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Abstract

Automated Pricing Agents in the On-Demand Economy

by

Tony Wu

Master of Science in Electrical Engineering and Computer Science

University of California, Berkeley

We present this thesis to study and build automated pricing engines that work in on-
demand economies. The task of determining market prices is especially challenging in an
on-demand marketplace because of frequently fluctuating supply and demand. An automated
pricing agent provides reactive real-time prices. To evaluate different types of automated
pricing models, we build an on-demand marketplace simulation. By using research on human
behavior, we create customer and supplier agent models that interact within the simulation.
Afterwards, we run market experiments using various pricing algorithms. We introduce
the concept of applying reinforcement learning to generate dynamic prices, and we evaluate
our reinforcement learning agent’s performance relative to that of other simpler pricing
algorithms. Performance is measured not only in terms of profit, but also in metrics that
determine customer and supplier retention.
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Chapter 1

Market Overview

1.1 Marketplaces

Many types of marketplaces exist in the world today, each with their own pricing strategies.
This paper focuses on pricing in the “on-demand” economy. We can define the on-demand
economy as a marketplace where companies provide fulfillment of customer demand via the
immediate provisioning of goods and services. On-demand services have become increas-
ingly popular with improvements in Internet availability, mobile technologies, and real-time
operations. It is common for supply and demand to vary greatly in these marketplaces.
Since the goods and services are delivered immediately, companies often have to price their
commodities on the spot depending on market factors at the time. Therefore, prices are
required to be adaptive and respond to real-time changes in supply and demand.

Many traditional pricing strategies exist today that would not perform well in the on-
demand economy. In the traditional retail space, commodity supply and prices are preset
and generally stationary throughout the day. This model is especially prevalent in stores
with inventory, such as grocery stores and fashion retail. Prices are adjusted infrequently,
commonly on a day-to-day basis. When customer demand changes, there is little the seller
can do to adjust accordingly in a timely fashion. In fact, the increasing rate of markdowns
in the retail industry has been caused by growing demand uncertainty[15].

Contract pricing is another widely using pricing model. Under contract pricing, the price
of a commodity is normally determined by certain factors written in a contract. An example
would be taxi prices. By taking a taxi ride, you are agreeing to pay a certain amount
per mile or time with certain additional costs such as fuel. Prices determined by contracts
only change if specified in the contract. Therefore, there is no way for prices to react to
unforeseeable changes in the marketplace. Contracts are also usually legally binding and
difficult to rewrite and renegotiate.

Bid pricing strategies are also commonplace across multiple industries. The first-price
sealed-bid auction is how we traditionally think about bidding, where the highest bidder wins
and pays what they bid. The second price auction is a more stable auction system where
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the highest bidder pays the second highest bid. This system is famously used by Google for
its search advertisement[27][13]. However, a bidding system would incur too much overhead
in an on-demand marketplace. The bidding process causes a delay in pricing adjustments
and therefore a delay in responses to marketplace changes.

1.2 Market players

Many industries contain on-demand marketplaces. The airline ticketing industry is a more
traditional example. Airlines sell a supply of seats using similar dynamic pricing techniques.
Although the fulfillment of goods is not as immediate, airline ticket sales must deal with the
same fluctuating demand that on-demand companies face[2]. In addition to the airline indus-
try, the trucking industry has a very on-demand component in its spot brokering segment.
Spot brokering is the immediate pricing of a freight lane for a customer. A lane is defined
as a commonly traveled route. An example would be the I-5 freight lane going from Seattle
to Los Angeles. This bypasses the traditional bidding system in favor of a more expedited
experience. However, it is often hard to generate spot prices, as lane prices usually depend
on a variety of factors including supply, demand, type of good shipped, carrier preferences,
shipper preferences, etc[35].

Now, newer industries exist that have popularized on-demand services while incorporat-
ing more data-centric techniques into their pricing, such as machine learning. There are
transportation companies such as Lyft and Uber, food delivery companies such as Caviar
and Munchery, and general service providers such as TaskRabbit. Although all these compa-
nies offer different goods and services, they all face the same problem of fluctuating supply
and demand and the need to respond to these changes in real time[32].

1.3 Differences from other marketplaces

The difference between these on-demand marketplaces and other more traditional market-
places is the need for real time feedback and adjustments. Due to the fact that these
companies tout immediate fulfillment, they do things at a much quicker pace than other
slower moving industries. As a result, their markets are much more sensitive to changing
supply and demand. Other pricing models are too slow to adjust to these constant changes.
Companies that operate in the on-demand space must remain agile[9]. As a result, their
pricing systems must also be agile enough to react to changing environments.

The cost of not setting the right price is also much costlier in an on-demand marketplace.
On-demand commodities are ephemeral. If a commodity is not being fully utilized, there are
many associated sunk costs, such as fuel, and maintenance costs. The same sunk costs apply
across airline, on-demand transportation, and trucking industries. If an airplane flies with
empty seats, those seats are a sunk cost for the airline. If a truck driver or Uber driver drives
with an empty vehicle, the driver is losing money on fuel and car maintenance costs. Since
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on-demand transactions are so frequent, if prices are slow to adjust, costs could magnify
within the course of hours.

Traditionally, prices are seen as reactions to changing market environments. On the
other hand, on-demand companies have effectively employed pricing as a means to directly
influence supply and demand. For example, Uber raises prices during peak hours to increase
driver supply and defer customer demand[17]. Therefore, an automated pricing agent should
be able to take advantage of its ability to influence behaviors of market agents.

