
Feature Design for Robust Speech Recognition:

Nurture and Nature

Shuo-Yiin Chang

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2016-62

http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-62.html

May 12, 2016

Copyright © 2016, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Feature Design for Robust Speech Recognition: Nurture and
Nature

by

Shuo-Yiin Chang

A dissertation submitted in partial satisfaction of the

requirements for the degree of
Doctor of Philosophy

in

Engineering - Electrical Engineering and Computer Sciences

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Nelson Morgan, Chair
Professor Jitendra Malik

Professor David Brillinger

Spring 2016

Feature Design for Robust Speech Recognition: Nurture and
Nature

Copyright 2016
by

Shuo-Yiin Chang

 1

Abstract

Feature Design for Robust Speech Recognition: Nurture and Nature

by

Shuo-Yiin Chang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Nelson Morgan, Chair

As has been extensively shown, acoustic features for speech recognition can be nurtured
from training data using neural networks (DNN) with multiple hidden layers. Although a
large body of research has shown these learned features are superior to standard front-
ends, this superiority is usually demonstrated when the data used to learn the features is
very similar to the data used to test recognition performance. However, realistic
environments cover many unanticipated types of novel inputs including noise, channel
distortion, reverberation, accented speech, speaking rate variation, overlapped speech, etc.
A quantitative analysis using bootstrap sampling shows that these trained features are
easily specialized to training data and corrupted in mismatched scenarios. Gabor filtered
spectrograms, on the other hand, are generated from spectro-temporal filters to model
natural human auditory processing, which can be instrumental in improving
generalization to unanticipated deviations from what was seen in training. In this thesis, I
used Gabor filtering as feature processing or a convolutional kernel in neural networks
where the former used filter outputs as DNN inputs while the latter used filter coefficients
and structures to initialize a convolutional neural network (CNN). Experiments show that
the proposed features perform better than other noise-robust features that I have tried on
several noisy corpora. In addition, I demonstrate that inclusion of Gabor filters with
lower or higher temporal modulations could be used to correlate better with human
perception of slow or rapid speech. Finally, I report on the analysis of human cortical
signals to demonstrate the relative robustness of these signals to the mixed signal
phenomenon in contrast to a DNN-based ASR system. With a number of example tasks
in the thesis, I conclude that designed feature is useful for greater robustness than just
relying on DNN or CNN.

 i

DEDICATED TO:
TO MY FAMILY

 ii

Contents

Contents .. ii

List of Figures .. iv
List of Tables ... vi

1 Introduction ...1
1.1 Typical ASR Framework ...1
1.2 Challenges in Speech Technology ...2
1.3 Robust Feature Design: Nurture and Nature ...3
1.4 Thesis Overview ...4

2 Deep Learning in Speech Recognition ...6
2.1 Fully Connected Deep Neural Network ...6

2.1.1 Single-hidden Layer MLP ...7
2.1.2 Deep Neural Network with Pre-training ..9

2.2 Neural Network in Speech Recognition ...12
2.2.1 Hybrid HMM/DNN ...12
2.2.2 Tandem ..13

2.3 Convolutional Neural Network ..15
2.3.1 Local Connectivity and Shared Weights ...15
2.3.2 Maximum Pooling ...16
2.3.3 CNN in Speech Recognition ..17

3 Development of Gabor Convolutional Neural Network ...19
3.1 Spectrum using Power Normalization ..20
3.2 Spectro-Temporal Modulation Gabor Filter ..22

3.2.1 Broader Motivation of Modulation Feature ...22
3.2.2 Computational Gabor Model for Auditory Receptive Fields23

3.3 Sparse Feature Selection ..26
3.4 Gabor Convolutional Neural Network ...28
3.5 Experimental Results ..30

3.5.1 Noisy Speech Corpus ...30
3.5.2 PN Spectrum and Gabor Processing ..31
3.5.3 Sparse Gabor Features ...32
3.5.4 Fully Connected DNN, CNN and GCNN ...35
3.5.3 CNN Trained Filter versus Gabor Filter ..36

3.6 Summary ..37
4 Quantifying Neural Network Feature Errors and Model Errors38

4.1 Model Errors and Observation Mismatches ...39
4.2 Simulation and Bootstrap Sampling ...40

 iii

4.2.1 Simulation Pseudo Observations ...40
4.2.2 Frame Resampling ...41
4.2.3 Segment Resampling ...42

4.3 Data Preparation ...43
4.3.1 Time-Aligning the Corpora ...44
4.3.2 Data Partition ...46

4.4 Acoustic Models and Features ...46
4.5 Results and Discussions ...47

4.5.1 Analysis of Matched Near-Field Results ...48
4.5.2 Analysis of Matched Far-Field Results ...48
4.5.3 Analysis of Mismatched Case ...49
4.5.4 Analysis of Neural Network Weights ..50

4.6 Summary ..51
5 Feature Designs for Speaking Rate Variability ..52

5.1 CVC Data Collection ...52
5.2 CVC Recognizer ..54
5.3 Multi-Stream Processing for Gabor Features ...55

5.3.1 Temporal Division ...55
5.3.2 Combination of Temporal Modulation Streams ..56

5.4 Results and Discussions ...57
5.5 Summary ..59

6 Phone Recognition for Mixed Speech Signal Using Human Cortical Signal60
6.1 Neural Data ..60
6.2 Neural Feature Extraction ..61

6.2.1 Neural Features from High-Gamma Band ...63
6.2.2 Dimension Reduction ..64

6.3 Phone Recognition System ...65
6.4 Results ..65
6.5 Summary ..66

7 Conclusion ..67
7.1 Contributions ..67
7.2 Future Work ...68

Bibliography ..70

 iv

List of Figures

1.1 Overview of statistical speech recognition. ...2

1.2 Technology failure in current automatic speech recognition according to expert
survey reported in [54]. ...3

2.1 Neural network perceptron. ...8
2.2 Single-hidden layer MLP. ..8

2.3 Restricted Boltzman machine. ..10
2.4 Hybrid HMM/DNN. ...13

2.5 (a) Tandem system using posterior features. ...14
2.5 (b) Tandem system using bottleneck features. ...15

2.6 Neural network with shared weights and pooling. ...16
2.7 Basic convolutional neural network topology with mel spectrum. 17

3.1 Comparison between mel spectrum (above) and PN spectrum (below).20
3.2 Frequency response of Gammatone filters according to [38].21

3.3 (a) Medium-duration power subtraction of PN spectrum. ...21
3.3 (b) Clean and noisy mel spectrogram (left) and power normalized spectrogram
(right). ...22

3.4 Frequency response of Gabor filters. ..24
3.5 Above: a high temporal modulation filter (temporal modulation frequency: 6.2 Hz,
spectral modulation frequency: -0.03 cycle/channel) and corresponding filter output;
below: a low temporal modulation filter (temporal modulation frequency: 2.4 Hz,
spectral modulation frequency: 0.03 cycle/channel) and corresponding filter output.25
3.6 Clean and noisy mel spectrum based (above) and power normalized spectrogram
based gabor features (below). ..25
3.7 Bottleneck deep neural network tandem system using sparse Gabor features27

3.8 Basic convolutional neural network topology with PN-spectrum28
3.9 Gabor convolutional neural network topology ..29

3.10 Importance of Gabor filters based on sparse PCA ..34
3.11 A vertical and a horizontal filter example from CNN ..37

3.12 (left): Diagonal Gabor filter, (right): GCNN tuned diagonal gabor filter37
4.1 Simulation process ...41

4.2 Pseudo test data (“hi”) generated using frame resampling ..42
4.3 Pseudo test data (“hi”) generated using state resampling ..43

 v

4.4 Pseudo test data (“hi”) generated using phone resampling43
4.5 Time alignment: (a) near-field (blue) and far-field (green) signals (b) cross-
correlation between the signals. ..45
4.6 Discarded example: near-field (blue) and far-field (green) signals45

4.7 Initial weights and final weights of first hidden layer for MFCC input (a) and PNS-
Gabor input (b) ..50

4.8 Initial weight (black line) and final weight (red dashed line) learned from 2 hidden
nodes for 9 frames of a MFCC (c1) (above: (a) and (b)) and a PNS-Gabor input (below:
(c) and (d)) ...51
5.1 Accuracy for each consonant in clean condition ...53

5.2 Word net for decoding CVC data ...53
5.3 Classification system for CVC data ...53

5.4 Combination of neural network outputs using inverse entropy. Low temporal
modulation streams (red) and high temporal modulation streams are split.57

6.1 MRI reconstruction of subject's cortex, with electrocorticogram (ECog) electrodes
(16x16 grid, 4 mm spacing) indicated by dots. The red and yellow regions (temporal
lobe) are (temporal lobe) are expected to contribute most to speech processing.61
6.2 Example of raw cortical signal from one electrode and the corresponding audio
signal ..62
6.3 Neural feature generation process ...62

6.4 256-d high gamma feature ...63
6.5 Spatial weightings for 4 out of 48 of the convex NMF neural features used. These are
chosen for their loadings onto temporal lobe sites typical examples, chosen for their
loadings onto temporal lobe sites important for speech important for speech processing.
..64

 vi

List of Tables

3.1 Temporal and spectral modulation frequencies for Gabor function.24
3.2 Comparison between Gabor-DNN, CNN and GCNN. ...30

3.3 Noisy channels added to WSJ. ...31
3.4 Aurora2 WER of Gabor features with different spectro-temporal representations. The
baseline is a 39-dimensional MFCC plus the first 2 derivatives with mean and variance
normalization. ..32

3.5 MFCC, AFE and PNCC baseline. ...33
3.6 WERs for DNN features based on PNCC, PNS-Gabor and dimensional reduced PNS-
Gabor using sparse PCA or classical PCA. ..34
3.7 WERs for neural network features, clean training, noisy test.35

3.8 WER for multi-condition training set. ..36
4.1 Training and test statistics for both near-field and far-field set.46

4.2 Results for matched near-field data. ..48
4.3 Results for matched far-field data. ...49
4.4 Results for mismatched scenario. ..50

5.1 Consonant accuracy from the subjects for clean and noisy condition.53
5.2 Temporal division of Gabor feature streams. ..55

5.3 Number of features for each spectral modulation frequency.55
5.4 Front end effects for clean CVCs, all speech. ..57

5.5 Front end effects for clean CVCs, slow speech. ...58
5.6 Front end effects for clean CVCs, rapid speech. ...58

5.7 Comparison between using low modulation filters and only the high ones for slow
and rapid speech, using the GT-Gabor MLP front end, consonant accuracies.58

5.8 Comparison between using low modulation filters and only the high ones for slow
and rapid speech, using the GT-Gabor MLP front end, correlation with perception.58

6.1 Phone error rate for complete CRM utterances. ...66
6.2 Phone error rates within the color target word (red, green, or blue).66

6.3 Phone error rates within the number target word (two, five, or seven).66

 vii

Acknowledgement

When I look back over my Ph.D. career, I feel blessed to be a member of the speech
group at International Computer Science Institute where I got a great many people
helping me.
 First, I would like to express my special appreciation and thanks to my advisor
Nelson Morgan who have been a tremendous mentor for me. For the 5-year Ph.D. career,
Morgan is very patient, encouraging and allowing me to grow as a research scientist. By
working with him for four projects, I was always benefited with his view on either good
or unexpected results. His intuition about the new techniques also allows me thinking out
of mathematical formulations. I could not have imagined having a better advisor and
mentor for my Ph.D. study.
 Second, I would like to thank to Steven Wegmann, the head of the Speech group at
the International Computer Science Institute. Steve has a solid statistical background and
experience on speech recognition system. His advice on both research as well as on my
career have been priceless. The work benefited greatly from the discussions with Dan
Ellis and Adam Janin. Their comments and suggestions are extremely helpful when I got
stuck. Adam has the answers to all my questions. Thanks to Abeer Alwan and Edward
Chang for sharing invaluable data and helpful advises. Thanks to Chanwoo Kim and
Richard Stern for the use of PNCC. Thanks to Andreas Stolcke for the help on setting up
language models. I would like to thanks to my coworkers, Erik Edwards, Bernd Meyer,
Michael Kellman, Anirudh Raju, Hari Parthasarathi, Frantisek Grezl and Hai Do. They
are very smart and nice to work with.
 I would like to thank to Howard Lei, Dan Gillick and Arlo Faria who teach me a lot
in my first year when I know little about the infrastructures and the tools at ICSI. Hang
Su has been a wonderful friend and one of the smartest people in my life. He always
catches up new techniques and tools very quickly. TJ Tsai always gave perfect
presentations that is better than most of instructors from my studying. Suman Ravuri is
the nicest guy ever and knows speech techniques broadly and deeply.
 I would also like to thank my committee members, professor Jitendra Malik and
professor David Brillinger for serving as my committee members even at hardship. I also
want to thank for their brilliant comments and suggestions. Thank to all administrative
staff and computer gurus who help to make ICSI a great place to develop interesting
research. I would especially like to thank to Maria Eugenia Quintana who carefully read
the thesis and make it easier to read. I would also thank to my master’s advisor, Lin-Shan
Lee who lead me to this fantastic research area.
 A special thank to my family. I am grateful to my grandmother, grandfather, aunts
and father for all of the sacrifices on my behalf. I would also thank to my friends Chi
Pang Lam, Chung-Yen Lin, Junkai Lu and Yiwen Laio who gave me a lot of useful
suggestions on my career and future plans.
 This material is based on work supported by the Defense Advanced Research
Projects Agency (DARPA) under Contract No. D10PC20024, National Science
Foundation under Grant No. IIS-1450916 and Grant IIS: 1320260.

1

Chapter 1

Introduction

Research on automatic speech recognition (ASR) flourished in the ‘70s and ‘80s when
the hidden Markov model (HMM) [5] offered substantial improvements over other
systems (e.g. dynamic time wrapping [55]). Since then, commercial versions of speech
technology has been successfully used for mobile technology (e.g. voice dialing and
interactive voice response), hands-free computing (e.g. voice search and video game with
voice command), dictation products (real time speech writing), etc. Today, voice-
activated digital assistants are an increasingly important feature for smart phones where
high quality audio systems and substantial computing power are available. Accurate
automatic speech recognition is also very useful for people who find it difficult to interact
with computers using a keyboard: e.g., the elderly, the physically disabled, or the vision
impaired.
 While speech recognition works reasonably well in some environments, it often fail
in difficult environments where the input may include noise, reverberation or overlapped
speech. With the rapid growth of speech applications, robust processing is an important
and challenging problem. Recently, robust speech processing leverages the expertise of
machine learning techniques to nurture a more robust acoustic representation from a
training phase. Modern machine learning techniques could potentially model a very broad
distribution of all the input in the training set. However, many unanticipated types of
novel input still appear because it is hard to enumerate all noise types, signal to noise
ratios (SNRs), speaking rates and accents encountered in test environments. Given the
difficulty of training, it is arguably necessary to work on technologies that directly deal
with the noise, channel, and speaking style impacts. This thesis demonstrates this
necessity using a number of example tasks that we have worked with.

1.1. Typical ASR Framework

Speech recognition is defined as the science of recovering words from an acoustic signal
meant to convey those words to a human listener. Fig 1.1 illustrates an overview of the
speech recognition framework, which involves acoustic processing, acoustic modeling,
pronunciation modeling, language modeling and decoding. Conventional speech
recognition is formulated as a pattern classification problem using the maximum a
posterior decision rule to find the best word sequence W* based on the parameterized
observations O, which is transformed from the speech waveform:

CHAPTER 1. INTRODUCTION

2

W * = argmaxw∈W P(W |O) (1.1)

The system could be factorized into several smaller models:

W * = argmaxw∈W P(O |Q)P(Q |W)P(W) (1.2)

where Q is a sequence of phones: [phone1, phone2…., phonen]

The prior probability of words P(W) is evaluated with a language model. P(O|Q) is the
likelihood of observing O by assuming Q as the underlying phone sequence. P(Q|W) is
obtained from the pronunciation model that estimates the pronunciations given a
sequence of words, which is typically specified manually. While more sophisticated
language models [49] and pronunciation models [12] have been studied, here we are
focusing on acoustic features and models in the thesis.

Figure 1.1, Overview of statistical speech recognition

1.2. Challenges in Speech Technology

Speech recognition technology has decades of history with several major innovations.
While there is a great deal of progress and commercial applications, automatic speech
recognition is far from being a solved problem. In particular, automatic speech
recognition is much worse than human recognition in noisy environments, for novel
speakers, in far-field or other unusual acoustic conditions, in accented speech, and for
speech in which other signals or noises share the acoustic channel.
 In a recent survey, Fig. 1.2 [54], major participants in speech and language
technology were asked to identify where the current technology has failed. While several
components in the framework were pointed out, many of the informants identified the
lack of robustness as a primary failure of speech and language technology. In addition to
the general robustness issue, many responses identified the particular characteristic of
speech or language that caused this lack of robustness, such as noise and variability in the
speaker population.

Front�End(
�Feature(
extrac.on)(

Acous.c(
Model(

Language(
Model(

pronuncia.on(
model((

Decoding(

Speech(
Corpus(

Text(
Corpus(

Recogni.on(
(Result(W*(�(

Speech(
(Signal(

P(O|Q)((P(w)((P(Q|W)((

CHAPTER 1. INTRODUCTION

3

Figure 1.2, Technology failures in current automatic speech recognition according to expert
survey reported in [54]

1.3. Robust Feature Design: Nurture and Nature

A large body of research on robust speech processing focuses on generating a more
robust feature representation. Traditional robust feature design is based on the expertise
of the mammalian auditory system, prior knowledge of acoustic distortion, normalization
approaches, etc. For example, many acoustic features are obtained from filters mimicking
“natural” hearing systems in order to duplicate the robust properties of human speech
recognition (e.g., cocktail party effect, word recognition in noise, insensitivity to a wide
range of speaking rates, etc.). Typically, these features are carefully hand-crafted leading
to state-of-the-art speech recognition results.
 Exploiting machine learning algorithm to “train” features from data provides an
alternative solution to the difficult task of feature handcrafting. In this case, the features
are “nurtured” automatically from the training set. For example, the probabilistic feature
(class probabilities) of a neural network is trained to discriminate between the phone
classes. These trained features could represent underlying acoustic cues well if the
classification is reliable. With the advent of new training algorithms and model
architectures, trained features could model more complicated distributions from the input,
which led to a recent breakthrough in speech community.
 Recently, because of the success of deep learning, neural network features have
become a dominant paradigm for speech recognition. In [53], fewer perceptually based
designs are suggested for better performance. In [31], a neural network is able to achieve
comparable performance by generating feature directly from speech signals, which
requires no human-inspired design on the feature generation process. In these studies,

19

complicated to use or too expensive to implement. Our interviewees often noted that in order to
get an application to be usable, particularly a natural dialog application, there had to be an
inordinate amount of tuning or tinkering to get it to work. They observed that the amount of
work that had to be done increased the cost of the application. This, too, can be seen as a failure
of manageable systems to deliver robust performance in practice.

Figure 5. Categorization of responses to “Where has the current technology failed?”

It is clear that the major issue in the current applications of speech technology is the inability of
current systems to perform well across different conditions. The particular conditions which
were called out were performance in noise, performance in other languages, the ability to handle
the variability in actual speaker populations, and general performance in acoustic conditions
which differed from the training conditions. Some informants complained about the accuracy or
consistency of the process, but that was a relatively infrequent response.

Representative responses we received included:

“It’s not robust to acoustic environments, multiple sources.”

“It fails for any conditions not seen in training, either environments or contexts.”

“Models are tuned too finely. Features are wrong for the job, and training is wrong.”

“The technology is ill equipped to handle data outside the training scenario.”

CHAPTER 1. INTRODUCTION

4

most of the work of feature extraction has been done in neural networks. These studies
suggest questions about the role of feature representations beyond that.
 Although a large amount of research has shown that acoustic features nurtured from
data using neural networks can be superior to a standard front-end, this superiority is
usually demonstrated when the data used to learn the features is very similar to the data
used to test recognition performance. A speech recognizer may be robust in one
environment and yet be inappropriate for another. The main reason for this is that the
performance of existing recognition systems, which assume noise-free environment
degrade rapidly in the presence of noise, distortion, etc. On the other hand, carefully
hand-crafted feature designs develop robust features based on auditory processing
provide a more general solution than trained features alone.
 In the thesis, we incorporate biological model-inspired features into neural networks
by adapting an existing architecture. We investigate the robustness of the proposed
approaches with several input variations including noise, reverberation, speaking rates
and overlapped speech. The goal of the thesis is to facilitate the development of robust
speech recognition in two areas: (1) development of a robust representation that actually
improves recognition accuracy, and (2) analysis of robustness benefited from biological
models. We also explore these issues:

1. How can a speech feature benefit from a biological model under (a) noise, (b)
reverberation and (c) speaking rate variation?

2. Given the different feature designs, what is the quantitative effect of the model
residual on recognition accuracy?

3. What can we learn directly from a human cortical signal, which can handle
multiple source signals well?

1.4. Thesis Overview

The thesis is organized as follows:

Chapter 2 is an introduction to (deep) neural networks and their application to automatic
speech recognition.

Chapter 3 proposes an architecture that incorporates biologically inspired Gabor features
and (convolutional) neural network. The final feature, which benefited from human
auditory processing, is more robust to other trained features.

Chapter 4 performs a quantitative analysis on model residuals and robustness of the
proposed features and conventional trained features for noisy speech recognition.

