: while exhibiting a slightly larger footprint, it
executes faster in certain conditions [93] because it can skip entire blocks of words. In the
future, we plan to assess the performance of other algorithms as well.

2.4.4 Composition

The techniques of binning, coding, and compression introduced in §2.4.3 apply to one
index instance. In particular, binning helps to reduce space consumption by reducing the
index cardinality, but its surjective nature introduces candidate checks. Multi-component
indexes [199, 39] represent an orthogonal technique to reduce the index cardinality, without
introducing the need for candidate checks. By splitting an index into multiple components,
each responsible for a piece of the value, the technique achieves an exponential reduction in
space by decreasing the size of the value domain by a multiplicative factor for each component.

More formally, a k-component base (or radix) β = 〈βk, . . . , β1〉 defines a decomposition
scheme for a domain with

∏k
i=1 βi distinct values. A base is well-defined if βi ≥ 2 for all

1 ≤ i ≤ k. We only consider well-defined bases and define the cardinality of β as |β| = k.6

Given a fixed base, we can decompose a value x into k components 〈xk, . . . , x1〉 as a linear
combination:7

x =
k∑
i=1

xiβi

6Because we only consider well-defined bases, the cardinality of a base equals the zero “norm.”
7Unlike previous work [39], we use the same dimensionality for coefficients and base vectors to avoid

off-by-one confusions.

CHAPTER 2. BACKGROUND 35

0 1

1
0

1
1
0

0
1

0
0
1

1 0

0 0 1

0
1

1
0
0

0
0

0
1
1

1
0

0
0
0

2 1 0

x1 = 2 = h0, 2i�
x2 = 3 = h1, 0i�
x3 = 5 = h1, 2i�
x4 = 4 = h1, 1i�
x5 = 1 = h0, 1i�
x6 = 0 = h0, 0i�

Equality Coding (=)

1

0
1

0
0
1

0

0
1 1

1
0

0
1
1

1
0

0
0

1 0

Range coding ()

Figure 2.9: Value decomposition according to base β = 〈2, 3〉, for equality and range coding.

where

xi =

⌊
x∏i−1
j=1 βj

⌋
mod βi

This decomposition scheme directly applies to the index structure as well: a k-component
index Kβ = 〈Ik, . . . , I1〉 consists of k indexes, where each Ii covers a total of βi values.
The per-component indexes can have varying coding, binning, and compression strategies
according to §2.4.3. A base is uniform if βi = βj for all i 6= j. A uniform base with βi = 2
for all 1 ≤ i ≤ k yields the bit-sliced index [199], because each xi can only take on values 0
and 1. We denote this special case by Θk = Kβ where |β| = k and βi = βj = 2 for all i 6= j.

Further, we define Φk = Kβ with
∏k

i=1 βi ≤ 2k as an index which supports up to 2k values.

As an example, the value 1337 decomposes into 〈1, 3, 3, 7〉 in base β = 〈10, 10, 10, 10〉, and 42
becomes 〈2, 10〉 in β = 〈16, 16〉. Non-uniform bases allow for a mixed radix representations, as
common in numeral systems for time and calendar dates. For example, a value of x = 443, 230
seconds decomposes into “5 days, 3 hours, 7 minutes, and 10 seconds,” which we can represent
as x = 〈5, 3, 7, 10〉 in base β = 〈365, 24, 60, 60〉. Figure 2.9 illustrates value decomposition
using bitmap indexes, for both equality and range coding according to the fixed base β = 〈2, 3〉.
Appending value x = 5, for example, requires first decomposing x into 〈1, 2〉β, and then
adding each xi to the i-th component of the index.

Choosing an apt base depends on workload distribution and query patterns. At one end of
the spectrum exists the time-optimal index, which corresponds to the single-component base
β = 〈C〉. For large values of C, this base may occupy an impractical amount of space. At the
other end of the spectrum exists the space-optimal bit-sliced index Θk with β = 〈2, . . . , 2〉
and k = log2C components. This index has a much smaller footprint, but each lookup
requires accessing O(logC) components. Approximative analysis of this spectrum shows

CHAPTER 2. BACKGROUND 36

that the optimal number of index components is two for the index with the best space-time
trade-off [39]. However, this analysis conducted over bitmap indexes does not factor in the
effect of bit vector compression, which may change the outcome.

Appending a value x to a multi-component index Kβ involves two steps: first, decompose x
according to β such that x = 〈xk, . . . , x1〉. Then append each xi to index component Ii for all
1 ≤ i ≤ k. Performing a lookup according to a given predicate requires a few more steps [40]:

1. Normalization. Before accessing the index, the normalization phase rewrites the pred-
icate in terms of interval queries. For example, the predicate Kβ ∈ {6, 19, 20, 21, 22, 35}
becomes (Kβ = 6) ∨ (19 ≤ Kβ ≤ 22) ∨ (Kβ = 35). After this step, we can
further normalize two-sided range queries into two one-sided range queries, e.g.,
(19 ≤ Kβ ≤ 22) ≡ (Kβ ≥ 19) ∧ (Kβ ≤ 22).

2. Decomposition. If the predicate includes a value constant, e.g., has the form Kβ ◦ x,
we decompose the value according to β. Thereafter, the query plan consists only of
lookups at the component-level. For example, K〈10,10〉 ≤ 85 is equivalent to I2I1 ≤ 810510

and then becomes (I2 ≤ 7) ∨ ((I2 = 8) ∧ (I1 ≤ 5)). The algorithm which performs this
decomposition depends on the relational operator in the predicate. For equality queries
we proceed as follows:

EQ(i, x) =
i∧

j=1

(Ij = xj) (2.4)

This allows us to compute Kβ = x as EQ(|β|, x), and Kβ 6= x as EQ(|β|, x). For
one-sided range queries, decomposition depends both on the query class and the coding
scheme. The algorithm less-than-or-equal (LE)8 implements the multi-component range
lookup as follows:

LE(i, x) =

(Ii ≤ xi − 1) ∨ (θi ∧ LE(i− 1, x)) i > 1, xi > 0

θi ∧ LE(i− 1, x) i > 1, xi = 0

(Ii ≤ xi − 1) ∨ LE(i− 1, x) i > 1, xi = βi − 1

Ii ≤ xi i = 1

(2.5)

The extra parameter θi depends on the coding scheme and means either Ii = xi or Ii ≤ xi.
This yieldsKβ ≤ x = LE(|β|, x), in conjunction with Equation 2.1 through Equation 2.4,
a generic lookup algorithm for all relational operators {<,≤,≥, >}.
A small optimization can take place when all components of a value except the most
significant digit have their maximum value, i.e., when xi = βi − 1 for all 1 ≤ i < k. For

8Algorithm LE with range coding is equivalent to algorithm RangeEval-Opt, which we showcase
in Appendix A.

CHAPTER 2. BACKGROUND 37

example, Kβ ≤ 799 with 〈10, 10, 10〉 simplifies to I3 ≤ 7, which avoids two extra index
component lookups I2 ≤ 9 and I1 ≤ 9.

In summary, this yields the multi-component lookup algorithm ` to lookup a value x in
a multi-component index Kβ under a relational operator ◦:

`(Kβ, ◦, x) =

EQ(|β|, x) ◦ ∈ {=}
EQ(|β|, x) ◦ ∈ {6=}
LE(|β|, x) ◦ ∈ {≤}
LE(|β|, x) ◦ ∈ {>}
LE(|β|, x− 1) ◦ ∈ {<} ∧ x > 0

LE(|β|, x− 1) ◦ ∈ {≥} ∧ x > 0

0 (◦ ∈ {<} ∧ x = 0) ∨ (◦ ∈ {>} ∧ x = C − 1)

1 (◦ ∈ {≥} ∧ x = 0) ∨ (◦ ∈ {≤} ∧ x = C − 1)

(2.6)

3. Decoding. Finally, each component-level predicate translates into operations on
encoded identifier sets. For example, (I3 ≤ 7) becomes E8

1 ∨ E9
1 under the assumption

of equality coding. The decoding step relies on the algorithms which we summarize
in Table 2.6.

CHAPTER 2. BACKGROUND 38
C

o
d

in
g

E
Q

Q
u

er
y

I
=
x

1R
Q

Q
u

er
y

I
≤
x

2R
Q

Q
u

er
y

x
≤
I
≤
y

E
q
u

a
li

ty
Ex

 x ⋃ i=
0

Ei
x
≤
dC 2
e

C
−

1 ⋃
i=
x

+
1

Ei
ot
h
er
w
is
e

 y ⋃ i=
x

Ei
y
−
x

+
1
≤
dC 2
e

x
−

1 ⋃ i=
0

Ei
∨

C
−

1 ⋃
i=
y
+

1

Ei
ot
h
er
w
is
e

R
a
n

g
e

{ Rx
⊕
R
x
−

1
x
<
C
−

1

R
C
−

2
x

=
C
−

1

{ Rx
x
<
C
−

1

1
x

=
C
−

1

 R
x

x
=
y

=
0

R
x
⊕
R
x
−

1
0
<
x

=
y
<
C
−

1

R
C
−

2
x

=
y

=
C
−

1

R
x
−

1
0
<
x
<
C
−

1
,

y
=
C
−

1
R
y

x
=

0,
0
≤
y
<
C
−

1

R
y
⊕
R
x
−

1
ot
h
er
w
is
e

In
te

rv
a
l

 I0
x

=
0,
m

=
0

I0
x

=
1,
C

=
2

I1
x

=
1,
C

=
3

Ix
∧
Ix

+
1

x
<
m

Ix
∧
I0

x
=
m
,m

>
0

Ix
−
m
∧
Ix
−
m
−

1
m
<
x
<
C
−

1
,m

>
0

Id
C 2
e−

1
∨
I0

x
=
C
−

1

 I0
∧
Ix

+
1

x
<
m

I0
x
<
m

I0
∨
Ix
−
m

m
<
x
<
C
−

1

 Ix
∧
Iy

+
1

y
<
m

Ix
∧
I0

y
=
m

Ix
∧
Iy
−
m

y
<
x

+
m
,x
<
m

Ix
y

=
x

+
m
,x
<
m

Ix
∨
Iy
−
m

y
>
x

+
m
,x
<
m

Ix
∨
Ix

+
1

y
=
x

+
m

+
1
,x

=
m

Iy
−

2
∧
Ix
−
m
−

1
x
≥
m

T
a
b

le
2
.6

:
L

o
ok

u
p

al
go

ri
th

m
s

fo
r

eq
u

al
it

y,
ra

n
ge

,
an

d
in

te
rv

al
co

d
in

g
in

q
u

er
y

cl
as

se
s

E
Q

,
1R

Q
,

an
d

2R
Q

[4
0]

.
T

h
e

n
ot

at
io

n
co

n
fo

rm
s

to
§2

.4
.3

,
w

it
h

th
e

ad
d

it
io

n
of

1
re

p
re

se
n
ti

n
g

th
e

p
os

it
io

n
li

st
w

it
h

al
l

id
en

ti
fi

er
s

or
b

it
ve

ct
or

w
it

h
al

l
1s

.

39

Chapter 3

Architecture

Il semble que la perfection soit atteinte non
quand il n’y a plus rien à ajouter, mais quand il
n’y a plus rien à retrancher.

Antoine de Saint-Exupéry

Building a network forensics system which operates efficiently at scale involves meeting
fundamental system challenges with adequate design choices. The major challenge lies in
finding appropriate abstractions that fit the problem domain. In this chapter we present the
architecture of VAST, our system for network forensics at scale. After having iterated through
several prototypes, the design converged to a stable point. Throughout the discussion, we
report our experiences and lessons learned from these iterations. We begin with a presentation
of the rich-typed data model and query language in §3.1. Thereafter, we introduce key system
components in §3.2 and show how to deploy them in §3.3.

3.1 Data Model

Since analyst time is a costly resource, maximizing productivity becomes a chief economic
concern. When analysts can reason within their domain, without having to translate their
thought processes to a narrow interface, they perform fewer context switches and operate
more efficiently. In this light, we equip VAST with a data model rich in types and operations,
geared towards the domain-specific idioms and workflows. In §3.1.1 we introduce the type
system, and in §3.1.2 we explain the query language.

3.1.1 Type System

VAST’s data model consists of types, which define the physical interpretation of data. A
type’s signature includes a type name and type attributes. A value combines a type with a

CHAPTER 3. ARCHITECTURE 40

TYPE

record

vector set

table

KEY VALUE

TYPETYPE

field 1

TYPE

field n

TYPE

…

container types

basic types

compound types

recursive types

bool

int

count

real

duration

time

string

pattern

address

subnet

port

none

Figure 3.1: The type system of VAST, which consists of basic and recursive types. The
latter split into container and compound types.

data instance. An event is a value with additional metadata, such as a timestamp, a unique
identifier, and arbitrary key-value pairs. Figure 3.1 illustrates the type system schematically:
basic types represent a single value (booleans, signed/unsigned integers, floating-point, times
and durations, strings, IPv4 and IPv6 addresses, subnets, ports), container types hold multiple
values of the same type (vectors, sets, tables), and compound types act as heterogeneous
structures (records), where each named field holds a value of an arbitrary type. A schema
describes the access structure of one or more types. Two types are equal if and only if
they have the same signature. Two types are congruent if they have the same physical
representation. Equality implies congruence.

As an example, consider the basic type T = count representing a 64-bit unsigned integer.
Built-in types have no name. We can create a copy U = T with name ν(U) = bytes,
indicating that this type represents a number of bytes. The signatures of T and U differ
since ν(T) 6= ν(U). Hence they are no longer equal but still congruent. Let x be a value with
type U and data 42. The value x becomes an event once we attach a timestamp, an ID, plus
optional metadata such as 〈source = ids, group = dmz〉.

3.1.2 Query Language

VAST’s query language supports filtering data according to boolean algebra. Table 3.1 lists
the key syntactic elements. A query expression consists of one or more predicates connected

CHAPTER 3. ARCHITECTURE 41

Boolean Expression Symbol

Conjunction E1 && E2

Disjunction E1 || E2

Negation ! E
Group (E)
Predicate LHS ◦ RHS
Relational Operator ◦ Symbol

Arithmetic <, <=, ==, !=, >=, >

Membership in, !in
Match ∼, !∼

Extractor (LHS/RHS) Semantics

:T All values having type T

x.y.z Value according to schema
&key Event metadata for key

Types Examples

bool T, F
int +42, -42
count 42

real -4.2

duration 10ms, 8mins, 1h
time 2014-09-25

string "foo", "b\x2Ar"
addr 10.0.0.1, ::1
subnet 192.168.0.0/24

port 80/tcp, 53/udp, 8/icmp
vector<T> [x, y, z]

set<T> {x, z, z}

table<T,U> {(1,"foo"), (2,"bar")}

Table 3.1: VAST’s query language.

with boolean operators AND/OR/NOT. A predicate is a boolean function over a value in the
form LHS ◦ RHS, where ◦ represents a binary relational operator. VAST supports arithmetic
(<,<=,==,!=,>=,>), membership (in, !in), and match (∼, !∼) operators. Each operator has
a complement, e.g., < pairs with >=. At least one side of the operator must consist of an
extractor, which specifies the lookup aspect for a value, as follows.

Schema extractor. This extractor enables named access of types in the schema. The
operator “.” dereferences record fields, similar to structs in C. For example, in the
predicate http.method == "POST", http.method is a schema extractor, and "POST" is
the value of type string to match in the record type with name http and field method.

Met extractor. This extractor refers to event metadata. The syntax uses &key to reference
a metadata key. There exist some predefined keys for mandatory metadata, such as
&time for the event timestamp. For example, the predicate &time > now - 1d selects
all events within the last 24 hours.

Type extractor. This extractor leverages the strict typing in VAST to perform queries
over all values having a given type. For example, the predicate :addr in 10.0.0.0/8

applies to all IP addresses (any value or record field of type addr). The extractor :T
allows any combination of built-in types or type names for T.

CHAPTER 3. ARCHITECTURE 42

Archive

Index

Import Export

10.0.0.1 53/udp
10.0.0.2 80/tcp

Network Intrusion
Detection System

Instrumented
Applications

System Logs
Analyst

Investigator

Operator

Figure 3.2: High-level system architecture of VAST showing the key components: import,
archive, index, and export.

importer

archive

index

exporter

node

source sink

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

(a) Single-machine deployment. (b) Cluster deployment.

Figure 3.3: VAST deployment styles. In a single-machine deployment, all actors run within
node. In a cluster deployment, multiple peering nodes form a shared-nothing system.

3.2 Components

From a high-level view, VAST consists of four key components, which we show in Figure 3.2:
(i) import to parse data from various sources into events and assign them globally unique
identifiers, (ii) archive to compress and store events with key-value access for retrieval,
(iii) index to accelerate queries by quickly identifying the set of events to extract from
the archive, and (iv) export to spawn queries and relay results to sinks of various output
formats.

We model each component abstractly as a set of actors (see §2.3.1), which can execute all

CHAPTER 3. ARCHITECTURE 43

10.0.0.1 53/udp
10.0.0.2 80/tcp
…

importer

archive

index

source

type 10.0.0.1 53/udpmeta
type 10.0.0.2 80/tcpmeta

10.0.0.2 80/tcp

compress
batch

assign IDs

generate
event batch

append data
to bitmap index

10.0.0.1 53/udp

type

Figure 3.4: Event ingestion overview. source generates batches of events and relays them
to importer. There, the events receive unique IDs before importer forwards them to
archive and index.

within the same process, across separate processes on the same host, or on different machines.
Unless we explicitly mention process boundaries, we assume that actors run within the same
process. The fundamental actor in VAST is node, which acts as a container for other actors.
Typically, a node maps to a single process. nodes can peer to form a cluster, and then must
achieve consensus over global state. VAST uses Raft [142] as its consensus algorithm, with
a key-value interface to the global state state—akin to etcd [71]. We refer to this globally
replicated state as metastore. Each node has access to its own metastore instance which
performs the fault-tolerant distribution of values. When VAST runs in a cluster deployment,
the system exhibits a shared-nothing architecture [132], where each node constitutes a fully
independent system plus the metastore. In Figure 3.3 we show the two common deployment
styles: single-machine and cluster.

Next, we present the design of the four key components in more detail. We describe in §3.2.1
how events enter the system and receive a unique ID. In §3.2.2 we discuss how archive
stores and serves events, and in §3.2.3 how index processes them. In §3.2.4 we describe the
event retrieval in more detail.

3.2.1 Import

The import component handles data ingestion. Various types of sources parse data into
events. Once a source has completed a batch of events, it sends it to importer, where
each event receives a unique identifier. Thereafter, importer relays the batch to archive
and index. Figure 3.4 illustrates this process. Two notable aspects of the import process
concern generating events and identifiers.

CHAPTER 3. ARCHITECTURE 44

3.2.1.1 Batch Generation

A temporal or spatial condition can trigger the generation of a batch of events. For example, a
source could send away its events once a second to ensure that they arrive at importer with
at most a second delay. This works well for sources with very low event rates. Conversely,
sources that exhibit a high event rate could cap the batch size (e.g., at 100 K events) to
avoid stressing the I/O subsystem with overly large messages causing bufferbloat [114, 84].

To accommodate both low-latency and high-throughput requirements, we can combine
temporal and spatial mechanisms: when event rates remain low enough, source generates a
batch once per unit time. When the number of events per unit time reaches a configured
upper bound, source sends the current batch regardless of the time constraint.

3.2.1.2 ID Generation

Each event represents a unique description of activity which analysts need to be able to
unambiguously reference during forensic investigations. To this end, an event requires a
unique identifier (ID) as metadata independent of its value. The event ID also establishes a
link between the archive and index component: an index lookup yields a set of IDs, each of
which identifies a single event in the archive. Given this scenario, we impose the following
requirements on ID generation:

64-bit. To represent a sufficiently large number of events, we should use a pool of IDs which
will not exhaust in any foreseeable future. A 32-bit ID space only yields 4 B events,
which large sites easily produce within a day. Therefore, we choose a pool with an
effective size of 64 bits. At the same time, we should not utilize a larger pool, because
modern processors can efficiently operate on 64-bit integers and store them compactly
without resorting to compound structures.

Monotonic. The indexes require monotone IDs, because they are append-only data struc-
tures which internally maintain compressed identifier sets (see §2.4.3). Consequently,
they cannot efficiently support appending a value with an ID smaller than the previously
inserted value. ID generation should therefore be monotonic.

Distributed. The ID generation should both support single-machine and cluster deployments.
To support decentralized ID generation, some systems partition the ID into several
pieces. For example, Twitter’s Snowflake [111] partitions a 64-bit ID into 3 pieces: a
42-bit timestamp, a 10-bit machine identifier, and a 12-bit sequence number. However,
this scheme encodes topology information into the IDs. What happens, if there ever
exist more than 1024 ID-generating machines in the system? Why waste 9 bits when
there exists only one machine? To avoid topology-related pitfalls, we should not encode
deployment assumptions into the ID space.

CHAPTER 3. ARCHITECTURE 45

Precondition:
Ei: Event i in a batch received from a source.

1 handler relay(E0, . . . , EN−1)
2 [o, n)← identify(N) . Obtain N new events (see Algorithm 2).
3 for i = 0 to n− o do
4 id(Ei)← o+ i . Assign IDs to events.
5 end for
6 send(archive, E0, . . . , En−o−1) . Send the first n− o events to archive.
7 send(index, E0, . . . , En−o−1) . Send the first n− o events to index.
8 if n− o < N then
9 relay(En−o, . . . , EN−1) . Recurse when having received insufficient IDs.

10 end if
11 end handler

Algorithm 1: Assignment of IDs when importer receives a new batch of events E0, . . . , EN−1

from a source.

The monotonicity requirement precludes approaches involving randomness, such as in a
universally unique identifier (UUID) [117]. Moreover, any random ID generation algorithm
in a space of N IDs experiences collisions after approximately

√
N IDs due to the birthday

paradox. In combination with the 64-bit requirement, this would degenerate the effective
size of the ID space from 264 to 232, and therefore not yield enough IDs. Instead, we simply
choose a 64-bit counter for IDs. The first valid ID starts at 0 and the last ends at 264 − 2.
The ID 264 − 1 represents the invalid (default) ID. To represent contiguous sequences of IDs,
we use half-open ranges [α0, α1), [α1, α2), . . ., where αj − αi with i < j represents the number
of IDs in the respective range. To support distributed ID generation, our algorithm relies
only on a single global counter in the metastore. Requesting a range of N IDs translates to
incrementing this counter by N , which returns a pair with the old and new counter value
[o, n) denoting the allocated half-open range with n− o = N IDs.

We describe the concrete procedure in Algorithm 1, which explains how importer receives a
batch of events E0, . . . , EN−1, assigns IDs to them, and then forwards them to archive and
index. Upon receiving N new events, importer asks a helper actor identifier for N new
IDs (line 2). We describe how identifier handles this request shortly. The response [o, n)
to this request represents the range of new IDs which importer assigns to the first n− o
events (line 4). importer then forwards these events to both archive and index (line 6–7).
If n−o = N , the algorithm terminates. If n−o < N , the algorithm recurses for the remaining
N − (n− o)− 1 events (line 9).

In Algorithm 2 we describe how identifier, a helper actor of importer that interacts
with the metastore, handles a request for N new IDs. To avoid high latencies from frequent

CHAPTER 3. ARCHITECTURE 46

Precondition:
Ri = [li, ri): a range of IDs, where |Ri| = ri − li represents the number of IDs in Ri.
R = 〈R0, . . . , Rm−1〉: a queue of m ID ranges.
B: The batch size, i.e., number of IDs to request from the metastore.
F : The factor 0 < F < 1 indicating when to replenish.
T : The timestamp of the last replenishment.
D↑: The duration before increasing B
D↓: The duration after decreasing B
N : The number of requested IDs.

1 handler identify(N)
2 if N > |R0| then N ← |R0| . Do not hand out more IDs than in the front range.
3 respond(l0, l0 +N) . Return IDs back to sender.
4 l0 ← l0 +N
5 if l0 = r0 then R← R \R0 . Remove (exhausted) front range from queue.
6 if

∑m−1
i=0 |Ri| < F ·B then . Replenish when running low of IDs.

7 if now− T < D↑ then B ← 2B
8 else if now− T > D↓ then B ← B − 0.1B
9 Rm ← replenish(B) . Get B new ID range from metastore.

10 R← R ∪Rm . Add range to back of the queue.
11 T ← now
12 end if
13 end handler

Algorithm 2: identifier serving requests for IDs. All variables except N denote persistent
state variables across handler invocations. After serving a request (line 3), identifier
replenishes its local pool of IDs if it runs below a certain fraction F of its batch size
IDs (line 6).

interaction with the meta store, identifier keeps a local cache of IDs and only replenishes
it when running low of IDs. To find the right cache size, the algorithm operates adaptively
(line 7–8): it doubles the cache size when replenishing twice within a fixed time interval D↑,
and decreases the cache size when a longer time interval has passed D↓.

This algorithm supports both low-latency and high-throuput ID allocation due to the direct
communication between importer and identifier, the local ID cache at identifier, and
the adaptive calibration to a dynamic number of IDs that is a function of the event rate.

3.2.2 Archive

The archive holds a full copy of the raw data in compressed form. It acts as a key-value store
which maps event IDs to events. During data ingestion, importer relays batches of events

CHAPTER 3. ARCHITECTURE 47

archive

compress
batch of
events

importer

segment 0

segment 1

segment 2

segment 3

append to current segment

2

receive events
from IMPORTER

1

3

LRU
cache

Figure 3.5: Event ingestion at the archive. When archive receives a batch of events from
importer, it compresses the batch and appends it to the current segment.

to archive (see Figure 3.4), and for queries archive answers lookups for specific IDs with
the corresponding events (see §3.2.4.1).

