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Abstract

This capstone project seeks to explore the usefulness of interactive vi-
sualizations for machine learning. Specifically, we look at online search
advertisements, which represent one of the biggest use cases of the recent
Big Data boom. We develop a tool aimed to help Ad Operations teams
at search engine companies tune parameters for their auction process in
an effort to balance tradeoffs between profit, advertiser satisfaction, and
user satisfaction. Often times, business decision makers treat machine
learning algorithms as a black box, as it is difficult to see what is going
on underneath the hood. This project seeks to better inform the user
of what is happening by shortening the feedback loop, thus allowing Ad
Operations teams to quickly tune models and deploy changes. We ac-
complish this using a GPU-accelerated machine learning library called
BIDMach for click rate prediction, and visualizations developed with a
high performance JavaScript library called D3.js. This paper discusses
the challenges in using Sparse Factor Analysis for click rate prediction,
and how we turned to a Latent Dirichlet Allocation model to achieve
better results. We also discuss the system architecture and technological
choices for the visualization, and the challenges we faced in connecting it
with the backend auction simulation.



Data Modeling and Interactive Visualization for
Advertisement Auction Modeling

Ryan Casey Capstone Teammates Capstone Adyvisors
UC Berkeley Marc Capelo Professor John Canny
rcasey @berkeley.edu Tian Liu Biye Jiang
Jian (Jack) Qiao

Contents
1 Chapter 1: Technical Contributions (Individually Written) 2
I.1 Introduction . . . . . . . . . . e 2
1.2 DataModeling . . . . . . . . . e 2
1.2.1 Sparse Factor Analysis . . . . . . .. .. ... ... ... ... ... 3
1.2.2 Challenges with SFA . . . . . . . .. ... ... . ... 4
1.2.3  Latent Direchlet Allocation. . . . . . .. .. ... ... .......... 5
1.3 Real Time Visualization . . . . . . . . . . .. . ... ... 6
1.3.1 Choice of Visualization Technology . . . . . ... ... ... ... .... 6
1.3.2  Initial Prototype . . . . . . . . . . .. 7
1.3.3  Web Server for Simulation Integration . . . . . . ... ... ... .. ... 8
1.4 Conclusion . . . . . . . . . e 10
2 Chapter 2: Technical Contributions (Co-written with teammates) 12
2.1 Introduction . . . . . . . . . . e 12
2.2 Industry Analysis . . . . . . . .o e e e e e 12
2.3 Marketing and Stakeholders . . . . . . ... Lo 13
2.3.1 Direct Stakeholders - Search Engine Companies . . . . .. ... ... .. 13
2.3.2 Indirect Stakeholders - Advertisers and Users . . . . . ... ... .. ... 13
2.4 Intellectual Property . . . . . . . . . . ... 14



1 Chapter 1: Technical Contributions (Individually Written)

1.1 Introduction

Our project seeks to combine machine learning and real-time, interactive visualizations to develop
a tool to help search engine companies optimize their search advertisement auction process. Search
engines like Yahoo generated $13.6 billion in revenue from search advertisements in 2015, and this
figure is only expected to rise in the coming years (Turk 2015: 3-5). Thus, it is extremely important
that Yahoo displays paid advertisements in the best possible order to maximize metrics such as
revenue and user satisfaction. The advertisement auction process is complex, and involves elaborate
ranking schemes that take place within milliseconds each time a user enters a search query. As there
are millions of these auctions taking place in real time every second, there is so much data that it is

nearly impossible for Yahoo teams to make insights and improve performance of the algorithms.

The project involves two main components. First, the Simulation component is the backend data
model that must be capable of predicting clickthrough rates for advertisements and running a com-
plete simulation of an ad auction. Second, in the Visualization component we evaluate performance
metrics (such as revenue, advertiser satisfaction, and user satisfaction) and create an interactive vi-
sual display of these metrics on the frontend. Combining these two components, we can provide
the Yahoo Ad Operations team a visual dashboard on which they could turn knobs and tweak pa-
rameters, and see in real time how different changes to the ranking model affect each performance

metric, allowing them to balance tradeoffs and select the best model.