Chapter 5 explores the effect of feature design to speaking rate variation.

CHAPTER 1. INTRODUCTION

5

Chapter 6 investigates the robust property of human cortical signals for phone recognition
on mixed speech signals.

And Chapter 7 summarizes the conclusions of the work, and points to future work.

6

Chapter 2

Deep Learning in Speech Recognition

Multi-layer perceptrons (MLP) have been used successfully for HMM-based speech
recognition for more than two decades [9]. In that approach, MLP outputs were used as
posteriors to derive emission probabilities for hidden Markov models (HMMs). Later, a
number of researchers (e.g., [Hermansky et al.]) made use of MLP outputs as features for
HMM observations (tandem) [28, 79]. Both of these approaches have been used in more
recent “deep learning” methods that have been designed to effectively incorporate a
larger number of layers, and in particular have been successfully applied to automatic
speech recognition (ASR).
 There has been a lot of success using deep learning in the machine learning
community, with many applications to difficult problems, for example in computer vision.
There are two major components to deep learning: one is the architecture of the MLP and
the other involves the training algorithm. First of all, in a deep learning architecture,
MLPs with more than one hidden layer are used. Second, since MLPs with more than one
hidden layer are hard to train, the learning algorithm involves better initialization than
simple back-propagation. To provide a better initialization, a generative model, called a
restricted Boltzmann machine (RBM), has been used with an unsupervised learning
algorithm, called pre-training [29], to build up a multi-layer network, called a deep belief
network (DBN). This DBN is then converted to an MLP, called a deep neural network
(DNN), and final passes of back-propagation are used for “fine-tuning” the weights. In
additional to RBM, other pre-training approaches, for example, layer-by-layer
discriminative pre-training technique with back-propagation [75], are also commonly
used.
 Beyond the traditional fully connected DNNs, convolutional neural networks (CNN)
has been successfully introduced for speech recognition task. Unlike typical fully
connected networks, CNN is more robust to translation variance, which is desirable for
object recognition and robust speech recognition.

2.1. Fully-Connected Deep Neural Network

The single-hidden layer MLP has been used for several decades. While some researchers
(e.g. Chen et al [78]) use two hidden layers to achieve better results, the “depth” is still

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

7

much smaller than a typical deep neural network structure. The challenges against
moving the single-hidden layer MLP toward large scaled deep networks are (1) the cost
of training and (2) poor local minima in the highly nonlinear optimization model. The
computational capacity has been benefited from the parallel, distributed tools e.g., GPU
and MapReduce. In parallel computing, data parallelism and model parallelism are two
commonly used approaches to speed up the training procedure. The former splits training
samples into min-batches in each thread and updates the gradients after each min-batch
iteration. The latter splits the weights among the threads and synchronizes their outputs.
Another issue is the non-convex optimization problem. While an increasing number of
hidden layers allows it to represent complicated transformations, it is highly nonlinear
and the stochastic gradient decent (SGD) based training algorithm with random
initialization is easily converged into poor local minimum. In DNN, a training algorithm
based on restricted Boltzman machine is sometimes used to provide a better initialization.
In the remainder of the section, we will first introduce the basic mechanism of MLP and
then DNN using RBM pre-training.

2.1.1. Single-hidden Layer MLP

MLP consists of basic processing units called perceptrons. Perceptrons were developed in
1950s and 1960s by Frank Rosenblatt [66, 67]. Fig. 2.1 shows an example of a perceptron
where the inputs are x1, x2 … xn. The weights, w1, w2, … wn are used to express the
importance of the respective input to the output. The activation function θ (.) is used to
model neuron firing activity. The widely used activation function is hyperbolic tangent:

 (2.1)

and sigmoid function:

 (2.2)

As shown in the equation 2.2, a perceptron with sigmoid activation can be viewed as a
logistic regression classifier, called a logistic unit.

y = tanh(wixi + bi)
i
∑ =

2
1+ exp(wixi + bi)

i
∑

−1

y = sig(wixi + bi)
i
∑ =

1
1+ exp(− wixi − bi

i
∑)

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

8

Figure 2.1, Neural network perceptron

More recently, a rectified linear unit (ReLU) based neural network has been introduced
[57] where the activation function is a half-rectification non-linearity which is linear for
positive values and zero otherwise:

 (2.3)

It has been observed that the rectified linear unit is better than a logistic unit or
hyperbolic tangent in vision and other applications. A rectified linear unit is better than a
logistic unit using sigmoid activation in several aspects. First of all, rectified linear unit is
piece-wise linear. If we focus our attention to the units that are non-zero, the whole
system reduces to a linear convex system whose optimization is straightforward even
using first order optimizers. Second, the activated value is sparser. Unlike logistic units
that produce small positive values when the input is not aligned with the internal weights,
rectified linear units often output exact zeros, for example, in a randomly initialized
network, only about 50% of hidden units are activated. The increased sparsity of the
internal representation can be seen as the effect of regularization, which improves the
generalization. Third, traditional activation functions have gradients less than one,
meaning the gradients decrease exponentially with number of layers and early layers train
very slowly. The problem could also be avoided using rectified linear units.
 A single-hidden-layer MLP consists of 3 layers (i.e. input, hidden and output layer)
of neurons with each layer fully connected to the next one. Except for the input layer,
each neuron is the perceptron described above. Fig. 2.2 illustrates an example of MLP.

Figure 2.2, Single-hidden layer MLP

x1#
x2#
xi#…

…
…
#

xn#

…
θ(⋅)

y =max(0, wixi
i
∑ + bi)

Output%layer%

Hidden%layer%

Input%layer%
W1%

W2%

y%

x%

h%

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

9

The parameters of MLP are two matrices 𝑊!and 𝑊! where hidden units h is computed
by 𝜃(𝑊!𝑥) while the output units y is 𝜃(𝑊!ℎ). The cost function is typically defined as
mean square error:

 E(n) = 1
K

tk (n)− yk (n)[]2
k=1

K

∑ (2.4)

or cross entropy error:

 E(n) = 1
K

tk (n)ln yk (n)+ (1− tk (n)[] ln (1− yk (n)[]{ }
k=1

K

∑ (2.5)

where tk is target value and yk is actual neural network output. In practice, the cross
entropy error criterion is more common than mean square error. By using cross entropy
error, the error signal propagating back from output units is directly proposition to the
difference of target value and tk and the actual value yk , which lead to a faster
convergence and better performance. To minimize the cost function, the standard gradient
decent algorithm is applied to determine the weights:

 wij
1 (n+1) = wij

1 (n)+µ ∂E(n)
∂wij

1 (n)
 (2.6)

 wij
2 (n+1) = wij

2 (n)+µ ∂E(n)
∂wij

2 (n)
 (2.7)

2.1.2. Deep Neural Network with Pre-training

While back-propagation theoretically allows training a MLP with many layers,
researchers did not have widespread success training MLPs with more than one hidden
layers. It is difficult to benefit from increasing the number of hidden layers without using
some kind of initialization, particularly because the layers far from the target are little
changed by the usual stochastic gradient learning algorithms (i.e. vanishing gradient
problem). Hinton et al [29] proposed an unsupervised training algorithm based on
restricted Boltzman machine moving the parameters to a good initial. RBMs are trained
in one more layer at a time in a greedy manner and then stacked to build up a hierarchy
multi-layer network, so-called deep belief networks.

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

10

Figure 2.3, restricted Boltzman machine

 RBM is a bipartite graph modeling the joint distribution of a layer of stochastic
visible units and hidden units as shown in Fig. 2.3. Only visible-hidden connections are
allowed. For Bernoulli-Bernoulli RBM, the joint distribution is defined as:

 P(v,h) = e
−E (v,h)

Z
,E(v,h) = −bTv− cTh− vTWh (2.8)

where Z is the normalization term, E(v,h) is energy function. b and c are the bias for
visible layer v and hidden layer h while W is a symmetric weight matrix between v and h.
To compute the posterior of hidden units, it can be obtained as:

 (2.9)

By plugging in the energy function E(v,h), we could obtain:

P(h | v) = eb
Tv+cTh+vTWh

eb
Tv+cTh '+vTWh '

h '∑

=
ec

Th+vTWh

ec
Th '+vTWh '

h '∑

(2.10)

,which is the multiplication of the posterior of each unit:

h0# h1# h2#

�0# �1# �2# �3# Bernoulli#

Bernoulli#

Gaussian#

bias:#b#

weights:#W#

bias:#c#

P(h | v) = P(v,h)
P(v)

=
e−E (v,h)

e−E (v,h ')
h '∑

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

11

 (2.11)

Let hi be one, we can rewrite the posterior as:

 P(hi =1| v) =
eci+v

TWi

eci+v
TWi +1

= sigmoid(ci + v
TWi) (2.12)

Formula (2.12) is essentially the forward propagation procedure of neural networks.
Hence, RBM can be applied to model each pair of layers of a neural network
appropriately. Similarly, we could compute P(v|h) by symmetric:

P(vi =1| h) = sigmoid(bi + h
TWi) (2.13)

Unlike the Bernoulli-Bernoulli distributed RBM, the input layer usually consists of real-
valued variables, so a Gaussian-Bernoulli RBM is employed. The energy function for this
is revised as:

Energy = 1
2
(v− b)T (v− b)− cTh− vTWh (2.14)

By replacing the energy function as defined above, we still obtain the posterior of hidden
units as:

P(hi =1| v) = sigmoid(ci + v
TWi) (2.15)

and the posterior of visible units is:

 P(vi | h) = N(vi;b+ h
TWT , I) (2.16)

The parameters of the neural network, therefore, get good initialization by maximizing
the log likelihood of the RBM where the objective function is:

ĉ, b̂,Ŵ = argmax
c,b,W

P(v | c,b,W) = argmax
c,b,W

P(v,h | c,b,W)
h
∑

(2.17)

The detail of RBM training can be found in [29].

P(h | v) = ecihi+v
TWihi

ecihi
'+vTWihi

'

hi
;
∑

=
i
∏ P(hi | v)

i
∏

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

12

 A deep belief network is built by stacking RBMs that are trained in a greedy layer-
wise manner. The first hidden layer is trained using RBM with raw input as visible units.
After training is done, the first hidden layer is viewed as one visible layer for another
RBM with another hidden layer on top of that. We repeat the process to increase the
number of layers and build the network with multiple hidden layers. The deep belief
network is then fine tuned using back-propagation training as the conventional MLP
training. The final network is called a deep neural network (DNN).
 While unsupervised pre-training using RBM was historically the turning point for
deep neural networks, RBM training doesn’t have a good stop criterion, and the training
procedure can be expensive with the increase of the number of layers. Alternatively,
layer-by-layer discriminative pre-training technique is presented in [75]. In general, a
one-hidden-layer neural network is trained first using labels discriminatively with error
back-propagation. Then, after discarding an output layer in the previous one-hidden-layer
neural network, another randomly initialized hidden layer is added on top of the
previously trained hidden layer along with a new output layer that represents the targets
for classification or recognition. The resulting multiple-hidden-layer DNN is then
discriminatively trained using the same strategy, and so on until the desired number of
hidden layers is reached. Other approaches have been developed [51], but their
explanation is beyond the scope of this thesis.

2.2. Neural Network in Speech Recognition

In this section, we introduce two of the most common approaches that incorporate neural
networks in the HMM based acoustic model: the hybrid and tandem systems. The
approaches were first proposed in the 1990’s and 2000 using MLPs and extended to deep
neural networks in recent years. The more recently developed neural network end-to-end
(HMM free) system was not included in the section, but is described in [23].

2.2.1. Hybrid HMM/DNN

Research on hybrid neural network HMM based automatic speech recognition started
since 1990’s. The basic idea was to replace GMM for the hidden states’s marginal
distributions in the standard HMM system with a single neural network. In typical
processing, the neural network used the softmax function for the output non-linearities,
while the inputs to the network were a context window of adjacent MFCC or PLP frames.
 The neural network was used as a classifier that discriminated between all of the
HMM’s hidden states. Earlier work [8] had shown that the output of such an neural
network could be interpreted as the posterior probabilities of the states given the inputs,
which meant that dividing the posterior probabilities by the state priors yielded scaled
likelihoods that were suitable to use for the state’s marginal or output probabilities. For
the training scheme, instead of using only frame-level DNN training independent of a
HMM and language model, some approaches jointly optimize DNN weights, HMM state-

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

13

to-state transition parameters, and language model scores using the sequential
discriminative training criterion [51].
 There are some advantages that distinguish a hybrid HMM/DNN over the standard
HMM/GMMs. First of all, neural networks are inherently discriminative, although at the
state rather than the word or utterance level. Second, a neural network has fewer
assumptions about the data. Third, using a context window as the inputs to the neural
network captures the long term temporal information.

Figure 2.4, Hybrid HMM/DNN

2.2.2. Tandem

Starting in 2000, researchers have investigated features that were learned from data using
neural networks. In the tandem approach, these neural network based features were then
used as extra acoustic features for the standard HMM/GMM (Fig. 2.5(a)). One
motivation for the tandem approach was to take advantage of the discriminant property
from neural networks by incorporating the resulting discriminative features into
HMM/GMM-based systems. Another advantage to the tandem approach is that it makes
it easier to include non-traditional features within the HMM/GMM; for example TRAPS
[27] use narrow spectral subbands and long temporal windows as inputs to multiple

Speech&signal&&

Feature&

Deep&
neural&
network&

Hybrid&HMM/DNN&

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

14

MLPs whose outputs are combined using a MLP. A variant of TRAPS, called HATS [11],
led to a roughly 10% relative improvement in recognition accuracy.
 Again, the input layer of a neural network is a context window of adjacent frames of
features (e.g., MFCC or PLP) and the softmax outputs discriminate between context
independent phones. The frame-level labels for training are produced using forced
alignment in HMM/GMM system. To apply the posteriors from neural network outputs
as acoustic features, a post-processing step is preferred. In typical tandem processing, the
posterior phone probabilities are processed by logarithm and principle component
analysis (PCA) to yield features that could be modeled by Gaussian mixtures
appropriately. The logarithm transformation makes the distribution more Gaussian-like,
and PCA performs de-correlation and dimension reduction for the diagonal Gaussian
distributions. In conventional fashion, they are appended to the standard feature set, such
as MFCC or PLP.
 One variant of tandem processing is taking the raw hidden layer outputs instead of
using the posteriors as features, as shown in Fig. 2.5(b). In this case, the hidden layer is
often designed as a narrow-dimensional layer, called a bottleneck layer e.g., in [24] a
five-layer network is used with a constriction in the middle layer and the (processed)
output of the constricted layer is taken as the feature vector. The motivation is that these
hidden layer representations should be a good feature for HMM in the way they were
used for classification in neural network. There are several advantages to using
bottleneck features rather than posteriors. Because the feature size is not determined by
output layer, neural networks could be trained to discriminate context dependent tied tri-
phone states. Also, the logarithm and PCA are not necessary as the bottleneck feature can
be viewed as nonlinear dimensional reduction.

Figure 2.5(a), Tandem system using posterior features

Acous&c'model'
(HMM/GMM)'

'
input'
layer'

Deep'Neural'Network''

hidden'layers'
output''
layer'

posteriors'

'Log/'
PCA'

Feature'

speech
signal

Standard'
FrontDend'

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

15

Figure 2.5(b), Tandem system using bottleneck features

2.3. Convolutional Neural Network

A convolutional neural network is a biologically inspired variant of a deep neural
network. A common CNN topology was proposed by LeCun et al. [40] and has garnered
wide attention with the success of deep learning. It has been successfully applied in digit
recognition and object recognition. Later, Sainath et al. [68] applied a similar concept to
speech recognition. The keys concepts that distinguish CNN from a typical fully
connected neural network are local connectivity, shared weights and pooling.

2.3.1. Local Connectivity and Shared Weights

Fig. 2.6 depicts a CNN where the hidden units are connected to only a small, localized
region of the input instead of the entire field. In the example, each hidden activation hi is
computed by multiplying local input ([xi, xi+1, xi+2]) against the weights W. The weights
W are shared across the entire input space, as indicated in the figure. In other words, the
hidden layer h is obtained by convolution of input x with a linear filter W, adding a bias
term and applying an activation function. The function of the hidden layer is, therefore,
often called convolution.

Feature'

Acous,c'model'
(HMM/GMM)'

'
input'
layer'

speech
signal

Standard'
Front;end'

Deep'Neural'Network''

hidden'layers'
output''
layer'

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

16

Figure 2.6, Neural network with shared weights and pooling

The local connectivity is inspired by biological evidence where a number of experiments
on different mammal species have revealed that sensory neurons are sensitive to a
particular sensory space, a so-called receptive field. For example, Hubel and Wiesel’s
early work on the cat’s visual cortex shows that the cells in the visual cortex are sensitive
to small sub-regions of the visual field. These sub-regions are tiled to cover the entire
field. Thus, by connecting to a small receptive field and weight-tying, CNN learns local
structure of the input (e.g. image or spectrogram of speech), which (1) models the local
receptive field in human sensory neurons and (2) is more computationally efficient to
scale up well.

2.3.2. Maximum Pooling

Another important concept of CNNs is max pooling, which is a form of down-sampling.
After computing the hidden units, a max pooling layer helps to remove variability in the
hidden units (i.e. convolutional activations) from the upper layer. Max pooling partitions
the input into a set of overlapping or non-overlapping units and, for each such sub-region,
outputs the maximum value. In the example of Fig. 2.6, each max-pooling unit receives 3
activations from the convolutional layer, and outputs the maximum of the activations
from these activations. Convolution and max pooling over neighboring units allows
translational invariance to the input. For example, a single shift from the input would lead
to invariant convolution activations with a single shift. As the max pooling is done over
a window of 3, it will produce exactly the same output. Since it provides additional
robustness to minor difference of positions, CNN can be better for vision and robust
speech recognition tasks where the robustness to object translation and speaker/channel
variability is desirable.
 Typically, CNN consists of one or more convolution/max pooling layer pairs and
fully connected layers on top. The top fully connected layers finally combine inputs from
all the sub-regions to do the classification of the overall inputs. This hierarchical
organization generates good results in image and speech processing tasks.

Shared''
weights'W"

Max'(h1,'h2,'h3)'

x1"

x2"

x3"

x4"

x5"

h1"

h2"

h3"
pooling'

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

17

2.3.3. CNN in Speech Recognition

The typical convolutional neural network for speech recognition using Mel spectrum was
shown in Fig. 2.7, which consists of a convolutional layer, a pooling layer, and fully
connected layers.

 Figure 2.7: Basic convolutional neural network topology with Mel spectrum

 Each CNN training case consists of entire frequency bands of successive frames. In
the convolutional layer, the receptive field of each neuron is connected to a local subset
of frequency bands. A set of neurons with receptive fields shifted in frequency share the
same kernel (weights). Stacks of these neurons that cover features of the kernel along
entire frequency bands constitute a feature vector. The convolutional layer is composed
of multiple feature vectors determined by different kernels, as depicted in Fig. 2.7.
Activation of each neuron is computed by multiplication of a local receptive field with
the weights, adding a bias and applying a nonlinear function:

hm (n,k) =θ(Wm (i, j) ⋅ x(n+ i,k + j)+ bm)
j=−K

K

∑
i=−N

N

∑

=θ(Wm (−n,−k)∗ x(n,k)+ bm)
 (2.18)

where hm(n,k) represents the neuron of mth feature vector, whose receptive field is 2K+1
(bands) by 2N+1 (frames) matrix centered at current band of the frame, x(n,k). The
connection weights Wm perform filtering on the receptive field where the indices of the
filter coefficients are flipped from the weight indices, both vertically and horizontally as
shown in Eq. 3.14. bm and 𝜃(.) are the bias term and sigmoid function respectively.
 In the above example, convolution was applied along the frequency axis. the CNN
architecture can also be applied along the time axis to reduce temporal variability, which
was known as time-delay neural network (TDNN) in [74]. In [1], the network combines
convolution along both frequency and time axes to generate a 2D CNN similar to the

convolution layer
(5 feature maps)

pooling
 layer

fully connected
network

PN�spectrum
frame

ch
an

ne
ls

 x(n,k)$

x(n,l)$
h1(n,k)$

W1$

W1$

W5$
h5(n,k)$

Mel$spectrum$

CHAPTER 2. DEEP LEARNING IN SPEECH RECOGNITION

18

ones used for image analysis. While both case offered limited performance improvement,
perhaps it is because the speech temporal variability has been handled by the HMM in
either the tandem or hybrid framework.

19

Chapter 3

Development of Gabor Convolutional
Neural Network

Although a large body of research has shown that acoustic features for speech recognition
can be nurtured from data using neural networks with multiple hidden layers and that
these learned features are superior to standard features (e.g., MFCCs), this superiority is
usually demonstrated when the data used to learn the features is very similar in character
to the data used to test recognition performance. An open question is how well these
learned features generalize to realistic data that is different in character to their training
data; in particular the robustness to unexpected noise environments is highly desirable.
 Several existing robustness methods focus on compensating the difference between
clean training data and noisy testing speech in different aspects such as model-based [37]
or feature-based approaches [50, 38, 62]. Model based approaches focus on compensating
the difference of clean and noisy speech by adapting a recognition model into a noisy
speaker condition. For feature-based approaches, signal processing techniques are
proposed to suppress the impact of noise or distortion prior to feature extraction or
generate feature parameters, which are less sensitive to noise or distortion. Alternately,
unlike ASR systems, human listeners rely on attention-driven (cognitive) selection of a
specific speaker, e.g., in a high-noise cocktail party situation, which results in high
recognition scores for human listeners, and which inspires researchers to find more robust
features based on biological models about the auditory system.
 In this chapter, we describe the development of robust feature representation based
on Gabor filters that mimics “natural” (human) auditory processing. The filter design is
then incorporated into fully connected deep neural networks or convolutional neural
networks in several different ways to improve the robustness of automatic speech
recognition. From our results, we conclude that signal processing technqiues based on
prior knowledge of auditory models can improve the noise-robust speech recognition
significantly while the perfromance of a deep neural network based on a standard front-
end could degrade rapidly in the presence of noise.