To avoid frequent I/O operations for small amounts of data, archive internally groups
batches of events in compressed, fixed-size sequences (by default 128 MB) sorted by event ID.
We term these sequences segments. When a batch of events arrives, archive compresses
the batch and appends to the current segment. Once the segment reaches its maximum
size, archive writes it to the filesystem and hands it over to an in-memory least-recently-
used (LRU) cache. We illustrate this process in Figure 3.5 archive performs I/O at the
granularity of segments, as opposed to more fine-grained units like batches or individual
events. The rationale for this design is two-fold: first, for a common storage architecture
based on spinning disks, we want to favor sequential I/O over significantly more expensive
seeks. Second, aggregating batches into segments reduces the fragmentation and overall size
of the associative data structure which maps event IDs to events, as we describe next.

To map events to segments in a space-efficient way, we devised a range map data structure.
A range map acts as an associative array with ranges as keys that additionally coalesces
adjacent key ranges if and only if they have equal values. Consider the following example
which illustrates how to add entries to a range map. Assume that events arrive in batches
Bj
i = [i, j) where i denotes the ID of the first and j − 1 the ID of the last event in the batch.

Further, assume that a segment reaches its maximum size after 30 events. After the batches
B10

0 , B25
10 , and B40

25 arrive at archive, the segment consists of S = 〈B10
0 , B

25
10〉, but not B40

25 as
it would exceed the maximum segment size. archive records the segment in the range map
under the entry [0, 25)→ S and moves S into the LRU cache. Thereafter, archive starts a
new segment S ′ = 〈B40

25〉 and waits until further events to arrive. In practice, the maximum
segment size exceeds the batch size significantly.

archive compresses each batch in a segment. To determine which compression algorithm
works best in this scenario, we present a comparative benchmark in §5.6.1. When archive
receives a request for a specific block, it looks up the corresponding segment in the range

CHAPTER 3. ARCHITECTURE 48

map. If the segment does not exist in the LRU cache, archive loads it from the filesystem
and inserts into the cache. Finally, archive delivers the batch in which the request event ID
exists.

3.2.3 Index

The index accelerates search and thereby represents the cornerstone technology to enable
interactive queries over large-scale data sets. We present an architecture which simultaneously
supports integrating new events while answering queries. Moreover, we show how our design
efficiently supports the inherently iterative workflow of network forensics.

The index transposes events from sequential values into columnar structures, while keeping
a full copy of the events in the archive. This design contrasts with traditional column-
stores [176, 133], which also dematerialize each event during ingestion and materialize it
again later at query time. VAST opts for a sequential archive layout because it reflects the
natural form of the data, allowing for easier sharing with other applications and simpler
storage. In the future, we may consider switching to a more involved transposition scheme of
the base data in combination with special-purpose compression schemes [78].

A scalable design supports breaking up data and compute into smaller, composable pieces.
Therefore, the index consists of horizontal partitions, each of which hold a fixed number of
events. We found that a partition size of order 1–10 M events works well in practice, which
confirms previously established results [181]. In future work, we plan to perform an extensive
analysis of the effect of partition sizes, and also how partition consolidation and merging can
improve performance. To identify the set of relevant partitions during querying, there exists
a separate meta index. Winnowing down the set of partitions to inspect is called partition
pruning, and all major database systems support this feature. This entails a two-stage the
lookup process: first find the set of qualifying partitions, then the set of qualifying events
within each relevant partition. Since not all partitions may fit in memory at the same time,
a scheduler takes care of swapping them in and out according to its schedule derived from
the query expression. Figure 3.6 shows the key components of the index and the partition
structure.

We first describe how to add new events in §3.2.3.1, followed by explaining how to perform
lookups in §3.2.3.2. Thereafter, we sketch the meta index in §3.2.3.3.

3.2.3.1 Construction

Integrating new events must not only occur efficiently, but also asynchronously and in parallel
while serving queries. To this end, we distinguish two types of partitions: active and passive
partitions. Both respond to lookups, but only an active partition can receive new events.
After having reached its maximum number of events, an active partition becomes passive and
thereafter immutable. The index maintains exactly one active partition at a time. In an
earlier prototype of VAST, we experimented with load-balancing events over multiple active

CHAPTER 3. ARCHITECTURE 49

conn

10.0.0.2 53/udp 8.8.4.4 53/udp “dns”

indexer

partition

index

partition partition

meta index

Figure 3.6: Index architecture. The index consists of multiple horizontal partitions
which accommodate a disjoint piece of the event data. Inside a partition, there exists one
indexer per event type, and in addition records have one helper actor per field (here: conn

has 5 fields). The meta index helps during lookup with finding the relevant set of partitions,
to which index then forwards the query expression.

partitions, but our measurements showed that this approach does not improve performance,
because each partition itself offers enough potential concurrency to sufficiently parallelize
the construction of indexes. That is, a partition internally spawns enough actors that the
runtime always fully utilizes the available hardware concurrency of the machine.

When new event batches arrive, index relays them to both the meta index and the currently
active partition. We defer the discussion of meta index details to §3.2.3.3 and now only
focus on the construction of bitmap indexes inside a partition. There, each event type has
its own indexer, which contains bitmap indexes to store the event details. For recursive
record types, each indexer maintains one helper actor per field, as we illustrate in Figure 3.6
for the conn event. In comparison to a relational database, indexers represent concurrent
columns of a table.

CHAPTER 3. ARCHITECTURE 50

partition

index

partition partition

meta index

conn

indexer

receive query
1

:addr in 10.0.0.0/8
&&

:port == 80/tcp

identify PARTITIONs
via meta index lookup

2

forward query
to selected
PARTITION(s)

3

:addr in 10.0.0.0/8

:port == 80/tcp

decompose query into
predicates and relayeach
to relevant INDEXER(s)

4

retrieve bit vector
representing result

5

combine bit vectors
according to query

6

relay new hits
back to INDEX

7

relay hits
to client

8
:addr in 10.0.0.0/8

&&
:port == 80/tcp

Figure 3.7: Index lookup. When index receives a query, e.g., :addr in 10.0.0/8 &&

:port == 80/tcp, it identifies the relevant partitions to forward it to. Each partition
deconstructs the expression into its predicates and forwards them to the indexers which can
process the predicate. The indexers performs the actual bitmap index lookup and return a
bit vector to partition, which evaluates the expression for each bit vector and relays new
hits back to index, which in turn forwards them back to the client who has requested the
lookup.

In fact, partition relays a batch of events concurrently to all indexers, each of which
only works on the subset matching its type. The copy-on-write message passing semantics
of the actor model implementation makes this an efficient operation (see §2.3.1), because
sending immutable messages to multiple receivers does not copy the message. This is a
crucial property for data-intensive applications that seek a high degree of concurrency. It
also resembles GPU programming: we make the data “globally” available and each execution
context only operates on its relevant subset, thereby avoiding extra preprocessing and ensuring
that the data exists in memory exactly once.

3.2.3.2 Lookup

The lookup process takes as input a query expression and produces as output a bit vector
representing the event IDs of index hits. When index receives the query expression from a
client in the form of an abstract syntax tree (AST), it performs the following steps:

1. Look up the meta index to identify the set of relevant partitions (see §3.2.3.3).

2. Relay the expression to each relevant partition.

CHAPTER 3. ARCHITECTURE 51

3. Receive arriving hits from partitions and forward them to the client.

When partition receives the query expression from index, it deconstructs the AST into
predicates. The type of the predicate determines how to dispatch it further to one or more
indexers. Consider an example query consisting of two predicates :port == 53/udp &&

foo > 42. partition sends the first predicate to all indexers that manage a value of type
port, and the second predicate to the single indexer responsible for the event of type foo

= count.

When an indexer receives a predicate and applies it to the contained bitmap index, it
responds with the bit vector representing the matching index hits. partition accumulates
all hits and re-evaluates the AST as it sees fit. When an evaluation triggers a change in
the result for the AST, partition relays the delta upstream to index, which ultimately
forwards it to the client.

The entire lookup operates asynchronously, incrementally, and in parallel: all loaded passive
partitions process the query at the same time and send back to index only the incremental
delta of new hits since the last AST evaluation. index unconditionally relays new hits from
each partition back to the client. This results in a continuous stream of hits, allowing the
client to extract results from archive in a pipelined and asynchronous fashion.

To accelerate lookups and provide a truly interactive experience, partition maintains a
predicate cache. This structure enables flexible recombination of predicates from already
answered lookups. Moreover, it ensures efficient incremental expression refinement, i.e., when
adding m new predicates to a previously answered expression of n predicates, looking up the
hits for the new expressions only requires time O(m). To illustrate this concept, consider the
following query expressions and predicates, which we visualize in Figure 3.8:

Q1 = A ∧ B
Q2 = A ∧ C
Q3 = (A ∧ B) ∨ (C ∧ D)
Q4 = (B ∧ C) ∨ D

Assume that a partition first receives predicate Q1, consisting of the two predicates A
and B. Upon receiving Q2, partition must only retrieve C and evaluate the AST. After
answering Q3, partition can answer Q4 directly from the cache.

3.2.3.3 Meta Index

When index receives a query, it first determines the set of relevant partitions by consulting
the meta index. This index has different requirements than the event indexes within a
partition, where each insert operation references a distinct event. For the meta index, each
insert operation references the same partition until the index rotates the active partition.
Furthermore, the meta index always resides in memory. To better understand the space

CHAPTER 3. ARCHITECTURE 52

A

&&

B A

&&

C A

&&

B

||

C

&&

D B

&&

C

||

D

&&

A

&&

B

||

C

&&

D

&& ||

Q1 = A ^B Q2 = A ^ C Q3 = (A ^B) _ (C ^D) Q4 = (B ^ C) _D

Figure 3.8: Predicate cache at a partition. When adding m new predicates to a previously
answered expression of n predicates, looking up the hits for the new expressions only requires
time O(m).

contraints, consider this example. By default, a partition has a capacity of 1 M events.
Assuming that one index instance can accommodate 10 B events with a given hardware
setup, the meta index contains 10 K entries. The amount of budgeted memory for the meta
index places an upper bound on how big a single entry can grow. With a 1 GB memory
budget for the entire meta indexes, no entry can grow beyond 100 KB.

In the following, we outline the different aspects of an entry in the meta index.

Timestamp. Many queries restrict the search to a specific point or window in time. For
example, the predicate &time > now - 1h filters all events within the last hour. We
track the window of all events within a partition by keeping track of the first and last
event timestamp.

Type. When a query includes a schema or type extractor, we want to be able to tell whether
a partition contains events where this schema applies or whether it contains events of the
given type. For example, given an event of type foo = record{i: int, p: port} and

CHAPTER 3. ARCHITECTURE 53

Type Index

bool Two bits
int, count, real Tree & binning (see §2.4.3)
duration Tree & binning (see §2.4.3)
time Intervals
string Tokenization (see §4.2.5) & Bloom filter
addr, subnet Radix tree
port Bit vector
vector[T], set[T] Recursive over T

Table 3.2: Potential data structures for meta indexes over event data.

query foo.i == 42 || :port == 53/udp, the meta index lookup would tell whether
a partition contains an event where the schema extractor foo.i and the type extractor
:port applies. To this end, a meta index maintains a set of distinct types.

Metadata. In addition to &time, an event can include other key-value metadata, e.g.,
&source = "dmz" to highlight where the event came from. In practice, the number
of unique values does not grow very large, and we can simply store their hash digests.
When a key contains a value with higher cardinality (e.g., an IP address value, as in
&sensor = 10.1.1.42), we can employ probabilistic data structures to summarize the
set of associated values, such as Bloom filters [26]. This restricts the lookup operation
to membership tests, which we deem acceptable for event metadata, since they often
represent opaque tags. These data structure can generate false positives during lookups,
which would result in loading a partition that does not contain events with the looked up
meta data. This procedure only increases resource consumption (and perhaps latency),
but does not affect correctness of the query result.

For example, if we restrict the size of a Bloomfilter to m = 10,000 bits and are willing
to tolerate a false positive probability of φ = 0.01, then we can compute its capacity κ,
(i.e., the maximum number of elements the Bloom filter supports while maintaining φ
during lookup) as follows:1

κ =

⌊
− m

lnφ
(ln 2)2

⌋
= 1,043

Values. The previous three aspects concern event metadata. When receiving a query such
as :addr in 10.0.0.0/8, we would like to not only figure out whether the partition
includes an event with type addr, but also whether there exists an address value in
the given subnet. Since each type comes with type-specific query operations, the
corresponding index must support them as well. For example, numeric types support

1This assumes that we choose the optimal number of hash functions k∗ = m
n ln 2.

CHAPTER 3. ARCHITECTURE 54

inequality search, unlike addresses and subnets, which instead require top-k prefix
search. Table 3.2 lists appropriate candidate data structure for each type.

For bool, two bits suffice: one to capture the presence of T, and one to capture the
presence of F. For arithmetic types (int, count, real, duration), trees keep an ordering
on the values, and binning (see §2.4.3) helps to control the value cardinality. For time,
an interval representing the minimum and maximum point int time encountered works
well. For string, tokenization (see §4.2.5) and Bloom filters can prove a good fit. For
addr and port, radix trees support top-k prefix search. For port, a bit vector efficiently
captures the presence of all 65,636 ports.

VAST currently only supports indexes over event metadata; we defer the implementation
of value-centric meta indexes to future work. A major challenge concerns sustaining
high insertion rates for tree indexes, which we need for types supporting range queries.

3.2.4 Export

The export component implements lookup and retrieval of events, and in that sense acts as
the dual to the import component. VAST spawns one exporter per query that acts as
the liaison between archive and index for historical queries, or as the receiver of a stream
of events for continuous queries. An exporter sends its result to sinks, which perform
sink-specific operations on the event stream, such as rendering to the console, writing it to a
file, or relaying it via the network. VAST currently supports ASCII, JSON, PCAP, Bro [30]
ASCII log, and Kafka [108] sinks.

We begin with walking through the process of issuing historical queries in §3.2.4.1 and then
discuss continuous queries in §3.2.4.2.

3.2.4.1 Historical Queries

Historical queries execute over existing data. We illustrate this process in Figure 3.9. When
a VAST node receives a query, it spawns an exporter which handles processing of this
particular query instance. exporter first parses the query string into an AST, and then
performs normalization passes, such as moving extractors to the left-hand side of a predicate
and then transforming the AST into negation normal form (see §4.3.1). Then, exporter
sends the normalized AST to index, which processes the lookup request according to §3.2.3.2.
As the stream of index hits arrives back at exporter, it translates the bit vector into numeric
event IDs to ask archive for the corresponding raw events. When exporter receives the
batch of events, it may perform a candidate check to filter out false positives, which can
occur due to surjective bitmap indexes (e.g., when using binning for floating point values).
Finally, exporter sends the qualifying results back to sink. The process terminates after
exporter has no more unprocessed hits.

A candidate check may consume a non-negligble amount of time and may even dominate
query processing [172]. We can reduce the cost either by reducing the index false positive

CHAPTER 3. ARCHITECTURE 55

exporter

:addr in 10.0.0.0/8
&&

:port == 80/tcp

index

lookup bit vectors
from partitions

80/tcp==:port

10.0.0.0/8in:addr

_

archive

locate & ship
event batch for ID

candidate
check

decompress
batch

sink

10.0.0.1 53/udp
10.0.0.2 80/tcp
…

type 10.0.0.1 53/udpmeta
type 10.0.0.2 80/tcpmeta

render results

Figure 3.9: Historic query architecture. exporter sends the query :addr in 10.0.0/8 &&

:port == 80/tcp to index, which returns a bit vector corresponding to the hits. exporter
traverses the bit vector and asks archive to retrieve the corresponding batches of events.
After performing a candidate check, it sends qualifying results to a sink, which processes the
events further by rendering them to the screen.

foo

==

42

||

bar

==

53/udp foo

==

42

||

bar

==

53/udp

Figure 3.10: Candidate check optimization. Consider the two events foo = count and
bar = int, and the query expression foo == 42 || bar == 53/udp. For event foo, the
candidate checker prunes the right half of the tree (left AST), and for event bar the left half
(right AST). This minimizes the candidate check operations per event.

CHAPTER 3. ARCHITECTURE 56

subscribe

importer

archive

index

sinkexporter

relay event stream

filter results

source

assign IDs

Figure 3.11: Continuous query architecture. There exists one exporter per query that can
serve both historical and continuous requests. For continuous queries, exporter subscribes
to the full event feed at importer and locally filters out the matching events.

rate or by reducing the time spent performing the check. Once exporter receives the events
from archive, it can only improve on the candidate check. To this end, exporter derives a
unique AST for each event type from the query expression. For example, a query expression of
the form foo == 42 || bar == 53/udp for two events foo = count and bar = int yields
two different candidate checkers: one for foo with only the first predicate and for bar with
only the second. We illustrate this in Figure 3.10: the left AST shows the candidate checker
for event foo, which does not include the shaded nodes, since they only apply to event bar.
Similarly, the right AST shows the candidate checker for event bar, with the nodes involving
event foo pruned. Without this pruning optimization, each event would have to be checked
against the entire AST, incurring much more operations than necessary.

Result extraction occurs in a pull-based fashion: exporter only interacts with archive
when instructed to do so, e.g., when a human sink requests extracting more results. Such a
design avoids performing unnecessary work and frees available resources for other tasks. It
also caters to the use case when analysts only want to see a “taste” of the result, as opposed
to the full set of associated activity.

3.2.4.2 Continuous Queries

VAST unifies historical and continuous queries in one architecture. The need for continuous
queries arises when analysts have identified the query to describe an issue and would like to
receive notification if the same activity occurs in the future.

Figure 3.11 displays the continuous query architecture. The same exporter which answers
historical queries can also process continuous queries by subscribing to the full event feed

CHAPTER 3. ARCHITECTURE 57

importer

archive

index

exporter

node

source sink

127.0.0.1:42000

Server ProcessClient Process

User

node

Figure 3.12: Client-server deployment. A node runs in a daemon process and publishes
itself at a TCP endpoint. By connecting to this endpoint, client processes obtain an actor
handle for the remote node in order to control it, e.g., based on command-line arguments,
through an interactive shell, or by sending messages to it programmatically. This remote
actor behaves just like a local actor, but the actor runtime transparently forwards messages
over the TCP connection.

at importer. Because importer and exporter run in the same process, a subscription
effectively represents a “tap” into the event stream. importer only shares the event feed
with exporter. This allows to attach numerous exporters to the same feed, each of which
execute concurrently. At the implementation level, this sharing translates into copy-on-write
message passing: importer only forwards a pointer of the immutable data to the running
exporters. However, filtering out the matching events does consume CPU cycles. To
minimize the amount of work exporter must perform per event, we rely on the same
efficient construction of candidate checkers as for historical queries.

3.3 Deployment

So far we described VAST’s main components from a conceptual perspective, without
emphasizing concrete physical deployment styles. In §3.2 we mentioned single-machine and
cluster deployment styles, without going into details. In §3.3.1, we take a closer look at
various options of mapping components to processes and machines. Thereafter, we sketch
in §3.3.2 how a cluster deployment can achieve fault tolerance.

3.3.1 Component Distribution

Users spin up a VAST instance by launching a daemon process that spawns a node, which
consists initially of archive, index, and importer actors. The actor runtime publishes
node at a given TCP endpoint, e.g., 127.0.0.1:42000. When users connect to this endpoint,
they obtain a remote actor handle to node, which gives them the opportunity to send it

CHAPTER 3. ARCHITECTURE 58

importer

archive

index

exporter

node
sink

127.0.0.1:42000

Server ProcessClient Process

User

node

source

Figure 3.13: Variation of client-server deployment for interactive processing. As in Fig-
ure 3.12, a client connects to a server node through a TCP connection. The difference lies
in component placement: in order to ingest events from standard input and display query
results on standard output, the corresponding components must operate in a process that
the user controls interactively.

control messages. For example, a user may spawn a new JSON source to ingest a log file,
or spawn a PCAP source to start reading packets from a network interface. We show this
form of control in Figure 3.12. Users can also run VAST in a “one-shot” mode, where node
terminates after ingesting a single file or answering a single query. This scenario does not
involve a TCP connection.

We designed VAST in accordance to the UNIX philosophy: the command line utility vast

can ingest data from standard input and display query results on standard output. Behind
the scenes, this results in slightly different component distribution, as we show in Figure 3.13
for both ingestion and querying.2 This shows the power of the actor model in general, and
the modularity of VAST’s architecture in particular. The network transparent messaging
layer allows for flexibly wiring components at runtime. The flexibility also proves handy in
heterogeneous clusters. When a cluster includes one machine with very fast solid-state disks,
deploying an index instance there can result in significant latency gains.

Even though VAST supports spinning up individual components, the more common deploy-
ment form places one node on each machine. Each node runs all core actors. This style of
deployment distributes the data across all machines, which has the advantage of spreading I/O
and computational load (in the best case evenly) over all available machines. We illustrate
this deployment style in Figure 3.14 for a user who performs distributed ingestion. The user
can choose to connect to any available node, because they all share the same metastore which
contains the topology information, e.g., the number of peers and the running components.
The client then enumerates all importers by querying the metastore. After connecting them

2In practice, a user typically either ingests data or queries, although VAST technically supports ingestion
and querying simultaneously.

CHAPTER 3. ARCHITECTURE 59

importer

archive

index

Host A

Client Process

User

node

importer

archive

index

source

A:42000

Host B

Host C Host D

importer

archive

index

importer

archive

index

Figure 3.14: Cluster deployment showing distributed ingestion. Users can connect to any
node in the cluster, because they all have the same data in the metastore about the topology.
Ingesting a single file by default entails round-robin load-balancing of the event batches over
all importers, which the client obtains by querying the metastore.

as downstream components of the source, the ingestion process begins and load-balances
the generated event batches over the importers in a round-robin fashion.

3.3.2 Fault Tolerance

As the number of components and machines increases, the odds of failure increase as well.
Large deployments routinely face broken hardware, network outages, resource exhaustion,
device misconfiguration, and software bugs. Reliably operating a distributed system amidst
this potential for failure requires a resilient system architecture.

Not only can hardware or software fail as a whole unit, but also at its individual components.
In VAST, a source may terminate due an exception because it cannot handle a certain
corner case in the input. VAST provides fine-grained, local fault isolation at the actor-level by
relying on two mechanisms from the actor model: links and monitors. Two linked components
have a mutual dependency. If one goes down, the other terminates as well. Monitors offer
a weaker form of error propagation: if a component fails, the runtime notifies all monitors.
These primitives allow for creating hierarchical supervision trees [13], independent of process
or machine boundaries. To give a concrete example: a source monitors its downstream

CHAPTER 3. ARCHITECTURE 60

importers over which it load-balances its events (see Figure 3.3(b)). If one machine in the
cluster fails, source will eventually receive a DOWN message after the runtime no longer
has an alive connection to the machine, and as a result remove the invalid importer from
its round-robin load-balancing schedule.

Comprehensive fault tolerance in a distributed setting poses a significant challenge, which
goes beyond the scope of this thesis. In the following, we offer design ideas based on current
trends in the field of reliable storage systems at scale.

In a distributed setting, we assume that machines come with enough “insurance” to protect
against data loss, e.g., by relying on RAID or network-attached storage. While these
techniques prevent data loss and durability, they do not address availability: a failed machine
remains inaccessible until it comes back. Replication and erasure codes provide availability
at the cost of extra storage and bandwidth during repairs [197, 161]. The simplicity of
replication makes it an attractive choice in many applications in practice. For example,
distributed file systems commonly replicate their data three times [85, 170, 34]. However, the
massive growth in storage demands renders replication an increasingly expensive approach
and spurred research on more efficient erasure codes [64, 110]. Traditional erasure codes
suffer from high reconstruction costs in terms of disk I/O and network transfers (e.g., Reed-
Solomon [157]). But newer erasure codes offer optimal reconstruction with respect to I/O,
storage, and network bandwidth [154].

Today’s systems for search perform replication at the granularity of data shards/partitions [69,
173], as opposed to at the storage layer. This gives greater flexibility when composing
heterogeneous machine clusters that do not share a distributed filesystem. Conversely, relying
on a distributed file system would have the advantage of (i) delegating the complex task to a
lower layer, and (ii) transparently benefiting from evolution in erasure codes. In either case,
a system must take care of its durable data.

VAST’s durable data resides at archive and index. During failure, another node should
take over responsibility of the data from the lost node. To do so, each node must record in
the meta store (see §3.2) what slice of data it manages. Otherwise, it would remain impossible
for a node to identify the unavailable data. archive needs to record the IDs of the segments
it accommodates, whereas index the UUIDs of the partitions it takes care of. In this fashion,
a node failing during query execution can allow another to take over its archive and index
data to re-execute the query on its behalf. exporter can also periodically checkpoint its
state (consisting of index hits and event identifiers of results that have passed the candidate
check) to reduce the amount of duplicate results.

Data loss can still occur during ingestion, when archive and index have not yet written
their data to the filesystem. We minimize this risk by writing data out as quickly as possible.
When the machine crashes while writing out state, we may end up with corrupted data.
For improved reliability, we could also perform opportunistic, concurrent archiving/indexing
of identical data and accept the node that completes first as authoritative. Modern data
ingestion pipelines often make use of brokers (e.g., Kafka [108]), which allow for reliable

CHAPTER 3. ARCHITECTURE 61

processing without introducing redundancy. Brokers offer reliability by buffering the data
until receiving an acknowledgement. When consuming logs from a broker, VAST would wait
until having written its state to disk before sending an acknowledgement.

3.4 Summary

In this chapter, we described the system architecture of VAST. We model the system
components in terms of actors—concurrently executing entities which solely communicate via
message passing—to specify the program logic and data flow independent from deployment.
VAST runs on single machine, as well as on multi-machine cluster, and we showed how to
replicate and compose the core building blocks to arrive at a flexible distributed system.

