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Abstract 

 
 
 

Feature Design for Robust Speech Recognition: Nurture and Nature 
 

by  
 

Shuo-Yiin Chang 
 

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences 
 

University of California, Berkeley 
 

Professor Nelson Morgan, Chair 
 

 
As has been extensively shown, acoustic features for speech recognition can be nurtured 
from training data using neural networks (DNN) with multiple hidden layers. Although a 
large body of research has shown these learned features are superior to standard front-
ends, this superiority is usually demonstrated when the data used to learn the features is 
very similar to the data used to test recognition performance.  However, realistic 
environments cover many unanticipated types of novel inputs including noise, channel 
distortion, reverberation, accented speech, speaking rate variation, overlapped speech, etc. 
A quantitative analysis using bootstrap sampling shows that these trained features are 
easily specialized to training data and corrupted in mismatched scenarios. Gabor filtered 
spectrograms, on the other hand, are generated from spectro-temporal filters to model 
natural human auditory processing, which can be instrumental in improving 
generalization to unanticipated deviations from what was seen in training. In this thesis, I 
used Gabor filtering as feature processing or a convolutional kernel in neural networks 
where the former used filter outputs as DNN inputs while the latter used filter coefficients 
and structures to initialize a convolutional neural network (CNN). Experiments show that 
the proposed features perform better than other noise-robust features that I have tried on 
several noisy corpora. In addition, I demonstrate that inclusion of Gabor filters with 
lower or higher temporal modulations could be used to correlate better with human 
perception of slow or rapid speech. Finally, I report on the analysis of human cortical 
signals to demonstrate the relative robustness of these signals to the mixed signal 
phenomenon in contrast to a DNN-based ASR system. With a number of example tasks 
in the thesis, I conclude that designed feature is useful for greater robustness than just 
relying on DNN or CNN. 
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Chapter 1  
 
Introduction 
 
 
Research on automatic speech recognition (ASR) flourished in the ‘70s and ‘80s when 
the hidden Markov model (HMM) [5] offered substantial improvements over other 
systems (e.g. dynamic time wrapping [55]). Since then, commercial versions of speech 
technology has been successfully used for mobile technology (e.g. voice dialing and 
interactive voice response), hands-free computing (e.g. voice search and video game with 
voice command), dictation products (real time speech writing), etc. Today, voice-
activated digital assistants are an increasingly important feature for smart phones where 
high quality audio systems and substantial computing power are available. Accurate 
automatic speech recognition is also very useful for people who find it difficult to interact 
with computers using a keyboard: e.g., the elderly, the physically disabled, or the vision 
impaired. 
        While speech recognition works reasonably well in some environments, it often fail 
in difficult environments where the input may include noise, reverberation or overlapped 
speech. With the rapid growth of speech applications, robust processing is an important 
and challenging problem. Recently, robust speech processing leverages the expertise of 
machine learning techniques to nurture a more robust acoustic representation from a 
training phase. Modern machine learning techniques could potentially model a very broad 
distribution of all the input in the training set. However, many unanticipated types of 
novel input still appear because it is hard to enumerate all noise types, signal to noise 
ratios (SNRs), speaking rates and accents encountered in test environments. Given the 
difficulty of training, it is arguably necessary to work on technologies that directly deal 
with the noise, channel, and speaking style impacts. This thesis demonstrates this 
necessity using a number of example tasks that we have worked with.  
 
 

1.1. Typical ASR Framework 

Speech recognition is defined as the science of recovering words from an acoustic signal 
meant to convey those words to a human listener. Fig 1.1 illustrates an overview of the 
speech recognition framework, which involves acoustic processing, acoustic modeling, 
pronunciation modeling, language modeling and decoding. Conventional speech 
recognition is formulated as a pattern classification problem using the maximum a 
posterior decision rule to find the best word sequence W* based on the parameterized 
observations O, which is transformed from the speech waveform: 
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W * = argmaxw∈W P(W |O)                                         (1.1) 
 
The system could be factorized into several smaller models: 
 

W * = argmaxw∈W P(O |Q)P(Q |W )P(W )                          (1.2) 
 
where Q is a sequence of phones: [phone1, phone2…., phonen] 
  
The prior probability of words P(W) is evaluated with a language model. P(O|Q) is the 
likelihood of observing O by assuming Q as the underlying phone sequence. P(Q|W) is 
obtained from the pronunciation model that estimates the pronunciations given a 
sequence of words, which is typically specified manually. While more sophisticated 
language models [49] and pronunciation models [12] have been studied, here we are 
focusing on acoustic features and models in the thesis.  
 
 

 
 

Figure 1.1, Overview of statistical speech recognition 
 

 
 

1.2. Challenges in Speech Technology 

Speech recognition technology has decades of history with several major innovations. 
While there is a great deal of progress and commercial applications, automatic speech 
recognition is far from being a solved problem. In particular, automatic speech 
recognition is much worse than human recognition in noisy environments, for novel 
speakers, in far-field or other unusual acoustic conditions, in accented speech, and for 
speech in which other signals or noises share the acoustic channel. 
        In a recent survey, Fig. 1.2 [54], major participants in speech and language 
technology were asked to identify where the current technology has failed. While several 
components in the framework were pointed out, many of the informants identified the 
lack of robustness as a primary failure of speech and language technology. In addition to 
the general robustness issue, many responses identified the particular characteristic of 
speech or language that caused this lack of robustness, such as noise and variability in the 
speaker population.  
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Figure 1.2, Technology failures in current automatic speech recognition according to expert 
survey reported in [54] 

 
 

1.3. Robust Feature Design: Nurture and Nature 

A large body of research on robust speech processing focuses on generating a more 
robust feature representation. Traditional robust feature design is based on the expertise 
of the mammalian auditory system, prior knowledge of acoustic distortion, normalization 
approaches, etc. For example, many acoustic features are obtained from filters mimicking 
“natural” hearing systems in order to duplicate the robust properties of human speech 
recognition (e.g., cocktail party effect, word recognition in noise, insensitivity to a wide 
range of speaking rates, etc.). Typically, these features are carefully hand-crafted leading 
to state-of-the-art speech recognition results.  
        Exploiting machine learning algorithm to “train” features from data provides an 
alternative solution to the difficult task of feature handcrafting. In this case, the features 
are “nurtured” automatically from the training set. For example, the probabilistic feature 
(class probabilities) of a neural network is trained to discriminate between the phone 
classes. These trained features could represent underlying acoustic cues well if the 
classification is reliable. With the advent of new training algorithms and model 
architectures, trained features could model more complicated distributions from the input, 
which led to a recent breakthrough in speech community.  
        Recently, because of the success of deep learning, neural network features have 
become a dominant paradigm for speech recognition. In [53], fewer perceptually based 
designs are suggested for better performance. In [31], a neural network is able to achieve 
comparable performance by generating feature directly from speech signals, which 
requires no human-inspired design on the feature generation process. In these studies, 

19 
 

complicated to use or too expensive to implement. Our interviewees often noted that in order to 
get an application to be usable, particularly a natural dialog application, there had to be an 
inordinate amount of tuning or tinkering to get it to work. They observed that the amount of 
work that had to be done increased the cost of the application. This, too, can be seen as a failure 
of manageable systems to deliver robust performance in practice. 
 
 

  

Figure 5. Categorization of responses to “Where has the current technology failed?”  

 
 

It is clear that the major issue in the current applications of speech technology is the inability of 
current systems to perform well across different conditions. The particular conditions which 
were called out were performance in noise, performance in other languages, the ability to handle 
the variability in actual speaker populations, and general performance in acoustic conditions 
which differed from the training conditions. Some informants complained about the accuracy or 
consistency of the process, but that was a relatively infrequent response.  
 

Representative responses we received included: 

“It’s not robust to acoustic environments, multiple sources.” 

“It fails for any conditions not seen in training, either environments or contexts.” 

“Models are tuned too finely. Features are wrong for the job, and training is wrong.” 

“The technology is ill equipped to handle data outside the training scenario.” 
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most of the work of feature extraction has been done in neural networks. These studies 
suggest questions about the role of feature representations beyond that. 
        Although a large amount of research has shown that acoustic features nurtured from 
data using neural networks can be superior to a standard front-end, this superiority is 
usually demonstrated when the data used to learn the features is very similar to the data 
used to test recognition performance.  A speech recognizer may be robust in one 
environment and yet be inappropriate for another. The main reason for this is that the 
performance of existing recognition systems, which assume noise-free environment 
degrade rapidly in the presence of noise, distortion, etc. On the other hand, carefully 
hand-crafted feature designs develop robust features based on auditory processing 
provide a more general solution than trained features alone.  
        In the thesis, we incorporate biological model-inspired features into neural networks 
by adapting an existing architecture. We investigate the robustness of the proposed 
approaches with several input variations including noise, reverberation, speaking rates 
and overlapped speech. The goal of the thesis is to facilitate the development of robust 
speech recognition in two areas: (1) development of a robust representation that actually 
improves recognition accuracy, and (2) analysis of robustness benefited from biological 
models. We also explore these issues: 
 
 

1. How can a speech feature benefit from a biological model under (a) noise, (b) 
reverberation and (c) speaking rate variation? 
  

2. Given the different feature designs, what is the quantitative effect of the model 
residual on recognition accuracy? 
 

3. What can we learn directly from a human cortical signal, which can handle 
multiple source signals well? 

 

1.4. Thesis Overview 

The thesis is organized as follows: 
 
Chapter 2 is an introduction to (deep) neural networks and their application to automatic 
speech recognition. 
 
Chapter 3 proposes an architecture that incorporates biologically inspired Gabor features 
and (convolutional) neural network. The final feature, which benefited from human 
auditory processing, is more robust to other trained features. 
 
Chapter 4 performs a quantitative analysis on model residuals and robustness of the 
proposed features and conventional trained features for noisy speech recognition. 
 
Chapter 5 explores the effect of feature design to speaking rate variation. 
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Chapter 6 investigates the robust property of human cortical signals for phone recognition 
on mixed speech signals. 
 
And Chapter 7 summarizes the conclusions of the work, and points to future work. 
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Chapter 2  
 
Deep Learning in Speech Recognition 
 
 
 
 
Multi-layer perceptrons (MLP) have been used successfully for HMM-based speech 
recognition for more than two decades [9]. In that approach, MLP outputs were used as 
posteriors to derive emission probabilities for hidden Markov models (HMMs). Later, a 
number of researchers (e.g., [Hermansky et al.]) made use of MLP outputs as features for 
HMM observations (tandem) [28, 79]. Both of these approaches have been used in more 
recent “deep learning” methods that have been designed to effectively incorporate a 
larger number of layers, and in particular have been successfully applied to automatic 
speech recognition (ASR). 
        There has been a lot of success using deep learning in the machine learning 
community, with many applications to difficult problems, for example in computer vision. 
There are two major components to deep learning: one is the architecture of the MLP and 
the other involves the training algorithm. First of all, in a deep learning architecture, 
MLPs with more than one hidden layer are used. Second, since MLPs with more than one 
hidden layer are hard to train, the learning algorithm involves better initialization than 
simple back-propagation. To provide a better initialization, a generative model, called a 
restricted Boltzmann machine (RBM), has been used with an unsupervised learning 
algorithm, called pre-training [29], to build up a multi-layer network, called a deep belief 
network (DBN). This DBN is then converted to an MLP, called a deep neural network 
(DNN), and final passes of back-propagation are used for “fine-tuning” the weights. In 
additional to RBM, other pre-training approaches, for example, layer-by-layer 
discriminative pre-training technique with back-propagation [75], are also commonly 
used.  
        Beyond the traditional fully connected DNNs, convolutional neural networks (CNN) 
has been successfully introduced for speech recognition task. Unlike typical fully 
connected networks, CNN is more robust to translation variance, which is desirable for 
object recognition and robust speech recognition.  
 
 

2.1. Fully-Connected Deep Neural Network 

The single-hidden layer MLP has been used for several decades. While some researchers 
(e.g. Chen et al [78]) use two hidden layers to achieve better results, the “depth” is still 
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much smaller than a typical deep neural network structure. The challenges against 
moving the single-hidden layer MLP toward large scaled deep networks are (1) the cost 
of training and (2) poor local minima in the highly nonlinear optimization model. The 
computational capacity has been benefited from the parallel, distributed tools e.g., GPU 
and MapReduce. In parallel computing, data parallelism and model parallelism are two 
commonly used approaches to speed up the training procedure. The former splits training 
samples into min-batches in each thread and updates the gradients after each min-batch 
iteration. The latter splits the weights among the threads and synchronizes their outputs. 
Another issue is the non-convex optimization problem. While an increasing number of 
hidden layers allows it to represent complicated transformations, it is highly nonlinear 
and the stochastic gradient decent (SGD) based training algorithm with random 
initialization is easily converged into poor local minimum. In DNN, a training algorithm 
based on restricted Boltzman machine is sometimes used to provide a better initialization. 
In the remainder of the section, we will first introduce the basic mechanism of MLP and 
then DNN using RBM pre-training. 

2.1.1. Single-hidden Layer MLP 

MLP consists of basic processing units called perceptrons. Perceptrons were developed in 
1950s and 1960s by Frank Rosenblatt [66, 67]. Fig. 2.1 shows an example of a perceptron 
where the inputs are x1, x2 … xn. The weights, w1, w2, … wn are used to express the 
importance of the respective input to the output. The activation function θ (.) is used to 
model neuron firing activity. The widely used activation function is hyperbolic tangent: 
 
 

                      (2.1) 

 
and sigmoid function: 
 

                         (2.2) 

 
As shown in the equation 2.2, a perceptron with sigmoid activation can be viewed as a 
logistic regression classifier, called a logistic unit. 
  
 

y = tanh( wixi + bi )
i
∑ =

2
1+ exp( wixi + bi )

i
∑

−1

y = sig( wixi + bi )
i
∑ =

1
1+ exp(− wixi − bi

i
∑ )
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Figure 2.1, Neural network perceptron 

 
More recently, a rectified linear unit (ReLU) based neural network has been introduced 
[57] where the activation function is a half-rectification non-linearity which is linear for 
positive values and zero otherwise: 
 

           (2.3) 
 

 
It has been observed that the rectified linear unit is better than a logistic unit or 
hyperbolic tangent in vision and other applications. A rectified linear unit is better than a 
logistic unit using sigmoid activation in several aspects. First of all, rectified linear unit is 
piece-wise linear. If we focus our attention to the units that are non-zero, the whole 
system reduces to a linear convex system whose optimization is straightforward even 
using first order optimizers. Second, the activated value is sparser. Unlike logistic units 
that produce small positive values when the input is not aligned with the internal weights, 
rectified linear units often output exact zeros, for example, in a randomly initialized 
network, only about 50% of hidden units are activated. The increased sparsity of the 
internal representation can be seen as the effect of regularization, which improves the 
generalization. Third, traditional activation functions have gradients less than one, 
meaning the gradients decrease exponentially with number of layers and early layers train 
very slowly. The problem could also be avoided using rectified linear units. 
        A single-hidden-layer MLP consists of 3 layers (i.e. input, hidden and output layer) 
of neurons with each layer fully connected to the next one. Except for the input layer, 
each neuron is the perceptron described above. Fig. 2.2 illustrates an example of MLP. 
 
 

 
 

Figure 2.2, Single-hidden layer MLP 
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The parameters of MLP are two matrices 𝑊!and 𝑊! where hidden units h is computed 
by 𝜃(𝑊!𝑥) while the output units y is 𝜃(𝑊!ℎ). The cost function is typically defined as 
mean square error: 
 

 

                E(n) = 1
K

tk (n)− yk (n)[ ]2
k=1

K

∑  (2.4) 
 

 
or cross entropy error:  

 
 

                 E(n) = 1
K

tk (n)ln yk (n)+ (1− tk (n)[ ] ln (1− yk (n)[ ]{ }
k=1

K

∑     (2.5) 
 

    
where tk is target value and yk is actual neural network output. In practice, the cross 
entropy error criterion is more common than mean square error. By using cross entropy 
error, the error signal propagating back from output units is directly proposition to the 
difference of target value and tk and the actual value yk , which lead to a faster 
convergence and better performance. To minimize the cost function, the standard gradient 
decent algorithm is applied to determine the weights: 

 

          wij
1 (n+1) = wij

1 (n)+µ ∂E(n)
∂wij

1 (n)
 (2.6) 

 
 

          wij
2 (n+1) = wij

2 (n)+µ ∂E(n)
∂wij

2 (n)
 (2.7) 

 
 
 

 
2.1.2. Deep Neural Network with Pre-training 

While back-propagation theoretically allows training a MLP with many layers, 
researchers did not have widespread success training MLPs with more than one hidden 
layers. It is difficult to benefit from increasing the number of hidden layers without using 
some kind of initialization, particularly because the layers far from the target are little 
changed by the usual stochastic gradient learning algorithms (i.e. vanishing gradient 
problem). Hinton et al [29] proposed an unsupervised training algorithm based on 
restricted Boltzman machine moving the parameters to a good initial. RBMs are trained 
in one more layer at a time in a greedy manner and then stacked to build up a hierarchy 
multi-layer network, so-called deep belief networks. 
 