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

20

3.1. Spectrum using Power Normalization

In [38], Kim and Stern propose the power normalized cepstral coefficient (PNCC)
algorithm using gammatone filters followed by power bias subtraction and power
nonlinearity compression. PNCC is relatively insensitive to constant background level
noise. Therefore, spectra generated by the PNCC algorithm could be a better choice as
the time frequency representation than Mel spectrum. We refer to the spectra generated
from PNCC as the power normalized spectrum (PNS). The comparsion between MFCC
and PNCC is depicted in Fig. 3.1.

Figure 3.1, Comparison between Mel spectrum (above) and PN spectrum (below)

 As in the case of MFCC, a pre-emphasis filter of the form H(z) = 1−0.97z−1 is
applied. A short-time Fourier transform (STFT) is performed using Hamming windows
of duration 25.6 ms, with 10 ms between frames, using a DFT size of 1024. Spectral
power in 40 analysis bands is obtained by weighting the magnitude-squared STFT
outputs for positive frequencies by the frequency response associated with a 40-channel
gammatone-shaped filter bank whose center frequencies are linearly spaced in Equivalent
Rectangular Bandwidth (ERB) between 200 Hz and 8000 Hz, using the implementation
of gammatone filters in Slaney’s Auditory Toolbox [70] (Fig. 3.2), which is derived from
psychophysical observations of the auditory periphery, i.e., the filter bank represents a
model of cochlear filtering.

Power Function
Nonlinearity

x0.1

Pre-emphasis
,STFT

Pre-emphasis
,STFT

Logarithmic
Nonlinearity

log(x)

Triangular
Frequency
Integration

Power Bias
Subtraction

Gammatone
Frequency
Integration

Speech signal

A) Calculation scheme for mel-spectrograms

B) Calculation scheme for power-normalized spectrograms

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

21

Figure 3.2, Frequency response of gammatone filter according to [38]

 For the second step, medium duration power is used to estimate and subtract the
noise background level. It is commonly observed that longer analysis windows provide
better performance for noise modeling and environment analysis as the power associated
with most background noisy conditions changes more slowly than the instantaneous
power associated with speech. Thus, a medium-duration power obtained by computing
the running average of the power of consecutive analysis frames is used to estimate the
noise bias in this processing. The noise bias level was calculated based on the ratio of
arithmetic mean and geometric mean (AM-to-GM ratio) of the medium duration power,
which is motivated by a decrease of the noise power for a decreasing AM-to-GM ratio. In
this step, a subtraction of the medium-duration power bias is carried out, which makes
AM-to-GM ratio the same as that of clean speech.
 Finally, power nonlinearity with an exponent of 0.1 replaces the logarithm
nonlinearity for compression. The output of the logarithm would be dominated by noise
when the intensity of the input signal is low, thus the power nonlinearity is a better model
for threshold effects of auditory fire rate responses. According to the observation in [76],
the auditory nerve firing rate is constant when the input sound pressure level is below -10
dB, while the output of the logarithm would be dominated by noise when the intensity of
the input signal is low. An example of Mel spectrum and power normalized spectrum is
shown in Fig. 3.3 illustrating greater insensitivity to noise for the power normalized
spectrogram.

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

22

Figure 3.3 (a), Meduim-duration power subtraction of PN spectrum

Figure 3.3 (b), Clean and noisy Mel spectrogram (left) and power normalized spectrogram

(right).

3.2. Spectral-Temporal Modulation Gabor Filter

After the PN spectum is generated, we further convolve it using two-dimensional spectro-
temporal modulation Gabor features. In the remainding section, we discuss the concept of
spectro-temporal receptive fields (STRFs), Gabor filter design and sparse selection of
informative features from the filter output.

3.2.1. Broader Motivation of Modulation Feature

Over the last decade, a number of physiological experiments on different mammalian
species have revealed that the neurons in the primary auditory cortex are sensitive to
particular spectro-temporal patterns referred to as spectro-temporal receptive fields [45],

2. Proposed Method

2.1. PNS Gabor features

Gabor-filtered power spectra based on mel-bands are easily
corrupted by noise. While no one has a general solution for
this problem, we found in [12] that using PNCC generated a
more robust spectro-temporal representation. We referred to it
as the power normalized spectrum and the corresponding
output filtered by Gabor filters as PNS-Gabor features. PNCC
[10] differs from MFCC in three aspects: (1) gammatone filter
(2) medium-duration bias subtraction (3) power-law
nonlinearity. An example of mel spectrum and power
normalized spectrum is shown in Fig. 2 illustrating greater
insensitivity to noise for the power normalized spectrogram.
PNS Gabor features are obtained by convolving two
dimensional modulation filters and power normalized
spectrum. To generate filters serving as model for spectro-
temporal receptive fields (STRFs), we multiply a complex
sinusoid with a Hanning envelope. The complex sinusoid
(with time modulation frequency and spectral modulation
frequency) is represented as:

 (1)

while the Hanning envelope is given (with and denote

window length)

 (2)

By tuning parameters of spectral and temporal modulation
frequency, Gabor functions have different extent and
orientation for a given number of oscillations under the
envelope as used in this study. The Gabor filter bank used here
has been adapted from [4]. The 59 Gabor filters emphasizing
on different temporal and spectral modulation frequencies are
used. However, the filters with a large spectral extent result in
high correlations between frequency channels. Hence, a subset
of the possible combinations are used to avoid high
correlations of feature components, resulting in an 814-
dimensional feature. In [12] we found that medium-duration
bias subtraction and Gabor filtering are two key factors for
PNS-Gabor when used for Aurora2 and noisy WSJ.

Figure 2: Clean and noisy mel spectrogram (left) and power

normalized spectrogram (right)

2.2. Feature Selection via Sparse PCA

While a number of experiments have shown the utility of
using spectro-temporal Gabor filters for automatic speech
recognition, some features generated by Gabor filters may not
be informative. Here we propose an approach to select
informative Gabor features using sparse principle component
analysis. Based on the leading sparse principal vectors, we
discard Gabor features that might prove to be less useful.

Classical PCA is a widely used tool for dimensionality
reduction, providing a linear combination of “all” features that
maximizes data variance. However, in general, the principal
vectors are dense (i.e., the entries are non-zero), which makes
the results difficult to interpret.�Sparse PCA on the other hand,
solves the same problem using “sparse” principal vectors. The
objective function of sparse PCA is modified from classical
PCA with an 1-norm penalty, so that sparse principal vectors
are favored. The objective function is represented as:

 , subject to
(3)

where ρ is a non-negative parameter controlling the sparsity of
principal vector, Σx is the empirical covariance matrix
calculated from observations {xi} and v is the leading sparse
principal vector. The first term in (3) is the objective function
of classical PCA. Formula (3) can be rewritten as:

 maxTr(Σxvv
T)− ρ(1T vvT 1) ,subject to

 (4)

To get a robust interpretation, we reformulate the 1-norm
penalty:

 −ρ(1T vvT 1) =min
U
Tr(UvvT),−ρ ≤Uij ≤ ρ (5)

We obtain formula (6) by applying (5) to (4):

 maxminTr((Σx +U)vv
T) : v

2
=1,−ρ ≤Uij ≤ ρ (6)

By switching the trace of the product in (6), it is equivalent to:

 (7)

The dual problem then can be shown as:

 (8)

 or min
U
λmax (Σx +U) :−ρ ≤Uij ≤ ρ (9)

where λmax (Σx +U) means maximum eigenvalue of Σx +U

Based on (9), we can solve the original problem by searching
for the minimum of the largest eigenvalue of the covariance
matrix with a noise matrix. Sparsity is accomplished by
eliminating small values imposed on the empirical covariance
matrix by component-wise noise bounded by ρ. In this paper,
we apply the Augmented Lagrangian Method (ALM)
algorithm to speed the search for U, as derived in [16].

We compute only the leading sparse eigenvector, which is
sufficient for selecting informative features in our experiment.
The feature variables corresponding to zero entries in the
sparse principal vector are less useful to account for data
variance. Hence, only informative features corresponding to
non-zero entries are selected. The dimensionality of the
selected features is much smaller than the original.

ωn

ωk

s(n,k) = exp[iωn (n− n0)+ iωk (k − k0)]

Wn Wk

h(n,k) = 0.5− 0.5 ⋅cos(2π (n− n0)
Wn +1

) ⋅cos(2π (k − k0)
Wk +1

)

Melspec��clean Power-normalized��clean

Melspec��SNR: 0 dB Power-normalized��SNR: 0dB

Fr
eq

. c
ha

nn
el

Fr

eq
. c

ha
nn

el

Time/s Time/s

max
v
vTΣxv− ρ v

1

2 v
2
=1

v
2
=1

max
v
min
U
vT (Σx +U)v : v 2

=1,−ρ ≤Uij ≤ ρ

min
U
max

v
vT (Σx +U)v : v 2

=1,−ρ ≤Uij ≤ ρ

2. Proposed Method

2.1. PNS Gabor features

Gabor-filtered power spectra based on mel-bands are easily
corrupted by noise. While no one has a general solution for
this problem, we found in [12] that using PNCC generated a
more robust spectro-temporal representation. We referred to it
as the power normalized spectrum and the corresponding
output filtered by Gabor filters as PNS-Gabor features. PNCC
[10] differs from MFCC in three aspects: (1) gammatone filter
(2) medium-duration bias subtraction (3) power-law
nonlinearity. An example of mel spectrum and power
normalized spectrum is shown in Fig. 2 illustrating greater
insensitivity to noise for the power normalized spectrogram.
PNS Gabor features are obtained by convolving two
dimensional modulation filters and power normalized
spectrum. To generate filters serving as model for spectro-
temporal receptive fields (STRFs), we multiply a complex
sinusoid with a Hanning envelope. The complex sinusoid
(with time modulation frequency and spectral modulation
frequency) is represented as:

 (1)

while the Hanning envelope is given (with and denote

window length)

 (2)

By tuning parameters of spectral and temporal modulation
frequency, Gabor functions have different extent and
orientation for a given number of oscillations under the
envelope as used in this study. The Gabor filter bank used here
has been adapted from [4]. The 59 Gabor filters emphasizing
on different temporal and spectral modulation frequencies are
used. However, the filters with a large spectral extent result in
high correlations between frequency channels. Hence, a subset
of the possible combinations are used to avoid high
correlations of feature components, resulting in an 814-
dimensional feature. In [12] we found that medium-duration
bias subtraction and Gabor filtering are two key factors for
PNS-Gabor when used for Aurora2 and noisy WSJ.

Figure 2: Clean and noisy mel spectrogram (left) and power

normalized spectrogram (right)

2.2. Feature Selection via Sparse PCA

While a number of experiments have shown the utility of
using spectro-temporal Gabor filters for automatic speech
recognition, some features generated by Gabor filters may not
be informative. Here we propose an approach to select
informative Gabor features using sparse principle component
analysis. Based on the leading sparse principal vectors, we
discard Gabor features that might prove to be less useful.

Classical PCA is a widely used tool for dimensionality
reduction, providing a linear combination of “all” features that
maximizes data variance. However, in general, the principal
vectors are dense (i.e., the entries are non-zero), which makes
the results difficult to interpret.�Sparse PCA on the other hand,
solves the same problem using “sparse” principal vectors. The
objective function of sparse PCA is modified from classical
PCA with an 1-norm penalty, so that sparse principal vectors
are favored. The objective function is represented as:

 , subject to
(3)

where ρ is a non-negative parameter controlling the sparsity of
principal vector, Σx is the empirical covariance matrix
calculated from observations {xi} and v is the leading sparse
principal vector. The first term in (3) is the objective function
of classical PCA. Formula (3) can be rewritten as:

 maxTr(Σxvv
T)− ρ(1T vvT 1) ,subject to

 (4)

To get a robust interpretation, we reformulate the 1-norm
penalty:

 −ρ(1T vvT 1) =min
U
Tr(UvvT),−ρ ≤Uij ≤ ρ (5)

We obtain formula (6) by applying (5) to (4):

 maxminTr((Σx +U)vv
T) : v

2
=1,−ρ ≤Uij ≤ ρ (6)

By switching the trace of the product in (6), it is equivalent to:

 (7)

The dual problem then can be shown as:

 (8)

 or min
U
λmax (Σx +U) :−ρ ≤Uij ≤ ρ (9)

where λmax (Σx +U) means maximum eigenvalue of Σx +U

Based on (9), we can solve the original problem by searching
for the minimum of the largest eigenvalue of the covariance
matrix with a noise matrix. Sparsity is accomplished by
eliminating small values imposed on the empirical covariance
matrix by component-wise noise bounded by ρ. In this paper,
we apply the Augmented Lagrangian Method (ALM)
algorithm to speed the search for U, as derived in [16].

We compute only the leading sparse eigenvector, which is
sufficient for selecting informative features in our experiment.
The feature variables corresponding to zero entries in the
sparse principal vector are less useful to account for data
variance. Hence, only informative features corresponding to
non-zero entries are selected. The dimensionality of the
selected features is much smaller than the original.

ωn

ωk

s(n,k) = exp[iωn (n− n0)+ iωk (k − k0)]

Wn Wk

h(n,k) = 0.5− 0.5 ⋅cos(2π (n− n0)
Wn +1

) ⋅cos(2π (k − k0)
Wk +1

)

Melspec��clean Power-normalized��clean

Melspec��SNR: 0 dB Power-normalized��SNR: 0dB

Fr
eq

. c
ha

nn
el

Fr

eq
. c

ha
nn

el

Time/s Time/s

max
v
vTΣxv− ρ v

1

2 v
2
=1

v
2
=1

max
v
min
U
vT (Σx +U)v : v 2

=1,−ρ ≤Uij ≤ ρ

min
U
max

v
vT (Σx +U)v : v 2

=1,−ρ ≤Uij ≤ ρ

frame&

Fr
eq

ue
nc
y&
ch
an
ne

ls&

B(K)%
�%
�%
�%
�%
B(2)%
B(1)%

0& =&

F
re

q
.

ch
a

n
n

e
l

Melspec, clean

0 0.5 1

5

10

15

20

Power−normalized, clean

0 0.5 1

5

10

15

20

25

30

F
re

q
.

ch
a

n
n

e
l

Time / s

Melspec, SNR: 0 dB

0 0.5 1

5

10

15

20

Power−normalized, SNR: 0 dB

Time / s
0 0.5 1

5

10

15

20

25

30

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

23

which is a functional descriptor of the linear processing of time-varying acoustic spectra
by the auditory system. Based on this evidence, spectro-temporal features, which serve as
a model for STRFs, have been applied to ASR. Several studies have successfully
incorporated Gabor function approximations into ASR [35, 39, 64]. In general, these
approaches define a series of spectral, temporal, and spectral-temporal modulation filters
which can be seen as roughly modeling neuron firing patterns for particular spectro-
temporal signal components. Purely temporal features such as TRAPS [27] and HATS
[11] can be regarded as special cases of spectro-temporal features. Gabor filters have also
been used for speech and nonspeech discrimination [46, 72].

3.2.2. Computational Gabor Model for Auditory
Receptive Fields

There are two ways to characterize the spectral-temporal response field. From the studies
of the ferret primary auditory cortex, simpler spectra consisting of single moving ripples,
which are basically sinusoidally modulated spectral profiles with a constant frequency
along time and the “logarithmic” frequency axis, could be used effectively to characterize
the response fields and transfer functions of auditory cortex cells. The response, thus, is
formulated as

O(n,k) = ΔAsin(2πωnn+ 2πωkk +Φ) (3.1)

where spikes were measured with different temporal (denoted as 𝜔!) and spectral
modulation (denoted as 𝜔!) at different amplitude levels (denoted as ∆𝐴).
Alternatively, STRF processing can be formulated as filtering:

O(n,k) = STRF(n,k)∗ x(n,k) (3.2)

At any particular time n and frequency k, a neuron’s response 𝑂 𝑛, 𝑘 is given by reverse
correlation/convolution of the STRF and the dynamic spectrum of the stimulus around
that instant and frequency 𝑥 𝑛, 𝑘 . Thus, the STRF acts as a filter, firing for the strongest
responses to spectro-temporal features that most resemble its own structure. Many studies
provide different ways to estimate STRFs.
 For speech processing, a commonly used approximation of STRFs is a 2D Gabor
function. 2D Gabor filters closely resemble the spectro-temporal response fields of
neurons in the primary auditory cortex, and in particular are used to extract features that
simultaneously capture spectral and temporal modulation frequencies for automatic
speech applications, as they are used to extract spatial-temporal modulation frequencies
for image processing applications [41]. The overall sensitivity pattern for human hearing
has also been observed via perceptual experiments, e.g., Chi et al [13]. It was observed
that humans are most sensitive to temporal modulation frequencies up to 16 Hz and
spectral modulation frequencies up to 2 cycles per octave.
 To generate Gabor filters serving as model for STRFs, we multiply a complex
sinusoid with a Hanning envelope.

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

24

STRF(n,k) ≅Gb(n,k) = s(n,k) ⋅h(n,k) (3.3)

The complex sinusoid (with time modulation frequency and spectral modulation
frequency) is represented as:

s(n,k) = exp iωnn+ iωkn[] (3.4)

while Hanning envelope is given:

h(n,k) = [1
2
(1− cos(2πn

Wn +1
)][1
2
(1− cos(2πk

Wk +1
))] (3.5)

where the time support Wn and frequency support Wk is defined as 1.75 cycles of the
corresponding modulation frequency:

Wn =1.75 ⋅
2π
ωn

,Wk =1.75 ⋅
2π
ωk

 (3.6)

For purely temporal or spectral filters, this definition results in an infinite support
function; in these cases, the support is limited to 40 frequency channels or 99 time frames,
which corresponds to the maximum size of the other filters in the respective dimension.
 By tuning parameters of spectral and temporal modulation frequency, Gabor
functions have different extent and orientation for a given number of oscillations under
the envelope. The Gabor filter bank used here has been adapted from [48]. The 59 Gabor
filters focus on different temporal and spectral modulation frequencies as shown in Table
3.1 and Fig. 3.4.

Temporal modulation [Hz] 0, 1.9, 3.9, 6.2, 9.9, 15.7, 25
Spectral modulation frequency
[cycle/oct]

-0.25, -0.1224, -0.06, -0.0293
0, 0.0293, 0.06, 0.1224, 0.25

Table 3.1, Temporal and spectral modulation frequencies for Gabor function

ωn

ωk

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

25

Figure 3.4, Frequency response of Gabor filters

 The 59 Gabor filters are then applied to filter the PN spectrum. For the high
modulation filters, the narrow filters capture the fast time-varying part of the spectrum, as
shown in Fig. 3.5. For the low modulation filters, the wide filters capture the coarse
representation of speech dynamics. A variety of tall and short filters corresponding to
different spectral modulation frequencies generate features capturing different
representations of spectral dynamics. In this regard, the standard cepstral coefficients
(MFCC or PNCC) can be considered a special case of spectro-temporal features where
the 2D filters measure spectral modulation frequencies across the entire spectrum within
a single time frame i.e. cepstral coefficients represent the 2D filters which are very tall
and narrow.

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

26

Figure 3.5, Above: a high temporal modulation filter (temporal modulation frequency: 6.2
Hz, spectral modulation frequency: -0.03 cycle/channel) and corresponding filter output;
below: a low temporal modulation filter (temporal modulation frequency: 2.4 Hz, spectral
modulation frequency: 0.03 cycle/channel) and corresponding filter output

Figure 3.6, Clean and noisy Mel spectrum based (top) and power normalized spectrogram
based Gabor features(bottom).