1.4 Rise of automated pricing systems

Automated pricing systems have been shown to be the answer to the variance that on-demand
companies have faced. Our definition of an automated pricing system is an agent that is
able to respond to data provided by the environment (current supply, demand, etc.) and
adjust the price accordingly. Overhead is reduced, because it should be able to observe data
and take action without human supervision. As urban data becomes more available through
initiatives such as Open Data, more companies and institutions have been incorporating
these logistics into their operations[5][20].

Both Uber and Lyft use a proprietary form of an automated pricing system. Prices are
generated on the spot, and fares for the same route can vary greatly from minute to minute.
These prices usually take supply and demand into account. One example is Uber’s surge
pricing[17]. During periods of high demand, it is common for users to see prices go up.

Automated pricing systems have been used successfully in other industries. Since its
introduction as a low cost airline in 1992, RyanAir has revolutionized the airline industry by
being profitable even with relatively low prices[3]. Another one of the first low price airlines,
People Express, also offered low prices but could not compete. People’s Express offered flat
rate low cost flights and experienced tremendous growth in the 1980s. However, it eventually
lost business as a result of more flexible pricing strategies employed by competitors. As a
pioneer of dynamic pricing strategies, RyanAir has remained competitive by taking advantage
of “latent demand”. Prices for RyanAir tickets change constantly, and almost always get
higher as the flight date approaches. This is based on the expectation that customers who
buy last minute tickets are more willing to bear the costs. We can also see how this dynamic
pricing has also influenced consumer behaviour, where passengers seek to find days where
tickets might be lowest, sometimes booking many weeks or months in advance. Currently,
almost all airlines employ some variation of this pricing model. Since the average price of
dynamic pricing is higher than a flat low-cost rate, Ryan-Air and other airlines can remain
competitive and profitable while still offering budget prices.

Other traditional industries have begun adopting a more dynamic approach to pricing as
well. Disney just announced that it plans to introduce demand-based pricing at its theme
parks[12]. Event ticket sellers face the same sunk costs as on-demand industries, and they
are now also changing their prices based on estimated supply and demand. Notable examples
include concert ticket sellers such as Stubhub and major sports leagues[10][25].
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1.5 Relevant literature review

There is an abundance of prior research that uses dynamic pricing to tackle price optimiza-
tion in the face of uncertain supply and demand. The papers that do not have a large
marketplace dataset rely on simulated data. Most of these papers have emulated market-
place interactions using a multi-period finite horizon problem[16][19][33][36]. In this paper,
we use this multi-period finite horizon model to build a simulation that operates in a similar
manner. The scope of prior research ranges from industry specific solutions to a broad appli-
cation of dynamic pricing. This paper falls in the middle, because we examine a simulation
specific to on-demand transportation, but we preserve the re-usability of our simulation by
avoiding industry specific marketplace parameters. Most general papers remain flexible by
only incorporating overarching marketplace factors, such as supply, demand, and price.

Dynamic pricing is relevant in a multitude of industries. Kim (2014) has explored the use
of dynamic pricing to manage electricity grids. Shih (2003) shows that dynamic pricing can
be used to change user behavior in voice and data usage by deferring spikes in demand[31].
Bertsimas (2006) shows that dynamic pricing can be generalized to any problem that involves
congestion pricing[7]. A lot of prior work in dynamic pricing has been done as a response to
yield management and perishable goods[16]. These industries face challenges that are also
applicable to the on-demand marketplace.

Prior simulation papers propose varying techniques to emulate customer and supplier
behavior and the way behavior reacts to changing prices[30][11][18]. Raju (2006) proposes
a customer segmentation of “captives” and “shoppers”, where “captives” are mature, loyal
customers and “shoppers” are more price sensitive[30]. Dimicco (2003) models unpredictabil-
ity in buyer and seller behavior and the effects that pricing has over supply and demand
in conjunction with advertising and brand perception[11]. Haws (2006) examines dynamic
pricing and its effect on consumer fairness perceptions and temporal sensitivity[18]. In this
paper, we introduce agent traits that generalize buyer and seller behavior. We do not delve
into advertising and brand perception, but we are able to model similar interactions in price
sensitivity, temporal sensitivity, and agent sentiment towards price. Numerous economic
papers delve into customer satisfaction and retention, but they do not employ the same
dynamic pricing algorithms we use in this paper[8].

Many papers have translated the dynamic pricing problem to a Markov decision process
problem[23][6]. More specifically, the dynamic pricing problem is considered a partially
observed Markov decision process, as agents do not necessarily have full observability of
the marketplace[6]. Miller (1968) proposes a finite horizon Markov decision process where
only a finite number of actions (prices) are allowed. We employ a similar technique in this
paper, where we define a possible range of prices and discretize that interval into actions.
Another valid way of formulating the problem is to represent it as a game between market
participants[23].

Reinforcement learning has been a solution of interest for determining dynamic prices.
Since the complete model of a marketplace is not known, model-free techniques such as
Q-learning are effective in determining optimal pricing actions. Most other papers, such as
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Pednault (2004), use profit as the main metric of success, but do not consider other factors
such as customer or supplier happiness[29]. They also tend to overlook customer and supplier
retention, which may be negatively or positively influenced by price. These are all factors we
measure when analyzing the final action-value models learned by our reinforcement learning
agent.

Competition in the marketplace has been modeled in different ways. Hu and Wellman
(1998) show a multi-agent RL situation where two agents repeatedly play a game where both
agents have full observability and converge to optimal strategies[22]. In reality, marketplace
agents operate with partial observability[24]. Kephart (2000) examines the competition be-
tween two RL agents with partial observability. Kephart (2000) also models competition
between an RL agent and game-theory agents with simpler search strategies. Introducing
competition between automated agents can lead to unexpected price wars and effects on con-
sumers and suppliers. We explain how me might translate our results to a multi-competitive
landscape in the future work section.
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Chapter 2

Pricing Simulation Setup

2.1 Overview

In order to evaluate the performance of different pricing models, we built a simulation that
models the dynamic environment an on-demand market. We chose to model a situation
similar to an on-demand ride requesting service such as Uber or Lyft. The agents in this
simulation are the passengers, the drivers, and the automated pricing agent. The purpose
of the automated pricing agent is to set a price for a lane, which is a ride from point A to
point B at time t. Both driver and passenger agents may choose to accept this price, and
each driver-passenger pair constitutes a match. Each match will result in some amount of
revenue for our pricing agent proportional to the market price at the time.