 



CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION 

 

10 

 
 

Figure 2.3,  restricted Boltzman machine 
 
 

        RBM is a bipartite graph modeling the joint distribution of a layer of stochastic 
visible units and hidden units as shown in Fig. 2.3. Only visible-hidden connections are 
allowed. For Bernoulli-Bernoulli RBM, the joint distribution is defined as: 

 

          P(v,h) = e
−E (v,h)

Z
,E(v,h) = −bTv− cTh− vTWh  (2.8) 

 

 
where Z is the normalization term, E(v,h) is energy function. b and c are the bias for 
visible layer v and hidden layer h while W is a symmetric weight matrix between v and h. 
To compute the posterior of hidden units, it can be obtained as: 
 

                                              (2.9) 

By plugging in the energy function E(v,h), we could obtain: 
 

P(h | v) = eb
Tv+cTh+vTWh

eb
Tv+cTh '+vTWh '

h '∑

=
ec

Th+vTWh

ec
Th '+vTWh '

h '∑
                                                  

(2.10) 

 
,which is the multiplication of the posterior of each unit: 

 

h0# h1# h2#

�0# �1# �2# �3# Bernoulli#

Bernoulli#

Gaussian#

bias:#b#

weights:#W#

bias:#c#

P(h | v) = P(v,h)
P(v)

=
e−E (v,h)

e−E (v,h ')
h '∑
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        (2.11) 
 

Let hi be one, we can rewrite the posterior as: 
 

                 P(hi =1| v) =
eci+v

TWi

eci+v
TWi +1

= sigmoid(ci + v
TWi )                           (2.12) 

 

Formula (2.12) is essentially the forward propagation procedure of neural networks. 
Hence, RBM can be applied to model each pair of layers of a neural network 
appropriately. Similarly, we could compute P(v|h) by symmetric: 
 

P(vi =1| h) = sigmoid(bi + h
TWi )                                              (2.13) 

 
Unlike the Bernoulli-Bernoulli distributed RBM, the input layer usually consists of real-
valued variables, so a Gaussian-Bernoulli RBM is employed. The energy function for this 
is revised as: 

Energy = 1
2
(v− b)T (v− b)− cTh− vTWh                              (2.14) 

 
By replacing the energy function as defined above, we still obtain the posterior of hidden 
units as: 
 

P(hi =1| v) = sigmoid(ci + v
TWi )                              (2.15) 

 
and the posterior of visible units is: 
 

 P(vi | h) = N(vi;b+ h
TWT , I )                                    (2.16) 

 
The parameters of the neural network, therefore, get good initialization by maximizing 
the log likelihood of the RBM where the objective function is: 
 

ĉ, b̂,Ŵ = argmax
c,b,W

P(v | c,b,W ) = argmax
c,b,W

P(v,h | c,b,W )
h
∑

                
(2.17) 

 
The detail of RBM training can be found in [29]. 

P(h | v) = ecihi+v
TWihi

ecihi
'+vTWihi

'

hi
;
∑

=
i
∏ P(hi | v)

i
∏
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        A deep belief network is built by stacking RBMs that are trained in a greedy layer-
wise manner. The first hidden layer is trained using RBM with raw input as visible units. 
After training is done, the first hidden layer is viewed as one visible layer for another 
RBM with another hidden layer on top of that. We repeat the process to increase the 
number of layers and build the network with multiple hidden layers. The deep belief 
network is then fine tuned using back-propagation training as the conventional MLP 
training. The final network is called a deep neural network (DNN).  
        While unsupervised pre-training using RBM was historically the turning point for 
deep neural networks, RBM training doesn’t have a good stop criterion, and the training 
procedure can be expensive with the increase of the number of layers. Alternatively, 
layer-by-layer discriminative pre-training technique is presented in [75]. In general, a 
one-hidden-layer neural network is trained first using labels discriminatively with error 
back-propagation. Then, after discarding an output layer in the previous one-hidden-layer 
neural network, another randomly initialized hidden layer is added on top of the 
previously trained hidden layer along with a new output layer that represents the targets 
for classification or recognition. The resulting multiple-hidden-layer DNN is then 
discriminatively trained using the same strategy, and so on until the desired number of 
hidden layers is reached. Other approaches have been developed [51], but their 
explanation is beyond the scope of this thesis. 
 
 

2.2. Neural Network in Speech Recognition 

In this section, we introduce two of the most common approaches that incorporate neural 
networks in the HMM based acoustic model: the hybrid and tandem systems. The 
approaches were first proposed in the 1990’s and 2000 using MLPs and extended to deep 
neural networks in recent years. The more recently developed neural network end-to-end 
(HMM free) system was not included in the section, but is described in [23]. 
 

2.2.1. Hybrid HMM/DNN 

Research on hybrid neural network HMM based automatic speech recognition started 
since 1990’s. The basic idea was to replace GMM for the hidden states’s marginal 
distributions in the standard HMM system with a single neural network. In typical 
processing, the neural network used the softmax function for the output non-linearities, 
while the inputs to the network were a context window of adjacent MFCC or PLP frames. 
        The neural network was used as a classifier that discriminated between all of the 
HMM’s hidden states. Earlier work [8] had shown that the output of such an neural 
network could be interpreted as the posterior probabilities of the states given the inputs, 
which meant that dividing the posterior probabilities by the state priors yielded scaled 
likelihoods that were suitable to use for the state’s marginal or output probabilities. For 
the training scheme, instead of using only frame-level DNN training independent of a 
HMM and language model, some approaches jointly optimize DNN weights, HMM state-
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to-state transition parameters, and language model scores using the sequential 
discriminative training criterion [51]. 
        There are some advantages that distinguish a hybrid HMM/DNN over the standard 
HMM/GMMs. First of all, neural networks are inherently discriminative, although at the 
state rather than the word or utterance level. Second, a neural network has fewer 
assumptions about the data. Third, using a context window as the inputs to the neural 
network captures the long term temporal information.   
 

 
Figure 2.4, Hybrid HMM/DNN 

 

2.2.2. Tandem 

Starting in 2000, researchers have investigated features that were learned from data using 
neural networks. In the tandem approach, these neural network based features were then 
used as extra acoustic features for the standard HMM/GMM (Fig. 2.5(a)). One 
motivation for the tandem approach was to take advantage of the discriminant property 
from neural networks by incorporating the resulting discriminative features into 
HMM/GMM-based systems. Another advantage to the tandem approach is that it makes 
it easier to include non-traditional features within the HMM/GMM; for example TRAPS 
[27] use narrow spectral subbands and long temporal windows as inputs to multiple 
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MLPs whose outputs are combined using a MLP. A variant of TRAPS, called HATS [11], 
led to a roughly 10% relative improvement in recognition accuracy. 
        Again, the input layer of a neural network is a context window of adjacent frames of 
features (e.g., MFCC or PLP) and the softmax outputs discriminate between context 
independent phones. The frame-level labels for training are produced using forced 
alignment in HMM/GMM system. To apply the posteriors from neural network outputs 
as acoustic features, a post-processing step is preferred. In typical tandem processing, the 
posterior phone probabilities are processed by logarithm and principle component 
analysis (PCA) to yield features that could be modeled by Gaussian mixtures 
appropriately. The logarithm transformation makes the distribution more Gaussian-like, 
and PCA performs de-correlation and dimension reduction for the diagonal Gaussian 
distributions. In conventional fashion, they are appended to the standard feature set, such 
as MFCC or PLP. 
       One variant of tandem processing is taking the raw hidden layer outputs instead of 
using the posteriors as features, as shown in Fig. 2.5(b). In this case, the hidden layer is 
often designed as a narrow-dimensional layer, called a bottleneck layer e.g., in [24] a 
five-layer network is used with a constriction in the middle layer and the (processed) 
output of the constricted layer is taken as the feature vector. The motivation is that these 
hidden layer representations should be a good feature for HMM in the way they were 
used for classification in neural network. There are several advantages to using 
bottleneck features rather than posteriors. Because the feature size is not determined by 
output layer, neural networks could be trained to discriminate context dependent tied tri-
phone states. Also, the logarithm and PCA are not necessary as the bottleneck feature can 
be viewed as nonlinear dimensional reduction. 
 

 
Figure 2.5(a), Tandem system using posterior features 
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Figure 2.5(b), Tandem system using bottleneck features 

 

 

2.3. Convolutional Neural Network 

A convolutional neural network is a biologically inspired variant of a deep neural 
network. A common CNN topology was proposed by LeCun et al. [40] and has garnered 
wide attention with the success of deep learning. It has been successfully applied in digit 
recognition and object recognition. Later, Sainath et al. [68] applied a similar concept to 
speech recognition.  The keys concepts that distinguish CNN from a typical fully 
connected neural network are local connectivity, shared weights and pooling. 

2.3.1. Local Connectivity and Shared Weights 

Fig. 2.6 depicts a CNN where the hidden units are connected to only a small, localized 
region of the input instead of the entire field. In the example, each hidden activation hi is 
computed by multiplying local input  ([xi, xi+1, xi+2]) against the weights W. The weights 
W are shared across the entire input space, as indicated in the figure. In other words, the 
hidden layer h is obtained by convolution of input x with a linear filter W, adding a bias 
term and applying an activation function. The function of the hidden layer is, therefore, 
often called convolution.  
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Figure 2.6, Neural network with shared weights and pooling 

The local connectivity is inspired by biological evidence where a number of experiments 
on different mammal species have revealed that sensory neurons are sensitive to a 
particular sensory space, a so-called receptive field. For example, Hubel and Wiesel’s 
early work on the cat’s visual cortex shows that the cells in the visual cortex are sensitive 
to small sub-regions of the visual field. These sub-regions are tiled to cover the entire 
field. Thus, by connecting to a small receptive field and weight-tying, CNN learns local 
structure of the input (e.g. image or spectrogram of speech), which (1) models the local 
receptive field in human sensory neurons and (2) is more computationally efficient to 
scale up well. 

2.3.2. Maximum Pooling 

Another important concept of CNNs is max pooling, which is a form of down-sampling. 
After computing the hidden units, a max pooling layer helps to remove variability in the 
hidden units (i.e. convolutional activations) from the upper layer. Max pooling partitions 
the input into a set of overlapping or non-overlapping units and, for each such sub-region, 
outputs the maximum value. In the example of Fig. 2.6, each max-pooling unit receives 3 
activations from the convolutional layer, and outputs the maximum of the activations 
from these activations. Convolution and max pooling over neighboring units allows 
translational invariance to the input. For example, a single shift from the input would lead 
to invariant convolution activations with a single shift.  As the max pooling is done over 
a window of 3, it will produce exactly the same output. Since it provides additional 
robustness to minor difference of positions, CNN can be better for vision and robust 
speech recognition tasks where the robustness to object translation and speaker/channel 
variability is desirable. 
        Typically, CNN consists of one or more convolution/max pooling layer pairs and 
fully connected layers on top. The top fully connected layers finally combine inputs from 
all the sub-regions to do the classification of the overall inputs. This hierarchical 
organization generates good results in image and speech processing tasks. 
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2.3.3. CNN in Speech Recognition 

The typical convolutional neural network for speech recognition using Mel spectrum was 
shown in Fig. 2.7, which consists of a convolutional layer, a pooling layer, and fully 
connected layers. 
 
 

 
      Figure 2.7: Basic convolutional neural network topology with Mel spectrum 

        Each CNN training case consists of entire frequency bands of successive frames. In 
the convolutional layer, the receptive field of each neuron is connected to a local subset 
of frequency bands. A set of neurons with receptive fields shifted in frequency share the 
same kernel (weights). Stacks of these neurons that cover features of the kernel along 
entire frequency bands constitute a feature vector. The convolutional layer is composed 
of multiple feature vectors determined by different kernels, as depicted in Fig. 2.7. 
Activation of each neuron is computed by multiplication of a local receptive field with 
the weights, adding a bias and applying a nonlinear function:  

hm (n,k) =θ( Wm (i, j) ⋅ x(n+ i,k + j)+ bm )
j=−K

K

∑
i=−N

N

∑

=θ(Wm (−n,−k)∗ x(n,k)+ bm )
   (2.18) 

 
where hm(n,k) represents the neuron of mth feature vector, whose receptive field is 2K+1 
(bands) by 2N+1 (frames) matrix centered at current band of the frame, x(n,k). The 
connection weights Wm perform filtering on the receptive field where the indices of the 
filter coefficients are flipped from the weight indices, both vertically and horizontally as 
shown in Eq. 3.14. bm and 𝜃(. )  are the bias term and sigmoid function respectively.  
      In the above example, convolution was applied along the frequency axis. the CNN 
architecture can also be applied along the time axis to reduce temporal variability, which 
was known as time-delay neural network (TDNN) in [74]. In [1], the network combines 
convolution along both frequency and time axes to generate a 2D CNN similar to the 
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ones used for image analysis. While both case offered limited performance improvement, 
perhaps it is because the speech temporal variability has been handled by the HMM in 
either the tandem or hybrid framework. 
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Chapter 3  
 
Development of Gabor Convolutional 
Neural Network 
 
 
 
Although a large body of research has shown that acoustic features for speech recognition 
can be nurtured from data using neural networks with multiple hidden layers and that 
these learned features are superior to standard features (e.g., MFCCs), this superiority is 
usually demonstrated when the data used to learn the features is very similar in character 
to the data used to test recognition performance.  An open question is how well these 
learned features generalize to realistic data that is different in character to their training 
data; in particular the robustness to unexpected noise environments is highly desirable.  
        Several existing robustness methods focus on compensating the difference between 
clean training data and noisy testing speech in different aspects such as model-based [37] 
or feature-based approaches [50, 38, 62]. Model based approaches focus on compensating 
the difference of clean and noisy speech by adapting a recognition model into a noisy 
speaker condition. For feature-based approaches, signal processing techniques are 
proposed to suppress the impact of noise or distortion prior to feature extraction or 
generate feature parameters, which are less sensitive to noise or distortion. Alternately, 
unlike ASR systems, human listeners rely on attention-driven (cognitive) selection of a 
specific speaker, e.g., in a high-noise cocktail party situation, which results in high 
recognition scores for human listeners, and which inspires researchers to find more robust 
features based on biological models about the auditory system.  
        In this chapter, we describe the development of robust feature representation based 
on Gabor filters that mimics “natural” (human) auditory processing. The filter design is 
then incorporated into fully connected deep neural networks or convolutional neural 
networks in several different ways to improve the robustness of automatic speech 
recognition. From our results, we conclude that signal processing technqiues based on 
prior knowledge of auditory models can improve the noise-robust speech recognition 
significantly while the perfromance of a deep neural network based on a standard front-
end could degrade rapidly in the presence of noise. 
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3.1. Spectrum using Power Normalization 

 
In [38], Kim and Stern propose the power normalized cepstral coefficient (PNCC) 
algorithm using gammatone filters followed by power bias subtraction and power 
nonlinearity compression. PNCC is relatively insensitive to constant background level 
noise. Therefore, spectra generated by the PNCC algorithm could be a better choice as 
the time frequency representation than Mel spectrum. We refer to the spectra generated 
from PNCC as the power normalized spectrum  (PNS). The comparsion between MFCC 
and PNCC is depicted in Fig. 3.1.  
 

 
Figure 3.1, Comparison between Mel spectrum (above) and PN spectrum (below) 

 
        As in the case of MFCC, a pre-emphasis filter of the form H(z) = 1−0.97z−1 is 
applied. A short-time Fourier transform (STFT) is performed using Hamming windows 
of duration 25.6 ms, with 10 ms between frames, using a DFT size of 1024. Spectral 
power in 40 analysis bands is obtained by weighting the magnitude-squared STFT 
outputs for positive frequencies by the frequency response associated with a 40-channel 
gammatone-shaped filter bank whose center frequencies are linearly spaced in Equivalent 
Rectangular Bandwidth (ERB) between 200 Hz and 8000 Hz, using the implementation 
of gammatone filters in Slaney’s Auditory Toolbox [70] (Fig. 3.2), which is derived from 
psychophysical observations of the auditory periphery, i.e., the filter bank represents a 
model of cochlear filtering.  
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Figure 3.2, Frequency response of gammatone filter according to [38] 

 
        For the second step, medium duration power is used to estimate and subtract the 
noise background level. It is commonly observed that longer analysis windows provide 
better performance for noise modeling and environment analysis as the power associated 
with most background noisy conditions changes more slowly than the instantaneous 
power associated with speech. Thus, a medium-duration power obtained by computing 
the running average of the power of consecutive analysis frames is used to estimate the 
noise bias in this processing. The noise bias level was calculated based on the ratio of 
arithmetic mean and geometric mean (AM-to-GM ratio) of the medium duration power, 
which is motivated by a decrease of the noise power for a decreasing AM-to-GM ratio. In 
this step, a subtraction of the medium-duration power bias is carried out, which makes 
AM-to-GM ratio the same as that of clean speech. 
        Finally, power nonlinearity with an exponent of 0.1 replaces the logarithm 
nonlinearity for compression. The output of the logarithm would be dominated by noise 
when the intensity of the input signal is low, thus the power nonlinearity is a better model 
for threshold effects of auditory fire rate responses. According to the observation in [76], 
the auditory nerve firing rate is constant when the input sound pressure level is below -10 
dB, while the output of the logarithm would be dominated by noise when the intensity of 
the input signal is low. An example of Mel spectrum and power normalized spectrum is 
shown in Fig. 3.3 illustrating greater insensitivity to noise for the power normalized 
spectrogram.  
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Figure 3.3 (a), Meduim-duration power subtraction of PN spectrum 
 
 

 
Figure 3.3 (b), Clean and noisy Mel spectrogram (left) and power normalized spectrogram 

(right). 
 