3.3. Sparse Feature Selection

While our experiments have shown the utility of using spectro-temporal Gabor filters for
ASR, some features generated by Gabor filters may not be informative. Here we further
propose an approach to select informative Gabor features using sparse principle
component analysis. Based on the leading sparse principal vectors, we discard Gabor
features that might prove to be less useful.
 Classical PCA is a widely used tool for dimensionality reduction, providing a linear
combination of “all” features that maximizes data variance. However, in general, the
principal vectors are dense (i.e., the entries are non-zero), which makes the results

time

fr
eq

. b
an

d
time

time

fr
eq

. b
an

d
fr

eq
. b

an
d

 (a) Mel-Gabor (clean) (b) Mel-Gabor (noisy)

 (c) PNS-Gabor (clean) (d) PNS-Gabor (noisy)

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

27

difficult to interpret. Sparse PCA on the other hand, solves the same problem using
“sparse” principal vectors. The objective function of sparse PCA is modified from
classical PCA with an 1-norm penalty, so that sparse principal vectors are favored. The
objective function is represented as:

maxvTΣxv− ρ(v
1

2) subject to v
2
=1 (3.7)

where ρ is a non-negative parameter controlling the sparsity of principal vector, Σx is the
empirical covariance matrix calculated from observations {xi} and v is the leading sparse
principal vector. The first term in (3.7) is the objective function of classical PCA.
Formula (3.7) can be rewritten as:

maxTr(Σxvv
T)− ρ(1T vvT 1) subject to v

2
=1 (3.8)

To get a robust interpretation, we reformulate the 1-norm penalty:

−ρ(1T vvT 1) =min

U
Tr(UvvT),−ρ ≤Uij ≤ ρ (3.9)

We obtain formula (3.10) by applying (3.9) to (3.8):

maxminTr((Σx +U)vv
T) : v

2
=1,−ρ ≤Uij ≤ ρ (3.10)

By switching the trace of the product in (3.10), it is equivalent to:

maxminvT (Σx +U)v : v 2

=1,−ρ ≤Uij ≤ ρ (3.11)

The dual problem then can be shown as:

maxminvT (Σx +U)v : v 2
=1,−ρ ≤Uij ≤ ρ (3.12)

 or min
U
λmax (Σx +U) :−ρ ≤Uij ≤ ρ (3.13)

where 𝜆!"# Σ! + 𝑈 means maximum eigenvalue of Σ! + 𝑈

 Based on (3.13), we can solve the original problem by searching for the minimum of
the largest eigenvalue of the covariance matrix with a noise matrix. Sparsity is
accomplished by eliminating small values imposed on the empirical covariance matrix by
component-wise noise bounded by ρ. To speed the search for U, we apply the
Augmented Lagrangian Method (ALM) algorithm as derived in [56].
 We compute only the leading sparse eigenvector, which is sufficient for selecting
informative features in our experiment. The feature variables corresponding to zero

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

28

entries in the sparse principal vector are less useful to account for data variance. Hence,
only informative features corresponding to non-zero entries are selected. The
dimensionality of the selected features is much smaller than the original.
 The sparse Gabor features are then used as input into a deep neural network. In
typical tandem processing, a deep neural network is employed to learn discriminative
transformations from front-end features; in this case Gabor filtered PN spectra, to
probabilistic features, which are referred as sparse PNS-Gabor DNN features. We used a
deep neural network with bottleneck structure where a bottleneck feature vector is
generated by a narrow-dimensional layer in the middle of the network as shown in Fig.
3.7.

Figure 3.7, Bottleneck deep neural network tandem system using sparse Gabor features

3.4. Gabor Convolutional Neural Network

In additional to incorporating Gabor filters into the input layer of fully connected DNNs,
here we propose another way to integrate pre-defined Gabor filters into convolutional
neural networks. The proposed neural network architecture, called the Gabor
Convolutional Neural Network (GCNN), incorporates Gabor functions into convolutional
filter kernels. As described in Chapter 2, typical CNN architectures use shared weights to
filter a receptive field, modeling the local characteristics of a spectrum. This filtering
process permits us to integrate 2D Gabor filters into the CNN topology. We modified the
receptive fields of the CNN, with several time and frequency supports conforming to
Gabor filter characteristics. The modified CNN includes Gabor filter coefficients as the

……....................#

Sparse#PCA#

Sparse#PNS#Gabor#

ch
an
ne

l#

ch
an
ne

l#

feature#input#

��500#units#

��500#units#

��500#units#

BN#layer#

#mono>
phones#

#

MFCC#BoAleneck#feature#

HMM/GMM#

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

29

initial filters at the lowest layer, and performs fine-tuning to optimize the coefficients by
back propagation training. The GCNN feature is better than both Gabor-DNN and CNN
features, where the former kept Gabor coefficients untrained while the latter used trained
filters without Gabor modeling. Also, pooling reduced word error rate effectively for
recognition of noisy speech.
 The typical convolutional neural network using PN-spectrum is shown in Fig. 3.8,
which consists of a convolutional layer, a subsampling layer, and fully connected layers
as described in section 2.3.

 Figure 3.8: Basic convolutional neural network topology with PN-spectrum

 Figure 3.9: Gabor convolutional neural network topology

Convolu'on(
layer(

pooling(
(layer((

Fully(connected(
network((

PN�spectrum(
frame(

Fr
eq

ue
nc
y(
ch
an
ne

ls
(

Max()(

PNS(
CNN(

random(
weights((
(

pooling'
'layer''

Fully'connected'
network''

PN'spectrum'

ch
an
ne

ls'

Gabor''
filter'2'

pooling'
'layer''

Fully'connected'
network''

convolu=on'layer''
'

PNS'
GCNN'Gabor''

filter'1'

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

30

To model Gabor filtering in CNNs, we made two modifications in the basic processing
for the convolution layer. First of all, we used linear instead of sigmoid activations. The
bias term was enforced to be zero. By these modifications, the neurons of convolutional
layer are just the filter outputs of the receptive field. Second, Gabor features consist of
filters with multiple time and frequency band supports. To meet the filter design, we
modified the receptive field size to give the same supports as the Gabor filters, instead of
using a fixed receptive field size i.e. 2Km+1 (bands) by 2Nm+1 (frames) matrix depending
on filter m. The Gabor filter coefficients are then flipped and incorporated into the initial
weights Wm. The convolutional activations can be formulated as Eq. 3.14.

hm (n,k) = lin(Gbm (−i,− j) ⋅ x(n+ i,k + j))
j=−Km

Km

∑
i=−Nm

Nm

∑

=Gbm (n,k)∗ x(n,k)

(3.14)

where hm(n,k) represents the neuron of mth feature vector based on a particular Gabor
filter, whose receptive field is 2Km+1 (bands) by 2Nm+1 (frames) matrix centered at the
current band of the frame, x(n,k). The connection weights Wm perform filtering on the
receptive field where the indices of the filter coefficients are flipped from the weight
indices, both vertically and horizontally as shown in Eq. 3.14.
 As shown in Eq. (3.14), the initial feature vectors were Gabor feature vectors. The
modified topology is depicted in Fig. 3.9. These filter coefficients are then trained with
typical error back-propagation training. Thus, unlike Gabor-DNN features, filter
coefficients were no longer untrained.
 Compared to a typical CNN, GCNN used Gabor filter characteristics to define linear
activated feature vectors with multiple time and frequency resolutions to initialize back-
propagation training, and potentially avoid overfitting to training data. A max-pooling
layer follows the convolutional layer to down-sample and smooth the Gabor features. A
comparison between Gabor-DNN, CNN and GCNN is summarized in Table 3.2.

Topology Filter coefficient Filter support Pooling
Gabor-DNN Gabor coefficient Gabor support No
CNN Random initial

and trained
Fixed time-
frequency support

Yes

GCNN Gabor initial and
trained

Gabor support Yes

Table 3.2: Comparison between Gabor-DNN, CNN and GCNN

3.5. Experimental Results

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

31

3.5.1. Noisy Speech Corpus

The approach proposed here is evaluated with the Aurora 2 [30] testing environment
covering the recognition of noisy digits and with two noisy versions of WSJ: (1) Aurora 4
[58] and (2) RATS “re-noised” Wall Street Journal (WSJ) speech.
 For Aurora 2, we use the clean connected digits for training. Three testing sets (set
A, B and C) are used with clean and noisy data. The testing data set A covers four
different noise types (subway, babble, exhibition and car), while the testing data B
covers four different noise types (restaurant, street, airport and train station). The testing
set C covers two noise types respectively from set A and set B (subway and street), plus
additional convolution noise. Different SNR values ranging from 0 dB to 20 dB were
tested in each case. The average word error rates (WERs) of this task are obtained by
averaging over WERs of the test sets.
 The Aurora 4 dataset provides both a clean training set and a multi-condition
training set. The clean training set is taken from 7138 utterances of the WSJ0 SI-84
dataset (83 speakers) where the data was recorded using a Sennheiser microphone. The
multi-condition training set contains the same number of utterances as the clean training
set, while half of the utterances were recorded by a secondary microphone. Six noise
types (car, babble, restaurant, street, airport and train) at SNRs between 10dB and 20 dB
were randomly added to three-fourths of utterances from both microphone types. The
evaluation set is based on 166 utterances of the Nov’92 5k evaluation set (8 speakers),
and is composed of 14 subsets: clean and 6 noise corrupted sets for data recorded by both
microphone types. The noise types are the same as those used for the multi-condition
training set, but were chosen with an SNR between 5 and 15 dB. The 14 subsets are
grouped into 4 sets: clean, noisy, clean with microphone distortion and noisy with
microphone distortion, which are referred as A, B, C and D respectively.
 For RATS re-noised WSJ, we started out with data taken from the WSJ1 dataset
(284 speakers) for training and the WSJ-eval94 dataset (20 speakers) for testing.
Estimated additive and channel noise from degraded recordings was applied to both
training and testing datasets using the “renoiser” tool [21]. Designed for use in the
DARPA RATS project, the system analyzes data from RATS rebroadcast example
signals (in this case, LDC2011E20) to estimate the noise characteristic including SNRs
and frequency-shifts; the original data is described in [2] and consists of a variety of
continuous speech sources that have been transmitted and received over 8 different radio
channels, resulting in significant signal degradations. The 8 radio channel characteristics
are specified in Table 3.3. We applied the same noise characteristics to WSJ data to
generate the RATS re-noised WSJ. In this case, the training data was obtained from 51.2
hours of the WSJ1 dataset with the clean channel and channel G (the channel with
highest SNR). Testing data was 0.8 hours of WSJ-eval94 for each channel. The results
reported here are WERs averaging over clean and 8 noisy channels.

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

32

Table 3.3, 8 noisy channels added to WSJ

3.5.2. PN Spectrum and Gabor Processing

First, we perform an analysis of the importance of individual signal processing steps
differentiating Mel spectra and power normalized spectra that result in the increased
robustness when incorporating Gabor filters. These features are evaluated from Aurora 2.
For the small vocabulary experiments in Aurora 2, the HMMs were configured as: whole-
word HMMs with 16 states and with 3-Gaussian mixtures with diagonal covariance per
state. Baseline results are obtained with the standard Aurora 2 MFCC frontend, which
converted each signal frame into 13 cepstral coefficients, with subsequent addition of
first and second derivative and utterance-wise mean and variance normalization. The
average word error rates (WERs) of this task are obtained by averaging over WERs of the
test sets.
 In Aurora 2 experiments, the neural networks in the tandem processing are single
hidden layer MLPs. The MLPs were trained with a temporal context window of 9
successive frames. We used 160 hidden nodes for Aurora 2 while the output layer
consisted of 56 context-independent phonetic targets. MFCCs were then concatenated
with Gabor features. The dimension of Gabor features is then reduced via PCA to 32,
resulting in a 71-dimension feature vector.
 In Table 3.4, we compare several different configurations of PNS-Gabor features
and Mel-Gabor features after concatenating MFCC in Aurora 2. The result for Mel-Gabor
features plus MFCC is presented in row (2), which is 15% relative better than the MFCC
baseline. From row (3) to row (6), the results were obtained from deconstructing PNS
into four different configurations. In row (7), instead of being filtered by Gabor filters,
PNCC was used as input for MLP, from which we could investigate the benefit of
combining MFCC and PNCC without Gabor filtering. As shown in row (3), we only
switched from Mel filter banks to gammatone filter banks. We referred to it as GT(l)-
Gabor. In row (4), gammatone filter banks were further processed by power nonlinearity
compression p instead of logarithm compression l, which was referred as GT(p)-Gabor.
PNS(l)-Gabor features were obtained by performing a power bias subtraction followed by
logarithmic compression. The result of regular PNS-Gabor features is presented in row

 Microphone SNR Frequency
shift

Channel A Motorola HT1250 15.6 0
Channel B Midland GXT1050 6.2 0
Channel C Midland GXT1050 6.0 0
Channel D Galaxy DX2547 3.5 180.9 Hz
Channel E Icom IC-F70D 0.9 0
Channel F Trisquare TSX300 3.0 0
Channel G Vostek LX-3000 18.7 0
Channel H Magnum 1012 HT 3.0 120.7 Hz

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

33

(6). GT(l)-Gabor didn’t perform as well as conventional Mel-Gabor features, while
GT(p)-Gabor gave a slight improvement. This implies that the power nonlinearity is
helpful to inhibit the effects of noise, as expected. However, as shown in Table 3.4, the
most effective step is power bias subtraction, from which we got 16.7% relative
improvement by comparing GT(l)-Gabor and PNS(l)-Gabor features. The best result
came from the PNS-Gabor feature, which is 20% relatively better than the Mel-Gabor
feature. Even after power bias subtraction, power nonlinear compression can help. In row
(7), we showed the WER from combination of PNCC and MFCC using MLP, which is
significantly worse than the proposed Gabor-filtered PNCC augmentation of MFCCs; the
latter is 15.7% better.
 To conclude, we investigated the key parts of the PNCC algorithm, augmented by
Gabor filtering. It appears that power bias subtraction and Gabor filtering are the key
steps for decreasing the WER (from 18.14% to 14.06%).

Table 3.4, Aurora 2 WER of Gabor features with different spectro-temporal representations.
The baseline is a 39-dimensional MFCC plus the first 2 derivatives with mean and variance
normalization.

3.5.3. Sparse Gabor Features

Next, we investigated the improvement by introducing sparse feature selection to Gabor
features. For the experiments, we evaluate these approaches in large vocabulary
continuous speech recognition tasks from RATS re-noised WSJ and Aurora 4.
 For both Aurora 4 and RATS re-noised WSJ, the acoustic models used cross-word
triphones estimated with maximum likelihood. The resulting triphone states were
clustered to 2500 tied states, each of which was modeled by 16 components of a Gaussian
mixture model. We used version 0.6 of the CMU pronunciation dictionary and the
standard 5k bigram language model created at Lincoln Labs for the 1992 evaluation.
Unless otherwise specified, mean normalization was performed for the features, while
vocal tract length normalization (VTLN) and adaption techniques such as maximum
likelihood linear regression (MLLR) were not employed for these tests.
 The fully connected deep neural networks were trained with a 4 hidden layer
bottleneck structure with a bottleneck (25 units) in the third hidden layer. The output
layer consisted of 41 context-independent phonetic targets. The features with 9

 Filter
bank

Pow
Sub

Com. Gb. WER

(1) MFCC - - - - 18.14
(2) Mel-Gb + MFCC Mel no log yes 15.41
(3) GT(l)-Gb + MFCC GT no log yes 15.75
(4) GT(p)-Gb + MFCC GT no pow yes 14.86
(5) PNS(l)-Gb + MFCC GT yes log yes 13.12
(6) PNS-Gb + MFCC GT yes pow yes 12.30
(7) PNCC-MLP + MFCC GT yes pow no 14.06

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

34

successive frames were used as input for a fully connected deep neural network. For fair
comparison, the number of free parameters of the neural networks were constrained to
roughly 3.5M by controlling the hidden layer size.
 Restricted Boltzman machine (RBM) pre-training was employed to initialize the
parameters of the neural network. For back propagation following the pre-training, we
began with a learning rate of .008 and reduced the learning rate by factors of two once
cross-validation indicated limited progresses with each learning rate, and continued until
cross-validation showed essentially no further progress.
 After DNN features were computed, the MFCCs were concatenated with the deep
neural network trained features, resulting in a 64-dimensional feature vector. Also, means
and variances were normalized per utterance before HMM training and testing for all the
features described here.
 We first present a series of baseline WER results for RATS re-noised WSJ and
Aurora 4 results using the clean training set. In Table 3.5, PNCC was better than other
feature baselines for both cases (on average). As a result we used PNCC or PN spectrum
based features for the experiments that followed.

Table 3.5: MFCC, AFE and PNCC baseline

In Table 3.6, we compare the DNN features based on PNCC, PNS-Gabor and the
dimensionally reduced PNS-Gabor feature selected via sparse PCA and classical PCA. In
this experiment, the sparse PCA parameter, ρ was set to .008, resulting in 271 selected
features from 819 features. The size of hidden layers was increased so that total number
of parameters was comparable. As shown in Table 3.6, the sparse-PCA selection was
better than using the other features. Aside from this improvement, the sparse PCA also
made feature generation more efficient. The sparse PCA approach was furthered
compared with classical PCA. Results also suggest that using the reduced “informative”
features via sparse PCA is better than using the linear combination of all features
obtained by classical PCA.

A B C D Avg
MFCC 62.4 8.2 36.7 25.5 52.1 40.5
MFCC(CMVN) 61.8 7.9 30.3 22.8 48.2 35.8

ETSI-AFE 59.4 8.8 24.5 24.7 38.9 29.5

PNCC 58.8 9.3 22.1 23.3 37.5 27.9

Aurora 4RATS
 WSJ

Feature

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

35

Table 3.6, WERs for DNN features based on PNCC, PNS-Gabor and dimensional reduced PNS-

Gabor using sparse PCA or classical PCA

 Using the sparse principal vector, we observed the suggested importance of Gabor
filters in Fig. 3.10. The darker areas represent the degree of importance (at least in terms
of variance) based on how many channels generated by the filter were selected. As shown
in Fig 3.10, filters with low temporal modulation frequency appear to be useful for
maximizing data variance. The features focus on temporal modulation frequency of 0, 2,4
and 3.9 Hz account for 94.1% of the weights of the leading sparse principal vector. The
corresponding filter lengths are roughly 1, 0.7 and 0.5 sec. It suggests that Gabor filters
with longer time scales are particularly informative.
 We also note that in all cases except for A (high SNR, no frequency shift) the sparse
Gabor outperforms all the other approaches.

Figure3.10: Importance of Gabor filters based on sparse PCA

3.5.4. Fully Connected DNN, CNN and GCNN

A B C D Avg
MFCC-DNN 59.2 6.2 25.2 24.8 45.1 32.3
PNCC-DNN 54.8 6.63 20.4 18.7 36.6 26.2
Gabor-DNN 53.9 6.85 18.9 17.8 35.4 25
Sparse
Gabor-DNN 51.7 6.72 18.2 16.9 34.1 24.1
Gabor-DNN
(classical
PCA) 52.9 6.8 18.5 17.4 34.8 24.6

Aurora 4Feature RATS
 WSJ

75%~100%
channels selected

50%~75%
channels selected

25%~50%
channels selected

0%~25%
channels selected

Temporal modulation frequency /Hz Sp
ec

tra
l m

od
ul

at
io

n
fr

eq
ue

nc
y

/ [
cy

cl
./c

ha
nn

el
]

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

36

Here, we compare the WERs of fully connected DNN, convolutional neural network and
Gabor convolutional neural network. For the CNN topology, we used 120 filters for the
convolutional layer. The filter size was 9 frequency bands with 15 successive frames. We
used a pooling size of 6 convolutional bands with stride 2 (overlap by 4), which reduced
dimensionality by a factor of 2. This layer was fed to a 5-layer fully connected bottleneck
structure. In the GCNN architecture, the time support for each filter kernel ranges from 7
to 99 frames, and frequency support ranges from 7 to 40 bands. 59 of the filters were
initialized as Gabor filter coefficients, and the other 61 filters were randomly initialized.
The rest of network set up is the same as for the CNN. For both CNN and GCNN
architecture, 40-d power normalized spectrum was used as input. We didn’t use delta and
acceleration coefficients to be consistent with Gabor filter input. Back propagation
strategy was the same as used for the DNN, while no pre-training was performed. Again,
MFCCs were concatenated with the convolutional neural network trained features,
resulting in a 64-dimensional feature vector.
 In Table 3.7, we compare a series of trained features using a fully connected neural
network, a convolutional neural network and a Gabor convolutional neural network. First,
the trained features of Table 3.7 are better than untrained features of Table 3.5. In Table
3.7, Gabor-DNN was better than PNCC-DNN except for the clean set (A). Next, we
compare Gabor-DNN with PNS-CNN and PNS-GCNN without a pooling layer. Without
pooling, the inputs of the fully connected network are feature maps of the convolutional
layer. Therefore, these rows function as a comparison between different sets of spectro-
temporal filters. Gabor-DNN used filters with variable size, but totally handcrafted. PNS-
CNN, on the other hand, learned filters with fixed size and trained on limited data. PNS-
GCNN has filters with variable size. Also, the trained filters were initialized with
handcrafted filters. In Table 3.7, PNS-GCNN was better than the other two features,
although the differences are small. The larger effects visible in the table show the effects
of pooling, and the cumulative effects of pooling and using GCNN instead of CNN. In
particular, max pooling provides a significant improvement for both RATS WSJ and
Aurora 4 (especially for noisy set (B) and noisy set with channel distortion (D)), and
particularly with pooling, using Gabor filters to help design the CNN has a good effect.

Table 3.7: WER for neural network features, clean training, noisy test.

A B C D Avg
MFCC-DNN 59.2 6.2 25.2 24.8 45.1 32.3
PNCC-DNN 54.8 6.63 20.4 18.7 36.6 26.2
Gabor-DNN 53.9 6.85 18.9 17.8 35.4 25
PNS-CNN
no pooling 54.1 6.34 19.8 17.9 35.8 25.5
PNS-GCNN
no pooling 51.6 6.52 18.3 18.5 34.6 24.4
PNS-CNN
with pooling 51.5 6.2 18.8 15.6 33.8 24.1
PNS-GCNN
with pooling 49.8 6.3 17.8 15.7 32.1 22.9

Feature RATS
 WSJ

Aurora 4

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

37

In addition to the experiments with mismatched training and testing, we also used the
multi-condition training set for Aurora 4. We chose the distinguished features, Gabor-
DNN, Sparse Gabor-DNN, PNS-CNN and PNS-GCNN comparing them with two
baselines: ETSI-AFE and PNCC. The results are shown in Table 3.8, where the
proposed PNS-GCNN could achieve 16.6% WER. This was achieved without VTLN,
MLLR, or other modeling enhancements. Table 3.7 and 3.8 concludes that GCNN
based features achieve the best performance over all the other features for both Aurora
4 and RATS re-noised WSJ.

