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Abstract

Smartphones contain a large amount of highly personal data, much of it accessible to
third-party applications. Much of this information is safeguarded by a permission model,
which regulates access to this information. This work primarily focuses on improving the
Android permission model, which is known to have notoriously large amounts of sensitive data
leakage, but many of its findings can be analogously applied to other mobile operating systems.

We evaluate the two currently employed Android permission models: ask at install-
time and ask-on-first-use to determine if they fulfill user expectations of privacy, and find
that this is not the case for either model. We analyze the different facets that comprise user
expectations and recommend a better mechanism to satisfy these expectations without excess
effort from the user. This mechanism incorporates the contextual nature of privacy into the
permission-granting process through the use of a machine learning classifier.

We contribute the most extensive instrumentation of the Android operating system tar-
geting user behavior and related runtime states to our knowledge, spanning across nearly
40 classes in the Android platform. This instrumentation allows us to utilize user behavior
and system-level features to determine context for permission requests. The data from this
instrumentation is used to generate features for the classifier. We evaluate the classifier on a
large labeled dataset we collect from over 200 users using our modified operating system, and
recommend ways to employ such a system in the real world based on our analysis.
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1 Introduction
Smartphones have grown to serve billions of people, outstripping their desktop predecessor hand-
ily. In many places around the world, smartphones serve as the primary computing device for
users. Android and iOS are the two most popular mobile operating systems, accounting for over
1.5 billion users [26], over 2.5 million applications, and 250 billion app downloads [33]. As the
popularity of the platforms and smartphones has grown, so has concern over user privacy.

Android, the primary platform we examined, employs a permission model to regulate application
access to data. Before Android 6.0 (Marshmallow), the model employed an ask-on-install policy,
where the only way to deny a permission was to not install the application. Android Marshmallow
and iOS employ an ask-on-first-use policy, which asks a user to make a decision the first time an
application accesses sensitive data [4]. This is in the form of a system prompt at runtime, which
the user must respond to. However, users and developers often do not understand these permission
models [13]. Furthermore, it is not known if the prompts focus on data accesses that users find
concerning. It is also unclear if the user decision for an ask-on-first-use prompt is consistent across
subsequent requests of the same application requesting the same data [35].

There has been some work done on creating systems to protect users from data exposure, either
through static analysis of applications, dynamically enforcing an access policy specified by the
user [2, 18], or dynamic taint tracking [9]. However, the static analysis systems do not provide
real-time protection from sensitive data exposure, and the existing dynamic systems do not work
for all applications and require copious configuration effort from the user, which the authors ac-
knowledge is highly inconvenient for the average user. Thus, we hope to create a solution which
is backwards-compatible for all applications, requires minimal effort from the user, and preserves
privacy by monitoring permission requests in real-time.

We explore the fundamental question of how smartphone platforms can empower users to con-
trol their information without added burden. Some facets of this question involve determining the
feasibility and effectiveness of runtime prompting, as well as understanding users’ mental models
of privacy in the context of mobile devices.

To address issues with current models, we draw on Nissenbaum’s theory of contextual integrity,
which posits that privacy violations occur when information streams defy user expectations [28].
For example, a navigation application requesting location data follows contextual norms, while
Angry Birds’ need to request location is less obvious to the user. Using the contextual integrity
notion, we hope to increase the efficacy of current permission systems by focusing on sensitive
permission requests that are likely to defy user expectations to reduce the number of prompts users
have to respond to.

We propose a new permission granting mechanism which utilizes machine learning to infer an
individual user’s privacy preferences and evaluate its feasibility. By leveraging inference, we want
to avoid excessively prompting the user, which leads to habituation. Overall, this mechanism’s
goal is to be able to make contextual decisions for each individual user as they would with less
user burden.
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1.1 Threat Model
We assume that the platform itself, the Android operating system in this case, is trusted. The
new permission model we propose protects users from applications they have installed that request
permissions and sensitive information through the standard mechanism dictated by the operating
system. Malware or exploits that subvert the operating system or the security monitor guarding
permissions are outside the scope of our system.

2 Understanding User Expectations
The first step to being able to build a new permission model is to understand the nature of user
expectations of privacy, quantify how many sensitive data accesses applications make, and deter-
mine which factors contribute strongly to user privacy decisions. To explore these questions, we
conducted a field study of users in which we provided them with our custom instrumented version
of Android to use for a week as their primary phone. Users then partook in an exit survey, in which
we showed them various instances in which sensitive data accesses occurred. We asked the users
whether those accesses were expected or surprising, and whether they would have blocked them
given the ability.

In this study, we focused on a group of sensitive permissions (permissions that irreversibly leak
user-sensitive data) recommended by Felt et al. to be granted via runtime dialogs [11]. These 12
permissions compose about 16% of all Android permission types, and are listed in Table 1. Our
follow-up work also focuses on these sensitive permissions, since we focus on improving runtime
prompts.

This section focuses on our field study published at the Usenix Security Symposium [35]. I will
concentrate primarily on my contributions to the work, while explaining the overarching experi-
ment done by our team to provide context for the results and analysis.

2.1 Methodology
We broke the problem into two primary parts: measuring the frequency of permission requests,
particularly sensitive ones, and understanding user reactions. We hoped to use these avenues to
evaluate the viability of prompting the user on permission requests based on their frequency, and
gain insight into user privacy preferences. Thus, we first instrumented Android 4.1 (Jellybean) to
collect phone usage data and monitor data access endpoints. This instrumentation collected data
during a 36-user field study on Nexus S devices lasting one week, culminating in an exit survey.

2.1.1 Data Collection

For every protected request, the Android operating system checks during runtime whether an ap-
plication was granted a permission at install-time in its manifest. We added a logging frame-
work to the platform to determine when requests were made to the system, allowing us to record
each instance where an application received resources. Our logging system was split into many
Producers and a single Consumer.
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Permission Type Activity
WRITE SYNC
SETTINGS

Change application sync settings

ACCESS WIFI
STATE

View nearby SSIDs

INTERNET Open network sockets
NFC Communicate via NFC
READ HISTORY
BOOKMARKS

Read users’ browser history

ACCESS FINE
LOCATION

Read GPS location

ACCESS COARSE
LOCATION

Read network-inferred location (i.e., cell tower and/or WiFi)

LOCATION
HARDWARE

Directly access GPS data

READ CALL LOG Read call history
ADD VOICEMAIL Add voicemails to the system
READ SMS Read sent/received/draft SMS
SEND SMS Send SMS

Table 1: The 12 permissions recommended by Felt et al. to be granted via runtime dialogs [11]. These are
the sensitive permissions referred to throughout the paper.

Producers were placed throughout the platform in the many places that permission requests
are made. A key point we monitored was the checkPermission() call in the Context
implementation to give us access to the names of specific functions called from user-space appli-
cations. We also instrumented the ContentProvider class which facilitates application access
to structured data (e.g., Contacts, Calendar) and the permission checks involved with Intent
transmission. Intents allow data transfer between applications when activities are about to start
in the receiving application. Producers were further used to monitor the Binder IPC mech-
anism, which allow applications to communicate with the Android system. This instrumentation
produced the most logs, as it monitored calls to Android’s Java API, which all applications use
heavily.

I primarily worked on the Consumer with another teammate. The Consumer consolidated logs
from the Producers placed in various parts of the platform. These logs were written to inter-
nal storage, since the Android platform cannot write to external storage. Internal storage tends to
be limited; on our Nexus S devices, it totaled to 1GB. This space was also shared with installed
applications, requiring us to be very careful with space usage. We compressed log data every two
hours. When this log data was shipped to our server (daily, when the user connected to WiFi), it
was deleted from phone storage to further preserve space. The average compressed log file totaled
to 108KB consisting of roughly 9,000 events over 2 hours.

The Consumer also stored context information and metadata for each logged event. An event
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was a granted permission request, and each event log contained the following information:

• Timestamp: The time when the permission request occured.

• Permission name: The permission requested.

• Application name: The application requesting the permission.

• API method: The calling method that resulted in the permission check. This could be used
to infer specifically what data the application requested.