3.2. Spectral-Temporal Modulation Gabor Filter 
 
After the PN spectum is generated, we further convolve it using two-dimensional spectro-
temporal modulation Gabor features. In the remainding section, we discuss the concept of 
spectro-temporal receptive fields (STRFs), Gabor filter design and sparse selection of 
informative features from the filter output. 

 
3.2.1. Broader Motivation of Modulation Feature 
 

Over the last decade, a number of physiological experiments on different mammalian 
species have revealed that the neurons in the primary auditory cortex are sensitive to 
particular spectro-temporal patterns referred to as spectro-temporal receptive fields [45], 

2. Proposed Method 

2.1. PNS Gabor features 

Gabor-filtered power spectra based on mel-bands are easily 
corrupted by noise. While no one has a general solution for 
this problem, we found in [12] that using PNCC generated a 
more robust spectro-temporal representation.  We referred to it 
as the power normalized spectrum and the corresponding 
output filtered by Gabor filters as PNS-Gabor features. PNCC 
[10] differs from MFCC in three aspects: (1) gammatone filter 
(2) medium-duration bias subtraction (3) power-law 
nonlinearity. An example of mel spectrum and power 
normalized spectrum is shown in Fig. 2 illustrating greater 
insensitivity to noise for the power normalized spectrogram. 
PNS Gabor features are obtained by convolving two 
dimensional modulation filters and power normalized 
spectrum. To generate filters serving as model for spectro-
temporal receptive fields (STRFs), we multiply a complex 
sinusoid with a Hanning envelope. The complex sinusoid 
(with time modulation frequency  and spectral modulation 
frequency ) is represented as: 

                    
             (1) 

while the Hanning envelope is given (with  and  denote 

window length) 

         (2)  

By tuning parameters of spectral and temporal modulation 
frequency, Gabor functions have different extent and 
orientation for a given number of oscillations under the 
envelope as used in this study. The Gabor filter bank used here 
has been adapted from [4]. The 59 Gabor filters emphasizing 
on different temporal and spectral modulation frequencies are 
used. However, the filters with a large spectral extent result in 
high correlations between frequency channels. Hence, a subset 
of the possible combinations are used to avoid high 
correlations of feature components, resulting in an 814-
dimensional feature. In [12] we found that medium-duration 
bias subtraction and Gabor filtering are two key factors for 
PNS-Gabor when used for Aurora2 and noisy WSJ. 

 
Figure 2: Clean and noisy mel spectrogram (left) and power 

normalized spectrogram (right) 

2.2. Feature Selection via Sparse PCA 

While a number of experiments have shown the utility of 
using spectro-temporal Gabor filters for automatic speech 
recognition, some features generated by Gabor filters may not 
be informative. Here we propose an approach to select 
informative Gabor features using sparse principle component 
analysis. Based on the leading sparse principal vectors, we 
discard Gabor features that might prove to be less useful. 

Classical PCA is a widely used tool for dimensionality 
reduction, providing a linear combination of “all” features that 
maximizes data variance. However, in general, the principal 
vectors are dense (i.e., the entries are non-zero), which makes 
the results difficult to interpret.�Sparse PCA on the other hand, 
solves the same problem using “sparse” principal vectors. The 
objective function of sparse PCA is modified from classical 
PCA with an 1-norm penalty, so that sparse principal vectors 
are favored. The objective function is represented as: 

                   , subject to               
(3) 

where ρ is a non-negative parameter controlling the sparsity of 
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2.1. PNS Gabor features 

Gabor-filtered power spectra based on mel-bands are easily 
corrupted by noise. While no one has a general solution for 
this problem, we found in [12] that using PNCC generated a 
more robust spectro-temporal representation.  We referred to it 
as the power normalized spectrum and the corresponding 
output filtered by Gabor filters as PNS-Gabor features. PNCC 
[10] differs from MFCC in three aspects: (1) gammatone filter 
(2) medium-duration bias subtraction (3) power-law 
nonlinearity. An example of mel spectrum and power 
normalized spectrum is shown in Fig. 2 illustrating greater 
insensitivity to noise for the power normalized spectrogram. 
PNS Gabor features are obtained by convolving two 
dimensional modulation filters and power normalized 
spectrum. To generate filters serving as model for spectro-
temporal receptive fields (STRFs), we multiply a complex 
sinusoid with a Hanning envelope. The complex sinusoid 
(with time modulation frequency  and spectral modulation 
frequency ) is represented as: 

                    
             (1) 

while the Hanning envelope is given (with  and  denote 

window length) 
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By tuning parameters of spectral and temporal modulation 
frequency, Gabor functions have different extent and 
orientation for a given number of oscillations under the 
envelope as used in this study. The Gabor filter bank used here 
has been adapted from [4]. The 59 Gabor filters emphasizing 
on different temporal and spectral modulation frequencies are 
used. However, the filters with a large spectral extent result in 
high correlations between frequency channels. Hence, a subset 
of the possible combinations are used to avoid high 
correlations of feature components, resulting in an 814-
dimensional feature. In [12] we found that medium-duration 
bias subtraction and Gabor filtering are two key factors for 
PNS-Gabor when used for Aurora2 and noisy WSJ. 

 
Figure 2: Clean and noisy mel spectrogram (left) and power 

normalized spectrogram (right) 
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which is a functional descriptor of the linear processing of time-varying acoustic spectra 
by the auditory system. Based on this evidence, spectro-temporal features, which serve as 
a model for STRFs, have been applied to ASR. Several studies have successfully 
incorporated Gabor function approximations into ASR [35, 39, 64]. In general, these 
approaches define a series of spectral, temporal, and spectral-temporal modulation filters 
which can be seen as roughly modeling neuron firing patterns for particular spectro-
temporal signal components. Purely temporal features such as TRAPS [27] and HATS 
[11] can be regarded as special cases of spectro-temporal features. Gabor filters have also 
been used for speech and nonspeech discrimination [46, 72].  
 

3.2.2. Computational Gabor Model for Auditory      
Receptive Fields 

 
There are two ways to characterize the spectral-temporal response field. From the studies 
of the ferret primary auditory cortex, simpler spectra consisting of single moving ripples, 
which are basically sinusoidally modulated spectral profiles with a constant frequency 
along time and the “logarithmic” frequency axis, could be used effectively to characterize 
the response fields and transfer functions of auditory cortex cells. The response, thus, is 
formulated as 

O(n,k) = ΔAsin(2πωnn+ 2πωkk +Φ)         (3.1)  

 
where spikes were measured with different temporal (denoted as 𝜔! ) and spectral 
modulation (denoted as 𝜔!) at different amplitude levels (denoted as ∆𝐴). 
Alternatively, STRF processing can be formulated as filtering: 
 

O(n,k) = STRF(n,k)∗ x(n,k)          (3.2) 
 

At any particular time n and frequency k, a neuron’s response 𝑂 𝑛, 𝑘  is given by reverse 
correlation/convolution of the STRF and the dynamic spectrum of the stimulus around 
that instant and frequency  𝑥 𝑛, 𝑘 . Thus, the STRF acts as a filter, firing for the strongest 
responses to spectro-temporal features that most resemble its own structure. Many studies 
provide different ways to estimate STRFs. 
        For speech processing, a commonly used approximation of STRFs is a 2D Gabor 
function. 2D Gabor filters closely resemble the spectro-temporal response fields of 
neurons in the primary auditory cortex, and in particular are used to extract features that 
simultaneously capture spectral and temporal modulation frequencies for automatic 
speech applications, as they are used to extract spatial-temporal modulation frequencies 
for image processing applications [41]. The overall sensitivity pattern for human hearing 
has also been observed via perceptual experiments, e.g., Chi et al [13]. It was observed 
that humans are most sensitive to temporal modulation frequencies up to 16 Hz and 
spectral modulation frequencies up to 2 cycles per octave.  
        To generate Gabor filters serving as model for STRFs, we multiply a complex 
sinusoid with a Hanning envelope. 
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STRF(n,k) ≅Gb(n,k) = s(n,k) ⋅h(n,k)     (3.3)  

 
The complex sinusoid (with time modulation frequency  and spectral modulation 
frequency ) is represented as: 

s(n,k) = exp iωnn+ iωkn[ ]             (3.4) 

while Hanning envelope is given: 

h(n,k) = [1
2
(1− cos( 2πn

Wn +1
)][1
2
(1− cos( 2πk

Wk +1
))]   (3.5) 

where the time support Wn and frequency support Wk is defined as 1.75 cycles of the 
corresponding modulation frequency: 

Wn =1.75 ⋅
2π
ωn

,Wk =1.75 ⋅
2π
ωk

  (3.6) 

For purely temporal or spectral filters, this definition results in an infinite support 
function; in these cases, the support is limited to 40 frequency channels or 99 time frames, 
which corresponds to the maximum size of the other filters in the respective dimension.  
        By tuning parameters of spectral and temporal modulation frequency, Gabor 
functions have different extent and orientation for a given number of oscillations under 
the envelope. The Gabor filter bank used here has been adapted from [48]. The 59 Gabor 
filters focus on different temporal and spectral modulation frequencies as shown in Table 
3.1 and Fig. 3.4.  
 

Temporal modulation [Hz] 0, 1.9, 3.9, 6.2, 9.9, 15.7, 25 
Spectral modulation frequency 
[cycle/oct] 

-0.25, -0.1224, -0.06, -0.0293 
0, 0.0293, 0.06, 0.1224, 0.25 

Table 3.1, Temporal and spectral modulation frequencies for Gabor function 

 

ωn

ωk
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Figure 3.4, Frequency response of Gabor filters  

 
 
 
        The 59 Gabor filters are then applied to filter the PN spectrum. For the high 
modulation filters, the narrow filters capture the fast time-varying part of the spectrum, as 
shown in Fig. 3.5. For the low modulation filters, the wide filters capture the coarse 
representation of speech dynamics. A variety of tall and short filters corresponding to 
different spectral modulation frequencies generate features capturing different 
representations of spectral dynamics. In this regard, the standard cepstral coefficients 
(MFCC or PNCC) can be considered a special case of spectro-temporal features where 
the 2D filters measure spectral modulation frequencies across the entire spectrum within 
a single time frame i.e. cepstral coefficients represent the 2D filters which are very tall 
and narrow.  
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Figure 3.5, Above: a high temporal modulation filter (temporal modulation frequency: 6.2 
Hz, spectral modulation frequency: -0.03 cycle/channel) and corresponding filter output; 
below:  a low temporal modulation filter (temporal modulation frequency: 2.4 Hz, spectral 
modulation frequency: 0.03 cycle/channel) and corresponding filter output 

 

 
 

Figure 3.6, Clean and noisy Mel spectrum based (top) and power normalized spectrogram 
based Gabor features(bottom). 

3.3. Sparse Feature Selection 
 

While our experiments have shown the utility of using spectro-temporal Gabor filters for 
ASR, some features generated by Gabor filters may not be informative. Here we further 
propose an approach to select informative Gabor features using sparse principle 
component analysis. Based on the leading sparse principal vectors, we discard Gabor 
features that might prove to be less useful. 
        Classical PCA is a widely used tool for dimensionality reduction, providing a linear 
combination of “all” features that maximizes data variance. However, in general, the 
principal vectors are dense (i.e., the entries are non-zero), which makes the results 
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difficult to interpret. Sparse PCA on the other hand, solves the same problem using 
“sparse” principal vectors. The objective function of sparse PCA is modified from 
classical PCA with an 1-norm penalty, so that sparse principal vectors are favored. The 
objective function is represented as: 

maxvTΣxv− ρ( v
1

2 ) subject to v
2
=1    (3.7) 

 
where ρ is a non-negative parameter controlling the sparsity of principal vector, Σx is the 
empirical covariance matrix calculated from observations {xi} and v is the leading sparse 
principal vector. The first term in (3.7) is the objective function of classical PCA. 
Formula (3.7) can be rewritten as: 
 

maxTr(Σxvv
T )− ρ(1T vvT 1) subject to v

2
=1   (3.8) 

To get a robust interpretation, we reformulate the 1-norm penalty: 

 
−ρ(1T vvT 1) =min

U
Tr(UvvT ),−ρ ≤Uij ≤ ρ    (3.9) 

 
We obtain formula (3.10) by applying (3.9) to (3.8):  
 
 

maxminTr((Σx +U)vv
T ) : v

2
=1,−ρ ≤Uij ≤ ρ   (3.10) 

 
By switching the trace of the product in (3.10), it is equivalent to:  

 
maxminvT (Σx +U)v : v 2

=1,−ρ ≤Uij ≤ ρ    (3.11) 

The dual problem then can be shown as: 
 

maxminvT (Σx +U)v : v 2
=1,−ρ ≤Uij ≤ ρ    (3.12) 

 or     min
U
λmax (Σx +U) :−ρ ≤Uij ≤ ρ                  (3.13) 

 

where 𝜆!"# Σ! + 𝑈  means maximum eigenvalue of Σ! + 𝑈   

        Based on (3.13), we can solve the original problem by searching for the minimum of 
the largest eigenvalue of the covariance matrix with a noise matrix. Sparsity is 
accomplished by eliminating small values imposed on the empirical covariance matrix by 
component-wise noise bounded by ρ. To speed the search for U, we apply the 
Augmented Lagrangian Method (ALM) algorithm as derived in [56].  
        We compute only the leading sparse eigenvector, which is sufficient for selecting 
informative features in our experiment. The feature variables corresponding to zero 
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entries in the sparse principal vector are less useful to account for data variance. Hence, 
only informative features corresponding to non-zero entries are selected. The 
dimensionality of the selected features is much smaller than the original.  
        The sparse Gabor features are then used as input into a deep neural network. In 
typical tandem processing, a deep neural network is employed to learn discriminative 
transformations from front-end features; in this case Gabor filtered PN spectra, to 
probabilistic features, which are referred as sparse PNS-Gabor DNN features. We used a 
deep neural network with bottleneck structure where a bottleneck feature vector is 
generated by a narrow-dimensional layer in the middle of the network as shown in Fig. 
3.7. 
 

 
Figure 3.7, Bottleneck deep neural network tandem system using sparse Gabor features 
 
 
 
3.4. Gabor Convolutional Neural Network 
 

In additional to incorporating Gabor filters into the input layer of fully connected DNNs, 
here we propose another way to integrate pre-defined Gabor filters into convolutional 
neural networks. The proposed neural network architecture, called the Gabor 
Convolutional Neural Network (GCNN), incorporates Gabor functions into convolutional 
filter kernels. As described in Chapter 2, typical CNN architectures use shared weights to 
filter a receptive field, modeling the local characteristics of a spectrum. This filtering 
process permits us to integrate 2D Gabor filters into the CNN topology. We modified the 
receptive fields of the CNN, with several time and frequency supports conforming to 
Gabor filter characteristics. The modified CNN includes Gabor filter coefficients as the 
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initial filters at the lowest layer, and performs fine-tuning to optimize the coefficients by 
back propagation training. The GCNN feature is better than both Gabor-DNN and CNN 
features, where the former kept Gabor coefficients untrained while the latter used trained 
filters without Gabor modeling. Also, pooling reduced word error rate effectively for 
recognition of noisy speech.  
        The typical convolutional neural network using PN-spectrum is shown in Fig. 3.8, 
which consists of a convolutional layer, a subsampling layer, and fully connected layers 
as described in section 2.3. 
 

 

 
      Figure 3.8: Basic convolutional neural network topology with PN-spectrum 

 

 

 
      Figure 3.9: Gabor convolutional neural network topology 
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To model Gabor filtering in CNNs, we made two modifications in the basic processing 
for the convolution layer. First of all, we used linear instead of sigmoid activations. The 
bias term was enforced to be zero.  By these modifications, the neurons of convolutional 
layer are just the filter outputs of the receptive field. Second, Gabor features consist of 
filters with multiple time and frequency band supports. To meet the filter design, we 
modified the receptive field size to give the same supports as the Gabor filters, instead of 
using a fixed receptive field size i.e. 2Km+1 (bands) by 2Nm+1 (frames) matrix depending 
on filter m. The Gabor filter coefficients are then flipped and incorporated into the initial 
weights Wm. The convolutional activations can be formulated as Eq. 3.14.  
 

                               

hm (n,k) = lin( Gbm (−i,− j) ⋅ x(n+ i,k + j))
j=−Km

Km

∑
i=−Nm

Nm

∑

=Gbm (n,k)∗ x(n,k)  

(3.14) 

 
where hm(n,k) represents the neuron of mth  feature vector based on a particular Gabor 
filter, whose receptive field is 2Km+1 (bands) by 2Nm+1 (frames) matrix centered at the 
current band of the frame, x(n,k). The connection weights Wm perform filtering on the 
receptive field where the indices of the filter coefficients are flipped from the weight 
indices, both vertically and horizontally as shown in Eq. 3.14.  
        As shown in Eq. (3.14), the initial feature vectors were Gabor feature vectors. The 
modified topology is depicted in Fig. 3.9.  These filter coefficients are then trained with 
typical error back-propagation training. Thus, unlike Gabor-DNN features, filter 
coefficients were no longer untrained. 
        Compared to a typical CNN, GCNN used Gabor filter characteristics to define linear 
activated feature vectors with multiple time and frequency resolutions to initialize back-
propagation training, and potentially avoid overfitting to training data. A max-pooling 
layer follows the convolutional layer to down-sample and smooth the Gabor features. A 
comparison between Gabor-DNN, CNN and GCNN is summarized in Table 3.2. 
 