The entire team initially worked together to complete the data wrangling and data modeling stages
in a consolidated effort to build the necessary data model of clickthrough rates as quickly as possible
(see Figure 1 below for the work breakdown structure). We then split into two subteams and worked
in parallel; Tian and Jack developed the backend simulation system while Marc and I worked to-
gether to create the frontend visualization. This paper will focus on my two main contributions to the
project. First, we consider the data modeling component of the project, where we initially attempted
to use a technique called Sparse Factor Analysis to predict unknown clickthrough rates. Second, we
discuss our efforts to build the interactive visualization component of the project, which takes the
form of a web application that can give a user real-time feedback as they modify parameters. This
visualization product was integrated with the simulation pipeline discussed in Jack’s paper to create
a fully functional prototype.

1.2 Data Modeling

The result of an advertisement auction is a ranking of all of the advertisers that made bids, from
which the advertisements are displayed in slots at various locations on a display page. Typically, the
highest ranked ads are displayed at the top of the page, just above the results returned by the search
query. These highly sought after positions have the highest visibility and are most likely to grab the
user’s attention and generate clicks. In order to run the advertisement auction simulation, we need

to model user behavior by predicting the clickthrough rate, or the likelihood that a user will click on
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Figure 1: Work Breakdown Structure. The linear structure of the work in the initial stages required
the team to work together to build the data model quickly. Once completed, we split into subteams
to work on the two main components, which were developed in parallel and eventually integrated.

a given ad if it is displayed in a given slot on the page. We were supplied with a dataset from Yahoo
which consisted of 8GB worth of anonymized auction records, where each record contained the rank
of the advertisement, the number of impressions (or views) it generated, and the number of times it
was clicked. This data gave us the historical clickthrough rates, but only for the particular rank that
each advertisement achieved. The challenge was in taking this data and extrapolating to figure out
the clickthrough rates at all other possible ranks. This was necessary so that the simulation could
take into account what would happen in other scenario where the ranking algorithm was changed.
In the following sections, we discuss our initial efforts to use Sparse Factor Analysis to solve this

challenge, and how we eventually moved to a Latent Dirichlet Allocation model.

1.2.1 Sparse Factor Analysis

Sparse Factor Analysis (SFA) is a Matrix Factorization algorithm that seeks to decomposes a matrix
into latent factors; in other words, it identifies the most important hidden patterns in the data matrix
(Lan 2014: 2-5). The idea is that we can use knowledge from the hidden patterns to make predictions
on the missing data in the original matrix. In our case, we have a sparsely filled data matrix of click
rates for M unique (advertiser, keyword) pairs in each of N possible ranking positions, and our
goal is to predict the missing, unknown click rates. We seek to use a rank-1 matrix factorization to
decompose the sparse matrix (called C) into two hidden factors (called A and B). The first hidden
factor A is a column vector representing the positional dependent click rates, or how the ranking
affects how often an ad is clicked. The second hidden factor B is a row vector that represents the
click rates for each unique (advertiser, keyword) pair - this can be thought of as the quality of the
ad, as it measures how likely an ad is to be clicked, independent of the position that it’s displayed at
on the page (see Figure 2 below for a visual representation of this deconstruction). We use a rank-1
SFA algorithm for both simplicity and the ability to obtain very interpretable results. Essentially,
one hidden factor gives us the click rate if an ad is placed in the top slot, and the other factor scales

it by the ad’s true slot position.



C = A X
Sparse CTR Matrix Rank CTR Advertiser/Keyword CTR
[N x M] [N x 1] [1xM]

Figure 2: Sparse Factor Analysis. CTR is shorthand for clickthrough rate, N represents the number
of possible ad rankings, M represents the number of unique (advertiser, keyword) pairs, and the
dimensions of each matrix are indicated in brackets. Here, we show how the sparse matrix C can be
approximated as the product of the 2 hidden factors, A and B.

These two factors A and B are calculated using a technique called Alternating Least Squares (ALS),
which alternates holding one factor constant, and updating the other factor to give the smallest
squared error (the sum of the squared difference between each known click rate and it’s predicted
click rate in the reconstructed matrix). We can use these two factors to approximate the entire click
rate matrix, giving us our predictions for each of the unknown click rates that are required for the ad

auction simulation.