• Visibility: Whether the requesting application was visible to the user at request time. An
application could be in any of four visibility states: running as the foreground process that
the user was directly interacting with, running as a foreground process in the background for
multitasking purposes (e.g., when a user switches applications and onPause() is called),
running as a service with user awareness (e.g., sound, notifications), and running as a service
without user awareness.

• Screen Status: Whether the phone screen was on or off.

• Connectivity: Whether the phone was connected to WiFi at the time, making data transfer
possible.

• Location: This was the user’s last cached physical location; we did not directly query the
GPS to preserve battery.

• View: The name of the visible screen as defined by the XML DOM used to render UI in
Android. This could be used to infer what the user was interacting with on the screen.

• History: Applications the user interacted with before the permission request.

• Path: In the event that ContentProvider was accessed for data stored on the phone, we
recorded the path of the resource requested.

From these elements, I specifically worked on recording permission name, application name,
screen status, connectivity, and view.

To maintain low system performance overhead, the Consumer also had rate-limiting logic. After
10,000 requests for any given {application,permission} pair, it checked to see if it exceeded 1 log
per 2 seconds for that pair. If so, it recorded future requests for that pair with probability 0.1, and
made a note to allow us to extrapolate during analysis to recover actual counts.

2.1.2 User Study

We recruited participants online in October 2014 through Craigslist by posting in the “et cetera
job” section. We titled the listing “Research Study on Android Smartphones”, explaining gener-
ally that the study was about how people interact with their smartphones. To avoid priming users,
we avoided any mention of security or privacy. For each user, the study involved a 30-minute setup
phase, a one week period where the user used our experimental phones as their primary mobile
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(a) Participants first establish aware-
ness of the permission request based
on the screenshot, and answered
questions about context.

(b) Participants then saw the resource accessed, and stated
if they expected the permission and whether it should be
blocked.

Figure 1: Exit Survey Application

device, and an in-person exit survey lasting between 30 to 60 minutes.

Potential participants were directed to download a mobile application that I developed. The appli-
cation screened them to determine eligibility. Users would answer a short demographic survey on
the application to ensure they were above 18 years of age, while the application determined their
cell phone carrier, cell phone model, and installed applications. This information was important
because our experimental Nexus S phones only could achieve 3G speeds on T-Mobile smartphones,
and we checked the phone model to ensure that their SIM card was compatible with our Nexus S
phones. The list of applications allowed us to pre-load the experimental phone we provided them
with the applications they used to allow for a smooth transition to our phones, while minimizing
setup time for them.

48 users made it through the application screening process, and arrived at our setup session. Here
we screened 8 users out because their phones were MetroPCS (the screening app could not discern
between T-Mobile and MetroPCS) and thus incompatible with our experimental phones. All 48
users were provided with $35 gift cards for attending the setup session, and 40 of them were given
phones to use for a week. The setup session involved moving their SIM cards into the experimen-
tal phones, installing any paid applications (we only pre-installed free applications), and setting up
their Google account on the phone to sync data and contacts. We had to manually sync the data if
it was not linked to their Google account.

During the week, our logging system recorded usage data as well as sampled screenshots to pro-
vide context for questions posed to users during the exit survey, as seen in Figure 1a. At the end of
the week, 36 users returned our experimental phones, and they were provided with another $100
gift card after the exit survey. We then flashed the phones to delete all user data from them. I
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personally conducted the setup phase and exit survey for half of our participants.

2.1.3 Exit Survey

We conducted the exit survey in a private room on a computer, with a researcher present to answer
any questions without compromising user privacy. We did not view screenshots unless the partici-
pant gave us permission to do so. The survey was broken into three components: screenshot-based
questions, screen-off questions, and general personal privacy preferences.

Screenshot-based questions first asked users to explain what they were doing on the phone (Figure
1a) in an open-ended response and asked them to guess which permission was being requested
based on the displayed screenshot to set context. Permissions were displayed in simple English
based on what resource they accessed. This first portion focused on understanding user expecta-
tions. The second portion (Figure 1b) revealed the accessed permission, and asked users how much
they expected this access on a five-point Likert scale. We then asked if they would deny the per-
mission if they had the option, followed by an open-ended question inviting them to explain their
reasoning. Lastly, we asked for permission to view the screenshot. This process was repeated for
between 10 and 15 screenshots for each user, determined through our weighted reservoir sampling
algorithm. Reservoir sampling allowed us to choose a subset of items from a large set of unknown
size, such as the number permission requests our users would encounter. We utilized weighting to
ensure that applications that requested fewer permission requests would still be represented in our
dataset.

The screen-off questions focused on understanding user expectations about protected resource ac-
cesses when users were not actively using their phone. Since the screen was off, there was no
context for what they were doing. We asked users whether they would deny permission requests
for 10 sampled {application, permission} pairs, and how expected these behaviors were, similarly
to the screenshot-based questions.

To understand general personal privacy preferences, we had also users answer two privacy scales:
Buchanan et al.’s Privacy Concern Scale (PCS) [5] and Malhotra et al.’s Internet Users Information
Privacy Concerns (IUIPC) scale [24].

Three researchers, including me, independently coded the 423 responses for each of the open-
ended questions. Before consensus, we disagreed on 42 responses for a 90% inter-rater agreement
rate. Given the 9 possible codings per response, Fleiss’ kappa yielded 0.61, indicating substantial
agreement.

2.2 Results
We logged a total of 27M resource requests across more than 300 applications during the week-
long period, which is equivalent to 100,000 requests per user each day. 60% of these requests
were made while the screen was off, and an additional 15.1% were done by invisible background
applications or services, for a total of 75.1% of requests invisible to the user. We focus on these
requests, since they most likely defy user expectations, according to our study.
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Permission Requests
ACCESS NETWORK STATE 31,206
WAKE LOCK 23,816
ACCESS FINE LOCATION 5,652
GET ACCOUNTS 3,411
ACCESS WIFI STATE 1,826
UPDATE DEVICE STATS 1,426
ACCESS COARSE LOCATION 1,277
AUTHENTICATE ACCOUNTS 644
READ SYNC SETTINGS 426
INTERNET 416

Table 2: The most frequently requested permis-
sions by invisible applications and services per
user/day.

Application Requests
Facebook 36,346
Google Location Reporting 31,747
Facebook Messenger 22,008
Taptu DJ 10,662
Google Maps 5,483
Google Gapps 4,472
Foursquare 3,527
Yahoo Weather 2,659
Devexpert Weather 2,567
Tile Game(Umoni) 2,239

Table 3: The applications making the most per-
mission requests while running invisibly, per
user/day.

2.2.1 Invisible Permission Requests

A total of 20.3M (75.1%) requests were made with no visual cues to the user. The breakdown of
all permission requests, based on our defined visibility levels, is as follows:

• Visible foreground applications constituted 12.04% of requests.

• Visible background services constituted 12.86% of requests.

• Invisible background services constituted 14.40% of requests.

• Invisible background applications constituted 0.70% of requests.

• Activity while the screen was off constituted 60.0% of requests.

We analyzed the invisible permissions most frequently requested, and the applications that most
frequently requested those permissions. ACCESS NETWORK STATE, the most popular permis-
sion, was requested roughly once every 3 seconds. Applications use this to check network con-
nectivity. More concerning were the location data accesses, which can be requested via the AC-
CESS FINE LOCATION, ACCESS COARSE LOCATION, and ACCESS WIFI STATE (using
WiFi SSIDs) permissions. Tables 2 and 3 show this data, normalized per user per day.

Location data accesses also strongly violated contextual integrity. Contextual integrity requires
users to be aware of information flows to deem them appropriate, however less than 1% of location
requests were made by visible applications or display a GPS icon in the notification bar. This is
because the GPS icon only appears when an application accesses the GPS sensor. 66.1% of loca-
tion requests used the TelephonyManager to determine location from cell tower information,
33.3% used WiFI SSIDs, and used a built-in location provider the remaining 0.6% of the time. Of
this 0.6%, the GPS sensor was only accessed 6% of the time, because the majority of queries were
to the cached location provider. Thus, in total, roughly 0.04% of location requests displayed a GPS
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icon.