 
 

Topology Filter coefficient Filter support Pooling 
Gabor-DNN Gabor coefficient Gabor support No 
CNN Random initial 

and trained 
Fixed time-
frequency support 

Yes 

GCNN Gabor initial and 
trained 

Gabor support Yes 

Table 3.2: Comparison between Gabor-DNN, CNN and GCNN 
 

 
3.5. Experimental Results 
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3.5.1. Noisy Speech Corpus 
 
The approach proposed here is evaluated with the Aurora 2 [30] testing environment 
covering the recognition of noisy digits and with two noisy versions of WSJ: (1) Aurora 4 
[58] and (2) RATS “re-noised” Wall Street Journal (WSJ) speech. 
        For Aurora 2, we use the clean connected digits for training. Three testing sets (set 
A, B and C) are used with clean and noisy data.  The testing data set A covers four 
different noise types  (subway, babble, exhibition and car), while the testing data B 
covers four different noise types (restaurant, street, airport and train station). The testing 
set C covers two noise types respectively from set A and set B (subway and street), plus 
additional convolution noise. Different SNR values ranging from 0 dB to 20 dB were 
tested in each case. The average word error rates (WERs) of this task are obtained by 
averaging over WERs of the test sets.  
        The Aurora 4 dataset provides both a clean training set and a multi-condition 
training set. The clean training set is taken from 7138 utterances of the WSJ0 SI-84 
dataset (83 speakers) where the data was recorded using a Sennheiser microphone. The 
multi-condition training set contains the same number of utterances as the clean training 
set, while half of the utterances were recorded by a secondary microphone. Six noise 
types (car, babble, restaurant, street, airport and train) at SNRs between 10dB and 20 dB 
were randomly added to three-fourths of utterances from both microphone types. The 
evaluation set is based on 166 utterances of the Nov’92 5k evaluation set (8 speakers), 
and is composed of 14 subsets: clean and 6 noise corrupted sets for data recorded by both 
microphone types. The noise types are the same as those used for the multi-condition 
training set, but were chosen with an SNR between 5 and 15 dB. The 14 subsets are 
grouped into 4 sets: clean, noisy, clean with microphone distortion and noisy with 
microphone distortion, which are referred as A, B, C and D respectively.     
          For RATS re-noised WSJ, we started out with data taken from the WSJ1 dataset 
(284 speakers) for training and the WSJ-eval94 dataset (20 speakers) for testing. 
Estimated additive and channel noise from degraded recordings was applied to both 
training and testing datasets using the “renoiser” tool [21]. Designed for use in the 
DARPA RATS project, the system analyzes data from RATS rebroadcast example 
signals (in this case, LDC2011E20) to estimate the noise characteristic including SNRs 
and frequency-shifts; the original data is described in [2] and consists of a variety of 
continuous speech sources that have been transmitted and received over 8 different radio 
channels, resulting in significant signal degradations. The 8 radio channel characteristics 
are specified in Table 3.3. We applied the same noise characteristics to WSJ data to 
generate the RATS re-noised WSJ. In this case, the training data was obtained from 51.2 
hours of the WSJ1 dataset with the clean channel and channel G (the channel with 
highest SNR).  Testing data was 0.8 hours of WSJ-eval94 for each channel. The results 
reported here are WERs averaging over clean and 8 noisy channels.  
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Table 3.3, 8 noisy channels added to WSJ  

 

 
3.5.2. PN Spectrum and Gabor Processing 

 
 
First, we perform an analysis of the importance of individual signal processing steps 
differentiating Mel spectra and power normalized spectra that result in the increased 
robustness when incorporating Gabor filters. These features are evaluated from Aurora 2. 
For the small vocabulary experiments in Aurora 2, the HMMs were configured as: whole-
word HMMs with 16 states and with 3-Gaussian mixtures with diagonal covariance per 
state. Baseline results are obtained with the standard Aurora 2 MFCC frontend, which 
converted each signal frame into 13 cepstral coefficients, with subsequent addition of 
first and second derivative and utterance-wise mean and variance normalization. The 
average word error rates (WERs) of this task are obtained by averaging over WERs of the 
test sets.  
         In Aurora 2 experiments, the neural networks in the tandem processing are single 
hidden layer MLPs. The MLPs were trained with a temporal context window of 9 
successive frames. We used 160 hidden nodes for Aurora 2 while the output layer 
consisted of 56 context-independent phonetic targets. MFCCs were then concatenated 
with Gabor features. The dimension of Gabor features is then reduced via PCA to 32, 
resulting in a 71-dimension feature vector. 
        In Table 3.4, we compare several different configurations of PNS-Gabor features 
and Mel-Gabor features after concatenating MFCC in Aurora 2. The result for Mel-Gabor 
features plus MFCC is presented in row (2), which is 15% relative better than the MFCC 
baseline. From row (3) to row (6), the results were obtained from deconstructing PNS 
into four different configurations. In row (7), instead of being filtered by Gabor filters, 
PNCC was used as input for MLP, from which we could investigate the benefit of 
combining MFCC and PNCC without Gabor filtering.  As shown in row (3), we only 
switched from Mel filter banks to gammatone filter banks. We referred to it as GT(l)-
Gabor. In row (4), gammatone filter banks were further processed by power nonlinearity 
compression p instead of logarithm compression l, which was referred as GT(p)-Gabor. 
PNS(l)-Gabor features were obtained by performing a power bias subtraction followed by 
logarithmic compression. The result of regular PNS-Gabor features is presented in row 

 

 Microphone SNR Frequency 
shift 

Channel A  Motorola HT1250 15.6 0 
Channel B Midland GXT1050 6.2 0 
Channel C Midland GXT1050 6.0 0 
Channel D Galaxy DX2547 3.5 180.9 Hz 
Channel E Icom IC-F70D 0.9 0 
Channel F Trisquare TSX300 3.0 0 
Channel G Vostek LX-3000 18.7 0 
Channel H Magnum 1012 HT 3.0 120.7 Hz 
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(6). GT(l)-Gabor didn’t perform as well as conventional Mel-Gabor features, while 
GT(p)-Gabor gave a slight improvement. This implies that the power nonlinearity is 
helpful to inhibit the effects of noise, as expected. However, as shown in Table 3.4, the 
most effective step is power bias subtraction, from which we got 16.7% relative 
improvement by comparing GT(l)-Gabor and PNS(l)-Gabor features. The best result 
came from the PNS-Gabor feature, which is 20% relatively better than the Mel-Gabor 
feature. Even after power bias subtraction, power nonlinear compression can help. In row 
(7), we showed the WER from combination of PNCC and MFCC using MLP, which is 
significantly worse than the proposed Gabor-filtered PNCC augmentation of MFCCs; the 
latter is 15.7% better.  
        To conclude, we investigated the key parts of the PNCC algorithm, augmented by 
Gabor filtering. It appears that power bias subtraction and Gabor filtering are the key 
steps for decreasing the WER (from 18.14% to 14.06%).  

 
Table 3.4, Aurora 2 WER of Gabor features with different spectro-temporal representations. 
The baseline is a 39-dimensional MFCC plus the first 2 derivatives with mean and variance 
normalization. 

 
 

3.5.3. Sparse Gabor Features 
 

Next, we investigated the improvement by introducing sparse feature selection to Gabor 
features. For the experiments, we evaluate these approaches in large vocabulary 
continuous speech recognition tasks from RATS re-noised WSJ and Aurora 4. 
        For both Aurora 4 and RATS re-noised WSJ, the acoustic models used cross-word 
triphones estimated with maximum likelihood. The resulting triphone states were 
clustered to 2500 tied states, each of which was modeled by 16 components of a Gaussian 
mixture model. We used version 0.6 of the CMU pronunciation dictionary and the 
standard 5k bigram language model created at Lincoln Labs for the 1992 evaluation. 
Unless otherwise specified, mean normalization was performed for the features, while 
vocal tract length normalization (VTLN) and adaption techniques such as maximum 
likelihood linear regression (MLLR) were not employed for these tests.  
        The fully connected deep neural networks were trained with a 4 hidden layer 
bottleneck structure with a bottleneck (25 units) in the third hidden layer. The output 
layer consisted of 41 context-independent phonetic targets. The features with 9 

 

 Filter 
bank 

Pow 
Sub 

Com. Gb. WER 

(1) MFCC - - - - 18.14 
(2) Mel-Gb + MFCC Mel no log yes 15.41 
(3) GT(l)-Gb + MFCC GT no log yes 15.75 
(4) GT(p)-Gb + MFCC GT no pow yes 14.86 
(5) PNS(l)-Gb + MFCC GT yes log yes 13.12 
(6) PNS-Gb + MFCC GT yes pow yes 12.30 
(7) PNCC-MLP + MFCC GT yes pow no 14.06 
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successive frames were used as input for a fully connected deep neural network. For fair 
comparison, the number of free parameters of the neural networks were constrained to 
roughly 3.5M by controlling the hidden layer size.  
        Restricted Boltzman machine (RBM) pre-training was employed to initialize the 
parameters of the neural network. For back propagation following the pre-training, we 
began with a learning rate of .008 and reduced the learning rate by factors of two once 
cross-validation indicated limited progresses with each learning rate, and continued until 
cross-validation showed essentially no further progress.  
        After DNN features were computed, the MFCCs were concatenated with the deep 
neural network trained features, resulting in a 64-dimensional feature vector. Also, means 
and variances were normalized per utterance before HMM training and testing for all the 
features described here. 
        We first present a series of baseline WER results for RATS re-noised WSJ and 
Aurora 4 results using the clean training set. In Table 3.5, PNCC was better than other 
feature baselines for both cases (on average). As a result we used PNCC or PN spectrum 
based features for the experiments that followed. 
 

 
Table 3.5: MFCC, AFE and PNCC baseline 

In Table 3.6, we compare the DNN features based on PNCC, PNS-Gabor and the 
dimensionally reduced PNS-Gabor feature selected via sparse PCA and classical PCA. In 
this experiment, the sparse PCA parameter, ρ was set to .008, resulting in 271 selected 
features from 819 features. The size of hidden layers was increased so that total number 
of parameters was comparable. As shown in Table 3.6, the sparse-PCA selection was 
better than using the other features. Aside from this improvement, the sparse PCA also 
made feature generation more efficient. The sparse PCA approach was furthered 
compared with classical PCA. Results also suggest that using the reduced “informative” 
features via sparse PCA is better than using the linear combination of all features 
obtained by classical PCA.  

 

A  B  C  D Avg
MFCC 62.4 8.2 36.7 25.5 52.1 40.5
MFCC(CMVN) 61.8 7.9 30.3 22.8 48.2 35.8

ETSI-AFE 59.4 8.8 24.5 24.7 38.9 29.5

PNCC 58.8 9.3 22.1 23.3 37.5 27.9

Aurora 4RATS
 WSJ

Feature
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Table 3.6, WERs for DNN features based on PNCC, PNS-Gabor and dimensional reduced PNS-

Gabor using sparse PCA or classical PCA 
 
        Using the sparse principal vector, we observed the suggested importance of Gabor 
filters in Fig. 3.10. The darker areas represent the degree of importance (at least in terms 
of variance) based on how many channels generated by the filter were selected. As shown 
in Fig 3.10, filters with low temporal modulation frequency appear to be useful for 
maximizing data variance. The features focus on temporal modulation frequency of 0, 2,4 
and 3.9 Hz account for 94.1% of the weights of the leading sparse principal vector. The 
corresponding filter lengths are roughly 1, 0.7 and 0.5 sec. It suggests that Gabor filters 
with longer time scales are particularly informative.  
        We also note that in all cases except for A (high SNR, no frequency shift) the sparse 
Gabor outperforms all the other approaches. 
 

 

 
Figure3.10: Importance of Gabor filters based on sparse PCA 

 
 

 
3.5.4. Fully Connected DNN, CNN and GCNN 

A  B  C  D Avg
MFCC-DNN 59.2 6.2 25.2 24.8 45.1 32.3
PNCC-DNN 54.8 6.63 20.4 18.7 36.6 26.2
Gabor-DNN 53.9 6.85 18.9 17.8 35.4 25
Sparse
Gabor-DNN 51.7 6.72 18.2 16.9 34.1 24.1
Gabor-DNN
(classical 
PCA) 52.9 6.8 18.5 17.4 34.8 24.6

Aurora 4Feature RATS
 WSJ
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Here, we compare the WERs of fully connected DNN, convolutional neural network and 
Gabor convolutional neural network. For the CNN topology, we used 120 filters for the 
convolutional layer. The filter size was 9 frequency bands with 15 successive frames. We 
used a pooling size of 6 convolutional bands with stride 2 (overlap by 4), which reduced 
dimensionality by a factor of 2. This layer was fed to a 5-layer fully connected bottleneck 
structure. In the GCNN architecture, the time support for each filter kernel ranges from 7 
to 99 frames, and frequency support ranges from 7 to 40 bands. 59 of the filters were 
initialized as Gabor filter coefficients, and the other 61 filters were randomly initialized. 
The rest of network set up is the same as for the CNN. For both CNN and GCNN 
architecture, 40-d power normalized spectrum was used as input. We didn’t use delta and 
acceleration coefficients to be consistent with Gabor filter input. Back propagation 
strategy was the same as used for the DNN, while no pre-training was performed. Again, 
MFCCs were concatenated with the convolutional neural network trained features, 
resulting in a 64-dimensional feature vector.  
        In Table 3.7, we compare a series of trained features using a fully connected neural 
network, a convolutional neural network and a Gabor convolutional neural network. First, 
the trained features of Table 3.7 are better than untrained features of Table 3.5. In Table 
3.7, Gabor-DNN was better than PNCC-DNN except for the clean set (A). Next, we 
compare Gabor-DNN with PNS-CNN and PNS-GCNN without a pooling layer. Without 
pooling, the inputs of the fully connected network are feature maps of the convolutional 
layer. Therefore, these rows function as a comparison between different sets of spectro-
temporal filters. Gabor-DNN used filters with variable size, but totally handcrafted. PNS-
CNN, on the other hand, learned filters with fixed size and trained on limited data. PNS-
GCNN has filters with variable size. Also, the trained filters were initialized with 
handcrafted filters. In Table 3.7, PNS-GCNN was better than the other two features, 
although the differences are small. The larger effects visible in the table show the effects 
of pooling, and the cumulative effects of pooling and using GCNN instead of CNN. In 
particular, max pooling provides a significant improvement for both RATS WSJ and 
Aurora 4 (especially for noisy set (B) and noisy set with channel distortion (D)), and 
particularly with pooling, using Gabor filters to help design the CNN has a good effect.  
 

 
Table 3.7: WER for neural network features, clean training, noisy test. 

A  B  C  D Avg
MFCC-DNN 59.2 6.2 25.2 24.8 45.1 32.3
PNCC-DNN 54.8 6.63 20.4 18.7 36.6 26.2
Gabor-DNN 53.9 6.85 18.9 17.8 35.4 25
PNS-CNN
no pooling 54.1 6.34 19.8 17.9 35.8 25.5
PNS-GCNN
no pooling 51.6 6.52 18.3 18.5 34.6 24.4
PNS-CNN 
with pooling 51.5 6.2 18.8 15.6 33.8 24.1
PNS-GCNN
with pooling 49.8 6.3 17.8 15.7 32.1 22.9

Feature RATS
 WSJ

Aurora 4
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In addition to the experiments with mismatched training and testing, we also used the 
multi-condition training set for Aurora 4. We chose the distinguished features, Gabor-
DNN, Sparse Gabor-DNN, PNS-CNN and PNS-GCNN comparing them with two 
baselines: ETSI-AFE and PNCC. The results are shown in Table 3.8, where the 
proposed PNS-GCNN could achieve 16.6% WER. This was achieved without VTLN, 
MLLR, or other modeling enhancements. Table 3.7 and 3.8 concludes that GCNN 
based features achieve the best performance over all the other features for both Aurora 
4 and RATS re-noised WSJ. 

 

 
 

Table 3.8: WER for multi-condition training set. 

 
3.5.5. CNN Trained Filter versus Gabor Filter 

 
In the previous experiments, we reported ASR results of GCNN that integrated pre-
defined Gabor filters and trained convolutional neural networks to generate a more robust 
feature. From the experiments, the GCNN features performed better than both Gabor-
DNN and CNN features. We further investigated the filters trained from CNN and GCNN. 
The trained CNN filters are composed of several vertical (spectral) and horizontal 
(temporal) filters, as the examples in Fig. 3.11 show. However, the filters have very low 
correlation to the diagonal Gabor filter, such as the diagonal filter in Fig. 3.12 (left) while 
the diagonal filter would be kept and tuned in GCNN topology and the final filter is 
shown in Fig. 3.12 (right). Thus, diagonal filtering is another factor distinguishing trained 
filters with Gabor initialization and those with random initialization.  
 