In particular, we described VAST’s four key components: import, archive, index, and export.
The import component converts data from numerous different formats into VAST’s expressive
data model. We explained how events enter the system and receive a unique identifier, before
they get dispatched to the archive and index components. The archive acts as bulk storage
for the raw data, whereas the index exists to accelerate and answer queries. The dual to the
import components represents the export component, which handles query execution. We
described how VAST processes historic and continuous queries in a unified framework.

Moreover, we showed how to deploy the various components over one or more machines. Only
a cluster deployment can cope with the massive data volumes of large sites. The increase in
machines also increases the probability of machine failure, and we ended this chapter with a
discussion on fault tolerance. The actor model offers fine-grained hierarchical fault isolation,
which facilitates local recovery. To ensure reliability in a multi-node scenario, we sketch
how modern storage layers can provide the necessary building blocks for a more reliable
distributed system.

A central theme throughout the design concerns type safety and type richness, which enable
optimizations and allow users to express their data without losing crucial semantics. VAST’s
query language enforces strong typing, allowing users to safely use type-specific operations,
such as top-k prefix search on IP addresses. In the next chapter, we pick up this topic and
show how we leverage strong typing to build a composable indexing framework.

62

Chapter 4

Implementation

The problems are solved, not by giving new
information, but by arranging what we have
known since long.

Ludwig Wittgenstein

The architecture we describe in §3 sketches the high-level data flow between the different
VAST components. In this chapter, we take a deeper look at the components’ interior with
a focus on implementation details that render the system an efficient platform for network
forensics. In §4.1, we describe how we overcome challenges with VAST’s bedrock component:
the message passing layer CAF (see §2.3.2). Thereafter, we introduce in §4.2 our composable
indexing framework for VAST’s rich types. Finally, in §4.3 we highlight performance-critical
aspects of VAST’s query execution engine.

4.1 Message Passing Challenges

During our implementation of VAST, we faced two challenges that arose in combination with
CAF, the actor model implementation we use for concurrency and distribution. First, we
articulate the problem of overload in §4.1.1 and describe how we solved the issue with flow
control. Second, we describe a message routing inefficiency in §4.1.2 and describe how we
resolved it.

4.1.1 Adapting to Load Fluctuations with Flow Control

For decades, the networking community has dealt with the problem of overload, a situation
where a sender generates messages at a higher rate than a receiver can process. As a result, the
message queue at the receiver fills up until memory runs out. Protocols architect themselves

CHAPTER 4. IMPLEMENTATION 63

out of this issue via flow control : sender and receiver implicitly negotiate a tractable message
rate to avoid an overload scenario.

Recent work applies flow control to operating systems with QoS-inspired techniques: by
ordering applications with respect to latency sensitivity, the OS can prioritize packets
accordingly [90]. We consider overload from a more fine-grained perspective, within a single
application consisting of components that communicate via message passing. In particular,
we frame the problem in a network-transparent way: the components may reside all in the
same process, within the same machine across multiple processes, or distributed over multiple
machines.

The actor model [97] offers an apt vehicle to express high-level message passing independent of
component deployment. Because it operates fully asynchronously, an actor can send numerous
messages regardless of whether the receiver can process them. While the asynchrony enables
efficient non-blocking, concurrent computation, the decoupled communication structure also
allows overload scenarios to easily occur. This differs from a related model for concurrent
computation, communicating sequential processes (CSP) [99], where sending a message is
a synchronous operation. The receiver can block to signal overload implicitly. Per §2.3.1,
the flexible failure propagation of the actor model and absence of blocking renders it a
better fit for our use cases. Therefore, for the remainder of the discussion, we focus only on
asynchronous flow control in the context of the actor model.

A short-sighted attempt to remedy overload provisions more buffer capacity so that the
system can receive more messages. However, this ill-advised fix causes bufferbloat [84, 114]
and ultimately worsens the situation by introducing higher latency and jitter. More buffer
space does not address the root cause: a slow component on the critical path.

We approach flow control from two angles: sensing and adaptation. Sensing concerns
identifying and making available the load information. Adaptation concerns changing in
behavior according to a received flow-control signal. Load sensing falls into two classes:

End-to-end. When two components communicate in a request-response pattern, the round-
trip time (RTT) can serve as an external measure for load. In particular, this metric
works in scenarios where messages travel over multiple hops.

For example, sliding window protocols use timeouts to generate a flow-control signal.
If the response does not arrive within the required latency, the sender considers the
response lost and signals an overload condition.

Hop-by-hop. Regardless of the communication pattern, a component can monitor various
internal performance metrics to determine its load status, such as CPU utilization,
memory consumption, or message queue size.

Local introspection can yield various load signals. A continuous signal normalized
to the interval [0, 1] offers a range between underload and overload. One can define

CHAPTER 4. IMPLEMENTATION 64

thresholds for underload and overload within that range, or apply control theory to
incorporate feedback.

After having receiving a signal from the flow-control sensor, a component can react to it with
two principle strategies:

Back-pressure. When a component senses a critical load, it must react to prevent the
system from keeling over. If the component produces data locally, it can reduce its
sending rate to reduce pressure downstream. If the component does not produce data
itself, it must propagate the signal upstream—all the way up to the source. If it only
adjusted the downstream sending rate, the load issue would still persist, but one hop
closer to the source.

For example, the Reactive Streams initiative standardizes back-pressure for the Java
Virtual Machine and JavaScript [155], but the concept has found wide application in
the networking domain for decades [180, 192, 135, 207].

Load Shedding. When resource usage of an overloaded component grows beyond a critical
point, load shedding alleviates the situation. This can mean dropping new messages
to prevent the message queue from growing, skipping an intensive calculation to shed
CPU load, or expunging state to free memory. Even though load shedding can affect
the correctness of operation, it may prevent fatal crashes due to resource exhaustion or
prevent violations of strict latency requirements.

For example, Internet routers drop packets when their queue overflows, the Bro network
monitor can choose different depth of packet analysis based on its CPU load [67], and
streaming databases can dynamically drop messages such that the maximum relative
error across queries is minimized [14].

Load-shedding offers a simple, local solution to overload when lost data does not affect
correctness of operation, e.g., when the lack of a response causes the sender to retransmit
a message. But unless the sender adapts its resource usage, load-shedding only addresses
the overload situation symptomatically. Conversely, back-pressure attempts to alleviate the
load problem by notifying the culprit. A component only needs to know how to propagate or
react to flow-control messages and adjust resource usage accordingly, whereas load-shedding
only proves effective when the sender can infer from the response how to adapt.

When components run both within the same machine and across machines, the sending rate
constitutes the common denominator for reacting to load changes. For example, when machine
B experiences heavy CPU and memory load, and propagates overload upstream to component
A on a different machine, A can only avoid sending more data downstream to alleviate the
situation. Conversely, when A and B reside on the same machine, flow-control messages can
contain more system-specific information and trigger a wider range of adaptations, such as

CHAPTER 4. IMPLEMENTATION 65

A

B

C

D

E

F

G

H

I

J

K

L

Figure 4.1: Flow control signaling. Overloaded components (E, I, J) report upstream
(B,C, F,G) when they sense that they cannot keep up with the current message rate. A
component which receives a flow control signal continues forwarding upstream by default, e.g.,
when G forwards a signal from J to F . The load-balancer F overrides this default behavior
by temporarily removing G and I from the schedule.

adjusting CPU, memory, and I/O resource consumption. For the scope of this thesis, we only
focus on the generic network-transparent scenario and therefore only consider adaptation of
sending rate.

In VAST, components map to actors, but the actor model implementation CAF currently
does not support flow control. There exist several scenarios in VAST where a sender can
easily overload a receiver. Most notably, this can occur during ingestion when events arrive
faster than the system can handle them. Bursts in the input rate, which can occur during
denial-of-service attacks or flash crowds, exacerbate capacity planning. To prevent data loss
of non-critical, latency-insensitive events, queuing brokers (e.g., Kafka [108]) act as low-pass
filters to absorb peaks, but only if the ingestion capacity remains greater than the mean event
rate. During ingestion, event producers (sources) can overload components downstream
(importer, archive, index, and exporter). To avoid overflow of the actors’ mailboxes at
these components, we implemented a simple yet effective back-pressure mechanism: when
an actor becomes overloaded, it sends an overload message to all of its registered upstream
components, which either propagate it further, or, if data producer themselves, throttle their
sending rate. When an overloaded actor becomes underloaded again, it sends an underload
message to signal upstream senders that it can handle more data again. This basic mechanism
works well to prevent system crashes due to overloads.

To illustrate, consider the example topology in Figure 4.1, which models the data flowing
between various actors. Overloaded actors (E, I, J) report upstream (B,C, F,G) when they
sense that they cannot keep up with the current message rate. An actor that receives a flow
control signal continues forwarding upstream by default, e.g., when G forwards signals from
J to F . Assuming F has a load-balancer function and distributes every message to G, H,
and I, it can override the default propagation behavior by removing G and I temporarily
from the schedule, while still being able to make progress via the path to H.

We implemented this functionality by adding a new actor type to CAF. This actor keeps track

CHAPTER 4. IMPLEMENTATION 66

A

C

B

C

B

C

Figure 4.2: Message routing in CAF. Actors with a dashed circle represent proxy actors by
the CAF runtime. When A sends a message to B, the runtime enqueues the message first in
the local proxy B, which then delivers it to the node where B actually runs. In this example,
A has obtained a reference to C via B. Therefore, a message from A to C travels via the
node of B.

of its upstream nodes. By default, it forwards flow control messages upstream, but users can
override the behavior that handles overload and underload messages, e.g., in a load-balancer
scenario. We are currently working with the CAF developers to integrate flow control deeper
into the CAF runtime.

4.1.2 Resolving Routing Inefficiencies with Direct Connections

During our evaluation of distributed VAST deployments, we discovered a deficiency with
CAF’s message routing. When deploying a system across multiple nodes, the logical topology
may diverge from the physical topology, which can lead to inefficient message routing that
particularly penalizes performance for data-intensive scenarios. For example, consider three
actors A, B, and C, which each run on their own node node. Figure 4.2 illustrates the
scenario. Actors with a dashed circle represent proxy actors by the CAF runtime, which act
as a local handle to interact with the actor. There exists exactly one connection between
two nodes and CAF multiplexes messages over this single connection. In the examples, there
exist two connections between the left-most and middle node, and between the middle and
right-most node. When A sends a message to B, the runtime enqueues the message first in
the local proxy B, which then delivers it to the node where B actually runs. In this example,
A has obtained a reference to C via the node in the middle. Therefore, a message from
A to C spans two hops. In this design, the propagation of actor handles over the network
determines the message forwarding table of each node.

This issue arises whenever an application sends an actor handle as a message to an actor
on a remote node. In multi-node systems that scale by distributing load across multiple
nodes, a divergence in physical and logical topology can introduce opaque bottlenecks at
lower layers. In VAST, this occurs naturally in the meta store (see §3.2), the distributed
key-value store for global system state. When an operator spawns a new actor on a node
which peers with other nodes, the node saves the actor handle in its local meta store from

CHAPTER 4. IMPLEMENTATION 67

where it automatically replicates to all other nodes. When a user later wants to access this
actor via another node in the system, it may receive an inefficient path.

To solve this problem, we added a new direct connection optimization to CAF. When enabled,
two nodes automatically establish a direct connection when they exchange actor handles.
Internally, each CAF node contains a networking broker, a special actor which adds a thin
layer of message framing for remote communication. We enhanced the protocol of this broker
such that it supports establishing direct connections to nodes for which no direct route exists.
As a result, we can now automatically create a full mesh between all nodes in a cluster and
avoid inefficiencies in the underlying routing. Even though a full mesh requires a quadratic
number of connections, we do not anticipate more than order hundreds of nodes participating
in a VAST cluster, for which a full mesh setup work well.

4.2 Composable and Type-Rich Indexing

Until now, we glossed over the implementation details which link VAST’s type-rich data
model to concrete index structures. What happens once the data values reach the concrete
indexes? How do we append data and retrieve results? In this section, we present our novel
indexing framework, which elevates the indexes from §2.4.2 and §2.4.3 into a higher level
of abstraction. In our implementation, we exclusively rely on bitmap indexes, but we keep
the following discussion abstract because the concepts apply to both bitmap and inverted
indexes.

The index design space we describe in §2.4.3 offers various tuning knobs with vastly different
performance implications. Choosing the right set of parameters depends on the specific
use case. For each type in VAST’s data model, there exist different requirements derived
from the supported query operations. For example, a typical operation on numeric values
involves inequality queries, whereas IP addresses lookups primarily involve top-k prefix search.
However, supporting inequality and top-k search requires very different index layouts and
parameterization.

Before discussing layout and operations of each data type in detail, we establish some
overarching framing. Recall from §3.1.1 that a value consists of a type and corresponding
data. A value can exhibit no data, in which case it only carries type information. We define
a value index V = 〈N,D〉 as a composite data structure consisting of a null index N to
represent whether data is null (implemented as single identifier set), and a data index D,
which represents a type-specific index.

A value index V supports the same key operations as the index from §2.4.2:

1. V � x(α): append a value x with ID α. This operation consists of two parts: it records
whether x is null, and only if non-null, stores x(α) in the concrete data index.1

1This process resembles checking the validity of a pointer, and dereferencing it if and only if non-null.

CHAPTER 4. IMPLEMENTATION 68

2. V ◦ x: lookup value x under operator ◦. This operation retrieves the identifier set
S = {α | z(α) ◦ x ∧ z ∈ V}. The value index only supports the subset of relational
operators ◦ according to its data index. For example, a range lookup fails for an IP
address index because it only supports top-k prefix search.

In the following, we present the construction of data indexes for the types VAST defines.
We also provide a summary of append and lookup operations of all concrete data indexes
in Table 4.1 and Table 4.2.

4.2.1 Boolean Index

The boolean index B only operates on the two values true and false, and therefore consists
of a single identifier set S. Presence in S indicates true and absence false. To add a value
x(α), we proceed as follows:

B� x(α) ≡ S � α if x = true (4.1)

A boolean index only supports equality and inequality lookups:

B ◦ x ≡
{
S if x = false

S if x = true
(4.2)

When computing the complement of an identifier set S, we take as reference frame the first
and last ID of the index. For example, if a boolean index B = {4, 5, 6} begins at ID 2 and
ends at 8, the lookup operation B 6= false yields {2, 3, 7, 8} as result.

4.2.2 Integral Index

Integral types represent number types, such as count and int. The major challenge for such
types lies in both supporting lookups using operators {<,≤,=, 6=,≥, >}, as well as a high
cardinality value domain. To address the operator challenge, we look back to the coding
schemes from §2.4.3. The operators VAST’s query language supports stem from the query
class 1RQ ∪ EQ, i.e., the query class of one-sided range and equality queries as in the above
mentioned set of operators. For this class, both range and interval coding constitute viable
candidates. We choose range coding due its simplicity and defer a thorough empirical analysis
that compares range and interval coding to future work.

To address the high-cardinality challenge, we rely on multi-component indexes (see §2.4.4).
How many components do we need for the 64-bit integral types count and int? To represent
264 distinct values with a uniform base β = 〈b, . . . , b〉, we need dlogb 64e components. We
choose b = 10 to cater to human arithmetic, which yields 20 components and thus (10− 1)×

CHAPTER 4. IMPLEMENTATION 69

20 = 180 bit vectors across all range-encoded components. (Note that in practice, unused
components do not occupy space.) We briefly experimented with smaller values, such as b = 2
to minimize the number of identifier sets to 64. While this results in fewer identifier sets,
each individual one becomes harder to compress. As mentioned above, since our focus lies on
putting together an end-to-end system, as opposed to finding the optimal parameterization,
we defer an in-depth empirical study of this subject to future work. An interesting aspect to
explore in the future could aim for deriving an optimal base for a given value distribution,
and then re-applying this base to existing indexes as well as applying it to new data.

The use of multi-component indexes introduces a complication: value decomposition according
to a fixed base does not work directly with signed integer arithmetic. We cannot interpret
a w-bit signed integer as an unsigned integer, because two’s complement representation
exhibits a different bitwise total ordering. But we can transform w-bit signed integers from
[−2w−1, 2w−1) into unsigned w-bit integers using a “bias” of 2w−1, which simply shifts the
smallest value of −2w−1 to start at 0 in the unsigned representation:

fw(x) = x+ 2w−1

We use this technique to specify signed integral indexes in terms of unsigned indexes. We
define two indexes for unsigned and signed integral numbers: the count index C = Φ64 and
the integer index C = Φ64 with respect to the above mentioned bias. To add a value to a
count index, we compute:

C� x(α) ≡ Φ64 � x(α) (4.3)

To add a value to an integer index, we compute:

I� x(α) ≡ Φ64 � f64(x(α)) (4.4)

The lookup follows analogously:

C ◦ x ≡ Φ64 ◦ x (4.5)

And for an integer index:

I ◦ x ≡ Φ64 ◦ f64(x) (4.6)

CHAPTER 4. IMPLEMENTATION 70

normals NaNsubnormalsnormalsNaN subnormals

sign
(1 bit)

exponent
(11 bit)

significand
(52 bit)

�0 +0

(211 � 2)⇥ 252 (211 � 2)⇥ 252252 � 1 252 � 1 252 � 1252 � 1

264

�1 1

Figure 4.3: IEEE 754 double precision floating-point. The 64-bit value includes a 1-bit
sign, an 11-bit exponent, and a 52-bit significand. There exist two special exponent values: 0
indicates subnormals; 2047 means ∞ if the significand (or mantissa) equals 0, and NaN (Not
a Number) otherwise.

4.2.3 Floating Point Index

For IEEE 754 double precision floating point values [107], we use a different concept. This
type consists of one sign bit s, 11 bits for the exponent e, and 52 bits for the significand m.
Assembling a value from these components involves computing:

(−1)s × 2e−1023 ×
(

1 +
52∑
i=1

m52−i2
−i

)

The exponent assumes a special role. With 11 bits, it can represent values in the range
[0, 2048). Two exponent values have a particular meaning: the lowest value of 0 indicates
subnormals and the highest value 2047 means either ∞ if the significand equals 0 or NaN

(Not a Number) otherwise. All of these special values have their negative equivalent, as we
show in Figure 4.3. Per the above formula, the exponent comes with a bias of 1023. The
smallest value e = 1 yields −1022 and the largest value e = 2046 yields 1023. Subnormals
(e = 0) fill the underflow gap around 0, and change the computation of the floating-point
value as follows:

(−1)s × 2−1022 ×
(

52∑
i=1

m52−i2
−i

)

Instead of attempting to perform a similar transformation as for signed integers to map the
number space into the domain of 64-bit unsigned integers, we construct a special floating-point
index. This index closely follows the structure of the IEEE754 double-precision format: one
identifier set for the sign, 11 for the exponent, and 0–52 for the significand.2 Figure 4.4

2A variation for IEE754 single-precision works analoguously.

CHAPTER 4. IMPLEMENTATION 71

sign exponent significand

11 0–521

Figure 4.4: IEEE 754 floating-point index. The structure directly follows the representation
in Figure 4.3, where each bit in the value maps to its own identifier set Si.

depicts the structure of the real index. By allowing for a variable number of identifier sets
for the significand, we get the same effect as rounding. This allows users to customize the
desired precision. Instead of effectively implementing a bit-sliced index for exponent and
significand, we could equally choose a multi-component bitmap index for some base β.

Let F = 〈S,E,M〉 denote the floating point index for type real with a boolean index S = B

for the sign, a bit-sliced index E = Θ11 for the exponent, and a bit-sliced index M = Θ52

for the significand. Likewise, let xs denote the sign bit, xe the 11-bit exponent, and xm the
52-bit significand of x. Adding a value x = 〈xs, xe, xm〉 involves computing:

F � x(α) = 〈x(α)
s , x(α)

e , x(α)
m 〉 ≡

S � x

(α)
s

E � x
(α)
e

M � x
(α)
m

(4.7)

We define O as the “mirrored” operator of ◦ (e.g., < and >, or ≤ and ≥). Then, a lookup
for a value x and translates into computing:

F ◦ x ≡

S = xs ∧ E ◦ xe ∧M ◦ xm if ◦ ∈ {=, 6=}
S = 0 ∧ E ◦ xe ∧M ◦ xm if x ≥ 0 ∧ ◦ ∈ {>,≥}
S = 1 ∨ (E ◦ xe ∧M ◦ xm) if x ≥ 0 ∧ ◦ ∈ {<,≤}
S = 0 ∨ (E O xe ∧M O xm) if x < 0 ∧ ◦ ∈ {>,≥}
S = 1 ∧ E O xe ∧M O xm if x < 0 ∧ ◦ ∈ {<,≤}

(4.8)

CHAPTER 4. IMPLEMENTATION 72

We define equality lookup of two floating point values x and y as |x − y| < ε, where ε is
determined by the precision of the significand. Unlike with exact indexes, equality does not
imply transitivity.

4.2.4 Duration & Time Index

VAST represents data of type duration as 64-bit signed integers in nanosecond resolution.
Thus, the maximum representable time span amounts to ±292.3 years. Since duration and
int are congruent,3 we express durations with an integer index. The type time describes a
fixed point in time, which VAST internally expresses as duration relative to an epoch. We
anchor time points at the UNIX epoch, January 1, 1970. Since the epoch constitutes an
intrinsic part of the type, time is congruent to duration.

For both duration and time, it makes sense to explore a different value decomposition than
for standard integral indexes. As we sketched in §2.4.4, when humans express time, they
naturally think in hours, minutes, and seconds, as opposed to representing every duration
value in seconds only. For example, the base β = 〈365, 24, 60, 60, 1000, 1000〉, which ranges
from nanoseconds, milliseconds, seconds, hours, days, to years, fits more aptly in the time
domain than a uniform base 10 as in generic arithmetic.4

Aside from a natural fit for the domain, this mixed-radix representation brings another
advantage: analysis of periodicity. For example, an infected machine may check once a minute
with its backend infrastructure whether to perform a certain task, such as display an ad, or
attack another machine. Assuming analysts catch an instance of this check at time 08:05:42,
they may may look at activity with that particular second value of 42, ignoring all other
components of time. With a domain-specific base, it suffices to look at a single component of
the underlying index, which can have an impact on query latency.

In summary, we define the duration index as D = I and the time index as T = D. Append
and lookup operations are identical to the integral index, which we defined in §4.2.2.

4.2.5 String Index

Operationally relevant intelligence often takes on the form of particular markers or patterns
in strings, such as a hostname, a URL path, or an email subject. To identify these markers,
analysts express their queries as equality, substring, or similarity lookups. Therefore we focus
on the operators {=, 6=,∈, /∈,∼, !∼}, where the last two represent similarity search. Regular
expressions certainly prove even more powerful, but supporting this form of lookup via index
structures poses major challenges. Therefore, most search systems that do not scan the full
data offer only substring search or limited forms of “globbing.”

3Per §3.1.1, two types are congruent if they have the same physical representation.
4This base results in

∑5
i=0 βi = 2509 identifier sets. To achieve a smaller footprint, one may split

sub-second into 10× 100 instead of 1000, yielding a total of 729 identifier sets, for example. Further base
decomposition allows for trading space against time.

CHAPTER 4. IMPLEMENTATION 73

Unlike bounded numeric types, indexing strings proves more difficult due to their variable
length and desired query operations. In order to leverage existing numeric index types,
a common approach to string indexing involves a dictionary to map each unique string
to a non-negative integer [174]. However, constructing a space-efficient dictionary poses a
challenge in itself [131, 104]. While a dictionary-based design achieves a constant-space index
structure, it only supports equality lookups: for substring search, one must search the entire
dictionary key space to get a set of string identifiers, and then look up this set in the index.
This takes time O(C + h), where C denotes the cardinality and h the number of hits. A
slight modification skips the indirection through numeric identifiers and directly attaches the
keys to the identifier sets, as in Figure 2.6. That is, the identifier sets represent the codomain
of the dictionary. However, this approach no longer benefits from the exponential cardinality
reduction we obtain from multi-component indexes, and would require space O(NC) for an
index with N values, as opposed to O(N

∑n−1
i=0 βi). Unless the dictionary implementation

relies on a hash table, it also exhibits a much lower throughput compared to the constant-time
multi-component framework with numeric data.

Instead of using a stateful dictionary, another approach simply relies on a hash function to
compute a unique string identifier [181]. The difference to the bijective dictionary is that
two string values now may map to the same identifier, which requires a candidate check.
For a hash function that produces a 64-bit digest, collisions affecting the candidate check
approximately start to occur after

√
264 ≈ 4B events. While space-optimal due to the absence

of a stateful dictionary, and time-efficient due to fast computation, this approach does not
support substring search.

We propose a new approach for string indexing that supports both equality and substring
search, yet operates in a stateless fashion without a dictionary. Moreover, our approach can
support similarity search as well. In a nutshell, our string index S = 〈φ, κ0, . . . , κM〉 consists
of an index φ = Kβ for the string length, plus M indexes κi = Φ8 per character where M is
largest string added to the index so far. Figure 4.5 illustrates how the index behaves when
appending strings of various sizes. Each append operation adds the length of the string to
the size index φ, and each character to the character index κi. For example, for the string
foo, we have φ � 3, κ0 � f, κ1 � o, and κ2 � o. More formally, we add a string value
x(α) = 〈x1, . . . , xn〉(α) to S as follows:

S� 〈x1, . . . , xn〉(α) ≡
{
φ� n(α)

κi � x
(α)
i ∀1 ≤ i ≤ n

(4.9)

Performing an lookup of a substring x involves computing:

CHAPTER 4. IMPLEMENTATION 74

0

x1

�

(a) x.

0

x1

�

f o o

21

3

(b) foo.

0

x1

�

f o o

21

3

f o ab ro

3 4 5

6

(c) foobar.

0

x1

�

f o o

21

3

f o ab ro

3 4 5

6

b a r3

(d) bar.