Another interesting juxtaposition is comparing screen off requests with screen on requests. Har-
bach et al. posit that users have their phone screen off 94% of the time [17]. Since only 60% of
permission requests occur during this time, it seems that permission request frequency drops when
users are not actively using their phone. However, some applications such as Microsoft Sky Drive
and Brave Frontier Service actually make more requests while the user is not interacting with their
phone. These applications primarily request the ACCESS WIFI STATE or INTERNET permis-
sions. We hypothesize that these applications were performing data transfer or synchronization
tasks, but checking this would require examining the application source code.

Lastly, invisible applications also read stored SMS messages 125 times per user/day, read browser
history 5 times per user/day, and accessed the camera once per user/day. While these may not all
be privacy violations, they do violate contextual integrity as the user is likely unaware of them.

2.2.2 Request and Data Exposure Frequency

Felt et al. recommended allowing benign data accesses, and only prompting for higher risk irre-
versible data requests. They classify the prompt-worthy data requests into the following categories,
which are encompassed by the 12 sensitive permissions:

• Reading location information

• Reading browser history

• Reading SMS messages

• Sending premium SMS messages (those that incur charges), or spamming the user’s contact
list with SMS messages

91 of 300 (30.3%) applications requested these permissions, and these requests happened an av-
erage of 213 times per user/hour (roughly every 20 seconds). However, not all of these requests
resulted in sensitive data being read or modified. We could differentiate between the cases which
exposed data and those that didn’t based on the called function name in the logs. The differentiation
with examples is discussed next. For example, getWifiState() only reveals whether WiFi is
on, but getScanResults() returns a list of nearby SSIDs. The majority of location requests
were to getBestProvider(), which returns the optimal location provider based on applica-
tion needs, and not actually location data. Similarly, most requests for READ SMS requested SMS
store information rather than actual SMS messages (eg. renewMmsConnectivity()). How-
ever, every request to SEND SMS actually sent an SMS. In browser history, functions reorganizing
directories (eg. addFolderToCurrent()) did not expose data, while looking at visited URLs
through getAllVisitedUrls() would.

Overall, 5,111 of 11,598 (44.3%) sensitive permission requests exposed user data. A breakdown
of data accesses can be seen in Table 4. Limiting runtime prompts to only these cases is still infea-
sible; this would cause a prompt nearly once every 40 seconds. Further solutions are discussed in
§2.3.
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Resource Visible Invisible Total
Data Exposed Requests Data Exposed Requests Data Exposed Requests

Location 758 2,205 3,881 8,755 4,639 10,960
Read SMS data 378 486 72 125 450 611
Sending SMS 7 7 1 1 8 8
Browser History 12 14 2 5 14 19
Total 1,155 2,712 3,956 8,886 5,111 11,598

Table 4: The sensitive permission requests (per user/day) when requesting applications were visible/invisible
to users. “Data exposed” refers to the subset of permission-protected requests that resulted in sensitive data
being accessed.

2.2.3 User Expectations

Our exit survey collected 673 participant responses (≈19 per participant) for {application,permission}
pairs. Of these, 423 were screenshot-based (screen-on requests) and 250 occurred while the screen
was off (screen-off requests). From the screenshot-based requests, 243 screenshots were taken
when the requesting application was also in the foreground, and the other 180 screenshots were
from invisible applications. Our reservoir sampling algorithm also attempted to diversify by the
{application,permission} pairs as much as possible.

Of the 36 participants, 80% (30 participants) said they would have blocked at least one permis-
sion request. In all, participants wanted to block 149 (35%) of all 423 screen-on requests. When
participants rated requests for how expected they were (5-point Likert scale with higher number
meaning more expected), allowed requests averaged 3.2, while blocked requests averaged 2.3. This
supports the notion of contextual integrity, since users tended to block requests which defied their
expectations. Furthermore, when queried for their reasons for wanting to block those requests,
two themes emerged: (1) the request did not pertain to application functionality in their eyes, (2)
the request involved resources they were uncomfortable sharing. In fact irrelevance to application
functionality was the reason for 79 (53%) of the 149 permissions users wanted to block. Privacy
concerns, particularly sensitive information such as SMS, pictures, and conversations, were cited
as the reason for denying 49 (32%) of the 149 ”blocked” permission requests. Conversely for
allowed requests, users cited convenience (10% of allowed requests) and a lack of sensitive data
involved (21% of allowed requests) as the reason for requests to proceed.

We wanted to explore how certain factors related to user decisions to block or allow permission re-
quests based on user responses. I personally performed many of the statistical tests, confirmed the
ones I didn’t perform, and worked heavily on the data analysis portion. Our results are summarized
below.

• Effect of Correctly Identifying Permissions on Blocking: Of the 149 cases where partic-
ipants wanted to block permission requests, they were only able to correctly state what per-
mission was being requested 24% of the time; whereas when wanting a request to proceed,
they correctly identified the requested permission 44% (120 of 274) of the time. However,
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Pearsons product-moment test on the average number of blocked requests per user and the
average number of correct answers per user did not yield a statistically significant correlation
(r=0.171, p<0.317).

• Effect of Visibility on Expectations: Looking only at the screen-on responses, we noted
that users had an average expectation scale value of 3.4 for the 243 visible permission re-
quests and 3.0 for the 180 invisible requests. Wilcoxon’ signed-rank test with continuity
correction revealed a statistically significant difference between the expectation values for
the two groups (V=441.5, p<0.001). Thus, users expected visible requests much more than
invisible requests.

• Effect of Visibility on Blocking: We calculated the percentage of request denials for each
participant, for both visible and invisible requests. Wilxcoxon’s signed-rank test with con-
tinuity correction resulted in a statistically significant difference (V=58, p<0.001). Users
were much more likely to deny invisible requests than visible ones.

• Effect of Privacy Preferences on Blocking: We used Spearman’s rank test to determine that
there was no statistically significant correlation (ρ=0.156, p<0.364) between users’ privacy
scale (both PCS and IUIPC) scores and their desire to block permission requests. This
result was not surprising, as previous studies have demonstrated a difference between stated
privacy preferences and actual privacy behaviors [1].

• Effect of Expectations on Blocking: This directly related to evaluating contextual integrity
as a good model to follow while analyzing user preferences. We calculated average Likhert
scores for user expectations for a request and the percentage of requests they wanted to
block. Pearson’s product-moment test resulted in a statistically significant negative correla-
tion (r=−0.39, p<0.018), indicating that unexpected requests were more likely to be denied.

2.3 Analysis
Based on our field study results, we have shown that prompting on every data exposure is infea-
sible. However, there is also a dire need for better permission control mechanisms, as 80% of
users indicated at least one violation of contextual integrity. We evaluate ask-on-first-use prompts,
recommend a new version of ask-on-first-use prompting, and provide a new direction for reducing
runtime prompts below.

2.3.1 Feasibility of Runtime Prompts

We first wanted to evaluate the feasibility of runtime prompts, as Felt et al. recommended for the
sensitive permissions in Table 1, both in terms of accuracy and number of prompts. We used this to
evaluate ask-on-first-use using the traditional {application,permission} pair (in iOS, since Android
M had not launched at the time of our study), and a slightly modified version of ask-on-first-use in
which we use a {application,permission,visibility} triplet.

Based on our study data, users would see an average of 34 (ranging from 13 to 77, σ = 11)
runtime prompts in one week on a new phone if they were queried on first use of the triplet. By
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filtering out requests that do not expose data, we can reduce this number to 29 prompts. 21 (72%)
of the 29 prompts are for location data, which the iOS ask-on-first-use model already prompts for.
There has been no evidence of user habituation or annoyance with the iOS model, indicating that
the 8 extra prompts our system would induce would likely not introduce significantly more burden
on the user. However, the accuracy of the policy increases greatly with the triplet. Looking at
cases in our study where a user was prompted for the same {application,permission} pair twice,
we evaluated whether the user’s first decision to block agreed with their subsequent decisions.
The ask-on-first-use pair policy had a 51.3% agreement rate, while the triplet policy had a 83.5%
agreement rate.