The SFA algorithm has previously been successfully applied to a similarly sparse clickthrough rate
dataset, as SFA gave nearly a 10% improvement over baseline algorithms (Canny 2002: 6-7). One
tool that provides an implementation of SFA is BIDMach, which is a GPU-accelerated Machine
Learning library developed by our advisor, Professor John Canny, at UC Berkeley (Canny 2013).
Given the massive size of our dataset, it is important that we utilize BIDMach’s implementation, as
we need a high performance library (in terms of speed) so we can produce interactive visualizations
in real time. If the machine learning on the backend is not fast enough, the visualizations on the
frontend cannot make the necessary impact in terms of providing a real-time, instant feedback loop

for the users.

1.2.2 Challenges with SFA

Unfortunately, we found that the SFA algorithm did not give us the results we expected. The negative
log likelihood is a measure of the accuracy of the matrix reconstruction, based on the squared error
mentioned previously. When we ran the SFA algorithm on our sparse matrix, we initialized the
weight of the hidden factors to 0. However, the weights fluctuated wildly with each minibatch
through the first iteration, and the negative log likelihood exploded to NaN (or Not a Number).
We attempted to tune the parameters, such as the learning rate and the amount of regularization,
but even then the SFA algorithm still did not working correctly, as the likelihood stayed relatively
constant and failed to improve over subsequent passes through the data. If it was working, we would

have expected the negative log likelihood to rise slowly with each iteration, as the model converges



towards the optimal solution via Alternating Least Squares. An additional problem was that some
of the weights in the factors are negative. Intuitively this didn’t make sense, since we should never

have negative click rates (even if an ad was never clicked, the click rate would be 0).

We do not believe the problem with the SFA algorithm was related to the sparseness of our click rate
data matrix. Initially, we believed that the algorithm might be performing poorly because the sparse
matrix was not full rank - that is, if there were linearly dependent columns (for example, if an ad
was never clicked, there would be a linearly dependent column of all zeros in the matrix). However,
as addressed in Tian’s paper, we handled this problem by only considering advertiser/keyword pairs
we see in the data (instead of all possible pairs of advertisers and keywords) and by adding a small
offset term to the click values, guaranteeing that every column has at least one non-zero value. Even
after addressing these concerns, the issues with SFA continued to persist. We think that there may
have been other issues with the dataset that prevented the SFA algorithm from converging to the
correct solution. Jack later discovered that our dataset had been heavily filtered, in that we only had
a random subset of the results from each auction, rather than the entire output ranking. Regardless,

we needed to quickly find an alternative method to predict the missing clickthrough rates.

Upon further reflection, we realized that perhaps we should have normalized the data, as this might
have been able to solve the negative weights issue. We had assumed that since all of the click rates
were positive, this would naturally cause the factors to be positive. However, without normalization,
the Gaussian noise model implied by ALS allows some of the weights to be negative. We could
have tried subtracting the mean CTR from each ad, and scaling by the variance. Rather, we decided
to try an alternative algorithm instead.

1.2.3 Latent Direchlet Allocation

We turned to another Matrix Factorization algorithm called Latent Dirichlet Allocation (LDA). LDA
is a generative probabilistic model that discovers latent, or hidden, patterns or topics from a collec-
tion of items (Blei: 2003). In our case, we use it to find similarities between different advertisements,
and use these hidden topics to predict the missing values. Following the same setup described above
for SFA, we seek to decompose a sparse matrix of clickthrough rates. However, instead of using
Alternating Least Squares, we assume that there is a generative process that draws items according

to a prior distribution of topics, and prior distributions within each topic.

Specifically, we used an online Variational Bayes LDA model (Hoffman: 2010). We used the same
model discussed in the Hoffman paper, except there are two input matrices: the first represents
the clicks, which is the value we are trying to predict. The second is the number of views (also
called "impressions”), which is the number of times the advertisement was actually viewed by the
user. The second matrix of views scales the LDA predicted click value appropriately. The output of
this rank-1 LDA is the two previously discussed hidden factors (the rank dependent factor, and the
advertisement dependent factor) that together predict the entire click rate matrix . The fact that the
algorithm is “online” means that we can complete the updates in batches, and thus we do not have

to load the entire dataset in memory at once, which would be slow and memory intensive.



This model did converge, and it gave us reasonable results, as the weights in both factors were all
positive, which matches our intuition that click rates should all be positive. However, one interesting
note was that rank-dependent factor of click rates did not drop off as quickly as we expected as the
rank decreased. This indicates the quality of the ad itself is actually far more significant than the
precise rank that it is displayed at. Now that we had a full click rate matrix for all advertisements in
all ranking positions, Jack’s paper discusses how we used the click rate modeling in the simulation

component of the project.