For each agent, we must build a preference model. This preference model determines each
agent’s actions and their utilities. For both drivers and passengers, we must also generate a
population of agents with a diverse set of preferences that reflect a real world population.

The simulation must also model the passage of time. Therefore, the simulation will
consist of rounds, where each round represents the passage of some unit of time. In each
round, we must update a set of variables that describe environment. These include the
current price, agents that match, agents that exit, and each agents preference models. A
general overview of a round in our simulation can be seen in Figure 2.1. Specifics on how
and why we update market factors are provided later in this section.

The point of the simulation is to model how price variations should react to and affect
supply and demand in a certain lane. An example of a lane is a route from Downtown
Oakland to UC Berkeley. This simulation does not account for multiple different lanes or
geolocation of agents. We talk about how we might tweak this simulation to model many
different geographical lanes in the future work section.
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Figure 2.1: Visualization of a matchmaking round

4. Matched drivers and 
passengers agents 

exit the round

2. Driver and 
Passenger agents  

enter the round

3. Drivers and 
Passengers that 

accept the price are 
matched

1. Pricing Agent sets 
price for this round

5. Unmatched drivers 
and passengers 

agents may exit the 
round

6. Unmatched drivers 
and passengers 

agents may update 
their preferences

2.2 Agent preferences

Agent preferences are variables that affect an agent’s behaviour. We specifically chose pref-
erences that would be relevant to real human behavior. The variables are as follows:

Passenger and driver variables

• Preferred price, ppreferred: The price at which the agent would accept an offer for this
lane. Everyone has a price that they would pay/take to use the service. For drivers,
this is a price where if they were offered any lower price, they probably would not take
the offer. For passengers, this is a price where if they were offered a higher price, they
likewise probably would not take the offer.

• Price adjustment tolerance, ptolerance: Determines how much the agent’s preferred price
changes for each round they are active and still unmatched. We imagine agent price
preferences to be dynamic. This trait models a sense of urgency or fluidity in agent
preferences. For example, if passengers do not get matched immediately, they might
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be willing to pay more as time goes by as their urgency increases. On the other side,
drivers might care less and less about how much they are getting paid as they get more
desperate to make money.

• Round tolerance, Rtolerance: How many rounds the driver stays active without being
matched. This trait is here to model how frustrated agents may switch off the service
and use another alternative if they do not find an immediate match or offer that is
satisfactory. An example of this is if you think Uber prices are too high and after
5 minutes, you leave the Uber app to use Lyft. These agents that exit do not exit
permanently and may return for subsequent rounds.

• Satisfaction, S: How likely the driver is to stay or leave the system permanently. This
trait represents the lifetime satisfaction of an agent using the service. The lower an
agents satisfaction, the more likely they are to leave the service permanently. Satisfac-
tion is increased as the agent gets matched, and is decreased as an agent does not get
matched.

• Income preference, I: Threshold on how much a driver agent needs to make over a
period of time. (e.g. $100 over 7 rounds). Drivers tend to drive to meet a minimum
level of income. The main cause of Uber and Lyft driver churn has come from drivers
realizing that they cannot make enough money on the platform. In our simulation,
after a certain period of time, driver’s compare the money they’ve made to their income
preference. If their preference is not met, they leave the simulation permanently.

Price agent variables

• Market price, pmarket: The current price offered for this lane.

2.3 Population models

To create a population of agents, we need to create a number of agents with a wide variety
of these preferences. For this simulation, we decided to use a multivariate Gaussian based
population model. While real data is not exactly multivariate Gaussian, the Gaussian dis-
tribution is a good approximation because of the central limit theorem. We establish an
average preferred price, price adjustment tolerance, round tolerance, and satisfaction for the
population. Then we generate agents so that each preference follows a Gaussian distribution
in the population. This gives us a range of agents with a diverse set of preferences. We
can set the averages of each variable to some reasonable value that we derive from market
research.
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2.4 Action models

With these preferences set, we can create models on how agents are likely to act based on
their preferences. There are a few actions that active agents can take each round:

1. Accept an offer
We can model the probability that an agent will accept an offer given the price by
using a probit distribution. The probit distribution is the integral of a standard normal
distribution. Probit distributions are useful for determining decision probabilities that
rely on soft thresholds. The threshold in this case is the agent’s preferred price. We can
justify using a soft threshold by proposing that even though the underlying decision
of accepting an offer may have a hard threshold, the precise location location of that
threshold is subject to random Gaussian noise. If the integral of a normal distribution
is defined as:

Φ(x) =
∫ x

−∞
N(0, 1)(x)dx

then the probability of a passenger accepting an offer given a price is:

P (accept | poffer) = Φ((−poffer + ppreferred)/σ)

and the probability of a driver accepting an offer given a price is:

P (accept | poffer) = Φ((poffer − ppreferred)/σ)

where µ is the agent’s preferred price and σ determines the width of the threshold
region.
We can see here that the higher the price, the less likely a passenger is to accept the
offer, and more likely a driver is to accept the offer. If an agent does not get matched
to an offer, actions 2 to 4 may occur.