2.3.2 User Modeling

We constructed several statistical models to examine whether users desire to block certain permis-
sion requests could be predicted using the contextual data that we collected. We wanted to evaluate
if a classifier could be used to predict user preferences, where the only runtime prompts would be
those where the classifier had low confidence in its decision. Thus, we constructed statistical mod-
els (mixed effect binary logistic regression models) to see if we could predict a user’s desire to
block a permission request. Our models set the response variable to be the users choice of whether
to allow or block the permission request. Our predictive variables consisted of contextual infor-
mation that would be available during runtime: a user ID variable representing the unique user
(userCode), permission type (perm), requesting application (app), and visibility of the requesting
application (vis).

We found that creating separate models for the screen-on data and screen-off data resulted in
much better fits for each model. For each model, we built two classifiers and evaluated their ac-
curacy using 5-fold cross-validation, where our exit survey data served as ground truth. We tested
each possible subset of our predictive variables with the model, using Akaike Information Crite-
rion (AIC) and Bayesian Information Criterion (BIC) to judge goodness-of-fit, to determine which
variables provided the greatest insight. We found that (vis, app, userCode) had the best fit for
the screen-on model, while (perm, app, userCode) provided the best fit for the screen-off model.
The predictive power of the userCode variable also revealed that each user’s individual privacy
preferences play a large role in their decision to allow or deny permission requests.

We also provide some preliminary analysis using receiver operating characteristic (ROC) plots,
which evaluate the tradeoffs between true-positive and false-positive rates. We computed the area
under the ROC curve (AUC) for each model, and compared it to the random baseline of 0.5, with a
maximum possible AUC of 1, indicating perfect classification. The screen-on classifier AUC was
0.7 and the screen-off classifier AUC was 0.8. This led us to believe that a classifier had a good
chance of being able to predict user decisions, which inspired our next work.

3 Android OS Instrumentation
The small set of independent variables in our screen-on and screen-off models did not provide
enough information to create a highly accurate model to predict user permission decisions. Fur-
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thermore, variables such as userCode, the user IDs of our participants, were not useful in a real-
world setting. For a predictive model for Android permissions to effectively predict user decisions,
we needed a much more comprehensive feature set. Thus, we instrumented Android 5.1.1 with
the goal of collecting behavioral and contextual data during runtime to generate features for the
classifier, as well as be able to perform further analysis on user behavior. The University of Buffalo
provided the PhoneLab testbed, which allowed us to push over-the-air (OTA) Android OS updates
to a group of roughly 300 users [25]. We used this to deploy our instrumented OS and collect data
and generate a dataset which we could use to train and test our proposed classifier.

We chose to use an event-based logging model for two reasons: it provided flexibility for feature
generation because it produced unprocessed information, and integrated easily with PhoneLab’s
logging model. Our instrumentation had to ensure that we covered all access points for each fea-
ture we hoped to record, including application-usage features without the ability to instrument the
application code itself. This required the use of some side channels to infer user actions within
applications. Furthermore, the performance implications of each instrumentation was strongly
considered, as we had to ensure that there was no perceptible lag to the user.

With the instrumentation, we hoped to record aspects of users’ interaction with their smartphones
that might be indicative of their attitudes towards privacy in general and predict their responses to
permission prompts. For example, we hypothesized that users who tended to take many pictures
or not have screen locks would be less privacy conscious, and thus more likely to allow permission
requests. The data that our system collected would help us find and verify such trends, and use
them in a classifier. We attempted to log any user interaction events that could lead to predictive
features. I discuss these features in detail in §5.1. In total, we modified over 25 classes in the
Android platform code, and added a class of our own. A full list of our instrumentation points can
be found in the Appendix.

3.1 Ensuring Coverage
There were various cases where instrumenting a user action required deep analysis of platform
codepaths and Android developer APIs. Oftentimes, there were multiple ways for an application
to implement a functionality, and we had to ensure all such paths were accounted for to reduce
false negatives or positives in our event logging. I will focus on two especially challenging cases
that I implemented in this section: camera usage and recording initial user data.

3.1.1 Camera

As mentioned before, we expected picture-taking habits to relate to user privacy attitudes. Deter-
mining when a user took a picture through any third-party application required a combination of
multiple code path instrumentation and timing correlations on event logs. Android 5.1.1 has two
major Camera APIs: Camera and Camera2. While most third-party applications such as Face-
book, Snapchat, and Instagram use Camera, some popular applications such as Google Camera
application use Camera2. Camera2 is advertised as the recommended API moving forward, so
later versions of Android will likely deprecate Camera. However, in both Android 5.1.1 and 6.0,
both APIs are available for use by applications to maintain backwards compatibility.

15



The Camera API has a recommended takePicture() method, which was my main instru-
mentation point. A call to takePicture() would trigger the generation of a log containing
information about which Camera device (i.e., the front-facing or rear-facing camera) was used,
the application calling the method, and timestamp data. However, some applications using the
Camera API would not appear in these logs, such as Snapchat. After scouring the developer API
endpoints, I noted that an application could also choose to receive a stream of preview frames in-
stead of calling takePicture(). The application can then choose which frame to modify or
save within its own logic, which was outside of our observable scope. Thus, I settled for logging
the start of any preview frame stream in onPreviewFrame(), coupled with the same metadata
as in the takePicture() logs. While an application could capture any number of pictures dur-
ing a preview frame session, we could at least enumerate the number of preview frame sessions
and camera device switches during sessions.

At the time of our instrumentation, Camera2 had limited documentation and even fewer appli-
cations using it. However, we could not ignore it since some users would inevitably install appli-
cations using that API. The capture() method functioned similarly to the takePicture()
method in Camera, so that provided a straightforward port. The richness of features in Camera2
provided a challenge; picture modes like burst pictures and action shots were built in through
different methods. I found that the setRepeatingRequest() method would be called to gen-
erate CaptureRequests for most special picture modes, and created an event log there with all
of the metadata mentioned above.

The CaptureRequest logs required time correlation analysis because the setRepeating-
Request() would be called multiple times for special picture takes. For example, during a burst
picture, setRepeatingRequest() is called twice within a 300 ms window, and three more
times within a 700 ms window. I accounted for such patterns in the classifier’s feature extraction
code rather than within the event logging instrumentation to avoid performance issues.

3.1.2 Settings and Initialization

To be able to compare user privacy behaviors, we needed to record default system settings, as well
as previous user settings for the majority of our instrumentation features. Since users were not
using their phones for the first time in our experiment, we needed to be able to record any changes
they had previously made to the system as well. We decided to only do this on phone start up,
because all settings at once impacts performance. We were also guaranteed the initialization to
happen at least once for all users, since Nexus 5 devices needed to be restarted after our OS ver-
sion was installed on their devices.

A major difficulty involved integrating user and system space components in one log. The ma-
jority of our logging for initialization settings was in the ActivityManagerService, but we
also had some logic in NfcService and PreferenceUtils to reach some data that was not
accessible from ActivityManagerService. We recorded all modifiable security settings,
NFC settings, location settings, developer mode configurations, and audio settings. Of these, NFC
proved to be particularly difficult because the NfcService is not necessarily started by the time
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the ActivityManagerService is. To account for this, we instrumented the NfcService to
asynchronously provide information to the initialization logging point in ActivityManager-
Service.

Furthermore, while recording all system settings and changes, we had to consider the Settings
application that comes pre-installed on Android devices. This is a user-space application that
makes changes to system-space settings. Since I was instrumenting both the initialization in
ActivityManagerService and the SecuritySettings UI component in the applica-
tion, I balanced which logs to record in user-space and system-space. Most user-triggered change
actions were logged as part of the user-space application, while the value changes to settings were
recorded in system-space at the service level. Combining the information in those logs during the
data analysis phase would help recreate the phone’s system state during the permission request
while maintaining all setting value changes.