0

x1

�

f o o

21

3

f o ab ro

3 4 5

6

b a r3

c o r g e5

(e) corge.

0

x1

�

f o o

21

3

f o ab ro

3 4 5

6

b a r3

c o r g e5

g r a u l6 t

(f) grault.

Figure 4.5: Appending to the string index. The index consists of index φ for the string
length, and a variable number of per-character indexes κi.Each panel shows how the string
index grows by one new value.

S ◦ x ≡

0 if |x| > M

φ = 0 if |x| = 0

φ = |x| ∧
|x|∧
i=1

κi = xi if ◦ ∈ {=, 6=}

φ ≥ |x| ∧
M−|x|+1∨

i=1

 |x|∧
j=1

κi+j−1 = xj

 if ◦ ∈ {∈, /∈}

(4.10)

Technically, the case for ◦ ∈ {=, 6=} is just an optimization of the generic substring case
◦ ∈ {∈, /∈}. It only restricts the index for the number of characters in a string with an equality
instead of an range (φ = |x|, per Equation 4.10), which helps to speed up the evaluation by
starting from a smaller set of candidates.

CHAPTER 4. IMPLEMENTATION 75

Precondition:
φ: The size index for the string size.
κi: The character index for all 0 ≤ i < M .
◦: A relational operator from {=, 6=,∈, /∈}.
x: The string value to lookup.
0: The empty identifier set.
1: The set of all identifiers.

Postcondition:
R the identifier set according to z ◦ x for all z ∈ S.

1 function StringLookup(◦, x)
2 R← 0

3 if (◦ ∈ {=, 6=}) then
4 if (|x| ≤M) then
5 R← (φ = |x|)
6 for i = 1 to M do
7 S ← (κi = x[i])
8 if (S = 0) then break
9 else R← R ∩ S

10 end for
11 end if
12 else if (◦ ∈ {∈, /∈}) then
13 if (|x| ≤M) then
14 for i = 1 to M − |x|+ 1 do
15 U ← 1

16 absent← false

17 for j = 0 to |x| − 1 do
18 S ← (κi+j = x[j])
19 if (S = 0) then
20 absent← true

21 break
22 else
23 U ← U ∩ S
24 end if
25 end for
26 if (not absent) then R← R ∪ U
27 end for
28 R← R ∩ (φ ≥ |x|)
29 end if
30 end if
31 if (◦ ∈ {6=, /∈}) then R← R
32 return R
33 end function

Algorithm 3: StringLookup: looking up a value in the string index. The algorithm
supports both equality lookups (line 4–11) and substring search (line 13–29).

CHAPTER 4. IMPLEMENTATION 76

Efficient substring search has received extensive attention in the literature. In particular, the
algorithms Aho-Corasick [6], Knuth-Morris-Pratt [113], and Boyer-Moore [28]
can improve over the näıve brute force. Can we apply these algorithm in our scenario?
Our problem consists of matching a single substring in a set of strings encoded in bitmap
indexes. Aho-Corasick attempts to solve matching multiple substrings at once in a single
string. The other two algorithms attempt to locate a single substring within a single piece
text. First, we have to rule out Boyer-Moore, because the algorithm requires access to
original characters when computing the amount of characters to shift the substring search
upon failure, but our string index design does not store the original characters. Conversely,
Knuth-Morris-Pratt pre-computes a jump table as a function of the pattern only.
Because Knuth-Morris-Pratt is a special case of Aho-Corasick when implemented as
deterministic finite automaton (DFA) and we only consider search of single substring, we
ignore Aho-Corasick for the scope of this thesis. An interesting avenue for future work
explores matching several substrings in multiple strings in a single pass.

The existing algorithms all have the problem that they terminate after having located the
first instance of a substring in the text. However, our string index consists of a set of encoded
strings, and a lookup should return all strings where the substring matches. Consequently
the algorithm must not terminate on the first match, because other matches may well appear
later on. But perhaps there exists a modification to the terminating behavior that allows us
to leverage some of the algorithms’ key ideas to improve on our version. We are currently
working on an adaption of Knuth-Morris-Pratt, but for now, our brute-force algorithm
which we codify in Algorithm 3, works well enough as a proof-of-principle.

If we choose to represent the character-level indexes κi as a bit-sliced index Θ8, we obtain
efficient case-insensitive (substring) search for ASCII-encoded strings. This works because
only the 6-th bit determines casing in ASCII, and by simply omitting the corresponding
identifier set Θ8

6 during lookup, case-insensitive search executes faster than case-sensitive
search.

A major challenge concerns efficient spatial representation of the string index layout. For-
tunately, each append operation of a string x with |x| = n only affects the first n of M
indexes, and we can rely on space-efficient “vertical” representation due to compression of
identifier sets. However, this index design does not lend itself well to large strings beyond a
few hundred characters, e.g., when a string represents an entire HTML page. For large strings,
full-text index solutions rely on tokenization in such scenarios [69, 126]. This preprocessing
step splits a string according to a pattern (e.g., whitespace for text, ’/’ for URIs, etc.), and
creates a set of multiple smaller strings, each of which to index separately. In combination
with hashing and candidate check, tokenization can enable equality-lookups on substrings.

Presently, we have not yet implemented similarity search for operators ◦ ∈ {∼, !∼}, but
give a brief outlook how to pursue it in the presented framework. The field of information
retrieval [16] deals comprehensively with this topic. One example involves stemming [125, 149],
the reduction of words to a canonical root, e.g., surfing → surf. Our string index design

CHAPTER 4. IMPLEMENTATION 77

retains the full information, which renders stemming an optional feature at query time.
Other full-text engines [126] apply stemming upon index construction. There exist various
other forms of string similarity [195], often based on edit distance: the minimum number
of character insertions, deletions, and substitutions to convert one string to another. For
example, the strings surf and smurf have edit distance 1. Applying such transformations at
query time hold promise for more powerful forms of string search.

4.2.6 IP Address Index

In network forensics, IP addresses constitute a central data type to describe the endpoints
of communicating entities. Since IPv4 and IPv6 naturally coexist a in today’s networks,
our index design must accommodate both protocol versions. A common operation on IP
addresses involves top-k prefix search, e.g., I ∈ 192.168.0.0/24 or I /∈ fd00::/8. We can
consider equality lookup as a special case when k = 32 and k = 128 for IPv4 and IPv6,
respectively.

Before discussing the index layout, let us review the unified representation of IPv4 and IPv6
addresses. There exists a standardized scheme to embed a 32-bit IPv4 address inside a 128-bit
IPv6 address [17]: set the first 96 bits to 0 and copy the IPv4 address in the last 32 bits. To
determine whether an IP address is IPv4 or IPv6, it suffices to test whether the first 96 bits
equate to 0. These structure yield a natural index layout: a 128-component bit-sliced index
Θ128 with one identifier set per IP address bit. Let A = 〈Θ128

1 , . . . ,Θ128
128〉 denote the address

index with bit-slice index Θ128
i , and let x = 〈x1, . . . , x128〉 denote the bitwise representation

of an IP address instance. To add x to A, we compute:

A� 〈x1, . . . , x128〉(α) ≡ Θ128
i ← x

(α)
i ∀1 ≤ i ≤ 128 (4.11)

Performing a top-k search for an IP address involves computing the intersection of the first
k > 0 identifier sets:

A ◦ x ≡

k∧
i=1

Θ128
i = xi if ◦ ∈ {∈}

A 3 x if ◦ ∈ {/∈}
(4.12)

Note that an equality lookup is a special case of prefix search for k = 128. Since the first
96 bits always equal to 0 for an IPv4 address, it may seem wasteful to go through them. A
possible optimization includes a separate boolean index B to record whether an IP address is
version 4, and then perform a lookup as follows:

CHAPTER 4. IMPLEMENTATION 78

A 3 x ≡

B = true ∧
i+k−1∧
i=97

Θ128
i = xi if x = v4 ∧ ◦ ∈ {∈}

k∧
i=1

Θ128
i = xi if x = v6 ∧ ◦ ∈ {∈}

A 3 x if ◦ ∈ {/∈}

(4.13)

This speeds up IPv4 queries at the cost of a boolean index.

4.2.7 Subnet Index

In addition to IP addresses, VAST also features a subnet data type. This type consists
of an address plus a numeric prefix. Since subnets represent aggregations of IP addresses,
natural queries involve point lookups of IP addresses (e.g., 192.168.0.42 ∈ I), and subset
relationships to test whether one subnet contains another (e.g., 192.168.0.0/28 ⊆ I).

The subnet index U = 〈A,Φ8〉 consists of an address index A and an index for the prefix.
Let x = 〈xa, xp〉 denote a subnet value with network address xa and prefix xp. To add x to
U, we compute:

U� 〈xa, xp〉(α) ≡
{
Ai � x

(α)
ai ∀i ≤ 1 ≤ p

Φ8 � x
(α)
p

(4.14)

To perform a membership lookup which checks whether a given prefix x exists in U, we
compute:

U ◦ x ≡

Φ8 ≤ xp ∧
(

p∧
i=1

Ai = xai

)
if ◦ ∈ {∈}

U 3 x if ◦ ∈ {/∈}
(4.15)

Since valid prefixes lay in the small set {0, . . . , 128}, we use a single-component equality-coded
index for Φ8, e.g., with base β = 〈129〉 to include /0 and /128 lookups.

While the subnet index naturally supports subset lookups, point lookups of a single address
a prove more difficult, because we do not know how to mask a prior to performing a lookup,
which is necessary because the subnet index only contains a network address. There exists
still a method, however, to retrieve the desired result by masking a with all possible prefixes:

CHAPTER 4. IMPLEMENTATION 79

U ◦ a ≡

128∨
i=0

(
Φ8 = i ∧

(
i∧

j=1

Aj = aj

))
if ◦ ∈ {∈}

U 3 a if ◦ ∈ {/∈}
(4.16)

When a is an IPv4 address and k ∈ {0, . . . , 32}, we must instead perform the lookup for
k + 96. An optimized version for an IPv4 address av4 works as follows:

U ◦ av4 ≡

96∧
i=1

Ai = 0 ∧
128∨
i=97

(
Φ8 = i ∧

(
i∧

j=97

Ai = av4
i

))
if ◦ ∈ {∈}

U 3 av4 if ◦ ∈ {/∈}
(4.17)

4.2.8 Port Index

Transport-layer ports identify the specific services that run on a machine. VAST’s port type
consists of a 16-bit number and one of four different protocols: tcp, udp, icmp, and unknown.
For ICMP, the port number is a composite value of two 8-bit numbers, where the first 8 bits
represent the ICMP message type and the remaining 8 bits the message code.

The port index P = 〈Φ16, T 〉 consists of an index Φ16 for the 16-bit port number and a
single-component equality-coded index T = K〈4〉 for the four different port types. To add a
port value x = 〈xn, xt〉 with number xn and type xt, we compute:

P� x(α) ≡
{

Φ16 � x
(α)
n

T � x
(α)
t

(4.18)

Looking up a port value involves computing:

P ◦ x ≡
{

Φ16 ◦ xn ∧ T = xt if xt 6= unknown

Φ16 ◦ xn if xt = unknown
(4.19)

4.2.9 Container Indexes

VAST features the container types vector, set, and table. Like string, a container contains
a variable number of elements. But unlike record, which allows for composing heterogeneous
data under named fields, container elements have all the same type, a fixed length, and no
field names. In practice containers occur, for example, when describing DNS lookups, where a
single host name has multiple A records associated with it. A common query over containers
involves subset relationships.

CHAPTER 4. IMPLEMENTATION 80

Let us first focus on vector and set. The difference between the two is that vector has an
order and may contain duplicates, whereas set has no order and cannot include duplicates.
Let M be the maximum number of elements in a container. We define the vector index XV

and set index XS both as 〈φ,V1, . . . ,VM〉: an index φ = Kβ for the container size and M
value indexes Vi. This structure very much resembles the string index. In fact, we can treat
the container index as a generalization of the string index, which operates on values instead
of characters as elements. These two indexes only differ in their lookup algorithms. To add a
vector value x = [x1, . . . , xn] to a vector index, or a set value x = {x1, . . . , xn} to a set index,
we record the size and each element:

XV � [x1, . . . , xn](α) ≡ XS � {x1, . . . , xn}(α) ≡
{
φ� n(α)

Vi � x
(α)
i ∀1 ≤ i ≤ n

(4.20)

To perform a subset lookup of a value x = {x1, . . . , xn} in the set index XS, we compute:

XS ◦ x ≡
n∧
i=1

(
M∨
j=1

Vj = xi

)
(4.21)

This procedure only works for sets where the element order does not matter. Looking up
subsets of vectors is isomorphic to substring search, which we describe in Equation 4.10. In
fact, we can use subset lookup on strings as well, e.g., to test whether a string contains a
certain set of characters, regardless of their order of appearance.

Next, we focus on table data. A table consists of a sequence of n key-value pairs {ki → vi}
for 1 ≤ i ≤ n. We consider three query types:

1. Does the table contain the key x?

2. Does the table contain the value y?

3. Does the table contain the mapping x→ y?

To answer these queries, we define the table index XT = 〈φ,X1, . . . , XM , Y1, . . . , YM〉 as an
index φ = Kβ for the table size, a sequence of value indexes Xi = V for the table keys
(domain), and a sequence of value indexes Yi = V for the table values (codomain). Adding a
table value x = {x1 → y1, . . . , xn → yn} follows as an extension from set/vector addition:

XT � {x1 → y1, . . . , xn → yn}(α) ≡

φ� n(α)

Xi � x
(α)
i ∀1 ≤ i ≤ n

Yi � y
(α)
i ∀1 ≤ i ≤ n

(4.22)

CHAPTER 4. IMPLEMENTATION 81

To perform a table key lookup of a value x, we compute:

XT ◦ x ≡

M∨
i=1

Xi = x if ◦ ∈ {∈}

XT 3 x if ◦ ∈ {/∈}
(4.23)

To perform a table value lookup of a value y, we compute:

XT ◦ y ≡

M∨
i=1

Yi = y if ◦ ∈ {∈}

XT 3 y if ◦ ∈ {/∈}
(4.24)

To perform a lookup for a mapping x→ y, we compute:

XT ◦ y ≡

M∨
i=1

(Xi = x ∧ Yi = y) if ◦ ∈ {∈}

XT 3 (x→ y) if ◦ ∈ {/∈}
(4.25)

4.3 Query Processing

The first step towards efficient query execution consist of rewriting the expression in a
canonical form. We describe this process in §4.3.1. After having normalized the expression
and optimized it for efficient execution, VAST’s fully asynchronous index engine can work
on the individual expression components in parallel. §4.3.2 details this procedure. When it
comes to extracting actual index hits from the archive, the export component coordinates
the communication between index and archive, which involves a significant amount of
pipelined communication. We show how finite state machines help with implementing this
communication effectively in §4.3.3.

4.3.1 Expression Normalization

When users issue a query, they can express the same semantics in various syntactic forms.
For example, the expressions A ∧ B and A ∨ B differ syntactically but not semantically.
Likewise, a user may equivalently express a predicate as I = x or x = I, because the equality
relation is symmetric. To facilitate processing, query engines normalizes the expression AST
into a canonical form. Normalization not only reduces equivalence classes of queries to a
single point, but also enables optimizations to speed up execution, as we describe in §4.3.2.

VAST currently performs three transformations of the AST:

CHAPTER 4. IMPLEMENTATION 82

A

&&

B

&&

C

&&

D A

&&

B C D

Figure 4.6: Expression normalization: hoisting. To reduce the number of intermediary AST
nodes, the normalization hoists nested conjunctions and disjunctions. This figure illustrates
hoisting conjunctions: (A ∧ B) ∧ (C ∧ D) flattens out to A ∧ B ∧ C ∧ D.

A

&&

BA

!

&&

B

||

C

! !

!

C

! A

&&

B' C'

Figure 4.7: Expression normalization: negation normal form (NNF) and negation absorbing.
Converting an expression into NNF (i) pushes negations downwards to the predicate level

using De-Morgan and (ii) eliminates double negations. The expression A ∧ B ∨ C first
becomes A ∧ B ∧ C. Thereafter, we can absorb negations further and reduce the intermediate
expression to A ∧ B′ ∧ C ′. (For example, if B = I < x, then B′ = I ≥ x.)

CHAPTER 4. IMPLEMENTATION 83

Hoisting. The normalization process hoists nested conjunctions and disjunction to reduce
the height of the AST and avoid unnecessary evaluations. Figure 4.6 exemplifies this
process with conjunctions; it equally applies to disjunctions.

Aligning. A predicate of the form LHS ◦RHS can have two forms when either side contains
a value. The alignment step ensures that the extractor always occurs on the LHS
and the value on the RHS. For example, the normalization procedure rewrites the
expression 42 > I to I < 42, flipping LHS and RHS and also the relational operator.

NNF. Normalization also brings the AST in negation normal form (NNF). This step includes
two aspects: (i) pushing negation inwards to the predicate level and (ii) eliminating

double negations. For example, the NNF of A ∧ B ∨ C is A ∧ B ∧ C. The first half of
Figure 4.7 illustrates this example.

Absorbing. Since each relational operator has a complement, we can remove negations
entirely. For example, I < x becomes I ≥ x. The second half of Figure 4.7 illustrates
this example. After converting the AST to NNF and absorbing remaining negations,
we perform another hoisting pass to ensure that the changed AST does not include
newly created inefficiencies.

4.3.2 Evaluating Expressions

When the index receives a query consisting of multiple predicates combined with boolean
operators, efficient evaluation becomes a vital concern in order to deliver interactive response
times. In the workflow for historical queries, which we describes in §3.2.4.1, indexers send
their hits back to partition, where they trigger an evaluation of the expression. If the
evaluation yields new hits (i.e., a bit vector with new 1-bits), partition forwards them to
index, which in turn relays them to exporter.

To minimize latency and relay hits upstream as soon as possible, we normalize queries to
negation normal form (NNF) and absorb remaining negations (see §4.3.1). The absence
of negations, aside from saving an extra complement operation, has a useful property: a
1-bit will never turn to 0 when evaluating disjunctions. To understand this benefit, consider
a predicate A which decomposes into n sub-predicates. This may occur for predicates of
the form :addr in 172.16.0.0/16, where the type extractor :addr acts as a placeholder
resolving to n concrete schema extractors. When partition sends A to the n indexers, they
report their hits asynchronously as soon as they become available. partition continuously
re-evaluates the AST for newly arriving hits Hi, until having computed A = H1 ∨ · · · ∨ Hn.
As soon as a re-evaluation yields one or more new 1-bits, partition relays this delta upstream
to index. If we kept the negation A, we would to wait for all n hits to arrive in order to
ensure we are not producing a false positive, but without negations, we can relay this change
immediately since a 1-bit cannot turn 0 again in a disjunction. In other words, the absence
of negations makes it possible to relay hits as soon as they manifest.

CHAPTER 4. IMPLEMENTATION 84

extracting

waitingidle

done

hits arrived,
unprocessed hits

finished batch,
no inflight batches

finished batch,
inflight batch

processed fewer events
than in batch

all hits arrived,
no unprocessed hits batch

arrived

Figure 4.8: The query state machine.

4.3.3 Finite State Machines

We found that finite state machines (FSMs) provide an indispensable mechanism to ensure
correct message handling during query execution. Recall from §3.2.4 that node spawns an
exporter for each query to bridge archive and index. We implemented exporter as a
finite state machine (see Figure 4.8), which begins in state idle. Upon receiving new hits,
exporter asks archive for the corresponding batches and transitions to waiting. As soon
as the first batch arrives, it transitions to extracting, from where a user can selectively
control it to fetch specific results. By letting the user drive the extraction, VAST does not
consume resources unless needed.

4.4 Code Base

As of this writing, VAST comprises 32,300 lines of C++ code, excluding whitespace and
comments, plus 6,700 lines of unit tests verifying the system’s building blocks and basic
interactions. We distribute VAST as free open-source software at http://vast.io under a
permissive 3-clause BSD license.

VAST uses CMake [48] for cross-platform builds. Aside from CMake, VAST only depends
on the C++ Actor Framework (CAF) [33]. In principle, CAF (and therefore VAST) can run
on any POSIX-compliant UNIX platform. We tested VAST primarily on recent Linux and
FreeBSD distributions. CAF has no dependencies other than a standard-compliant C++11

http://vast.io

CHAPTER 4. IMPLEMENTATION 85

compiler. VAST, however, requires a C++14 compiler, because we make use of features
not available in C++11. These include improved function return type deduction, variable
templates, aggregate member initialization, generic lambdas, lambda capture expression, as
well as several standard library improvements including user-defined literals and additional
type aliases for template metaprogramming.

CHAPTER 4. IMPLEMENTATION 86
T

y
p

e
S
tr

u
ct

u
re

A
p
p

en
d

L
o
o
k
u
p

b
a
si

c∗
I

I
�
x
(α

)
I
◦
x

k
-c

o
m

p
o
n
en

t†
K
β

=
〈I
k
,.
..
,I

1
〉

Θ
k

=
K
β

β
i
=
β
j
=
2
∧
|β
|=
k

Φ
w

=
K
β

∏ k i
=

1
β
i
≤

2
w

K
β
�
x
(α

)
≡

I i
�
x
(α

)
i

∀1
≤
i
≤
k

K
β
◦
x
≡

`(
K
β
,◦
,x

)

b
o
o
l

B
=
S

B
�
x
(α

)
≡

S
�
α

iff
x

=
t
r
u
e

B
◦
x
≡

{ S
x

=
f
a
l
s
e

S
x

=
t
r
u
e

c
o
u
n
t

C
=

Φ
6
4

C
�
x
(α

)
≡

Φ
6
4
�
x
(α

)
C
◦
x
≡

Φ
6
4
◦
x

i
n
t

I
=

Φ
6
4

I
�
x
(α

)
≡

Φ
6
4
�

(x
(α

)
u +

2
6
3
)

I
◦
x
≡

Φ
6
4
◦

(x
u +

2
6
3
)

r
e
a
l
§

F
=
〈S
,E
,M
〉

S
=

B

E
=

Θ
1
1

M
=

Θ
5
2

F
�
〈x
s
,x
e
,x
m
〉(
α
)
≡

 S
�
x
(α

)
s

E
�
x
(α

)
e

M
�
x
(α

)
m

F
◦x
≡

 S
=
x
s
∧
E
◦
x
e
∧
M
◦
x
m

◦
∈
{=
,6=
}

S
=

0
∧
E
◦
x
e
∧
M
◦
x
m

x
≥

0
∧
◦
∈
{>
,≥
}

S
=

1
∨

(E
◦
x
e
∧
M
◦
x
m

)
x
≥

0
∧
◦
∈
{<
,≤
}

S
=

0
∨

(E
O
x
e
∧
M
O
x
m

)
x
<

0
∧
◦
∈
{>
,≥
}

S
=

1
∧
E
O
x
e
∧
M
O
x
m

x
<

0
∧
◦
∈
{<
,≤
}

d
u
r
a
t
i
o
n

D
=

I
D
�
x
(α

)
≡

I
�
x
(α

)
D
◦
x
≡

I
◦
x

t
i
m
e

T
=

D
T
�
x
(α

)
≡

D
�
x
(α

)
T
◦
x
≡

D
◦
x

s
t
r
i
n
g

S
=
〈φ
,κ

1
,.
..
,κ
M
〉

φ
=
K
β

κ
i

=
Θ

8
S
�
〈x

1
,.
..
,x
n
〉(
α
)
≡

{ φ�
n
(α

)

κ
i
�
x
(α

)
i

∀
1
≤
i≤
n

S
◦x
≡

 0
|x
|>

M

φ
=

0
|x
|=

0

φ
=
|x
|∧

|x
| ∧ i=
1

κ
i

=
x
i

◦
∈
{=
,6=
}

φ
≥
|x
|∧

M
−
|x
|+

1
∨ i=

1

 |x| ∧ j
=
1

κ
i+
j
−
1

=
x
j

◦
∈
{∈
,
/∈
}

∗
T

h
e
ba
si
c

in
d

ex
h

a
s

a
fi

x
ed

b
in

n
in

g
,

co
d

in
g
,

a
n

d
co

m
p

re
ss

io
n

sc
h

em
e

a
n

d
o
p

er
a
te

s
o
n

v
a
lu

es
x
∈
X
⊆

N
+ 0

.
It

h
a
s

ca
rd

in
a
li
ty
C
≤
|X
|.

(s
ee
§2

.4
.3

)
†

T
h

e
k
-c

o
m

p
o
n

en
t

in
d

ex
o
p

er
a
te

s
w

it
h

a
b

a
se
β

=
〈β
k
,.
..
,β

1
〉.

W
e

in
tr

o
d

u
ce

a
lg

o
ri

th
m
`

in
§2

.4
.4

.
T

h
e

b
it

-s
li

ce
d

in
d

ex
[1

9
9
]

is
a

sp
ec

ia
l

ca
se

o
f
K
β

w
h

er
e
β
i

=
2

fo
r

a
ll
i
∈
{1
,.
..
,k
}.

T
h

e
m

u
lt

i-
co

m
p

o
n

en
t

in
d

ex
Φ
w

ca
n

a
t

m
o
st

re
p

re
se

n
t

2
w

d
is

ti
n

ct
v
a
lu

es
.

§
W

e
d

en
o
te

b
y
O

th
e

“
m

ir
ro

re
d

”
o
p

er
a
to

r
o
f
◦,

e.
g
.,
<

a
n

d
>

.

T
a
b

le
4
.1

:
S
u
m

m
ar

y
of

ap
p

en
d

an
d

lo
ok

u
p

op
er

at
io

n
s

on
h
ig

h
-l

ev
el

in
d
ex

es
.