2. Adjust preferred price
For each round that an agent does not get matched, they may be willing to adjust
their price tolerance based on their price tolerance. For passengers, this means they
are willing to pay a higher price, and for drivers, they are willing to drive for a lower
price. For simplification purposes, we can just add or subtract a percentage of the
preferred price to an agent’s preferred price each round. Here is our update function
for passengers, for drivers we just reverse the sign of the operation:

ppreferred = ppreferred ∗ (1 + ptolerance)

3. Become inactive
If an agent becomes unmatched for a number of rounds exceeding their round tolerance,
they will become inactive. This just means that an agent has left the match-making
process temporarily.

state =

{
inactive Runmatched > Rtolerance

active otherwise
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4. Leave the system
If an agent’s satisfaction becomes too low, they may permanently leave the system.
Similar to accepting an offer, we can set the probability than an agent will leave given
their satisfaction using the probit distribution:

P (leave | S) = Φ((Saverage − S)/σ)

where S = satisfaction and S ranges from 0 to 1.0. σ determines the width of the
threshold region. We set Saverage to be 0.5 in our simulations
Each round, an agent’s satisfaction can go down or up depending on whether or not
they get matched.

S =

{
min(S + Sgain, 1) agent matched
max(S − Sloss, 0) agent unmatched

In addition, drivers may leave the system if their income is less than their income
preference. Simulation specifics about income preference are provided in the long-term
simulations section.

2.5 Modeling different agent types

There are many combinations of these preferences. We can tweak these preferences so that
we model different types of agent populations in the marketplace. Some notable examples
are as follows:

1. Average passenger and driver
An agent with average values across all traits.

2. Urgent passenger
An urgent passenger would be an agent that has a high price tolerance but a low round
tolerance. This is someone who has to get somewhere quick with little regard for price.

3. Critical passenger
A passenger with low price tolerance, low round tolerance, and high satisfaction loss.
This is someone who is skeptical of what the service provides, similar to a first time
user, and they are easily dissatisfied and prone to leaving the platform.

4. Critical driver
This is similar to a critical passenger. This is a driver with a low price tolerance, low
round tolerance, and high satisfaction loss
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2.6 Modeling cost

Our goal in this paper is to maximize profit while maximizing metrics that define driver
and passenger satisfaction. Profit is defined as the difference between revenue and cost.
Therefore, we must have a way to model costs in our simulation. There are two costs that
we are focused on. Customer acquisition costs and driver acquisition costs. Ideally, our
agent should achieve higher profits if it is incentivized to decrease costs. A simple model of
representing cost is to generate a constant for acquisition costs and loss costs. For example,
for each customer we acquire we add one unit of customer acquisition cost to our cost pool.
To come up with quantitative values for these costs, we can look at costs that currently exist
in the industry.

Customer acquisition cost

As the time of writing this paper, Uber and Lyft currently offer $20 dollars off your first
ride[34]. We can use this as an approximation of our customer acquisition cost. Of course,
there are other factors such as marketing costs and human labor that increase the customer
acquisition cost, but these are too hard to quantify on a general basis.

Driver acquisition cost

The cost of acquiring a driver tends to be higher than the customer acquisition cost. Ac-
quisition costs for drivers include marketing, driver training, and other driver services such
as insurance. We can get a rough approximate of driver acquisition costs by looking at the
current driver referral bonus. Lyft is willing to pay drivers in San Francisco $750 if they
refer a new driver[26]. Therefore, in our simulations, we decide to set the driver loss cost to
be similar in magnitude.

Modeling competition

We model competition by introducing a customer and driver loss cost. This cost represents
the advantage a competitor gains when a customer or driver permanently leaves our platform.
These costs also incentivize increasing driver and passenger satisfaction and retention. We
make customer and driver costs equal to their acquisition costs. As a result, driver loss
costs are relatively higher than customer loss costs, and we emphasize retaining drivers over
customers when given the choice. This is a common problem currently seen in the ride-
sharing and trucking industries. On-demand companies have seen that customer demand
has grown, but disgruntled drivers have been leaving as a result of low pay, poor treatment,
and other factors. This has resulted in a driver shortage for both Uber, Lyft, and the trucking
industry as a whole. Since drivers are difficult to replace and retrain, it makes sense that
we should put a higher value on driver retention. We describe more complex ways to model
competition in the future work section.
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Modeling enter rate using price sensitivity

An agent’s usage of on-demand platforms is also sensitive to price. Drivers, especially, are
very sensitive to the current market price. Platforms, such as Uber, have tried to manipulate
the supply of drivers by surging prices. Drivers react by flocking to areas with higher prices.
We model the probability that a driver will enter given a market price by using a probit
distribution, which increases the chances of new drivers entering the system when there is a
higher price.

P (enter | p) = Φ((−p+ ppreferred)/σ)

where p = current market price and ppreferred is the driver’s preferred price.

2.7 Setting the initial price

We must decide the initial market price for our pricing engine. There are multiple ways we
can do this:

Random Guess

Alternative one is to use a random number and have our pricing engine eventually converge
to the right value.

Competitor Pricing

Another alternative is to get an approximation of what people are willing to pay for a certain
lane. We can get a good sense of how much people are willing to pay to use our service by
looking at the competitive alternatives. An obvious alternative would be a traditional player
in this field. In the on-demand transportation case, this traditional player would be the
taxi industry. The taxi pricing model is quite straightforward. They charge a certain dollar
amount per unit of distance or unit of time, whichever is greater. An example is the NY
taxi service. We have included a general overview of their pricing model below[28]:

• The initial charge is $2.50.

• Plus 50 cents per 1/5 mile or 50 cents per 60 seconds in slow traffic or when the vehicle
is stopped.

• There is a daily 50-cent surcharge from 8pm to 6am.

• There is a $1 surcharge from 4pm to 8pm on weekdays, excluding holidays.