3.2 Side Channels
We often had to record observable effects to infer what was going on within the system. Often, this
was because we did not have access to application code but felt that the user interactions within
an application would dictate their functionality expectations from the application. As mentioned
before, user perceptions of functionality strongly correlate with their willingness to allow or deny
permission requests. In other cases, we could not directly record an event because of performance
reasons. For example, instrumenting the network interface or the Intent mechanism proved to
create noticeable lag on phones. While we used side channels in determining many user actions,
such as social media application interactions, I will focus on the most prominent example: the
Chrome browser application. Similar ideas were extended onto other popular mobile browsers
including Firefox and Opera.

Users’ mobile browsing habits seemed likely to relate to their privacy preferences. In particular,
we felt that understanding how often users used incognito tabs (also known as “private browsing”
tabs), how often they visited websites supporting HTTPS, and how they interacted with SSL warn-
ings would indicate their privacy consciousness. Without access to the Chrome browser code, we
had no way to record this directly. Instead, we resorted to side channels to infer when these actions
were occurring, without looking at URLs to maintain our participants’ privacy.

To record incognito tabs, we used icons on the notification bar. The notification bar at the top
of the screen is generated by the platform, so we instrumented it to see if an incognito icon ap-
peared. This meant that the user was using incognito tabs. We confirmed this by monitoring the
name of the Activity rendered by the platform; non-incognito and incognito tab Activities
had different names. To determine if the site had HTTPS, we checked if the “locked” HTTPS icon
was rendered by the platform, since we could observe every image file it rendered. Similarly.
monitoring the images rendered allowed us to note SSL warnings displayed by the browser, and
differentiate between different warnings. If the next page load rendered an “insecure” HTTPS icon,
we knew that the user had chosen to proceed through the warning.

Side channels played a large role in allowing us to gain insight into application behavior and user
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Action Stock Android Instrumented Android Difference
Application Switch 530 ms 560 ms 30 ms (5.7%) slower

Capture Photo 1.1 ms 2.3 ms 1.2 ms (109%) slower
Get Location 9.3 ms 11.5 ms 2.2 ms (23.6 %) slower

Get Wifi SSID 2.3 ms 2.8 ms 0.5 ms (21.7 %) slower
Send SMS 16.2ms 18.4 ms 2.2 ms (13.4%) slower

Read Browser History
(including Bookmarks)

84.6 ms 49.8 ms 34.8 ms (41.1%) faster

Read NFC Tag 6.9 ms 5.8 ms 1.1 ms (15.9%) faster

Table 5: Amoritized performance difference on benchmarked actions.

actions, while reducing performance overhead without losing information in our logs.

4 Performance Evaluation
The performance impact of our operating system instrumentation was evaluated on the LG Nexus
5 device. Our analysis examines two resources: latency and battery usage. In latency, we quantify
the lag, slowdowns, and in some cases speedups, to the Android system that our instrumentation
incurs. In the battery portion, we estimate the extra power usage that our instrumentation causes. I
created the latency benchmark, and ran the battery consumption study.

4.1 Latency
It is critical for usability to ensure that our system does not introduce any perceptible lag into the
user experience. Thus, we developed an application to identify and quantify the slowdown in user-
facing tasks. We do not modify the instruction set or kernel logic, so existing microbenchmarks
were not very useful in this process.

I chose a set of common user actions, shown in Table 5, that accesses the majority of the spec-
trum of instrumentation we have added to the Android platform. I created an application to per-
form these actions, which was installed on both stock Android 5.1.1 and our instrumented version.
These actions were performed 50 times each and averaged to avoid noise from individual runs. In
the case of actions that are normally cached, such as reading browser history, we ignored the first
time the action was taken, and recorded the time it took post-caching instead.

In most cases, our instrumentation is slower, and the percentage slowdown varies from 5% (ap-
plication switch) to 109% (capture photo). However, it is more important to look at the absolute
difference for our purposes. If a user takes an action and the phone responds in 50ms or less, the
user considers it an instantaneous action [27]. For all of our tested actions, the absolute slowdown
is less than 30ms. To a user, this difference is completely imperceptible.

During our PhoneLab user study with over 200 users running our instrumented version, no users
reported latency issues or unexpected application behavior. Our goal was to ensure that no user
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found our instrumentation intrusive, obstructive, or otherwise caused them to alter their usage pat-
terns to compensate for lag introduced by our changes. Given that none of the study participants
noticed any slowdown on the device, our instrumentation’s performance costs appear to be imper-
ceptible to the user.

4.2 Battery
Our impact on battery performance was quite difficult to measure. We tried a few methods of
estimating it, each with a sizable error margin. To understand our estimates, it is important to note
that our instrumentation spawns no new threads. This supports the concept that our battery con-
sumption overhead is quite low, since spawning new threads is one of the main causes of battery
usage increase.

To empirically measure battery usage, we had pilot study participants use stock Android 5.1 and
record battery levels periodically throughout the day. During the recording periods, they would
look at the battery monitor breakdown provided in the settings menu to determine what was us-
ing the most power. They then went through the same process with our instrumented version of
Android 5.1. Unfortunately, this process is highly susceptible to variations in user activity on the
device. We tried to remedy this by measuring the proportion of usage accredited to the Android
system. We found that our instrumentation consumed at most 2% more battery.

Given our rough experimental data and the fact that we do not spawn any new threads, we be-
lieve this estimate to be roughly correct. We are looking into more rigorous ways of testing the
effects of our instrumentation on phone battery life.

5 Classifier
Our results in §2.3 led us to believe that a predictive model could be effective in reducing runtime
prompts by predicting user decisions for most data accesses. More specifically, our goal is to pre-
dict user responses to permission request prompts based on their past decisions and behavior using
a classifier. We gathered data across many users through a user study on PhoneLab and used this
data to train and evaluate the classifier, based on their answers to our runtime prompts. Ideally, this
classifier will predict a user decision to a permission request accurately, which we can use to allow
or deny a permission request instead of prompting the user. This results in a permission model
that has less prompting, annoyance, and risk of habituation for the user while still adhering to their
privacy preferences. Currently, we train a single global model across all users; we hope to create
more personalized models in future work.

While we had some ideas for features to our classifier from our screen-on and screen-off model
analysis, we needed to explore a much broader set of features while replacing some predictive
variables. For example, the userCode variable caused a problem; training a classifier for each
user would require large amounts of labeled data, generated through runtime prompts. To avoid
the overwhelming habituation and user annoyance problem, we needed to determine metrics that
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Feature Setting Type
User accesses security settings Security

User actively modifies security settings Security
Type of lockscreen Security

Length of lockscreen password Security
Is lockscreen password hidden Security

User changes type of lock Security
Location tracking on/off Location
Granularity of location Location

NFC on/off Misc
Developer options enabled/disabled Misc

Table 6: User actions recorded in settings features.

could be measured at run-time to replace the userCode but still capture each user’s uniqueness as
determined by their individual privacy behaviors.

5.1 Features
The new features we proposed have two goals: help us infer personal user privacy preferences for
each individual, and help understand context surrounding a user decision. The labeled dataset
is provided through user responses to permission prompts during a large-scale user study on
PhoneLab preceding the building of the classifier. We collect 33 feature groups, which sum to
over 16,000 individual features, resulting in the most extensive instrumentation of the Android
system to our knowledge. Due to space constraints, I only highlight the thought process behind
feature generation and delve into some of the more interesting feature categories. The full list of
instrumentation points feature groups can be found in the appendix.

5.1.1 Settings-Related Features

An excellent source of preference-indicative information lies in phone settings, since those are di-
rectly controlled by the user, barring default initialization values. We focused on two main subsets
of settings: security settings and location settings. We gathered information about each user’s set-
tings and extracted features from this.

Table 6 lists the subset of the data we collect from the settings panel. Security settings indicate pri-
vacy preferences directly, since a user can control access to her phone through this menu. Location
settings help us better understand the user’s location preferences; our previous study demonstrated
that whether users considered location private varied greatly with the user and the context, so we
expected this feature to be helpful in predicting user preferences regarding application use of lo-
cation permissions. We also record NFC and developer options settings, since they are a means of
exporting or importing data from the phone. To account for default settings, we record both the
default values and current values of each setting for each user, so we know if these settings have
been changed. We can compare these with their current values to detect which ones users actively
changed.
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I personally instrumented all of the features mentioned in this section.