1.3 Real Time Visualization

The key benefit of interactive visualization is that it provides a real-time closed feedback loop;
decision makers can instantly see the effects of changing parameters in a machine learning model.
Instead of running a simulation and having to wait days in order to evaluate changes (as is currently
the case in the advertisement auction industry), a user can interactively test proposed new parameter
combinations on a small stream of data before they are deployed to live auctions. Quick interactive
simulations can greatly reduce the risk of making changes to the advertisement auction process, as
it makes it less likely to incur financial and/or reputational losses resulting from new settings that

make auctions perform surprisingly poorly.

1.3.1 Choice of Visualization Technology

Interactive, real-time visualization for our project is made possible by the use of the aforementioned
high-performance, GPU-accelerated library BIDMach. However, while BIDMach provides state-of-
the-art performance in terms of machine learning algorithms, it does not provide a frontend interface
for users to experiment with parameters. We searched for a complementary high performance visu-

alization library, and the JavaSciprt library D3.js was the clear choice as it provides:

1. High performance, enabling smooth animation and user interaction, and demonstrating
dramatic performance improvements over similar technologies such as Protovis and Adobe
Flash (Bostock 2011:1).

2. The ability to dynamically update graph content to support real-time updates.

3. Cross-browser functionality.

We also decided to use another JavaScript toolkit called Rickshaw to produce the real-time, inter-
active visualizations. Rickshaw is a library built on top of D3.js, and we chose it for a variety of

reasons:

1. It is free-to-use.

2. It was built specifically for for creating real time graphs and handling living data that con-
tinuously updates in real time, which is exactly what we need in order to handle the output

stream of continuous advertisement auction simulations (Patra 2014:13).



3. Its limited overhead means that it provides performance on par with D3.js, allowing us to

maintain the interactivity that we desire (Patra 2014:13).

4. It conveniently provided abundant documentation, instructions, and ability to get started

and get an application running quickly.

Marc’s paper discusses how we use D3.js and Rickshaw to create a dashboard of graphics. He also
discusses how we integrate our frontend with PubNub, which is a real-time data stream network.
‘We chose PubNub because:

1. It handles asynchronous message passing. This is important because we cannot know ex-

actly the rate at which the backend simulation will output the metrics.

2. It enables storage and playback. It stores our metric data in the cloud, enabling the user to

browse the entire history of the simulation, or zoom in to see a particular time range.

3. Itis already integrated with Rickshaw. In fact, it is the default method to update a Rickshaw
graph with new data. This means that it provided clear documentation and examples with
which to get started, and we didn’t have to worry about implementing our own message

passing and storage interface to update the graphs.

The alternative to using Rickshaw and PubNub was to use another charting library such as C3.js.
We did actually go this route very late in the project, when we added multiple extra "per advertiser”
graphs - these would only display a single metric for a single advertiser over time. The downside to
this method was that we had to store large JavaScript arrays and update them as each batch of the
simulation completed, which was slow and memory inefficient. We also found that the animation and
user interface were not as good with C3_js, and the Rickshaw graphs were also more customizable.
We decided to keep using Rickshaw and Pubnub for the main dashboard graph for the additional
flexibility and simplicity.

1.3.2 Initial Prototype

Figure 3 below shows the prototype that we developed in HTML and Javascript, using D3 and the
Rickshaw library. Once we initialize the graph, we simply need to pass JSON data to Rickshaw,
and the library takes care of updating and rendering the graph. In the prototype, we plot both
aggregated metrics and Per Advertiser metrics from batches of auctions at a time, where each metric
is represented by a different color. The Per Advertiser metrics are set to display profit for a highest
volume advertisers, so we can see the effects of the key players in the auctions. We also display the
total aggregated profit, the total price paid by advertisers, and the predicted total number of clicks.
We chose to use a stacked area graph because it allows the user to see the relative importance of
each performance metric in comparison to the total. The x-axis represents time, so as users tweak
the parameters, the relative size of each of the colored components changes in real-time. We provide
a dashboard on the left side of the graph that allows users to toggle whether each metric is displayed
or not, as well as the type of graph (stacked area graph, bar chart, line chart, and scatter plot). In the
bottom left section of the screen, we provide slider bars for users to update parameters, which include



the variables for computing the advertisements’ quality score used for ranking. These parameters
let us modify the weigh the advertiser’s bid, the weight of the ad’s CTR, and the reserve price, all of
which are discussed in further detail in Jack’s paper.
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Figure 3: Frontend Visualization Prototype. In this demo, we use a JavaScript toolkit called Rick-
shaw to plot aggregated metrics, as well as Per Advertiser profits, on the same plot as different colors
in a stacked area graph, allowing us to see the relative importance of each component compared to
the total.