CHAPTER 4. IMPLEMENTATION 87

T
y
p

e
S
tr

u
ct

u
re

A
p
p

en
d

L
o
o
k
u
p

a
d
d
r

A
=

Θ
1
2
8

A
�
〈x

1
,.
..
,x

1
2
8
〉(
α
)
≡

Θ
1
2
8

i
←
x
(α

)
i

∀1
≤
i
≤

1
2
8

A
◦
x
≡

 k ∧ i=
1

Θ
1
2
8

i
=
x
i
◦
∈
{∈
}

A
3
x

◦
∈
{/∈
}

s
u
b
n
e
t

U
=
〈A
,Φ

8
〉

U
�
〈x
a
,x
p
〉(
α
)
≡

{ A
�
x
(α

)
a

Φ
8
�
x
(α

)
p

U
◦x
≡

 Φ
8
≤
x
p
∧

(p ∧ i=
1

A
i

=
x
a
i

) ◦
∈
{∈
}

U
3
x

◦
∈
{/∈
}

p
o
r
t

P
=
〈Φ

1
6
,Φ

2
〉

P
�
〈x
n
,x
t
〉(
α
)
≡

{ Φ
1
6
�
x
(α

)
n

Φ
2
�
x
(α

)
t

P
◦
x
≡

{ Φ
1
6
◦
x
n
∧

Φ
2

=
x
t

x
t
6=

u
n
k
n
o
w
n

Φ
1
6
◦
x
n

x
t

=
u
n
k
n
o
w
n

v
e
c
t
o
r
∗

X
V

=
〈φ
,V

1
,.
..
,V
M
〉

φ
=
K
β

X
V
�
〈x

1
,.
..
,x
n
〉(
α
)
≡

{ φ�
n
(α

)

V
i
�
x
(α

)
i

∀1
≤
i
≤
n

X
V
◦
x
≡

{ se
e

S
◦
x

τ
(x

)
=

v
e
c
t
o
r

se
e

X
S
◦
x

τ
(x

)
=

s
e
t

s
e
t

X
S

=
〈φ
,V

1
,.
..
,V
M
〉

φ
=
K
β

X
S
�
〈x

1
,.
..
,x
n
〉(
α
)
≡

{ φ�
n
(α

)

V
i
�
x
(α

)
i

∀1
≤
i
≤
n

X
S
◦
x
≡

 0
|x
|>

M

φ
=

0
|x
|=

0
|x
| ∧ i=
1

(M ∨ j
=
1

V
j

=
x
i

) ot
h
er
w
is
e

t
a
b
l
e
†

X
T

=
〈φ
,X

1
,.
..
,X

M
,Y

1
,.
..
,Y
M
〉

φ
=
K
β

X
i

=
V

Y
i

=
V

X
T
�
〈(
k
1
,v

1
),
..
.,

(k
n
,v
n
)〉

(α
)
≡

 φ
�
n
(α

)

X
i
�
k
(α

)
i

∀
1
≤
i≤
n

Y
i
�
v
(α

)
i

∀
1
≤
i≤
n

X
T
◦
k
≡

 M ∨ i=
1

X
i

=
k
◦
∈
{∈
}

X
T
3
k

◦
∈
{/∈
}

X
T
◦
v
≡

 M ∨ i=
1

Y
i

=
v
◦
∈
{∈
}

X
T
3
v

◦
∈
{/∈
}

X
T
◦

(k
,v

)
≡

 M ∨ i=
1

(X
i

=
k
∧
Y
i

=
v
)
◦
∈
{∈
}

X
T
3

(k
→
v
)

◦
∈
{/∈
}

∗
D

ep
en

d
in

g
o
n

th
e

ty
p

e
τ
(x

)
o
f

v
a
lu

e
x

,
th

e
lo

o
k
u

p
fu

n
ct

io
n

ca
n

ei
th

er
p

re
se

rv
e

o
rd

er
in

g
(a

s
in

su
b

st
ri

n
g

se
a
rc

h
)

o
r

ig
n

o
re

o
rd

er
in

g
(a

s
in

su
b

se
t

se
a
rc

h
).

†
A

ta
b

le
v
a
lu

e
h

a
s

th
e

fo
rm

x
=
〈(
k
1
,v

1
),
..
.,

(k
n
,v
n

)〉
.

W
e

sh
o
w

lo
o
k
u

p
s

fo
r

a
si

n
g
le

k
ey

,
v
a
lu

e,
o
r

m
a
p

p
in

g
.

T
a
b
le

4
.2

:
S
u
m

m
ar

y
of

ap
p

en
d

an
d

lo
ok

u
p

op
er

at
io

n
s

on
h
ig

h
-l

ev
el

in
d
ex

es
.

88

Chapter 5

Evaluation

Le véritable voyage de découverte ne consiste
pas à chercher de nouveaux paysages, mais à
avoir de nouveaux yeux.

Marcel Proust

After presenting the design and implementation of VAST in previous chapters, we now
evaluate our system across several dimensions. We begin with introducing our measurement
infrastructure and data sets in §5.1. We continue with a qualitative analysis of correctness
in §5.2. Thereafter, we perform a quantitative analysis of ingestion and indexing throughput
(§5.3), query latency (§5.4), intra-machine and inter-machine scaling (§5.5), and storage
overhead (§5.6).

5.1 Measurement Infrastructure

We conduct our measurements on multiple machines using several data sets. Before discussing
the specifics of the analysis, we describe our infrastructure, which includes our testbeds
in §5.1.1 and data in §5.1.2.

5.1.1 Machines

Our available machines for testing consist of individual machines as well as a cluster. We
conduct our single-machine measurements on packrat: this machine comes with two 8-core
Intel Xeon E5-2640 CPUs clocked at 2 GHz, 128 GB RAM, six 4 TB 6 G SAS 7.2 K disks
configured in a RAID 10, and a RAID controller with 2 GB cache. packrat runs 64-bit
FreeBSD 10.2-RELEASE and stores its data on a ZFS filesystem.

For our distributed measurements, we employ a cluster with 28 blade worker nodes and a
manager node, connected via 1 GE on the same switch. Each blade comes with 12 GB

CHAPTER 5. EVALUATION 89

Type Events Size Dimensionality

Test 10 M N/A 1∗

PCAP 10 M 6.4 GB 5†

Bro 3.4 M 411 MB 20‡

Bro-N 1.24 B 152 GB 20‡

PCAP 877 K 850 MB 5†

Bro 28 K 5.3 MB 1–27¶

∗ We used an IP address value whose bytes follow a Pareto(0, 1) distribution.
† We only index the connection 5-tuple and skip the packet payloads.
‡ We perform the measurements with Bro’s 20-column conn.log.
¶ We concatenate all logs that Bro produced by processing the trace.

Table 5.1: Data sets used for our evaluation. The top section of the
table describes the data we use for our single-machine experiments, the
middle section for our cluster measurements, and the bottom section for
our compression algorithm comparison.

RAM and two 8-core Intel Xeon E5430 CPUs clocked at 2.66 GHz. The manager hosts a
14 TB RAID-6, shared among the blades via NFS. Each blade additionally holds 1 TB
locally as a ZFS RAID-1 of two SATA disks. The blades run FreeBSD-10.2-CURRENT and
the manager runs FreeBSD-10.3-RELEASE.

5.1.2 Data Sets

Our measurements consist of two types of input: synthetic workloads that we can precisely
control, and real-world network traffic. For the former, we implemented a benchmark source
that generates input for VAST according to a configuration file, which enables specification of
dimensionality and value distribution. This source produces all synthetic data in memory
to avoid adding I/O load. For real-world input, we use PCAP traces plus the derived Bro
logs. For plain PCAP ingestion, VAST functions as a flow-oriented bulk packet recorder akin
to Time Machine [130]. We summarize key properties of our data sets in Table 5.1.

Our PCAP trace for single-machine evaluation represents live traffic recorded at the uplink
of the International Computer Science Institute (ICSI) at Berkeley, California. The Bro
connection logs for our cluster evaluation stem from network traffic recorded over the course
of 3 days in fall 2015 at a large university campus. For our compression algorithm comparison,
we use a synthetically generated PCAP trace from the M57-Patents scenario [128].

Moreover, we use the set of test queries given in Table 5.2, which a security operator for a
large enterprise confirmed indeed reflect common searches during an investigation. The top
6 queries execute over Bro connection logs and the bottom 3 over PCAP traces.

CHAPTER 5. EVALUATION 90

L
ab

el
R

es
u

lt
s

Q
u

er
y

D
es

cr
ip

ti
o
n

A
3
74

r
e
s
p
h
=
=
2
0
0
1
:
7
f
e
:
:
5
3

C
on

n
ec

ti
on

s
to

a
sp

ec
ifi

c
IP

v
6

a
d

d
re

ss
B

94
2

(
d
u
r
a
t
i
o
n
>
1
0
0
0
s
|
|
r
e
s
p
b
y
t
e
s
>
4
0
0
0
0
)
&
&
s
e
r
v
i
c
e
=
=

"
d
n
s
"

A
n

om
al

o
u

s
D

N
S

/
zo

n
e

tr
an

sf
er

s

C
1
3

o
r
i
g
h
i
n
1
9
2
.
1
5
0
.
1
8
6
.
0
/
2
3
&
&
o
r
i
g
b
y
t
e
s
>
1
0
0
0
0
&
&

s
e
r
v
i
c
e
=
=
"
h
t
t
p
"

O
u

tg
o
in

g
H

T
T

P
re

q
u

es
ts
>

1
0

K
B

(e
x
fi

l-
tr

at
io

n
)

D
3

d
u
r
a
t
i
o
n
>
1
h
&
&
s
e
r
v
i
c
e
=
=
"
s
s
h
"

L
on

g-
li

ve
d

S
S

H
se

ss
io

n
s

E
9
6
9,

09
2

c
o
n
n
s
t
a
t
e
!
=
"
S
F
"

T
C

P
se

ss
io

n
s

la
ck

in
g

n
or

m
a
l

te
rm

in
at

io
n

F
48

1
2

:
a
d
d
r
i
n
1
9
2
.
1
5
0
.
1
8
6
.
0
/
2
3
&
&
:
p
o
r
t
=
=
3
3
8
9
/
?

A
ll

R
D

P
in

vo
lv

in
g

IC
S

I
co

n
n
ec

ti
o
n

s

G
1,

07
7

:
a
d
d
r
i
n
1
9
2
.
1
5
0
.
1
8
6
.
0
/
2
3
&
&
:
p
o
r
t
=
=
3
3
8
9
/
?

S
am

e
as

ab
ov

e,
b
u
t

ap
p
li
ed

to
P

C
A

P
tr

ac
e

H
34

&
t
i
m
e
>
2
0
1
5
-
0
2
-
0
4
+
1
0
:
0
0
:
0
0
&
&
&
t
i
m
e
<

2
0
1
5
-
0
2
-
0
4
+
1
1
:
0
0
:
0
0
&
&
(
(
s
r
c
=
=
7
7
.
2
5
5
.
1
9
.
1
6
3
&
&

d
s
t
=
=
1
9
2
.
1
5
0
.
1
8
7
.
4
3
&
&
s
p
o
r
t
=
=
4
9
6
1
3
/
?

&
&
d
p
o
r
t

=
=
4
4
3
/
?
)

|
|
(
s
r
c
=
=
1
9
2
.
1
5
0
.
1
8
7
.
4
3
&
&
d
s
t
=
=

7
7
.
2
5
5
.
1
9
.
1
6
3
&
&
s
p
o
r
t
=
=
4
4
3
/
?

&
&
d
p
o
r
t
=
=
4
9
6
1
3
/
?
)
)

E
x
tr

a
ct

a
ll

p
a
ck

et
s

fr
o
m

a
si

n
g
le

co
n

n
ec

-
ti

on
sp

ec
ifi

ed
b
y

it
s

4-
tu

p
le

an
d

re
st

ri
ct

ed
to

a
on

e-
h

ou
r

ti
m

e
w

in
d

ow

I
18

7
,0

15
&
t
i
m
e
>
2
0
1
5
-
0
2
-
0
4
+
1
0
:
0
0
:
0
0
&
&
&
t
i
m
e
<

2
0
1
5
-
0
2
-
0
4
+
1
1
:
0
0
:
0
0
&
&
:
a
d
d
r
=
=
1
9
2
.
1
5
0
.
1
8
7
.
4
3

A
ll

tr
a
ffi

c
fr

o
m

a
si

n
g
le

m
a
ch

in
e

w
it

h
in

a
on

e-
h

ou
r

w
in

d
ow

T
a
b
le

5
.2

:
T

es
t

q
u
er

ie
s

fo
r

th
ro

u
gh

p
u
t

an
d

la
te

n
cy

ev
al

u
at

io
n
.

T
h
e

to
p

6
q
u
er

ie
s

ru
n

ov
er

B
ro

co
n
n
ec

ti
on

lo
gs

an
d

th
e

b
ot

to
m

3
ov

er
a

P
C

A
P

tr
ac

e.

CHAPTER 5. EVALUATION 91

5.2 Correctness

Per §4.4, VAST comes with 6,700 lines of unit tests checking the system’s building blocks.
We expand on these checks with an end-to-end test of whether the entire pipeline—from
import to querying to export—yields correct results. For validation, we processed our ground
truth (PCAP traces and Bro logs) separately and cross-checked against the query results
VAST delivers. We found full agreement.

5.3 Throughput

One key performance metric is the rate of events that VAST can ingest. Recall from §3.2
the data flow: sources parse and send input to a system entry point, an importer, which
dispatches the events to archive and index. Because we can spawn multiple sources for
arbitrary subsets of data, we did not optimize sources at this stage in our development,
nor archive, which merely sequentially compresses events into fixed-size chunks and writes
them out to the filesystem. Instead, we concern ourselves with achieving high performance at
the bottleneck: index, which performs the CPU-intensive task of building bitmap indexes.

Per §3.2, index uses partitions as its unit of horizontal data scaling. Initially, we load-
balanced each arriving event batch over multiple partitions, but later found that varying
the number of partitions has no effect on performance. This stems from the fact that each
partition already exhibits a high degree of concurrency by spawning numerous indexers,
one per batch. This abundance of tasks fully saturates the worker queues of CAF’s actor
scheduler. Consequently, we perform all ingestion measurements with only one active
partition and replace it with a new one once it reaches its default capacity of 1 M events.

We measure throughput at various points during the import process. The setup consists of a
single VAST process which includes all components. This presents the worst-case scenario,
because now a single process has to perform both CPU-intensive tasks and I/O at the same
time. Normally sources run as separate process at the data producer, which alleviates
I/O load and CPU-intensive data parsing, at the cost of extra message serialization between
source and importer.

In particular, we look at the number of events per second that archive, index, and source
can sustain when varying the input batch size as well as the number of CPU cores we allow
the runtime to use. We control the number of cores by adjusting the threads of the scheduler
in CAF. The data formats in our measurement include Bro, PCAP, and our benchmark test
(see Table 5.1). The highly concurrent architecture complicates measurements of aggregate
throughput at index, which runs multiple indexers in parallel, but not all start and finish at
the same time. The overlapping and shifted execution times prevent an accurate measurement
of an aggregate rate at a given point in time. Therefore we compute index throughput as
the number of events processed between start and end of the entire measurement. Thus, the

CHAPTER 5. EVALUATION 92

65
53

6
13

10
72

26
21

44
52

42
88

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

8,
19

2

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

52
4,

28
8

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

8,
19

2

16
,3

84

32
,7

68

65
,5

36

13
1,

07
2

26
2,

14
4

52
4,

28
8

1,
04

8,
57

6

2,
09

7,
15

2

4,
19

4,
30

4

bro pcap test

0
10

20
30

0
10

20
30

0
10

20
30

0
10

20
30

C
or

es

Events/sec

A
sp

ec
t

●
A

rc
hi

ve

In
de

x

S
ou

rc
e

Figure 5.1: Throughput measured at various points during import. Each panel shows a
combination of data format and batch size.

CHAPTER 5. EVALUATION 93

throughput can never exceed the input rate of source, which dictates the upper bound for
index.

Figure 5.1 summarizes the results. Each panel shows a combination of data format and batch
size. The y-axis shows throughput in events per second; note the log scale. As mentioned
above, by the current design, source and archive exhibit fairly constant throughput.
We experimented with four different batch sizes at source: 65,536, 131,072, 262,144, and
524,288. These values represent the number of events source buffers before sending them to
importer. Increasing the batch size has a particularly pronounced effect for PCAP events.
For this format, events consist of the connection 5-tuple plus the full IP payload. The packets
in the trace have a median wire length of 1434 bytes. That is, these events exhibit a size that
is one order of magnitude higher than Bro events, and another order of magnitude higher
than the test events. With a batch size of 524,288, we see deteriorating throughput because
of large message sizes: a batch can occupy as much as 746 MB, assuming all packets have
the maximum MTU of 1492 bytes. To avoid the higher latency jitter induced by large batch
sizes, we restrict the following measurements to 65,536 events per batch.

We observe that the indexing rate approaches the input rate for all sources between 8–16
cores. More cores yield no further improvement; in fact, performance decreases slightly.
This artifact likely stems from over-subscription: our measurement system packrat has
hyperthreading enabled, which exposes 32 cores to the OS instead of the 16 phyiscal ones.
Moreover, CAF does not pin its worker threads to a specific core. This means that the OS has
the freedom to schedule the same thread on a different core. CAF comes with a work-stealing
scheduler which increases the probability that the same actor executes on a different thread.
These effects can increase the number of context switches and cache evictions, resulting in
poorer performance. The CAF developers are aware of this situation and further work on a
NUMA-aware scheduler.

We take a closer look at the indexing throughput of Bro events for a batch size of 65,536 in
Figure 5.2. Each panel shows one run with a different number of cores. Each row represents
a single batch, where the vertical bar denotes the time when indexing began and the circle
when it completed. The “tail” corresponds to the time it took to index an event batch.
Starting at 11 cores, we see a uniform processing time of event batches, which aligns with
the results mentioned in the previous paragraph.

Looking at the measurements with a batch size of 65,536, VAST parses Bro events at a rate
of roughly 100 K events per second, with each event consisting of 20 different values, yielding
an aggregate throughput of 2 M values per second. For PCAP, events consist of only the
5-tuple plus the full packet payload; the latter do not need indexing. VAST can read at
around 260 K packets per second with libpcap. Since archive does not skip the payload, it
cannot keep up with the input rate. This suggests that we need to parallelize this component
in the future, which can involve spawning one compressor per event batch to parallelize
the process. With our test source, index converges to the input rate at around 14 cores,
and we observe input rates close to 1 M events per second. We conclude that VAST meets

CHAPTER 5. EVALUATION 94

||
||
| ||

||
||
||
| ||

||
||
||
||
||

||
||

||
||
||
||
||
| ||

||
||
||
||
||
||
||
||
| ||

||

||
||
||
||
||
||

||
||
||
||
||
| ||

||
||
||
||

|| || ||

||
||
||
||
||
||
||

||
||
||
||
||

||
||
||
||
||
||
| ||

||

|||
|| |||

|| |||
|

|||
||| |||

|||
| | ||||

||

|||
|||

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32

0 50 100 150 0 50 100 150
Runtime (seconds)

B
at

ch

25000

50000

75000

Rate

Figure 5.2: Indexing runtime for event batches of size 65,536. Each panel shows one run
with a different number of cores. Each row represents a single batch, where the vertical bar
denotes the time when indexing began and the circle when it completed.

the performance and scalability goals for data import on a single machine: the system scales
up to the point of the input rate after 10–14 cores.

To better understand where VAST spends its time, we instrumented CAF’s scheduler to get
fine-grained, per-actor resource statistics. This involved bracketing the job execution with
resource tracking calls (getrusage on FreeBSD/Linux and thread info on Mac OS), i.e.,
we only measure actor execution and leave CAF runtime overhead out of the picture. We
contributed our profiling enhancements to the CAF code base, including the R scripts to
automatically generate over a dozen similar plot variations.

We begin with looking at the CPU utilization of CAF’s worker threads in Figure 5.3. The
left panel Figure 5.3(a) shows CPU utilization as function of time, where the bottom (red)
line represents system CPU time and the top (blue) line user CPU time. The plot exhibits

CHAPTER 5. EVALUATION 95

●

●

●●●

●

●●
● ●

●
● ●●

●●●
●●●●

●●●

●

●
●●

●
●

●

●
● ●●

● ●
●

●

●

● ●●● ●●●
●

●

●

●●

●

●

●

●●● ●
●

●

●

●

●●

●

●●●

●

●

●

● ● ●

●

●

●

●
●

●

●
●

● ●
●

●
●

● ●

●

●

●

● ● ●

●

●●
●

●● ●● ●●
●

● ●

●

●● ●●

●

● ●
●

●

●

●●
●

● ●●●

●
● ●●●● ●

●
●●●

●
●

●●
● ●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●

●● ● ●●

●

●●●

●

● ●●●

●

●
●●●

●

●

●

●

●●

●

●●●
●

●●
●

●● ●●
●●

●●●
●

●

●

●

●
●

●

●

●
●●● ●

●

●
●●●

●● ●● ● ●●

●

●

●

●

●

●●● ●
●

●

●

●

●
●

● ● ●●●

●

●●

●

●

●
● ●

● ●
●

●

●● ●

●

●● ●●● ●

●

●● ●● ●● ●● ●●● ●
●

●
● ● ●●● ● ●● ●

●

●

●

●

●

●● ●●●● ●● ● ●
●

● ●

●

● ●●● ●
●

●●●
●●

●●

●

●

●

●

●

●●
●●

●● ●● ●●●

●

●

●
● ●

● ●●●●
● ●● ●

0 1 2 3

4 5 6 7

8 9 10 11

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time

C
P

U
 u

til
iz

at
io

n

(a) Utilization over time.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.85

0.90

0.95

1.00

0 5 10 11 3 2 4 6 1 8 7 9

ID

C
P

U
 u

til
iz

at
io

n

System

User

Domination

(b) Utilization aggregate.

● ●

●

1ms

10ms

100ms

1s

10ms 100ms 1s 10s 1.7m
User CPU time

S
ys

te
m

 C
P

U
 ti

m
e

Utilization
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

0.84
0.88
0.92
0.96

ID

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

accountant
archive
event−data−indexer
event−indexer
event−name−indexer
event−time−indexer
identifier
importer
index
key−value−store
node
OTHER
partition
task

(c) Utilization per actor type.

0us

50s

1.7m

2.5m

3.3m

4.2m

5m

ev
en

t−
da

ta
−

in
de

xe
r

ev
en

t−
tim

e−
in

de
xe

r

ev
en

t−
na

m
e−

in
de

xe
r

ar
ch

iv
e

in
de

x

ev
en

t−
in

de
xe

r

pa
rt

iti
on

im
po

rt
er

no
de

ta
sk

ke
y−

va
lu

e−
st

or
e

ac
co

un
ta

nt

id
en

tif
ie

r

O
T

H
E

R

ID

C
P

U
 ti

m
e

CPU time
User
Sytem

(d) Utilization per actor type.

Figure 5.3: CPU utilization when indexing Bro event batches of 65,536 with 12 cores. The
top two Figures (a) and (b) show CPU utilization per worker thread, while the bottom two
Figures (c) and (d) show actor-level utilization. Figure 5.4 decomposes Figure (c) to the level
of actor instances.

CHAPTER 5. EVALUATION 96

● ●

0us

10us

100us

1ms

10ms

100ms

1s

0us 10us 100us 1ms 10ms 100ms 1s 10s
User CPU time

S
ys

te
m

 C
P

U
 ti

m
e

Utilization
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

0.25
0.50
0.75
1.00

ID

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

accountant
archive
event−data−indexer
event−indexer
event−name−indexer
event−time−indexer
identifier
importer
index
key−value−store
node
OTHER
partition
task

Figure 5.4: CPU utilization per actor instance during import. The x-axis shows user time
and the y-axis system time; note the log-scaling. Each point represents a single instance of
an actor. Figure 5.3(c) shows an aggregate version of this plot.

CHAPTER 5. EVALUATION 97

one panel per worker thread. Overall, we see full CPU utilization of all threads in user time,
with a few occasional spikes when VAST writes out indexes to the filesystem. Even though
VAST performs blocking I/O writes, the operation does not incur significant CPU stalls,
presumably because the OS provides a large enough buffer cache and writes out the data
asynchronously at its convenience. The right panel Figure 5.3(b) aggregates utilization into
one boxplot per thread. Except for a few outliers, the median utilization approaches 1.

Next, we seek to better understand the performance of the individual components in terms
of actors. In Figure 5.4, we plot user versus system CPU time for all key actors. Each point
represents a single actor instance, with its size scaled to the utilization, which we define as
user plus system CPU time divided by wallclock time. Note the log scale on both axes. In
the top-right corner, we see archive, which spends its time compressing events (user) and
writing chunks to disk (system). Likewise, index appears nearby, which primarily manages
partitions and builds “meta indexes” based on time to quickly identify which partition to
consider during a query. The bulk of the processing time spreads over numerous indexers,
which we can see accumulating on the right-hand side, because building bitmap indexes is a
CPU-bound task. Figure 5.3(d) summarizes the individual actor instances per actor type.
Each bar represents the aggregate amount of CPU time of a specific actor type. Overall,
we see that event-data-indexer consumes the largest amount of CPU time, followed by
event-time-indexer and event-name-indexer, which record event meta data. This
observation agrees with our expectation: constructing indexes over the data consumes most
time. Moreover, this task does not involve I/O other than writing out the indexes to the
filesystem, which explains the dominance of user CPU time.

Overall, we find that VAST makes near optimal use of available CPU resources (in terms
of no idling) when indexing events: all worker threads in CAF’s scheduler exhibit full CPU
utilization, with the actors responsible for indexing accounting for the largest share.

5.4 Latency

Query response time plays a crucial role in assessing the system’s viability. The iterative
workflow of investigations requires an interactive experience, which demands latencies on the
order of seconds. To measure latency, we use the set of test queries given in Table 5.2, which
a security operator for a large enterprise confirmed indeed reflect common searches during an
investigation.