A  B  C  D Avg
ETSI-AFE 10.6 18.6 19.7 30.9 23.4
PNCC 10.5 17.4 19.1 30 22.5
Gabor-DNN 8.4 14.2 14.3 25.8 18.8
Sparse
Gabor-DNN 7.8 13.8 12.5 24.1 17.7
PNS-CNN
with pooling 7.4 13.4 12.8 24.7 17.8
PNS-GCNN
with pooling 7.3 12.8 12.1 22.7 16.6

Feature
 

Aurora 4
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  Figure 3.11, a vertical and a horizontal filter example 

 

Figure 3.12, (left): diagonal Gabor filter, (right): GCNN tuned diagonal Gabor filter  

 
3.6. Summary 

Here we incorporated Gabor features into a deep neural network and a convolutional 
neural network. First of all, we employed a more robust spectro-temporal representation 
incorporating key parts of the PNCC algorithm, augmented by Gabor filtering. From the 
analysis experiments, the power bias subtraction and Gabor filtering are the key steps for 
decreasing the WER. Second, we reported our use of sparse PCA on PNS-Gabor, which 
is used as input for bottleneck deep neural networks using two large hidden layers 
following the input layer. The key factor in this step is discarding uninformative features. 
Third, we proposed a robust CNN architecture integrating Gabor filter design. The 
proposed GCNN architecture learned local features with multiple temporal and spectral 
resolutions with Gabor filter initialization, both for structure and initial weights. The filter 
coefficients were further optimized by back propagation training. A maximum pooling 
layer also gave significant improvement in our experiments. Our results indicated that the 
proposed GCNN feature achieved the best results among other noise robust feature and 
neural network feature for the two noisy WSJ corpora. It appears that, at least for these 
tasks, it is useful to design the architecture and the input features for greater robustness 
rather than just relying on the CNN to learn everything. 

! !!



 38 

Chapter 4  
 
Quantifying Neural Network Feature 
Errors and Model Errors 
 
 
 
 In this chapter, we explore the questions surrounding how the application of deep neural 
networks improves speech recognition accuracy, and why it fails for particular train-test 
conditions rather than focusing on how to actually improve speech recognition accuracy 
as in Chapter 3.  
        The sources of errors in ASR are from two primary factors, model errors and 
observation mismatch. For the model error, the major factor comes from the incorrect 
assumptions of the standard acoustic model, the hidden Markov model, which fails to 
accurately model speech data. Observation mismatch comes from uncompensated 
training-testing data difference including noise, reverberation, speaking style (accent, 
speaking rate) and etc. While these factors have long been observed, most research aimed 
at improving speech recognition accuracy in either acoustic feature or model aspects has 
largely ignored questions about quantifying the underlying causes of recognition errors. 
These improvements from models or features without standard statistical data analysis 
have long been argued as trial and error processes.  
        In this chapter, we used the statistical tool for analysis experiments introduced by 
Wegmann, et al. [22, 59], which used simulation and a novel sampling process to 
quantify the effects that major HMM assumptions have on recognition accuracy. We first 
discovered the basic mechanisms that neural network-based features use to substantially 
improve Gaussian mixture based HMM speech recognition systems for matched near-
field or far-field experiments. Second, we investigated the failings of standard MFCC 
based DNN for the mismatched train-test condition. Third, we explored the contribution 
of robust signal processing techniques prior to neural network training. To accomplish 
robust processing, we employed the representation of PNS-Gabor as described in Chapter 
3 that incorporated Gabor filtering and power normalized spectrum prior to neural 
network training. The analyses of the improvement from DNN features based on this 
robust representation allowed us to investigate the contribution of robust feature 
generation within the DNN framework. We conducted the experiments on the recognition 
performance of the ICSI meeting corpus where near-field and far-field conditions are 
recorded simultaneously.  
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4.1. Model Errors and Observation Mismatches 

It has now been decades since hidden Markov models were first applied to the problem of 
speech recognition ([5, 33]). Moreover, it has been over 20 years since the speech 
recognition community has used HMM as the dominant paradigm for most acoustic 
modeling problems.  
        While other alternatives exist, including conditional random field [25] and more 
recently long short-term memory (LSTM) with connectionist temporal classification 
(CTC) implementation [23], HMMs still dominate most speech recognition tasks. When 
applying HMMs to the problem of ASR, there are two main assumptions that we make. 
The first assumption is the parametric models that we use for the HMM’s output 
distributions. Often, the emission probability is assumed to be multivariate Gaussian with 
diagonal covariance (though the hybrid neural network/HMM approach didn’t model 
Gaussian distribution). The second assumption is the statistical independence of frames 
where we assume that successive frames generated by a certain state are independent, 
moreover, that frames generated in one state are independent of those generated by a 
different state. More precisely, given state sequence s1,2…T and the model parameter 𝜆, the 
likelihood of observations is obtained from the multiplication of likelihoods of each 
frame: 
 

P(o1,o2....,oT | s1, s2...., sT ,λ) = P(oi | si,
i=1

T

∏ λ)  (4.1) 

        The independence assumption is incorrect partly because of the mechanics of speech 
production and partly because of the feature extraction process; for example, cepstral 
coefficients have 15 ms overlapping while computed from 25 ms analytic window and 
appended with first and second difference computed from adjacent frames; and Gabor 
features processed time support up to 99 frames. While both of these assumptions are 
understood to be incorrect for speech data, we can investigate the impact each of these 
two assumptions has on recognition accuracy and in particular if one assumption 
dominates recognition errors. This type of diagnostic information is a critical step 
towards improving or replacing the HMM for speech recognition. 
        Another source of errors comes from mismatched training/testing data. As described 
earlier, speech recognition is operated in the environment where noise and reverberation 
may be present. It is not feasible to collect and transcribe the huge amount of training 
data that include all noise, reverberation, and other conditions. The testing data with 
unseen acoustic condition that deviate from training data degrades the performance 
rapidly leading to another brittleness of ASR. To analyze the problem, we used the 
paralleled recordings from near-field and far-field microphones in the ICSI meeting 
corpus [32] to construct three sets of related recognition tasks: (a) matched near-field 
acoustic model training and recognition test data; (b) matched far-field acoustic model 
training and recognition test data; (c) mismatched near-field acoustic model training data 
and far-field recognition test data. The experiments in the matched cases (a) and (b) 
focused on model errors: (1) long-term statistical dependence that is present in speech 
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data and violates the HMM’s conditional independence assumption and (2) deviation of 
feature distribution to Gaussian assumptions. For the mismatched case in (c), we quantify 
the recognition errors from the lacking of robustness to the transformation between the 
near and far-field acoustics.  
 
 

4.2. Simulation and Bootstrap Sampling 

To quantify these factors, we evaluated the recognition performance on pseudo data that 
is generated with the controlled statistical property. We used simulation and sampling 
process to fabricate pseudo test data that deviated from the HMM in different levels. At 
one extreme, it agrees with all of the model’s assumptions, and at the other extreme, 
deviates from the model in the way real data do. In between, we can precisely control the 
degree of data/model mismatch. By measuring recognition performance on this pseudo 
test data, we are able to quantify the effect of this controlled data/model residual on 
recognition accuracy. 

 

4.2.1. Simulation Pseudo Observations 

First, we followed the full generative process assumed by HMMs to simulate the ideal 
data, which respects all the assumptions of the model. As described above, we used a 
Gaussian mixture model for state emission distributions. Therefore, the generative 
process includes sampling steps from two parametric probability distributions where 
Gaussian distributions determine the feature values while transition probabilities controls 
the state duration. Thus, the fabricated observations obtained by the simulation process 
are indeed independent conditioned on the states and follow the Gaussian form of the 
given hidden states.  
        To generate the test data by simulation, we started with the ground truth of test 
utterance, and unpacked the word transcription into phone transcriptions by looking up 
pronunciation dictionary. Next, we walked through the states and generated the output 
distribution associated with the states belonging to the triphones to generate the data. Fig. 
4.1 shows the full generative process and it is summarized as the following steps: 
 

Simulation process 
 
1. Convert test transcription from word to phone 
2. Sample from transition distribution to walk through states  
3. Sample from Gaussian distribution to generate pseudo data 
4. Decode the pseudo data 
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Figure 4.1: Simulation process 
 

In the process mentioned above, although MFCC has delta coefficients and acceleration 
coefficients computed from adjacent frames appended to the static cepstral features, the 
GMMs never learn about the temporal consistency between successive feature vectors 
and their corresponding delta and acceleration features. Therefore, while the pseudo data 
that we generated still has features corresponding to the static cepstral features, delta and 
acceleration, they lost the temporal dependency. To simplify the generative process, we 
used only a single Gaussian distribution for each state instead of typical 32-128 Gaussian 
mixtures.   

 

4.2.1. Frame Resampling 

In this section, we modified the generative process by bootstrap sampling from real data 
rather than drawing samples from Gaussian distribution. In this fashion, we created data 
that respects the independence assumptions while follow empirical distribution instead of 
Gaussian distribution that is controlled by means and variances. To perform bootstrap 
sampling, we first used the original model to perform forced alignment on the training 
data, so that each speech frame is aligned with its most likely generating state. Next, we 
walked through this alignment, filling an urn for each state with its representative frames; 
at the end of this process, each urn was populated with frames representing its empirical 
distribution. To generate resampled data, we used the model to create a forced alignment 
of the test data, and then sampled a frame (at random, with replacement) from the 
appropriate urn for each frame position; these resampled frames were concatenated as 
shown in Fig. 4.2. With this resampling, the pseudo test data had exactly the same length 
as the original, and had the same underlying alignment, but the frames were then 
conditionally independent (given the state). The resampling process is summarized as: 

Tes$ng'u)erance'
ground'truth'

Unpacked'to''
phone'

Walk'through'
states'

Draw'from'
GMM'

hi# this# is#

/h/' /ay/'

S1' S2' S3' S4' S5' S6'
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Frame Resampling 
 
1. Perform force aligning to obtain frame-level alignment for both training and 

testing data 
2. Fill the urns of each state with frames from training data 
3. Generate test data by sampling (with replacement) from the corresponding urns 
4. Viterbi decoding the resampled data 

 

 
   

Figure 4.2: Pseudo test data (“Hi”) generated using frame resampling 
 

4.2.2. Segment Resampling  

From frame resampling, we generated independent observations from empirical 
distribution. We could further extend the sampling process from frames to segments and 
relax the independence assumptions to cross-state/phone level. By placing entire 
state/phone sequences of frames in the urns, and then resampling (again, concatenating 
samples), we ended up with pseudo test data with dependence among frames within 
state/phone regions, but independence across state/phone boundaries. As the resampling 
units were larger than single frames, pseudo test data had different lengths from the 
original. Fig. 4.3 and 4.4 show the example generating pseudo test data using state/phone 
resampling. 
 

Phone resampling 
 
1. Perform force aligning to obtain frame-level alignment for training 
 
2. Fill the urns of each “phone” with frames from training data 
 
3. Generate test data by sampling (with replacement) from the corresponding urn 
 
4. Viterbi decoding the resampled data 

/h/,s1& /h/,s3&

Pseudo&test&data&
of&“Hi”&

o1& o2& o3& o4& o5& o6& o7& o8& o9& o10&

s1&
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s2& s2&s1&s3& s3&

dataset& dataset&



CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND 
MODEL ERRORS 

43 

 

 
 

Figure 4.3: Pseudo test data (“Hi”) generated using state resampling 
 
 

 
 

 
Figure 4.4: Pseudo test data (“Hi”) generated using phone resampling 

 
 

 
4.3. Data Preparation 

For the statistical ASR analysis in this chapter, we used a dataset of spontaneous meeting 
speech recorded at ICSI [32] where each spoken utterance was captured using near-field 
and far-field microphones. To avoid the results smeared by a synchronized time skew, we 
performed time aligning procedures, so that the datasets and the models in the near-field 
and the far-field cases were completely parallel.  
        Our training set is based on the meeting data used for adaptation in the SRI-ICSI 
meeting recognition system [71]. For the test set we used the ICSI meetings drawn from 
the NIST RT eval sets; this was done to control the variability in the data for the 
resampling experiments. The remainder of this section discusses the creation of the 
parallel near-field and far-field corpora. First we describe how we estimated and removed 
a variable length time delay that existed between the corresponding near-field and far-
field utterances, so that each training and test utterance had two parallel versions: near-
field and far-field that lined up at the MFCC frame level. Next we discuss how we 
partitioned these parallel near-field and far-field corpora data into training and test sets. 
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4.3.1. Time-Aligning the Corpora 

In order to synchronize the near-field and far-field recordings, we had to deal with a time 
delay, or skew, that exists between the two recordings. These time delays arise from two 
factors: (1) different physical distances between the speakers and the microphones, and 
(2) systematic delays introduced by the recording software. The latter factor appears to 
dominate the skew between the near-field and far-field recordings. Fixed delays were 
introduced when the channels were initialized at the start of a recording. Since this 
systematic delay dominated the skew, the near-field recordings had a time delay relative 
to the far-field recordings. Fig. 4.5(a) illustrates an utterance captured by the far-field 
microphone that is advanced in time in comparison to the same utterance captured by the 
near-field microphone. 
        A time delay is more pronounced in the cross-correlation between the near-field and 
far-field signals, as shown in Fig. 4.5(b). The delay could be estimated by searching for a 
peak in the cross-correlation sequence. In Fig. 4.5(b) the peak is at a lag of 41.88 ms (670 
samples at 16 kHz). However, this detection could be difficult because of the recording 
quality and noise. To guarantee a more precise detection, we divide each utterance into 
overlapping windows, where the window size is a third of the utterance length and the 
step size for successive windows is a tenth of the utterance length. For each step, the 
cross correlation sequence is calculated and a delay is estimated by taking average of the 
three segments.  
        When the variation between the estimated delays in the windows for a given 
utterance is large, then the estimation is regarded as unreliable and the utterance is 
discarded. Approximately 30% of the utterances were discarded because of these 
unreliable delay estimates. The delays between near-field and far-field channels for the 
reliable data ranged from 12.5 ms to 61.25 ms. Fig. 4.6 shows a discarded utterance. This 
is a recording of "laugh" followed by “breathing”. However, it appears that the recording 
from far-field microphone missed the laugh segment.  By computing cross correlation, 
the peak value comes from matching the "laugh" segment of near-field recording and the 
“breathing” segment of the the far-field recording.  
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Figure 4.5, Time alignment: (a) near-field (blue) and far-field (green) signals (b) Cross-

correlation between the signals. 
 

 

Figure 4.6, Discarded example: near-field (blue) and far-field (green) signals  

Fig. 1. Time alignment: (a) NF (blue) and FF (green) signals (b)
Cross-correlation between the signals.

2.1. Time-aligning the corpora

In order to synchronize the NF and FF recordings, we must deal with
a time delay, or skew, that exists between the two recordings. These
time delays arise from two factors: (1) different physical distances
between the speakers and the microphones, and (2) systematic delays
introduced by the recording software. The latter factor appears to
dominate the skew between the NF and FF recordings. Fixed delays
were introduced when the channels were initialized at the start of a
recording. Since this systematic delay dominates the skew, the NF
recordings have a time delay relative to the FF recordings. Fig 1(a)
illustrates an utterance captured by the FF microphone that is ad-
vanced in time in comparison to the same utterance captured by the
NF microphone.

Time delay is more evident in the cross-correlation between the
NF and FF signals, as shown in Fig 1(b). The delay could be esti-
mated by searching for a peak in the cross-correlation sequence. In
Fig 1(b) the peak is at a lag of 41.88 ms (670 samples at 16 kHz).
However, this detection could be difficult because of the recording
quality and noise. To guarantee a more precise detection, we di-
vide each utterance into overlapping windows, where the window
size is a third of the utterance length and the step size for successive
windows is a tenth of the utterance length. For each step, the cross-
correlation sequence is calculated and a delay is estimated. If the
variation between the estimated delays in the windows for a given ut-
terance is too large, then the estimated delay is regarded as unreliable
and the utterance is discarded. Approximately 30% of the utterances
were discarded because of these unreliable delay estimates. The de-
lays between NF and FF channels for the reliable data ranged from
12.5 ms to 61.25 ms. This was implemented using the Skewview
tool [15]. A more detailed discussion of the time delay can be found
in [16].

2.2. Data partitions

Because of the parallel nature of the NF and FF corpora, the data
partitions are identical. For simplicity, we describe the NF partition-
ing. The training set had a dominant speaker accounting for nearly
a quarter; clearly this would skew the data generated by the resam-
pling process. On the other hand, perfect speaker balancing cannot
be achieved given that this is a corpus of spontaneous speech. There
is, therefore, a trade-off between “the amount of data” and an “egal-
itarian distribution of speakers”. The resulting NF training and test
sets consists of about 20 hours and 1 hour respectively and their
statistics are reported in Table 1.

Table 1. Training and test statistics for NF and FF.
Dataset Speakers Utterances Time
Training 26 23729 20.4 (hrs)

Test 18 1063 57.9 (mins)

3. MODELS AND EXPERIMENTAL SETUP

We use version 3.4 of the HTK toolkit [17] for the front-end, acous-
tic model training, and decoding. In particular, we use the stan-
dard HTK front-end to produce a 39 dimensional feature vector ev-
ery 10 ms: 13 Mel-cepstral coefficients, including energy, plus their
first and second differences. The cepstral coefficients are mean-
normalized at the utterance level. We use HDecode for decoding
with a wide search beam (300) to avoid search errors. To evaluate
recognition accuracy the reference and the decoded utterances are
text normalized before the NIST tool sclite is used to obtain word
error rate (WER). The remainder of this section discusses the recog-
nition acoustic models, dictionary, and language model.