Very late in the project, we decided to add additional visualizations for Per Advertiser metrics,
as Figure 4 below shows. We noticed that it was difficult to view Per Advertiser metrics when
they were in stacked area graphs, as it would make it difficult to determine the influence of a single
advertiser. Additionally, the line chart was also not as useful, as their would be too many overlapping
lines and the graph would be too crowded. The idea here was the display a single metric (i.e. profit)
for the top 5 advertisers, and display them as a stacked set of single line charts, each with their own
X axis, to resemble at EKG. This made it easier to see how parameter chances caused variations
in single advertisers, without all the clutter of other advertisers. It would be interesting to integrate
more of these single graphs in the future, perhaps to study further metrics individually, or to better

see correlations between pairs of metrics.

1.3.3 Web Server for Simulation Integration

The frontend Rickshaw/PubNub dashboard runs in the internet browser, and consists of a combina-
tion of JavaScript and HTML code. Meanwhile, the backend simulation is written in Scala, which is
the native language of BIDMach. In order to integrate the Simulation and Visualization components,
we use the Scala Play Web Framework. Scala Play is a lightweight web architecture that allows us to
stream data from the simulation directly to the browser. We need to handle communication between
two concurrent processes - the JavaScript visualization running in the browser and the BIDMach
simulation running constantly in the background. We make use of Scala’s Actor System to handle
message passing between concurrent processes, which means that we do not have to deal with thread

management ourselves. We also utilize a paradigm in Scala called an Iteratee, which acts as data



8000000903 g Top Ad 1 Profit

700000000
600000000
[
500000000 {
400000000 {
300000000
200000000 {

100000000 -

i e s s s s s LN AU s e e B S s B S s s 1
0 4 8 12 16 20 24 28 32
400000000 Top Ad 2 Profit

350000000 -
300000000 -
250000000 -
200000000 -
150000000 -
100000000
50000000

L e e e L s S B s s S B S S B s S B B S s B |
0 4 8 12 16 20 28 3

450000000 M Top Ad 3 Profit
400000000
350000000 -

i A
=\ f\/ V\A/\
“ \

150000000 -
100000000 |
50000000 -
R A

L e e e LN s s S B B Bt S s B e S B By S s e
8 28 3

Figure 4: Per Advertiser Metrics Visualization. Here we show the Per Advertiser metrics. In this
example, we plot the profit over time of each of the advertisers. The stacked line chart format
resembles an EKG, and lets us pick out variations in particular key advertisers.

sink. An Iteratee is a consumer of a data stream, so that whenever data is passed to the server, the

Iteratee can process it.

Figure 5 shows the complete architecture of the system, and how data flows across it. A Web Socket
is initialized in the JavaScript code, which allows us to pass messages from the front end visualiza-
tion to the Iteratee in the Web Server when a user changes a parameter via a slider from the browser.
The Iteratee sends this event data to the Actor, which parses the data and updates the backend simu-
lation. Meanwhile, the backend simulation is running the entire time in the background. It receives
the new parameter values, updates the model by modifying the ranking algorithm, and continues
to run the simulation in batches. When a batch finishes and new data is available, the Web Server
receives the data and the Actor propagates it along to the frontend visualization. In this way, we
complete the feedback loop, and allow the model and simulation to be updated and the new data to

be displayed as soon as it is available.