There exist several latency aspects across the entire query pipeline. For analysts, a particularly
important metric represents the time until the first “taste” arrives, i.e., the time it takes
from issuing a query until the first results show up on the screen. The taste constitutes
an important metric because small data subsets already allow for quick triaging decisions
to steer the analysis process, thereby avoiding unproductive analyst downtime. From an
internal system perspective, there exist additional aspects of latency. VAST spawns one
exporter per query, which acts as a middleman receiving hits from index and retrieving

CHAPTER 5. EVALUATION 98

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●

I

H

G

F

E

D

C

B

A

0 5 10 15 20 25 30 35 40 45
Latency (seconds)

Q
ue

ry

Count
●

●

●

100,000
200,000
300,000

Time until
Index
Query
Taste

Figure 5.5: Query pipeline reflecting various stages of single-node execution. The first stage
(Index) may appear absent because it takes too little time to manifest in the plot. Crosses
show when hits arrive, and circles the completion of extracting results from an event batch.
The median taste (arrival of first result) is about 1 second.

the corresponding compressed chunks of events from archive. Two interleaving latency
elements concern the time (i) from the first to the last set of hits received from index, and
(ii) from the first to the last result sent to a sink after successful candidate checks. We take
a closer look at these latency aspects in the following.

Figure 5.5 illustrates the latency elements seen over the test queries. For all queries, we ran
VAST with 12 cores and a batch size of 65,536. The first red bar corresponds to the time it
took until exporter received the first set of hits from index. The blue bar shows the time
until exporter has sent the first result to its sinks. This corresponds to the “taste” time,
since from the user perspective it represents the first system response. The green bar shows
the time until exporter has sent the full set of results to its sink. The black transparent
box corresponds to the time when index finished the computation of hits. Finally, the crosses
inside the bar correspond to points in time when hits arrive, and the circles to the times
when exporter finishes extracting results from a batch of events.

We see that extracting results from archive (green bar) accounts for the largest share of
execution time. Currently, this time is a linear function of the query selectivity, because
exporter does not perform extraction in parallel. We plan to improve this in the future by
letting exporter spawn a dedicated helper actor per arriving batch from archive, enabling
concurrent sweeps over the candidates. Alternatively, we could offload more computation

CHAPTER 5. EVALUATION 99

●

● ●

●

●

● ● ● ● ● ● ●
●

●
● ●

0

2

4

6

8

10

12

14

16

4 8 12 16
Cores

La
te

nc
y

(s
ec

on
ds

)

Query
● A

B
C
D
E
F
G
H
I

Figure 5.6: Index latency (full computation of hits) as a function of cores.

into archive. Selective decompression algorithms [78] present an orthogonal avenue for
further improvement. Such algorithms enable decompressing and deserializing events at a
finer granularity, which can save a significant number of CPU cycles.

VAST processes index lookups in a continuous fashion, with first hits trickling in after a few
100 msecs. Figure 5.6 shows that nearly all index lookups fully complete within 3 seconds once
we use more than 4 cores. For query G, we observe scaling gains up to 10 cores. This particular
query (:addr in 192.150.186.0/23 && :port == 3389/?) processes large intermediate
bit vectors during the evaluation, which require more time to combine.

Next, we take a closer look at micro-benchmarks during query processing. Figure 5.7 illustrates
the resource utilization during executing query E. The semantics of the different figures follow
Figure 5.3. Unlike data import, the query export exhibits a more convoluted picture. While
ingestion was CPU-bound, we find the query processing to be I/O-bound. Per Figure 5.7(a),
we observe significantly more system CPU time (red lines) domination. Because VAST
currently performs blocking I/O, we also see poor overall utilization: the two points for CPU
and system time do not add up to 1.00. Our most likely explanation for this artifact is that
the missing share goes into seek time. Indeed, VAST creates numerous smaller index files,
which exacerbate this behavior. Figure 5.7(b) illustrates the poorer utilization. We observe a
larger fraction of system CPU time, which lowers the overall utilization in some cases due
to extra seeks. Also Figure 5.8 confirms our observation: in comparison to Figure 5.4, the
center of the point cloud shifts from the bottom right to the top left, in particular for the
event-data-indexer, which performs the index operations. Still, when looking at overall

CHAPTER 5. EVALUATION 100

●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●

0 1 2 3

4 5 6 7

8 9 10 11

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time

C
P

U
 u

til
iz

at
io

n

(a) Utilization over time.

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0 6 7 2 3 11 10 4 1 9 8 5

ID

C
P

U
 u

til
iz

at
io

n

System

User

Domination

(b) Utilization aggregate.

●

●

●

1ms

10ms

100ms

100us 1ms 10ms 100ms 1s 10s
User CPU time

S
ys

te
m

 C
P

U
 ti

m
e

Utilization
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

0.25
0.50
0.75

ID

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

accountant
archive
bro−sink
event−data−indexer
event−indexer
exporter
identifier
importer
index
key−value−store
node
OTHER
partition
task

(c) Utilization per actor instance.

0us

1s

2s

3s

4s

5s

6s

7s

ex
po

rt
er

ev
en

t−
da

ta
−

in
de

xe
r

ar
ch

iv
e

br
o−

si
nk

pa
rt

iti
on

ev
en

t−
in

de
xe

r

no
de

in
de

x

O
T

H
E

R

ac
co

un
ta

nt

ta
sk

ke
y−

va
lu

e−
st

or
e

id
en

tif
ie

r

im
po

rt
er

ID

C
P

U
 ti

m
e

CPU time
User
Sytem

(d) Utilization per actor type.

Figure 5.7: CPU utilization during execution of query E for event batches of size 65,536
with 12 cores. The top two Figures (a) and (b) show CPU utilization per worker thread,
while the bottom two Figures (c) and (d) show actor-level utilization. Figure 5.8 decomposes
Figure (c) to the level of actor instances.

CHAPTER 5. EVALUATION 101

●

●

0us

10us

100us

1ms

10ms

100ms

0us 10us 100us 1ms 10ms 100ms 1s 10s
User CPU time

S
ys

te
m

 C
P

U
 ti

m
e

ID

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

accountant
archive
bro−sink
event−data−indexer
event−indexer
exporter
identifier
importer
index
key−value−store
node
OTHER
partition
task

Utilization
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

0.00
0.25
0.50
0.75
1.00

Figure 5.8: CPU utilization per actor instance during export. The x-axis shows user time
and the y-axis system time; note the log-scaling. Each point represents a single instance of
an actor. Figure 5.7(c) shows an aggregate version of this plot.

CHAPTER 5. EVALUATION 102

CPU time in Figure 5.7(d), we see that exporter accounts for the largest share, because
it extracts results from the compressed data blocks received from archive and (currently
unconditionally) performs a candidate check. However, query E does not require a candidate
check and we should add additional logic to prevent the check when the index result is exact.
Other research has also found that decompressing the base data and performing the candidate
check dominates query execution [78, 162], which aligns with our findings.

Overall, we find that VAST meets our single-machine performance expectations. In particular,
we prioritized abstraction to performance in our prototype implementation, and have not
micro-optimized code bottlenecks (such as via inspecting profiler call graphs). Given that each
layer of abstraction—from low-level bit-wise operations to high-level concurrency constructs—
comes at the cost of performance, we believe that future tuning efforts hold promise for
further gains.

5.5 Scaling

In addition to single-machine benchmarks, we analyze how VAST scales over multiple machines
in a cluster setting, as this will constitute the only viable deployment model for large sites
with copious amounts of data.

Our first measurement concerns quantifying how CPU load during event import varies as
a function of cluster nodes. To this end, we ingest 1.24 B Bro connection logs (see §5.1)
by load-balancing them over the cluster nodes in batches of 65 K. That is, source on a
separate machine parses the logs and generates batches with a median rate of 125 K events
per second. Due to the fixed input rate, we assess scaling by looking at the CPU load of each
worker.

Figure 5.9 shows per-machine CPU inverse utilization 1/U for

U =

∑N
i (ui + si)∑N

i ti

with user CPU time ui, system CPU time si, and wallclock time ti, for selected values of i in
[0, N]. The value U can exceed 1.0 because each node runs several threads, and CPU time
measurements yield the sum of all threads. As one would expect for effective load-balancing,
we observe linear scaling gains for each added node N .

Our second measurement seeks to understand how query latency changes when varying the
number of nodes. We show the index completion latency of query D in Figure 5.10. For these
measurements, we first primed the file system cache in each case to compensate for a shortcut
that our current implementation takes (it maintains the index in numerous small files that
cause high seek penalties for reads from disk; an effect we could avoid by optimizing the
disk layout through an intermediary step so that the index can read its data sequentially).
We observe linear scaling from 12 nodes upward, but experience problems for the lower half.

CHAPTER 5. EVALUATION 103

●

●

●

●

●

●

●

0.5

1.0

1.5

2.0

5 10 15 20 25
Nodes

1
/ U

til
iz

at
io

n

Figure 5.9: Per-node CPU utilization during ingestion. A utilization of 1 does not mean
full saturation, because each process runs multiple threads. For example, for 2 nodes we
observe a per-node utilization of U = 5.2, which we here as 1/U = 0.2.

●

●●

●●
●

0.5

1.0

1.5

2.0

2.5

5 10 15 20 25
Nodes

La
te

nc
y

(s
ec

on
ds

)

Figure 5.10: Index completion latency as function of nodes for query D. The line shows the
median latency of all involved nodes.

Other queries show linear scaling for small numbers of nodes. We are in the process of
investigating the discrepancy.

CHAPTER 5. EVALUATION 104

5.6 Storage

In addition to evaluating VAST during runtime in terms of CPU consumption, we also measure
the overhead of VAST’s persistent data structure residing on the filesystem. In §5.6.1, we
compare various general-purpose compression algorithms, which the archive relies upon to
compactly store the base data. In §5.6.2, we examine the size of both archive and index and
for our single-machine measurements.

5.6.1 Archive Compression

VAST stores a full copy of the events in the archive, in compressed form (see §3.2.2). The
choice of compression determines three central system aspects:

Throughput. The higher the compression speed, the faster VAST can ingest events.

Latency. The higher the decompression speed, the faster VAST can return results.

Storage. The higher the space savings, the more events VAST can store on the filesystem.
Moreover, smaller files produce fewer I/O operations, which can affect both throughput
and latency.

Ideally, we want to maximize all three dimensions, but in practice, there exists a space-time
trade-off. To explore this trade-off, we can apply a similar notion of optimality as we do for
coding schemes in §2.4.3. Let I denote input data and A a compression algorithm. Further, let
Compression(A, I) denote the compression speed in MB per second, Decompression(A, I)
the decompression speed, and Savings(A, I) the reduction in space relative to the uncom-
pressed input, i.e, 1− c

u
where c is the compressed and u the uncompressed input size. We

only consider algorithms where c ≤ u. A similar metric to describe space efficiency is the
compression ratio, which is the ratio between uncompressed and compressed input size. An
algorithm A is optimal for a fixed input I if there exists no better algorithm A′ such that:

1. Compression(A′, I) ≥ Compression(A, I)

2. Decompression(A′, I) ≥ Decompression(A, I)

3. Savings(A′, I) ≥ Savings(A, I)

4. at least one inequality of (1), (2), or (3) is strict

Multiple optimal algorithms may exist according to this definition. Unlike with coding
schemes, we perform an empirical analysis to establish optimality. To this end, we benchmark
19 general-purpose compression algorithms against two types of input, 4 of them with two

CHAPTER 5. EVALUATION 105

PCAP Bro

Algorithm Compression Decompression Savings Compression Decompression Savings

ZPAQ [129] 0.19 0.07 0.66 0.25 0.03 0.89
MCM [45] 1.08 0.39 0.66 1.98 0.22 0.90
LZMA25 [127] 2.83 10.30 0.66 2.89 10.23 0.87
LZMA20 [127] 3.64 10.26 0.66 3.32 9.84 0.84
LZIP [63] 3.23 9.07 0.66 3.06 7.63 0.87
BROTLI11 [178] 0.24 48.21 0.66 0.21 26.94 0.88
CSC20 [31] 3.59 8.10 0.65 2.60 7.10 0.87
BROTLI9 [178] 5.55 67.59 0.65 7.30 35.86 0.86
ZSTD [54] 8.50 294.62 0.64 14.95 97.08 0.85
TANGELO [31] 0.93 0.33 0.64 1.09 0.13 0.88
ZLING [122] 28.42 28.15 0.62 40.71 22.67 0.85
BSC [89] 4.39 2.04 0.61 6.82 1.45 0.86
ZMOLLY [123] 0.98 0.39 0.60 4.07 0.61 0.87
ZSTDF [54] 217.55 313.09 0.56 245.42 119.87 0.79
BCM [31] 4.07 1.48 0.56 4.19 0.59 0.84
BZIP2:9 [32] 4.96 6.64 0.53 5.39 4.21 0.81
MINIZ [134] 9.71 99.28 0.45 12.91 52.93 0.79
DEFLATE:9 [3] 13.95 110.02 0.45 16.45 54.92 0.80
LZ4 [53] 25.37 1179.23 0.44 28.78 378.20 0.75
BZIP2:1 [32] 5.20 8.56 0.44 6.74 5.14 0.80
DEFLATE:1 [3] 36.50 104.45 0.43 71.91 57.85 0.76
SHRINKER [58] 153.48 523.90 0.42 159.46 234.60 0.71
LZ4F [53] 302.48 1050.36 0.41 291.10 392.84 0.69
RAW 8134.38 9022.78 0.00 5402.26 7477.57 0.00

Table 5.3: Benchmark of various compression algorithms, sorted by space savings for PCAP
input. Best results exhibit a bold font.

different parameterizations, yielding 23 algorithm instances in total. We first establish the
optimal algorithms within each dimension and then discuss the trade-off space.

As for our data sets, we use a 850 MB PCAP trace consisting of 877,469 packets, plus 5.3 MB
of derived the ASCII Bro logs [147], per §5.1. The traffic exhibits the following breakdown
in terms of number of connections: 50% DNS, 28% HTTP, 18% unknown, 2.6% DHCP,
1.4% SSL, plus a small remainder of SMTP and FTP. Our C++ benchmark tool reads the raw
bytes of the PCAP trace in memory, compresses it, and then uncompresses the compressed
data into a new memory buffer. We rely on bundle [31], an embeddable compression library,
for the implementation of the majority of algorithms. Because bundle does not support
DEFLATE (implemented in zlib [3]) and BZIP2 [32], we supplemented our test harness
to use the corresponding native APIs for compression/decompression. The RAW algorithm
establishes a reference frame for memory bandwidth, as it does not perform any compression
but merely copies data between two buffers. We make available our test suite code as open
source software, along with the scripts to generate the plots [186].

CHAPTER 5. EVALUATION 106

Table 5.3 summarizes our results, sorted in descending order with respect to space savings of
PCAP input. The values show how throughput and savings form two ends of a spectrum. For
example, LZ4 and LZ4F dominate in Compression and Decompression, but achieve the
smallest ranking in terms of Savings. Conversely, MCM excels in Savings, but ranks close
to last in Compression and Decompression. This raises the question where to position
oneself in the spectrum of space versus time. Which algorithms perform strictly better than
others across multiple dimensions?

For ease of exposition, we seek to answer this question in the three two-dimensional spectra
of Savings versus Compression, Savings versus Decompression, and Compression
versus Decompression. First, we consider the throughput versus space savings in Figures
5.11–5.14. For each plot, the x-axis shows Savings as percentage and the y-axis throughput
for Compression (Figure 5.11 and Figure 5.12) and Decompression (Figure 5.13 and
Figure 5.14). To emphasize the optimal algorithms in this two-dimensional space, we
superimpose a convex hull. The algorithms on top of the polygon border are optimal, because
they strictly dominate the algorithms inside the polygon. From here on, we do not consider
the inner algorithms. In Figure 5.11, we see the optimal algorithms LZ4F, ZSTDF, ZLING,
ZSTD, the LZMA family, and MCM—from Compression-optimal to Savings-optimal.
Note the discrepancy of BROTLI9 (5.55 MB/sec) and BROTLI11 (0.24 MB/sec). In the
bottom row, observe the three steep declines in Decompression from LZ4 to ZSTDF, from
ZSTD to BROTLI9, and from BROTLI11 to MCM. This tetramodal characteristic naturally
exposes four classes along the spectrum: LZ4 on the speed end, MCM on the compactness
end, and ZSTD with BROTLI in the middle. Overall, LZ4 clearly offers highest throughput
in both, whereas ZSTD offers a good compromise between space savings and throughput.
BROTLI has high space savings and good decompression speed, but ranks poorly in terms of
compression speed.

We juxtapose the two throughput dimensions Compression and Decompression in Fig-
ure 5.15 and Figure 5.16. The y = x diagonal visually separates the algorithms which compress
faster (below the diagonal) from those which uncompress faster (above the diagonal). LZ4 and
LZ4F dominate as both Compression-optimal and Decompression-optimal algorithms,
but also ranks last in Savings. We illustrate the same information in a bar plot in Figure 5.17
and Figure 5.18, with the algorithms on the x-axis sorted with respect to Savings, showing
the most space-efficent algorithm on the left.

Based on these measurement results, we must select algorithms in alignment with VAST’s
requirements, which we outlined in the beginning of §5.6.1. LZ4 offers the highest throughput
and therefore represents an apt choice for high-volume scenarios. As second choice, we
consider ZSTD with an order of magnitude lower throughput, but up to 23% higher space
savings. From here on, we see another order of magnitude difference in throughput while
increasing the savings only by a few percent. Therefore, we only support LZ4 and ZSTD in
VAST.

CHAPTER 5. EVALUATION 107

●

●

●

●

●

●

●1

10

100

40% 50% 60%
Space Savings

Co
m

pr
es

sio
n

(M
B/

se
co

nd
)

Algorithm
●

●

●

●

●

●

●

BCM
BROTLI11
BROTLI9
BSC
BZIP2:1
BZIP2:9
CSC20
DEFLATE:1
DEFLATE:9
LZ4
LZ4F
LZIP

LZMA20
LZMA25
MCM
MINIZ
SHRINKER
TANGELO
ZLING
ZMOLLY
ZPAQ
ZSTD
ZSTDF

Figure 5.11: PCAP: Compression vs. Savings.

CHAPTER 5. EVALUATION 108

●

●

●

●

●

●

●

1

10

100

70% 75% 80% 85% 90%
Space Savings

Co
m

pr
es

sio
n

(M
B/

se
co

nd
)

Algorithm
●

●

●

●

●

●

●

BCM
BROTLI11
BROTLI9
BSC
BZIP2:1
BZIP2:9
CSC20
DEFLATE:1
DEFLATE:9
LZ4
LZ4F
LZIP

LZMA20
LZMA25
MCM
MINIZ
SHRINKER
TANGELO
ZLING
ZMOLLY
ZPAQ
ZSTD
ZSTDF

Figure 5.12: Bro: Compression vs. Savings.

CHAPTER 5. EVALUATION 109

●

●

●

●

●

●

●

1

10

100

1,000

40% 50% 60%
Space Savings

De
co

m
pr

es
sio

n
(M

B/
se

co
nd

)

Algorithm
●

●

●

●

●

●

●

BCM
BROTLI11
BROTLI9
BSC
BZIP2:1
BZIP2:9
CSC20
DEFLATE:1
DEFLATE:9
LZ4
LZ4F
LZIP

LZMA20
LZMA25
MCM
MINIZ
SHRINKER
TANGELO
ZLING
ZMOLLY
ZPAQ
ZSTD
ZSTDF

Figure 5.13: PCAP: Decompression vs. Savings.

CHAPTER 5. EVALUATION 110

●

●

●

●

●

●

●

1

10

100

70% 75% 80% 85% 90%
Space Savings

De
co

m
pr

es
sio

n
(M

B/
se

co
nd

)

Algorithm
●

●

●

●

●

●

●

BCM
BROTLI11
BROTLI9
BSC
BZIP2:1
BZIP2:9
CSC20
DEFLATE:1
DEFLATE:9
LZ4
LZ4F
LZIP

LZMA20
LZMA25
MCM
MINIZ
SHRINKER
TANGELO
ZLING
ZMOLLY
ZPAQ
ZSTD
ZSTDF

Figure 5.14: Bro: Decompression vs. Savings.

CHAPTER 5. EVALUATION 111

●

●

●

●

●

●
●

1

10

100

1,000

10,000

1 10 100 1,000 10,000
Compression (MB/sec)

D
ec

om
pr

es
si

on
 (

M
B

/s
ec

)

Algorithm

●

●

●

●

●

●

●

BCM

BROTLI11

BROTLI9

BSC

BZIP2:1

BZIP2:9

CSC20

DEFLATE:1

DEFLATE:9

LZ4

LZ4F

LZIP

LZMA20

LZMA25

MCM

MINIZ

RAW

SHRINKER

TANGELO

ZLING

ZMOLLY

ZPAQ

ZSTD

ZSTDF

Figure 5.15: PCAP: Compression vs. Decompression.

CHAPTER 5. EVALUATION 112

●

●

●

●

●

●

●

1

10

100

1,000

10,000

1 10 100 1,000
Compression (MB/sec)

D
ec

om
pr

es
si

on
 (

M
B

/s
ec

)

Algorithm

●

●

●

●

●

●

●

BCM

BROTLI11

BROTLI9

BSC

BZIP2:1

BZIP2:9

CSC20

DEFLATE:1

DEFLATE:9

LZ4

LZ4F

LZIP

LZMA20

LZMA25

MCM

MINIZ

RAW

SHRINKER

TANGELO

ZLING

ZMOLLY

ZPAQ

ZSTD

ZSTDF

Figure 5.16: Bro: Compression vs. Decompression.

CHAPTER 5. EVALUATION 113

0.001

0.010

0.100

1.000

10.000

100.000

1,000.000

10,000.000

M
C

M

B
R

O
T

LI
11

Z
PA

Q

LZ
M

A
25

LZ
IP

LZ
M

A
20

C
S

C
20

B
R

O
T

LI
9

TA
N

G
E

LO

Z
S

T
D

Z
LI

N
G

B
S

C

Z
M

O
LL

Y

B
C

M

Z
S

T
D

F

B
Z

IP
2:

9

D
E

F
LA

T
E

:9

M
IN

IZ

LZ
4

B
Z

IP
2:

1

D
E

F
LA

T
E

:1

S
H

R
IN

K
E

R

LZ
4F

R
A

W

Algorithm

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Compression Decompression

Figure 5.17: PCAP: Compression vs. Decompression. The algorithms on the x-axis
are sorted with respect to Savings, with the most space-efficent algorithm on the left.

CHAPTER 5. EVALUATION 114

0.001

0.010

0.100

1.000

10.000

100.000

1,000.000

10,000.000

M
C

M

Z
PA

Q

TA
N

G
E

LO

B
R

O
T

LI
11

Z
M

O
LL

Y

LZ
M

A
25

LZ
IP

C
S

C
20

B
S

C

B
R

O
T

LI
9

Z
S

T
D

Z
LI

N
G

B
C

M

LZ
M

A
20

B
Z

IP
2:

9

B
Z

IP
2:

1

D
E

F
LA

T
E

:9

M
IN

IZ

Z
S

T
D

F

D
E

F
LA

T
E

:1

LZ
4

S
H

R
IN

K
E

R

LZ
4F

R
A

W

Algorithm

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Compression Decompression

Figure 5.18: Bro: Compression vs. Decompression. The algorithms on the x-axis are
sorted with respect to Savings, with the most space-efficent algorithm on the left.

CHAPTER 5. EVALUATION 115

Format Archive Index Both

Bro 47% 90% 137%
PCAP 92% 4% 96%

Table 5.4: Storage overhead relative to the base data. The archive uses LZ4 [53] as
compression algorithm.

5.6.2 Index Overhead

Unlike systems which process data in situ, VAST relies on secondary indexes that require
additional storage space. In the case of the Bro connection logs, the index increases the total
storage by 90%. Per §5.6.1, VAST also compresses the raw data using LZ4 [53] before storing
it in the archive, in this case cutting it down to 47% of its original size. Taken together,
VAST requires 1.37 times the volume of its raw input.

For PCAP traces VAST, archives entire packets, but skips all packet payload during index
construction. Archive compression brings down the trace to 92% of its original size, whereas
the index for connection 5-tuple plus timestamps amounts to 4%. In total, VAST still occupies
less space than the original data. We summarize the overhead in Table 5.4.

String and container indexes require the most storage, due to their composite and variable-
length nature. The remaining indexes exhibit constant space design, and their concrete size
is a direct function of encoding and layout of the bit vectors. An extensive discussion about
space consideration of bit vector encoding and compression schemes goes beyond the scope
of this thesis, but holds promise for extensive tuning.

5.7 Summary

We evaluated VAST with respect to correctness (§5.2), throughput (§5.3), latency (§5.4),
scaling (§5.5), and storage overhead (§5.6). To ensure correctness of operation, we embraced
test-driven software engineering practices throughout development process. As of this
writing, VAST ships with 6,700 lines of unit tests that check the system’s basic building
blocks (see §5.3).

Throughput represents a key performance metric when handling massive data volumes. Our
measurements in §5.3 show that a single VAST instance can parse and index Bro logs at a
rate of 100 K events/second, and PCAP packets at a rate of 260 K events/second. VAST’s
highly concurrent indexing architecture exhibits linear scaling gains, indicating that adding
more CPU cores can achieve further improvements.

To support the highly interactive and iterative workflow of network forensics, a viable system
must exhibit query latencies on the order of seconds. Our analysis in §5.4 shows that VAST

CHAPTER 5. EVALUATION 116

can compute the full result set via index lookups in fractions of seconds such that analysts
receive a taste of the results after about 1 second.