5.1.2 User Behavior Features

Many of our features directly focus on identifying user privacy-related behavioral habits of users;
this subset of features is the most useful in creating a privacy preference “profile” for a user and
clustering users by their similarities in privacy preferences. Many of these features are user actions
taken on the device which do not directly relate to security, but help us profile the user’s behavior
patterns in general. These features fall into a few general categories:

• Screen Timeouts

• Ringer Preferences

• Phone Call Habits

• Mobile Browser Habits

• Camera/Picture Habits

• Notification Habits

• Two Factor Authentication

Our instrumentation indicates whether the screen turned off due to a timeout being reached, or if
the user physically presses the lock screen button to turn off the screen. Our hypothesis is that a
user physically locking their screen more often is more concerned about threats to their privacy.
Ringer preferences and phone call habits imply how publicly a user carries on their communica-
tions. A user that keeps their phone ringer on loud essentially broadcasts incoming messages and
phone calls to everyone in the vicinity, whereas a user keeping their phone on silent or vibrate does
not. Similarly, speakerphone and headphone usage on phone calls can be used to infer the publicity
of conversations.

Mobile browsing habits may be a strong indicator of user privacy preferences. Some features that
seem promising are the percentage of SSL-secured links that users visit, how often they encounter
SSL warnings, and the percentage of incognito tabs they open as opposed to non-incognito tabs.
We hypothesize that a user that visits a higher percentage of SSL-secured links, uses incognito tabs
often, and does not ignore SSL warnings often will tend to be more conservative with their data.

Picture-taking and uploading habits are associated with social media, thus we consider them as
indicators of privacy preferences. Furthermore, this feature group easily demonstrates how one in-
strumentation point results in multiple features. Our instrumentation logs an event on each picture
capture by the user, and when an application accesses the MediaStore to upload the picture. We
transform these two types of event logs the following features: the number of pictures users take,
the number of pictures they upload, the percentage of those pictures that are “selfies” (pictures of
themselves), the percentage of pictures that are not selfies, etc. The feature generation for camera
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logs are based on our hypothesis is that the people that are more willing to share pictures, espe-
cially of themselves or family, are more likely to share other information as well.

We also measure how often users get notifications from their applications and how quickly they
respond to them. We believe that users that have much more communication are likely to be more
social. Also, by differentiating which applications are sending the notifications, we can further
infer actions users take on social media applications. Lastly, the use of two-factor authentication
is one of the most obvious indicators we have of how much a user cares about their security. We
hypothesize that a strong desire for security is tied to a strong desire for privacy, so features related
to this seem quite promising as well.

I personally instrumented all of the features highlighted in this section, except for mobile browser
habits.

5.1.3 Runtime Features

Run-time features allow us to understand which activities the user is interacting with directly and
create a timeline of the processes running on the system. These features provide us the greatest
insight into exactly which user actions were taking place on the device. The three categories of
run-time features that provide us with which applications and services were running on the de-
vice are memory prioritization, activity switches within an application, and sensitive permission
requests. We also maintain a list of running processes and their visibility levels to the user.

Memory prioritization directly indicates which applications are running in the foreground, in the
background as services, or invisibly to the user. The process with the highest priority in memory
is always a foreground activity that the user is directly interacting with. As the priority is lowered,
we can know if an application is a visible service (such as Spotify, which retains a notification in
the notification bar when it is playing music in the background), or an invisible service (such as
Google Play services). Visibility is essential to the inferring expectedness of an information flow,
and thus is critical to the context of a permission request [35].

Activity switches within an application can be used to infer which actions a user is taking within
the application itself. One of the fundamental limitations with instrumenting the Android operat-
ing system is that one cannot instrument third-party application code. Activity switches help us
overcome this limitation by letting us infer which view of the application is in the foreground.
For example, activity switching allows us to differentiate between when a user is browsing their
Facebook news feed or viewing another Facebook user’s profile. Using these switches, we can
also compute how long a user spends in each activity on each application on her phone, letting us
understand what the user tends to use her smartphone for. This helps us create a more accurate
snapshot of the context under which a privacy decision was made.

We have also selected a set of sensitive permission requests that have irreversible results, which
can potentially be harmful to the user. Sensitive permission requests are monitored to give us a list
of data access requests from applications. We can identify how much data applications seek (and
are granted) in real-world usage situations. Furthermore, the prompts that we generate for sensitive
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Figure 2: Example of a prompt chosen by reservoir sampling that a user would see.

requests to provide ground truth for the classifier are generated based on this category of features.

5.2 Data Collection
Training a classifier requires a large dataset. In our case, no dataset existed, so we had to generate
our own. To achieve this, we deployed our highly instrumented operating system on PhoneLab,
which installs our operating system on the phones of roughly 300 users [25]. Our experiment
collected data for 5 weeks on Phonelab, collecting feature data as well as generating ground truth
through a system-UI user prompt we created, as seen in Figure 2.

Our runtime user prompt gained ground truth on which sensitive permission requests that users
considered privacy invasive; our prompt is similar in appearance to the ask-on-first-use prompt in
Android Marshmallow, with the caveat that it did not only appear on first use. As shown in Figure
2, we informed the user of a sensitive permission request and the requesting application, and asked
if she would have denied it if given the opportunity. During the experiment, we made it clear to
users that any answer would not affect their experience with the phone, and that their answer to the
prompt would not actually affect information access patterns.

We use a weighted reservoir sampling algorithm to determine which permission requests generate
a prompt. The weights in our algorithm are chosen inversely to {permission request, requesting
application} combinations frequencies to ensure that we sample as diverse a set of combinations
as possible. This ensures a ground truth sample for a large set of cases, allowing us to generalize
and intialize our models well. We limit the phone to prompting the user once per day to minimize
habituation.
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PhoneLab has the option for a user to opt out of an experiment at any time. Thus, not all 300
users participated in our experiment. In total, we had 204 users participate in our experiment, with
133 of them providing more than 20 days of data. We recorded over 176M events and 96M per-
mission requests (one every 6 seconds per user). Users answered 4,670 runtime prompts over the
course of the entire experiment, which translated directly to labeled data points with which to train
our classifier.

5.3 Offline Model
Using the 4,670-point labeled dataset we generated in our PhoneLab experiment, we first wanted to
determine which features were effective in predicting user decisions. During the feature selection
process, we also evaluated various models and attempted to increase accuracy as much as we could.
I worked heavily on all parts of the feature selection and modeling pipeline, so I will discuss the
process in its entirety.

5.3.1 Feature Selection

We used a combination of regression tests determining statistically significant correlations and
common machine learning techniques such as information gain values and regularization methods
to determine which features were most predictive. Through this process, we hoped to gain insight
into which user behaviors could be used to infer privacy preferences. In particular, we utilized
logistic mixed effect regression, random forests, and regularization to reduce overfitting while em-
phasizing important features.

We first confirmed if the results of our previous study, particularly pertaining to the predictive
power of application visibility, still held. All models reported visibility as one of the most pre-
dictive factors, and logistic regression considered it statistically significant. We then analyzed
how application usage correlated with users’ decision rates. For each application used (not just
installed) by at least 10 users, we measured usage time and checked to see if it significantly corre-
lated with their denial rate for permission prompts through the Kendall rank correlation test. We
found 6 applications for which a user’s usage time significantly correlated with their denial rate
across all permission prompts. The importance scores assigned by the random forest model con-
firmed the predictive power of the applications. The list of significant applications can be found in
the appendix.

We also used the Kendall rank correlation test for a few other features, which served as indepen-
dent variables, with denial rate as the dependent variable. Some interesting features that correlated
significantly are listed below.