The frontend was designed to be very general, in that it accepts data in a simple JSON format
consisting of the series name and the data to be shown; for example, Adl: 10, Ad2: 15, Ad3:
7.5 might be the JSON representation of a single point in time on the graph if we were displaying
profits generated from 3 different advertisers. Because it is not customized to a specific metric,
the visualization will work for any other metric we want to display in the future, and could in fact
be applied to entirely new applications quite easily. Marc’s paper discusses other potential metrics
we may be able to calculate and display, and how we are able to display multiple types of metrics

simultaneously.
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Figure 5: Visualization Architecture. We show how data is passed from the backend simulation to
the frontend visualization and vise versa. In our architecture, the Web Server is a Scala Play Server,
the computing engine is the backend simulation utilizing BIDMach, and the frontend visualization
is the Rickshaw dashboard that is rendered in the browser. Figure from Biye Jiang and John Canny,
Interactive Machine Learning using BIDMach.

1.4 Conclusion

This work helps explore the usefulness of real-time, interactive visualizations in the context of op-
timizing the advertisement auction process. As it currently stands, there does not appear to be any
real opportunities for commercialization. Besides the fact that the project is still in the prototype
stage, the number of potential buyers is severely limited by the fact that there are only a few major
search engine companies. Compounding this, these search engine companies are tech giants that
surely have far more resources and data than we do, and could recreate the infrastructure that we
have built instead of licensing it from us. However, this work is still interesting in that it investigates

a relatively new space at the boundary between machine learning and human interaction.

In building the prototype, there turned out to be more problems along the way than we anticipated
- the SFA algorithm didn’t work and the dataset was heavily filtered in that it didn’t include entire
auction records. As such, it took much longer to build the initial prototype than we planned for, and
we were unable to do as much iteration and further exploration of additional metrics as we wanted.
However, the basic infrastructure is in place for future teams to pick up the work, and either continue
to explore the advertisement auction space, or explore countless other opportunities for interactive

machine learning, from movie recommendation systems to eSports and beyond.
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2 Chapter 2: Technical Contributions (Co-written with teammates)

2.1 Introduction

The digital advertising industry is booming - revenue from online advertisements was $13.6 billion
in 2015, and will only continue to explode as internet traffic grows exponentially (Turk 2015:3-
5). Thus, even a small improvement in the way that advertisements are displayed would have an
enormous impact on bottom lines for both search engines and advertisers. Our project seeks to
develop an interactive, web-based graphical tool in order to optimize the bidding process for search
engine advertising. Visualizations will allow search engines to better analyze performance metrics
in real time and help deliver the best possible ad experience for both advertisers and users. This
paper will conduct an industry analysis of the digital search advertising industry, survey the current
landscape for both direct and indirect stakeholders as part of a market analysis, and explore potential

intellectual property issues.

2.2 Industry Analysis

The search advertisement industry is relatively new, beginning in 1998 when GoTo.com (later re-
branded as Overture) created the first search advertisement auction, in which advertisers placed bids
for slots on the resulting search page (Jansen 2008:119). The Overture model was successful but
inefficient, and was succeeded by the Google AdWords platform in 2002, which set the industry
standard with a more profitable pricing/allocation method (Jansen 2008:120). In the Google model,
after the bids are placed, the ranking of advertisements is determined by many factors including the
bid price and the estimated click-through rate (CTR) (Ye 2011:1). The search engine charges ad-
vertisers using a pay-by-click model, in which advertisers only pay when users click the ads (Khan
2015:15).

As the internet has become more prominent in people’s lives, the search advertisement industry has
grown tremendously, which has generated a huge demand for the software technology that powers
the industry. According to an IBISWorld report, industry revenue is expected to grow 7.3% annually,
and has a strong base for future growth as it survived the recent global recession unscathed (Khan
2015:5). Advertisers who had previously spent conservatively during the recession have begun to
scale upwards on their advertising budgets, which helps the overall growth of the industry (Khan
2015:5). The increased advertiser demand has been encouraging technology upgrades - if a search
engine company falls behind on adopting new technologies, the quality of search traffic decreases, so
advertisers relocate their budgets to other competitors (Khan 2015:21). Thus, companies are always
looking for software that helps fine-tune their search advertisement operation strategy, which is

where our project comes into play.

In a highly competitive environment for technological development, large companies with massive
resources have dominated the market. The biggest company is Google, which controls 75.2% of
the market with its AdWords platform (Khan 2015:26). Other major players include Yahoo! Inc.
and Microsoft, who formed a duo in 2010 by sharing core algorithms and revenues (Khan 2015:28).
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Facing fierce competition, we focus on differentiating ourselves by developing tools that can be used

for daily monitoring of auction processes by Ad Operations teams, instead of by advertisers.