Table 3.8: WER for multi-condition training set.

3.5.5. CNN Trained Filter versus Gabor Filter

In the previous experiments, we reported ASR results of GCNN that integrated pre-
defined Gabor filters and trained convolutional neural networks to generate a more robust
feature. From the experiments, the GCNN features performed better than both Gabor-
DNN and CNN features. We further investigated the filters trained from CNN and GCNN.
The trained CNN filters are composed of several vertical (spectral) and horizontal
(temporal) filters, as the examples in Fig. 3.11 show. However, the filters have very low
correlation to the diagonal Gabor filter, such as the diagonal filter in Fig. 3.12 (left) while
the diagonal filter would be kept and tuned in GCNN topology and the final filter is
shown in Fig. 3.12 (right). Thus, diagonal filtering is another factor distinguishing trained
filters with Gabor initialization and those with random initialization.

A B C D Avg
ETSI-AFE 10.6 18.6 19.7 30.9 23.4
PNCC 10.5 17.4 19.1 30 22.5
Gabor-DNN 8.4 14.2 14.3 25.8 18.8
Sparse
Gabor-DNN 7.8 13.8 12.5 24.1 17.7
PNS-CNN
with pooling 7.4 13.4 12.8 24.7 17.8
PNS-GCNN
with pooling 7.3 12.8 12.1 22.7 16.6

Feature

Aurora 4

CHAPTER 3. DEVELOPMENT OF GABOR CONVOLUTIONAL NEURAL
NETWORK

38

 Figure 3.11, a vertical and a horizontal filter example

Figure 3.12, (left): diagonal Gabor filter, (right): GCNN tuned diagonal Gabor filter

3.6. Summary

Here we incorporated Gabor features into a deep neural network and a convolutional
neural network. First of all, we employed a more robust spectro-temporal representation
incorporating key parts of the PNCC algorithm, augmented by Gabor filtering. From the
analysis experiments, the power bias subtraction and Gabor filtering are the key steps for
decreasing the WER. Second, we reported our use of sparse PCA on PNS-Gabor, which
is used as input for bottleneck deep neural networks using two large hidden layers
following the input layer. The key factor in this step is discarding uninformative features.
Third, we proposed a robust CNN architecture integrating Gabor filter design. The
proposed GCNN architecture learned local features with multiple temporal and spectral
resolutions with Gabor filter initialization, both for structure and initial weights. The filter
coefficients were further optimized by back propagation training. A maximum pooling
layer also gave significant improvement in our experiments. Our results indicated that the
proposed GCNN feature achieved the best results among other noise robust feature and
neural network feature for the two noisy WSJ corpora. It appears that, at least for these
tasks, it is useful to design the architecture and the input features for greater robustness
rather than just relying on the CNN to learn everything.

! !!

 38

Chapter 4

Quantifying Neural Network Feature
Errors and Model Errors

 In this chapter, we explore the questions surrounding how the application of deep neural
networks improves speech recognition accuracy, and why it fails for particular train-test
conditions rather than focusing on how to actually improve speech recognition accuracy
as in Chapter 3.
 The sources of errors in ASR are from two primary factors, model errors and
observation mismatch. For the model error, the major factor comes from the incorrect
assumptions of the standard acoustic model, the hidden Markov model, which fails to
accurately model speech data. Observation mismatch comes from uncompensated
training-testing data difference including noise, reverberation, speaking style (accent,
speaking rate) and etc. While these factors have long been observed, most research aimed
at improving speech recognition accuracy in either acoustic feature or model aspects has
largely ignored questions about quantifying the underlying causes of recognition errors.
These improvements from models or features without standard statistical data analysis
have long been argued as trial and error processes.
 In this chapter, we used the statistical tool for analysis experiments introduced by
Wegmann, et al. [22, 59], which used simulation and a novel sampling process to
quantify the effects that major HMM assumptions have on recognition accuracy. We first
discovered the basic mechanisms that neural network-based features use to substantially
improve Gaussian mixture based HMM speech recognition systems for matched near-
field or far-field experiments. Second, we investigated the failings of standard MFCC
based DNN for the mismatched train-test condition. Third, we explored the contribution
of robust signal processing techniques prior to neural network training. To accomplish
robust processing, we employed the representation of PNS-Gabor as described in Chapter
3 that incorporated Gabor filtering and power normalized spectrum prior to neural
network training. The analyses of the improvement from DNN features based on this
robust representation allowed us to investigate the contribution of robust feature
generation within the DNN framework. We conducted the experiments on the recognition
performance of the ICSI meeting corpus where near-field and far-field conditions are
recorded simultaneously.

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

39

4.1. Model Errors and Observation Mismatches

It has now been decades since hidden Markov models were first applied to the problem of
speech recognition ([5, 33]). Moreover, it has been over 20 years since the speech
recognition community has used HMM as the dominant paradigm for most acoustic
modeling problems.
 While other alternatives exist, including conditional random field [25] and more
recently long short-term memory (LSTM) with connectionist temporal classification
(CTC) implementation [23], HMMs still dominate most speech recognition tasks. When
applying HMMs to the problem of ASR, there are two main assumptions that we make.
The first assumption is the parametric models that we use for the HMM’s output
distributions. Often, the emission probability is assumed to be multivariate Gaussian with
diagonal covariance (though the hybrid neural network/HMM approach didn’t model
Gaussian distribution). The second assumption is the statistical independence of frames
where we assume that successive frames generated by a certain state are independent,
moreover, that frames generated in one state are independent of those generated by a
different state. More precisely, given state sequence s1,2…T and the model parameter 𝜆, the
likelihood of observations is obtained from the multiplication of likelihoods of each
frame:

P(o1,o2....,oT | s1, s2...., sT ,λ) = P(oi | si,
i=1

T

∏ λ) (4.1)

 The independence assumption is incorrect partly because of the mechanics of speech
production and partly because of the feature extraction process; for example, cepstral
coefficients have 15 ms overlapping while computed from 25 ms analytic window and
appended with first and second difference computed from adjacent frames; and Gabor
features processed time support up to 99 frames. While both of these assumptions are
understood to be incorrect for speech data, we can investigate the impact each of these
two assumptions has on recognition accuracy and in particular if one assumption
dominates recognition errors. This type of diagnostic information is a critical step
towards improving or replacing the HMM for speech recognition.
 Another source of errors comes from mismatched training/testing data. As described
earlier, speech recognition is operated in the environment where noise and reverberation
may be present. It is not feasible to collect and transcribe the huge amount of training
data that include all noise, reverberation, and other conditions. The testing data with
unseen acoustic condition that deviate from training data degrades the performance
rapidly leading to another brittleness of ASR. To analyze the problem, we used the
paralleled recordings from near-field and far-field microphones in the ICSI meeting
corpus [32] to construct three sets of related recognition tasks: (a) matched near-field
acoustic model training and recognition test data; (b) matched far-field acoustic model
training and recognition test data; (c) mismatched near-field acoustic model training data
and far-field recognition test data. The experiments in the matched cases (a) and (b)
focused on model errors: (1) long-term statistical dependence that is present in speech

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

40

data and violates the HMM’s conditional independence assumption and (2) deviation of
feature distribution to Gaussian assumptions. For the mismatched case in (c), we quantify
the recognition errors from the lacking of robustness to the transformation between the
near and far-field acoustics.

4.2. Simulation and Bootstrap Sampling

To quantify these factors, we evaluated the recognition performance on pseudo data that
is generated with the controlled statistical property. We used simulation and sampling
process to fabricate pseudo test data that deviated from the HMM in different levels. At
one extreme, it agrees with all of the model’s assumptions, and at the other extreme,
deviates from the model in the way real data do. In between, we can precisely control the
degree of data/model mismatch. By measuring recognition performance on this pseudo
test data, we are able to quantify the effect of this controlled data/model residual on
recognition accuracy.

4.2.1. Simulation Pseudo Observations

First, we followed the full generative process assumed by HMMs to simulate the ideal
data, which respects all the assumptions of the model. As described above, we used a
Gaussian mixture model for state emission distributions. Therefore, the generative
process includes sampling steps from two parametric probability distributions where
Gaussian distributions determine the feature values while transition probabilities controls
the state duration. Thus, the fabricated observations obtained by the simulation process
are indeed independent conditioned on the states and follow the Gaussian form of the
given hidden states.
 To generate the test data by simulation, we started with the ground truth of test
utterance, and unpacked the word transcription into phone transcriptions by looking up
pronunciation dictionary. Next, we walked through the states and generated the output
distribution associated with the states belonging to the triphones to generate the data. Fig.
4.1 shows the full generative process and it is summarized as the following steps:

Simulation process

1. Convert test transcription from word to phone
2. Sample from transition distribution to walk through states
3. Sample from Gaussian distribution to generate pseudo data
4. Decode the pseudo data

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

41

Figure 4.1: Simulation process

In the process mentioned above, although MFCC has delta coefficients and acceleration
coefficients computed from adjacent frames appended to the static cepstral features, the
GMMs never learn about the temporal consistency between successive feature vectors
and their corresponding delta and acceleration features. Therefore, while the pseudo data
that we generated still has features corresponding to the static cepstral features, delta and
acceleration, they lost the temporal dependency. To simplify the generative process, we
used only a single Gaussian distribution for each state instead of typical 32-128 Gaussian
mixtures.

4.2.1. Frame Resampling

In this section, we modified the generative process by bootstrap sampling from real data
rather than drawing samples from Gaussian distribution. In this fashion, we created data
that respects the independence assumptions while follow empirical distribution instead of
Gaussian distribution that is controlled by means and variances. To perform bootstrap
sampling, we first used the original model to perform forced alignment on the training
data, so that each speech frame is aligned with its most likely generating state. Next, we
walked through this alignment, filling an urn for each state with its representative frames;
at the end of this process, each urn was populated with frames representing its empirical
distribution. To generate resampled data, we used the model to create a forced alignment
of the test data, and then sampled a frame (at random, with replacement) from the
appropriate urn for each frame position; these resampled frames were concatenated as
shown in Fig. 4.2. With this resampling, the pseudo test data had exactly the same length
as the original, and had the same underlying alignment, but the frames were then
conditionally independent (given the state). The resampling process is summarized as:

Tes$ng'u)erance'
ground'truth'

Unpacked'to''
phone'

Walk'through'
states'

Draw'from'
GMM'

hi# this# is#

/h/' /ay/'

S1' S2' S3' S4' S5' S6'

o1' o2' o3' o4' o5' o6' o7' o8' o9'

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

42

Frame Resampling

1. Perform force aligning to obtain frame-level alignment for both training and

testing data
2. Fill the urns of each state with frames from training data
3. Generate test data by sampling (with replacement) from the corresponding urns
4. Viterbi decoding the resampled data

Figure 4.2: Pseudo test data (“Hi”) generated using frame resampling

4.2.2. Segment Resampling

From frame resampling, we generated independent observations from empirical
distribution. We could further extend the sampling process from frames to segments and
relax the independence assumptions to cross-state/phone level. By placing entire
state/phone sequences of frames in the urns, and then resampling (again, concatenating
samples), we ended up with pseudo test data with dependence among frames within
state/phone regions, but independence across state/phone boundaries. As the resampling
units were larger than single frames, pseudo test data had different lengths from the
original. Fig. 4.3 and 4.4 show the example generating pseudo test data using state/phone
resampling.

Phone resampling

1. Perform force aligning to obtain frame-level alignment for training

2. Fill the urns of each “phone” with frames from training data

3. Generate test data by sampling (with replacement) from the corresponding urn

4. Viterbi decoding the resampled data

/h/,s1& /h/,s3&

Pseudo&test&data&
of&“Hi”&

o1& o2& o3& o4& o5& o6& o7& o8& o9& o10&

s1&

/h/& /ay/&
s2& s2&s1&s3& s3&

dataset& dataset&

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

43

Figure 4.3: Pseudo test data (“Hi”) generated using state resampling

Figure 4.4: Pseudo test data (“Hi”) generated using phone resampling

4.3. Data Preparation

For the statistical ASR analysis in this chapter, we used a dataset of spontaneous meeting
speech recorded at ICSI [32] where each spoken utterance was captured using near-field
and far-field microphones. To avoid the results smeared by a synchronized time skew, we
performed time aligning procedures, so that the datasets and the models in the near-field
and the far-field cases were completely parallel.
 Our training set is based on the meeting data used for adaptation in the SRI-ICSI
meeting recognition system [71]. For the test set we used the ICSI meetings drawn from
the NIST RT eval sets; this was done to control the variability in the data for the
resampling experiments. The remainder of this section discusses the creation of the
parallel near-field and far-field corpora. First we describe how we estimated and removed
a variable length time delay that existed between the corresponding near-field and far-
field utterances, so that each training and test utterance had two parallel versions: near-
field and far-field that lined up at the MFCC frame level. Next we discuss how we
partitioned these parallel near-field and far-field corpora data into training and test sets.

/h/,s1&

Pseudo&test&data&
of&“Hi”&

o1,o2,&o3&

s1&

/h/& /ay/&
s2& s2&s1&s3& s3&

o4,&&

/h/,s3&

o5&&

/h/,s2&

/h/# /ay/#

Pseudo#test#data#
of#“Hi”#

o1,#o2,#o3,#o4,#o5,#o6##

/h/# /ay/#

dataset# dataset#

o7,#o8,#o9,#o10,#o11,#o12,#o13,#o14,#o15#

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

44

4.3.1. Time-Aligning the Corpora

In order to synchronize the near-field and far-field recordings, we had to deal with a time
delay, or skew, that exists between the two recordings. These time delays arise from two
factors: (1) different physical distances between the speakers and the microphones, and
(2) systematic delays introduced by the recording software. The latter factor appears to
dominate the skew between the near-field and far-field recordings. Fixed delays were
introduced when the channels were initialized at the start of a recording. Since this
systematic delay dominated the skew, the near-field recordings had a time delay relative
to the far-field recordings. Fig. 4.5(a) illustrates an utterance captured by the far-field
microphone that is advanced in time in comparison to the same utterance captured by the
near-field microphone.
 A time delay is more pronounced in the cross-correlation between the near-field and
far-field signals, as shown in Fig. 4.5(b). The delay could be estimated by searching for a
peak in the cross-correlation sequence. In Fig. 4.5(b) the peak is at a lag of 41.88 ms (670
samples at 16 kHz). However, this detection could be difficult because of the recording
quality and noise. To guarantee a more precise detection, we divide each utterance into
overlapping windows, where the window size is a third of the utterance length and the
step size for successive windows is a tenth of the utterance length. For each step, the
cross correlation sequence is calculated and a delay is estimated by taking average of the
three segments.
 When the variation between the estimated delays in the windows for a given
utterance is large, then the estimation is regarded as unreliable and the utterance is
discarded. Approximately 30% of the utterances were discarded because of these
unreliable delay estimates. The delays between near-field and far-field channels for the
reliable data ranged from 12.5 ms to 61.25 ms. Fig. 4.6 shows a discarded utterance. This
is a recording of "laugh" followed by “breathing”. However, it appears that the recording
from far-field microphone missed the laugh segment. By computing cross correlation,
the peak value comes from matching the "laugh" segment of near-field recording and the
“breathing” segment of the the far-field recording.

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

45

Figure 4.5, Time alignment: (a) near-field (blue) and far-field (green) signals (b) Cross-

correlation between the signals.

Figure 4.6, Discarded example: near-field (blue) and far-field (green) signals

Fig. 1. Time alignment: (a) NF (blue) and FF (green) signals (b)
Cross-correlation between the signals.

2.1. Time-aligning the corpora

In order to synchronize the NF and FF recordings, we must deal with
a time delay, or skew, that exists between the two recordings. These
time delays arise from two factors: (1) different physical distances
between the speakers and the microphones, and (2) systematic delays
introduced by the recording software. The latter factor appears to
dominate the skew between the NF and FF recordings. Fixed delays
were introduced when the channels were initialized at the start of a
recording. Since this systematic delay dominates the skew, the NF
recordings have a time delay relative to the FF recordings. Fig 1(a)
illustrates an utterance captured by the FF microphone that is ad-
vanced in time in comparison to the same utterance captured by the
NF microphone.

Time delay is more evident in the cross-correlation between the
NF and FF signals, as shown in Fig 1(b). The delay could be esti-
mated by searching for a peak in the cross-correlation sequence. In
Fig 1(b) the peak is at a lag of 41.88 ms (670 samples at 16 kHz).
However, this detection could be difficult because of the recording
quality and noise. To guarantee a more precise detection, we di-
vide each utterance into overlapping windows, where the window
size is a third of the utterance length and the step size for successive
windows is a tenth of the utterance length. For each step, the cross-
correlation sequence is calculated and a delay is estimated. If the
variation between the estimated delays in the windows for a given ut-
terance is too large, then the estimated delay is regarded as unreliable
and the utterance is discarded. Approximately 30% of the utterances
were discarded because of these unreliable delay estimates. The de-
lays between NF and FF channels for the reliable data ranged from
12.5 ms to 61.25 ms. This was implemented using the Skewview
tool [15]. A more detailed discussion of the time delay can be found
in [16].

2.2. Data partitions

Because of the parallel nature of the NF and FF corpora, the data
partitions are identical. For simplicity, we describe the NF partition-
ing. The training set had a dominant speaker accounting for nearly
a quarter; clearly this would skew the data generated by the resam-
pling process. On the other hand, perfect speaker balancing cannot
be achieved given that this is a corpus of spontaneous speech. There
is, therefore, a trade-off between “the amount of data” and an “egal-
itarian distribution of speakers”. The resulting NF training and test
sets consists of about 20 hours and 1 hour respectively and their
statistics are reported in Table 1.

Table 1. Training and test statistics for NF and FF.
Dataset Speakers Utterances Time
Training 26 23729 20.4 (hrs)

Test 18 1063 57.9 (mins)

3. MODELS AND EXPERIMENTAL SETUP

We use version 3.4 of the HTK toolkit [17] for the front-end, acous-
tic model training, and decoding. In particular, we use the stan-
dard HTK front-end to produce a 39 dimensional feature vector ev-
ery 10 ms: 13 Mel-cepstral coefficients, including energy, plus their
first and second differences. The cepstral coefficients are mean-
normalized at the utterance level. We use HDecode for decoding
with a wide search beam (300) to avoid search errors. To evaluate
recognition accuracy the reference and the decoded utterances are
text normalized before the NIST tool sclite is used to obtain word
error rate (WER). The remainder of this section discusses the recog-
nition acoustic models, dictionary, and language model.

3.1. Near-field acoustic models

The NF acoustic models use cross-word triphones and are estimated
using maximum likelihood. Except for silence, each triphone is
modeled using a three-state HMM with a discrete linear transition
structure that prevents skipping. The output distribution for each
HMM state is a single, multivariate Gaussian with diagonal covari-
ance. While signicantly better performance can be achieved with
mixtures of more components, the simplicity of a single component
is preferable for our analysis; it also highlights the performance dif-
ferences between our experiments. Maximum likelihood training
roughly follows the HTK tutorial: monophone models are estimated
from a “flat start”, duplicated to form triphone models, clustered to
2500 states and re-estimated.

3.2. Far-field acoustic models: via single-pass retraining

Instead of building the FF acoustic models from a flat start, we ex-
ploit the parallel nature of the NF and FF training sets to build the
FF models using single-pass retraining from the final NF models and
the FF data. Single-pass retraining is a form of EM, which is sup-
ported by HTK, where, in our case, the E-step is performed using the
NF models and data, while the M-step and model updates use the FF
data. We only update the means and variances of the FF models, so
the result is a parallel set of NF and FF acoustic models that share
the same state-tying but the (unknown) transformation between the
NF and FF means and variances is determined by the frame-level
transformation between the parallel NF and FF acoustic data.

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

46

With time aligning, the datasets and the models are completely parallel in the near- field
and the far-field cases so that the errors in the mismatched case can be attributed solely to
either the features or the models.
 For the alignment of training data, we created alignments using the near-field model
on the near- field data, and used this alignment to generate pseudo, far-field test data (for
the mismatched case). This avoids the differences in the alignments created by the near-
field and the far-field model and lead to the parallel creation of pseudo test sets.

4.3.2. Data Partition

Because of the parallel nature of the near-field and far-field corpora, the data partitions
are identical. For simplicity, we describe the near-field partitioning. The training set had a
dominant speaker accounting for nearly a quarter; clearly this would skew the data
generated by the resampling process. On the other hand, perfect speaker balancing cannot
be achieved given that this is a corpus of spontaneous speech. There is, therefore, a trade-
off between “the amount of data” and an “egalitarian distribution of speakers”. The
resulting near-field training and test sets consist of about 20 hours and 1 hour respectively
and their statistics are reported in Table 4.1.

ICSI meeting
corpus

Training Test

Speakers 26 18

Utterances 23729 1063

Duration 20.4 (hours) 57.9 (min)

Table 4.1, Training and test statistics for both near-field and far-field set.