3.1. Near-field acoustic models

The NF acoustic models use cross-word triphones and are estimated
using maximum likelihood. Except for silence, each triphone is
modeled using a three-state HMM with a discrete linear transition
structure that prevents skipping. The output distribution for each
HMM state is a single, multivariate Gaussian with diagonal covari-
ance. While signicantly better performance can be achieved with
mixtures of more components, the simplicity of a single component
is preferable for our analysis; it also highlights the performance dif-
ferences between our experiments. Maximum likelihood training
roughly follows the HTK tutorial: monophone models are estimated
from a “flat start”, duplicated to form triphone models, clustered to
2500 states and re-estimated.

3.2. Far-field acoustic models: via single-pass retraining

Instead of building the FF acoustic models from a flat start, we ex-
ploit the parallel nature of the NF and FF training sets to build the
FF models using single-pass retraining from the final NF models and
the FF data. Single-pass retraining is a form of EM, which is sup-
ported by HTK, where, in our case, the E-step is performed using the
NF models and data, while the M-step and model updates use the FF
data. We only update the means and variances of the FF models, so
the result is a parallel set of NF and FF acoustic models that share
the same state-tying but the (unknown) transformation between the
NF and FF means and variances is determined by the frame-level
transformation between the parallel NF and FF acoustic data.
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With time aligning, the datasets and the models are completely parallel in the near- field 
and the far-field cases so that the errors in the mismatched case can be attributed solely to 
either the features or the models.  
        For the alignment of training data, we created alignments using the near-field model 
on the near- field data, and used this alignment to generate pseudo, far-field test data (for 
the mismatched case). This avoids the differences in the alignments created by the near-
field and the far-field model and lead to the parallel creation of pseudo test sets.  
 

4.3.2. Data Partition 

Because of the parallel nature of the near-field and far-field corpora, the data partitions 
are identical. For simplicity, we describe the near-field partitioning. The training set had a 
dominant speaker accounting for nearly a quarter; clearly this would skew the data 
generated by the resampling process. On the other hand, perfect speaker balancing cannot 
be achieved given that this is a corpus of spontaneous speech. There is, therefore, a trade-
off between “the amount of data” and an “egalitarian distribution of speakers”. The 
resulting near-field training and test sets consist of about 20 hours and 1 hour respectively 
and their statistics are reported in Table 4.1. 

ICSI meeting 
corpus 

Training Test 

Speakers 26 18 

Utterances 23729 1063 

Duration 20.4 (hours) 57.9 (min) 

Table 4.1, Training and test statistics for both near-field and far-field set. 

 

4.4. Acoustic Models and Features 

The near-field acoustic models use cross-word triphones and are estimated using 
maximum likelihood. Except for silence, each triphone is modeled using a three-state 
HMM with a discrete linear transition structure that prevents skipping. The output 
distribution for each HMM state is a single, multivariate Gaussian with diagonal covari- 
ance. While signicantly better performance can be achieved with mixtures of more 
components, the simplicity of a single component is preferable for our analysis; it also 
highlights the performance differences between our experiments. Maximum likelihood 
training roughly follows the HTK tutorial: monophone models are estimated from a “flat 
start”, duplicated to form triphone models, clustered to 2500 states and re-estimated. 
        Instead of building the far-field acoustic models from a flat start, we exploited the 
parallel nature of the near-field and far-field training sets to build the far-field models 
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using single-pass retraining from the final near-field models and the far-field data. 
Single-pass retraining is a form of EM where, in our case, the E-step was performed 
using the near-field models and data, while the M-step and model updates used the far-
field data. We only updated the means and variances of the far-field models, so the result 
was a parallel set of near-field and far-field acoustic models that share the same state-
tying. But the (unknown) transformation between the near-field and far-field means and 
variances is determined by the frame-level transformation between the parallel near-field 
and far-field acoustic data. 
        Since we were using relatively simple acoustic models– single mixture component 
per state and 2500 tied states–and that the recognition task is much more complex 
compared to [22], we used a powerful language model (LM) to keep the error rate 
manageable. In fact, our initial experiments using a weaker LM derived from the training 
set resulted in WERs as high as 64% in the matched near-field condition. 
        We used a LM [71] that was trained at SRI by interpolating a number of source 
LMs; these consisted of webtext and the transcripts of the following corpora: 
Switchboard, meetings (CMU, ICSI, and NIST), Fisher, Hub4-LM96, and TDT4. We 
then removed words not in the training dictionary from the trigram LM, and renormalized 
it. The perplexity of this meeting room LM is around 70 on our test set. To avoid out-of-
vocabulary issues, all test utterances containing a word not present in the LM are 
removed. We used the SRI pronunciation dictionary; it uses two extra phones in 
comparison with the CMU phone set–“puh” and “pum”– for hesitations. 
        The features explored here are (1) MFCC (2) DNN features based on MFCC input 
and (3) DNN features based on robust representation (means were normalized per 
utterance before HMM training and testing for all the features). We are primarily 
focusing on the actual improvement of the two DNN features comparing to 39-d MFCC 
baseline.  
       For MFCC based DNN features, again we exploited a 4-hidden layer neural network 
structure with a bottleneck layer in the 3rd hidden layer. The bottleneck size was set to 25 
while other hidden layers each consisting of 1600 neurons so that the total number of 
parameters is about 3M. The network input is 9 successive frames of MFCC. The output 
layer consisted of 43 context-independent phonetic targets. Restricted Boltzman machine 
(RBM) pre-training is used to initialize the parameters of the neural network. For back-
propagation following the pre-training, we began with a learning rate of .008 and reduced 
the learning rate by factors of two once cross-validation indicated limited progress with 
each learning rate, and continued until cross-validation showed essentially no further 
progress. The final feature was taken from the 25-d bottleneck feature augmented with 
39-d MFCCs, which is called MFCC-DNN as used in Chapter 3. 
 

4.5. Results and Discussions  

In addition to the original test data, we created near-field and far-field test data by 
simulation, resampling frames and phones. The corresponding recognition models were 
used for decoding. All simulation/resampling results reported the average results of 5 
repeated experiments. The results of matched near-field and far-field experiments are 
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discussed in section 4.5.1 and 4.5.2 respectively. The experiments of near-field training 
and far-field testing experiments are reported in section 4.5.3. 
 

4.5.1. Analysis of Matched Near-Field Results 

Previous work on MFCC [22] with matched training/test has shown that recognition 
errors are dominated by incorrect independent assumptions. The observation still holds 
for deep neural network features as shown in Table 4.1. In particular, WERs are 
extremely low for simulated and frame-resampled data where the independent 
assumption is satisfied by data. By comparing MFCC to DNN features, we observe that 
deep neural network trained features (both MFCC-DNN and PNS-Gabor DNN) 
consistently outperform MFCC. For simulated data, transforming MFCC with deep 
neural network reduces recognition errors by 73%. The improvement decreases as we 
introduce dependency (at phone-level). Thus, dependency in real data degrades 
improvement of deep neural network feature in HMM framework. 
 

 
Table 4.2, Results for matched near-field data 

 

4.5.2. Analysis of Matched Far-Field Results 

For matched far-field data, deep neural network trained features keep providing 
significant improvement as shown in Table 4.3. Thus, acoustic feature can be learned 
using deep neural networks even when training data is noisy. Also, since the difference of 
PNSGB-DNN and MFCC-DNN is negligible, it suggests that signal processing 
techniques prior to neural network training didn’t contribute to extra improvement for 
matched far-field data.  
 

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 1.5 0.4 73% 0.5 67%

frame 2.4 0.7 71% 0.8 67%
phone 28.6 12.7 56% 15.3 47%
original 44.7 33.9 24% 36.5 18%

(2) MFCC-DNN (3) PNS-Gabor DNN
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Table 4.3, Results for matched far-field data 

 

4.5.3. Analysis of Mismatched Case 

For the mismatched case, we observe that MFCC-DNN and MFCC have nearly identical 
and poor performance. As the diagnostic experiments reported in Table 4.4, recognition 
errors from observation mismatch of MFCC-DNN is more pronounced for simulated and 
frame-resampled data where the WERs are 70.9% and 76.9% respectively. For simulated 
data, applying DNN transformation trained from near-field data to far-field data increase 
65% WER relative to MFCC. The result indicates that observation mismatch is a serious 
issue for MFCC-DNN. While MFCC-DNN is corrupted in the presence of serious 
mismatch, DNN based on PNS-Gabor performs significantly better than MFCC or 
MFCC-DNN for all the experiments in Table 4. For simulation, PNS-Gabor DNN 
reduced 43% WER relative to MFCC and 65% relative to MFCC-DNN. The results 
suggest that robust signal processing prior to DNN training is the key step for decreasing 
WER by avoiding specialization and generating more invariant features. 
 

 
Table 4.4, Results for mismatched scenario 

 
        From our experiments, DNN features can effectively reduce recognition errors when 
training and test sets are matched whether they are both clean or both noisy; however, the 
transformation is not generalized enough to apply to realistic data with serious mismatch. 
Thus, robust signal processing is important for deep neural network feature extraction. 
 

 

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 1.8 0.5 72% 0.5 72%

frame 3.4 1.2 65% 1 71%
phone 45.5 33.5 26% 33.1 27%

original 71.4 62.8 12% 62.9 12%

(2) MFCC-DNN (3) PNS-Gabor DNN

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 43.0 70.9 -65% 24.5 43%

frame 59.9 76.9 -28% 43.4 28%
phone 80.6 80.8 0% 55.9 31%

original 84.7 83.6 1% 70.1 17%

(2) MFCC-DNN (3) PNS-Gabor DNN
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4.5.4. Analysis of Neural Network Weights  

Given the robustness of PNS-Gabor DNN, we were curious about whether the weights 
based on PNS-Gabor feature space are indeed more invariant to different data. To 
accomplish this, we analyzed the weights between networks trained from near-field and 
far-field data using both MFCC and PNS-Gabor input. It is infeasible to compare the 
parameters of two nets, so we trained another net where we initialized it using a net 
trained from near-field data and then trained the net further using far-field data. Thus, the 
net starts at near-field trained weights and then eventually adapted to far-field data. The 
experiments allow us to compare the weights moving from one to another data. We 
conduct the experiments for both MFCC and PNS-Gabor input. Applying the adapted 
nets in the mismatched case, WER of MFCC-DNN was significantly decreased from 
83.6% to 65.8% and it was decreased from 70.1% to 65.3% for PNS-Gabor DNN. Figure 
4.7 shows the weights for the first hidden layer using MFCC (4.7a) and PNS-Gabor (4.7b) 
input where each data point consists of two variables: initial weight (X-axis) and the final 
adapted weight (Y-axis). We observe that weight adaption is more evident for MFCC 
input and the deviation for PNS-Gabor DNN is relative small. The root mean square 
deviation between initial weights and final weights for MFCC-DNN is 0.25 and 0.12 for 
PNS-Gabor DNN. Thus, the net based on PNS-Gabor is indeed more invariant for 
different data. In particular, Figure 4.8 shows the initial and final weights learned by two 
hidden nodes of the first hidden layer for 9 frames of a MFCC (C1) and a PNS-Gabor 
input. The examples illustrate greater insensitivity to different data for the DNN 
transformation using PNS-Gabor input. 
 
 

 
Figure 4.7, Initial weights and final weights of first hidden layer for MFCC input (a) and 

PNS-Gabor input (b) 
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Figure 4.8.  Initial weight (black line) and final weight (red dashed line) learned from 2 
hidden nodes for 9 frames of a MFCC (C1) (above: (a) and (b)) and a PNS-Gabor input 

(below: (c) and (d)) 

        Similar characteristic can be observed for the following layers in our experiments.  
As both PNS-Gabor input and the following neural network transformation is more 
invariant, PSN-Gabor DNN is better than MFCC-DNN in a mismatched scenario. 
 
 

4.6. Summary 

In this chapter, we exploited the method of simulation and resampling to investigate the 
success and failings of deep neural network features in different train/test scenarios. 
Diagnosis shows that DNN-based feature representation is indeed superior to the 
corresponding MFCC in both two matched scenarios where the incorrect independent 
assumption of HMM dominates recognition errors. However, evidence from simulation 
and resampling experiments reveals that the MFCC-DNN feature is easily specialized to 
training data and the observation mismatch dominates the source of recognition errors in 
mismatched scenario. On the other hand, DNN-based features that use PNS-Gabor, 
perform nearly identically to MFCC-DNN features in the matched scenarios and much 
better than MFCCs and MFCC-DNNs in mismatched scenario. Thus, modeling and 
robustness are the key steps to improve ASR performance using deep neural network. 
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Chapter 5  
 
Feature Designs for Speaking Rate 
Variability 
 
 
 
In Chapter 3 and 4, we describe the robustness of word recognition in the presence of 
noise with the use of a Gabor model. Here, we focus on modeling human perception that 
is robust to variability of speaking rate. To quantitatively measure speaking rate 
robustness, we used UCLA CVC (consonant-vowel-consonant) stimuli, which are uttered 
quickly and more slowly, and conducted perceptual tests for clean and noisy versions. By 
conducting tests on the data, we investigated if inclusion of Gabor-filtered spectrograms 
with lower or higher temporal modulations could be used to correlate better with human 
perception. Our results in this chapter confirmed an improvement in this correlation, 
while also improving the accuracy.  
        Unlike our previous large vocabulary continuous speech recognition results, our 
source material was much simpler (CVC syllables, recorded at UCLA), so that we could 
observe the distribution of accuracies in order to derive correlations with human 
perception. Similar to the analytical experiments in Chapter 4, the specific goal of these 
experiments was not to improve ASR, but rather to observe whether these specific 
modifications of a standard ASR signal representation would improve the correlations 
with measures of hearing. Again, we focus on the physiologically inspired 
representations using a Gabor approach to modulation processing as described in Chapter 
3. 
 
 

5.1. CVC Data Collection 

In this section, we describe the collection of the UCLA CVC stimuli1. A set of 36 CVC 
phonetically balanced syllables that incorporated 13 consonants and 3 vowels was 
selected. Recordings took place at UCLA using an AKG C-410 head mounted 
microphone in a soundproof room, with two speakers (one male and one female). Each 
CVC was repeated twice by each speaker. Babble noise from the Noisex database [73] 
was added to the CVCs to prepare noisy stimuli. The SNR was calculated by using the 
average SNR level over the speech-only segment, which was then used to determine the 

                                                        
1 The data collection is done by Anirudh Raju, Abeer Alwan and Jody Kreiman at UCLA Speech 
Processing and Auditory Perception laboratory 
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noise power to be added.  Each stimulus was prefixed with 100 ms of pure noise (at the 
noisy power calculated in the previous step) in order to enable listeners to adapt to the 
noise environment. Stimuli were generated corresponding to 6 conditions: 3 SNRs (quiet, 
5 dB, 0 dB) x 2 speaking rates (slow, fast). Given the two speakers and the two 
repetitions, this yielded (36x2x2x2x3) = 864 utterances for both perceptual and ASR 
experiments. 
        Listening experiments were conducted with 52 subjects, in a soundproof booth at 
UCLA using the stimuli described above. The subjects would hear the set of 864 CVC 
stimuli (36 syllables x 2 speaker x 2 speaking rates x 3 noise levels x 2 repetitions) over 
two sessions of one hour each, corresponding to 432 stimuli per session. The stimuli were 
played back to back, and the subjects were given a 3 second window between the stimuli 
in order to respond. They were asked to repeat back the stimulus that they heard. A short 
break of 10 seconds was given after every 20 stimuli. Two phonetically trained linguists 
transcribed these manually. The consonant accuracies from the subjects are reported in 
Table 5.1.  
        For analysis of the perceptual data, effects were observed for each of the generation 
factors, but for the purpose of this report, the focus will be on the speaking rate 
characteristics over the range of consonants.  
 

Human clean SNR5 SNR0 
overall 95.0 71.4 56.5 
slow 95.5 74.7 60.0 
fast 94.4 68.1 53.0 

Table 5.1, Consonant accuracy from the subjects for clean and noisy condition  

 

 

Figure 5.1, Accuracy for each consonant in clean condition  

 

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

p" t" k" b" d" g" s" z" h" m" n" l" r"

overall"

slow"

fast"



CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 54 

5.2. CVC Recognizer 

For the ASR experiments, we used a neural network to generate features, and 
HMM/GMM tandem system for the modeling of the CVCs. Given the limited amount of 
CVC data, we primarily used 51 hours of read Wall Street Journal speech (22,092 
utterances) for training of both the neural network feature generator and the GMM/HMM 
acoustic models. Each triphone is modeled using a 3-state HMM. The resulting triphone 
states are clustered using a decision tree to 5000 tied states where the output distribution 
for each tied state is modeled with 32 mixtures of multivariate Gaussian with diagonal 
covariance. Given the properties of the artificial data, we built the constraint word net as 
shown in Fig. 5.2 to reduce the searching space while decoding. 