• Passengers must pay all bridge and tunnel tolls.

• Please tip your driver for safety and good service.
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• Other NY specific surcharges

As a result, we can apply the NY taxi model to our lanes to determine the initial price.
This approach is good for approximation, but inaccurate since we may be offering a very
different service. Taking an Uber is a different experience from taking a taxi, so it might
make sense to offer a different price point.

User Surveys

We can also conduct surveys of passengers and drivers to determine a rough estimate of
prices they would like to pay. However, due to human nature, passengers results might tend
to be skewed toward lower prices while drivers would be biased toward higher prices.

Historical Data

If we have historical data on how much people are willing to pay to use a service, we could
just use the averages of that data. In our case, we did not have Uber or Lyft data specifically.
However, we did use the New York taxi data collected from 2010 to 2013 by UC Berkeley
Professor Alex Bayen [1]. This data showed that the average NY taxi fare was $13.95. The
initial market price that we ended up setting for simulation is $15.00. This keeps our relative
values for cost and revenue proportional to real life values.
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Chapter 3

Dynamic Pricing Algorithms

3.1 Overview

After setting our initial base price, it is up to our pricing algorithm to change the market
price in reaction to dynamic supply and demand trends. The goal of the pricing algorithm is
to modify the price to ensure profit maximization. Here we discuss various dynamic pricing
algorithms that we will later use in our simulations.

3.2 Static pricing

This is the most simple pricing algorithm, where the price never changes.

p = pbase

3.3 Proportional pricing

In proportional pricing, our price is equal to the base price multiplied by a constant factor
times the ratio between supply and demand.

p = pbase ∗ k ∗
d

s

Proportional pricing is derived from the economic principle that when there is high demand,
people are willing to pay more for a good and service. In addition, when demand is high and
pay is good, more suppliers are willing to enter the market. The hope is that proportional
pricing solves the imbalance of supply and demand in dynamic marketplaces.
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3.4 Batch update pricing

Batch update pricing offers multiple prices centered around our base price. Our approach
is to offer a Gaussian distribution of prices each round. As offers get accepted, we shift our
base price towards the prices that result in a match. This is a relatively greedy approach
that uses recent matches to update our round price.

pbase = pbase − α ∗ (pbase − pmatched)

where α is the learning rate
As time increases, we can decrease the standard deviation of our offerings, which allows

for less experimentation but more exploitation. We can also decrease our learning rate so
that our base price converges faster.

3.5 Reinforcement learning

An autonomous agent should be able to observe an environment and learn how to act in
the environment given a success metric. This method is known as reinforcement learning.
In our relevant literature review, we mention other studies that use reinforcement learning
to provide dynamic pricing[29][7][4]. Similarly, we can model our simulation as a Markov
decision process (MDP). Then, we plan on training our agent using iterations of Q-learning.
After training, we can see how this RL agent reacts in our market simulations.

Markov Decision Processes

Markov Decision Processes consists of:

1. A set of possible world states, S

2. A set of possible actions, A

3. A reward function, R(s,a)

4. A transition function which describes each action’s effect in each state, T(s,a,s’)

To apply this to our simulation, we need to discretize our simulation into states and
actions. For our pricing agent, an action is equivalent to setting the market price as some
price p. We can limit our actions by specifying a reasonable minimum and maximum price
for the action space. For our purposes, the minimum price can be set as 0. Uber caps their
prices at 9.9 times the base price, so we can use that as our maximum price. We bucket our
price levels into intervals of 2 to obtain a reasonably sized action and state space.

In our state space, each state can be described using three state variables:

1. Market price, M
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2. Number of drivers, D

3. Number of passengers, P

We assume in our simulations that the number of drivers and passengers never exceeds 500.
In addition, we discretize our market price state into intervals of 2. Our reward, R(s,a), is
defined as the profit gained by choosing a certain price for the given state.

Q-Learning

Since we do not know the transition functions, we cannot create a complete model of the
MDP. Therefore, we can use a model-free approach such as Q-learning. Q-learning allows us
to to learn an action-value function that gives us the expected utility of taking a given action
in a given state. Q-learning is also able to factor in future rewards into this action-value
function. The general formula for Q-learning is as follows:

initialize s0
for t = 1, 2, 3 . . .

choose an action at, let’s say ε-greedy w.r.t. Q
execute at
Q(st, at) = (1− αt)Q(st, at) + αt [R(st, at, st+1) + γmaxaQ(st+1, a)]

(3.1)

Since we want our agent to maximize profits, the reward function will equate to the profit
gained by taking action a from state s.

Computation time to solve an MDP grows exponentially with the number of state vari-
ables. In this case, the state space is greatly simplified. Therefore, we can consider the
computationally intensity of solving the MDP exactly. Based on previous definitions, our
simulation’s MDP has a state space of size {M} * {D} * {P}, which comes out to be 5000
* 5000 * (pricemax/2). Each state has pricemax/2 possible actions. Given enough time,
this MDP can be exactly solved. Because of time restrictions, the Q-learning agents in this
paper use action-value models that have not completely converged to optimal values. With
additional training, the Q-learning results in this paper can achieve better performance.

Hyperparameters

We set the learning rate α to be αt = K
t+K

where K is some large value relative to t, and t
represents the learning iteration. Although we have not shown it, we know this algorithm
converges as long as we visit all the states with probability P (·) > 0[14].

For the discount factor γ, values closer to 0 makes our agent “short sighted” and value
short term rewards. Values closer to 1 will cause the agent to strive for long term reward.
We chose to set the discount factor to 0.99.
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Chapter 4

Short Term Simulations

4.1 Overview

Depending on the length of our simulation, we can create short or long term simulations.
Each round of our simulation represents an hour, and short term simulations last 20 rounds.
Short terms simulations are meant to model the dynamic fluctuations in supply and demand
that happen over the course of a day. Short term simulations are simpler to model, because
we do not have to model long term customer acquisition costs and customer loss. We can be
solely focused on revenue maximization and reacting to more drastic trends in supply and
demand.