4.4. Acoustic Models and Features

The near-field acoustic models use cross-word triphones and are estimated using
maximum likelihood. Except for silence, each triphone is modeled using a three-state
HMM with a discrete linear transition structure that prevents skipping. The output
distribution for each HMM state is a single, multivariate Gaussian with diagonal covari-
ance. While signicantly better performance can be achieved with mixtures of more
components, the simplicity of a single component is preferable for our analysis; it also
highlights the performance differences between our experiments. Maximum likelihood
training roughly follows the HTK tutorial: monophone models are estimated from a “flat
start”, duplicated to form triphone models, clustered to 2500 states and re-estimated.
 Instead of building the far-field acoustic models from a flat start, we exploited the
parallel nature of the near-field and far-field training sets to build the far-field models

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

47

using single-pass retraining from the final near-field models and the far-field data.
Single-pass retraining is a form of EM where, in our case, the E-step was performed
using the near-field models and data, while the M-step and model updates used the far-
field data. We only updated the means and variances of the far-field models, so the result
was a parallel set of near-field and far-field acoustic models that share the same state-
tying. But the (unknown) transformation between the near-field and far-field means and
variances is determined by the frame-level transformation between the parallel near-field
and far-field acoustic data.
 Since we were using relatively simple acoustic models– single mixture component
per state and 2500 tied states–and that the recognition task is much more complex
compared to [22], we used a powerful language model (LM) to keep the error rate
manageable. In fact, our initial experiments using a weaker LM derived from the training
set resulted in WERs as high as 64% in the matched near-field condition.
 We used a LM [71] that was trained at SRI by interpolating a number of source
LMs; these consisted of webtext and the transcripts of the following corpora:
Switchboard, meetings (CMU, ICSI, and NIST), Fisher, Hub4-LM96, and TDT4. We
then removed words not in the training dictionary from the trigram LM, and renormalized
it. The perplexity of this meeting room LM is around 70 on our test set. To avoid out-of-
vocabulary issues, all test utterances containing a word not present in the LM are
removed. We used the SRI pronunciation dictionary; it uses two extra phones in
comparison with the CMU phone set–“puh” and “pum”– for hesitations.
 The features explored here are (1) MFCC (2) DNN features based on MFCC input
and (3) DNN features based on robust representation (means were normalized per
utterance before HMM training and testing for all the features). We are primarily
focusing on the actual improvement of the two DNN features comparing to 39-d MFCC
baseline.
 For MFCC based DNN features, again we exploited a 4-hidden layer neural network
structure with a bottleneck layer in the 3rd hidden layer. The bottleneck size was set to 25
while other hidden layers each consisting of 1600 neurons so that the total number of
parameters is about 3M. The network input is 9 successive frames of MFCC. The output
layer consisted of 43 context-independent phonetic targets. Restricted Boltzman machine
(RBM) pre-training is used to initialize the parameters of the neural network. For back-
propagation following the pre-training, we began with a learning rate of .008 and reduced
the learning rate by factors of two once cross-validation indicated limited progress with
each learning rate, and continued until cross-validation showed essentially no further
progress. The final feature was taken from the 25-d bottleneck feature augmented with
39-d MFCCs, which is called MFCC-DNN as used in Chapter 3.

4.5. Results and Discussions

In addition to the original test data, we created near-field and far-field test data by
simulation, resampling frames and phones. The corresponding recognition models were
used for decoding. All simulation/resampling results reported the average results of 5
repeated experiments. The results of matched near-field and far-field experiments are

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

48

discussed in section 4.5.1 and 4.5.2 respectively. The experiments of near-field training
and far-field testing experiments are reported in section 4.5.3.

4.5.1. Analysis of Matched Near-Field Results

Previous work on MFCC [22] with matched training/test has shown that recognition
errors are dominated by incorrect independent assumptions. The observation still holds
for deep neural network features as shown in Table 4.1. In particular, WERs are
extremely low for simulated and frame-resampled data where the independent
assumption is satisfied by data. By comparing MFCC to DNN features, we observe that
deep neural network trained features (both MFCC-DNN and PNS-Gabor DNN)
consistently outperform MFCC. For simulated data, transforming MFCC with deep
neural network reduces recognition errors by 73%. The improvement decreases as we
introduce dependency (at phone-level). Thus, dependency in real data degrades
improvement of deep neural network feature in HMM framework.

Table 4.2, Results for matched near-field data

4.5.2. Analysis of Matched Far-Field Results

For matched far-field data, deep neural network trained features keep providing
significant improvement as shown in Table 4.3. Thus, acoustic feature can be learned
using deep neural networks even when training data is noisy. Also, since the difference of
PNSGB-DNN and MFCC-DNN is negligible, it suggests that signal processing
techniques prior to neural network training didn’t contribute to extra improvement for
matched far-field data.

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 1.5 0.4 73% 0.5 67%

frame 2.4 0.7 71% 0.8 67%
phone 28.6 12.7 56% 15.3 47%
original 44.7 33.9 24% 36.5 18%

(2) MFCC-DNN (3) PNS-Gabor DNN

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

49

Table 4.3, Results for matched far-field data

4.5.3. Analysis of Mismatched Case

For the mismatched case, we observe that MFCC-DNN and MFCC have nearly identical
and poor performance. As the diagnostic experiments reported in Table 4.4, recognition
errors from observation mismatch of MFCC-DNN is more pronounced for simulated and
frame-resampled data where the WERs are 70.9% and 76.9% respectively. For simulated
data, applying DNN transformation trained from near-field data to far-field data increase
65% WER relative to MFCC. The result indicates that observation mismatch is a serious
issue for MFCC-DNN. While MFCC-DNN is corrupted in the presence of serious
mismatch, DNN based on PNS-Gabor performs significantly better than MFCC or
MFCC-DNN for all the experiments in Table 4. For simulation, PNS-Gabor DNN
reduced 43% WER relative to MFCC and 65% relative to MFCC-DNN. The results
suggest that robust signal processing prior to DNN training is the key step for decreasing
WER by avoiding specialization and generating more invariant features.

Table 4.4, Results for mismatched scenario

 From our experiments, DNN features can effectively reduce recognition errors when
training and test sets are matched whether they are both clean or both noisy; however, the
transformation is not generalized enough to apply to realistic data with serious mismatch.
Thus, robust signal processing is important for deep neural network feature extraction.

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 1.8 0.5 72% 0.5 72%

frame 3.4 1.2 65% 1 71%
phone 45.5 33.5 26% 33.1 27%

original 71.4 62.8 12% 62.9 12%

(2) MFCC-DNN (3) PNS-Gabor DNN

resampling (1) MFCC

WER WER Rel to (1) WER Rel to (1)
sim 43.0 70.9 -65% 24.5 43%

frame 59.9 76.9 -28% 43.4 28%
phone 80.6 80.8 0% 55.9 31%

original 84.7 83.6 1% 70.1 17%

(2) MFCC-DNN (3) PNS-Gabor DNN

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

50

4.5.4. Analysis of Neural Network Weights

Given the robustness of PNS-Gabor DNN, we were curious about whether the weights
based on PNS-Gabor feature space are indeed more invariant to different data. To
accomplish this, we analyzed the weights between networks trained from near-field and
far-field data using both MFCC and PNS-Gabor input. It is infeasible to compare the
parameters of two nets, so we trained another net where we initialized it using a net
trained from near-field data and then trained the net further using far-field data. Thus, the
net starts at near-field trained weights and then eventually adapted to far-field data. The
experiments allow us to compare the weights moving from one to another data. We
conduct the experiments for both MFCC and PNS-Gabor input. Applying the adapted
nets in the mismatched case, WER of MFCC-DNN was significantly decreased from
83.6% to 65.8% and it was decreased from 70.1% to 65.3% for PNS-Gabor DNN. Figure
4.7 shows the weights for the first hidden layer using MFCC (4.7a) and PNS-Gabor (4.7b)
input where each data point consists of two variables: initial weight (X-axis) and the final
adapted weight (Y-axis). We observe that weight adaption is more evident for MFCC
input and the deviation for PNS-Gabor DNN is relative small. The root mean square
deviation between initial weights and final weights for MFCC-DNN is 0.25 and 0.12 for
PNS-Gabor DNN. Thus, the net based on PNS-Gabor is indeed more invariant for
different data. In particular, Figure 4.8 shows the initial and final weights learned by two
hidden nodes of the first hidden layer for 9 frames of a MFCC (C1) and a PNS-Gabor
input. The examples illustrate greater insensitivity to different data for the DNN
transformation using PNS-Gabor input.

Figure 4.7, Initial weights and final weights of first hidden layer for MFCC input (a) and

PNS-Gabor input (b)

Initial weight Initial weight

Fi
na

l w
ei

gh
t

Fi
na

l w
ei

gh
t

(a) (b)

CHAPTER 4. QUANTIFYING NEURAL NETWORK FEATURE ERRORS AND
MODEL ERRORS

51

Figure 4.8. Initial weight (black line) and final weight (red dashed line) learned from 2
hidden nodes for 9 frames of a MFCC (C1) (above: (a) and (b)) and a PNS-Gabor input

(below: (c) and (d))

 Similar characteristic can be observed for the following layers in our experiments.
As both PNS-Gabor input and the following neural network transformation is more
invariant, PSN-Gabor DNN is better than MFCC-DNN in a mismatched scenario.

4.6. Summary

In this chapter, we exploited the method of simulation and resampling to investigate the
success and failings of deep neural network features in different train/test scenarios.
Diagnosis shows that DNN-based feature representation is indeed superior to the
corresponding MFCC in both two matched scenarios where the incorrect independent
assumption of HMM dominates recognition errors. However, evidence from simulation
and resampling experiments reveals that the MFCC-DNN feature is easily specialized to
training data and the observation mismatch dominates the source of recognition errors in
mismatched scenario. On the other hand, DNN-based features that use PNS-Gabor,
perform nearly identically to MFCC-DNN features in the matched scenarios and much
better than MFCCs and MFCC-DNNs in mismatched scenario. Thus, modeling and
robustness are the key steps to improve ASR performance using deep neural network.

w
ei

gh
t

w
ei

gh
t

w
ei

gh
t

w
ei

gh
t

(d)
1 2 3 ����4 5 6 7 8 9 1 2 3 ����4 5 6 7 8 9

(c) frame

1 2 3 ����4 5 6 7 8 9
frame

1 2 3 ����4 5 6 7 8 9
frame (b) (a)

frame

 52

Chapter 5

Feature Designs for Speaking Rate
Variability

In Chapter 3 and 4, we describe the robustness of word recognition in the presence of
noise with the use of a Gabor model. Here, we focus on modeling human perception that
is robust to variability of speaking rate. To quantitatively measure speaking rate
robustness, we used UCLA CVC (consonant-vowel-consonant) stimuli, which are uttered
quickly and more slowly, and conducted perceptual tests for clean and noisy versions. By
conducting tests on the data, we investigated if inclusion of Gabor-filtered spectrograms
with lower or higher temporal modulations could be used to correlate better with human
perception. Our results in this chapter confirmed an improvement in this correlation,
while also improving the accuracy.
 Unlike our previous large vocabulary continuous speech recognition results, our
source material was much simpler (CVC syllables, recorded at UCLA), so that we could
observe the distribution of accuracies in order to derive correlations with human
perception. Similar to the analytical experiments in Chapter 4, the specific goal of these
experiments was not to improve ASR, but rather to observe whether these specific
modifications of a standard ASR signal representation would improve the correlations
with measures of hearing. Again, we focus on the physiologically inspired
representations using a Gabor approach to modulation processing as described in Chapter
3.

5.1. CVC Data Collection

In this section, we describe the collection of the UCLA CVC stimuli1. A set of 36 CVC
phonetically balanced syllables that incorporated 13 consonants and 3 vowels was
selected. Recordings took place at UCLA using an AKG C-410 head mounted
microphone in a soundproof room, with two speakers (one male and one female). Each
CVC was repeated twice by each speaker. Babble noise from the Noisex database [73]
was added to the CVCs to prepare noisy stimuli. The SNR was calculated by using the
average SNR level over the speech-only segment, which was then used to determine the

1 The data collection is done by Anirudh Raju, Abeer Alwan and Jody Kreiman at UCLA Speech
Processing and Auditory Perception laboratory

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 53

noise power to be added. Each stimulus was prefixed with 100 ms of pure noise (at the
noisy power calculated in the previous step) in order to enable listeners to adapt to the
noise environment. Stimuli were generated corresponding to 6 conditions: 3 SNRs (quiet,
5 dB, 0 dB) x 2 speaking rates (slow, fast). Given the two speakers and the two
repetitions, this yielded (36x2x2x2x3) = 864 utterances for both perceptual and ASR
experiments.
 Listening experiments were conducted with 52 subjects, in a soundproof booth at
UCLA using the stimuli described above. The subjects would hear the set of 864 CVC
stimuli (36 syllables x 2 speaker x 2 speaking rates x 3 noise levels x 2 repetitions) over
two sessions of one hour each, corresponding to 432 stimuli per session. The stimuli were
played back to back, and the subjects were given a 3 second window between the stimuli
in order to respond. They were asked to repeat back the stimulus that they heard. A short
break of 10 seconds was given after every 20 stimuli. Two phonetically trained linguists
transcribed these manually. The consonant accuracies from the subjects are reported in
Table 5.1.
 For analysis of the perceptual data, effects were observed for each of the generation
factors, but for the purpose of this report, the focus will be on the speaking rate
characteristics over the range of consonants.

Human clean SNR5 SNR0
overall 95.0 71.4 56.5
slow 95.5 74.7 60.0
fast 94.4 68.1 53.0

Table 5.1, Consonant accuracy from the subjects for clean and noisy condition

Figure 5.1, Accuracy for each consonant in clean condition

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

p" t" k" b" d" g" s" z" h" m" n" l" r"

overall"

slow"

fast"

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 54

5.2. CVC Recognizer

For the ASR experiments, we used a neural network to generate features, and
HMM/GMM tandem system for the modeling of the CVCs. Given the limited amount of
CVC data, we primarily used 51 hours of read Wall Street Journal speech (22,092
utterances) for training of both the neural network feature generator and the GMM/HMM
acoustic models. Each triphone is modeled using a 3-state HMM. The resulting triphone
states are clustered using a decision tree to 5000 tied states where the output distribution
for each tied state is modeled with 32 mixtures of multivariate Gaussian with diagonal
covariance. Given the properties of the artificial data, we built the constraint word net as
shown in Fig. 5.2 to reduce the searching space while decoding.

Figure 5.2, Word net for decoding CVC data

 Given that the WSJ data is very different in character from CVC syllables, we
further adapted the neural networks to 471 of the CVC utterances (unused for other
testing). Testing was then done on an independent set of 864 CVC utterances. Results for
recognition of the different consonants were then compared to the UCLA perceptual
results for the different front-end models that were considered, and for differing noise
levels and speaking rates.

Figure 5.3, Classification system for CVC data

WSJ$
Acous*c$
Model$
Training$

HMM$ Word$
Net$

DecodingCVC
data$

phone$
confusion$
matrix$

adap$on'
set'

test''
set'

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 55

5.3. Multi-Stream Processing for Gabor Features

5.3.1. Temporal Division

Unlike the single Gabor feature stream processing used in the previous chapters, we split
the filter outputs into multiple feature streams based on the range of temporal modulation.
The temporal division allowed us to extract feature streams of slow or fast-modulated
spectrum for the purpose of ASR for the given speaking rates. For our design, 7 ranges of
temporal modulations, including 4 in the range of from 0 to 6.2 Hz (centered at 0, 2.4, 3.9,
and 6.2 Hz) and 3 from 9.9 to 25 Hz (centered at 9.9, 15.7, and 25 Hz) were used where
the former set is called low modulation streams while the latter set is referred as high
modulation streams. For each feature stream, there were 9 spectral modulations ranging
from -0.25 to 0.25 cycles per channel leading to a total of 125 inputs (as shown in Table 1
below). The temporal windows of high modulation filters range from 17 to 26 frames.
The temporal windows for low modulation filters range from 28 to 99 frames.
 For the high modulation stream, “skinny” filters capture the fast time-varying part of
the spectrum. For the low modulation stream, “fat” filters capture the coarse
representation of speech dynamic. For each of the two streams, a variety of “tall” and
“short” filters corresponding to different spectral modulation frequencies generate
features capturing different representations of spectral dynamics.

Low
modulation
frequency (Hz)

0, 2.4, 3.9,
6.2

High
modulation
frequency (Hz)

9.9, 15.7,
25

Table 5.2: Temporal division of Gabor feature streams

Spectral
modulation
frequency
(cycle/channel)

Number of
outputs

0.25, -0.25 40
0.12, -0.12 13
0.06, -0.06 5
0.03, -0.03 3
0 3

Table 5.3: Number of features for each spectral modulation frequency

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 56

5.3.2. Combination of Temporal Modulation Streams

The output of each of these temporal modulation streams is processed by a neural
network that has been trained to discriminate between phonetic classes. The neural
network outputs can then be interpreted as posterior probabilities for these classes and
combined in a controlled fashion.
 Previously, several neural network fusions approaches were studied including the
arithmetic, geometric, and harmonic means of the posterior outputs. Beyond these static
methods, we applied the dynamic weighting method where the weights that are computed
dynamically at each frame in order to take advantage of the properties of the different
feature streams for each new acoustic situation. Here we used an inverse entropy
combination [77]. For each stream s, an entropy of the output posteriors at frame i,
entropys,i can be calculated as:

 (5.1)

When a posterior provide an accurate probability estimation of a given phone, the entropy
is small. Ideally, target distribution consists of a 1.0 for a phone and 0.0 for the others.
Thus, inverse entropy can be used as an indicator to approximate the reliability of the
estimation. We use inverse entropy weighting to highlight the informative streams and
deny the others. The weight for stream s at frame i, ws,i , is calculated as

 (5.2)

 As is typical in tandem processing, the weighed posterior phone probabilities are
further processed by logarithm and principle component analysis (PCA) where the
logarithm transformation makes the distribution more Gaussian like while PCA performs
de-correlation and dimension reduction for diagonal Gaussian distribution. In the
following experiments, we combined low, high or all temporal modulation streams to test
CVC syllables uttered in slow and high speaking rates as shown in Fig. 5.4. The results
confirmed the intuition in our feature design where high/low modulated features prefer a
rapid/slow speaking rate respectively.

entropys,i = ps (cj | oi)
j
∑ log p(cj | oi)

ws,i =
1/ entropys,i
1/ entropys ',i

s '
∑

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 57

Figure 5.4, Combination of neural network outputs using inverse entropy. Low

temporal modulation streams (red) and high temporal modulation streams are split.

5.4. Results and Discussions

In the tandem processing, neural networks are trained to generate features for a
GMM/HMM system. However, we used only a single-hidden-layer MLP rather than
deeper network to avoid overfitting given the difference between the large WSJ set and
the small CVC syllable set. For the MLP inputs, we compare three different features. For
the baseline system, MFCCs, which model some basic properties of hearing is used. For
the Gabor features, we applied both the gammatone and the power normalized spectrum
processed with Gabor filters. MFCCs are appended to MLP outputs as conventional
fashion.
 Here we focus on the classification accuracies in clean conditions. The results of
noisy conditions show a similar trend but much worse accuracies because of the limited
amount of training data. Table 5.4, 5.5 and 5.6 demonstrate the results of consonant
accuracies and the correlations with human perception for overall (288 utterances), slow
(144 utterances) and rapid (144 utterances) speech. The results show that the PN-Gabor
MLP performs better than MFCC-MLP for both consonant accuracy and correlation with
perception in all conditions.

Front end method Machine consonant

accuracy in clean condition
Correlation with perception in
clean condition

MFCC + MFCC-MLP 69.5% 0.91
MFCC + GT-Gabor-MLP 67.0% 0.89
MFCC + PN-Gabor-MLP 73.4% 0.93

Table 5.4, Front end effects for clean CVCs, all speech

GT/PN&
spectrogram&

low&mod.&&

high&mod.&&

Filters:&25Hz&

Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&
Filters&0&Hz& Neural&network&

Neural&network&Filters:&25Hz& Neural&network&Filters:&25Hz& Neural&network&

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 58

Front end method Machine consonant

accuracy in clean, slow
speech

Correlation with perception in
clean, slow speech

MFCC + MFCC-MLP 68.4% 0.88
MFCC + GT-Gabor-MLP 68.9% 0.87
MFCC + PN-Gabor-MLP 74.9% 0.92

Table 5.5, Front end effects for clean CVCs, slow speech

Front end method Machine consonant

accuracy in clean, rapid
speech

Correlation with perception in
clean, rapid speech

MFCC + MFCC-MLP 70.5% 0.91
MFCC + GT-Gabor-MLP 65.1% 0.87
MFCC + PN-Gabor-MLP 71.9% 0.92

Table 5.6, Front end effects for clean CVCs, rapid speech

Testing condition Machine consonant

accuracy,
GT-Gabor MLP
low modulations
only

Machine consonant
accuracy,
GT-Gabor MLP high
modulations only

Clean, rapid speech 51.1% 70.3%
Clean, slow speech 63.3% 67.2%
Clean, all speech 57.2% 68.8%

Table 5.7: Comparison between using low modulation filters and only the high ones for slow and
rapid speech, using the GT-Gabor MLP front end, consonant accuracies.