• how often a user allows their phone screen to time out instead of actively locking it (measured
as a ratio of timeouts:locks)

• how often users access HTTPS links (measured as a ratio of HTTPS:non-HTTPS links)

• the number of downloads the user initiates

24



Feature Feature Category
Number of websites visited Behavorial

Ratio of HTTPS-secured to non-HTTPS-secured sites Behavioral
Ratio of websites requesting user location to those that did not request it Behavorial

Number of downloads initiated by user Behavorial
Type of screen lock (password, PIN, or pattern) Behavorial

Number of screen unlocks daily Behavorial
Total time spent unlocking Behavorial

Ratio of screen locks to due timeout or user action Behavorial
Number of phone calls daily (both made and received) Behavorial

Amount of time spent on phone calls Behavorial
Amount of time spent on silent mode on phone Behavorial

Requesting application visibility Runtime
Permission requested Runtime

Denial rate per user for an {app,perm,vis} combination Aggregate
Denial rate per user for an {foreground app,perm,vis} combination Aggregate

Table 7: Set of features used in SVM and RF classifier.

• the number of calls a user makes and receives per day (essentially the number of calls a user
participates in daily)

• the average call duration of a user

These features were also confirmed by the models as having high importance, and each of them
helped increase accuracy, precision, and recall of our models. Interestingly, the effect size of each
correlation was quite small; nearly all of them were less than 0.2. We believe this is partially be-
cause of our large sample size, consisting of 4,670 of decisions across 204 users. Furthermore, each
feature has a large standard deviation. We hypothesize that the large variance in user smartphone
interactions due to time of day and day of the week contribute to the large standard deviation, fur-
ther lowering effect sizes [7]. Specifically in the case of the application usage, we can also attribute
the smaller effect size to the fact that none of the applications were used by all users.

5.3.2 Model Evaluation

Improving our predictive model is an ongoing process, which we will likely continue to iterate in
our future work. Currently, we have tried a logistic mixed-effect regression model for feature ex-
ploration, a random forest model, and a support vector machine (SVM) model for prediction. All
reported accuracy and AUC values are averaged over five-fold cross-validation, with folds gener-
ated over each decision. This does not take temporal ordering into account meaning later decisions
could be used to predict earlier decisions; we have yet to assess how this affects the accuracy of
the model. We also used grid search to find optimal hyperparameter values for each model. The
example confusion matrices are chosen from a single random fold, but are representative of the
other four folds.
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Actual Deny Actual Allow
Predicted Deny 504 50
Predicted Allow 29 344

Table 8: The confusion matrix for logistic
mixed-effect regression on a test set of 927.

Actual Deny Actual Allow
Predicted Deny 536 18
Predicted Allow 22 351

Table 9: The confusion matrix for our SVM clas-
sifier on a test set of 927.

Actual Deny Actual Allow
Predicted Deny 508 41
Predicted Allow 35 343

Table 10: The confusion matrix for our random forest classifier on a test set of 927.

The final set of features we used in our SVM and random forest models can be found in Table
7. We group the features into three major categories: behavioral, runtime, and aggregate features.
The behavioral features listed were the most predictive tended to relate to mobile browsing, phone
calling, and screen locking habits. The predictive runtime features were the permission requested
and the visibility of the requesting application. Interestingly absent is the requesting application
itself, which did not have much predictive power. We believed this was a result of the numer-
ous possible applications creating sparsity and reducing predictive power. To remedy this, we tried
other features that would provide similar information, such as a boolean indicating if the requesting
application was popular or highly used, but these features were also not predictive. The aggregate
features, which computes the denial rate for permission prompts for each {application, permis-
sion, visibility} combination, was inspired by the logistic mixed-effect regression model. We also
compute the denial rate for different foreground applications, as it relates to decision context.

We first used the logistic mixed-effect regression model for binary classification (keeping in mind
that we use logistic regression as a classification model, not regression as the name would im-
ply). Mixed effects account for two kinds of effects, inter-user and intra-user, and model these as
fixed and random effects respectively. Thus, in cases of repeated measurements, such as our data
collection process, they tend to do very well. The aggregate features mentioned above were our
attempt to introduce intra-user effects for the SVM classifier, which does not inherently account
for them. Essentially, without our aggregate feature, fixed-effect models like SVMs treat a single
user’s decisions as independent of each other.

Our mixed-effects model had an accuracy of 92.3% with an AUC of 0.92. We also used the same
feature set on an SVM and random forest classifier. The SVM (with an RBF kernel) achieved an
accuracy of 95.7% with an AUC of 0.95, and the random forest had an accuracy of 91.8% with an
AUC of 0.91. Tables 8, 9, and 10 contain the confusion matrices for each of our models. The key
point to notice is that some models tend to default towards denying, such as the logistic mixed-
effect regression model. This means that the majority of their errors are when they choose to deny
instead of allow a permission. We prefer these models to those that allow more, because falsely
allowing data is more costly than denying it. Granted data cannot be redacted, but denied data can
always be granted at a later time.
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Overall, the accuracy values we see are very encouraging, indicating that the machine learning
approach could be promising in practice. Furthermore, through our behavioral features, it seems
that passive behavioral data could be used to improve predictions and reduce prompting for the
user. We have yet to evaluate these systems in full deployment, but these initial results indicate
that this direction is one worth pursuing.

6 Related Work
Various other work has shown that applications access data beyond their expected functionality
[9, 22, 29]. In fact, static analysis tools have demonstrated that around 35% of applications are
over-privileged [10]. Many of these over-privileged applications collect highly personal informa-
tion for advertising, customer profiling, and similar purposes which users do not expect. Some
of the information they collect include location, stored data including images and text messages,
contact list, unique device identifiers (such as IMEI numbers) and others [9, 8]. Researchers have
also examined user privacy expectations in the context of application permissions, noting that they
were quite surprised by how much data background applications collect [20, 34]. Users’ reactions
varied from mild annoyance to actively wanting to seek retribution for their privacy invasion after
being shown the risks associated with specific permissions [12]. Our work confirms many of these
results while adding more granularity to our understanding of user privacy expectations.

Many researchers have also attempted to improve the current install-time permission model by bet-
ter explaining privacy risks associated with each permission more clearly, and creating recommen-
dation systems to recommend more privacy-conscious alternatives to applications [6, 21, 16, 22].
However, privacy is rarely the primary objective in a user’s decision to install an application,
so recommended alternatives are often ignored [32]. Other researchers have added fine-grained
access control to the Android permission model and successfully increased user privacy control
[6, 19, 31, 18]. However, these methods pose a usability problem, as demonstrated by the fact that
hardly any real-world users take advantage of such options [14, 3].

Other systems attempt to take the recommendation system idea further; they utilize other users’
security concerns as ratings into a recommendation service for applications [2, 15, 36]. Some
work focuses on clustering users on privacy preferences, based on how users react to different
access requests [30, 23]. While these systems do achieve high accuracy, they do not operate on
a real-world randomized dataset, require users to rate different permission types on Likert scales
preemptively, and respond to 10% of permission requests as runtime prompts. This places a burden
on the user, and requires them to answer a prompt nearly every three minutes [35], which results
in a system with high habituation and user annoyance. We want to look into extending their work
into a realistic setting with usability constraints, perhaps as part of our future work.

7 Future Work
The main focus of our ongoing and future work is to test the viability of the classifier in the wild.
We will be looking into ways to improve the cross-validation accuracy of the classifier and to gen-
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erate new features that better capture context from the rich instrumentation data we have. We also
plan to run a user study in which users are given phones with our custom version of the Android OS
containing our classifier to actually measure the classifier’s accuracy in a realistic setting. They
will use these phones for a period of time, while we record the decisions our classifier makes.
Through a similar study as the one in §2, we hope to use a screenshot-based study to ask them if
they agreed with the decisions our system made. We also want to conduct in-depth exit interviews
with all participants to understand how well our system fits user expectations.