2.3 Marketing and Stakeholders

Now that we have an overview of the industry, we can analyze the stakeholders and market oppor-
tunities. The direct stakeholders of the project are search engine companies, and in particular the
Yahoo Ad Operations team, who will use the real-time, interactive visualizations to guide critical
business decisions and tune parameters to build the optimal model for ad auctions. Although adver-
tisers and the users of the search engine are obscured from the inner workings of the advertisement

auction process, they are also indirectly affected by the choices made by search engine companies.

2.3.1 Direct Stakeholders - Search Engine Companies

Search engine companies face the daunting task of optimizing the advertisement auction process in
order to maximize revenue. Current machine learning solutions can deliver an answer to minimize
a given cost function, but the issue is that many of these solutions resemble a black box, as there is
no way to see how the different variables interact or how changing a parameter can affect different
parts of the model. Our tool helps expose the internals of the algorithm, providing knobs to turn
that enable the user to instantly compare performance tradeoffs, such as sacrificing profit to keep
advertiser and/or user satisfaction high.

2.3.2 Indirect Stakeholders - Advertisers and Users

An advertiser’s primary goal is to display its advertisement to the correct target audience. If adver-
tisers are unable to consistently win auctions at reasonable prices, they will be unable to spend their
advertising budget, and be forced to move on to other methods of advertising. A survey of 41,548
advertisers demonstrated that 42% of them had no exposure on the first page of search results on
Yahoo Bing Network (Hamilton 2013). To mitigate this issue, we include advertiser satisfaction
performance metrics such as ads shown per advertiser, and average cost per ad. Additionally, we
include user satisfaction metrics like click rate and conversion rate for Yahoo’s 800 million monthly
users, who would like to be shown relevant ads that can enhance their online experience by direct-
ing them towards new products they might not have otherwise discovered (Gallagher 2013). Our
visualizations help search engine companies track user satisfaction via metrics such as clickthrough

rates.

Hal Varian, Google’s Chief Economist, argues that market forces at play give search engine compa-
nies an incentive to increase advertiser and user satisfaction (2014). If user satisfaction is high, they
are more likely to click the ad and go through with the purchase. This makes advertisers happier,
as they make more profit per click, and can now afford to bid more per click, since their conversion
rates are higher. Search engine companies are also happy, as higher bid prices and higher click

rates both equate to more revenue. Our tool helps search engine companies balance the advertiser
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and user satisfaction metrics with other performance goals, and run simulations to weigh potential

consequences of different choices.

2.4 Intellectual Property

As we move forward with the project, there are important intellectual property issues that we need
to consider. The general purpose of the project is to build a tool that enables a user to have real-
time visual feedback when the parameters of a machine learning model are tuned. This idea is very
close to a patent filed by Microsoft Corporation in November 2014, titled Interactive Optimization
of the Behavior of a System, which would make it very difficult to patent the general idea of our
project. (Kapoor 2014). However, the Microsoft patent is not very specific with regard to potential
applications, so perhaps we could file a more detailed patent addressing the specific problem of ad

ranking optimization.

Although we might have a chance in the future to patent our project’s idea, we currently do not see
a clear opportunity to pursue a patent. First, our project is closely related to the thesis work of a UC
Berkeley EECS PhD student, in that both projects leverage the computing power of a GPU through
a dedicated library (BIDMach) to build an interactive visualization tool, and we have received direct
help from that student. Thus, it may not even be possible to patent this work, as it is too close to
works belonging to the university. Furthermore, in the short term we do not see a need to try to patent
our work, as we are not oriented towards a full product, but rather a research question about the value
of interactive visualizations. However, if the project prototype turns out to be extremely valuable
or we find an interesting use case eventually, we could possibly utilize the intellectual property to
start a company when the use case is sufficiently different from the PhD student’s work. Finally,
open-sourcing is not as viable an option as it once was, since it makes it difficult to find VC funding

and generate privately held intellectual property.

Building a full product out of this project would require us to further study market opportunities, and
most likely change the use case. Ad Operations is a relatively small market in which there are only
a few main players, so it is not likely to have a large customer base to penetrate. We could apply
the same tools and techniques to other problems, such as eSports and online betting markets where

there might be more market opportunity, but this would still be at least 1 to 2 years on the horizon.
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