Testing condition Machine correlation with

perception,
GT-Gabor MLP low
modulations only

Machine correlation with
perception,
GT-Gabor MLP high
modulations only

Clean, rapid speech 0.68 0.88
Clean, slow speech 0.81 0.81
Clean, all speech 0.74 0.87

Table 5.8: Comparison between using low modulation filters and only the high ones for slow and
rapid speech, using the GT-Gabor MLP front end, correlation with perception.

CHAPTER 5. FEATURE DESIGN FOR SPEAKING RATE VARIABILITY 59

To further investigate the effect of modulation design on recognition performance, we
split GT-Gabor streams into low (0.0-6.2 Hz) and high (9.9-25 Hz) temporal modulation
features and conducted the same experiments for both cases as well. Here, we selected
GT-Gabor for the analyses since the medium-duration spectrum subtraction step in the
PN spectrum could smear the results. For the cases of low or high modulations, the total
number of trained parameters was significantly lower, since only some of the MLPs were
used and the number of hidden units was kept constant.
 In general, the high modulations are better in all conditions, as highlighted by Tables
5.7 and 5.8. The behavior could be due to the fact that MFCC features to which the
modulation features are appended are essentially broad in modulation range, and so
emphasizing the higher modulations may help to boost an important region. While high
modulations are consistently better than low modulations, it appears that Gabor filters
corresponding to low temporal modulation frequencies gave both higher consonantal
phoneme accuracy and better correlations with human consonantal phoneme accuracies
for slower speech than they did for rapid speech. Similarly, higher temporal modulation
frequencies corresponded to better phoneme recognition for rapid speech than for slow
speech, and also had a better correlation with the perceptual phoneme accuracies. Also,
we observe that high modulations alone (70.3%) lead to better accuracies than the entire
feature streams (65.1%) for rapid speech. Therefore, neural networks cannot handle the
reduction of low modulations automatically without some design effect to detect
speaking rate.

5.5. Summary

For most of the tests, any strategy that improved consonant accuracy also yielded a better
correlation with human performance. However, all of the measured ASR accuracies were
far lower than the human perceptual case. As we had expected, the experiments show that
low (high) temporal modulations were indeed more effective in recognizing slow (rapid)
speech. Also, reduction of low modulations manually leads to better results for rapid
speech that were not achieved by a neural network automatically without some design
effect to detect speaking rate.

 60

Chapter 6

Phone Recognition for Mixed Speech
Signal Using Human Cortical Signal

In addition to the robustness to noise and speaking rate variability, another unique and
defining property of human speech perception is the ability to robustly process speech
sounds in the context of interference-filled acoustic conditions. A common condition is
the multi-speaker environment, where selective listening is required. Humans are very
successful at understanding speech in this condition even when spatial information is
limited or missing, which is called the “cocktail party” effect. For example, videos often
include background music mixed with spoken language, and yet the speech is
understandable by the viewer.
 In this Chapter, we study cortical signals involved in auditory source separation for
mixed single-channel speech signals, using neuroelectric responses directly measured
from the surface of the human cortex using a 256-electrode array, giving a view of
cortical sound processing of unprecedented detail and flexibility. While human beings
can attend to a single sound source within a mixed signal from multiple sources, the
automatic speech recognition without the benefit of effective blind source separation is
quite poor at this task. Here we report on the analysis of human cortical signals to
demonstrate the relative robustness of these signals to the mixed signal phenomenon,
which is contrasted to a deep neural network-based ASR system.

6.1. Neural Data

The acoustic and neural data used in this study were previously generated in sessions
with surgery patients as described in [44]. The patients had customized high-density
electrode arrays implanted subdurally that are sometimes necessary for the surgical
management of patients with epilepsy refractory to medications [10] (see Figure 6.1).
They participated in behavioral testing using stimuli from the Coordinate Response
Measure (CRM) corpus [7]. The corpus consists of phrases of the form “Ready (call sign)
go to (color) (number) now” spoken with different combinations of call signs (“Tiger” or
“Ringo”), 3 colors (“Blue”, “Green”, “Red”), 3 numbers (“Two”, “Five”, Seven”) and
two speakers. The patients were instructed to report the color and number associated with
a call sign (e.g. “Tiger”); however, they did not know a priori which speaker will be the
target in each trial. Consequently, subjects are required to attend to both speakers at the

CHAPTER 6 PHONE RECOGNITION FOR MIXED SPEECH SIGNAL USING
HUMAN CORTICAL SIGNAL

61

beginning of the mixture until they heard the target call sign and then attended to the
corresponding speaker. At the end of each experiment block, the patients had responded
to the same 28 sound mixtures while attending to both speakers. This experimental design
allowed us to determine the effect of attention on neural responses, while controlling for
identical acoustic stimulus conditions (i.e., hearing the same speaker mixture, while
attending to only one or the other voice). For the purposes of this study, we have been
working with data collected from three subjects, but since neural responses are highly
individual, all the results reported here are from a single individual.

Figure 6.1: MRI reconstruction of subject's cortex, with electrocorticogram (ECoG) electrodes
(16x16 grid, 4 mm spacing) indicated by dots. The red and yellow regions (temporal lobe) are

expected to contribute most to speech processing.

 Given the extremely modest amount of data (e.g., 3115 phones) from the CRM
experiments, we also used a subset of TIMIT to augment the acoustic training set. As
described below, we also used a jackknifing technique [19] to make better use of the
limited amount of data.

6.2. Neural Feature Extraction

In this section, we describe the methods to exploit a good representation from raw human
cortical signals. While the usual signal representations for phone or speech recognition
are acoustic features, we also attempt to decode the phone sequence directly from neural
features 2 that serves as a suitably preprocessed input to the recognizer. Fig. 6.2
demonstrates an example of raw cortical signal from one electrode.

2 The neural feature extraction and dimension reduction described in 6.2 and 6.3 are done by Erik
Edwards from UCSF

1. Introduction

We have recently been studying the cortical mechanisms
involved in auditory source separation for mixed single-
channel speech signals, using neuroelectric responses directly
measured from the surface of the human cortex using a 256-
electrode array, giving a view of cortical sound processing of
unprecedented detail and flexibility. This work has dual goals:
(1) to better understand these neural mechanisms in humans,
and (2) to use this new understanding to help us to design
better artificial systems for the separation of mixed signals
(e.g., to voices), with the ultimate goal of making speech
recognition systems more robust. In both cases, the effort has
built on the earlier work reported in [1], in which the
spectrotemporal representation of attended speech was
reconstructed. In the newer work, our goal is to design a
CASA (computational auditory scene analysis) system with
insights from the analysis of the human neural data. For this
document, however, we are reporting an initial result in which
we have observed that signals collected from the surface of
the human cortex (specifically in the area called the Superior
Temporal Gyrus, or STG) can be processed to classify phones
with similar error rates for both single and mixed single cases.
The rest of this paper describes the experiment, interprets the
results, and discusses implications for future work.

Figure 1: MRI reconstruction of subject's cortex, with
electrocorticogram (ECoG) electrodes (16x16 grid, 4 mm
spacing) indicated by dots. The red and yellow regions
(temporal lobe) are expected to contribute most to speech
processing.

2. Experimental Methods

2.1. Data

The acoustic and neural data used in this study were
previously generated in sessions with surgery patients as
described in [1]. The patients had customized high-density
electrode arrays implanted subdurally that are sometimes
necessary for the surgical management of patients with
epilepsy refractory to medications [2] (see Figure 1). They
participated in behavioral testing using stimuli from the
Coordinate Response Measure (CRM) corpus [3]. The corpus
consists of phrases of the form “Ready (call sign) go to (color)
(number) now” spoken with different combinations of call
signs (“Tiger” or “Ringo”), 3 colors (“Blue”, “Green”, “Red”),
3 numbers (“Two”, “Five”, Seven”) and two speakers. The
patients are instructed to report the color and number

associated with a call sign (e.g. “Tiger”); however, they do not
know a priori which speaker will be the target in each trial.
Consequently, subjects are required to attend to both speakers
at the beginning of mixture until they hear the target call sign
and then attend to the corresponding speaker. At the end of
each experiment block, the patients have responded to the
same 28 sound mixtures while attending to both speakers. This
experimental design allows us to determine the effect of
attention on neural responses, while controlling for identical
acoustic stimulus conditions (i.e., hearing the same speaker
mixture, while attending to only one or the other voice). For
the purposes of this study, we have been working with data
collected from three subjects, but since neural responses are
highly individual, all the results reported here are from a single
individual.
 Given the extremely modest amount of data (e.g., 3115
phones) from the CRM experiments, we also used of a subset
of TIMIT to augment the acoustic training set. As described
below, we also used a jackknifing technique [4] to make better
use of the limited amount of data.

2.2. Feature extraction

2.2.1 Acoustic features

For the purposes of this study, we only used un-enhanced
MFCCs. We used the Kaldi front-end [5] to produce a 39
dimensional feature vector every 10 ms, which converted each
25 ms signal frame into 13 Mel-cepstral coefficients, including
energy, plus their first and second differences.

2.2.2 Neural features

While the usual signal representations for phone or speech
recognition are acoustic features, we also attempt to decode
the phone sequence directly from neural features. We use the
term feature here in the pattern recognition sense of any
suitably preprocessed input to the recognizer.
The question is how to suitably preprocess the raw, often noisy,
broadband ECoG signal for ~optimal performance in the
recognizer. First, some degree of noise is unavoidable in the
present clinical context, and some epochs and electrodes are
rejected after human examination [as in 1]. Second, although
human brain waves have been known since 1929, and
intraoperative recording attempted soon thereafter [6], it was
not until relatively recently [7, 8] that it became apparent that
the information available in the so-called “high-gamma” band
(~70-170 Hz) carries information of far greater spatial and
temporal specificity compared to the more traditionally-
studied frequency ranges below ~60 Hz [9]. Although we have
not ruled out the use of lower frequencies as auxiliary
information [e.g., 10], the present study uses only the ECoG
data in the high-gamma range. Specifically, we sum over
Hilbert envelopes [11] for center frequencies ~70-170 Hz [as
in 9, 12], and downsample to 100 Hz. Analytic amplitudes are
distributed ~Rayleigh and heteroscedastic [13, 14], so we
further take the natural log to render ~Normal and to stabilize
variance [15, 16].
 The end result of preprocessing is a set of ~250 high-
gamma time series, one for each retained electrode. With small
training sets, DNNs may be prone to overfitting, so
dimensionality reduction to 48 neural features was deemed
necessary. We then explored several approaches to reduce 250
single-electrode features to 48 neural features.

CHAPTER 6 PHONE RECOGNITION FOR MIXED SPEECH SIGNAL USING
HUMAN CORTICAL SIGNAL

62

Figure 6.2, Example of raw cortical signal (left) from one electrode and the corresponding audio
signal (right)

 The feature generation process can be divided into preprocessing and dimension
reduction. We started with raw cortical signal collected from 256 electrodes. Next, 256-d
raw neural features focusing on a particular frequency band are generated. The dimension
reduced feature was then used for hybrid HMM/DNN phone recognition system.

Figure 6.3, Neural feature generation process

ECoG Pattern Recognit: Overview

ECoG Pattern Recognit: Overview ECoG Pattern Recognit: Overview

hybrid'
HMM/DNN'

Data'
Collec4on'

Preprocessing'

Dimension'reduc4on'

Raw'cor4cal'signal'

256Ad'highAgamma'feature'

Final'neural'feature'

Phone'classifica4on'

CHAPTER 6 PHONE RECOGNITION FOR MIXED SPEECH SIGNAL USING
HUMAN CORTICAL SIGNAL

63

6.2.1. Neural Features from High-Gamma Band

Despite advanced in neural research, the question to suitably process the raw, often noisy,
broadband ECoG signal for optimal performance in the recognizer is still poorly
understood. First, some degree of noise is unavoidable in the present clinical context, and
some epochs and electrodes are rejected after human examination [as in 44]. Second,
although human brain waves have been known since 1929, it was not until relatively
recently [14, 15] that it became apparent that the information available in the so-called
“high-gamma” band (~70-170 Hz) carries information of far greater spatial and temporal
specificity compared to the more traditionally studied frequency ranges below 60 Hz [17].
Although we have not ruled out the use of lower frequencies as auxiliary information
[e.g., 80], the present study uses only the ECoG data in the high-gamma range.
Specifically, we sum over Hilbert envelopes [4] for center frequencies 70-170 Hz [as in
17, 18], and down-sample to 100 Hz. Analytic amplitudes are Rayleigh distribution and
heteroscedastic [3, 6], so we further take the natural log to render Normal distribution and
to stabilize variance [60, 63]. The end result of preprocessing is a set of 256 high-gamma
time series as shown in Fig. 6.4, one for each retained electrode.

Figure 6.4, 256-d high gamma feature

CHAPTER 6 PHONE RECOGNITION FOR MIXED SPEECH SIGNAL USING
HUMAN CORTICAL SIGNAL

64

6.2.2. Dimension Reduction

With small training sets, DNNs may be prone to overfitting, so dimensionality reduction
to 48 neural features was deemed necessary. We then explored several approaches to
reduce the single-electrode features to 48 neural features.
 The most obvious, and nearly the oldest, method of dimensionality reduction is
spatial principal component analysis. However, the resulting components lack any
physiological significance and also serve poorly in a pattern recognition sense. This
problem has been known for nearly as long as spatial PCA itself [34, 43], and the most
frequent solution has been to rotate the components so as to achieve sparsity, locality,
clustering by similarity, or some other objective. After extensive study of available
rotation methods, component analyses, hard and soft clustering approaches, and various
other machine learning methods surrounding embedding and dimensionality reduction, it
was surprising to find that the old method of varimax rotation [36, 65] performed as well
or better than any of the several modern methods tried. This becomes less surprising
when one considers that such rotation is the old L2-norm method to achieve sparsity
(called “simple structure” in factor analysis), co-sparsity [20], within-cluster smoothness,
across-cluster decorrelation, and greater physical plausibility; all of these known to be
virtues for pattern recognition features [e.g., 26]. As an L2 method, it is also extremely
fast.
 Convex non-negative matrix factorization (NMF) [16] was found to slightly improve
the results taking the varimax components as initializing input. Neither ordinary NMF
[42], nor convex NMF without a good initialization, performed as well as varimax for our
purposes. The requirement of a good initialization is the known drawback of NMF.
Intuitively, convex NMF achieves the clustering objective that correlated electrodes
should cluster together, whereas the resulting cluster time series should be as decorrelated
as possible.
 The final neural features used here are thus 48 convex NMF components derived
from varimax rotation of spatial PCA analysis of 256 log-high-gamma time series (see
Figure 6.5).

Figure 6.5: Spatial weightings for 4 out of 48 of the convex NMF neural features used. These are
examples, chosen for their loadings onto temporal lobe sites important for speech processing.

 The most obvious, and nearly the oldest, method of
dimensionality reduction is spatial principal component
analysis (PCA). However, the resulting components lack any
physiological significance and also serve poorly in a pattern
recognition sense. This problem has been known for nearly as
long as spatial PCA itself [17, 18], and the most frequent
solution has been to rotate the components so as to achieve
sparsity, locality, clustering by similarity, or some other
objective. After extensive study of available rotation methods,
component analyses, hard and soft clustering approaches, and
various other machine learning methods surrounding
embedding and dimensionality reduction, it was surprising to
find that the old method of varimax rotation [19, 20]
performed as well or better than any of the several modern
methods tried. This becomes less surprising when one
considers that such rotation is the old L2-norm method to
achieve sparsity (called “simple structure” in factor analysis),
co-sparsity [21], within-cluster smoothness, across-cluster
decorrelation, and greater physical plausibility; all of these
known to be virtues for pattern recognition features [e.g., 22].
As an L2 method, it is also extremely fast.
 Convex non-negative matrix factorization (NMF) [23]
was found to slightly improve the results taking the varimax
components as initializing input. Neither ordinary NMF [24],
nor convex NMF without a good initialization, performed as
well as varimax for our purposes. The requirement of a good
initialization is the known drawback of NMF. Intuitively,
convex NMF achieves the clustering objective that correlated
electrodes should cluster together, whereas the resulting
cluster time series should be as decorrelated as possible.
 The final neural features used here are thus 48 convex
NMF components derived from varimax rotation of spatial
PCA analysis of ~250 log-high-gamma time series (see Figure
2).

Figure 2: Spatial weightings for 4 out of 48 of the convex
NMF neural features used. These are typical examples,
chosen for their loadings onto temporal lobe sites
important for speech processing.

2.3. Phone recognition system

For both neural and acoustic observations, we exploited the
hybrid HMM/Artificial Neural Network (ANN) architecture
[25] (more recently called HMM/DNN [26,27] when more
than a single hidden layer is used) to model context-
independent phoneme as shown in Figure 3 where network

outputs were used as posteriors to derive emission
probabilities for hidden Markov models (HMMs). We used the
Kaldi toolkit [5] for both model training and decoding, as well
as for the ANN processing. The hybrid HMM/ANN set up was
adapted from Kaldi recipe s5 [5].
 The inputs of the ANNs were obtained from splicing 39-d
MFCCs or 48-d neural features across 17 frames, followed by
reducing the dimension to 250 using linear discriminant
analysis. Mean and variance normalization were performed for
both MFCCs and neural features. The ANNs had 2 hidden
layers (marginally “deep”), each of which consists of 1100
tanh units. The output layer consisted of 117 context-
independent phonetic states (three states per phoneme), giving
1.6 M parameters in total (see Figure 3). Frame-level forced
alignment was provided by a simple context-independent
HMM/GMM system. The ANNs were trained with stochastic
gradient descent, starting with a learning rate of 0.015 and
ending at 0.002. During training we decrease them by a factor
of 1.14, except for 5 epochs at the end during which we kept
them constant. The network was trained for a total of 20
epochs. A biphone language model was estimated on the
training set.
 The acoustic recognition scenario gave a 26.9% phone
error rate for the standard TIMIT train-test set, where 3696
utterances were included for training and 192 utterances for
testing. Given the constraint of ECoG neural data, we set up
our train-test sets using only 374 utterances from TIMIT, 155
utterances from single source CRM data and 61 utterances
from mixed source CRM data.
 Due to the small amount of data, we used the jackknife
resampling process [4], splitting the set of CRM data into 5
different train-test cuts. For each of the training sets, we
randomly drew samples from the CRM data and augmented
them with 374 utterances of the TIMIT set. The rest of the
CRM sets were used for testing. This yielded 7,520 instances
of phones for single source test sets and 3,115 instances for
mixed source test sets. The results reported here are average
score over the 5 different train-test sets.

��������������
���

���������������������������
���

�
�������
����

����

! ������
�
����		�

��

CHAPTER 6 PHONE RECOGNITION FOR MIXED SPEECH SIGNAL USING
HUMAN CORTICAL SIGNAL

65

6.3. Phone Recognition System

For both neural and acoustic observations, we exploited the hybrid HMM/DNN. We used
the Kaldi toolkit [61] for both model training and decoding, as well as for the DNN
processing. The hybrid HMM/ANN set up was adapted from Kaldi recipe s5.
 The inputs of the DNNs were obtained from splicing 39-d MFCCs or 48-d neural
features across 17 frames, followed by reducing the dimension to 250 using linear
discriminant analysis. Mean and variance normalization were performed for both MFCCs
and neural features. The DNNs had 2 hidden layers, each of which consists of 1100 tanh
units. The output layer consisted of 117 context-independent phonetic states (three states
per phoneme), giving 1.6 M parameters in total. Frame-level forced alignment was
provided by a simple context-independent HMM/GMM system. The DNNs were trained
with stochastic gradient descent, starting with a learning rate of 0.015 and ending at 0.002.
 During training we decreased them by a factor of 1.14, except for 5 epochs at the
end during which we kept them constant. The network was trained for a total of 20
epochs. A biphone language model was estimated on the training set.
 The acoustic recognition scenario gave a 26.9% phone error rate for the standard
TIMIT train-test set, where 3696 utterances were included for training and 192 utterances
for testing. Given the constraint of ECoG neural data, we set up our train-test sets using
only 374 utterances from TIMIT, 155 utterances from single source CRM data and 61
utterances from mixed source CRM data.
 Due to the small amount of data, we used the jackknife resampling process [19],
splitting the set of CRM data into 5 different train-test cuts. For each of the training sets,
we randomly drew samples from the CRM data and augmented them with 374 utterances
of the TIMIT set. The rest of the CRM sets were used for testing. This yielded 7,520
instances of phones for single source test sets and 3,115 instances for mixed source test
sets. The results reported here are average score over the 5 different train-test sets.

6.4. Results

Table 6.1 shows that the phone error rate for the acoustic features, while far better than
that achieved with our neural signals for the single voice case, degrades greatly for the
mixed signal. For the neural features, the error rates overall are quite high, but there is
very little additional degradation when the subject is motivated to attend to the desired
voice.
 The primary hypothesis being tested was, given specific neural signals, and given
the chosen features extracted from these signals, that the phone recognition error rates
would be affected far less for the neural signals than for the acoustic signals. While it is a
common experience that humans do better in the cocktail party scenario than our current
machine methods, what was being tested here was the utility of the specific brain signals
that we were measuring to show this phenomenon. Furthermore, the experimentation
with feature extraction methods given the raw data had begun to show us what aspects of
the STG neural signals were most effective for phone recognition.