Much of our data supports the idea that users are unique when it comes to privacy preferences,
and that these preferences change over time. We hope to encompass this by making an online
learning model, meaning that it can be updated with new data points in real-time. We plan to
use machine learning algorithms which support gradient descent and utilize a trusted server on
which to train the models. User phones will collect features through our existing instrumentation,
simplify it into a feature vector, and send it to the trusted server. The server will train the model
associated with the phone, and return a weight vector to the phone, which it will use for classifica-
tion. This ensures that phone battery and processing power is not spent on the expensive training
phase, and that models do not need to be stored on the limited memory on the phone. Based on
our preliminary calculations, each feature vector and weight vector exchange should be less than
5KB, maintaining low data transfer overhead. These exchanges would happen no more than a few
times a day.

8 Conclusion
In both the field study and the PhoneLab experimental study, users chose to deny a significant
portion of permission requests (ranging from 35% to 60% in the two studies), and 80% of users
chose to deny at least one request. Under install-time permission prompts, all of these requests
would have been granted, and the ask-on-first-use model’s assumption of users not changing their
decision for an {application,permission} pair is incorrect nearly 50% of the time [35]. This leads
us to believe that user privacy expectations are not encompassed by current permission models. By
defying user expectations, current models also violate Nissenbaum’s theory of contextual integrity
[28]. We thus propose a model which attempts to leverage the contextual nature of user privacy
into determining which data accesses are privacy-invasive.

Given the significant effect of visibility on user decisions, we provide a method to improve the
existing ask-on-first-use model by utilizing {application, permission, visibility} triplets rather than
the current {application, permission} pairs. This change would increase the probability that sub-
sequent decisions made by the ask-on-first -use model comply with the user’s decision from 0.51
to 0.84. However, our work also demonstrates the infeasibility of runtime prompts for all sensitive
data accesses because of the overwhelming frequency with which accesses occur. Thus, we strive
to create a system that confronts the user minimally while being able to gain enough information
to automatically infer user privacy preferences and make decisions as they would.

The data from our initial field study further provided an insight into the factors that differenti-
ate users’ decisions. Our models revealed that individual user characteristics greatly explained the
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variance between different user decisions, inspiring us to understand how to capture these charac-
teristics automatically and unobtrusively to guide our automatic inference-based system. Thus, we
created a highly instrumented version of the Android OS to capture behavioral patterns and contex-
tual data aiming to measure individual user characteristics through metrics collectible at runtime.

As we continue to add behavioral features to our offline model, we continue to improve prediction
accuracy. Our ability to infer user privacy preferences based on their behavioral features grows
as well, leading us to believe that the individual user variance can be handled through behavioral
metrics collectible at runtime. Our probability of conforming to user decisions already matches
or exceeds that of both the install-time and ask-on-first-use models, illustrating the potential of an
automated permission model.

In conclusion, we show the real-world circumstances under which Android permission requests
are made. Our study demonstrates ways of improving contextual integrity in existing models,
while highlighting many of their limitations. We also contribute a framework for an automated
model that attempts to make the same contextual decisions that an Android user would make.
Through this work, I hope to create a convenient process through which users are empowered with
far more control over their sensitive data. As information becomes increasingly accessible through
our mobile devices, permission models will likely become increasingly complex. Given usabil-
ity constraints, automated mechanisms that make contextually-aware decisions may become one
avenue towards empowering users without further complicating their lives.
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A Appendix

Application / Permission Peak (ms) Avg. (ms)
com.facebook.katana

213.88 956.97
ACCESS NETWORK STATE
com.facebook.orca

334.78 1146.05
ACCESS NETWORK STATE
com.google.android.apps.maps

247.89 624.61
ACCESS NETWORK STATE
com.google.process.gapps

315.31 315.31
AUTHENTICATE ACCOUNTS
com.google.process.gapps

898.94 1400.20
WAKE LOCK
com.google.process.location

176.11 991.46
WAKE LOCK
com.google.process.location

1387.26 1387.26
ACCESS FINE LOCATION
com.google.process.location

373.41 1878.88
GET ACCOUNTS
com.google.process.location

1901.91 1901.91
ACCESS WIFI STATE
com.king.farmheroessaga

284.02 731.27
ACCESS NETWORK STATE
com.pandora.android

541.37 541.37
ACCESS NETWORK STATE
com.taptu.streams

1746.36 1746.36
ACCESS NETWORK STATE

Table 11: The application/permission combinations that needed to be rate limited during the study. The
last two columns show the fastest interval recorded and the average of all the intervals recorded before
rate-limiting.
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Application / Permission Peak (ms) Avg. (ms)
com.facebook.katana

213.88 956.97
ACCESS NETWORK STATE
com.facebook.orca

334.78 1146.05
ACCESS NETWORK STATE
com.google.android.apps.maps

247.89 624.61
ACCESS NETWORK STATE
com.google.process.gapps

315.31 315.31
AUTHENTICATE ACCOUNTS
com.google.process.gapps

898.94 1400.20
WAKE LOCK
com.google.process.location

176.11 991.46
WAKE LOCK
com.google.process.location

1387.26 1387.26
ACCESS FINE LOCATION
com.google.process.location

373.41 1878.88
GET ACCOUNTS
com.google.process.location

1901.91 1901.91
ACCESS WIFI STATE
com.king.farmheroessaga

284.02 731.27
ACCESS NETWORK STATE
com.pandora.android

541.37 541.37
ACCESS NETWORK STATE
com.taptu.streams

1746.36 1746.36
ACCESS NETWORK STATE

Table 12: application/permission combinations that needed to be rate limited during the study. The last two
columns show the fastest interval recorded and the average of all the intervals recorded before rate-limiting.

Application Effect Size p-value
Google Inbox -0.142 <0.04

Weather -0.189 <0.005
Pacprocessor (In-built Proxy Service) 0.142 <0.03

Twitter -0.139 <0.04
Google Books 0.141 <0.04

Google Videos (In-built Video player) 0.153 <0.01

Table 13: Applications that had a statistically significant correlation with user denial rate, evaluated through
logistic mixed-effect regression. A positive effect size indicates that more usage of the application led to a
higher denial rate, while a negative effect size indicates that more usage led to a higher allow rate.
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File Containing Change Line No. Explanation
PreferenceUtils.java 47 developer options enabled
SecuritySettings.java 569,588 security settings opened/closed
SecuritySettings.java 695 security settings changed
NfcEnabler.java 108,123 NFC is toggled by user
NfcEnabler.java 143 NFC state is changed by system
LocationSettingsBase.java 115 location mode changed
LocationSettings.java 114,150 location settings opened/closed
DevelopmentSettings.java 1569 developer options enabled
ChooseLockGeneric.java 455 record when user changed lock
NfcService.java 509 NFC initial on/off logged
InboundSmsHandler.java 486 Tell if they’re getting 2FA SMS (eg. Gmail)
ActivityManagerService.java 11518 record initial account data
ActivityManagerService.java 6923 sensitive request made
ActivityManagerService.java 18181 application visibility
PowerManagerService.java 1079 screen times out
PowerManagerService.java 1100 user locks screen with power button
PowerManagerService.java 1121 app turns off screen
ReservoirSampler.java 211,324 how long people look at our prompt
ReservoirSampler.java 242,271 whether they allow or deny our prompt
ActivityRecord.java 997 time spent on activity
KeyguardPatternView.java 222 if pattern lock,security type, length of lock
KeyguardAbsView.java 112 pin/password lock, security type, length of lock
AudioService.java 1911,1933 ringer mode change (vibrate, silent, loud)
AudioService.java 2540,2562 speaker phone toggled
AudioService.java 3543,3566 headphones connected
AudioService.java 1829 microphone muted
ImageView.java 422 type of link visited in Chrome
CallLog.java 457 how long people talk on phone
CameraCaptureSessionImpl.java 163,204 picture taken using new camera API
Camera.java 1470 picture taken with old camera API
Camera.java 1122 preview frames streamed to some app
ContentResolver.java 634 picture media store accessed
NotificationManager.java 248,286,325 How long it took for them to click through notification
NotificationManager.java 168 When notification first appears

Table 14: This table contains all of the instrumentation we added. The files are all part of the Android
platform, except for ReservoirSampler.java, which is a class we added. The explanation covers the
main idea for each instrumentation point, but we collect hundreds of unique events, which are omitted from
this table for space reasons.
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