For this simulation, we set the base market price as $15. The preferred price for both
drivers and passengers is $15. Both drivers and passengers have a round tolerance of 2.
Drivers and passengers also have a price tolerance of 33.33%, which leads to a preferred
price change of $5 each round.

4.2 Surge pricing

Surge pricing is good example of an interesting short term simulation. Surge pricing is
currently employed by companies such as Uber and Lyft in response to a sharp increase in
demand in a short period of time[17]. Demand usually spikes during certain times of day.
Notable examples include the morning rush to work and after concerts and events. To deal
with this, pricing agents normally need to surge the price in order to defer the increase of
demand and to also increase the supply of drivers. From an economic perspective, this is
explained by the Law of Supply and Demand as seen in Figure 4.1.

In our experiment, we have a total of 20 time steps, which represents 20 sequential hours
in a day. During each round, we inject 50 additional passengers and drivers. We simulate a
demand surge of 150 passengers in the 2nd and 3rd rounds and see how our pricing agents
deal with the scenario. We also see how supply and demand react to the changing market
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Figure 4.1: Explanation of surge pricing from an economics understanding. D1 and D2
represent demand curves. S represents the supply curve. The P axis represents price. The
Q axis represents quantity. P1 and P2 represent price levels. Q1 and Q2 represent quantity
levels. The Law of Supply and Demand states that as demand rises from D1 to D2, the price
of a commodity increases from P1 to P2. The quantity of the supply must also rise from Q1
to Q2 to match the increased demand.

price. We keep track of important metrics such as matches made per round, revenue per
round, total revenue, etc.

Static Pricing Results

We first used our static pricing model in our surge simulation. The results are shown in
Figure 4.2.

Proportional Pricing Results

We experimented with two different approaches to proportional pricing: Uncapped vs.
capped proportional pricing.

With uncapped proportional pricing, prices are directly proportional to the ratio of de-
mand and supply. The problem with this approach is that whenever there is a sharp increase
in demand, a sharp increase in price follows. However, this price can easily reach a price
that no reasonable passenger would be willing to pay. We can already see this frustration
in real life, as passengers complain whenever Uber or Lyft enact any type of surge pricing.
For example, Uber capped its surge pricing at 9.9x during the immensely busy New Year’s
Eve night in 2015. Rides that normally cost around $20 exceeded $100. This greatly hurt
Uber’s public image and business. To remedy this, in some areas, such as Boston, Uber has
put an artificial cap at 2.9x[21].

We emulate this cap in two ways. First, we experiment with setting a lower constant of
proportionality in our equation. By setting k as a lower value, we can limit the dynamic
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range of our price. The second method is to just set a cap on the pricing agent’s price. In
our case, we set the cap to be 2x the base price.

Results for uncapped proportional pricing with k=2 are shown in Figure 4.3. Results
for uncapped proportional pricing with k=1 are shown in Figure 4.4. Results for capped
proportional pricing are shown in figure 4.5.

Batch Update Pricing Results

For batch update pricing, we set the learning rate α to be 0.1. The results are shown in
Figure 4.6.

Reinforcement Learning Results

For reinforcement learning, we went through 50,000 iterations of training. In each iteration of
training, the agent went through 20 rounds of the simulation. The results for reinforcement
learning pricing are shown in Figure 4.7.

4.3 Comparison

Results Overview

Pricing model R̂t Êd P̂m

Static 0.65 0.76 0.90
Proportional with k=1 0.75 0.82 0.95
Proportional with k=2 0.94 1.00 0.99
Proportional with cap at 2x 0.95 0.99 1.00
Batch Update 0.97 0.98 0.99
Reinforcement learning 1.00 1.00 0.95

Table 4.1: An overall comparison of pricing model performance for the short term simulation.
R̂t = normalized total revenue. Êd = normalized earnings per driver. P̂m = normalized
proportion of passengers matched

Table 4.1 and Figure 4.8 show a comparison of all the pricing methods. In terms of total
revenue, reinforcement learning outperforms all other pricing methods. We can observe a
few important factors that seem to correlate to a pricing agent’s success in the surge pricing
simulation.

A phenomenon that we see is that there are many exiting passengers after the surge period
regardless of pricing model. These are all the passengers who were not matched due to the
lack of drivers. It is obvious that there needs to be an increase in price when demand greatly
exceeds supply. With price sensitive drivers, increasing the price helps supply match demand.
In simulations where the increase in drivers eventually matches the surge in passengers, there
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are a large amount of exiting drivers post-surge. This behavior is actually seen in real life.
It is common for drivers to drive towards a surge area, but when they arrive, most of the
passengers have already left and the surge has ended, which causes dissatisfaction amongst
drivers.

The static pricing model is the only model that does not increase price in the surge
simulation. As a result, it does not take advantage of the increase in demand, because the
number of matches is steady over time.

The simulations also show that drastic price increases are not a solution. In the uncapped
proportional model, prices get as high as $100. As a result, no matches are made in that
round, because no passengers are willing to pay that high of a price. This also results in the
largest spike of exiting passengers.

The last three pricing models do not suffer from this problem. They respond to the
increase in demand, by raising prices to increase supply. As a result, the number of matches
increases during the surge and revenue also spikes during the surge.

An interesting thing to note is that even though we did not put a price cap on the batch
update and reinforcement learning pricing models, they both never exceed 3x the base price.
In fact, the highest surge we see is the 2.5x in the RL model. This is similar to Uber’s surge
cap of 2.9x in some areas of the United States[21].