CHAPTER 6 PHONE RECOGNITION FOR MIXED SPEECH SIGNAL USING
HUMAN CORTICAL SIGNAL

66

 Acoustic
features

Neural features

Single source 48.6% 68.2%
Mixed source 73.2% 70.5%

Table 6.1: Phone error rate for complete CRM utterances

It must also be recognized that we were not yet attempting to build sophisticated systems
for this purpose; we were making no use of standard enhancement or blind source
separation algorithms. Consequently all error rates are quite high. Nonetheless, the
observed effects are quite striking: the neural features yield nearly the same error rates for
single and mixed sources, when the acoustic features are much less informative for the
mixed source case.
 As shown in tables 6.2 and 6.3, we can observe similar trends for the phone error
rates in target words (color and number, respectively). Phone error rates for acoustic
features rise significantly for the mixed signal case, but are nearly the same using neural
features.

 Acoustic
features

Neural features

Single source 54.0% 72.0%
Mixed source 75.2% 73.1%

Table 6.2: Phone error rates within the color target word (red, green, or blue)

 Acoustic

features
Neural features

Single source 56.1% 73.5%
Mixed source 79.9% 73.9%

Table 6.3: Phone error rates within the number target word (two, five, or seven)

6.5. Summary

The work reported here confirmed that the STG can provide meaningful information for
phonetic recognition, at least for the task used, that can be relatively independent of
interfering voices that the subject is not paying attention to. This is in contrast to the
observed increases in error rate for phone recognition given such interfering signals.

 67

Chapter 7

Conclusion

7.1. Contributions

In this thesis, we applied Gabor filter modeling some properties of “natural” human
auditory processing. This is instrumental in improving generalization to unanticipated
deviations from what was seen in training. We demonstrated that integration of Gabor
models as DNN input or convolutional kernels can improve accuracy on speech
recognition for unanticipated types of input including noise, channel distortion,
reverberation and speaking rate variation.
 In Chapter 3, we propose the features that integrate Gabor filters and a fully
connected DNN or CNN. We first employed a more robust PN spectrum incorporating
key parts of the PNCC algorithm. The Gabor features based on PN spectrum are then
used as input for DNN. Further improvement can be obtained by feature selection via
sparse PCA. Finally, we showed that a modified CNN could learn features with multiple
temporal and spectral resolutions by making use of Gabor kernels. The proposed feature
showed around 30% improvement relative to MFCC-DNN for noise-robust speech
recognition.
 In Chapter 4, we exploited the bootstrap sampling method to investigate the model
residual of DNN features based on Gabor and MFCC in different train/test scenarios. For
both matched near-field or far-field recordings, diagnostic analysis showed that the DNN
accounts for most of the improvement where the incorrect independent assumption of
HMM dominates recognition errors. However, the result revealed that the MFCC-DNN
feature is easily specialized to training data and the observation mismatch dominates the
source of recognition errors in mismatched scenario. On the other hand, a DNN-based
feature that uses Gabor, performs nearly identical to MFCC-DNN features in the matched
scenarios and much better than MFCCs and MFCC-DNNs in mismatched scenario. Thus,
we conclude that modeling and robust feature designs are the key steps to improve ASR
performance using a DNN.
 In Chapter 5, we explored fast and slow modulation Gabor features to model human
hearing of rapid and slow speech. We divided the temporal modulation range into low
(0.0-2.5 Hz) and high (9.9-25 Hz) regions. Experiments revealed that a low temporal
modulated feature shows better recognition accuracies and correlation to human hearing
on slow speech and much worse on rapid speech. Similarly, a high temporal modulation
feature is more correlated to human perception on rapid speech and worse for slow
speech. Also, because reduction of low modulation features manually improves the

Chapter 7 Conclusion 68

performance on rapid speech, the neural network didn't handle the variability in speaking
rate automatically.
 In Chapter 6, we developed the phone recognition system under overlapped speech
based on human cortical signals. The work reported confirmed that the STG can provide
some information for phonetic recognition, at least for the task used, which can be
relatively independent of interfering voices that the subject is not paying attention to.
This is in contrast to the huge increases observed in error rate for phone recognition given
such interfering signals.
 Therefore, we conclude that neural network trained features are not enough for
robust speech recognition. The designed feature based on human hearing system is useful
for greater robustness than just relying on DNN or CNN with a number of example tasks
in the thesis.

7.2. Future work

The work on GCNN in Chapter 3 has shown the basic effectiveness of using Gabor to
expand temporal and frequency resolutions of CNNs. Some research (e.g. [23]) has
demonstrated that LSTMs are complementary to CNNs as they have better modeling
capabilities to temporal information. While both LSTMs and Gabor handle temporal
modeling problem, Gabor also provides better frequency resolutions and initial
coefficients based on a biological model. It’s likely the improvement can be achieved by
unified architecture integrating GCNNs and LSTMs. For example, we could apply Gabor
convolutional layer and a few other convolutional layers and pass the pooled activations
to LSTM layers. Also, the spectral modulation and temporal modulation frequencies used
in Gabor filters here are tuned beforehand. These parameters could be implemented as
part of neural network architecture and trained by back-propagation as well.
 In Chapter 4, we performed bootstrap sampling on only HMM-based acoustic
models. A more sophisticated neural network architectures (e.g. LSTM) using
Connectionist Temporal Classification (CTC) implementation could be trained with an
unsegmented sequence providing a better choice over HMM. It is reasonable to conduct
similar statistical analysis on the effect of model residual on recognition accuracy.
Furthermore, some ongoing researches work is focused on building an end-to-end neural
network based speech recognition system including an acoustic model, a pronunciation
model and language model. With the end-to-end system, statistical analysis would not be
constrained to a smaller model such as acoustic model here.
 The experiments in Chapter 5 and 6 are limited by the amount of training data.
These experiments could be repeated with far more training data. Furthermore, a follow-
up experiment in Chapter 5 should incorporate adaptation of the GMMs. While this
would also be expected to improve the baseline results, our experience with neural
networks suggests that they could be even more susceptible to overfitting an insufficient
amount of training data. For the experiments on the human cortical signal, our final goal
in is to learn more about how the brain is recognizes speech when competing signals
(particularly multiple voices) are present. But our other goal is to learn from this
exploration how we can improve automatic speech recognition in the presence of mixed

Chapter 7 Conclusion 69

signals, we will have to use partial information (for instance from comparison of error
patterns) to modify our artificial systems to act more like the natural one. We are just
beginning this process, and the results in Chapter 6 reports the initial effort to
simultaneously study the scientific and engineering components.

 70

Bibliography

[1] O. Abdel-Hamid, L. Deng, and D. Yu. Exploring convolutional neural network structures
and optimization techniques for speech recognition. INTERSPEECH. 2013.

[2] K. Walker and S. Strassel. The rats radio traffic collection system. In Proc. of ISCA
Odyssey, 2012.

[3] R. Arens. Complex processes for envelopes of normal noise. IRE Trans Inf Theory 3(3):
204-7, 1957.

[4] E.J. Baghdady. Diversity techniques. In: Baghdady EJ, ed. Lectures on communication
system theory. New York: McGraw-Hill: 125-75, 1961.

[5] J.K. Baker. The DRAGON system – an overview. IEEE Transactions on Acous- tics,
Speech, and Signal Processing, 23 (1), 24-29, 1975.

[6] J.S. Bendat, A.G. Piersol. Random data: analysis and measurement procedures, 3rd Ed.
New York: J. Wiley, 2000.

[7] R.S. Bolia, WT Nelson, MA Ericson, BD Simpson. A speech corpus for multitalker
communications research. The Journal of the Acoustical Society of America 107, 1065,
2000.

[8] H. Bourlard and C. Wellekens. Links between Markov models and multilayer perceptrons.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (12), 1167–1178,
1990.

[9] H. Bourlard and N. Morgan. Connectionist Speech Recognition: A Hybrid Approach.
Kluwer Press, 1993

[10] E. Chang, J. Rieger, K. Johnson, M. Berger, N. Barbaro, R. Knight. Categorical speech
representation in human superior temporal gyrus. Nature Neuroscience, 2010.

[11] B.Y. Chen, Q. Zhu, and N. Morgan. A Neural Network for Learning Long-Term
Temporal Features for Speech Recognition. Proc. ICASSP 2005, March 2005, pp. 945-
948

[12] G. Chen, H, Xu, M. Wu, D. Povey and S. Khudanpur. Pronunciation and silence
probability modeling for ASR. In Proceedings of INTERSPEECH, 2015.

[13] T. Chi, Y. Gao, M. Guyton, P. Ru and S. Shamma. Spectro-temporal modulation
transfer functions and speech intelligibility. The Journal of the Acoustical Society of
America, 106(5), 2719-2732, 1999.

[14] N.E. Crone, D.L. Miglioretti, B. Gordon, R.P. Lesser. Functional mapping of human
sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related
synchronization in the gamma band. Brain 121(Pt 12): 2301-15, 1998.

[15] N.E. Crone, D. Boatman, B. Gordon, L. Hao. Induced electrocorticographic gamma
activity during auditory perception. Clin Neurophysiol 112(4): 565-82, 2001.

[16] C. Ding, T. Li, M.I. Jordan. Convex and semi-nonnegative matrix factorizations. IEEE
Trans Pattern Anal Mach Intell 32(1): 45- 55, 2010.

[17] E. Edwards. Electrocortical activation and human brain mapping. Dept. of Psychology
dissertation. Berkeley: Univ. of California: 147 p, 2007.

Bibliography 71

[18] E. Edwards, M. Soltani, W. Kim, S.S. Dalal, S.S. Nagarajan, M.S. Berger, R.T. Knight.
Comparison of time-frequency responses and the event-related potential to auditory
speech stimuli in human cortex. J Neurophysiol 102(1): 377-86, 2009.

[19] B. Efron. The jackknife, the bootstrap, and other resampling plans. Society of Industrial
and Applied Mathematics CBMS-NSF Monographs, 38, 1982.

[20] M. Elad. Sparse and redundant representation modeling – what next? IEEE Signal
Process Lett 19(12): 922-8, 2012.

[21] D. Ellis. Renoiser web page.
http://labrosa.ee.columbia.edu/projects/renoiser/create_wsj.html

[22] D. Gillick, L. Gillick, and S. Wegmann. Dont Multiply Lightly: Quantifying Problems
with the Acoustic Model Assumptions in Speech Recognition. In Proceedings of ASRU,
pp. 71–76, IEEE, 2011

[23] A. Graves, A.R. Mohamed and G. Hinton. Speech recognition with deep recurrent
neural networks. IEEE International Conference on Acoustics, Speech and Signal
Processing (pp. 6645-6649), 2013.

[24] F. Grezl and P. Fousek. Optimizing bottle-neck features for LVCSR. Proc. ICASSP
2008, pp. 4729-4732

[25] A. Gunawardana, M. Mahajan, A. Acero and J.C. Platt. Hidden conditional random
fields for phone classification. In INTERSPEECH (pp. 1117-1120), 2005.

[26] M.A. Hall. Correlation-based feature selection for machine learning. Dept. of Computer
Science. Hamilton, New Zealand: University of Waikato: 178 p., 1999.

[27] H. Hermansky and S. Sharma. Temporal patterns (TRAPs) in ASR of noisy speech,”
Proc. ICASSP 1999, March 1999, pp. 289-292 vol. 1.

[28] H. Hermansky, D. P. W. Ellis, and S. Sharma. Tandem connectionist feature extraction
for conventional HMM systems. In Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2000, vol. 3, pp. 1635–1638.

[29] G. Hinton, and R. Salakhutdinov. Reducing the dimensionality of data with neural
networks. Science, 313, 504–507, 2006.

[30] H.G. Hirsch, & D. Pearce. The Aurora experimental framework for the performance
evaluation of speech recognition systems under noisy conditions. In ASR2000-Automatic
Speech Recognition: Challenges for the new Millenium ISCA Tutorial and Research
Workshop (ITRW), 2000.

[31] Y. Hoshen, R.J. Weiss & K.W. Wilson. Speech acoustic modeling from raw
multichannel waveforms. In Acoustics, Speech and Signal Processing (ICASSP), 2015
IEEE International Conference on (pp. 4624-4628). IEEE.

[32] A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart, N. Morgan, B. Peskin, T. Pfau, E.
Shriberg, A. Stolcke, and C. Wooters. The ICSI meeting corpus. Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, 2003.

[33] F. Jelinek. Continuous speech recognition by statistical methods. IEEE Proceed- ings,
64 (4), 532-556, 1967.

[34] I.T. Jolliffe. Principal component analysis, 2nd Ed. New York: Springer, 2002.
[35] F. Joublin X. Domont, M.Heckmann and C. Goerick. Hierarchical spectro-temporal

features for robust speech recognition. Proc. ICASSP 2008, March 2008, pp. 4417-4420
[36] H.F. Kaiser. The varimax criterion for analytic rotation in factor analysis.

Psychometrika 23(3): 187-200, 1958.

Bibliography 72

[37] O. Kalinli, M.L. Seltzer, and A. Acero. Noise adaptive training using a vector Taylor
series approach for noise robust automatic speech recognition. In Proc. ICASSP, 2009, pp.
3825-3828

[38] C. Kim and R. M. Stern. Feature extraction for robust speech recognition based on
maximizing the sharpness of the power distribution and on power flooring. In Proc.
ICASSP, pp. 4574–4577, 2010.

[39] M. Kleinschmidt. Localized spectro-temporal features for automatic speech
recognition,” in Proc. of Eurospeech, 2003, Sep 2003, pp. 2573–2576.

[40] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324, 1998.

[41] T. Lee. Image representation using 2D Gabor wavelets. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 18(10), 959-971, 1996.

[42] D.D. Lee, H.S. Seung. Learning the parts of objects by non- negative matrix
factorization. Nature 401(6755): 788-91, 1999.

[43] E.N. Lorenz. Empirical orthogonal functions and statistical weather prediction.
Statistical Forecasting Project. Scientific Report No. 1. Cambridge, MA: MIT, Dept. of
Meteorology: 49 p, 1956.

[44] N. Mesgarani N, E. Chang. Selective cortical representation of attended speaker in
multi-talker speech perception. Nature 485: 233- 236, 2012.

[45] N. Mesgarani, and S. Shamma. Speech Processing with a Cortical Representation of
Audio”, Proc. ICASSP 2011, May 2011, pp. 5872-5875.

[46] N. Mesgarani, M. Slaney, and S. A. Shamma. Discrimination of Speech From
Nonspeech Based on Multiscale Spectro- Temporal Modulations”, IEEE Transactions on
Audio, Speech, and Language Processing, Vol. 14, No. 3, May 2006.

[47] N. Mesgarani, C. Cheung, K. Johnson, E.F. Chang. Phonetic feature encoding in human
superior temporal gyrus. Science 343(6174): 1006-10, 2014.

[48] B. Meyer, C. Spille, B. Kollmeier and N. Morgan. Hooking up spectro-temporal filters
with auditory-inspired representations for robust automatic speech recognition”, in Proc.
Interspeech 2012

[49] T. Mikolov, S. Kombrink, L. Burget, J.H. Černocký, & S. Khudanpur. Extensions of
recurrent neural network language model. In Acoustics, Speech and Signal Processing
(ICASSP), 2011 IEEE International Conference on (pp. 5528-5531). IEEE.

[50] V. Mitra, H. Franco, M. Graciarena, and A. Mandal. Normalized amplitude modulation
features for large vocabulary noise-robust speech recognition. Proc. ICASSP 2012,
March 2012, pp. 4117-4120

[51] A. Mohamed, D. Yu, and L. Deng. Investigation of Full-Sequence Training of Deep
Belief Networks for Speech Recognition. In Interspeech 2010. pp. 2846-2849.

[52] A. Mohamed, G. Dahl, G. Hinton. Acoustic modeling using deep belief networks.
Audio, Speech, and Language Processing, IEEE Transactions on, vol. 20, no. 1, pp. 14 –
22.

[53] A. Mohamed, G. Hinton and G. Penn. Understanding how deep belief networks
perform acoustic modelling. In Acoustics, Speech and Signal Processing (ICASSP), 2012
IEEE International Conference on (pp. 4273-4276). IEEE.

[54] N. Morgan, J. Cohen, S. Krishnan, S. Chang and S. Wegmann. Final Report: OUCH
Project (Outing Unfortunate Characteristics of HMMs), 2013.

Bibliography 73

[55] C.S. Myers & L.R. Rabiner. A Comparative Study of Several Dynamic Time-Warping
Algorithms for Connected-Word Recognition. Bell System Technical Journal, 60(7),
1389-1409, 1981.

[56] N. Naikal, A. Yang, and S. Sastry. Informative feature selection for object recognition
via sparse PCA. In Proceedings of the 13th International Conference on Computer Vision
(ICCV), 2011, pp. 818-825

[57] V. Nair and Geoffrey Hinton. Rectified linear units improve restricted Boltzmann
machines (PDF). ICML, 2010.

[58] N. Parihar, J. Picone, D. Pearce, H.G. Hirsch. Performance analysis of the Aurora large
vocabulary baseline system. Proceedings of the European Signal Processing Conference,
Vienna, Austria, 2004.

[59] H. Parthasarathi, S.Y. Chang, J. Cohen, N. Morgan and S. Wegmann. The blame game
in meeting room ASR: An analysis of feature versus model errors in noisy and
mismatched conditions. In Proc, ICASSP pp. 6758-6762, 2013

[60] I. Pitas, A.N. Venetsanopoulos. Nonlinear digital filters: principles and applications.
Boston: Kluwer Academic, 1990.

[61] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hannemann,
P. Motlícek, P. Qian, P. Schwarz, J. Silovsk, G. Stemmer G, Vesey K (2011). The kaldi
speech recognition toolkit. Proc. IEEE 2011 Workshop on ASRU. Dec. 2011, IEEE
Signal Processing Society.

[62] Speech Processing, Transmission and Quality Aspects (STQ); Distributed Speech
Recognition; Adv. Front-end Feature Extraction Algorithm; Compression Algorithms,
ETSI ES 202 050 Ver. 1.1.5, 2007

[63] P.R. Prucnal, E.L. Goldstein. Exact variance-stabilizing transformations for image-
signal-dependent Rayleigh and other Weibull noise sources. Appl Opt 26(6): 1038-41,
1987.

[64] S. Ravuri and N. Morgan. Using spectro-temporal features to improve AFE feature
extraction for automatic speech recognition. In Proc. ICASSP, 2010, March 2010, pp.
1181– 1184.

[65] M.B. Richman. Rotation of principal components. J Climatol 6(3): 293-335, 1986.
[66] F. Rosenblat, The perceptron: A probabilistic model for information storage and

organization in the brain, Psychological Review 65 (1958), 386-408.
[67] F. Rosenblatt, Principles of Neurodynamics. Spartan Books, Washington D.C., 1962.
[68] T. Sainath, Mohamed, A. R., Kingsbury, B., & Ramabhadran, B. (2013, May). Deep

convolutional neural networks for LVCSR. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on (pp. 8614-8618). IEEE.

[69] F. Seide, G. Li, D. Yu. Conversational Speech Transcription Using Context-Dependent
Deep Neural Networks. Proc. Interspeech, 2011.

[70] M. Slaney. Auditory toolbox. Interval Research Corporation, Tech. Rep, 10, 1998.
[71] A. Stolcke, X. Anguera, K. Boakye, O. Cetin, A. Janin, M. Magimai-Doss, C. Wooters,

and J. Zheng. The SRI-ICSI Spring 2007 Meeting and Lecture Recognition System. In
Proceedings of the Second International Workshop on Classification of Events, Activities,
and Relationships (CLEAR 2007)

[72] T. Tsai and N. Morgan. Longer Features: They Do a Speech Detector Good. Proc.
Interspeech 2012.

Bibliography 74

[73] A. Varga, and H. Steeneken. Assessment for automatic speech recognition: II.
NOISEX-92: A database and an experiment to study the effect of additive noise on
speech recognition systems. Speech Communication, vol. 12, Issue 3, July 1993, pp. 247-
251.

[74] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K.J. Lang. Phoneme recognition
using time-delay neural networks. Acoustics, Speech and Signal Processing, IEEE
Transactions on 37, no. 3 (1989): 328-339.

[75] D. Yu, L. Deng, F. Seide, and G. Li. Discriminative Pretraining of Deep Neural
Networks" (granted 2016, US patent # 9235799)

[76] X. Zhang, M. G. Heinz, I. C. Bruce, and, L. H. Carney. A phenomenological model for
the responses of auditory-nerve fibers: I. Nonlinear tuning with compression and
suppression. J. Acoust. Soc. Am., vol. 109, no. 2, pp. 648– 670, Feb 2001.

[77] S. Zhao, S. Ravuri, and N. Morgan. Multi-Stream to Many-Stream: Using Spectro-
Temporal Features for ASR. Proc. Interspeech 2009, 2951-2954

[78] Q. Zhu, B. Chen, F. Gr´ezl, and N. Morgan. Improved MLP structures for data-driven
feature extraction for ASR. In Proc. INTERSPEECH 2005, Lisbon, Portugal, Sept. 2005.

[79] Q. Zhu, B. Chen, N. Morgan, and A. Stolcke, “On using MLP features in LVCSR,” in
Proc. Interspeech, 2004, pp. 921–924

[80] G. Zion, N. Ding, S. Bickel, P. Lakatos, C.A. Schevon, G.M. McKhann, R.P. Goodman,
R. Emerson, A.D. Mehta, J.Z. Simon, D. Poeppel, C.E. Schroeder. Mechanisms
underlying selective neuronal tracking of attended speech at a "cocktail party". Neuron
77(5): 980-91, 2013