In §5.5, we examined VAST in a distributed setting and observed linear scaling with the
number of nodes in the cluster. In terms of storage overhead, we analyzed the inherent space-
time trade-off of various compression algorithms in §5.6.1. We chose LZ4 for compressing
events at the archive because it proved the fastest algorithm, albeit at the cost of space
savings. In §5.6.2, we established that storing PCAP packets requires, surprisingly, less space
(about 96%) than the original input data, thanks to archive compression and small indexes.
For Bro connection logs, we observed a storage overhead of 137% compared to the original
data.

Overall, we found that our implementation meets our performance expectations. VAST
can ingest hundreds of thousands of events per second and provides an interactive query
experience with query latencies at the order of seconds over billions of events.

117

Chapter 6

Conclusion

Now this is not the end. It is not even the
beginning of the end. But it is, perhaps, the end
of the beginning.

Winston Churchill

This chapter concludes this thesis. We summarize key insights in §6.1 and sketch promising
avenues for future work in §6.2.

6.1 Summary

Over the past twenty years, the process of criminal investigation has been revolutionized by
modern forensic techniques, including DNA sequencing, mass spectrometry, and automated
fingerprint identification. During the same period, unfortunately, the work of computing
professionals who investigate cyber attacks has become increasingly frustrating and unwieldy.
Available tools for real-time, root cause analysis of security incidents still remain crude,
and fundamental breakthroughs in forensic techniques for cyber investigation are urgently
needed (see §1).

This work centers around developing one such capability: a platform for forensic analysis that
captures and retains a high-fidelity archive of cyber activity at the scale of an entire network,
rather than a single host or network service. The system, in turn, supports interactive
investigation of the activity—at a scale, speed, and degree of flexibility currently unavailable.
Today, when security analysts attempt to reconstruct the sequence of events leading to a
cyber compromise, they struggle to bring together enormous volumes of heterogeneous data,
including alerts from intrusion detection systems, application logs from web or proxy servers,
packet traces, DNS logs, and dozens of other diverse data types. Because these records describe
events with widely differing semantics, analysts typically need to interact with multiple
systems simultaneously, or else accept the loss of crucial semantic content when collectively

CHAPTER 6. CONCLUSION 118

aggregating all records inside a single Security Information and Event Management (SIEM)
framework. These trade-offs lead to slow, ad-hoc, error-prone workflows—and, ultimately, to
poor cybersecurity outcomes.

In this thesis we present the design and implementation of VAST (Visibility Across Space
and Time), a platform that synthesizes powerful indexing technology with a distributed,
entirely asynchronous system architecture (see §3). For indexing, VAST deploys a new
form of high-level bitmap indexes (see §2) that enable fast data access, along with a set of
corresponding algorithms that implement bitwise operations on compressed sequences in
support of its type-rich data model. For scaling, VAST’s architecture relies exclusively on
the highly concurrent actor model, composing fine-granular tasks into parallel workflows that
fully exploit the potential of modern many-core CPU platforms.

Our implementation follows the maxim of striving to achieve the highest degree of abstraction
without sacrificing performance (see §4). Built on top of the C++ Actor Framework (CAF) [44],
VAST constitutes a fully asynchronous message passing system that compiles down to execute
native instructions, thereby avoiding performance penalties from intermediary abstract
machines and/or stop-the-world garbage collection runtimes. Moreover, CAF hides network
communication transparently, which allows for configuring flexible topologies at runtime.
This pays off particularly when spreading computation over a cluster of commodity machines.
As a result, VAST scales both inside a single machine and across clusters of physical systems.

Our evaluation with real-world log and packet data demonstrates the system’s potential to
support interactive investigation and exploration at a level beyond what current systems
offer (see §5). We release VAST as free open-source software under a permissive BSD
license [190].

6.2 Outlook

This thesis laid the foundation for a host of fruitful future research. VAST holds promise for
enabling exploration of new directions in improving large-scale forensic analyses at the level
of entire networks.

6.2.1 Systems Challenges

From a system perspective, our prototype reveals numerous optimization considerations:

Novel encoding schemes. Software patents prevented us from exploring alternative bit
vector encoding schemes at the inception of our project. In the meantime, several new
encoding algorithms have emerged. A quantitative comparison with real-world data
can give us more insight into which algorithm offers the best space-time trade-off. This
has a direct impact on storage overhead and query latency.

CHAPTER 6. CONCLUSION 119

Query optimization. VAST can further benefit from decades of research and experience
in the database community concerning query optimization: for example, evaluating
predicates according to the selectivity of the values in order to minimize the amount
of operations required downstream in the execution. More broadly, VAST needs a
cost-based optimizer to craft individual query plans which account for a variety of
competing concerns.

Dynamic flow control. VAST consists of multiple components that communicate only via
message passing. We implemented a form of flow control in the form of back pressure
to prevent the system from “keeling over.” Extending introspective monitoring to
get a deep understanding of the current resource limits, and dynamically migrating
bottleneck components to other machines poses an ambitious challenge.

6.2.2 Algorithmic Challenges

From a user perspective, detailed instrumentation would help to obtain traces of how analysts
interact with the system. These traces can drive several research efforts:

Data structure tuning. Many VAST data structures have space-time trade-offs that de-
pend on the nature of queries that analysts issue. Developing algorithms that dynam-
ically adapt internal data structures (and migrate older instances) based on a given
analyst’s investigatory style hold promise for reducing query latency and improving
storage overhead.

Prefetching. We envision developing algorithms to significantly enhance VAST’s interactive
performance by anticipating a given analyst’s likely follow-on requests and prefetching
meta-data (and possibly results) salient to those requests during the analyst’s “think
time”. Doing so will enable VAST to instantly provide answers to the analyst if they
indeed next make one of the anticipated requests.

Suggestion algorithms. By analyzing investigations conducted by a large number of ana-
lysts, we can identify analysis patterns : templates used by different analysts to drive
their forensic exploration. Given such templates, we can then enhance VAST to provide
suggestions to an analyst about possible next steps to augment their workflow.

Each of these efforts represents a new research area, unexplored to date in the literature, for
enhancing the forensic process. The data provided from first experiences with VAST will
play an instrumental role in empirically grounding this research in actual analyst behaviors;
development of these algorithms holds promise for major improvement of the network forensics
process at scale.

120

Bibliography

[1] Daniel J Abadi, Yanif Ahmad, Magdalena Balazinska, Ugur Cetintemel, Mitch Cher-
niack, Jeong-Hyon Hwang, Wolfgang Lindner, Anurag S Maskey, Alexander Rasin,
Esther Ryvkina, Nesime Tatbul, Ying Xing, and Stan Zdonik. The Design of the
Borealis Stream Processing Engine. In Proceedings of the Conference on Innovative
Data Systems Research (CIDR), January 2005. ↑13

[2] ActorFoundry. http://osl.cs.illinois.edu/software/actor-foundry. Accessed
December 27, 2015. ↑22

[3] Mark Adler. zlib. http://www.zlib.net. Accessed January 8, 2016. ↑105

[4] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: Enabling Queries on
Compressed Data. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI), May 2015. ↑16

[5] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986. ↑20

[6] Alfred V. Aho and Margaret J. Corasick. Efficient String Matching: An Aid to
Bibliographic Search. Communications of the ACM, 18(6):333–340, June 1975. ↑76

[7] Akka. http://akka.io. Accessed December 3, 2015. ↑21, ↑22

[8] Mark Allman, Christian Kreibich, Vern Paxson, Robin Sommer, and Nicholas Weaver.
Principles for Developing Comprehensive Network Visibility. In Proceedings of the
Workshop on Hot Topics in Security (HotSec), July 2008. ↑2, ↑11

[9] Witold Andrzejewski and Robert Wrembel. GPU-WAH: Applying GPUs to Compressing
Bitmap Indexes with Word Aligned Hybrid. In Proceedings of the Conference on
Database and Expert Systems Applications (DEXA), 2010. ↑21

[10] G. Antoshenkov. Byte-aligned Bitmap Compression. In Proceedings of the Conference
on Data Compression (DCC), 1995. ↑34

http://osl.cs.illinois.edu/software/actor-foundry
http://www.zlib.net
http://akka.io

BIBLIOGRAPHY 121

[11] Arvind Arasu, Brian Babcock, Shivnath Babu, Mayur Datar, Keith Ito, Itaru Nishizawa,
Justin Rosenstein, and Jennifer Widom. STREAM: The Stanford Stream Data Manager
(Demonstration Description). In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2003. ↑13

[12] Joe Armstrong. Erlang–—a Survey of the Language and its Industrial Applications.
In In Proceedings of the 9th Exhibitions and Symposium on Industrial Applications of
Prolog, INAP, 1996. ↑21

[13] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software Errors.
PhD thesis, Department of Microelectronics and Information Technology, KTH, Sweden,
2003. ↑20, ↑22, ↑23, ↑59

[14] Brian Babcock, Mayur Datar, and Rajeev Motwani. Load Shedding for Aggregation
Queries over Data Streams. In Proceedings of the IEEE International Conference on
Data Engineering (ICDE), 2004. ↑64

[15] Ricardo Baeza-Yates and Alejandro Salinger. Fast Intersection Algorithms for Sorted
Sequences. In Algorithms and Applications, pages 45–61. Springer, 2010. ↑26

[16] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., 1999. ↑76

[17] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair, and X. Li. IPv6 Addressing of
IPv4/IPv6 Translators. RFC 6052, Internet Engineering Task Force (IETF), October
2010. ↑77

[18] Jérémy Barbay, Alejandro López-Ortiz, and Tyler Lu. Faster Adaptive Set Intersections
for Text Searching. In Proceedings of the Conference on Experimental Algorithms
(WEA), 2006. ↑26

[19] Rudolf Bayer and Edward M. McCreight. Organization and Maintenance of Large
Ordered Indexes. In Record of the ACM SIGFIDET Workshop on Data Description
and Access. ACM, November 1970. ↑25

[20] Stefan Berchtold, Christian Böhm, and Hans-Peter Kriegal. The Pyramid-technique:
Towards Breaking the Curse of Dimensionality. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1998. ↑25

[21] Robin Berthier, Michel Cukier, Matti Hiltunen, Dave Kormann, Gregg Vesonder, and
Dan Sheleheda. Nfsight: NetFlow-based Network Awareness Tool. In Proceedings of
the USENIX Large Installation System Administration Conference (LISA), 2010. ↑11

[22] Robert Beverly, Simson Garfinkel, and Greg Cardwell. Forensic Carving of Network
Packets and Associated Data Structures. Digital Investigation: The International
Journal of Digital Forensics & Incident Response, 8:78–89, August 2011. ↑10

BIBLIOGRAPHY 122

[23] Kevin S Beyer, Vuk Ercegovac, Rainer Gemulla, Andrey Balmin, Mohamed Eltabakh,
Carl-Christian Kanne, Fatma Ozcan, and Eugene J Shekita. Jaql: A Scripting Language
for Large Scale Semistructured Data Analysis. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2011. ↑16

[24] Ledion Bitincka, Archana Ganapathi, and Steve Zhang. Experiences with Workload
Management in Splunk. In Proceedings of the Workshop on Management of Big Data
Systems (MBDS), 2012. ↑13, ↑18

[25] Truls A. Bjørklund, Nils Grimsmo, Johannes Gehrke, and Øystein Torbjørnsen. Inverted
Indexes vs. Bitmap Indexes in Decision Support Systems. In Proceedings of the
Conference on Information and Knowledge Management (CIKM), 2009. ↑33

[26] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM, 13(7):422–426, July 1970. ↑13, ↑17, ↑53

[27] Jasper Bongertz. The Needle in the Haystack. Annual FIRST Conference on Computer
Security Incident Handling, June 2015. ↑11

[28] Robert S. Boyer and J. Strother Moore. A Fast String Searching Algorithm. Commu-
nications of the ACM, 20(10):762–772, October 1977. ↑76

[29] David A. Boyuka, II, Houjun Tang, Kushal Bansal, Xiaocheng Zou, Scott Klasky, and
Nagiza F. Samatova. The Hyperdyadic Index and Generalized Indexing and Query
with PIQUE. In Proceedings of the Conference on Scientific and Statistical Database
Management (SSDBM), 2015. ↑26

[30] The Bro Network Security Monitor. http://www.bro.org. Accessed January 13, 2016.
↑3, ↑17, ↑54

[31] Bundle, an embeddable compression library. https://github.com/r-lyeh/bundle.
Accessed January 8, 2016. ↑105

[32] bzip2. http://www.bzip.org. Accessed January 8, 2016. ↑105

[33] C++ Actor Framework. https://actor-framework.org. Accessed May 3, 2016. ↑84

[34] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam
McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev
Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,
Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad Ikram ul
Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin McNett, Sriram
Sankaran, Kavitha Manivannan, and Leonidas Rigas. Windows Azure Storage: A Highly
Available Cloud Storage Service with Strong Consistency. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2011. ↑60

http://www.bro.org
https://github.com/r-lyeh/bundle
http://www.bzip.org
https://actor-framework.org

BIBLIOGRAPHY 123

[35] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee, Greg
Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. Monitoring Streams:
A New Class of Data Management Applications. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), 2002. ↑13

[36] Rick Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Record, 39(4):13, 2010.
↑14

[37] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A Structured English Query
Language. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control. ACM, 1974. ↑12

[38] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. Better Bitmap Perfor-
mance with Roaring Bitmaps. CoRR, abs/1402.6407, 2014. ↑27, ↑33

[39] Chee-Yong Chan and Yannis E. Ioannidis. Bitmap Index Design and Evaluation. In
Proceedings of the ACM SIGMOD International Conference on Management of Data,
1998. ↑31, ↑32, ↑33, ↑34, ↑36

[40] Chee-Yong Chan and Yannis E. Ioannidis. An Efficient Bitmap Encoding Scheme for
Selection Queries. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, 1999. ↑29, ↑31, ↑33, ↑36, ↑38

[41] Chee-Yong Chan and Yannis E. Ioannidis. An Efficient Bitmap Encoding Scheme for
Selection Queries. SIGMOD Record, 28(2):215–226, June 1999. ↑32

[42] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R.E. Gruber. Bigtable: A Distributed Storage System for Structured
Data. ACM Transactions on Computer Systems (TOCS), 26(2):1–26, 2008. ↑15

[43] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. Revisiting Actor
Programming in C++. Computer Languages, Systems & Structures, January 2016. (in
press). ↑24

[44] Dominik Charousset, Thomas C. Schmidt, Raphael Hiesgen, and Matthias Wählisch.
Native Actors – A Scalable Software Platform for Distributed, Heterogeneous Envi-
ronments. In Proceedings of the ACM Workshop on Programming Based on Actors,
Agents, and Decentralized Control (AGERE!), October 2013. ↑22, ↑23, ↑118

[45] Mathieu Chartier. mcm compressor: context mixing + lzp. https://github.com/

mathieuchartier/mcm. Accessed January 8, 2016. ↑105

[46] Surajit Chaudhuri and Umeshwar Dayal. An Overview of Data Warehousing and OLAP
Technology. SIGMOD Record, 26(1):65–74, March 1997. ↑12, ↑14

https://github.com/mathieuchartier/mcm
https://github.com/mathieuchartier/mcm

BIBLIOGRAPHY 124

[47] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil. Deny
Capabilities for Safe, Fast Actors. In Proceedings of the ACM Workshop on Programming
Based on Actors, Agents, and Decentralized Control (AGERE!), 2015. ↑22

[48] CMake. https://cmake.org. Accessed May 3, 2016. ↑84

[49] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando
Fox. Capturing, Indexing, Clustering, and Retrieving System History. SIGOPS
Operating Systems Review, 39:105–118, October 2005. ↑11

[50] Jeffrey Cohen, John Eshleman, Brian Hagenbuch, Joy Kent, Christopher Pedrotti,
Gavin Sherry, and Florian Waas. Online Expansion of Large-scale Data Warehouses.
Proceedings of the VLDB Endowment, 4(12), 2011. ↑13, ↑14

[51] M. I. Cohen, D. Bilby, and G. Caronni. Distributed Forensics and Incident Response in
the Enterprise. Digital Investigation: The International Journal of Digital Forensics &
Incident Response, 8:101–110, August 2011. ↑10

[52] Alessandro Colantonio and Roberto Di Pietro. CONCISE: Compressed ’n’ Composable
Integer Set. Information Processing Letters, 110(16):644–650, July 2010. ↑34

[53] Yann Collet. LZ4: Extremely Fast Compression algorithm. http://www.lz4.org.
Accessed January 8, 2016. ↑105, ↑115

[54] Yann Collet. Zstandard. http://www.zstd.net. Accessed January 8, 2016. ↑105

[55] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy,
and Russell Sears. MapReduce Online. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2010. ↑16

[56] Graham Cormode and S Muthukrishnan. An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms, 55(1):58–75, 2005. ↑13

[57] Fabian Corrales, David Chiu, and Jason Sawin. Variable Length Compression for
Bitmap Indices. In Proceedings of the Conference on Database and Expert Systems
Applications (DEXA), 2011. ↑34

[58] data-shrinker: a very light and fast compression program with acceptable ratio. https:
//code.google.com/p/data-shrinker/, shrinker. Accessed January 2, 2016. ↑105

[59] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. In Proceedings of the USENIX Conference on Symposium on Operating
Systems Design & Implementation (OSDI), 2004. ↑15, ↑16

[60] François Deliège and Torben Bach Pedersen. Position List Word Aligned Hybrid:
Optimizing Space and Performance for Compressed Bitmaps. In Proceedings of the
Conference on Extending Database Technology (EDBT), 2010. ↑33, ↑34

https://cmake.org
http://www.lz4.org
http://www.zstd.net
https://code.google.com/p/data-shrinker/
https://code.google.com/p/data-shrinker/

BIBLIOGRAPHY 125

[61] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive Set Intersections,
Unions, and Differences. In Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2000. ↑26

[62] Travis Desell and Carlos A. Varela. SALSA Lite: A Hash-Based Actor Runtime for
Efficient Local Concurrency. In Concurrent Objects and Beyond, volume 8665 of Lecture
Notes in Computer Science, pages 144–166. Springer, 2014. ↑22

[63] Antonio Diaz Diaz. Lzip. http://www.nongnu.org/lzip/lzip.html. Accessed January
8, 2016. ↑105

[64] Alexandros G. Dimakis, P. Brighten Godfrey, Yunnan Wu, Martin J. Wainwright,
and Kannan Ramchandran. Network Coding for Distributed Storage Systems. IEEE
Transactions on Information Theory, 56(9):4539–4551, September 2010. ↑60

[65] Fredton Doan, David Chiu, Brasil Perez Lukes, Jason Sawin, Gheorghi Guzun, and
Guadalupe Canahuate. Dynamic Bitmap Index Recompression Through Workload-
based Optimizations. In Proceedings of the ACM International Database Engineering
and Applications Symposium (IDEAS), 2013. ↑34

[66] Walter J. Doherty and Ahrvind J. Thadani. The Economic Value of Rapid Response
Time. IBM, (GE20-0752), November 1982. ↑5

[67] Holger Dreger, Anja Feldmann, Vern Paxson, and Robin Sommer. Operational Expe-
riences with High-volume Network Intrusion Detection. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2004. ↑64

[68] Josiah Dykstra and Alan T. Sherman. Acquiring Forensic Evidence from Infrastructure-
as-a-Service Cloud Computing: Exploring and Evaluating Tools, Trust, and Techniques.
Digital Investigation: The International Journal of Digital Forensics & Incident Re-
sponse, 9:90–98, 2012. ↑10

[69] ElasticSearch. https://www.elastic.co/products/elasticsearch. Accessed Decem-
ber 6, 2015. ↑15, ↑60, ↑76

[70] Elixir. http://elixir-lang.org. Accessed December 27, 2015. ↑22

[71] etcd. https://github.com/coreos/etcd. Accessed December 31, 2015. ↑43

[72] W. Fernandez de la Vega, A. M. Frieze, and M. Santha. Average-Case Analysis of the
Merging Algorithm of Hwang and Lin. Algorithmica, 22(4):483–489, 1998. ↑26

[73] Roy T. Fielding and Richard N. Taylor. Principled Design of the Modern Web Archi-
tecture. ACM Transactions on Internet Technology (TOIT), 2(2):115–150, May 2002.
↑15

http://www.nongnu.org/lzip/lzip.html
https://www.elastic.co/products/elasticsearch
http://elixir-lang.org
https://github.com/coreos/etcd

BIBLIOGRAPHY 126

[74] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. HyperLogLog:
the Analysis of a Near-Optimal Cardinality Estimation Algorithm. In Proceedings of
the International Conference of Analysis of Algorithms (AOFA), pages 127–146, 2007.
↑13

[75] Francesco Fusco, Xenofontas Dimitropoulos, Michail Vlachos, and Luca Deri. pcapindex:
An index for network packet traces with legacy compatibility. SIGCOMM Computer
Communications Review, 42(1):47–53, January 2012. ↑17

[76] Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos. NET-FLi: On-the-fly
Compression, Archiving and Indexing of Streaming Network Traffic. Proceedings of the
VLDB Endowment, 3(1-2):1382–1393, September 2010. ↑18, ↑33, ↑34

[77] Francesco Fusco, Michael Vlachos, Xenofontas Dimitropoulos, and Luca Deri. Indexing
Million of Packets per Second using GPUs. In Proceedings of the ACM Internet
Measurement Conference (IMC), 2013. ↑18, ↑21

[78] Francesco Fusco, Michail Vlachos, and Xenofontas Dimitropoulos. RasterZip: Compress-
ing Network Monitoring Data with Support for Partial Decompression. In Proceedings
of the ACM Internet Measurement Conference (IMC), 2012. ↑48, ↑99, ↑102

[79] Roland Färber. Römische Gerichtsorte: Räumliche Dynamiken von Jurisdiktion im
Imperium Romanum, volume 68 of Vestigia. C.H. Beck, November 2014. ↑3

[80] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lums-
daine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall.
Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. In
Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume
3241 of Lecture Notes in Computer Science. Springer, 2004. ↑23, ↑24

[81] Volker Gaede and Oliver Günther. Multidimensional Access Methods. ACM Computing
Surveys, 30(2):170–231, June 1998. ↑25

[82] Simson Garfinkel. Digital Forensics Research: The Next 10 Years. Digital Investigation:
The International Journal of Digital Forensics & Incident Response, 7:64–73, 2010. ↑11

[83] Simson Garfinkel. Lessons learned writing digital forensics tools and managing a 30TB
digital evidence corpus. Digital Investigation: The International Journal of Digital
Forensics & Incident Response, 9:80–89, 2012. ↑10

[84] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark Buffers in the Internet. ACM
Queue, 9(11):40:40–40:54, November 2011. ↑44, ↑63

[85] S. Ghemawat, H. Gobioff, and S.T. Leung. The Google File System. ACM SIGOPS
Operating Systems Review, 37(5):29–43, 2003. ↑15, ↑16, ↑60

BIBLIOGRAPHY 127

[86] Paul Giura and Nasir Memon. NetStore: An Efficient Storage Infrastructure for Network
Forensics and Monitoring. In Proceedings of the International Symposium on Recent
Advances in Intrusion Detection (RAID), pages 277–296, 2010. ↑18

[87] Lukasz Golab and M. Tamer Özsu. Issues in data stream management. SIGMOD
Record, 32(2):5–14, 2003. ↑13

[88] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, 2nd edition, 1994. ↑29

[89] Ilya Grebnov. libbsc: High performance block-sorting data compression library. http:
//libbsc.com. Accessed January 8, 2016. ↑105

[90] Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M. Watson, Andrew W.
Moore, Steven Hand, and Jon Crowcroft. Queues Don’t Matter When You Can JUMP
Them! In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), May 2015. ↑63

[91] Ashish Gupta, Fan Yang, Jason Govig, Adam Kirsch, Kelvin Chan, Kevin Lai, Shuo
Wu, Sandeep Govind Dhoot, Abhilash Rajesh Kumar, Ankur Agiwal, Sanjay Bhansali,
Mingsheng Hong, Jamie Cameron, Masood Siddiqi, David Jones, Jeff Shute, Andrey
Gubarev, Shivakumar Venkataraman, and Divyakant Agrawal. Mesa: Geo-replicated,
Near Real-time, Scalable Data Warehousing. Proceeding of the VLDB Endowment,
7(12):1259–1270, August 2014. ↑15

[92] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A Tunable Compression Framework
for Bitmap Indices. In Proceedings of the IEEE International Conference on Data
Engineering (ICDE), March 2014. ↑34

[93] Gheorghi Guzun and Guadalupe Canahuate. Performance Evaluation of Word-Aligned
Compression Methods for Bitmap Indices. Knowledge and Information Systems, pages
1–28, 2015. ↑33, ↑34

[94] Hadoop. http://hadoop.apache.org. Accessed December 6, 2015. ↑13

[95] Alexander Hall, Olaf Bachmann, Robert Büssow, Silviu Gănceanu, and Marc Nunkesser.
Processing a Trillion Cells Per Mouse Click. Proceedings of the VLDB Endowment,
5(11):1436–1446, July 2012. ↑14

[96] Stefan Heule, Marc Nunkesser, and Alexander Hall. HyperLogLog in Practice: Algorith-
mic Engineering of a State of the Art Cardinality Estimation Algorithm. In Proceedings
of the Conference on Extending Database Technology (EDBT), pages 683–692. ACM,
2013. ↑13

[97] Carl Hewitt, Peter Bishop, and Richard Steiger. A Universal Modular ACTOR
Formalism for Artificial Intelligence. In Proceedings of the IJCAI, 1973. ↑20, ↑63

http://libbsc.com
http://libbsc.com
http://hadoop.apache.org

BIBLIOGRAPHY 128

[98] Erik Hjelmvik. Hands-on Network Forensics. Annual FIRST Conference on Computer
Security Incident Handling, June 2015. ↑11

[99] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM,
21(8):666–677, August 1978. ↑20, ↑63

[100] A.S. Hornby. Oxford Advanced Learner’s Dictionary of Current English. Oxford
University Press, 6 edition, 2000. ↑2