Both batch update and RL pricing models reach similar revenue peaks after the surge
period. Total revenue for the RL model is higher because it tends to perform better on
average at other times during the simulation. With more training, the RL model should be
expected to do even better as more state spaces are explored.

In terms of user and customer satisfaction, we can see that the RL model is among
the highest in earnings per driver. However, the RL model is also the lowest in terms of
proportion of passengers that get matched. The sharp increases in prices that the RL model
makes could be increasing profits at the expense of leaving some passengers unmatched.

From our short term simulation results, we can come to a few conclusions. If given the
choice, a company should implement the RL pricing model if they are only concerned about
profit maximization. The RL pricing model also comes with the benefit that on average,
drivers are paid more. This results in long-term driver satisfaction and incentivizes drivers to
join the platform. However, we can see that the RL model results in the lowest percentage of
passengers that are eventually matched. This could be a problem if customers are sensitive
to inconsistent service. If RL prices lead to too many unhappy customers, this can lead to
low customer retention and poor public perception. Therefore, a company must determine
whether their cost-benefit analysis justifies sacrificing customer satisfaction for higher profits
and driver earnings. If not, another pricing model such as the batch update model might be
more optimal.
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Figure 4.2: Simulated surge results for our static pricing model
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Figure 4.3: Simulated surge results for our proportional pricing model with k = 2
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Figure 4.4: Simulated surge results for our proportional pricing model with k = 1
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Figure 4.5: Simulated surge results for our proportional pricing model with cap at 2x base
price
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Figure 4.6: Simulated surge reactions to our batch update pricing model
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Figure 4.7: Simulated surge results for our reinforcement learning pricing model
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Figure 4.8: Comparison of pricing models in our short term surge simulation
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Chapter 5

Long Term Simulations

5.1 Overview

For our long term simulations, each time step represents an hour. Our experiments last 720
time steps, which is intended to simulate a month’s duration. Long term simulations are
harder to simulate, since there additional factors that we are interested in keeping track of.
We must now factor in acquisition and loss costs for both drivers and passengers. We did
not consider this in our short term simulations, because during the course of the day, both
costs are negligible.

For customer acquisition, we initiate our simulation with an initial pool of 50 drivers
and passengers. We add a number drivers and passengers to our population each round
according to a normal distribution with mean 50 and standard deviation of 5. Each customer
acquisition increases our cost by $20, and each driver acquisition increases our cost by $100.
Our population is divided up into active and inactive agents. Each round, agents that are
active become inactive if they have not been matched for n rounds, where n is their round
tolerance. Agents that are inactive may become active with probability 0.5. Agents may also
permanently leave the population. The probability that they permanently leave is related to
their satisfaction according to the probit distribution as mentioned in Chapter 2. Each time
an active agent gets matched, their satisfaction increases by 0.1, and each time an active
agent does not get matched, their satisfaction decreases by 0.1. Therefore, if an agent is
repeatedly unmatched, they are more likely to defect permanently.

Our drivers also have a weekly income preference of $900, which equates to an hourly
wage of $22.5. This means that each driver evaluates the amount of money they have made
over the past 140 rounds and sees whether or not their income has reached $45. If not, they
leave our system permanently. Depending on the market price, this means that drivers will
have be matched at least 3 to 4 times over the course of 7 rounds. For this simulation, we
set the base market price as $15. The preferred price for both drivers and passengers is $15.
Both drivers and passengers have a round tolerance of 2.
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Static Pricing Results

We first used our static pricing model in our surge simulation. The results are shown in
Figure 5.1. We can see that the price remains static throughout the whole simulation.
Therefore, the pricing agent cannot use price to adjust supply to meet fluctuating demand.
We can see a wide gap between active drivers and passengers. This cyclical gap is caused
by unhappy passengers leaving because of the lack of drivers, which causes a driver surplus.
This absence of passengers causes drivers to leave, which leads to a passenger surplus and a
repeat of the whole process.

Proportional Pricing Results

We decided to set k=1 for our proportional pricing model. In order to calculate price, we
only considered the ratio between active passengers and drivers. The results are shown in
Figure 5.2. We can see that proportional pricing does a great job of matching supply and
demand.

Batch Update Pricing Results

For batch update pricing, we set the learning rate α to be 0.1. The results for batch update
pricing are shown in Figure 5.3. Batch update pricing tends to maintain higher prices, which
causes our simulation to have a high quantity of drivers at all times. There is a constant
driver surplus at all times during the simulation, which leads to high passenger match rates,
but also higher driver dissatisfaction.

Reinforcement Learning Results

For reinforcement learning, we went through 50,000 iterations of training. In each iteration
of training, the agent went through 720 rounds of the simulation. Results are shown in
Figure 5.4. The results from reinforcement learning tend to be quite noisy. This is caused
by the large fluctuations of pricing learned by the RL agent. RL pricing does a decent
job at matching driver and passenger quantities. Explanations for the large fluctuation in
pricing could be that the pricing agent tends to take advantages of situations where it can
price higher to maximize profits. Then, it may make drastic decreases or increases in price to
reduce the gap in supply and demand that might have resulted from its profit maximizations.

5.2 Comparison

Table 5.1 and Figure 5.5 show a comparison of all the pricing methods. The RL model ends
up with the highest profit and revenue out of all the models followed by the batch update
model, proportional model, and static model.