 

Figure 5.2, Word net for decoding CVC data  

        Given that the WSJ data is very different in character from CVC syllables, we 
further adapted the neural networks to 471 of the CVC utterances (unused for other 
testing). Testing was then done on an independent set of 864 CVC utterances. Results for 
recognition of the different consonants were then compared to the UCLA perceptual 
results for the different front-end models that were considered, and for differing noise 
levels and speaking rates.  

 

Figure 5.3, Classification system for CVC data 
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5.3. Multi-Stream Processing for Gabor Features 
 
5.3.1. Temporal Division 

Unlike the single Gabor feature stream processing used in the previous chapters, we split 
the filter outputs into multiple feature streams based on the range of temporal modulation. 
The temporal division allowed us to extract feature streams of slow or fast-modulated 
spectrum for the purpose of ASR for the given speaking rates. For our design, 7 ranges of 
temporal modulations, including 4 in the range of from 0 to 6.2 Hz (centered at 0, 2.4, 3.9, 
and 6.2 Hz) and 3 from 9.9 to 25 Hz (centered at 9.9, 15.7, and 25 Hz) were used where 
the former set is called low modulation streams while the latter set is referred as high 
modulation streams. For each feature stream, there were 9 spectral modulations ranging 
from -0.25 to 0.25 cycles per channel leading to a total of 125 inputs (as shown in Table 1 
below). The temporal windows of high modulation filters range from 17 to 26 frames. 
The temporal windows for low modulation filters range from 28 to 99 frames.  
        For the high modulation stream, “skinny” filters capture the fast time-varying part of 
the spectrum. For the low modulation stream, “fat” filters capture the coarse 
representation of speech dynamic. For each of the two streams, a variety of “tall” and 
“short” filters corresponding to different spectral modulation frequencies generate 
features capturing different representations of spectral dynamics. 
 
 

Low 
modulation 
frequency (Hz) 

0, 2.4, 3.9, 
6.2 

High 
modulation 
frequency (Hz) 

9.9, 15.7, 
25 

 
Table 5.2: Temporal division of Gabor feature streams 

 
Spectral 
modulation 
frequency 
(cycle/channel) 

Number of 
outputs 

0.25, -0.25 40 
0.12, -0.12 13 
0.06, -0.06 5 
0.03, -0.03 3 
0 3 

 
Table 5.3: Number of features for each spectral modulation frequency 
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5.3.2. Combination of Temporal Modulation Streams 

The output of each of these temporal modulation streams is processed by a neural 
network that has been trained to discriminate between phonetic classes. The neural 
network outputs can then be interpreted as posterior probabilities for these classes and 
combined in a controlled fashion.  
        Previously, several neural network fusions approaches were studied including the 
arithmetic, geometric, and harmonic means of the posterior outputs. Beyond these static 
methods, we applied the dynamic weighting method where the weights that are computed 
dynamically at each frame in order to take advantage of the properties of the different 
feature streams for each new acoustic situation. Here we used an inverse entropy 
combination [77]. For each stream s, an entropy of the output posteriors at frame i, 
entropys,i can be calculated as:  

 
 (5.1) 

 
When a posterior provide an accurate probability estimation of a given phone, the entropy 
is small. Ideally, target distribution consists of a 1.0 for a phone and 0.0 for the others. 
Thus, inverse entropy can be used as an indicator to approximate the reliability of the 
estimation. We use inverse entropy weighting to highlight the informative streams and 
deny the others. The weight for stream s at frame i, ws,i , is calculated as  

 

     (5.2) 

 
        As is typical in tandem processing, the weighed posterior phone probabilities are 
further processed by logarithm and principle component analysis (PCA) where the 
logarithm transformation makes the distribution more Gaussian like while PCA performs 
de-correlation and dimension reduction for diagonal Gaussian distribution. In the 
following experiments, we combined low, high or all temporal modulation streams to test 
CVC syllables uttered in slow and high speaking rates as shown in Fig. 5.4. The results 
confirmed the intuition in our feature design where high/low modulated features prefer a 
rapid/slow speaking rate respectively. 

entropys,i = ps (cj | oi )
j
∑ log p(cj | oi )

ws,i =
1/ entropys,i
1/ entropys ',i

s '
∑
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Figure 5.4, Combination of neural network outputs using inverse entropy. Low 

temporal modulation streams (red) and high temporal modulation streams are split. 
 

5.4. Results and Discussions 

In the tandem processing, neural networks are trained to generate features for a 
GMM/HMM system. However, we used only a single-hidden-layer MLP rather than 
deeper network to avoid overfitting given the difference between the large WSJ set and 
the small CVC syllable set. For the MLP inputs, we compare three different features. For 
the baseline system, MFCCs, which model some basic properties of hearing is used. For 
the Gabor features, we applied both the gammatone and the power normalized spectrum 
processed with Gabor filters. MFCCs are appended to MLP outputs as conventional 
fashion. 
        Here we focus on the classification accuracies in clean conditions. The results of 
noisy conditions show a similar trend but much worse accuracies because of the limited 
amount of training data. Table 5.4, 5.5 and 5.6 demonstrate the results of consonant 
accuracies and the correlations with human perception for overall (288 utterances), slow 
(144 utterances) and rapid (144 utterances) speech. The results show that the PN-Gabor 
MLP performs better than MFCC-MLP for both consonant accuracy and correlation with 
perception in all conditions.  
 
Front end method Machine consonant 

accuracy in clean condition 
Correlation with perception in 
clean condition 

MFCC + MFCC-MLP 69.5% 0.91 
MFCC + GT-Gabor-MLP 67.0% 0.89 
MFCC + PN-Gabor-MLP 73.4% 0.93 
 

Table 5.4, Front end effects for clean CVCs, all speech 
 

GT/PN&
spectrogram&

low&mod.&&

high&mod.&&

Filters:&25Hz&

Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&

Neural&network&Filters:&25Hz& Neural&network&Filters:&25Hz& Neural&network&
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Front end method Machine consonant 

accuracy in clean, slow 
speech 

Correlation with perception in 
clean, slow speech 

MFCC + MFCC-MLP 68.4% 0.88 
MFCC + GT-Gabor-MLP 68.9% 0.87 
MFCC + PN-Gabor-MLP 74.9% 0.92 
 

Table 5.5, Front end effects for clean CVCs, slow speech 
 

 
Front end method Machine consonant 

accuracy in clean, rapid 
speech 

Correlation with perception in 
clean, rapid speech 

MFCC + MFCC-MLP 70.5% 0.91 
MFCC + GT-Gabor-MLP 65.1% 0.87 
MFCC + PN-Gabor-MLP 71.9% 0.92 
 
 

Table 5.6, Front end effects for clean CVCs, rapid speech 
 

 
Testing condition Machine consonant 

accuracy, 
GT-Gabor MLP 
low modulations 
only 

Machine consonant 
accuracy, 
GT-Gabor MLP high 
modulations only 

Clean, rapid speech 51.1% 70.3% 
Clean, slow speech 63.3% 67.2% 
Clean, all speech 57.2% 68.8% 

 
Table 5.7: Comparison between using low modulation filters and only the high ones for slow and 
rapid speech, using the GT-Gabor MLP front end, consonant accuracies. 
 
 
Testing condition Machine correlation with 

perception, 
GT-Gabor MLP low 
modulations only 

Machine correlation with 
perception, 
GT-Gabor MLP high 
modulations only 

Clean, rapid speech 0.68 0.88 
Clean, slow speech 0.81 0.81 
Clean, all speech 0.74 0.87 
 
Table 5.8: Comparison between using low modulation filters and only the high ones for slow and 
rapid speech, using the GT-Gabor MLP front end, correlation with perception. 
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To further investigate the effect of modulation design on recognition performance, we 
split GT-Gabor streams into low (0.0-6.2 Hz) and high (9.9-25 Hz) temporal modulation 
features and conducted the same experiments for both cases as well.  Here, we selected 
GT-Gabor for the analyses since the medium-duration spectrum subtraction step in the 
PN spectrum could smear the results. For the cases of low or high modulations, the total 
number of trained parameters was significantly lower, since only some of the MLPs were 
used and the number of hidden units was kept constant. 
        In general, the high modulations are better in all conditions, as highlighted by Tables 
5.7 and 5.8. The behavior could be due to the fact that MFCC features to which the 
modulation features are appended are essentially broad in modulation range, and so 
emphasizing the higher modulations may help to boost an important region. While high 
modulations are consistently better than low modulations, it appears that Gabor filters 
corresponding to low temporal modulation frequencies gave both higher consonantal 
phoneme accuracy and better correlations with human consonantal phoneme accuracies 
for slower speech than they did for rapid speech. Similarly, higher temporal modulation 
frequencies corresponded to better phoneme recognition for rapid speech than for slow 
speech, and also had a better correlation with the perceptual phoneme accuracies. Also, 
we observe that high modulations alone (70.3%) lead to better accuracies than the entire 
feature streams (65.1%) for rapid speech. Therefore, neural networks cannot handle the 
reduction of low modulations automatically without some design effect to detect 
speaking rate.  
 

5.5. Summary 

For most of the tests, any strategy that improved consonant accuracy also yielded a better 
correlation with human performance. However, all of the measured ASR accuracies were 
far lower than the human perceptual case. As we had expected, the experiments show that 
low (high) temporal modulations were indeed more effective in recognizing slow (rapid) 
speech. Also, reduction of low modulations manually leads to better results for rapid 
speech that were not achieved by a neural network automatically without some design 
effect to detect speaking rate. 
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Chapter 6  
 
Phone Recognition for Mixed Speech 
Signal Using Human Cortical Signal 
 
 
 
In addition to the robustness to noise and speaking rate variability, another unique and 
defining property of human speech perception is the ability to robustly process speech 
sounds in the context of interference-filled acoustic conditions. A common condition is 
the multi-speaker environment, where selective listening is required. Humans are very 
successful at understanding speech in this condition even when spatial information is 
limited or missing, which is called the “cocktail party” effect. For example, videos often 
include background music mixed with spoken language, and yet the speech is 
understandable by the viewer.  
        In this Chapter, we study cortical signals involved in auditory source separation for 
mixed single-channel speech signals, using neuroelectric responses directly measured 
from the surface of the human cortex using a 256-electrode array, giving a view of 
cortical sound processing of unprecedented detail and flexibility. While human beings 
can attend to a single sound source within a mixed signal from multiple sources, the 
automatic speech recognition without the benefit of effective blind source separation is 
quite poor at this task. Here we report on the analysis of human cortical signals to 
demonstrate the relative robustness of these signals to the mixed signal phenomenon, 
which is contrasted to a deep neural network-based ASR system. 
 
 

6.1. Neural Data 

The acoustic and neural data used in this study were previously generated in sessions 
with surgery patients as described in [44]. The patients had customized high-density 
electrode arrays implanted subdurally that are sometimes necessary for the surgical 
management of patients with epilepsy refractory to medications [10] (see Figure 6.1). 
They participated in behavioral testing using stimuli from the Coordinate Response 
Measure (CRM) corpus [7]. The corpus consists of phrases of the form “Ready (call sign) 
go to (color) (number) now” spoken with different combinations of call signs (“Tiger” or 
“Ringo”), 3 colors (“Blue”, “Green”, “Red”), 3 numbers (“Two”, “Five”, Seven”) and 
two speakers. The patients were instructed to report the color and number associated with 
a call sign (e.g. “Tiger”); however, they did not know a priori which speaker will be the 
target in each trial. Consequently, subjects are required to attend to both speakers at the 
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beginning of the mixture until they heard the target call sign and then attended to the 
corresponding speaker. At the end of each experiment block, the patients had responded 
to the same 28 sound mixtures while attending to both speakers. This experimental design 
allowed us to determine the effect of attention on neural responses, while controlling for 
identical acoustic stimulus conditions (i.e., hearing the same speaker mixture, while 
attending to only one or the other voice). For the purposes of this study, we have been 
working with data collected from three subjects, but since neural responses are highly 
individual, all the results reported here are from a single individual. 

 

Figure 6.1: MRI reconstruction of subject's cortex, with electrocorticogram (ECoG) electrodes 
(16x16 grid, 4 mm spacing) indicated by dots. The red and yellow regions (temporal lobe) are 

expected to contribute most to speech processing. 

        Given the extremely modest amount of data (e.g., 3115 phones) from the CRM 
experiments, we also used a subset of TIMIT to augment the acoustic training set. As 
described below, we also used a jackknifing technique [19] to make better use of the 
limited amount of data. 

 

6.2. Neural Feature Extraction 

In this section, we describe the methods to exploit a good representation from raw human 
cortical signals. While the usual signal representations for phone or speech recognition 
are acoustic features, we also attempt to decode the phone sequence directly from neural 
features 2  that serves as a suitably preprocessed input to the recognizer. Fig. 6.2 
demonstrates an example of raw cortical signal from one electrode. 

                                                        
2 The neural feature extraction and dimension reduction described in 6.2 and 6.3 are done by Erik 
Edwards from UCSF  

1. Introduction 

We have recently been studying the cortical mechanisms 
involved in auditory source separation for mixed single-
channel speech signals, using neuroelectric responses directly 
measured from the surface of the human cortex using a 256-
electrode array, giving a view of cortical sound processing of 
unprecedented detail and flexibility. This work has dual goals: 
(1) to better understand these neural mechanisms in humans, 
and (2) to use this new understanding to help us to design 
better artificial systems for the separation of mixed signals 
(e.g., to voices), with the ultimate goal of making speech 
recognition systems more robust. In both cases, the effort has 
built on the earlier work reported in [1], in which the 
spectrotemporal representation of attended speech was 
reconstructed. In the newer work, our goal is to design a 
CASA (computational auditory scene analysis) system with 
insights from the analysis of the human neural data. For this 
document, however, we are reporting an initial result in which 
we have observed that signals collected from the surface of 
the human cortex (specifically in the area called the Superior 
Temporal Gyrus, or STG) can be processed to classify phones 
with similar error rates for both single and mixed single cases. 
The rest of this paper describes the experiment, interprets the 
results, and discusses implications for future work.  

 

 
Figure 1: MRI reconstruction of subject's cortex, with 
electrocorticogram (ECoG) electrodes (16x16 grid, 4 mm 
spacing) indicated by dots. The red and yellow regions 
(temporal lobe) are expected to contribute most to speech 
processing. 
 
 

2. Experimental Methods 

2.1. Data 

The acoustic and neural data used in this study were 
previously generated in sessions with surgery patients as 
described in [1]. The patients  had customized high-density 
electrode arrays implanted subdurally that are sometimes 
necessary for the surgical management of patients with 
epilepsy refractory to medications [2] (see Figure 1). They 
participated in behavioral testing using stimuli from the 
Coordinate Response Measure (CRM) corpus [3]. The corpus 
consists of phrases of the form “Ready (call sign) go to (color) 
(number) now” spoken with different combinations of call 
signs (“Tiger” or “Ringo”), 3 colors (“Blue”, “Green”, “Red”), 
3 numbers (“Two”, “Five”, Seven”) and two speakers. The 
patients are instructed to report the color and number 

associated with a call sign (e.g. “Tiger”); however, they do not 
know a priori which speaker will be the target in each trial. 
Consequently, subjects are required to attend to both speakers 
at the beginning of mixture until they hear the target call sign 
and then attend to the corresponding speaker.  At the end of 
each experiment block, the patients have responded to the 
same 28 sound mixtures while attending to both speakers. This 
experimental design allows us to determine the effect of 
attention on neural responses, while controlling for identical 
acoustic stimulus conditions (i.e., hearing the same speaker 
mixture, while attending to only one or the other voice). For 
the purposes of this study, we have been working with data 
collected from three subjects, but since neural responses are 
highly individual, all the results reported here are from a single 
individual. 
       Given the extremely modest amount of data (e.g., 3115 
phones) from the CRM experiments, we also used of a subset 
of TIMIT to augment the acoustic training set. As described 
below, we also used a jackknifing technique [4] to make better 
use of the limited amount of data. 
 

2.2. Feature extraction 

2.2.1 Acoustic features  

For the purposes of this study, we only used un-enhanced 
MFCCs. We used the Kaldi front-end [5] to produce a 39 
dimensional feature vector every 10 ms, which converted each 
25 ms signal frame into 13 Mel-cepstral coefficients, including 
energy, plus their first and second differences. 

2.2.2 Neural features  

While the usual signal representations for phone or speech 
recognition are acoustic features, we also attempt to decode 
the phone sequence directly from neural features. We use the 
term feature here in the pattern recognition sense of any 
suitably preprocessed input to the recognizer. 
The question is how to suitably preprocess the raw, often noisy, 
broadband ECoG signal for ~optimal performance in the 
recognizer. First, some degree of noise is unavoidable in the 
present clinical context, and some epochs and electrodes are 
rejected after human examination [as in 1]. Second, although 
human brain waves have been known since 1929, and 
intraoperative recording attempted soon thereafter [6], it was 
not until relatively recently [7, 8] that it became apparent that 
the information available in the so-called “high-gamma” band 
(~70-170 Hz) carries information of far greater spatial and 
temporal specificity compared to the more traditionally-
studied frequency ranges below ~60 Hz [9]. Although we have 
not ruled out the use of lower frequencies as auxiliary 
information [e.g., 10], the present study uses only the ECoG 
data in the high-gamma range. Specifically, we sum over 
Hilbert envelopes [11] for center frequencies ~70-170 Hz [as 
in 9, 12], and downsample to 100 Hz. Analytic amplitudes are 
distributed ~Rayleigh and heteroscedastic [13, 14], so we 
further take the natural log to render ~Normal and to stabilize 
variance [15, 16]. 
       The end result of preprocessing is a set of ~250 high-
gamma time series, one for each retained electrode. With small 
training sets, DNNs may be prone to overfitting, so 
dimensionality reduction to 48 neural features was deemed 
necessary. We then explored several approaches to reduce 250 
single-electrode features to 48 neural features. 
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Figure 6.2, Example of raw cortical signal (left) from one electrode and the corresponding audio 
signal (right) 

      The feature generation process can be divided into preprocessing and dimension 
reduction. We started with raw cortical signal collected from 256 electrodes. Next, 256-d 
raw neural features focusing on a particular frequency band are generated. The dimension 
reduced feature was then used for hybrid HMM/DNN phone recognition system. 