[101] Bill Horne. Collecting, Analyzing and Responding to Enterprise Scale DNS Events.
Annual FIRST Conference on Computer Security Incident Handling, June 2015. ↑11

[102] Hughes, Evan and Somayaji, Anil. Towards Network Awareness. In Proceedings of the
USENIX Large Installation System Administration Conference (LISA), 2005. ↑11

[103] F. K. Hwang and S. Lin. Optimal Merging of 2 Elements with N Elements. Acta
Informatica, 1(2):145–158, June 1971. ↑26

[104] Franz Faerber Ingo Müller, Cornelius Ratsch. Adaptive String Dictionary Compression
in In-Memory Column-Store Database Systems. In Proceedings of the Conference on
Extending Database Technology (EDBT), pages 283–294, March 2014. ↑73

[105] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks. In Proceedings of
the ACM SIGOPS European Conference on Computer Systems (EuroSys), 2007. ↑16

[106] ISO/IEC. Information technology – Database languages – SQL. Standard 9075:2011,
2011. ↑12

[107] ISO/IEC. Information technology – Microprocessor Systems – Floating-Point arithmetic.
Standard 60559:2011, 2011. ↑70

[108] Apache Kafka. http://kafka.apache.org. Accessed January 13, 2016. ↑54, ↑60, ↑65

[109] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: Parallel Programming with
Message-Driven Objects. In Parallel Programming using C++, pages 175–213. MIT
Press, 1996. ↑22

[110] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. BlowFish: Dynamic Storage-
Performance Tradeoff in Data Stores. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2016. ↑60

[111] Ryan King. Announcing Snowflake. https://blog.twitter.com/2010/

announcing-snowflake, 2010. Accessed January 2, 2016. ↑44

[112] Donald E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Pearson Education, 1998. ↑25, ↑26

http://kafka.apache.org
https://blog.twitter.com/2010/announcing-snowflake
https://blog.twitter.com/2010/announcing-snowflake

BIBLIOGRAPHY 129

[113] Donald E. Knuth, James H. Morris, Jr., and Vaughan R. Pratt. Fast Pattern Matching
in Strings. Journal of the Society for Industrial and Applied Mathematics, 6(2):323–350,
1977. ↑76

[114] Christian Kreibich, Nicholas Weaver, Boris Nechaev, and Vern Paxson. Netalyzr:
Illuminating the Edge Network. In Proceedings of the ACM Internet Measurement
Conference (IMC), 2010. ↑44, ↑63

[115] Paul Krizak. Log Analysis and Event Correlation Using Variable Temporal Event Corre-
lator (VTEC). In Proceedings of the USENIX Large Installation System Administration
Conference (LISA), 2010. ↑11

[116] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran, Ben Vandiver,
Lyric Doshi, and Chuck Bear. The Vertica Analytic Database: C-store 7 Years Later.
Proceedings of the VLDB Endowment, 5(12):1790–1801, August 2012. ↑15

[117] Paul J. Leach, Michael Mealling, and Rich Salz. A Universally Unique IDentifier (UUID)
URN Namespace. RFC 4122, Internet Engineering Task Force (IETF), July 2005. ↑45

[118] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy Ryaboy. The
Unified Logging Infrastructure for Data Analytics at Twitter. Proceedings of the VLDB
Endowment, 5(12):1771–1780, 2012. ↑14

[119] Jihyung Lee, Sungryoul Lee, Junghee Lee, Yung Yi, and KyoungSoo Park. FloSIS: A
Highly Scalable Network Flow Capture System for Fast Retrieval and Storage Efficiency.
In Proceedings of the USENIX Annual Technical Conference (ATC), 2015. ↑11, ↑17

[120] Daniel Lemire and Leonid Boytsov. Decoding Billions of Integers per Second Through
Vectorization. CoRR, abs/1209.2137, 2012. ↑33

[121] Daniel Lemire, Owen Kaser, and Kamel Aouiche. Sorting Improves Word-aligned
Bitmap Indexes. Data & Knowledge Engineering, 69(1):3–28, January 2010. ↑26, ↑34

[122] Zhang Li. libzling: fast and niubility compression library. https://github.com/

richox/libzling. Accessed January 8, 2016. ↑105

[123] Zhang Li. zmolly: PPM compressor with high compression ratio. https://github.

com/richox/zmolly. Accessed January 8, 2016. ↑105

[124] libprocess. https://github.com/3rdparty/libprocess. Accessed December 26, 2015.
↑22

[125] Julie Beth Lovins. Development of a Stemming Algorithm. Mechanical Translation
and Computational Linguistics, 11:22––31, 1968. ↑76

[126] Lucene. https://lucene.apache.org. Accessed December 4, 2015. ↑15, ↑76, ↑77

https://github.com/richox/libzling
https://github.com/richox/libzling
https://github.com/richox/zmolly
https://github.com/richox/zmolly
https://github.com/3rdparty/libprocess
https://lucene.apache.org

BIBLIOGRAPHY 130

[127] Lempel–Ziv–Markov chain algorithm. https://en.wikipedia.org/wiki/

Lempel-Ziv-Markov_chain_algorithm. Accessed January 8, 2016. ↑105

[128] M57-Patents Scenario PCAP Trace. http://digitalcorpora.org/corpora/

scenarios/m57-patents-scenario. Accessed May 3, 2016. ↑89

[129] Matt Mahoney. ZPAQ: Incremental Journaling Backup Utility and Archiver. http:

//mattmahoney.net/dc/zpaq.html. Accessed January 8, 2016. ↑105

[130] Gregor Maier, Robin Sommer, Holger Dreger, Anja Feldmann, Vern Paxson, and Fabian
Schneider. Enriching Network Security Analysis with Time Travel. In Proceedings of
the ACM Conference on Applications, Technologies, Architectures, and Protocols For
Computer Communications (SIGCOMM), August 2008. ↑17, ↑89

[131] Miguel A. Mart́ınez-Prieto, Nieves Brisaboa, Rodrigo Cánovas, Francisco Claude, and
Gonzalo Navarro. Practical Compressed String Dictionaries. Information Systems,
56:73–108, March 2016. ↑73

[132] Manish Mehta and David J. DeWitt. Data Placement in Shared-Nothing Parallel
Database Systems. The VLDB Journal, 6(1):53–72, 1997. ↑43

[133] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shivakumar,
Matt Tolton, and Theo Vassilakis. Dremel: Interactive Analysis of Web-Scale Datasets.
Proceedings of the VLDB Endowment, 3(1-2):330–339, September 2010. ↑15, ↑48

[134] miniz: Single C source file Deflate/Inflate compression library with zlib-compatible
API, ZIP archive reading/writing, PNG writing. https://code.google.com/p/miniz/.
Accessed January 8, 2016. ↑105

[135] Scott Moeller, Avinash Sridharan, Bhaskar Krishnamachari, and Omprakash Gnawali.
Routing Without Routes: The Backpressure Collection Protocol. In Proceedings of
International Conference on Information Processing in Sensor Networks (IPSN), 2010.
↑64

[136] Curt Monash. Splunk and inverted-list indexing. http://www.dbms2.com/2014/03/
06/splunk-and-inverted-list-indexing/. Accessed November 15, 2015. ↑18

[137] mongoDB. http://www.mongodb.org. Accessed December 4, 2015. ↑13

[138] MySQL. http://www.mysql.com. Accessed December 4, 2015. ↑13

[139] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew
Tomkins. Pig Latin: A Not-So-Foreign Language for Data Processing. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, 2008. ↑16

https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
https://en.wikipedia.org/wiki/Lempel-Ziv-Markov_chain_algorithm
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://mattmahoney.net/dc/zpaq.html
http://mattmahoney.net/dc/zpaq.html
https://code.google.com/p/miniz/
http://www.dbms2.com/2014/03/06/splunk-and-inverted-list-indexing/
http://www.dbms2.com/2014/03/06/splunk-and-inverted-list-indexing/
http://www.mongodb.org
http://www.mysql.com

BIBLIOGRAPHY 131

[140] Patrick O’Neil and Dallan Quass. Improved Query Performance With Variant Indexes.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
1997.

[141] Patrick E. O’Neil. Model 204 Architecture and Performance. In Proceedings of the
International Workshop on High Performance Transaction Systems, 1987. ↑26

[142] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm. In Proceedings of the USENIX Annual Technical Conference (ATC), June
2014. ↑43

[143] OpenCL: The open standard for parallel programming of heterogeneous systems. https:
//www.khronos.org/opencl. Accessed December 4, 2015. ↑21

[144] ORACLE. http://www.oracle.com. Accessed December 4, 2015. ↑13

[145] Giuseppe Ottaviano and Rossano Venturini. Partitioned Elias-Fano Indexes. In
Proceedings of ACM Conference on Research & Development in Information Retrieval
(SIGIR), 2014. ↑33

[146] Michael Ovsiannikov, Silvius Rus, Damian Reeves, Paul Sutter, Sriram Rao, and Jim
Kelly. The Quantcast File System. Proceedings of the VLDB Endowment, 6(11):1092–
1101, August 2013. ↑16

[147] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time. Computer
Networks, 31(23–24):2435–2463, 1999. ↑3, ↑17, ↑105

[148] Robert Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the
Data: Parallel Analysis with Sawzall. Scientific Programming, 13(4):277–298, 2005. ↑16

[149] Martin F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix
Stripping, pages 313–316. Morgan Kaufmann Publishers Inc., 1997. ↑76

[150] PostgreSQL. http://www.postgresql.org. Accessed December 4, 2015. ↑13

[151] Pulsar. http://docs.paralleluniverse.co/pulsar/. Accessed December 27, 2015.
↑22

[152] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong
Zhou, Yuan Yu, and Zheng Zhang. TimeStream: Reliable Stream Computation in
the Cloud. In Proceedings of the ACM SIGOPS European Conference on Computer
Systems (EuroSys), 2013. ↑13

[153] Ariel Rabkin and Randy Katz. Chukwa: A system for reliable large-scale log collection.
In Proceedings of the USENIX Large Installation System Administration Conference
(LISA), 2010. ↑11

https://www.khronos.org/opencl
https://www.khronos.org/opencl
http://www.oracle.com
http://www.postgresql.org
http://docs.paralleluniverse.co/pulsar/

BIBLIOGRAPHY 132

[154] KV Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B. Shah, and Kannan Ram-
chandran. Having Your Cake and Eating It Too: Jointly Optimal Erasure Codes for
I/O, Storage, and Network-bandwidth. In USENIX Conference on File and Storage
Technologies (FAST), February 2015. ↑60

[155] Reactive Streams. http://www.reactive-streams.org. Accessed April 11, 2016. ↑64

[156] Redis. http://redis.io. Accessed December 4, 2015. ↑13

[157] Irving S Reed and Gustave Solomon. Polynomial Codes over Certain Finite Fields.
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960. ↑60

[158] Frederick Reiss, Kurt Stockinger, Kesheng Wu, Arie Shoshani, and Joseph M. Hellerstein.
Enabling Real-Time Querying of Live and Historical Stream Data. In Proceedings of
the Conference on Scientific and Statistical Database Management (SSDBM), 2007. ↑14

[159] Mark Reith, Clint Carr, and Gregg Gunsch. An Examination of Digital Forensic Models.
International Journal of Digital Evidence, 1(3):1–12, 2002. ↑3

[160] Riak. http://www.basho.com. Accessed December 4, 2015. ↑13

[161] Rodrigo Rodrigues and Barbara Liskov. High Availability in DHTs: Erasure Coding vs.
Replication. In Proceedings of the International Conference on Peer-to-Peer Systems
(IPTPS), 2005. ↑60

[162] Doron Rotem, Kurt Stockinger, and Kesheng Wu. Optimizing Candidate Check Costs
for Bitmap Indices. In Proceedings of the Conference on Information and Knowledge
Management (CIKM), 2005. ↑29, ↑102

[163] SAP HANA. http://hana.sap.com. Accessed December 1, 2015. ↑14

[164] Andreas Schmidt and Mirko Beine. A Concept for a Compression Scheme of Medium-
Sparse Bitmaps. In Procceedings of the The Third International Conference on Advances
in Databases, Knowledge, and Data Applications (DBKDA), pages 192–195, 2011. ↑34

[165] Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression of
Inverted Indexes For Fast Query Evaluation. In Proceedings of ACM Conference on
Research & Development in Information Retrieval (SIGIR), 2002. ↑33

[166] Malte Schwarzkopf. Operating System Support for Warehouse-Scale Computing. PhD
thesis, University of Cambridge Computer Laboratory, 2015. ↑14

[167] Frank Sear. Dictionary of Art, volume 11. Grove, 1996. ↑3

[168] Matt Selsky and Daniel Medina. GULP: A Unified Logging Architecture for Authenti-
cation Data. In Proceedings of the USENIX Large Installation System Administration
Conference (LISA), 2005. ↑11

http://www.reactive-streams.org
http://redis.io
http://www.basho.com
http://hana.sap.com

BIBLIOGRAPHY 133

[169] Bilal Shebaro and Jedidiah R. Crandall. Privacy-preserving Network Flow Record-
ing. Digital Investigation: The International Journal of Digital Forensics & Incident
Response, 8:90–100, August 2011. ↑10

[170] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
Distributed File System. In Proceedings of the IEEE Symposium on Mass Storage
Systems and Technologies (MSST), 2010. ↑16, ↑60

[171] Abe Singer. Building a Logging Infrastructure. FIRST Technical Colloquium, October
2005. ↑11

[172] Rishi Rakesh Sinha and Marianne Winslett. Multi-resolution Bitmap Indexes for
Scientific Data. ACM Transactions on Database Systems (TODS), 32(3), August 2007.
↑18, ↑30, ↑54

[173] Apache Solr. http://lucene.apache.org/solr. Accessed February 19, 2016. ↑15, ↑60

[174] Kurt Stockinger, John Cieslewicz, Kesheng Wu, Doron Rotem, and Arie Shoshani.
Using Bitmap Index for Joint Queries on Structured and Text Data. In New Trends in
Data Warehousing and Data Analysis, volume 3. Springer, 2009. ↑73

[175] Kurt Stockinger, Kesheng Wu, and Arie Shoshani. Evaluation Strategies for Bitmap
Indices with Binning. In Proceedings of the Conference on Database and Expert Systems
Applications (DEXA), volume 3180, 2004. ↑26

[176] M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O’Neil, et al. C-Store: A Column-oriented DBMS. In Proceedings
of the International Conference on Very Large Data Bases (VLDB), 2005. ↑15, ↑48

[177] Michael Stonebraker. SQL Databases V. NoSQL Databases. Communications of the
ACM, 53(4):10–11, April 2010. ↑14

[178] Zoltan Szabadka. Introducing Brotli: a New Compression Algorithm
for the Internet. http://google-opensource.blogspot.com/2015/09/

introducing-brotli-new-compression.html. Accessed January 8, 2016. ↑105

[179] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz. Theory and
Practice of Bloom Filters for Distributed Systems. Communications Surveys & Tutorials,
14(1):131–155, 2012. ↑13

[180] Leandros Tassiulas and Anthony Ephremides. Stability Properties of Constrained
Queueing Systems and Scheduling Policies for Maximum Throughput in Multihop
Radio Networks. IEEE Transactions on Automatic Control, 37(12):1936–1948, 1992.
↑64

http://lucene.apache.org/solr
http://google-opensource.blogspot.com/2015/09/introducing-brotli-new-compression.html
http://google-opensource.blogspot.com/2015/09/introducing-brotli-new-compression.html

BIBLIOGRAPHY 134

[181] Teryl Taylor, Scott E. Coull, Fabian Monrose, and John McHugh. Toward Efficient
Querying of Compressed Network Payloads. In Proceedings of the USENIX Annual
Technical Conference (ATC), 2012. ↑11, ↑18, ↑48, ↑73

[182] Theron. http://www.theron-library.com. Accessed December 27, 2015. ↑22

[183] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive – A Warehousing
Solution Over a Map-Reduce Framework. Proceedings of the VLDB Endowment,
2(2):1626–1629, 2009. ↑13, ↑14, ↑16

[184] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep
Sen Sarma, Raghotham Murthy, and Hao Liu. Data Warehousing and Analytics Infras-
tructure at Facebook. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. ACM, 2010. ↑14

[185] John R. Vacca. Computer Forensics: Computer Crime Scene Investigation. Charles
River Media, Inc., 2005. ↑3

[186] Matthias Vallentin. Benchmark and Visualization of Various Compression Algorithms.
https://github.com/mavam/compbench. Accessed January 6, 2016. ↑105

[187] Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian
Tierney. The NIDS Cluster: Scalably Stateful Network Intrusion Detection on Com-
modity Hardware. In Proceedings of the International Symposium on Recent Advances
in Intrusion Detection (RAID), September 2007. ↑17

[188] Sebastiaan J. van Schaik and Oege de Moor. A Memory Efficient Reachability Data
Structure Through Bit Vector Compression. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 913–924, 2011. ↑34

[189] Panos Vassiliadis. A Survey of Extract-Transform-Load Technology. International
Journal of Data Warehousing & Mining, 5(3):1–27, July 2009. ↑12

[190] VAST: Visibility Across Space and Time. http://vast.io. Accessed March 30, 2016.
↑118

[191] Arun Viswanathan, Alefiya Hussain, Jelena Mirkovic, Stephen Schwab, and John Wro-
clawski. A Semantic Framework for Data Analysis in Networked Systems. In Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2011. ↑11

[192] F. Tobagi W. Noureddine. Selective Back-pressure in Switched Ethernet LANs. In
Proceedings of the Global Telecommunications Conference (Globecom), 1999. ↑64

http://www.theron-library.com
https://github.com/mavam/compbench
http://vast.io

BIBLIOGRAPHY 135

[193] Robert J. Walls, Brian N. Levine, Marc Liberatore, and Clay Shields. Effective Digital
Forensics Research is Investigator-Centric. In Proceedings of the Workshop on Hot
Topics in Security (HotSec), 2011. ↑11

[194] Daniel Walnyckya, Ibrahim Baggilia, Andrew Marringtonb, Jason Moorea, and Frank
Breitingera. Network and device forensic analysis of Android social-messaging applica-
tions. Digital Investigation: The International Journal of Digital Forensics & Incident
Response, 14:77–84, 2015. ↑11

[195] Sebastian Wandelt, Dong Deng, Stefan Gerdjikov, Shashwat Mishra, Petar Mitankin,
Manish Patil, Enrico Siragusa, Alexander Tiskin, Wei Wang, Jiaying Wang, and
Ulf Leser. State-of-the-art in String Similarity Search and Join. SIGMOD Record,
43(1):64–76, May 2014. ↑77

[196] Wei Wang and Thomas E. Daniels. Building Evidence Graphs for Network Forensics
Analysis. In Proceedings of the Computer Security Applications Conference (ACSAC),
2005. ↑11

[197] Hakim Weatherspoon and John Kubiatowicz. Erasure Coding vs. Replication: a
Quantitative Comparison. In Proceedings of the International Conference on Peer-to-
Peer Systems (IPTPS), 2002. ↑60

[198] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2012. ↑16

[199] Harry K. T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem, and Linda Wong. Bit
Transposed Files. In Proceedings of the International Conference on Very Large Data
Bases (VLDB), 1985. ↑26, ↑34, ↑35, ↑86

[200] Kesheng Wu. FastBit: an efficient indexing technology for accelerating data-intensive
science. Journal of Physics: Conference Series, 16:556–560, 2005. ↑27

[201] Kesheng Wu, Ekow Otoo, and Arie Shoshani. On the Performance of Bitmap Indices
for High Cardinality Attributes. In Proceedings of the International Conference on
Very Large Data Bases (VLDB), 2004. ↑26, ↑34

[202] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. A Performance Comparison of Bitmap
Indexes. In Proceedings of the Conference on Information and Knowledge Management
(CIKM), 2001. ↑33, ↑34

[203] Lili Wu, Roshan Sumbaly, Chris Riccomini, Gordon Koo, Hyung Jin Kim, Jay Kreps,
and Sam Shah. Avatara: OLAP for Web-Scale Analytics Products. Proceedings of the
VLDB Endowment, 5(12):1874–1877, 2012. ↑13, ↑14

[204] Ming-Chuan Wu. Query Optimization for Selections Using Bitmaps. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, 1999.

BIBLIOGRAPHY 136

[205] Fangjin Yang, Eric Tschetter, Xavier Léauté, Nelson Ray, Gian Merlino, and Deep
Ganguli. Druid: A Real-time Analytical Data Store. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 157–168, 2014. ↑15

[206] Ting-Fang Yen, Alina Oprea, Kaan Onarlioglu, Todd Leetham, William Robertson, Ari
Juels, and Engin Kirda. Beehive: Large-scale Log Analysis for Detecting Suspicious
Activity in Enterprise Networks. In Proceedings of the Computer Security Applications
Conference (ACSAC), 2013. ↑11

[207] Lei Ying, Sanjay Shakkottai, Aneesh Reddy, and Shihuan Liu. On Combining Shortest-
path and Back-pressure Routing over Multihop Wireless Networks. IEEE/ACM Trans-
actions on Networking, 19(3), June 2011. ↑64

[208] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, Pradeep Kumar
Gunda, and Jon Currey. DryadLINQ: A System for General-purpose Distributed Data-
parallel Computing Using a High-level Language. In Proceedings of the USENIX
Conference on Symposium on Operating Systems Design & Implementation (OSDI),
2008. ↑13

[209] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceed-
ings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2012. ↑13, ↑16

[210] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. Discretized Streams: Fault-Tolerant Streaming Computation at Scale. In
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2013.
↑16

137

Appendix A

Multi-Component Range Queries

In §2.4.4 we mention the algorithm RangeEval-Opt [39], which performs a range query over
a multi-component index. It operates more efficiently than its predecessor RangeEval [140],
hence the Opt suffix. There exist further improvements to RangeEval-Opt which prune sub-
trees when an identifier set represents the full domain or the empty set [204]. The algorithm
specifically works with range-encoded identifier sets. To get an intuitive understanding of
how it works, we show in Figure A.1 an operator graph which reflects the evaluations for the
specific value x = 1337 in uniform base 10. The algorithm performs a series of unions and
intersections to arrive at the final result. Algorithm A.1 displays the complete algorithmic
operation, adapted to fit in our notation which unifies inverted and bitmap indexes.

_

^

_

^

_

^

R7
0

R3
2

R1
3

R0
3

R2
2

R3
1

R2
1

Figure A.1: Evaluation tree for the algorithm RangeEval-Opt (see Algorithm A.1) for
value x = 1337 in uniform base 10.

APPENDIX A. MULTI-COMPONENT RANGE QUERIES 138

Precondition:
I: an index with k components.
x: a value from the domain of I.
β: a well-defined base for x.
◦: a relational operator from {<,≤,=, 6=,≥, >}.
Rx
c : the identifier set for index component c for value x.

0: The empty set of identifiers for the index, i.e., either a bit vector with all bits set to 0
or an empty position list.
1: The complete set of identifiers for the index, i.e., either a bit vector with all bits set
to 1 or a position list containing with all identifiers in I.

Postcondition:
R: represents the identifier set according to z ◦ x for all z ∈ I.

1 function RangeEval-Opt(◦, x, β)
2 R← 1

3 if ((◦ ∈ {<} ∧ x = 0) ∨ (◦ ∈ {>} ∧ x =
∏k

i=1 βi − 1)) then return 0

4 if (◦ ∈ {<,≥} ∧ x > 0) then
5 x← x− 1
6 end if
7 x← 〈x1, . . . , xk〉β
8 if (◦ ∈ {<,>,≤,≥}) then
9 if (x1 < β1 − 1) then R← Rx1

1

10 for i = 1 to k − 1 do
11 if (xi < βi − 1) then R← R ∧ Rxi

i

12 if (xi 6= 0) then R← R ∨ Rxi−1
i

13 end for
14 else
15 for (i = 1 to k) do
16 if (xi = 1) then R← R ∧ R1

i

17 else if (xi = βi − 1) then R← R ∧ Rβi−2
i

18 else R← R ∧ (Rxi
i ⊕Rxi−1

i)
19 end for
20 end if
21 if (◦ ∈ {>,≥, 6=}) then R← R
22 return R
23 end function

Algorithm A.1: RangeEval-Opt [39] adapted according to our notation. Figure A.1
illustrates how the algorithm operates for a specific value.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Use Cases
	Incident Response
	Network Troubleshooting
	Insider Abuse

	Goals
	Interactivity
	Scalability
	Expressiveness

	Outline

	Background
	Literature Search
	Related Work
	Traditional Databases
	Modern Data Stores
	Distributed Computing
	Network Forensics Domain

	High-Level Message Passing
	Actor Model
	Implementations

	Accelerating Search
	Hash and Tree Indexes
	Inverted and Bitmap Indexes
	Space-Time Trade-off
	Composition

	Architecture
	Data Model
	Type System
	Query Language

	Components
	Import
	Archive
	Index
	Export

	Deployment
	Component Distribution
	Fault Tolerance

	Summary

	Implementation
	Message Passing Challenges
	Adapting to Load Fluctuations with Flow Control
	Resolving Routing Inefficiencies with Direct Connections

	Composable and Type-Rich Indexing
	Boolean Index
	Integral Index
	Floating Point Index
	Duration & Time Index
	String Index
	IP Address Index
	Subnet Index
	Port Index
	Container Indexes

	Query Processing
	Expression Normalization
	Evaluating Expressions
	Finite State Machines

	Code Base

	Evaluation
	Measurement Infrastructure
	Machines
	Data Sets

	Correctness
	Throughput
	Latency
	Scaling
	Storage
	Archive Compression
	Index Overhead

	Summary

	Conclusion
	Summary
	Outlook
	Systems Challenges
	Algorithmic Challenges

	Bibliography
	Multi-Component Range Queries