The proportional pricing model and the static pricing model tend to have higher costs.
This cost is mostly due to the fact that both pricing models use prices to increase supply to



CHAPTER 5. LONG TERM SIMULATIONS 32

Results Overview

Pricing model P̂t R̂t Ĉt Êd P̂m

Static 0.82 0.81 0.85 0.83 1.00
Proportional 0.83 0.82 0.86 0.84 1.00
Batch Update 0.95 0.90 0.99 0.85 1.00
Reinforcement learning 1.00 1.00 1.00 1.00 0.96

Table 5.1: An overall comparison of pricing model performance for the long term simulation.
P̂t = normalized total profit. R̂t = normalized total revenue. Ĉt = normalized total cost.
Êd = normalized earnings per driver. P̂m = normalized proportion of passengers matched

match demand. This increases the driver acquisition cost, which is relatively expensive in
our simulation.

Table 5.1 and Figure 5.5 show the revenue, total cost, and profit breakdown of each
pricing model. The total cost is calculated as follows:

Ct = Npe ∗ Cpe +Na ∗ Ca

Or in plain text terms: the total cost is equivalent to the number of permanently exiting
agents * the cost of permanently losing an agent + the number of acquired agents * the cost
of agent acquisition.

We can see that the RL model has the highest earnings per driver by far. All other
models only reach about 80% of the earnings per driver that the RL model achieves. The
RL model has a slightly lower proportion of passengers that get matched. This might be
due to the drastic changes in prices that the RL model makes. Similar to the short-term
experiment, sharp increases in price might increase profits, but could also cause passengers
to leave the system.

From our long term simulation results, we can come to a few conclusions. We can
see that the RL model results in the highest profits in both the short-term and long-term
simulations. This makes it a flexible pricing model that handles both drastic short-term
fluctuations and long-term driver and passenger retention. Therefore, a company focused
on profit maximization would be inclined to use a RL pricing model. Again, we see that
drivers under the RL pricing model are paid more. The RL model’s advantage in driver
income is even more noticeable in the long-term simulations compared to the short-term
simulations. We also see the same drop-off in proportion of passenger matched. This plus
the high costs associated with the RL pricing model are reasons companies might not want
to use RL pricing. Since our costs are estimated, real companies might have different cost
models, which could influence actual profits. If relative acquisition and loss costs are higher
than we estimated, the RL model might not actually be the best in profit maximization.
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Figure 5.1: Simulated long term results for our static pricing model
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Figure 5.2: Simulated long term reactions to our proportional pricing model
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Figure 5.3: Simulated long term results for our batch udpate pricing model
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Figure 5.4: Simulated long term results for our reinforcement learning pricing model
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Figure 5.5: Comparison of pricing models in our long term simulation
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Chapter 6

Future Work

Building a More Robust Simulation

The simulation we are currently using is quite simple. The state space is small in a sense
that it is only a combination of number of passengers, number of drivers, and price. The
main limitation is that it has no geographical data and can only model one lane. We can
add geographical data for each driver and passenger agent in the simulation. This would
allow us the simulation to model lanes and agents in a geographical area.

The pain-point for adding geographical data is that we have to add location into the
state space and our agent preference models. For each agent, their preferences will now
depend on their location relative to the lane location and the location of the other relevant
agents in the environment. In addition, adding geographical data results in a huge state
space. However, we have known methods to deal with large state spaces, such as function
approximation. We can use either a linear combination of state features or a neural network
as good function approximators for this problem. We could also approximate lane similarity
by using the cosine distance between two lane vectors.

Inverse Reinforcement Learning

In our current simulation, we are simulating agent preferences based on market research and
what we intuitively think how humans should act. However, if we are able to obtain a large
dataset of real market data, we can apply inverse reinforcement learning techniques to learn
actual agent preferences. With these learned preferences, our simulated agents should be
able to act more similarly to real people.

Multi-Competitor Landscape

Currently we model losing an agent as a fixed cost per agent lost. It would be interesting
to see how our pricing agent acts in the presence of other competitors in the marketplace.
A simple way of simulating this would be to pit two or more of our pricing agents against
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each other in the same simulation and see how they react. We might be able to see more
interesting behaviour and tactics surrounding agent retention.

Modeling Natural Growth

One factor we have not modeled is natural growth of our agent population. We only consider
active customer acquisition in our current simulation. This creates a pessimistic prediction
of customer and user growth. In real life, our agent population may grow due to word of
mouth, peer recommendations, and natural discovery. These growth factors need additional
market research before we can determine how to accurately apply them to the simulation.

Real-World Application

At the time of writing this paper, I am working as the cofounder of Dray Technologies
Inc. Dray is an online and mobile marketplace for the on-demand trucking industry. The
simulation created here can be easily applied to the spot brokering aspect of trucking. I
plan to apply the reinforcement learning techniques used in this paper to generate instant
prices for Dray’s trucking shipments. We can also use real market data obtained from our
shipments to create better simulations. It will be interesting to see how an automated agent’s
predicted prices compare to marketplace rates.
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Chapter 7

Conclusion

In this paper, we built a simulation that models agent behaviour in an on-demand market-
place. We experimented with different pricing models in both short and long term simu-
lations. We have shown that using reinforcement learning is an applicable solution to this
problem. Overall, our reinforcement learning agent does the best job with regards to rev-
enue and profit maximization. It beats out other pricing agents in both short term and
long term simulations. The RL agent also performs the best when factoring in earnings per
driver. However, the RL agent seems to maximize profits at the expense of ensuring matches
for passengers. With these results in mind, a reinforcement learning agent can easily be
expanded to more complex state spaces and simulations.

The main motivation of writing this paper is to explore and better understand the pricing
problems that many on-demand companies face today. It is no longer sufficient to just
forecast market uncertainties, because companies need a way to react to changes in real-time.
An automated pricing agent is able to ingest data with scale and frequency while maximizing
profits without human supervision. In practice, a company using a reinforcement learning
automated pricing agent would be able to streamline its operations and improve its bottom
line while retaining drivers and riders.
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