 

 

Figure 6.3, Neural feature generation process 
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6.2.1. Neural Features from High-Gamma Band 

Despite advanced in neural research, the question to suitably process the raw, often noisy, 
broadband ECoG signal for optimal performance in the recognizer is still poorly 
understood. First, some degree of noise is unavoidable in the present clinical context, and 
some epochs and electrodes are rejected after human examination [as in 44]. Second, 
although human brain waves have been known since 1929, it was not until relatively 
recently [14, 15] that it became apparent that the information available in the so-called 
“high-gamma” band (~70-170 Hz) carries information of far greater spatial and temporal 
specificity compared to the more traditionally studied frequency ranges below 60 Hz [17]. 
Although we have not ruled out the use of lower frequencies as auxiliary information 
[e.g., 80], the present study uses only the ECoG data in the high-gamma range. 
Specifically, we sum over Hilbert envelopes [4] for center frequencies 70-170 Hz [as in 
17, 18], and down-sample to 100 Hz. Analytic amplitudes are Rayleigh distribution and 
heteroscedastic [3, 6], so we further take the natural log to render Normal distribution and 
to stabilize variance [60, 63]. The end result of preprocessing is a set of 256 high-gamma 
time series as shown in Fig. 6.4, one for each retained electrode.  

 

Figure 6.4, 256-d high gamma feature 
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6.2.2. Dimension Reduction 

With small training sets, DNNs may be prone to overfitting, so dimensionality reduction 
to 48 neural features was deemed necessary. We then explored several approaches to 
reduce the single-electrode features to 48 neural features. 
        The most obvious, and nearly the oldest, method of dimensionality reduction is 
spatial principal component analysis. However, the resulting components lack any 
physiological significance and also serve poorly in a pattern recognition sense. This 
problem has been known for nearly as long as spatial PCA itself [34, 43], and the most 
frequent solution has been to rotate the components so as to achieve sparsity, locality, 
clustering by similarity, or some other objective. After extensive study of available 
rotation methods, component analyses, hard and soft clustering approaches, and various 
other machine learning methods surrounding embedding and dimensionality reduction, it 
was surprising to find that the old method of varimax rotation [36, 65] performed as well 
or better than any of the several modern methods tried. This becomes less surprising 
when one considers that such rotation is the old L2-norm method to achieve sparsity 
(called “simple structure” in factor analysis), co-sparsity [20], within-cluster smoothness, 
across-cluster decorrelation, and greater physical plausibility; all of these known to be 
virtues for pattern recognition features [e.g., 26]. As an L2 method, it is also extremely 
fast. 
        Convex non-negative matrix factorization (NMF) [16] was found to slightly improve 
the results taking the varimax components as initializing input. Neither ordinary NMF 
[42], nor convex NMF without a good initialization, performed as well as varimax for our 
purposes. The requirement of a good initialization is the known drawback of NMF. 
Intuitively, convex NMF achieves the clustering objective that correlated electrodes 
should cluster together, whereas the resulting cluster time series should be as decorrelated 
as possible. 
        The final neural features used here are thus 48 convex NMF components derived 
from varimax rotation of spatial PCA analysis of 256 log-high-gamma time series (see 
Figure 6.5). 

 

Figure 6.5: Spatial weightings for 4 out of 48 of the convex NMF neural features used. These are 
examples, chosen for their loadings onto temporal lobe sites important for speech processing. 

       The most obvious, and nearly the oldest, method of 
dimensionality reduction is spatial principal component 
analysis (PCA). However, the resulting components lack any 
physiological significance and also serve poorly in a pattern 
recognition sense. This problem has been known for nearly as 
long as spatial PCA itself [17, 18], and the most frequent 
solution has been to rotate the components so as to achieve 
sparsity, locality, clustering by similarity, or some other 
objective. After extensive study of available rotation methods, 
component analyses, hard and soft clustering approaches, and 
various other machine learning methods surrounding 
embedding and dimensionality reduction, it was surprising to 
find that the old method of varimax rotation [19, 20] 
performed as well or better than any of the several modern 
methods tried. This becomes less surprising when one 
considers that such rotation is the old L2-norm method to 
achieve sparsity (called “simple structure” in factor analysis), 
co-sparsity [21], within-cluster smoothness, across-cluster 
decorrelation, and greater physical plausibility; all of these 
known to be virtues for pattern recognition features [e.g., 22]. 
As an L2 method, it is also extremely fast. 
       Convex non-negative matrix factorization (NMF) [23] 
was found to slightly improve the results taking the varimax 
components as initializing input. Neither ordinary NMF [24], 
nor convex NMF without a good initialization, performed as 
well as varimax for our purposes. The requirement of a good 
initialization is the known drawback of NMF. Intuitively, 
convex NMF achieves the clustering objective that correlated 
electrodes should cluster together, whereas the resulting 
cluster time series should be as decorrelated as possible. 
       The final neural features used here are thus 48 convex 
NMF components derived from varimax rotation of spatial 
PCA analysis of ~250 log-high-gamma time series (see Figure 
2). 
 

 
 

Figure 2: Spatial weightings for 4 out of 48 of the convex 
NMF neural features used. These are typical examples, 
chosen for their loadings onto temporal lobe sites 
important for speech processing. 

2.3. Phone recognition system 

For both neural and acoustic observations, we exploited the 
hybrid HMM/Artificial Neural Network (ANN) architecture 
[25] (more recently called HMM/DNN [26,27] when more 
than a single hidden layer is used) to model context-
independent phoneme as shown in Figure 3 where network 

outputs were used as posteriors to derive emission 
probabilities for hidden Markov models (HMMs). We used the 
Kaldi toolkit [5] for both model training and decoding, as well 
as for the ANN processing. The hybrid HMM/ANN set up was 
adapted from Kaldi recipe s5 [5]. 
       The inputs of the ANNs were obtained from splicing 39-d 
MFCCs or 48-d neural features across 17 frames, followed by 
reducing the dimension to 250 using linear discriminant 
analysis. Mean and variance normalization were performed for 
both MFCCs and neural features. The ANNs had 2 hidden 
layers (marginally “deep”), each of which consists of 1100 
tanh units. The output layer consisted of 117 context-
independent phonetic states (three states per phoneme), giving 
1.6 M parameters in total (see Figure 3). Frame-level forced 
alignment was provided by a simple context-independent 
HMM/GMM system. The ANNs were trained with stochastic 
gradient descent, starting with a learning rate of 0.015 and 
ending at 0.002. During training we decrease them by a factor 
of 1.14, except for 5 epochs at the end during which we kept 
them constant. The network was trained for a total of 20 
epochs. A biphone language model was estimated on the 
training set. 
       The acoustic recognition scenario gave a 26.9% phone 
error rate for the standard TIMIT train-test set, where 3696 
utterances were included for training and 192 utterances for 
testing. Given the constraint of ECoG neural data, we set up 
our train-test sets using only 374 utterances from TIMIT, 155 
utterances from single source CRM data and 61 utterances 
from mixed source CRM data. 
       Due to the small amount of data, we used the jackknife 
resampling process [4], splitting the set of CRM data into 5 
different train-test cuts. For each of the training sets, we 
randomly drew samples from the CRM data and augmented 
them with 374 utterances of the TIMIT set. The rest of the 
CRM sets were used for testing. This yielded 7,520 instances 
of phones for single source test sets and 3,115 instances for 
mixed source test sets. The results reported here are average 
score over the 5 different train-test sets. 
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6.3. Phone Recognition System 

For both neural and acoustic observations, we exploited the hybrid HMM/DNN. We used 
the Kaldi toolkit [61] for both model training and decoding, as well as for the DNN 
processing. The hybrid HMM/ANN set up was adapted from Kaldi recipe s5. 
        The inputs of the DNNs were obtained from splicing 39-d MFCCs or 48-d neural 
features across 17 frames, followed by reducing the dimension to 250 using linear 
discriminant analysis. Mean and variance normalization were performed for both MFCCs 
and neural features. The DNNs had 2 hidden layers, each of which consists of 1100 tanh 
units. The output layer consisted of 117 context-independent phonetic states (three states 
per phoneme), giving 1.6 M parameters in total. Frame-level forced alignment was 
provided by a simple context-independent HMM/GMM system. The DNNs were trained 
with stochastic gradient descent, starting with a learning rate of 0.015 and ending at 0.002. 
        During training we decreased them by a factor of 1.14, except for 5 epochs at the 
end during which we kept them constant. The network was trained for a total of 20 
epochs. A biphone language model was estimated on the training set. 
        The acoustic recognition scenario gave a 26.9% phone error rate for the standard 
TIMIT train-test set, where 3696 utterances were included for training and 192 utterances 
for testing. Given the constraint of ECoG neural data, we set up our train-test sets using 
only 374 utterances from TIMIT, 155 utterances from single source CRM data and 61 
utterances from mixed source CRM data. 
        Due to the small amount of data, we used the jackknife resampling process [19], 
splitting the set of CRM data into 5 different train-test cuts. For each of the training sets, 
we randomly drew samples from the CRM data and augmented them with 374 utterances 
of the TIMIT set. The rest of the CRM sets were used for testing. This yielded 7,520 
instances of phones for single source test sets and 3,115 instances for mixed source test 
sets. The results reported here are average score over the 5 different train-test sets. 
 

6.4. Results 

Table 6.1 shows that the phone error rate for the acoustic features, while far better than 
that achieved with our neural signals for the single voice case, degrades greatly for the 
mixed signal. For the neural features, the error rates overall are quite high, but there is 
very little additional degradation when the subject is motivated to attend to the desired 
voice.  
        The primary hypothesis being tested was, given specific neural signals, and given 
the chosen features extracted from these signals, that the phone recognition error rates 
would be affected far less for the neural signals than for the acoustic signals. While it is a 
common experience that humans do better in the cocktail party scenario than our current 
machine methods, what was being tested here was the utility of the specific brain signals 
that we were measuring to show this phenomenon. Furthermore, the experimentation 
with feature extraction methods given the raw data had begun to show us what aspects of 
the STG neural signals were most effective for phone recognition. 
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 Acoustic 
features 

Neural features 

Single source 48.6% 68.2% 
Mixed source 73.2% 70.5% 

 

Table 6.1: Phone error rate for complete CRM utterances 

It must also be recognized that we were not yet attempting to build sophisticated systems 
for this purpose; we were making no use of standard enhancement or blind source 
separation algorithms. Consequently all error rates are quite high. Nonetheless, the 
observed effects are quite striking: the neural features yield nearly the same error rates for 
single and mixed sources, when the acoustic features are much less informative for the 
mixed source case. 
        As shown in tables 6.2 and 6.3, we can observe similar trends for the phone error 
rates in target words (color and number, respectively). Phone error rates for acoustic 
features rise significantly for the mixed signal case, but are nearly the same using neural 
features.  
 

 Acoustic 
features 

Neural features 

Single source 54.0% 72.0% 
Mixed source 75.2% 73.1% 

 

Table 6.2: Phone error rates within the color target word (red, green, or blue)  

 
 Acoustic 

features 
Neural features 

Single source 56.1% 73.5% 
Mixed source 79.9% 73.9% 

Table 6.3: Phone error rates within the number target word (two, five, or seven)  

 
 

6.5. Summary 
 

The work reported here confirmed that the STG can provide meaningful information for 
phonetic recognition, at least for the task used, that can be relatively independent of 
interfering voices that the subject is not paying attention to. This is in contrast to the 
observed increases in error rate for phone recognition given such interfering signals.  
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Chapter 7  
 
Conclusion 
 
 

7.1. Contributions 

In this thesis, we applied Gabor filter modeling some properties of “natural” human 
auditory processing. This is instrumental in improving generalization to unanticipated 
deviations from what was seen in training. We demonstrated that integration of Gabor 
models as DNN input or convolutional kernels can improve accuracy on speech 
recognition for unanticipated types of input including noise, channel distortion, 
reverberation and speaking rate variation.  
        In Chapter 3, we propose the features that integrate Gabor filters and a fully 
connected DNN or CNN. We first employed a more robust PN spectrum incorporating 
key parts of the PNCC algorithm. The Gabor features based on PN spectrum are then 
used as input for DNN. Further improvement can be obtained by feature selection via 
sparse PCA. Finally, we showed that a modified CNN could learn features with multiple 
temporal and spectral resolutions by making use of Gabor kernels. The proposed feature 
showed around 30% improvement relative to MFCC-DNN for noise-robust speech 
recognition.  
        In Chapter 4, we exploited the bootstrap sampling method to investigate the model 
residual of DNN features based on Gabor and MFCC in different train/test scenarios. For 
both matched near-field or far-field recordings, diagnostic analysis showed that the DNN 
accounts for most of the improvement where the incorrect independent assumption of 
HMM dominates recognition errors. However, the result revealed that the MFCC-DNN 
feature is easily specialized to training data and the observation mismatch dominates the 
source of recognition errors in mismatched scenario. On the other hand, a DNN-based 
feature that uses Gabor, performs nearly identical to MFCC-DNN features in the matched 
scenarios and much better than MFCCs and MFCC-DNNs in mismatched scenario. Thus, 
we conclude that modeling and robust feature designs are the key steps to improve ASR 
performance using a DNN. 
         In Chapter 5, we explored fast and slow modulation Gabor features to model human 
hearing of rapid and slow speech. We divided the temporal modulation range into low 
(0.0-2.5 Hz) and high (9.9-25 Hz) regions. Experiments revealed that a low temporal 
modulated feature shows better recognition accuracies and correlation to human hearing 
on slow speech and much worse on rapid speech. Similarly, a high temporal modulation 
feature is more correlated to human perception on rapid speech and worse for slow 
speech. Also, because reduction of low modulation features manually improves the 
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performance on rapid speech, the neural network didn't handle the variability in speaking 
rate automatically. 
        In Chapter 6, we developed the phone recognition system under overlapped speech 
based on human cortical signals. The work reported confirmed that the STG can provide 
some information for phonetic recognition, at least for the task used, which can be 
relatively independent of interfering voices that the subject is not paying attention to. 
This is in contrast to the huge increases observed in error rate for phone recognition given 
such interfering signals. 
        Therefore, we conclude that neural network trained features are not enough for 
robust speech recognition. The designed feature based on human hearing system is useful 
for greater robustness than just relying on DNN or CNN with a number of example tasks 
in the thesis.  
 

7.2. Future work 

The work on GCNN in Chapter 3 has shown the basic effectiveness of using Gabor to 
expand temporal and frequency resolutions of CNNs. Some research (e.g. [23]) has 
demonstrated that LSTMs are complementary to CNNs as they have better modeling 
capabilities to temporal information. While both LSTMs and Gabor handle temporal 
modeling problem, Gabor also provides better frequency resolutions and initial 
coefficients based on a biological model. It’s likely the improvement can be achieved by 
unified architecture integrating GCNNs and LSTMs. For example, we could apply Gabor 
convolutional layer and a few other convolutional layers and pass the pooled activations 
to LSTM layers. Also, the spectral modulation and temporal modulation frequencies used 
in Gabor filters here are tuned beforehand. These parameters could be implemented as 
part of neural network architecture and trained by back-propagation as well.  
        In Chapter 4, we performed bootstrap sampling on only HMM-based acoustic 
models. A more sophisticated neural network architectures (e.g. LSTM) using 
Connectionist Temporal Classification (CTC) implementation could be trained with an 
unsegmented sequence providing a better choice over HMM. It is reasonable to conduct 
similar statistical analysis on the effect of model residual on recognition accuracy.  
Furthermore, some ongoing researches work is focused on building an end-to-end neural 
network based speech recognition system including an acoustic model, a pronunciation 
model and language model. With the end-to-end system, statistical analysis would not be 
constrained to a smaller model such as acoustic model here. 
        The experiments in Chapter 5 and 6 are limited by the amount of training data. 
These experiments could be repeated with far more training data. Furthermore, a follow-
up experiment in Chapter 5 should incorporate adaptation of the GMMs. While this 
would also be expected to improve the baseline results, our experience with neural 
networks suggests that they could be even more susceptible to overfitting an insufficient 
amount of training data. For the experiments on the human cortical signal, our final goal 
in is to learn more about how the brain is recognizes speech when competing signals 
(particularly multiple voices) are present. But our other goal is to learn from this 
exploration how we can improve automatic speech recognition in the presence of mixed 
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signals, we will have to use partial information (for instance from comparison of error 
patterns) to modify our artificial systems to act more like the natural one. We are just 
beginning this process, and the results in Chapter 6 reports the initial effort to 
simultaneously study the scientific and engineering components. 
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